ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.55 by dl, Sun Apr 18 13:59:57 2010 UTC vs.
Revision 1.107 by jsr166, Fri Jul 1 03:09:02 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15 + import java.util.concurrent.AbstractExecutorService;
16 + import java.util.concurrent.Callable;
17 + import java.util.concurrent.ExecutorService;
18 + import java.util.concurrent.Future;
19 + import java.util.concurrent.RejectedExecutionException;
20 + import java.util.concurrent.RunnableFuture;
21 + import java.util.concurrent.TimeUnit;
22 + import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.ReentrantLock;
25 < import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.CountDownLatch;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29   * A {@code ForkJoinPool} provides the entry point for submissions
30 < * from non-{@code ForkJoinTask}s, as well as management and
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31   * monitoring operations.
32   *
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 36 | import java.util.concurrent.CountDownLat
36   * execute subtasks created by other active tasks (eventually blocking
37   * waiting for work if none exist). This enables efficient processing
38   * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
40 < * execution of some plain {@code Runnable}- or {@code Callable}-
41 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
39 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 > * with event-style tasks that are never joined.
42   *
43   * <p>A {@code ForkJoinPool} is constructed with a given target
44   * parallelism level; by default, equal to the number of available
45 < * processors. Unless configured otherwise via {@link
46 < * #setMaintainsParallelism}, the pool attempts to maintain this
47 < * number of active (or available) threads by dynamically adding,
48 < * suspending, or resuming internal worker threads, even if some tasks
49 < * are stalled waiting to join others. However, no such adjustments
50 < * are performed in the face of blocked IO or other unmanaged
51 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
45 > * processors. The pool attempts to maintain enough active (or
46 > * available) threads by dynamically adding, suspending, or resuming
47 > * internal worker threads, even if some tasks are stalled waiting to
48 > * join others. However, no such adjustments are guaranteed in the
49 > * face of blocked IO or other unmanaged synchronization. The nested
50 > * {@link ManagedBlocker} interface enables extension of the kinds of
51 > * synchronization accommodated.
52   *
53   * <p>In addition to execution and lifecycle control methods, this
54   * class provides status check methods (for example
# Line 65 | Line 57 | import java.util.concurrent.CountDownLat
57   * {@link #toString} returns indications of pool state in a
58   * convenient form for informal monitoring.
59   *
60 + * <p> As is the case with other ExecutorServices, there are three
61 + * main task execution methods summarized in the following
62 + * table. These are designed to be used by clients not already engaged
63 + * in fork/join computations in the current pool.  The main forms of
64 + * these methods accept instances of {@code ForkJoinTask}, but
65 + * overloaded forms also allow mixed execution of plain {@code
66 + * Runnable}- or {@code Callable}- based activities as well.  However,
67 + * tasks that are already executing in a pool should normally
68 + * <em>NOT</em> use these pool execution methods, but instead use the
69 + * within-computation forms listed in the table.
70 + *
71 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
72 + *  <tr>
73 + *    <td></td>
74 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
75 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
76 + *  </tr>
77 + *  <tr>
78 + *    <td> <b>Arrange async execution</td>
79 + *    <td> {@link #execute(ForkJoinTask)}</td>
80 + *    <td> {@link ForkJoinTask#fork}</td>
81 + *  </tr>
82 + *  <tr>
83 + *    <td> <b>Await and obtain result</td>
84 + *    <td> {@link #invoke(ForkJoinTask)}</td>
85 + *    <td> {@link ForkJoinTask#invoke}</td>
86 + *  </tr>
87 + *  <tr>
88 + *    <td> <b>Arrange exec and obtain Future</td>
89 + *    <td> {@link #submit(ForkJoinTask)}</td>
90 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
91 + *  </tr>
92 + * </table>
93 + *
94   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
95   * used for all parallel task execution in a program or subsystem.
96   * Otherwise, use would not usually outweigh the construction and
# Line 75 | Line 101 | import java.util.concurrent.CountDownLat
101   * daemon} mode, there is typically no need to explicitly {@link
102   * #shutdown} such a pool upon program exit.
103   *
104 < * <pre>
104 > *  <pre> {@code
105   * static final ForkJoinPool mainPool = new ForkJoinPool();
106   * ...
107   * public void sort(long[] array) {
108   *   mainPool.invoke(new SortTask(array, 0, array.length));
109 < * }
84 < * </pre>
109 > * }}</pre>
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 89 | Line 114 | import java.util.concurrent.CountDownLat
114   * {@code IllegalArgumentException}.
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117 < * {@link RejectedExecutionException}) only when the pool is shut down.
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 103 | Line 129 | public class ForkJoinPool extends Abstra
129       * set of worker threads: Submissions from non-FJ threads enter
130       * into a submission queue. Workers take these tasks and typically
131       * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
110 <     * lastly to new submissions. These mechanics do not consider
111 <     * affinities, loads, cache localities, etc, so rarely provide the
112 <     * best possible performance on a given machine, but portably
113 <     * provide good throughput by averaging over these factors.
114 <     * (Further, even if we did try to use such information, we do not
115 <     * usually have a basis for exploiting it. For example, some sets
116 <     * of tasks profit from cache affinities, but others are harmed by
117 <     * cache pollution effects.)
132 >     * Preference rules give first priority to processing tasks from
133 >     * their own queues (LIFO or FIFO, depending on mode), then to
134 >     * randomized FIFO steals of tasks in other worker queues, and
135 >     * lastly to new submissions.
136       *
137       * The main throughput advantages of work-stealing stem from
138 <     * decentralized control -- workers mostly steal tasks from each
139 <     * other. We do not want to negate this by creating bottlenecks
140 <     * implementing the management responsibilities of this class. So
141 <     * we use a collection of techniques that avoid, reduce, or cope
142 <     * well with contention. These entail several instances of
143 <     * bit-packing into CASable fields to maintain only the minimally
144 <     * required atomicity. To enable such packing, we restrict maximum
145 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
146 <     * bit field), which is far in excess of normal operating range.
147 <     * Even though updates to some of these bookkeeping fields do
148 <     * sometimes contend with each other, they don't normally
149 <     * cache-contend with updates to others enough to warrant memory
150 <     * padding or isolation. So they are all held as fields of
151 <     * ForkJoinPool objects.  The main capabilities are as follows:
152 <     *
153 <     * 1. Creating and removing workers. Workers are recorded in the
154 <     * "workers" array. This is an array as opposed to some other data
138 >     * decentralized control -- workers mostly take tasks from
139 >     * themselves or each other. We cannot negate this in the
140 >     * implementation of other management responsibilities. The main
141 >     * tactic for avoiding bottlenecks is packing nearly all
142 >     * essentially atomic control state into a single 64bit volatile
143 >     * variable ("ctl"). This variable is read on the order of 10-100
144 >     * times as often as it is modified (always via CAS). (There is
145 >     * some additional control state, for example variable "shutdown"
146 >     * for which we can cope with uncoordinated updates.)  This
147 >     * streamlines synchronization and control at the expense of messy
148 >     * constructions needed to repack status bits upon updates.
149 >     * Updates tend not to contend with each other except during
150 >     * bursts while submitted tasks begin or end.  In some cases when
151 >     * they do contend, threads can instead do something else
152 >     * (usually, scan for tasks) until contention subsides.
153 >     *
154 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
155 >     * (which is far in excess of normal operating range) to allow
156 >     * ids, counts, and their negations (used for thresholding) to fit
157 >     * into 16bit fields.
158 >     *
159 >     * Recording Workers.  Workers are recorded in the "workers" array
160 >     * that is created upon pool construction and expanded if (rarely)
161 >     * necessary.  This is an array as opposed to some other data
162       * structure to support index-based random steals by workers.
163       * Updates to the array recording new workers and unrecording
164 <     * terminated ones are protected from each other by a lock
165 <     * (workerLock) but the array is otherwise concurrently readable,
164 >     * terminated ones are protected from each other by a seqLock
165 >     * (scanGuard) but the array is otherwise concurrently readable,
166       * and accessed directly by workers. To simplify index-based
167       * operations, the array size is always a power of two, and all
168 <     * readers must tolerate null slots. Currently, all but the first
169 <     * worker thread creation is on-demand, triggered by task
170 <     * submissions, replacement of terminated workers, and/or
171 <     * compensation for blocked workers. However, all other support
172 <     * code is set up to work with other policies.
173 <     *
174 <     * 2. Bookkeeping for dynamically adding and removing workers. We
175 <     * maintain a given level of parallelism (or, if
176 <     * maintainsParallelism is false, at least avoid starvation). When
177 <     * some workers are known to be blocked (on joins or via
178 <     * ManagedBlocker), we may create or resume others to take their
179 <     * place until they unblock (see below). Implementing this
180 <     * requires counts of the number of "running" threads (i.e., those
181 <     * that are neither blocked nor artifically suspended) as well as
182 <     * the total number.  These two values are packed into one field,
183 <     * "workerCounts" because we need accurate snapshots when deciding
184 <     * to create, resume or suspend.  To support these decisions,
185 <     * updates must be prospective (not retrospective).  For example,
186 <     * the running count is decremented before blocking by a thread
187 <     * about to block, but incremented by the thread about to unblock
188 <     * it. (In a few cases, these prospective updates may need to be
189 <     * rolled back, for example when deciding to create a new worker
190 <     * but the thread factory fails or returns null. In these cases,
191 <     * we are no worse off wrt other decisions than we would be
192 <     * otherwise.)  Updates to the workerCounts field sometimes
193 <     * transiently encounter a fair amount of contention when join
194 <     * dependencies are such that many threads block or unblock at
195 <     * about the same time. We alleviate this by sometimes bundling
196 <     * updates (for example blocking one thread on join and resuming a
197 <     * spare cancel each other out), and in most other cases
198 <     * performing an alternative action (like releasing waiters and
199 <     * finding spares; see below) as a more productive form of
200 <     * backoff.
201 <     *
202 <     * 3. Maintaining global run state. The run state of the pool
203 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
204 <     * those in other Executor implementations, as well as a count of
205 <     * "active" workers -- those that are, or soon will be, or
206 <     * recently were executing tasks. The runLevel and active count
207 <     * are packed together in order to correctly trigger shutdown and
208 <     * termination. Without care, active counts can be subject to very
209 <     * high contention.  We substantially reduce this contention by
210 <     * relaxing update rules.  A worker must claim active status
211 <     * prospectively, by activating if it sees that a submitted or
212 <     * stealable task exists (it may find after activating that the
213 <     * task no longer exists). It stays active while processing this
214 <     * task (if it exists) and any other local subtasks it produces,
215 <     * until it cannot find any other tasks. It then tries
216 <     * inactivating (see method preStep), but upon update contention
217 <     * instead scans for more tasks, later retrying inactivation if it
218 <     * doesn't find any.
219 <     *
220 <     * 4. Managing idle workers waiting for tasks. We cannot let
221 <     * workers spin indefinitely scanning for tasks when none are
222 <     * available. On the other hand, we must quickly prod them into
223 <     * action when new tasks are submitted or generated.  We
224 <     * park/unpark these idle workers using an event-count scheme.
225 <     * Field eventCount is incremented upon events that may enable
226 <     * workers that previously could not find a task to now find one:
227 <     * Submission of a new task to the pool, or another worker pushing
228 <     * a task onto a previously empty queue.  (We also use this
229 <     * mechanism for termination and reconfiguration actions that
230 <     * require wakeups of idle workers).  Each worker maintains its
231 <     * last known event count, and blocks when a scan for work did not
232 <     * find a task AND its lastEventCount matches the current
233 <     * eventCount. Waiting idle workers are recorded in a variant of
234 <     * Treiber stack headed by field eventWaiters which, when nonzero,
235 <     * encodes the thread index and count awaited for by the worker
236 <     * thread most recently calling eventSync. This thread in turn has
237 <     * a record (field nextEventWaiter) for the next waiting worker.
238 <     * In addition to allowing simpler decisions about need for
239 <     * wakeup, the event count bits in eventWaiters serve the role of
240 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
241 <     * in task diffusion, workers not otherwise occupied may invoke
242 <     * method releaseWaiters, that removes and signals (unparks)
243 <     * workers not waiting on current count. To minimize task
244 <     * production stalls associate with signalling, any worker pushing
245 <     * a task on an empty queue invokes the weaker method signalWork,
246 <     * that only releases idle workers until it detects interference
247 <     * by other threads trying to release, and lets them take
248 <     * over. The net effect is a tree-like diffusion of signals, where
249 <     * released threads and possibly others) help with unparks.  To
250 <     * further reduce contention effects a bit, failed CASes to
251 <     * increment field eventCount are tolerated without retries.
252 <     * Conceptually they are merged into the same event, which is OK
253 <     * when their only purpose is to enable workers to scan for work.
254 <     *
255 <     * 5. Managing suspension of extra workers. When a worker is about
256 <     * to block waiting for a join (or via ManagedBlockers), we may
257 <     * create a new thread to maintain parallelism level, or at least
258 <     * avoid starvation (see below). Usually, extra threads are needed
259 <     * for only very short periods, yet join dependencies are such
260 <     * that we sometimes need them in bursts. Rather than create new
261 <     * threads each time this happens, we suspend no-longer-needed
262 <     * extra ones as "spares". For most purposes, we don't distinguish
263 <     * "extra" spare threads from normal "core" threads: On each call
264 <     * to preStep (the only point at which we can do this) a worker
265 <     * checks to see if there are now too many running workers, and if
266 <     * so, suspends itself.  Methods preJoin and doBlock look for
267 <     * suspended threads to resume before considering creating a new
268 <     * replacement. We don't need a special data structure to maintain
269 <     * spares; simply scanning the workers array looking for
270 <     * worker.isSuspended() is fine because the calling thread is
271 <     * otherwise not doing anything useful anyway; we are at least as
272 <     * happy if after locating a spare, the caller doesn't actually
273 <     * block because the join is ready before we try to adjust and
274 <     * compensate.  Note that this is intrinsically racy.  One thread
275 <     * may become a spare at about the same time as another is
276 <     * needlessly being created. We counteract this and related slop
277 <     * in part by requiring resumed spares to immediately recheck (in
278 <     * preStep) to see whether they they should re-suspend. The only
279 <     * effective difference between "extra" and "core" threads is that
280 <     * we allow the "extra" ones to time out and die if they are not
281 <     * resumed within a keep-alive interval of a few seconds. This is
282 <     * implemented mainly within ForkJoinWorkerThread, but requires
283 <     * some coordination (isTrimmed() -- meaning killed while
284 <     * suspended) to correctly maintain pool counts.
285 <     *
286 <     * 6. Deciding when to create new workers. The main dynamic
287 <     * control in this class is deciding when to create extra threads,
288 <     * in methods preJoin and doBlock. We always need to create one
289 <     * when the number of running threads becomes zero. But because
290 <     * blocked joins are typically dependent, we don't necessarily
291 <     * need or want one-to-one replacement. Using a one-to-one
292 <     * compensation rule often leads to enough useless overhead
293 <     * creating, suspending, resuming, and/or killing threads to
294 <     * signficantly degrade throughput.  We use a rule reflecting the
295 <     * idea that, the more spare threads you already have, the more
296 <     * evidence you need to create another one; where "evidence" is
297 <     * expressed as the current deficit -- target minus running
273 <     * threads. To reduce flickering and drift around target values,
274 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 <     * (where dc is deficit, sc is number of spare threads and pc is
276 <     * target parallelism.)  This effectively reduces churn at the
277 <     * price of systematically undershooting target parallelism when
278 <     * many threads are blocked.  However, biasing toward undeshooting
279 <     * partially compensates for the above mechanics to suspend extra
280 <     * threads, that normally lead to overshoot because we can only
281 <     * suspend workers in-between top-level actions. It also better
282 <     * copes with the fact that some of the methods in this class tend
283 <     * to never become compiled (but are interpreted), so some
284 <     * components of the entire set of controls might execute many
285 <     * times faster than others. And similarly for cases where the
286 <     * apparent lack of work is just due to GC stalls and other
287 <     * transient system activity.
288 <     *
289 <     * 7. Maintaining other configuration parameters and monitoring
290 <     * statistics. Updates to fields controlling parallelism level,
291 <     * max size, etc can only meaningfully take effect for individual
292 <     * threads upon their next top-level actions; i.e., between
293 <     * stealing/running tasks/submission, which are separated by calls
294 <     * to preStep.  Memory ordering for these (assumed infrequent)
295 <     * reconfiguration calls is ensured by using reads and writes to
296 <     * volatile field workerCounts (that must be read in preStep anyway)
297 <     * as "fences" -- user-level reads are preceded by reads of
298 <     * workCounts, and writes are followed by no-op CAS to
299 <     * workerCounts. The values reported by other management and
300 <     * monitoring methods are either computed on demand, or are kept
301 <     * in fields that are only updated when threads are otherwise
302 <     * idle.
168 >     * readers must tolerate null slots. To avoid flailing during
169 >     * start-up, the array is presized to hold twice #parallelism
170 >     * workers (which is unlikely to need further resizing during
171 >     * execution). But to avoid dealing with so many null slots,
172 >     * variable scanGuard includes a mask for the nearest power of two
173 >     * that contains all current workers.  All worker thread creation
174 >     * is on-demand, triggered by task submissions, replacement of
175 >     * terminated workers, and/or compensation for blocked
176 >     * workers. However, all other support code is set up to work with
177 >     * other policies.  To ensure that we do not hold on to worker
178 >     * references that would prevent GC, ALL accesses to workers are
179 >     * via indices into the workers array (which is one source of some
180 >     * of the messy code constructions here). In essence, the workers
181 >     * array serves as a weak reference mechanism. Thus for example
182 >     * the wait queue field of ctl stores worker indices, not worker
183 >     * references.  Access to the workers in associated methods (for
184 >     * example signalWork) must both index-check and null-check the
185 >     * IDs. All such accesses ignore bad IDs by returning out early
186 >     * from what they are doing, since this can only be associated
187 >     * with termination, in which case it is OK to give up.
188 >     *
189 >     * All uses of the workers array, as well as queue arrays, check
190 >     * that the array is non-null (even if previously non-null). This
191 >     * allows nulling during termination, which is currently not
192 >     * necessary, but remains an option for resource-revocation-based
193 >     * shutdown schemes.
194 >     *
195 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
196 >     * let workers spin indefinitely scanning for tasks when none can
197 >     * be found immediately, and we cannot start/resume workers unless
198 >     * there appear to be tasks available.  On the other hand, we must
199 >     * quickly prod them into action when new tasks are submitted or
200 >     * generated.  We park/unpark workers after placing in an event
201 >     * wait queue when they cannot find work. This "queue" is actually
202 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
203 >     * 15bit counter value to both wake up waiters (by advancing their
204 >     * count) and avoid ABA effects. Successors are held in worker
205 >     * field "nextWait".  Queuing deals with several intrinsic races,
206 >     * mainly that a task-producing thread can miss seeing (and
207 >     * signalling) another thread that gave up looking for work but
208 >     * has not yet entered the wait queue. We solve this by requiring
209 >     * a full sweep of all workers both before (in scan()) and after
210 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
211 >     * queue. During a rescan, the worker might release some other
212 >     * queued worker rather than itself, which has the same net
213 >     * effect. Because enqueued workers may actually be rescanning
214 >     * rather than waiting, we set and clear the "parked" field of
215 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
216 >     * (Use of the parked field requires a secondary recheck to avoid
217 >     * missed signals.)
218 >     *
219 >     * Signalling.  We create or wake up workers only when there
220 >     * appears to be at least one task they might be able to find and
221 >     * execute.  When a submission is added or another worker adds a
222 >     * task to a queue that previously had two or fewer tasks, they
223 >     * signal waiting workers (or trigger creation of new ones if
224 >     * fewer than the given parallelism level -- see signalWork).
225 >     * These primary signals are buttressed by signals during rescans
226 >     * as well as those performed when a worker steals a task and
227 >     * notices that there are more tasks too; together these cover the
228 >     * signals needed in cases when more than two tasks are pushed
229 >     * but untaken.
230 >     *
231 >     * Trimming workers. To release resources after periods of lack of
232 >     * use, a worker starting to wait when the pool is quiescent will
233 >     * time out and terminate if the pool has remained quiescent for
234 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
235 >     * terminating all workers after long periods of non-use.
236 >     *
237 >     * Submissions. External submissions are maintained in an
238 >     * array-based queue that is structured identically to
239 >     * ForkJoinWorkerThread queues except for the use of
240 >     * submissionLock in method addSubmission. Unlike the case for
241 >     * worker queues, multiple external threads can add new
242 >     * submissions, so adding requires a lock.
243 >     *
244 >     * Compensation. Beyond work-stealing support and lifecycle
245 >     * control, the main responsibility of this framework is to take
246 >     * actions when one worker is waiting to join a task stolen (or
247 >     * always held by) another.  Because we are multiplexing many
248 >     * tasks on to a pool of workers, we can't just let them block (as
249 >     * in Thread.join).  We also cannot just reassign the joiner's
250 >     * run-time stack with another and replace it later, which would
251 >     * be a form of "continuation", that even if possible is not
252 >     * necessarily a good idea since we sometimes need both an
253 >     * unblocked task and its continuation to progress. Instead we
254 >     * combine two tactics:
255 >     *
256 >     *   Helping: Arranging for the joiner to execute some task that it
257 >     *      would be running if the steal had not occurred.  Method
258 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
259 >     *      links to try to find such a task.
260 >     *
261 >     *   Compensating: Unless there are already enough live threads,
262 >     *      method tryPreBlock() may create or re-activate a spare
263 >     *      thread to compensate for blocked joiners until they
264 >     *      unblock.
265 >     *
266 >     * The ManagedBlocker extension API can't use helping so relies
267 >     * only on compensation in method awaitBlocker.
268 >     *
269 >     * It is impossible to keep exactly the target parallelism number
270 >     * of threads running at any given time.  Determining the
271 >     * existence of conservatively safe helping targets, the
272 >     * availability of already-created spares, and the apparent need
273 >     * to create new spares are all racy and require heuristic
274 >     * guidance, so we rely on multiple retries of each.  Currently,
275 >     * in keeping with on-demand signalling policy, we compensate only
276 >     * if blocking would leave less than one active (non-waiting,
277 >     * non-blocked) worker. Additionally, to avoid some false alarms
278 >     * due to GC, lagging counters, system activity, etc, compensated
279 >     * blocking for joins is only attempted after rechecks stabilize
280 >     * (retries are interspersed with Thread.yield, for good
281 >     * citizenship).  The variable blockedCount, incremented before
282 >     * blocking and decremented after, is sometimes needed to
283 >     * distinguish cases of waiting for work vs blocking on joins or
284 >     * other managed sync. Both cases are equivalent for most pool
285 >     * control, so we can update non-atomically. (Additionally,
286 >     * contention on blockedCount alleviates some contention on ctl).
287 >     *
288 >     * Shutdown and Termination. A call to shutdownNow atomically sets
289 >     * the ctl stop bit and then (non-atomically) sets each workers
290 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
291 >     * all waiting workers.  Detecting whether termination should
292 >     * commence after a non-abrupt shutdown() call requires more work
293 >     * and bookkeeping. We need consensus about quiescence (i.e., that
294 >     * there is no more work) which is reflected in active counts so
295 >     * long as there are no current blockers, as well as possible
296 >     * re-evaluations during independent changes in blocking or
297 >     * quiescing workers.
298       *
299 <     * Beware that there is a lot of representation-level coupling
299 >     * Style notes: There is a lot of representation-level coupling
300       * among classes ForkJoinPool, ForkJoinWorkerThread, and
301 <     * ForkJoinTask.  For example, direct access to "workers" array by
301 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
302 >     * data structures managed by ForkJoinPool, so are directly
303 >     * accessed.  Conversely we allow access to "workers" array by
304       * workers, and direct access to ForkJoinTask.status by both
305       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
306       * trying to reduce this, since any associated future changes in
307       * representations will need to be accompanied by algorithmic
308 <     * changes anyway.
309 <     *
310 <     * Style notes: There are lots of inline assignments (of form
311 <     * "while ((local = field) != 0)") which are usually the simplest
312 <     * way to ensure read orderings. Also several occurrences of the
313 <     * unusual "do {} while(!cas...)" which is the simplest way to
314 <     * force an update of a CAS'ed variable. There are also a few
315 <     * other coding oddities that help some methods perform reasonably
316 <     * even when interpreted (not compiled).
317 <     *
318 <     * The order of declarations in this file is: (1) statics (2)
319 <     * fields (along with constants used when unpacking some of them)
320 <     * (3) internal control methods (4) callbacks and other support
321 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
322 <     * methods (plus a few little helpers).
308 >     * changes anyway. All together, these low-level implementation
309 >     * choices produce as much as a factor of 4 performance
310 >     * improvement compared to naive implementations, and enable the
311 >     * processing of billions of tasks per second, at the expense of
312 >     * some ugliness.
313 >     *
314 >     * Methods signalWork() and scan() are the main bottlenecks so are
315 >     * especially heavily micro-optimized/mangled.  There are lots of
316 >     * inline assignments (of form "while ((local = field) != 0)")
317 >     * which are usually the simplest way to ensure the required read
318 >     * orderings (which are sometimes critical). This leads to a
319 >     * "C"-like style of listing declarations of these locals at the
320 >     * heads of methods or blocks.  There are several occurrences of
321 >     * the unusual "do {} while (!cas...)"  which is the simplest way
322 >     * to force an update of a CAS'ed variable. There are also other
323 >     * coding oddities that help some methods perform reasonably even
324 >     * when interpreted (not compiled).
325 >     *
326 >     * The order of declarations in this file is: (1) declarations of
327 >     * statics (2) fields (along with constants used when unpacking
328 >     * some of them), listed in an order that tends to reduce
329 >     * contention among them a bit under most JVMs.  (3) internal
330 >     * control methods (4) callbacks and other support for
331 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
332 >     * methods (plus a few little helpers). (6) static block
333 >     * initializing all statics in a minimally dependent order.
334       */
335  
336      /**
# Line 345 | Line 353 | public class ForkJoinPool extends Abstra
353       * Default ForkJoinWorkerThreadFactory implementation; creates a
354       * new ForkJoinWorkerThread.
355       */
356 <    static class  DefaultForkJoinWorkerThreadFactory
356 >    static class DefaultForkJoinWorkerThreadFactory
357          implements ForkJoinWorkerThreadFactory {
358          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
359              return new ForkJoinWorkerThread(pool);
# Line 357 | Line 365 | public class ForkJoinPool extends Abstra
365       * overridden in ForkJoinPool constructors.
366       */
367      public static final ForkJoinWorkerThreadFactory
368 <        defaultForkJoinWorkerThreadFactory =
361 <        new DefaultForkJoinWorkerThreadFactory();
368 >        defaultForkJoinWorkerThreadFactory;
369  
370      /**
371       * Permission required for callers of methods that may start or
372       * kill threads.
373       */
374 <    private static final RuntimePermission modifyThreadPermission =
368 <        new RuntimePermission("modifyThread");
374 >    private static final RuntimePermission modifyThreadPermission;
375  
376      /**
377       * If there is a security manager, makes sure caller has
# Line 380 | Line 386 | public class ForkJoinPool extends Abstra
386      /**
387       * Generator for assigning sequence numbers as pool names.
388       */
389 <    private static final AtomicInteger poolNumberGenerator =
390 <        new AtomicInteger();
389 >    private static final AtomicInteger poolNumberGenerator;
390 >
391 >    /**
392 >     * Generator for initial random seeds for worker victim
393 >     * selection. This is used only to create initial seeds. Random
394 >     * steals use a cheaper xorshift generator per steal attempt. We
395 >     * don't expect much contention on seedGenerator, so just use a
396 >     * plain Random.
397 >     */
398 >    static final Random workerSeedGenerator;
399  
400      /**
401 <     * Absolute bound for parallelism level. Twice this number must
402 <     * fit into a 16bit field to enable word-packing for some counts.
401 >     * Array holding all worker threads in the pool.  Initialized upon
402 >     * construction. Array size must be a power of two.  Updates and
403 >     * replacements are protected by scanGuard, but the array is
404 >     * always kept in a consistent enough state to be randomly
405 >     * accessed without locking by workers performing work-stealing,
406 >     * as well as other traversal-based methods in this class, so long
407 >     * as reads memory-acquire by first reading ctl. All readers must
408 >     * tolerate that some array slots may be null.
409       */
410 <    private static final int MAX_THREADS = 0x7fff;
410 >    ForkJoinWorkerThread[] workers;
411  
412      /**
413 <     * Array holding all worker threads in the pool.  Array size must
414 <     * be a power of two.  Updates and replacements are protected by
415 <     * workerLock, but the array is always kept in a consistent enough
396 <     * state to be randomly accessed without locking by workers
397 <     * performing work-stealing, as well as other traversal-based
398 <     * methods in this class. All readers must tolerate that some
399 <     * array slots may be null.
413 >     * Initial size for submission queue array. Must be a power of
414 >     * two.  In many applications, these always stay small so we use a
415 >     * small initial cap.
416       */
417 <    volatile ForkJoinWorkerThread[] workers;
417 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
418  
419      /**
420 <     * Queue for external submissions.
420 >     * Maximum size for submission queue array. Must be a power of two
421 >     * less than or equal to 1 << (31 - width of array entry) to
422 >     * ensure lack of index wraparound, but is capped at a lower
423 >     * value to help users trap runaway computations.
424       */
425 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
425 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
426  
427      /**
428 <     * Lock protecting updates to workers array.
428 >     * Array serving as submission queue. Initialized upon construction.
429       */
430 <    private final ReentrantLock workerLock;
430 >    private ForkJoinTask<?>[] submissionQueue;
431  
432      /**
433 <     * Latch released upon termination.
433 >     * Lock protecting submissions array for addSubmission
434       */
435 <    private final CountDownLatch terminationLatch;
435 >    private final ReentrantLock submissionLock;
436 >
437 >    /**
438 >     * Condition for awaitTermination, using submissionLock for
439 >     * convenience.
440 >     */
441 >    private final Condition termination;
442  
443      /**
444       * Creation factory for worker threads.
# Line 421 | Line 446 | public class ForkJoinPool extends Abstra
446      private final ForkJoinWorkerThreadFactory factory;
447  
448      /**
449 +     * The uncaught exception handler used when any worker abruptly
450 +     * terminates.
451 +     */
452 +    final Thread.UncaughtExceptionHandler ueh;
453 +
454 +    /**
455 +     * Prefix for assigning names to worker threads
456 +     */
457 +    private final String workerNamePrefix;
458 +
459 +    /**
460       * Sum of per-thread steal counts, updated only when threads are
461       * idle or terminating.
462       */
463      private volatile long stealCount;
464  
465      /**
466 <     * Encoded record of top of treiber stack of threads waiting for
467 <     * events. The top 32 bits contain the count being waited for. The
468 <     * bottom word contains one plus the pool index of waiting worker
469 <     * thread.
470 <     */
471 <    private volatile long eventWaiters;
472 <
473 <    private static final int  EVENT_COUNT_SHIFT = 32;
474 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
475 <
476 <    /**
477 <     * A counter for events that may wake up worker threads:
478 <     *   - Submission of a new task to the pool
479 <     *   - A worker pushing a task on an empty queue
480 <     *   - termination and reconfiguration
481 <     */
482 <    private volatile int eventCount;
483 <
484 <    /**
485 <     * Lifecycle control. The low word contains the number of workers
486 <     * that are (probably) executing tasks. This value is atomically
487 <     * incremented before a worker gets a task to run, and decremented
488 <     * when worker has no tasks and cannot find any.  Bits 16-18
489 <     * contain runLevel value. When all are zero, the pool is
490 <     * running. Level transitions are monotonic (running -> shutdown
491 <     * -> terminating -> terminated) so each transition adds a bit.
492 <     * These are bundled together to ensure consistent read for
493 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
494 <     * and active threads is zero).
495 <     */
496 <    private volatile int runState;
497 <
498 <    // Note: The order among run level values matters.
499 <    private static final int RUNLEVEL_SHIFT     = 16;
500 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
501 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
502 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
503 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
504 <    private static final int ONE_ACTIVE         = 1; // active update delta
505 <
506 <    /**
507 <     * Holds number of total (i.e., created and not yet terminated)
508 <     * and running (i.e., not blocked on joins or other managed sync)
509 <     * threads, packed together to ensure consistent snapshot when
510 <     * making decisions about creating and suspending spare
511 <     * threads. Updated only by CAS. Note that adding a new worker
512 <     * requires incrementing both counts, since workers start off in
513 <     * running state.  This field is also used for memory-fencing
514 <     * configuration parameters.
515 <     */
516 <    private volatile int workerCounts;
517 <
518 <    private static final int TOTAL_COUNT_SHIFT  = 16;
519 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484 <    private static final int ONE_RUNNING        = 1;
485 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
486 <
487 <    /*
488 <     * Fields parallelism. maxPoolSize, locallyFifo,
489 <     * maintainsParallelism, and ueh are non-volatile, but external
490 <     * reads/writes use workerCount fences to ensure visability.
491 <     */
466 >     * Main pool control -- a long packed with:
467 >     * AC: Number of active running workers minus target parallelism (16 bits)
468 >     * TC: Number of total workers minus target parallelism (16 bits)
469 >     * ST: true if pool is terminating (1 bit)
470 >     * EC: the wait count of top waiting thread (15 bits)
471 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
472 >     *
473 >     * When convenient, we can extract the upper 32 bits of counts and
474 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
475 >     * (int)ctl.  The ec field is never accessed alone, but always
476 >     * together with id and st. The offsets of counts by the target
477 >     * parallelism and the positionings of fields makes it possible to
478 >     * perform the most common checks via sign tests of fields: When
479 >     * ac is negative, there are not enough active workers, when tc is
480 >     * negative, there are not enough total workers, when id is
481 >     * negative, there is at least one waiting worker, and when e is
482 >     * negative, the pool is terminating.  To deal with these possibly
483 >     * negative fields, we use casts in and out of "short" and/or
484 >     * signed shifts to maintain signedness.
485 >     */
486 >    volatile long ctl;
487 >
488 >    // bit positions/shifts for fields
489 >    private static final int  AC_SHIFT   = 48;
490 >    private static final int  TC_SHIFT   = 32;
491 >    private static final int  ST_SHIFT   = 31;
492 >    private static final int  EC_SHIFT   = 16;
493 >
494 >    // bounds
495 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
496 >    private static final int  SMASK      = 0xffff;  // mask short bits
497 >    private static final int  SHORT_SIGN = 1 << 15;
498 >    private static final int  INT_SIGN   = 1 << 31;
499 >
500 >    // masks
501 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
502 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
503 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
504 >
505 >    // units for incrementing and decrementing
506 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
507 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
508 >
509 >    // masks and units for dealing with u = (int)(ctl >>> 32)
510 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
511 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
512 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
513 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
514 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
515 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
516 >
517 >    // masks and units for dealing with e = (int)ctl
518 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
519 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
520  
521      /**
522       * The target parallelism level.
523       */
524 <    private int parallelism;
524 >    final int parallelism;
525  
526      /**
527 <     * The maximum allowed pool size.
527 >     * Index (mod submission queue length) of next element to take
528 >     * from submission queue. Usage is identical to that for
529 >     * per-worker queues -- see ForkJoinWorkerThread internal
530 >     * documentation.
531       */
532 <    private int maxPoolSize;
532 >    volatile int queueBase;
533  
534      /**
535 <     * True if use local fifo, not default lifo, for local polling
536 <     * Replicated by ForkJoinWorkerThreads
535 >     * Index (mod submission queue length) of next element to add
536 >     * in submission queue. Usage is identical to that for
537 >     * per-worker queues -- see ForkJoinWorkerThread internal
538 >     * documentation.
539       */
540 <    private boolean locallyFifo;
540 >    int queueTop;
541  
542      /**
543 <     * Controls whether to add spares to maintain parallelism
543 >     * True when shutdown() has been called.
544       */
545 <    private boolean maintainsParallelism;
545 >    volatile boolean shutdown;
546  
547      /**
548 <     * The uncaught exception handler used when any worker
549 <     * abruptly terminates
548 >     * True if use local fifo, not default lifo, for local polling.
549 >     * Read by, and replicated by ForkJoinWorkerThreads.
550       */
551 <    private Thread.UncaughtExceptionHandler ueh;
551 >    final boolean locallyFifo;
552  
553      /**
554 <     * Pool number, just for assigning useful names to worker threads
554 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
555 >     * When non-zero, suppresses automatic shutdown when active
556 >     * counts become zero.
557       */
558 <    private final int poolNumber;
524 <
525 <    // utilities for updating fields
558 >    volatile int quiescerCount;
559  
560      /**
561 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 <     *
530 <     * @param delta the number to add
561 >     * The number of threads blocked in join.
562       */
563 <    final void updateRunningCount(int delta) {
533 <        int wc;
534 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 <                                               wc = workerCounts,
536 <                                               wc + delta));
537 <    }
563 >    volatile int blockedCount;
564  
565      /**
566 <     * Write fence for user modifications of pool parameters
541 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
566 >     * Counter for worker Thread names (unrelated to their poolIndex)
567       */
568 <    private void workerCountWriteFence() {
544 <        int wc;
545 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                 wc = workerCounts, wc);
547 <    }
568 >    private volatile int nextWorkerNumber;
569  
570      /**
571 <     * Read fence for external reads of pool parameters
551 <     * (parallelism. maxPoolSize, etc).
571 >     * The index for the next created worker. Accessed under scanGuard.
572       */
573 <    private void workerCountReadFence() {
554 <        int ignore = workerCounts;
555 <    }
573 >    private int nextWorkerIndex;
574  
575      /**
576 <     * Tries incrementing active count; fails on contention.
577 <     * Called by workers before executing tasks.
578 <     *
579 <     * @return true on success
576 >     * SeqLock and index masking for updates to workers array.  Locked
577 >     * when SG_UNIT is set. Unlocking clears bit by adding
578 >     * SG_UNIT. Staleness of read-only operations can be checked by
579 >     * comparing scanGuard to value before the reads. The low 16 bits
580 >     * (i.e, anding with SMASK) hold (the smallest power of two
581 >     * covering all worker indices, minus one, and is used to avoid
582 >     * dealing with large numbers of null slots when the workers array
583 >     * is overallocated.
584       */
585 <    final boolean tryIncrementActiveCount() {
586 <        int c;
587 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 <                                        c = runState, c + ONE_ACTIVE);
567 <    }
585 >    volatile int scanGuard;
586 >
587 >    private static final int SG_UNIT = 1 << 16;
588  
589      /**
590 <     * Tries decrementing active count; fails on contention.
591 <     * Called when workers cannot find tasks to run.
590 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
591 >     * task when the pool is quiescent to instead try to shrink the
592 >     * number of workers.  The exact value does not matter too
593 >     * much. It must be short enough to release resources during
594 >     * sustained periods of idleness, but not so short that threads
595 >     * are continually re-created.
596       */
597 <    final boolean tryDecrementActiveCount() {
598 <        int c;
575 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 <                                        c = runState, c - ONE_ACTIVE);
577 <    }
597 >    private static final long SHRINK_RATE =
598 >        4L * 1000L * 1000L * 1000L; // 4 seconds
599  
600      /**
601 <     * Advances to at least the given level. Returns true if not
602 <     * already in at least the given level.
601 >     * Top-level loop for worker threads: On each step: if the
602 >     * previous step swept through all queues and found no tasks, or
603 >     * there are excess threads, then possibly blocks. Otherwise,
604 >     * scans for and, if found, executes a task. Returns when pool
605 >     * and/or worker terminate.
606 >     *
607 >     * @param w the worker
608       */
609 <    private boolean advanceRunLevel(int level) {
610 <        for (;;) {
611 <            int s = runState;
612 <            if ((s & level) != 0)
613 <                return false;
614 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
615 <                return true;
609 >    final void work(ForkJoinWorkerThread w) {
610 >        boolean swept = false;                // true on empty scans
611 >        long c;
612 >        while (!w.terminate && (int)(c = ctl) >= 0) {
613 >            int a;                            // active count
614 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
615 >                swept = scan(w, a);
616 >            else if (tryAwaitWork(w, c))
617 >                swept = false;
618          }
619      }
620  
621 <    // workers array maintenance
621 >    // Signalling
622  
623      /**
624 <     * Records and returns a workers array index for new worker.
624 >     * Wakes up or creates a worker.
625       */
626 <    private int recordWorker(ForkJoinWorkerThread w) {
627 <        // Try using slot totalCount-1. If not available, scan and/or resize
628 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
629 <        final ReentrantLock lock = this.workerLock;
630 <        lock.lock();
631 <        try {
632 <            ForkJoinWorkerThread[] ws = workers;
633 <            int len = ws.length;
634 <            if (k < 0 || k >= len || ws[k] != null) {
635 <                for (k = 0; k < len && ws[k] != null; ++k)
636 <                    ;
637 <                if (k == len)
638 <                    ws = Arrays.copyOf(ws, len << 1);
626 >    final void signalWork() {
627 >        /*
628 >         * The while condition is true if: (there is are too few total
629 >         * workers OR there is at least one waiter) AND (there are too
630 >         * few active workers OR the pool is terminating).  The value
631 >         * of e distinguishes the remaining cases: zero (no waiters)
632 >         * for create, negative if terminating (in which case do
633 >         * nothing), else release a waiter. The secondary checks for
634 >         * release (non-null array etc) can fail if the pool begins
635 >         * terminating after the test, and don't impose any added cost
636 >         * because JVMs must perform null and bounds checks anyway.
637 >         */
638 >        long c; int e, u;
639 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
640 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
641 >            if (e > 0) {                         // release a waiting worker
642 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
643 >                if ((ws = workers) == null ||
644 >                    (i = ~e & SMASK) >= ws.length ||
645 >                    (w = ws[i]) == null)
646 >                    break;
647 >                long nc = (((long)(w.nextWait & E_MASK)) |
648 >                           ((long)(u + UAC_UNIT) << 32));
649 >                if (w.eventCount == e &&
650 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
651 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
652 >                    if (w.parked)
653 >                        UNSAFE.unpark(w);
654 >                    break;
655 >                }
656 >            }
657 >            else if (UNSAFE.compareAndSwapLong
658 >                     (this, ctlOffset, c,
659 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
660 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
661 >                addWorker();
662 >                break;
663              }
612            ws[k] = w;
613            workers = ws; // volatile array write ensures slot visibility
614        } finally {
615            lock.unlock();
664          }
617        return k;
665      }
666  
667      /**
668 <     * Nulls out record of worker in workers array
668 >     * Variant of signalWork to help release waiters on rescans.
669 >     * Tries once to release a waiter if active count < 0.
670 >     *
671 >     * @return false if failed due to contention, else true
672       */
673 <    private void forgetWorker(ForkJoinWorkerThread w) {
674 <        int idx = w.poolIndex;
675 <        // Locking helps method recordWorker avoid unecessary expansion
676 <        final ReentrantLock lock = this.workerLock;
677 <        lock.lock();
678 <        try {
679 <            ForkJoinWorkerThread[] ws = workers;
680 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
681 <                ws[idx] = null;
682 <        } finally {
683 <            lock.unlock();
673 >    private boolean tryReleaseWaiter() {
674 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
675 >        if ((e = (int)(c = ctl)) > 0 &&
676 >            (int)(c >> AC_SHIFT) < 0 &&
677 >            (ws = workers) != null &&
678 >            (i = ~e & SMASK) < ws.length &&
679 >            (w = ws[i]) != null) {
680 >            long nc = ((long)(w.nextWait & E_MASK) |
681 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
682 >            if (w.eventCount != e ||
683 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
684 >                return false;
685 >            w.eventCount = (e + EC_UNIT) & E_MASK;
686 >            if (w.parked)
687 >                UNSAFE.unpark(w);
688          }
689 +        return true;
690      }
691  
692 <    // adding and removing workers
692 >    // Scanning for tasks
693  
694      /**
695 <     * Tries to create and add new worker. Assumes that worker counts
696 <     * are already updated to accommodate the worker, so adjusts on
697 <     * failure.
695 >     * Scans for and, if found, executes one task. Scans start at a
696 >     * random index of workers array, and randomly select the first
697 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
698 >     * circular sweeps, which is necessary to check quiescence. and
699 >     * taking a submission only if no stealable tasks were found.  The
700 >     * steal code inside the loop is a specialized form of
701 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
702 >     * helpJoinTask and signal propagation. The code for submission
703 >     * queues is almost identical. On each steal, the worker completes
704 >     * not only the task, but also all local tasks that this task may
705 >     * have generated. On detecting staleness or contention when
706 >     * trying to take a task, this method returns without finishing
707 >     * sweep, which allows global state rechecks before retry.
708       *
709 <     * @return new worker or null if creation failed
709 >     * @param w the worker
710 >     * @param a the number of active workers
711 >     * @return true if swept all queues without finding a task
712       */
713 <    private ForkJoinWorkerThread addWorker() {
714 <        ForkJoinWorkerThread w = null;
715 <        try {
716 <            w = factory.newThread(this);
717 <        } finally { // Adjust on either null or exceptional factory return
718 <            if (w == null) {
719 <                onWorkerCreationFailure();
720 <                return null;
713 >    private boolean scan(ForkJoinWorkerThread w, int a) {
714 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
715 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        if (ws == null || ws.length <= m)         // staleness check
718 >            return false;
719 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
720 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
721 >            ForkJoinWorkerThread v = ws[k & m];
722 >            if (v != null && (b = v.queueBase) != v.queueTop &&
723 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
724 >                long u = (i << ASHIFT) + ABASE;
725 >                if ((t = q[i]) != null && v.queueBase == b &&
726 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
727 >                    int d = (v.queueBase = b + 1) - v.queueTop;
728 >                    v.stealHint = w.poolIndex;
729 >                    if (d != 0)
730 >                        signalWork();             // propagate if nonempty
731 >                    w.execTask(t);
732 >                }
733 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
734 >                return false;                     // store next seed
735 >            }
736 >            else if (j < 0) {                     // xorshift
737 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
738 >            }
739 >            else
740 >                ++k;
741 >        }
742 >        if (scanGuard != g)                       // staleness check
743 >            return false;
744 >        else {                                    // try to take submission
745 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
746 >            if ((b = queueBase) != queueTop &&
747 >                (q = submissionQueue) != null &&
748 >                (i = (q.length - 1) & b) >= 0) {
749 >                long u = (i << ASHIFT) + ABASE;
750 >                if ((t = q[i]) != null && queueBase == b &&
751 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
752 >                    queueBase = b + 1;
753 >                    w.execTask(t);
754 >                }
755 >                return false;
756              }
757 +            return true;                         // all queues empty
758          }
656        w.start(recordWorker(w), locallyFifo, ueh);
657        return w;
759      }
760  
761      /**
762 <     * Adjusts counts upon failure to create worker
763 <     */
764 <    private void onWorkerCreationFailure() {
765 <        int c;
766 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
767 <                                               c = workerCounts,
768 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
769 <        tryTerminate(false); // in case of failure during shutdown
762 >     * Tries to enqueue worker w in wait queue and await change in
763 >     * worker's eventCount.  If the pool is quiescent and there is
764 >     * more than one worker, possibly terminates worker upon exit.
765 >     * Otherwise, before blocking, rescans queues to avoid missed
766 >     * signals.  Upon finding work, releases at least one worker
767 >     * (which may be the current worker). Rescans restart upon
768 >     * detected staleness or failure to release due to
769 >     * contention. Note the unusual conventions about Thread.interrupt
770 >     * here and elsewhere: Because interrupts are used solely to alert
771 >     * threads to check termination, which is checked here anyway, we
772 >     * clear status (using Thread.interrupted) before any call to
773 >     * park, so that park does not immediately return due to status
774 >     * being set via some other unrelated call to interrupt in user
775 >     * code.
776 >     *
777 >     * @param w the calling worker
778 >     * @param c the ctl value on entry
779 >     * @return true if waited or another thread was released upon enq
780 >     */
781 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
782 >        int v = w.eventCount;
783 >        w.nextWait = (int)c;                      // w's successor record
784 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
785 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
786 >            long d = ctl; // return true if lost to a deq, to force scan
787 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
788 >        }
789 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
790 >            long s = stealCount;
791 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
792 >                sc = w.stealCount = 0;
793 >            else if (w.eventCount != v)
794 >                return true;                      // update next time
795 >        }
796 >        if ((!shutdown || !tryTerminate(false)) &&
797 >            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802 >                return true;
803 >            if (!rescanned) {
804 >                int g = scanGuard, m = g & SMASK;
805 >                ForkJoinWorkerThread[] ws = workers;
806 >                if (ws != null && m < ws.length) {
807 >                    rescanned = true;
808 >                    for (int i = 0; i <= m; ++i) {
809 >                        ForkJoinWorkerThread u = ws[i];
810 >                        if (u != null) {
811 >                            if (u.queueBase != u.queueTop &&
812 >                                !tryReleaseWaiter())
813 >                                rescanned = false; // contended
814 >                            if (w.eventCount != v)
815 >                                return true;
816 >                        }
817 >                    }
818 >                }
819 >                if (scanGuard != g ||              // stale
820 >                    (queueBase != queueTop && !tryReleaseWaiter()))
821 >                    rescanned = false;
822 >                if (!rescanned)
823 >                    Thread.yield();                // reduce contention
824 >                else
825 >                    Thread.interrupted();          // clear before park
826 >            }
827 >            else {
828 >                w.parked = true;                   // must recheck
829 >                if (w.eventCount != v) {
830 >                    w.parked = false;
831 >                    return true;
832 >                }
833 >                LockSupport.park(this);
834 >                rescanned = w.parked = false;
835 >            }
836 >        }
837      }
838  
839      /**
840 <     * Create enough total workers to establish target parallelism,
841 <     * giving up if terminating or addWorker fails
842 <     */
843 <    private void ensureEnoughTotalWorkers() {
844 <        int wc;
845 <        while (runState < TERMINATING &&
846 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
847 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
848 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
849 <                 addWorker() == null))
850 <                break;
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime <
868 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 >                    Thread.interrupted();          // spurious wakeup
870 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 >                                                   currentCtl, prevCtl)) {
872 >                    w.terminate = true;            // restore previous
873 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 >                    break;
875 >                }
876 >            }
877          }
878      }
879  
880 +    // Submissions
881 +
882      /**
883 <     * Final callback from terminating worker.  Removes record of
884 <     * worker from array, and adjusts counts. If pool is shutting
689 <     * down, tries to complete terminatation, else possibly replaces
690 <     * the worker.
883 >     * Enqueues the given task in the submissionQueue.  Same idea as
884 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885       *
886 <     * @param w the worker
886 >     * @param t the task
887       */
888 <    final void workerTerminated(ForkJoinWorkerThread w) {
889 <        if (w.active) { // force inactive
890 <            w.active = false;
891 <            do {} while (!tryDecrementActiveCount());
888 >    private void addSubmission(ForkJoinTask<?> t) {
889 >        final ReentrantLock lock = this.submissionLock;
890 >        lock.lock();
891 >        try {
892 >            ForkJoinTask<?>[] q; int s, m;
893 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 >                UNSAFE.putOrderedObject(q, u, t);
896 >                queueTop = s + 1;
897 >                if (s - queueBase == m)
898 >                    growSubmissionQueue();
899 >            }
900 >        } finally {
901 >            lock.unlock();
902          }
903 <        forgetWorker(w);
700 <
701 <        // decrement total count, and if was running, running count
702 <        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 <        int wc;
704 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 <                                               wc = workerCounts, wc - unit));
706 <
707 <        accumulateStealCount(w); // collect final count
708 <        if (!tryTerminate(false))
709 <            ensureEnoughTotalWorkers();
903 >        signalWork();
904      }
905  
906 <    // Waiting for and signalling events
713 <
714 <    /**
715 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry.  CAS failures are OK -- any change in count suffices.
717 <     */
718 <    private void advanceEventCount() {
719 <        int c;
720 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721 <    }
906 >    //  (pollSubmission is defined below with exported methods)
907  
908      /**
909 <     * Releases workers blocked on a count not equal to current count.
909 >     * Creates or doubles submissionQueue array.
910 >     * Basically identical to ForkJoinWorkerThread version.
911       */
912 <    final void releaseWaiters() {
913 <        long top;
914 <        int id;
915 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
916 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
917 <            ForkJoinWorkerThread[] ws = workers;
918 <            ForkJoinWorkerThread w;
919 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
920 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
921 <                                          top, w.nextWaiter))
922 <                LockSupport.unpark(w);
912 >    private void growSubmissionQueue() {
913 >        ForkJoinTask<?>[] oldQ = submissionQueue;
914 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915 >        if (size > MAXIMUM_QUEUE_CAPACITY)
916 >            throw new RejectedExecutionException("Queue capacity exceeded");
917 >        if (size < INITIAL_QUEUE_CAPACITY)
918 >            size = INITIAL_QUEUE_CAPACITY;
919 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 >        int mask = size - 1;
921 >        int top = queueTop;
922 >        int oldMask;
923 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 >            for (int b = queueBase; b != top; ++b) {
925 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 >                    UNSAFE.putObjectVolatile
929 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 >            }
931          }
932      }
933  
934 +    // Blocking support
935 +
936      /**
937 <     * Advances eventCount and releases waiters until interference by
938 <     * other releasing threads is detected.
937 >     * Tries to increment blockedCount, decrement active count
938 >     * (sometimes implicitly) and possibly release or create a
939 >     * compensating worker in preparation for blocking. Fails
940 >     * on contention or termination.
941 >     *
942 >     * @return true if the caller can block, else should recheck and retry
943       */
944 <    final void signalWork() {
945 <        int ec;
946 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
947 <        outer:for (;;) {
948 <            long top = eventWaiters;
749 <            ec = eventCount;
750 <            for (;;) {
944 >    private boolean tryPreBlock() {
945 >        int b = blockedCount;
946 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947 >            int pc = parallelism;
948 >            do {
949                  ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 <                int id = (int)(top & WAITER_INDEX_MASK);
951 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
952 <                    return;
953 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
954 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
955 <                                               top, top = w.nextWaiter))
956 <                    continue outer;      // possibly stale; reread
957 <                LockSupport.unpark(w);
958 <                if (top != eventWaiters) // let someone else take over
959 <                    return;
960 <            }
950 >                int e, ac, tc, i;
951 >                long c = ctl;
952 >                int u = (int)(c >>> 32);
953 >                if ((e = (int)c) < 0) {
954 >                                                 // skip -- terminating
955 >                }
956 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957 >                         (ws = workers) != null &&
958 >                         (i = ~e & SMASK) < ws.length &&
959 >                         (w = ws[i]) != null) {
960 >                    long nc = ((long)(w.nextWait & E_MASK) |
961 >                               (c & (AC_MASK|TC_MASK)));
962 >                    if (w.eventCount == e &&
963 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 >                        if (w.parked)
966 >                            UNSAFE.unpark(w);
967 >                        return true;             // release an idle worker
968 >                    }
969 >                }
970 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973 >                        return true;             // no compensation needed
974 >                }
975 >                else if (tc + pc < MAX_ID) {
976 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 >                        addWorker();
979 >                        return true;            // create a replacement
980 >                    }
981 >                }
982 >                // try to back out on any failure and let caller retry
983 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                               b = blockedCount, b - 1));
985          }
986 +        return false;
987      }
988  
989      /**
990 <     * If worker is inactive, blocks until terminating or event count
991 <     * advances from last value held by worker; in any case helps
992 <     * release others.
993 <     *
994 <     * @param w the calling worker thread
995 <     */
996 <    private void eventSync(ForkJoinWorkerThread w) {
997 <        if (!w.active) {
998 <            int prev = w.lastEventCount;
776 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 <                            ((long)(w.poolIndex + 1)));
778 <            long top;
779 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 <                   eventCount == prev) {
783 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 <                                              w.nextWaiter = top, nextTop)) {
785 <                    accumulateStealCount(w); // transfer steals while idle
786 <                    Thread.interrupted();    // clear/ignore interrupt
787 <                    while (eventCount == prev)
788 <                        w.doPark();
789 <                    break;
790 <                }
791 <            }
792 <            w.lastEventCount = eventCount;
793 <        }
794 <        releaseWaiters();
990 >     * Decrements blockedCount and increments active count.
991 >     */
992 >    private void postBlock() {
993 >        long c;
994 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 >                                                c = ctl, c + AC_UNIT));
996 >        int b;
997 >        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 >                                               b = blockedCount, b - 1));
999      }
1000  
1001      /**
1002 <     * Callback from workers invoked upon each top-level action (i.e.,
1003 <     * stealing a task or taking a submission and running
800 <     * it). Performs one or both of the following:
1002 >     * Possibly blocks waiting for the given task to complete, or
1003 >     * cancels the task if terminating.  Fails to wait if contended.
1004       *
1005 <     * * If the worker cannot find work, updates its active status to
803 <     * inactive and updates activeCount unless there is contention, in
804 <     * which case it may try again (either in this or a subsequent
805 <     * call).  Additionally, awaits the next task event and/or helps
806 <     * wake up other releasable waiters.
807 <     *
808 <     * * If there are too many running threads, suspends this worker
809 <     * (first forcing inactivation if necessary).  If it is not
810 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 <     * -- killed while suspended within suspendAsSpare. Otherwise,
812 <     * upon resume it rechecks to make sure that it is still needed.
813 <     *
814 <     * @param w the worker
815 <     * @param worked false if the worker scanned for work but didn't
816 <     * find any (in which case it may block waiting for work).
1005 >     * @param joinMe the task
1006       */
1007 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1008 <        boolean active = w.active;
1009 <        boolean inactivate = !worked & active;
1010 <        for (;;) {
1011 <            if (inactivate) {
1012 <                int c = runState;
1013 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1014 <                                             c, c - ONE_ACTIVE))
1015 <                    inactivate = active = w.active = false;
827 <            }
828 <            int wc = workerCounts;
829 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830 <                if (!worked)
831 <                    eventSync(w);
832 <                return;
833 <            }
834 <            if (!(inactivate |= active) &&  // must inactivate to suspend
835 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836 <                                         wc, wc - ONE_RUNNING) &&
837 <                !w.suspendAsSpare())        // false if trimmed
838 <                return;
1007 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008 >        Thread.interrupted(); // clear interrupts before checking termination
1009 >        if (joinMe.status >= 0) {
1010 >            if (tryPreBlock()) {
1011 >                joinMe.tryAwaitDone(0L);
1012 >                postBlock();
1013 >            }
1014 >            else if ((ctl & STOP_BIT) != 0L)
1015 >                joinMe.cancelIgnoringExceptions();
1016          }
1017      }
1018  
1019      /**
1020 <     * Adjusts counts and creates or resumes compensating threads for
1021 <     * a worker about to block on task joinMe, returning early if
1022 <     * joinMe becomes ready. First tries resuming an existing spare
1023 <     * (which usually also avoids any count adjustment), but must then
1024 <     * decrement running count to determine whether a new thread is
1025 <     * needed. See above for fuller explanation.
1026 <     */
1027 <    final void preJoin(ForkJoinTask<?> joinMe) {
1028 <        boolean dec = false;       // true when running count decremented
1029 <        for (;;) {
1030 <            releaseWaiters();      // help other threads progress
1031 <
855 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
861 <                    break;
862 <                }
1020 >     * Possibly blocks the given worker waiting for joinMe to
1021 >     * complete or timeout.
1022 >     *
1023 >     * @param joinMe the task
1024 >     * @param millis the wait time for underlying Object.wait
1025 >     */
1026 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1027 >        while (joinMe.status >= 0) {
1028 >            Thread.interrupted();
1029 >            if ((ctl & STOP_BIT) != 0L) {
1030 >                joinMe.cancelIgnoringExceptions();
1031 >                break;
1032              }
1033 <            if (joinMe.status < 0)
1034 <                return;
1035 <
1036 <            if (spare != null && spare.tryUnsuspend()) {
1037 <                if (dec || joinMe.requestSignal() < 0) {
1038 <                    int c;
1039 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
1040 <                                                           workerCountsOffset,
1041 <                                                           c = workerCounts,
1042 <                                                           c + ONE_RUNNING));
1043 <                } // else no net count change
1044 <                LockSupport.unpark(spare);
1045 <                return;
1046 <            }
1047 <
1048 <            int wc = workerCounts; // decrement running count
880 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 <                                                wc, wc -= ONE_RUNNING)) &&
883 <                joinMe.requestSignal() < 0) { // cannot block
884 <                int c;                        // back out
885 <                do {} while (!UNSAFE.compareAndSwapInt(this,
886 <                                                       workerCountsOffset,
887 <                                                       c = workerCounts,
888 <                                                       c + ONE_RUNNING));
889 <                return;
890 <            }
891 <
892 <            if (dec) {
893 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 <                int pc = parallelism;
895 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 <                                 !maintainsParallelism)) ||
898 <                    tc >= maxPoolSize) // cannot add
899 <                    return;
900 <                if (spare == null &&
901 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 <                    addWorker();
904 <                    return;
1033 >            if (tryPreBlock()) {
1034 >                long last = System.nanoTime();
1035 >                while (joinMe.status >= 0) {
1036 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1037 >                    if (millis <= 0)
1038 >                        break;
1039 >                    joinMe.tryAwaitDone(millis);
1040 >                    if (joinMe.status < 0)
1041 >                        break;
1042 >                    if ((ctl & STOP_BIT) != 0L) {
1043 >                        joinMe.cancelIgnoringExceptions();
1044 >                        break;
1045 >                    }
1046 >                    long now = System.nanoTime();
1047 >                    nanos -= now - last;
1048 >                    last = now;
1049                  }
1050 +                postBlock();
1051 +                break;
1052              }
1053          }
1054      }
1055  
1056      /**
1057 <     * Same idea as preJoin but with too many differing details to
912 <     * integrate: There are no task-based signal counts, and only one
913 <     * way to do the actual blocking. So for simplicity it is directly
914 <     * incorporated into this method.
1057 >     * If necessary, compensates for blocker, and blocks.
1058       */
1059 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1059 >    private void awaitBlocker(ManagedBlocker blocker)
1060          throws InterruptedException {
1061 <        maintainPar &= maintainsParallelism; // override
1062 <        boolean dec = false;
1063 <        boolean done = false;
1064 <        for (;;) {
1065 <            releaseWaiters();
1066 <            if (done = blocker.isReleasable())
924 <                break;
925 <            ForkJoinWorkerThread spare = null;
926 <            for (ForkJoinWorkerThread w : workers) {
927 <                if (w != null && w.isSuspended()) {
928 <                    spare = w;
929 <                    break;
930 <                }
931 <            }
932 <            if (done = blocker.isReleasable())
933 <                break;
934 <            if (spare != null && spare.tryUnsuspend()) {
935 <                if (dec) {
936 <                    int c;
937 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 <                                                           workerCountsOffset,
939 <                                                           c = workerCounts,
940 <                                                           c + ONE_RUNNING));
1061 >        while (!blocker.isReleasable()) {
1062 >            if (tryPreBlock()) {
1063 >                try {
1064 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1065 >                } finally {
1066 >                    postBlock();
1067                  }
942                LockSupport.unpark(spare);
1068                  break;
1069              }
945            int wc = workerCounts;
946            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948                                               wc, wc -= ONE_RUNNING);
949            if (dec) {
950                int tc = wc >>> TOTAL_COUNT_SHIFT;
951                int pc = parallelism;
952                int dc = pc - (wc & RUNNING_COUNT_MASK);
953                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954                                 !maintainPar)) ||
955                    tc >= maxPoolSize)
956                    break;
957                if (spare == null &&
958                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960                    addWorker();
961                    break;
962                }
963            }
1070          }
1071 +    }
1072  
1073 +    // Creating, registering and deregistring workers
1074 +
1075 +    /**
1076 +     * Tries to create and start a worker; minimally rolls back counts
1077 +     * on failure.
1078 +     */
1079 +    private void addWorker() {
1080 +        Throwable ex = null;
1081 +        ForkJoinWorkerThread t = null;
1082          try {
1083 <            if (!done)
1084 <                do {} while (!blocker.isReleasable() && !blocker.block());
1085 <        } finally {
1086 <            if (dec) {
1087 <                int c;
1088 <                do {} while (!UNSAFE.compareAndSwapInt(this,
1089 <                                                       workerCountsOffset,
1090 <                                                       c = workerCounts,
1091 <                                                       c + ONE_RUNNING));
1092 <            }
1083 >            t = factory.newThread(this);
1084 >        } catch (Throwable e) {
1085 >            ex = e;
1086 >        }
1087 >        if (t == null) {  // null or exceptional factory return
1088 >            long c;       // adjust counts
1089 >            do {} while (!UNSAFE.compareAndSwapLong
1090 >                         (this, ctlOffset, c = ctl,
1091 >                          (((c - AC_UNIT) & AC_MASK) |
1092 >                           ((c - TC_UNIT) & TC_MASK) |
1093 >                           (c & ~(AC_MASK|TC_MASK)))));
1094 >            // Propagate exception if originating from an external caller
1095 >            if (!tryTerminate(false) && ex != null &&
1096 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1097 >                UNSAFE.throwException(ex);
1098          }
1099 +        else
1100 +            t.start();
1101      }
1102  
1103      /**
1104 <     * Unless there are not enough other running threads, adjusts
1105 <     * counts for a a worker in performing helpJoin that cannot find
983 <     * any work, so that this worker can now block.
984 <     *
985 <     * @return true if worker may block
1104 >     * Callback from ForkJoinWorkerThread constructor to assign a
1105 >     * public name
1106       */
1107 <    final boolean preBlockHelpingJoin(ForkJoinTask<?> joinMe) {
1108 <        while (joinMe.status >= 0) {
1109 <            releaseWaiters(); // help other threads progress
1107 >    final String nextWorkerName() {
1108 >        for (int n;;) {
1109 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1110 >                                         n = nextWorkerNumber, ++n))
1111 >                return workerNamePrefix + n;
1112 >        }
1113 >    }
1114  
1115 <            // if a spare exists, resume it to maintain parallelism level
1116 <            if ((workerCounts & RUNNING_COUNT_MASK) <= parallelism) {
1117 <                ForkJoinWorkerThread spare = null;
1118 <                for (ForkJoinWorkerThread w : workers) {
1119 <                    if (w != null && w.isSuspended()) {
1120 <                        spare = w;
1121 <                        break;
1115 >    /**
1116 >     * Callback from ForkJoinWorkerThread constructor to
1117 >     * determine its poolIndex and record in workers array.
1118 >     *
1119 >     * @param w the worker
1120 >     * @return the worker's pool index
1121 >     */
1122 >    final int registerWorker(ForkJoinWorkerThread w) {
1123 >        /*
1124 >         * In the typical case, a new worker acquires the lock, uses
1125 >         * next available index and returns quickly.  Since we should
1126 >         * not block callers (ultimately from signalWork or
1127 >         * tryPreBlock) waiting for the lock needed to do this, we
1128 >         * instead help release other workers while waiting for the
1129 >         * lock.
1130 >         */
1131 >        for (int g;;) {
1132 >            ForkJoinWorkerThread[] ws;
1133 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1134 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1135 >                                         g, g | SG_UNIT)) {
1136 >                int k = nextWorkerIndex;
1137 >                try {
1138 >                    if ((ws = workers) != null) { // ignore on shutdown
1139 >                        int n = ws.length;
1140 >                        if (k < 0 || k >= n || ws[k] != null) {
1141 >                            for (k = 0; k < n && ws[k] != null; ++k)
1142 >                                ;
1143 >                            if (k == n)
1144 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1145 >                        }
1146 >                        ws[k] = w;
1147 >                        nextWorkerIndex = k + 1;
1148 >                        int m = g & SMASK;
1149 >                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1150                      }
1151 +                } finally {
1152 +                    scanGuard = g;
1153                  }
1154 <                if (joinMe.status < 0)
1155 <                    break;
1156 <                if (spare != null) {
1157 <                    if (spare.tryUnsuspend()) {
1158 <                        boolean canBlock = true;
1159 <                        if (joinMe.requestSignal() < 0) {
1160 <                            canBlock = false; // already done
1007 <                            int c;
1008 <                            do {} while (!UNSAFE.compareAndSwapInt
1009 <                                         (this, workerCountsOffset,
1010 <                                          c = workerCounts, c + ONE_RUNNING));
1011 <                        }
1012 <                        LockSupport.unpark(spare);
1013 <                        return canBlock;
1154 >                return k;
1155 >            }
1156 >            else if ((ws = workers) != null) { // help release others
1157 >                for (ForkJoinWorkerThread u : ws) {
1158 >                    if (u != null && u.queueBase != u.queueTop) {
1159 >                        if (tryReleaseWaiter())
1160 >                            break;
1161                      }
1015                    continue; // recheck -- another spare may exist
1162                  }
1163              }
1164 +        }
1165 +    }
1166  
1167 <            int wc = workerCounts; // reread to shorten CAS window
1168 <            int rc = wc & RUNNING_COUNT_MASK;
1169 <            if (rc <= 2) // keep this and at most one other thread alive
1170 <                break;
1171 <
1172 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1173 <                                         wc, wc - ONE_RUNNING)) {
1174 <                if (joinMe.requestSignal() >= 0)
1175 <                    return true;
1176 <                int c;                        // back out
1177 <                do {} while (!UNSAFE.compareAndSwapInt
1178 <                             (this, workerCountsOffset,
1179 <                              c = workerCounts, c + ONE_RUNNING));
1180 <                break;
1181 <            }
1167 >    /**
1168 >     * Final callback from terminating worker.  Removes record of
1169 >     * worker from array, and adjusts counts. If pool is shutting
1170 >     * down, tries to complete termination.
1171 >     *
1172 >     * @param w the worker
1173 >     */
1174 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1175 >        int idx = w.poolIndex;
1176 >        int sc = w.stealCount;
1177 >        int steps = 0;
1178 >        // Remove from array, adjust worker counts and collect steal count.
1179 >        // We can intermix failed removes or adjusts with steal updates
1180 >        do {
1181 >            long s, c;
1182 >            int g;
1183 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1184 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1185 >                                         g, g |= SG_UNIT)) {
1186 >                ForkJoinWorkerThread[] ws = workers;
1187 >                if (ws != null && idx >= 0 &&
1188 >                    idx < ws.length && ws[idx] == w)
1189 >                    ws[idx] = null;    // verify
1190 >                nextWorkerIndex = idx;
1191 >                scanGuard = g + SG_UNIT;
1192 >                steps = 1;
1193 >            }
1194 >            if (steps == 1 &&
1195 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1196 >                                          (((c - AC_UNIT) & AC_MASK) |
1197 >                                           ((c - TC_UNIT) & TC_MASK) |
1198 >                                           (c & ~(AC_MASK|TC_MASK)))))
1199 >                steps = 2;
1200 >            if (sc != 0 &&
1201 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1202 >                                          s = stealCount, s + sc))
1203 >                sc = 0;
1204 >        } while (steps != 2 || sc != 0);
1205 >        if (!tryTerminate(false)) {
1206 >            if (ex != null)   // possibly replace if died abnormally
1207 >                signalWork();
1208 >            else
1209 >                tryReleaseWaiter();
1210          }
1035        return false;
1211      }
1212  
1213 +    // Shutdown and termination
1214 +
1215      /**
1216       * Possibly initiates and/or completes termination.
1217       *
# Line 1043 | Line 1220 | public class ForkJoinPool extends Abstra
1220       * @return true if now terminating or terminated
1221       */
1222      private boolean tryTerminate(boolean now) {
1223 <        if (now)
1224 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1225 <        else if (runState < SHUTDOWN ||
1226 <                 !submissionQueue.isEmpty() ||
1227 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1228 <            return false;
1229 <
1230 <        if (advanceRunLevel(TERMINATING))
1231 <            startTerminating();
1232 <
1233 <        // Finish now if all threads terminated; else in some subsequent call
1234 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1235 <            advanceRunLevel(TERMINATED);
1236 <            terminationLatch.countDown();
1223 >        long c;
1224 >        while (((c = ctl) & STOP_BIT) == 0) {
1225 >            if (!now) {
1226 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1227 >                    return false;
1228 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1229 >                    queueBase != queueTop) {
1230 >                    if (ctl == c) // staleness check
1231 >                        return false;
1232 >                    continue;
1233 >                }
1234 >            }
1235 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1236 >                startTerminating();
1237 >        }
1238 >        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1239 >            final ReentrantLock lock = this.submissionLock;
1240 >            lock.lock();
1241 >            try {
1242 >                termination.signalAll();
1243 >            } finally {
1244 >                lock.unlock();
1245 >            }
1246          }
1247          return true;
1248      }
1249  
1250      /**
1251 <     * Actions on transition to TERMINATING
1251 >     * Runs up to three passes through workers: (0) Setting
1252 >     * termination status for each worker, followed by wakeups up to
1253 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1254 >     * lagging threads (likely in external tasks, but possibly also
1255 >     * blocked in joins).  Each pass repeats previous steps because of
1256 >     * potential lagging thread creation.
1257       */
1258      private void startTerminating() {
1259 <        // Clear out and cancel submissions, ignoring exceptions
1260 <        ForkJoinTask<?> task;
1261 <        while ((task = submissionQueue.poll()) != null) {
1262 <            try {
1263 <                task.cancel(false);
1264 <            } catch (Throwable ignore) {
1259 >        cancelSubmissions();
1260 >        for (int pass = 0; pass < 3; ++pass) {
1261 >            ForkJoinWorkerThread[] ws = workers;
1262 >            if (ws != null) {
1263 >                for (ForkJoinWorkerThread w : ws) {
1264 >                    if (w != null) {
1265 >                        w.terminate = true;
1266 >                        if (pass > 0) {
1267 >                            w.cancelTasks();
1268 >                            if (pass > 1 && !w.isInterrupted()) {
1269 >                                try {
1270 >                                    w.interrupt();
1271 >                                } catch (SecurityException ignore) {
1272 >                                }
1273 >                            }
1274 >                        }
1275 >                    }
1276 >                }
1277 >                terminateWaiters();
1278              }
1279          }
1280 <        // Propagate run level
1281 <        for (ForkJoinWorkerThread w : workers) {
1282 <            if (w != null)
1283 <                w.shutdown();    // also resumes suspended workers
1284 <        }
1285 <        // Ensure no straggling local tasks
1286 <        for (ForkJoinWorkerThread w : workers) {
1287 <            if (w != null)
1288 <                w.cancelTasks();
1085 <        }
1086 <        // Wake up idle workers
1087 <        advanceEventCount();
1088 <        releaseWaiters();
1089 <        // Unstick pending joins
1090 <        for (ForkJoinWorkerThread w : workers) {
1091 <            if (w != null && !w.isTerminated()) {
1280 >    }
1281 >
1282 >    /**
1283 >     * Polls and cancels all submissions. Called only during termination.
1284 >     */
1285 >    private void cancelSubmissions() {
1286 >        while (queueBase != queueTop) {
1287 >            ForkJoinTask<?> task = pollSubmission();
1288 >            if (task != null) {
1289                  try {
1290 <                    w.interrupt();
1291 <                } catch (SecurityException ignore) {
1290 >                    task.cancel(false);
1291 >                } catch (Throwable ignore) {
1292                  }
1293              }
1294          }
1295      }
1296  
1297 <    // misc support for ForkJoinWorkerThread
1297 >    /**
1298 >     * Tries to set the termination status of waiting workers, and
1299 >     * then wakes them up (after which they will terminate).
1300 >     */
1301 >    private void terminateWaiters() {
1302 >        ForkJoinWorkerThread[] ws = workers;
1303 >        if (ws != null) {
1304 >            ForkJoinWorkerThread w; long c; int i, e;
1305 >            int n = ws.length;
1306 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1307 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1308 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1309 >                                              (long)(w.nextWait & E_MASK) |
1310 >                                              ((c + AC_UNIT) & AC_MASK) |
1311 >                                              (c & (TC_MASK|STOP_BIT)))) {
1312 >                    w.terminate = true;
1313 >                    w.eventCount = e + EC_UNIT;
1314 >                    if (w.parked)
1315 >                        UNSAFE.unpark(w);
1316 >                }
1317 >            }
1318 >        }
1319 >    }
1320 >
1321 >    // misc ForkJoinWorkerThread support
1322  
1323      /**
1324 <     * Returns pool number
1324 >     * Increments or decrements quiescerCount. Needed only to prevent
1325 >     * triggering shutdown if a worker is transiently inactive while
1326 >     * checking quiescence.
1327 >     *
1328 >     * @param delta 1 for increment, -1 for decrement
1329       */
1330 <    final int getPoolNumber() {
1331 <        return poolNumber;
1330 >    final void addQuiescerCount(int delta) {
1331 >        int c;
1332 >        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1333 >                                               c = quiescerCount, c + delta));
1334      }
1335  
1336      /**
1337 <     * Accumulates steal count from a worker, clearing
1338 <     * the worker's value
1337 >     * Directly increments or decrements active count without queuing.
1338 >     * This method is used to transiently assert inactivation while
1339 >     * checking quiescence.
1340 >     *
1341 >     * @param delta 1 for increment, -1 for decrement
1342       */
1343 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1344 <        int sc = w.stealCount;
1345 <        if (sc != 0) {
1346 <            long c;
1347 <            w.stealCount = 0;
1348 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1119 <                                                    c = stealCount, c + sc));
1120 <        }
1343 >    final void addActiveCount(int delta) {
1344 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1345 >        long c;
1346 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1347 >                                                ((c + d) & AC_MASK) |
1348 >                                                (c & ~AC_MASK)));
1349      }
1350  
1351      /**
# Line 1125 | Line 1353 | public class ForkJoinPool extends Abstra
1353       * active thread.
1354       */
1355      final int idlePerActive() {
1356 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1357 <        int pc = parallelism; // use targeted parallelism, not rc
1358 <        // Use exact results for small values, saturate past 4
1359 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1356 >        // Approximate at powers of two for small values, saturate past 4
1357 >        int p = parallelism;
1358 >        int a = p + (int)(ctl >> AC_SHIFT);
1359 >        return (a > (p >>>= 1) ? 0 :
1360 >                a > (p >>>= 1) ? 1 :
1361 >                a > (p >>>= 1) ? 2 :
1362 >                a > (p >>>= 1) ? 4 :
1363 >                8);
1364      }
1365  
1366 <    // Public and protected methods
1366 >    // Exported methods
1367  
1368      // Constructors
1369  
1370      /**
1371       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1372 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1373 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1372 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1373 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1374 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1375       *
1376       * @throws SecurityException if a security manager exists and
1377       *         the caller is not permitted to modify threads
# Line 1147 | Line 1380 | public class ForkJoinPool extends Abstra
1380       */
1381      public ForkJoinPool() {
1382          this(Runtime.getRuntime().availableProcessors(),
1383 <             defaultForkJoinWorkerThreadFactory);
1383 >             defaultForkJoinWorkerThreadFactory, null, false);
1384      }
1385  
1386      /**
1387       * Creates a {@code ForkJoinPool} with the indicated parallelism
1388 <     * level and using the {@linkplain
1389 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1388 >     * level, the {@linkplain
1389 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1390 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1391       *
1392       * @param parallelism the parallelism level
1393       * @throws IllegalArgumentException if parallelism less than or
# Line 1164 | Line 1398 | public class ForkJoinPool extends Abstra
1398       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1399       */
1400      public ForkJoinPool(int parallelism) {
1401 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1401 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1402      }
1403  
1404      /**
1405 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1172 <     * java.lang.Runtime#availableProcessors}, and using the given
1173 <     * thread factory.
1405 >     * Creates a {@code ForkJoinPool} with the given parameters.
1406       *
1407 <     * @param factory the factory for creating new threads
1408 <     * @throws NullPointerException if the factory is null
1409 <     * @throws SecurityException if a security manager exists and
1410 <     *         the caller is not permitted to modify threads
1411 <     *         because it does not hold {@link
1412 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1413 <     */
1414 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1415 <        this(Runtime.getRuntime().availableProcessors(), factory);
1416 <    }
1417 <
1418 <    /**
1419 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1188 <     * thread factory.
1189 <     *
1190 <     * @param parallelism the parallelism level
1191 <     * @param factory the factory for creating new threads
1407 >     * @param parallelism the parallelism level. For default value,
1408 >     * use {@link java.lang.Runtime#availableProcessors}.
1409 >     * @param factory the factory for creating new threads. For default value,
1410 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1411 >     * @param handler the handler for internal worker threads that
1412 >     * terminate due to unrecoverable errors encountered while executing
1413 >     * tasks. For default value, use {@code null}.
1414 >     * @param asyncMode if true,
1415 >     * establishes local first-in-first-out scheduling mode for forked
1416 >     * tasks that are never joined. This mode may be more appropriate
1417 >     * than default locally stack-based mode in applications in which
1418 >     * worker threads only process event-style asynchronous tasks.
1419 >     * For default value, use {@code false}.
1420       * @throws IllegalArgumentException if parallelism less than or
1421       *         equal to zero, or greater than implementation limit
1422       * @throws NullPointerException if the factory is null
# Line 1197 | Line 1425 | public class ForkJoinPool extends Abstra
1425       *         because it does not hold {@link
1426       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1427       */
1428 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1428 >    public ForkJoinPool(int parallelism,
1429 >                        ForkJoinWorkerThreadFactory factory,
1430 >                        Thread.UncaughtExceptionHandler handler,
1431 >                        boolean asyncMode) {
1432          checkPermission();
1433          if (factory == null)
1434              throw new NullPointerException();
1435 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1435 >        if (parallelism <= 0 || parallelism > MAX_ID)
1436              throw new IllegalArgumentException();
1206        this.poolNumber = poolNumberGenerator.incrementAndGet();
1207        int arraySize = initialArraySizeFor(parallelism);
1437          this.parallelism = parallelism;
1438          this.factory = factory;
1439 <        this.maxPoolSize = MAX_THREADS;
1440 <        this.maintainsParallelism = true;
1441 <        this.workers = new ForkJoinWorkerThread[arraySize];
1442 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1443 <        this.workerLock = new ReentrantLock();
1444 <        this.terminationLatch = new CountDownLatch(1);
1445 <        // Start first worker; remaining workers added upon first submission
1446 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
1447 <        addWorker();
1448 <    }
1449 <
1450 <    /**
1451 <     * Returns initial power of two size for workers array.
1452 <     * @param pc the initial parallelism level
1453 <     */
1454 <    private static int initialArraySizeFor(int pc) {
1455 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1456 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1457 <        size |= size >>> 1;
1229 <        size |= size >>> 2;
1230 <        size |= size >>> 4;
1231 <        size |= size >>> 8;
1232 <        return size + 1;
1439 >        this.ueh = handler;
1440 >        this.locallyFifo = asyncMode;
1441 >        long np = (long)(-parallelism); // offset ctl counts
1442 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1443 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1444 >        // initialize workers array with room for 2*parallelism if possible
1445 >        int n = parallelism << 1;
1446 >        if (n >= MAX_ID)
1447 >            n = MAX_ID;
1448 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1449 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1450 >        }
1451 >        workers = new ForkJoinWorkerThread[n + 1];
1452 >        this.submissionLock = new ReentrantLock();
1453 >        this.termination = submissionLock.newCondition();
1454 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1455 >        sb.append(poolNumberGenerator.incrementAndGet());
1456 >        sb.append("-worker-");
1457 >        this.workerNamePrefix = sb.toString();
1458      }
1459  
1460      // Execution methods
1461  
1462      /**
1238     * Common code for execute, invoke and submit
1239     */
1240    private <T> void doSubmit(ForkJoinTask<T> task) {
1241        if (task == null)
1242            throw new NullPointerException();
1243        if (runState >= SHUTDOWN)
1244            throw new RejectedExecutionException();
1245        submissionQueue.offer(task);
1246        advanceEventCount();
1247        releaseWaiters();
1248        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1249            ensureEnoughTotalWorkers();
1250    }
1251
1252    /**
1463       * Performs the given task, returning its result upon completion.
1464 +     * If the computation encounters an unchecked Exception or Error,
1465 +     * it is rethrown as the outcome of this invocation.  Rethrown
1466 +     * exceptions behave in the same way as regular exceptions, but,
1467 +     * when possible, contain stack traces (as displayed for example
1468 +     * using {@code ex.printStackTrace()}) of both the current thread
1469 +     * as well as the thread actually encountering the exception;
1470 +     * minimally only the latter.
1471       *
1472       * @param task the task
1473       * @return the task's result
# Line 1259 | Line 1476 | public class ForkJoinPool extends Abstra
1476       *         scheduled for execution
1477       */
1478      public <T> T invoke(ForkJoinTask<T> task) {
1479 <        doSubmit(task);
1480 <        return task.join();
1479 >        Thread t = Thread.currentThread();
1480 >        if (task == null)
1481 >            throw new NullPointerException();
1482 >        if (shutdown)
1483 >            throw new RejectedExecutionException();
1484 >        if ((t instanceof ForkJoinWorkerThread) &&
1485 >            ((ForkJoinWorkerThread)t).pool == this)
1486 >            return task.invoke();  // bypass submit if in same pool
1487 >        else {
1488 >            addSubmission(task);
1489 >            return task.join();
1490 >        }
1491 >    }
1492 >
1493 >    /**
1494 >     * Unless terminating, forks task if within an ongoing FJ
1495 >     * computation in the current pool, else submits as external task.
1496 >     */
1497 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1498 >        ForkJoinWorkerThread w;
1499 >        Thread t = Thread.currentThread();
1500 >        if (shutdown)
1501 >            throw new RejectedExecutionException();
1502 >        if ((t instanceof ForkJoinWorkerThread) &&
1503 >            (w = (ForkJoinWorkerThread)t).pool == this)
1504 >            w.pushTask(task);
1505 >        else
1506 >            addSubmission(task);
1507      }
1508  
1509      /**
# Line 1272 | Line 1515 | public class ForkJoinPool extends Abstra
1515       *         scheduled for execution
1516       */
1517      public void execute(ForkJoinTask<?> task) {
1518 <        doSubmit(task);
1518 >        if (task == null)
1519 >            throw new NullPointerException();
1520 >        forkOrSubmit(task);
1521      }
1522  
1523      // AbstractExecutorService methods
# Line 1283 | Line 1528 | public class ForkJoinPool extends Abstra
1528       *         scheduled for execution
1529       */
1530      public void execute(Runnable task) {
1531 +        if (task == null)
1532 +            throw new NullPointerException();
1533          ForkJoinTask<?> job;
1534          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1535              job = (ForkJoinTask<?>) task;
1536          else
1537              job = ForkJoinTask.adapt(task, null);
1538 <        doSubmit(job);
1538 >        forkOrSubmit(job);
1539 >    }
1540 >
1541 >    /**
1542 >     * Submits a ForkJoinTask for execution.
1543 >     *
1544 >     * @param task the task to submit
1545 >     * @return the task
1546 >     * @throws NullPointerException if the task is null
1547 >     * @throws RejectedExecutionException if the task cannot be
1548 >     *         scheduled for execution
1549 >     */
1550 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1551 >        if (task == null)
1552 >            throw new NullPointerException();
1553 >        forkOrSubmit(task);
1554 >        return task;
1555      }
1556  
1557      /**
# Line 1297 | Line 1560 | public class ForkJoinPool extends Abstra
1560       *         scheduled for execution
1561       */
1562      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1563 +        if (task == null)
1564 +            throw new NullPointerException();
1565          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1566 <        doSubmit(job);
1566 >        forkOrSubmit(job);
1567          return job;
1568      }
1569  
# Line 1308 | Line 1573 | public class ForkJoinPool extends Abstra
1573       *         scheduled for execution
1574       */
1575      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1576 +        if (task == null)
1577 +            throw new NullPointerException();
1578          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1579 <        doSubmit(job);
1579 >        forkOrSubmit(job);
1580          return job;
1581      }
1582  
# Line 1319 | Line 1586 | public class ForkJoinPool extends Abstra
1586       *         scheduled for execution
1587       */
1588      public ForkJoinTask<?> submit(Runnable task) {
1589 +        if (task == null)
1590 +            throw new NullPointerException();
1591          ForkJoinTask<?> job;
1592          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1593              job = (ForkJoinTask<?>) task;
1594          else
1595              job = ForkJoinTask.adapt(task, null);
1596 <        doSubmit(job);
1596 >        forkOrSubmit(job);
1597          return job;
1598      }
1599  
1600      /**
1332     * Submits a ForkJoinTask for execution.
1333     *
1334     * @param task the task to submit
1335     * @return the task
1336     * @throws NullPointerException if the task is null
1337     * @throws RejectedExecutionException if the task cannot be
1338     *         scheduled for execution
1339     */
1340    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1341        doSubmit(task);
1342        return task;
1343    }
1344
1345    /**
1601       * @throws NullPointerException       {@inheritDoc}
1602       * @throws RejectedExecutionException {@inheritDoc}
1603       */
# Line 1384 | Line 1639 | public class ForkJoinPool extends Abstra
1639       * @return the handler, or {@code null} if none
1640       */
1641      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1387        workerCountReadFence();
1642          return ueh;
1643      }
1644  
1645      /**
1392     * Sets the handler for internal worker threads that terminate due
1393     * to unrecoverable errors encountered while executing tasks.
1394     * Unless set, the current default or ThreadGroup handler is used
1395     * as handler.
1396     *
1397     * @param h the new handler
1398     * @return the old handler, or {@code null} if none
1399     * @throws SecurityException if a security manager exists and
1400     *         the caller is not permitted to modify threads
1401     *         because it does not hold {@link
1402     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1403     */
1404    public Thread.UncaughtExceptionHandler
1405        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1406        checkPermission();
1407        workerCountReadFence();
1408        Thread.UncaughtExceptionHandler old = ueh;
1409        if (h != old) {
1410            ueh = h;
1411            workerCountWriteFence();
1412            for (ForkJoinWorkerThread w : workers) {
1413                if (w != null)
1414                    w.setUncaughtExceptionHandler(h);
1415            }
1416        }
1417        return old;
1418    }
1419
1420    /**
1421     * Sets the target parallelism level of this pool.
1422     *
1423     * @param parallelism the target parallelism
1424     * @throws IllegalArgumentException if parallelism less than or
1425     * equal to zero or greater than maximum size bounds
1426     * @throws SecurityException if a security manager exists and
1427     *         the caller is not permitted to modify threads
1428     *         because it does not hold {@link
1429     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1430     */
1431    public void setParallelism(int parallelism) {
1432        checkPermission();
1433        if (parallelism <= 0 || parallelism > maxPoolSize)
1434            throw new IllegalArgumentException();
1435        workerCountReadFence();
1436        int pc = this.parallelism;
1437        if (pc != parallelism) {
1438            this.parallelism = parallelism;
1439            workerCountWriteFence();
1440            // Release spares. If too many, some will die after re-suspend
1441            for (ForkJoinWorkerThread w : workers) {
1442                if (w != null && w.tryUnsuspend()) {
1443                    updateRunningCount(1);
1444                    LockSupport.unpark(w);
1445                }
1446            }
1447            ensureEnoughTotalWorkers();
1448            advanceEventCount();
1449            releaseWaiters(); // force config recheck by existing workers
1450        }
1451    }
1452
1453    /**
1646       * Returns the targeted parallelism level of this pool.
1647       *
1648       * @return the targeted parallelism level of this pool
1649       */
1650      public int getParallelism() {
1459        //        workerCountReadFence(); // inlined below
1460        int ignore = workerCounts;
1651          return parallelism;
1652      }
1653  
1654      /**
1655       * Returns the number of worker threads that have started but not
1656 <     * yet terminated.  This result returned by this method may differ
1656 >     * yet terminated.  The result returned by this method may differ
1657       * from {@link #getParallelism} when threads are created to
1658       * maintain parallelism when others are cooperatively blocked.
1659       *
1660       * @return the number of worker threads
1661       */
1662      public int getPoolSize() {
1663 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1474 <    }
1475 <
1476 <    /**
1477 <     * Returns the maximum number of threads allowed to exist in the
1478 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
1479 <     * maximum is an implementation-defined value designed only to
1480 <     * prevent runaway growth.
1481 <     *
1482 <     * @return the maximum
1483 <     */
1484 <    public int getMaximumPoolSize() {
1485 <        workerCountReadFence();
1486 <        return maxPoolSize;
1487 <    }
1488 <
1489 <    /**
1490 <     * Sets the maximum number of threads allowed to exist in the
1491 <     * pool. The given value should normally be greater than or equal
1492 <     * to the {@link #getParallelism parallelism} level. Setting this
1493 <     * value has no effect on current pool size. It controls
1494 <     * construction of new threads. The use of this method may cause
1495 <     * tasks that intrinsically require extra threads for dependent
1496 <     * computations to indefinitely stall. If you are instead trying
1497 <     * to minimize internal thread creation, consider setting {@link
1498 <     * #setMaintainsParallelism} as false.
1499 <     *
1500 <     * @throws IllegalArgumentException if negative or greater than
1501 <     * internal implementation limit
1502 <     */
1503 <    public void setMaximumPoolSize(int newMax) {
1504 <        if (newMax < 0 || newMax > MAX_THREADS)
1505 <            throw new IllegalArgumentException();
1506 <        maxPoolSize = newMax;
1507 <        workerCountWriteFence();
1508 <    }
1509 <
1510 <    /**
1511 <     * Returns {@code true} if this pool dynamically maintains its
1512 <     * target parallelism level. If false, new threads are added only
1513 <     * to avoid possible starvation.  This setting is by default true.
1514 <     *
1515 <     * @return {@code true} if maintains parallelism
1516 <     */
1517 <    public boolean getMaintainsParallelism() {
1518 <        workerCountReadFence();
1519 <        return maintainsParallelism;
1520 <    }
1521 <
1522 <    /**
1523 <     * Sets whether this pool dynamically maintains its target
1524 <     * parallelism level. If false, new threads are added only to
1525 <     * avoid possible starvation.
1526 <     *
1527 <     * @param enable {@code true} to maintain parallelism
1528 <     */
1529 <    public void setMaintainsParallelism(boolean enable) {
1530 <        maintainsParallelism = enable;
1531 <        workerCountWriteFence();
1532 <    }
1533 <
1534 <    /**
1535 <     * Establishes local first-in-first-out scheduling mode for forked
1536 <     * tasks that are never joined. This mode may be more appropriate
1537 <     * than default locally stack-based mode in applications in which
1538 <     * worker threads only process asynchronous tasks.  This method is
1539 <     * designed to be invoked only when the pool is quiescent, and
1540 <     * typically only before any tasks are submitted. The effects of
1541 <     * invocations at other times may be unpredictable.
1542 <     *
1543 <     * @param async if {@code true}, use locally FIFO scheduling
1544 <     * @return the previous mode
1545 <     * @see #getAsyncMode
1546 <     */
1547 <    public boolean setAsyncMode(boolean async) {
1548 <        workerCountReadFence();
1549 <        boolean oldMode = locallyFifo;
1550 <        if (oldMode != async) {
1551 <            locallyFifo = async;
1552 <            workerCountWriteFence();
1553 <            for (ForkJoinWorkerThread w : workers) {
1554 <                if (w != null)
1555 <                    w.setAsyncMode(async);
1556 <            }
1557 <        }
1558 <        return oldMode;
1663 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1664      }
1665  
1666      /**
# Line 1563 | Line 1668 | public class ForkJoinPool extends Abstra
1668       * scheduling mode for forked tasks that are never joined.
1669       *
1670       * @return {@code true} if this pool uses async mode
1566     * @see #setAsyncMode
1671       */
1672      public boolean getAsyncMode() {
1569        workerCountReadFence();
1673          return locallyFifo;
1674      }
1675  
# Line 1579 | Line 1682 | public class ForkJoinPool extends Abstra
1682       * @return the number of worker threads
1683       */
1684      public int getRunningThreadCount() {
1685 <        return workerCounts & RUNNING_COUNT_MASK;
1685 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1686 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1687      }
1688  
1689      /**
# Line 1590 | Line 1694 | public class ForkJoinPool extends Abstra
1694       * @return the number of active threads
1695       */
1696      public int getActiveThreadCount() {
1697 <        return runState & ACTIVE_COUNT_MASK;
1697 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1698 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1699      }
1700  
1701      /**
# Line 1605 | Line 1710 | public class ForkJoinPool extends Abstra
1710       * @return {@code true} if all threads are currently idle
1711       */
1712      public boolean isQuiescent() {
1713 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1713 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1714      }
1715  
1716      /**
# Line 1635 | Line 1740 | public class ForkJoinPool extends Abstra
1740       */
1741      public long getQueuedTaskCount() {
1742          long count = 0;
1743 <        for (ForkJoinWorkerThread w : workers) {
1744 <            if (w != null)
1745 <                count += w.getQueueSize();
1743 >        ForkJoinWorkerThread[] ws;
1744 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1745 >            (ws = workers) != null) {
1746 >            for (ForkJoinWorkerThread w : ws)
1747 >                if (w != null)
1748 >                    count -= w.queueBase - w.queueTop; // must read base first
1749          }
1750          return count;
1751      }
1752  
1753      /**
1754       * Returns an estimate of the number of tasks submitted to this
1755 <     * pool that have not yet begun executing.  This method takes time
1756 <     * proportional to the number of submissions.
1755 >     * pool that have not yet begun executing.  This method may take
1756 >     * time proportional to the number of submissions.
1757       *
1758       * @return the number of queued submissions
1759       */
1760      public int getQueuedSubmissionCount() {
1761 <        return submissionQueue.size();
1761 >        return -queueBase + queueTop;
1762      }
1763  
1764      /**
# Line 1660 | Line 1768 | public class ForkJoinPool extends Abstra
1768       * @return {@code true} if there are any queued submissions
1769       */
1770      public boolean hasQueuedSubmissions() {
1771 <        return !submissionQueue.isEmpty();
1771 >        return queueBase != queueTop;
1772      }
1773  
1774      /**
# Line 1671 | Line 1779 | public class ForkJoinPool extends Abstra
1779       * @return the next submission, or {@code null} if none
1780       */
1781      protected ForkJoinTask<?> pollSubmission() {
1782 <        return submissionQueue.poll();
1782 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1783 >        while ((b = queueBase) != queueTop &&
1784 >               (q = submissionQueue) != null &&
1785 >               (i = (q.length - 1) & b) >= 0) {
1786 >            long u = (i << ASHIFT) + ABASE;
1787 >            if ((t = q[i]) != null &&
1788 >                queueBase == b &&
1789 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1790 >                queueBase = b + 1;
1791 >                return t;
1792 >            }
1793 >        }
1794 >        return null;
1795      }
1796  
1797      /**
# Line 1692 | Line 1812 | public class ForkJoinPool extends Abstra
1812       * @return the number of elements transferred
1813       */
1814      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1815 <        int n = submissionQueue.drainTo(c);
1816 <        for (ForkJoinWorkerThread w : workers) {
1817 <            if (w != null)
1818 <                n += w.drainTasksTo(c);
1815 >        int count = 0;
1816 >        while (queueBase != queueTop) {
1817 >            ForkJoinTask<?> t = pollSubmission();
1818 >            if (t != null) {
1819 >                c.add(t);
1820 >                ++count;
1821 >            }
1822 >        }
1823 >        ForkJoinWorkerThread[] ws;
1824 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1825 >            (ws = workers) != null) {
1826 >            for (ForkJoinWorkerThread w : ws)
1827 >                if (w != null)
1828 >                    count += w.drainTasksTo(c);
1829          }
1830 <        return n;
1830 >        return count;
1831      }
1832  
1833      /**
# Line 1711 | Line 1841 | public class ForkJoinPool extends Abstra
1841          long st = getStealCount();
1842          long qt = getQueuedTaskCount();
1843          long qs = getQueuedSubmissionCount();
1714        int wc = workerCounts;
1715        int tc = wc >>> TOTAL_COUNT_SHIFT;
1716        int rc = wc & RUNNING_COUNT_MASK;
1844          int pc = parallelism;
1845 <        int rs = runState;
1846 <        int ac = rs & ACTIVE_COUNT_MASK;
1845 >        long c = ctl;
1846 >        int tc = pc + (short)(c >>> TC_SHIFT);
1847 >        int rc = pc + (int)(c >> AC_SHIFT);
1848 >        if (rc < 0) // ignore transient negative
1849 >            rc = 0;
1850 >        int ac = rc + blockedCount;
1851 >        String level;
1852 >        if ((c & STOP_BIT) != 0)
1853 >            level = (tc == 0) ? "Terminated" : "Terminating";
1854 >        else
1855 >            level = shutdown ? "Shutting down" : "Running";
1856          return super.toString() +
1857 <            "[" + runLevelToString(rs) +
1857 >            "[" + level +
1858              ", parallelism = " + pc +
1859              ", size = " + tc +
1860              ", active = " + ac +
# Line 1729 | Line 1865 | public class ForkJoinPool extends Abstra
1865              "]";
1866      }
1867  
1732    private static String runLevelToString(int s) {
1733        return ((s & TERMINATED) != 0 ? "Terminated" :
1734                ((s & TERMINATING) != 0 ? "Terminating" :
1735                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1736                  "Running")));
1737    }
1738
1868      /**
1869       * Initiates an orderly shutdown in which previously submitted
1870       * tasks are executed, but no new tasks will be accepted.
# Line 1750 | Line 1879 | public class ForkJoinPool extends Abstra
1879       */
1880      public void shutdown() {
1881          checkPermission();
1882 <        advanceRunLevel(SHUTDOWN);
1882 >        shutdown = true;
1883          tryTerminate(false);
1884      }
1885  
# Line 1772 | Line 1901 | public class ForkJoinPool extends Abstra
1901       */
1902      public List<Runnable> shutdownNow() {
1903          checkPermission();
1904 +        shutdown = true;
1905          tryTerminate(true);
1906          return Collections.emptyList();
1907      }
# Line 1782 | Line 1912 | public class ForkJoinPool extends Abstra
1912       * @return {@code true} if all tasks have completed following shut down
1913       */
1914      public boolean isTerminated() {
1915 <        return runState >= TERMINATED;
1915 >        long c = ctl;
1916 >        return ((c & STOP_BIT) != 0L &&
1917 >                (short)(c >>> TC_SHIFT) == -parallelism);
1918      }
1919  
1920      /**
# Line 1790 | Line 1922 | public class ForkJoinPool extends Abstra
1922       * commenced but not yet completed.  This method may be useful for
1923       * debugging. A return of {@code true} reported a sufficient
1924       * period after shutdown may indicate that submitted tasks have
1925 <     * ignored or suppressed interruption, causing this executor not
1926 <     * to properly terminate.
1925 >     * ignored or suppressed interruption, or are waiting for IO,
1926 >     * causing this executor not to properly terminate. (See the
1927 >     * advisory notes for class {@link ForkJoinTask} stating that
1928 >     * tasks should not normally entail blocking operations.  But if
1929 >     * they do, they must abort them on interrupt.)
1930       *
1931       * @return {@code true} if terminating but not yet terminated
1932       */
1933      public boolean isTerminating() {
1934 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1934 >        long c = ctl;
1935 >        return ((c & STOP_BIT) != 0L &&
1936 >                (short)(c >>> TC_SHIFT) != -parallelism);
1937 >    }
1938 >
1939 >    /**
1940 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1941 >     */
1942 >    final boolean isAtLeastTerminating() {
1943 >        return (ctl & STOP_BIT) != 0L;
1944      }
1945  
1946      /**
# Line 1805 | Line 1949 | public class ForkJoinPool extends Abstra
1949       * @return {@code true} if this pool has been shut down
1950       */
1951      public boolean isShutdown() {
1952 <        return runState >= SHUTDOWN;
1952 >        return shutdown;
1953      }
1954  
1955      /**
# Line 1821 | Line 1965 | public class ForkJoinPool extends Abstra
1965       */
1966      public boolean awaitTermination(long timeout, TimeUnit unit)
1967          throws InterruptedException {
1968 <        return terminationLatch.await(timeout, unit);
1968 >        long nanos = unit.toNanos(timeout);
1969 >        final ReentrantLock lock = this.submissionLock;
1970 >        lock.lock();
1971 >        try {
1972 >            for (;;) {
1973 >                if (isTerminated())
1974 >                    return true;
1975 >                if (nanos <= 0)
1976 >                    return false;
1977 >                nanos = termination.awaitNanos(nanos);
1978 >            }
1979 >        } finally {
1980 >            lock.unlock();
1981 >        }
1982      }
1983  
1984      /**
1985       * Interface for extending managed parallelism for tasks running
1986       * in {@link ForkJoinPool}s.
1987       *
1988 <     * <p>A {@code ManagedBlocker} provides two methods.
1989 <     * Method {@code isReleasable} must return {@code true} if
1990 <     * blocking is not necessary. Method {@code block} blocks the
1991 <     * current thread if necessary (perhaps internally invoking
1992 <     * {@code isReleasable} before actually blocking).
1988 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1989 >     * {@code isReleasable} must return {@code true} if blocking is
1990 >     * not necessary. Method {@code block} blocks the current thread
1991 >     * if necessary (perhaps internally invoking {@code isReleasable}
1992 >     * before actually blocking). These actions are performed by any
1993 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1994 >     * unusual methods in this API accommodate synchronizers that may,
1995 >     * but don't usually, block for long periods. Similarly, they
1996 >     * allow more efficient internal handling of cases in which
1997 >     * additional workers may be, but usually are not, needed to
1998 >     * ensure sufficient parallelism.  Toward this end,
1999 >     * implementations of method {@code isReleasable} must be amenable
2000 >     * to repeated invocation.
2001       *
2002       * <p>For example, here is a ManagedBlocker based on a
2003       * ReentrantLock:
# Line 1850 | Line 2015 | public class ForkJoinPool extends Abstra
2015       *     return hasLock || (hasLock = lock.tryLock());
2016       *   }
2017       * }}</pre>
2018 +     *
2019 +     * <p>Here is a class that possibly blocks waiting for an
2020 +     * item on a given queue:
2021 +     *  <pre> {@code
2022 +     * class QueueTaker<E> implements ManagedBlocker {
2023 +     *   final BlockingQueue<E> queue;
2024 +     *   volatile E item = null;
2025 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2026 +     *   public boolean block() throws InterruptedException {
2027 +     *     if (item == null)
2028 +     *       item = queue.take();
2029 +     *     return true;
2030 +     *   }
2031 +     *   public boolean isReleasable() {
2032 +     *     return item != null || (item = queue.poll()) != null;
2033 +     *   }
2034 +     *   public E getItem() { // call after pool.managedBlock completes
2035 +     *     return item;
2036 +     *   }
2037 +     * }}</pre>
2038       */
2039      public static interface ManagedBlocker {
2040          /**
# Line 1873 | Line 2058 | public class ForkJoinPool extends Abstra
2058       * Blocks in accord with the given blocker.  If the current thread
2059       * is a {@link ForkJoinWorkerThread}, this method possibly
2060       * arranges for a spare thread to be activated if necessary to
2061 <     * ensure parallelism while the current thread is blocked.
1877 <     *
1878 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1879 <     * supports it ({@link #getMaintainsParallelism}), this method
1880 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1881 <     * it activates a thread only if necessary to avoid complete
1882 <     * starvation. This option may be preferable when blockages use
1883 <     * timeouts, or are almost always brief.
2061 >     * ensure sufficient parallelism while the current thread is blocked.
2062       *
2063       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2064       * behaviorally equivalent to
# Line 1894 | Line 2072 | public class ForkJoinPool extends Abstra
2072       * first be expanded to ensure parallelism, and later adjusted.
2073       *
2074       * @param blocker the blocker
1897     * @param maintainParallelism if {@code true} and supported by
1898     * this pool, attempt to maintain the pool's nominal parallelism;
1899     * otherwise activate a thread only if necessary to avoid
1900     * complete starvation.
2075       * @throws InterruptedException if blocker.block did so
2076       */
2077 <    public static void managedBlock(ManagedBlocker blocker,
1904 <                                    boolean maintainParallelism)
2077 >    public static void managedBlock(ManagedBlocker blocker)
2078          throws InterruptedException {
2079          Thread t = Thread.currentThread();
2080 <        if (t instanceof ForkJoinWorkerThread)
2081 <            ((ForkJoinWorkerThread) t).pool.
2082 <                doBlock(blocker, maintainParallelism);
2083 <        else
2084 <            awaitBlocker(blocker);
2085 <    }
2086 <
1914 <    /**
1915 <     * Performs Non-FJ blocking
1916 <     */
1917 <    private static void awaitBlocker(ManagedBlocker blocker)
1918 <        throws InterruptedException {
1919 <        do {} while (!blocker.isReleasable() && !blocker.block());
2080 >        if (t instanceof ForkJoinWorkerThread) {
2081 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2082 >            w.pool.awaitBlocker(blocker);
2083 >        }
2084 >        else {
2085 >            do {} while (!blocker.isReleasable() && !blocker.block());
2086 >        }
2087      }
2088  
2089      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1932 | Line 2099 | public class ForkJoinPool extends Abstra
2099      }
2100  
2101      // Unsafe mechanics
2102 <
2103 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2104 <    private static final long workerCountsOffset =
2105 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2106 <    private static final long runStateOffset =
2107 <        objectFieldOffset("runState", ForkJoinPool.class);
2108 <    private static final long eventCountOffset =
2109 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2110 <    private static final long eventWaitersOffset =
2111 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2112 <    private static final long stealCountOffset =
2113 <        objectFieldOffset("stealCount",ForkJoinPool.class);
2114 <
2115 <
2116 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2102 >    private static final sun.misc.Unsafe UNSAFE;
2103 >    private static final long ctlOffset;
2104 >    private static final long stealCountOffset;
2105 >    private static final long blockedCountOffset;
2106 >    private static final long quiescerCountOffset;
2107 >    private static final long scanGuardOffset;
2108 >    private static final long nextWorkerNumberOffset;
2109 >    private static final long ABASE;
2110 >    private static final int ASHIFT;
2111 >
2112 >    static {
2113 >        poolNumberGenerator = new AtomicInteger();
2114 >        workerSeedGenerator = new Random();
2115 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2116 >        defaultForkJoinWorkerThreadFactory =
2117 >            new DefaultForkJoinWorkerThreadFactory();
2118          try {
2119 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2120 <        } catch (NoSuchFieldException e) {
2121 <            // Convert Exception to corresponding Error
2122 <            NoSuchFieldError error = new NoSuchFieldError(field);
2123 <            error.initCause(e);
2124 <            throw error;
2125 <        }
2119 >            UNSAFE = getUnsafe();
2120 >            Class<?> k = ForkJoinPool.class;
2121 >            ctlOffset = UNSAFE.objectFieldOffset
2122 >                (k.getDeclaredField("ctl"));
2123 >            stealCountOffset = UNSAFE.objectFieldOffset
2124 >                (k.getDeclaredField("stealCount"));
2125 >            blockedCountOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("blockedCount"));
2127 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("quiescerCount"));
2129 >            scanGuardOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("scanGuard"));
2131 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("nextWorkerNumber"));
2133 >        } catch (Exception e) {
2134 >            throw new Error(e);
2135 >        }
2136 >        Class<?> a = ForkJoinTask[].class;
2137 >        ABASE = UNSAFE.arrayBaseOffset(a);
2138 >        int s = UNSAFE.arrayIndexScale(a);
2139 >        if ((s & (s-1)) != 0)
2140 >            throw new Error("data type scale not a power of two");
2141 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2142      }
2143  
2144      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines