ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.56 by dl, Thu May 27 16:46:48 2010 UTC vs.
Revision 1.174 by jsr166, Sun Jan 13 21:56:12 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24   * A {@code ForkJoinPool} provides the entry point for submissions
25 < * from non-{@code ForkJoinTask}s, as well as management and
25 > * from non-{@code ForkJoinTask} clients, as well as management and
26   * monitoring operations.
27   *
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
35 < * execution of some plain {@code Runnable}- or {@code Callable}-
36 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. Unless configured otherwise via {@link
50 < * #setMaintainsParallelism}, the pool attempts to maintain this
51 < * number of active (or available) threads by dynamically adding,
52 < * suspending, or resuming internal worker threads, even if some tasks
53 < * are stalled waiting to join others. However, no such adjustments
54 < * are performed in the face of blocked IO or other unmanaged
55 < * synchronization. The nested {@link ManagedBlocker} interface
56 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56 > * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
59   * class provides status check methods (for example
# Line 65 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
66 < * used for all parallel task execution in a program or subsystem.
67 < * Otherwise, use would not usually outweigh the construction and
68 < * bookkeeping overhead of creating a large set of threads. For
69 < * example, a common pool could be used for the {@code SortTasks}
70 < * illustrated in {@link RecursiveAction}. Because {@code
71 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
72 < * daemon} mode, there is typically no need to explicitly {@link
73 < * #shutdown} such a pool upon program exit.
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71 > * Runnable}- or {@code Callable}- based activities as well.  However,
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76 > *
77 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 > *  <tr>
79 > *    <td></td>
80 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 > *  </tr>
83 > *  <tr>
84 > *    <td> <b>Arrange async execution</td>
85 > *    <td> {@link #execute(ForkJoinTask)}</td>
86 > *    <td> {@link ForkJoinTask#fork}</td>
87 > *  </tr>
88 > *  <tr>
89 > *    <td> <b>Await and obtain result</td>
90 > *    <td> {@link #invoke(ForkJoinTask)}</td>
91 > *    <td> {@link ForkJoinTask#invoke}</td>
92 > *  </tr>
93 > *  <tr>
94 > *    <td> <b>Arrange exec and obtain Future</td>
95 > *    <td> {@link #submit(ForkJoinTask)}</td>
96 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 > *  </tr>
98 > * </table>
99   *
100 < * <pre>
101 < * static final ForkJoinPool mainPool = new ForkJoinPool();
102 < * ...
103 < * public void sort(long[] array) {
104 < *   mainPool.invoke(new SortTask(array, 0, array.length));
105 < * }
106 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 89 | Line 114 | import java.util.concurrent.CountDownLat
114   * {@code IllegalArgumentException}.
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117 < * {@link RejectedExecutionException}) only when the pool is shut down.
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 99 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
136 <     * lastly to new submissions. These mechanics do not consider
137 <     * affinities, loads, cache localities, etc, so rarely provide the
138 <     * best possible performance on a given machine, but portably
139 <     * provide good throughput by averaging over these factors.
140 <     * (Further, even if we did try to use such information, we do not
141 <     * usually have a basis for exploiting it. For example, some sets
142 <     * of tasks profit from cache affinities, but others are harmed by
143 <     * cache pollution effects.)
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220 <     * decentralized control -- workers mostly steal tasks from each
221 <     * other. We do not want to negate this by creating bottlenecks
222 <     * implementing the management responsibilities of this class. So
223 <     * we use a collection of techniques that avoid, reduce, or cope
224 <     * well with contention. These entail several instances of
225 <     * bit-packing into CASable fields to maintain only the minimally
226 <     * required atomicity. To enable such packing, we restrict maximum
227 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
228 <     * bit field), which is far in excess of normal operating range.
229 <     * Even though updates to some of these bookkeeping fields do
230 <     * sometimes contend with each other, they don't normally
231 <     * cache-contend with updates to others enough to warrant memory
232 <     * padding or isolation. So they are all held as fields of
233 <     * ForkJoinPool objects.  The main capabilities are as follows:
234 <     *
235 <     * 1. Creating and removing workers. Workers are recorded in the
236 <     * "workers" array. This is an array as opposed to some other data
237 <     * structure to support index-based random steals by workers.
238 <     * Updates to the array recording new workers and unrecording
239 <     * terminated ones are protected from each other by a lock
240 <     * (workerLock) but the array is otherwise concurrently readable,
241 <     * and accessed directly by workers. To simplify index-based
242 <     * operations, the array size is always a power of two, and all
243 <     * readers must tolerate null slots. Currently, all worker thread
244 <     * creation is on-demand, triggered by task submissions,
245 <     * replacement of terminated workers, and/or compensation for
246 <     * blocked workers. However, all other support code is set up to
247 <     * work with other policies.
248 <     *
249 <     * 2. Bookkeeping for dynamically adding and removing workers. We
250 <     * maintain a given level of parallelism (or, if
251 <     * maintainsParallelism is false, at least avoid starvation). When
252 <     * some workers are known to be blocked (on joins or via
253 <     * ManagedBlocker), we may create or resume others to take their
254 <     * place until they unblock (see below). Implementing this
255 <     * requires counts of the number of "running" threads (i.e., those
256 <     * that are neither blocked nor artifically suspended) as well as
257 <     * the total number.  These two values are packed into one field,
258 <     * "workerCounts" because we need accurate snapshots when deciding
259 <     * to create, resume or suspend.  To support these decisions,
260 <     * updates to spare counts must be prospective (not
261 <     * retrospective).  For example, the running count is decremented
262 <     * before blocking by a thread about to block as a spare, but
263 <     * incremented by the thread about to unblock it. Updates upon
264 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
265 <     * cannot usually be prospective, so the running count is in
266 <     * general an upper bound of the number of productively running
267 <     * threads Updates to the workerCounts field sometimes transiently
268 <     * encounter a fair amount of contention when join dependencies
269 <     * are such that many threads block or unblock at about the same
270 <     * time. We alleviate this by sometimes bundling updates (for
271 <     * example blocking one thread on join and resuming a spare cancel
272 <     * each other out), and in most other cases performing an
273 <     * alternative action like releasing waiters or locating spares.
274 <     *
275 <     * 3. Maintaining global run state. The run state of the pool
276 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
277 <     * those in other Executor implementations, as well as a count of
278 <     * "active" workers -- those that are, or soon will be, or
279 <     * recently were executing tasks. The runLevel and active count
280 <     * are packed together in order to correctly trigger shutdown and
281 <     * termination. Without care, active counts can be subject to very
282 <     * high contention.  We substantially reduce this contention by
283 <     * relaxing update rules.  A worker must claim active status
284 <     * prospectively, by activating if it sees that a submitted or
285 <     * stealable task exists (it may find after activating that the
286 <     * task no longer exists). It stays active while processing this
287 <     * task (if it exists) and any other local subtasks it produces,
288 <     * until it cannot find any other tasks. It then tries
289 <     * inactivating (see method preStep), but upon update contention
290 <     * instead scans for more tasks, later retrying inactivation if it
291 <     * doesn't find any.
292 <     *
293 <     * 4. Managing idle workers waiting for tasks. We cannot let
294 <     * workers spin indefinitely scanning for tasks when none are
295 <     * available. On the other hand, we must quickly prod them into
296 <     * action when new tasks are submitted or generated.  We
297 <     * park/unpark these idle workers using an event-count scheme.
298 <     * Field eventCount is incremented upon events that may enable
299 <     * workers that previously could not find a task to now find one:
300 <     * Submission of a new task to the pool, or another worker pushing
301 <     * a task onto a previously empty queue.  (We also use this
302 <     * mechanism for termination and reconfiguration actions that
303 <     * require wakeups of idle workers).  Each worker maintains its
304 <     * last known event count, and blocks when a scan for work did not
305 <     * find a task AND its lastEventCount matches the current
306 <     * eventCount. Waiting idle workers are recorded in a variant of
307 <     * Treiber stack headed by field eventWaiters which, when nonzero,
308 <     * encodes the thread index and count awaited for by the worker
309 <     * thread most recently calling eventSync. This thread in turn has
310 <     * a record (field nextEventWaiter) for the next waiting worker.
311 <     * In addition to allowing simpler decisions about need for
312 <     * wakeup, the event count bits in eventWaiters serve the role of
313 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
314 <     * in task diffusion, workers not otherwise occupied may invoke
315 <     * method releaseWaiters, that removes and signals (unparks)
316 <     * workers not waiting on current count. To minimize task
317 <     * production stalls associate with signalling, any worker pushing
318 <     * a task on an empty queue invokes the weaker method signalWork,
319 <     * that only releases idle workers until it detects interference
320 <     * by other threads trying to release, and lets them take
321 <     * over. The net effect is a tree-like diffusion of signals, where
322 <     * released threads (and possibly others) help with unparks.  To
323 <     * further reduce contention effects a bit, failed CASes to
324 <     * increment field eventCount are tolerated without retries.
325 <     * Conceptually they are merged into the same event, which is OK
326 <     * when their only purpose is to enable workers to scan for work.
327 <     *
328 <     * 5. Managing suspension of extra workers. When a worker is about
329 <     * to block waiting for a join (or via ManagedBlockers), we may
330 <     * create a new thread to maintain parallelism level, or at least
331 <     * avoid starvation (see below). Usually, extra threads are needed
332 <     * for only very short periods, yet join dependencies are such
333 <     * that we sometimes need them in bursts. Rather than create new
334 <     * threads each time this happens, we suspend no-longer-needed
335 <     * extra ones as "spares". For most purposes, we don't distinguish
336 <     * "extra" spare threads from normal "core" threads: On each call
337 <     * to preStep (the only point at which we can do this) a worker
338 <     * checks to see if there are now too many running workers, and if
339 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
340 <     * for suspended threads to resume before considering creating a
341 <     * new replacement. We don't need a special data structure to
342 <     * maintain spares; simply scanning the workers array looking for
343 <     * worker.isSuspended() is fine because the calling thread is
344 <     * otherwise not doing anything useful anyway; we are at least as
345 <     * happy if after locating a spare, the caller doesn't actually
346 <     * block because the join is ready before we try to adjust and
347 <     * compensate.  Note that this is intrinsically racy.  One thread
348 <     * may become a spare at about the same time as another is
349 <     * needlessly being created. We counteract this and related slop
350 <     * in part by requiring resumed spares to immediately recheck (in
351 <     * preStep) to see whether they they should re-suspend. The only
352 <     * effective difference between "extra" and "core" threads is that
353 <     * we allow the "extra" ones to time out and die if they are not
354 <     * resumed within a keep-alive interval of a few seconds. This is
355 <     * implemented mainly within ForkJoinWorkerThread, but requires
356 <     * some coordination (isTrimmed() -- meaning killed while
357 <     * suspended) to correctly maintain pool counts.
358 <     *
359 <     * 6. Deciding when to create new workers. The main dynamic
360 <     * control in this class is deciding when to create extra threads,
361 <     * in methods awaitJoin and awaitBlocker. We always
362 <     * need to create one when the number of running threads becomes
363 <     * zero. But because blocked joins are typically dependent, we
364 <     * don't necessarily need or want one-to-one replacement. Using a
365 <     * one-to-one compensation rule often leads to enough useless
366 <     * overhead creating, suspending, resuming, and/or killing threads
367 <     * to signficantly degrade throughput.  We use a rule reflecting
368 <     * the idea that, the more spare threads you already have, the
369 <     * more evidence you need to create another one. The "evidence"
370 <     * here takes two forms: (1) Using a creation threshold expressed
371 <     * in terms of the current deficit -- target minus running
372 <     * threads. To reduce flickering and drift around target values,
373 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
374 <     * (where dc is deficit, sc is number of spare threads and pc is
375 <     * target parallelism.)  (2) Using a form of adaptive
376 <     * spionning. requiring a number of threshold checks proportional
377 <     * to the number of spare threads.  This effectively reduces churn
378 <     * at the price of systematically undershooting target parallelism
379 <     * when many threads are blocked.  However, biasing toward
380 <     * undeshooting partially compensates for the above mechanics to
381 <     * suspend extra threads, that normally lead to overshoot because
382 <     * we can only suspend workers in-between top-level actions. It
383 <     * also better copes with the fact that some of the methods in
384 <     * this class tend to never become compiled (but are interpreted),
385 <     * so some components of the entire set of controls might execute
386 <     * many times faster than others. And similarly for cases where
387 <     * the apparent lack of work is just due to GC stalls and other
388 <     * transient system activity.
389 <     *
390 <     * 7. Maintaining other configuration parameters and monitoring
391 <     * statistics. Updates to fields controlling parallelism level,
392 <     * max size, etc can only meaningfully take effect for individual
393 <     * threads upon their next top-level actions; i.e., between
394 <     * stealing/running tasks/submission, which are separated by calls
395 <     * to preStep.  Memory ordering for these (assumed infrequent)
396 <     * reconfiguration calls is ensured by using reads and writes to
397 <     * volatile field workerCounts (that must be read in preStep anyway)
398 <     * as "fences" -- user-level reads are preceded by reads of
399 <     * workCounts, and writes are followed by no-op CAS to
400 <     * workerCounts. The values reported by other management and
401 <     * monitoring methods are either computed on demand, or are kept
402 <     * in fields that are only updated when threads are otherwise
403 <     * idle.
404 <     *
405 <     * Beware that there is a lot of representation-level coupling
406 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
407 <     * ForkJoinTask.  For example, direct access to "workers" array by
408 <     * workers, and direct access to ForkJoinTask.status by both
409 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362 >     *
363 >     *   Helping: Arranging for the joiner to execute some task that it
364 >     *      would be running if the steal had not occurred.
365 >     *
366 >     *   Compensating: Unless there are already enough live threads,
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377 >     *
378 >     * The ManagedBlocker extension API can't use helping so relies
379 >     * only on compensation in method awaitBlocker.
380 >     *
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467       * trying to reduce this, since any associated future changes in
468       * representations will need to be accompanied by algorithmic
469 <     * changes anyway.
470 <     *
471 <     * Style notes: There are lots of inline assignments (of form
472 <     * "while ((local = field) != 0)") which are usually the simplest
473 <     * way to ensure read orderings. Also several occurrences of the
474 <     * unusual "do {} while(!cas...)" which is the simplest way to
475 <     * force an update of a CAS'ed variable. There are also a few
476 <     * other coding oddities that help some methods perform reasonably
477 <     * even when interpreted (not compiled).
478 <     *
479 <     * The order of declarations in this file is: (1) statics (2)
480 <     * fields (along with constants used when unpacking some of them)
481 <     * (3) internal control methods (4) callbacks and other support
482 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
483 <     * methods (plus a few little helpers).
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494 >     */
495 >
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501       */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509  
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 346 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class  DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
539 <     * overridden in ForkJoinPool constructors.
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555 >    }
556 >
557 >    /**
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562 >     */
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570 >
571 >    /**
572 >     * Queues supporting work-stealing as well as external task
573 >     * submission. See above for main rationale and algorithms.
574 >     * Implementation relies heavily on "Unsafe" intrinsics
575 >     * and selective use of "volatile":
576 >     *
577 >     * Field "base" is the index (mod array.length) of the least valid
578 >     * queue slot, which is always the next position to steal (poll)
579 >     * from if nonempty. Reads and writes require volatile orderings
580 >     * but not CAS, because updates are only performed after slot
581 >     * CASes.
582 >     *
583 >     * Field "top" is the index (mod array.length) of the next queue
584 >     * slot to push to or pop from. It is written only by owner thread
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596 >     *
597 >     * The array slots are read and written using the emulation of
598 >     * volatiles/atomics provided by Unsafe. Insertions must in
599 >     * general use putOrderedObject as a form of releasing store to
600 >     * ensure that all writes to the task object are ordered before
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605 >     *
606 >     * In addition to basic queuing support, this class contains
607 >     * fields described elsewhere to control execution. It turns out
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610 >     *
611 >     * Performance on most platforms is very sensitive to placement of
612 >     * instances of both WorkQueues and their arrays -- we absolutely
613 >     * do not want multiple WorkQueue instances or multiple queue
614 >     * arrays sharing cache lines. (It would be best for queue objects
615 >     * and their arrays to share, but there is nothing available to
616 >     * help arrange that).  Unfortunately, because they are recorded
617 >     * in a common array, WorkQueue instances are often moved to be
618 >     * adjacent by garbage collectors. To reduce impact, we use field
619 >     * padding that works OK on common platforms; this effectively
620 >     * trades off slightly slower average field access for the sake of
621 >     * avoiding really bad worst-case access. (Until better JVM
622 >     * support is in place, this padding is dependent on transient
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628 <    public static final ForkJoinWorkerThreadFactory
629 <        defaultForkJoinWorkerThreadFactory =
630 <        new DefaultForkJoinWorkerThreadFactory();
628 >    static final class WorkQueue {
629 >        /**
630 >         * Capacity of work-stealing queue array upon initialization.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637 >         */
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640 <    /**
641 <     * Permission required for callers of methods that may start or
642 <     * kill threads.
643 <     */
644 <    private static final RuntimePermission modifyThreadPermission =
645 <        new RuntimePermission("modifyThread");
640 >        /**
641 >         * Maximum size for queue arrays. Must be a power of two less
642 >         * than or equal to 1 << (31 - width of array entry) to ensure
643 >         * lack of wraparound of index calculations, but defined to a
644 >         * value a bit less than this to help users trap runaway
645 >         * programs before saturating systems.
646 >         */
647 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <    /**
650 <     * If there is a security manager, makes sure caller has
373 <     * permission to modify threads.
374 <     */
375 <    private static void checkPermission() {
376 <        SecurityManager security = System.getSecurityManager();
377 <        if (security != null)
378 <            security.checkPermission(modifyThreadPermission);
379 <    }
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651  
652 <    /**
653 <     * Generator for assigning sequence numbers as pool names.
654 <     */
655 <    private static final AtomicInteger poolNumberGenerator =
656 <        new AtomicInteger();
652 >        int seed;                  // for random scanning; initialize nonzero
653 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 >        int nextWait;              // encoded record of next event waiter
655 >        int hint;                  // steal or signal hint (index)
656 >        int poolIndex;             // index of this queue in pool (or 0)
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 >        volatile int base;         // index of next slot for poll
661 >        int top;                   // index of next slot for push
662 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 >        final ForkJoinPool pool;   // the containing pool (may be null)
664 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 >        volatile Thread parker;    // == owner during call to park; else null
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 >
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675 >            this.owner = owner;
676 >            this.mode = mode;
677 >            this.seed = seed;
678 >            // Place indices in the center of array (that is not yet allocated)
679 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 >        }
681  
682 <    /**
683 <     * Absolute bound for parallelism level. Twice this number must
684 <     * fit into a 16bit field to enable word-packing for some counts.
685 <     */
686 <    private static final int MAX_THREADS = 0x7fff;
682 >        /**
683 >         * Returns the approximate number of tasks in the queue.
684 >         */
685 >        final int queueSize() {
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689  
690 <    /**
691 <     * Array holding all worker threads in the pool.  Array size must
692 <     * be a power of two.  Updates and replacements are protected by
693 <     * workerLock, but the array is always kept in a consistent enough
694 <     * state to be randomly accessed without locking by workers
695 <     * performing work-stealing, as well as other traversal-based
696 <     * methods in this class. All readers must tolerate that some
697 <     * array slots may be null.
698 <     */
699 <    volatile ForkJoinWorkerThread[] workers;
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 >        }
705  
706 <    /**
707 <     * Queue for external submissions.
708 <     */
709 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
706 >        /**
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709 >         *
710 >         * @param task the task. Caller must ensure non-null.
711 >         * @throw RejectedExecutionException if array cannot be resized
712 >         */
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715 >            int s = top, m, n;
716 >            if ((a = array) != null) {    // ignore if queue removed
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719 >                if ((n = (top = s + 1) - base) <= 2) {
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722 >                }
723 >                else if (n >= m)
724 >                    growArray();
725 >            }
726 >        }
727  
728 <    /**
729 <     * Lock protecting updates to workers array.
730 <     */
731 <    private final ReentrantLock workerLock;
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752 >            }
753 >            return a;
754 >        }
755  
756 <    /**
757 <     * Latch released upon termination.
758 <     */
759 <    private final CountDownLatch terminationLatch;
756 >        /**
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759 >         */
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770 >                    }
771 >                }
772 >            }
773 >            return null;
774 >        }
775  
776 <    /**
777 <     * Creation factory for worker threads.
778 <     */
779 <    private final ForkJoinWorkerThreadFactory factory;
776 >        /**
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 >         */
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787 >                    U.compareAndSwapObject(a, j, t, null)) {
788 >                    base = b + 1;
789 >                    return t;
790 >                }
791 >            }
792 >            return null;
793 >        }
794  
795 <    /**
796 <     * Sum of per-thread steal counts, updated only when threads are
797 <     * idle or terminating.
798 <     */
799 <    private volatile long stealCount;
795 >        /**
796 >         * Takes next task, if one exists, in FIFO order.
797 >         */
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807 >                        return t;
808 >                    }
809 >                }
810 >                else if (base == b) {
811 >                    if (b + 1 == top)
812 >                        break;
813 >                    Thread.yield(); // wait for lagging update (very rare)
814 >                }
815 >            }
816 >            return null;
817 >        }
818  
819 <    /**
820 <     * Encoded record of top of treiber stack of threads waiting for
821 <     * events. The top 32 bits contain the count being waited for. The
822 <     * bottom word contains one plus the pool index of waiting worker
823 <     * thread.
824 <     */
436 <    private volatile long eventWaiters;
819 >        /**
820 >         * Takes next task, if one exists, in order specified by mode.
821 >         */
822 >        final ForkJoinTask<?> nextLocalTask() {
823 >            return mode == 0 ? pop() : poll();
824 >        }
825  
826 <    private static final int  EVENT_COUNT_SHIFT = 32;
827 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
826 >        /**
827 >         * Returns next task, if one exists, in order specified by mode.
828 >         */
829 >        final ForkJoinTask<?> peek() {
830 >            ForkJoinTask<?>[] a = array; int m;
831 >            if (a == null || (m = a.length - 1) < 0)
832 >                return null;
833 >            int i = mode == 0 ? top - 1 : base;
834 >            int j = ((i & m) << ASHIFT) + ABASE;
835 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 >        }
837  
838 <    /**
839 <     * A counter for events that may wake up worker threads:
840 <     *   - Submission of a new task to the pool
841 <     *   - A worker pushing a task on an empty queue
842 <     *   - termination and reconfiguration
843 <     */
844 <    private volatile int eventCount;
838 >        /**
839 >         * Pops the given task only if it is at the current top.
840 >         * (A shared version is available only via FJP.tryExternalUnpush)
841 >         */
842 >        final boolean tryUnpush(ForkJoinTask<?> t) {
843 >            ForkJoinTask<?>[] a; int s;
844 >            if ((a = array) != null && (s = top) != base &&
845 >                U.compareAndSwapObject
846 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 >                top = s;
848 >                return true;
849 >            }
850 >            return false;
851 >        }
852  
853 <    /**
854 <     * Lifecycle control. The low word contains the number of workers
855 <     * that are (probably) executing tasks. This value is atomically
856 <     * incremented before a worker gets a task to run, and decremented
857 <     * when worker has no tasks and cannot find any.  Bits 16-18
858 <     * contain runLevel value. When all are zero, the pool is
859 <     * running. Level transitions are monotonic (running -> shutdown
860 <     * -> terminating -> terminated) so each transition adds a bit.
861 <     * These are bundled together to ensure consistent read for
458 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
459 <     * and active threads is zero).
460 <     */
461 <    private volatile int runState;
853 >        /**
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855 >         */
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862  
863 <    // Note: The order among run level values matters.
864 <    private static final int RUNLEVEL_SHIFT     = 16;
865 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
866 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
867 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
868 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
869 <    private static final int ONE_ACTIVE         = 1; // active update delta
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876  
877 <    /**
472 <     * Holds number of total (i.e., created and not yet terminated)
473 <     * and running (i.e., not blocked on joins or other managed sync)
474 <     * threads, packed together to ensure consistent snapshot when
475 <     * making decisions about creating and suspending spare
476 <     * threads. Updated only by CAS. Note that adding a new worker
477 <     * requires incrementing both counts, since workers start off in
478 <     * running state.  This field is also used for memory-fencing
479 <     * configuration parameters.
480 <     */
481 <    private volatile int workerCounts;
877 >        // Specialized execution methods
878  
879 <    private static final int TOTAL_COUNT_SHIFT  = 16;
880 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
881 <    private static final int ONE_RUNNING        = 1;
882 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893 >                }
894 >            }
895 >        }
896  
897 <    /*
898 <     * Fields parallelism. maxPoolSize, and maintainsParallelism are
899 <     * non-volatile, but external reads/writes use workerCount fences
900 <     * to ensure visability.
901 <     */
897 >        /**
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908 >         * or consistency check failure so caller can retry.
909 >         *
910 >         * @return false if no progress can be made, else true;
911 >         */
912 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 >            boolean stat = true, removed = false, empty = true;
914 >            ForkJoinTask<?>[] a; int m, s, b, n;
915 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 >                (n = (s = top) - (b = base)) > 0) {
917 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 >                    int j = ((--s & m) << ASHIFT) + ABASE;
919 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 >                    if (t == null)                    // inconsistent length
921 >                        break;
922 >                    else if (t == task) {
923 >                        if (s + 1 == top) {           // pop
924 >                            if (!U.compareAndSwapObject(a, j, task, null))
925 >                                break;
926 >                            top = s;
927 >                            removed = true;
928 >                        }
929 >                        else if (base == b)           // replace with proxy
930 >                            removed = U.compareAndSwapObject(a, j, task,
931 >                                                             new EmptyTask());
932 >                        break;
933 >                    }
934 >                    else if (t.status >= 0)
935 >                        empty = false;
936 >                    else if (s + 1 == top) {          // pop and throw away
937 >                        if (U.compareAndSwapObject(a, j, t, null))
938 >                            top = s;
939 >                        break;
940 >                    }
941 >                    if (--n == 0) {
942 >                        if (!empty && base == b)
943 >                            stat = false;
944 >                        break;
945 >                    }
946 >                }
947 >            }
948 >            if (removed)
949 >                task.doExec();
950 >            return stat;
951 >        }
952 >
953 >        /**
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956 >         */
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977 >                }
978 >            }
979 >            return false;
980 >        }
981 >
982 >        /**
983 >         * Executes a top-level task and any local tasks remaining
984 >         * after execution.
985 >         */
986 >        final void runTask(ForkJoinTask<?> t) {
987 >            if (t != null) {
988 >                (currentSteal = t).doExec();
989 >                currentSteal = null;
990 >                ++nsteals;
991 >                if (base - top < 0) {       // process remaining local tasks
992 >                    if (mode == 0)
993 >                        popAndExecAll();
994 >                    else
995 >                        pollAndExecAll();
996 >                }
997 >            }
998 >        }
999 >
1000 >        /**
1001 >         * Executes a non-top-level (stolen) task.
1002 >         */
1003 >        final void runSubtask(ForkJoinTask<?> t) {
1004 >            if (t != null) {
1005 >                ForkJoinTask<?> ps = currentSteal;
1006 >                (currentSteal = t).doExec();
1007 >                currentSteal = ps;
1008 >            }
1009 >        }
1010 >
1011 >        /**
1012 >         * Returns true if owned and not known to be blocked.
1013 >         */
1014 >        final boolean isApparentlyUnblocked() {
1015 >            Thread wt; Thread.State s;
1016 >            return (eventCount >= 0 &&
1017 >                    (wt = owner) != null &&
1018 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 >                    s != Thread.State.WAITING &&
1020 >                    s != Thread.State.TIMED_WAITING);
1021 >        }
1022 >
1023 >        // Unsafe mechanics
1024 >        private static final sun.misc.Unsafe U;
1025 >        private static final long QLOCK;
1026 >        private static final int ABASE;
1027 >        private static final int ASHIFT;
1028 >        static {
1029 >            int s;
1030 >            try {
1031 >                U = getUnsafe();
1032 >                Class<?> k = WorkQueue.class;
1033 >                Class<?> ak = ForkJoinTask[].class;
1034 >                QLOCK = U.objectFieldOffset
1035 >                    (k.getDeclaredField("qlock"));
1036 >                ABASE = U.arrayBaseOffset(ak);
1037 >                s = U.arrayIndexScale(ak);
1038 >            } catch (Exception e) {
1039 >                throw new Error(e);
1040 >            }
1041 >            if ((s & (s-1)) != 0)
1042 >                throw new Error("data type scale not a power of two");
1043 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044 >        }
1045 >    }
1046 >
1047 >    // static fields (initialized in static initializer below)
1048  
1049      /**
1050 <     * The target parallelism level.
1050 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1051 >     * overridden in ForkJoinPool constructors.
1052       */
1053 <    private int parallelism;
1053 >    public static final ForkJoinWorkerThreadFactory
1054 >        defaultForkJoinWorkerThreadFactory;
1055  
1056      /**
1057 <     * The maximum allowed pool size.
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062       */
1063 <    private int maxPoolSize;
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065      /**
1066 <     * True if use local fifo, not default lifo, for local polling
1067 <     * Replicated by ForkJoinWorkerThreads
1066 >     * Permission required for callers of methods that may start or
1067 >     * kill threads.
1068       */
1069 <    private volatile boolean locallyFifo;
1069 >    private static final RuntimePermission modifyThreadPermission;
1070  
1071      /**
1072 <     * Controls whether to add spares to maintain parallelism
1072 >     * Common (static) pool. Non-null for public use unless a static
1073 >     * construction exception, but internal usages null-check on use
1074 >     * to paranoically avoid potential initialization circularities
1075 >     * as well as to simplify generated code.
1076       */
1077 <    private boolean maintainsParallelism;
1077 >    static final ForkJoinPool common;
1078  
1079      /**
1080 <     * The uncaught exception handler used when any worker
517 <     * abruptly terminates
1080 >     * Common pool parallelism. Must equal common.parallelism.
1081       */
1082 <    private volatile Thread.UncaughtExceptionHandler ueh;
1082 >    static final int commonParallelism;
1083  
1084      /**
1085 <     * Pool number, just for assigning useful names to worker threads
1085 >     * Sequence number for creating workerNamePrefix.
1086       */
1087 <    private final int poolNumber;
525 <
526 <    // utilities for updating fields
1087 >    private static int poolNumberSequence;
1088  
1089      /**
1090 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
1090 >     * Returns the next sequence number. We don't expect this to
1091 >     * ever contend, so use simple builtin sync.
1092       */
1093 <    final void updateRunningCount(int delta) {
1094 <        int wc;
533 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
534 <                                               wc = workerCounts,
535 <                                               wc + delta));
1093 >    private static final synchronized int nextPoolId() {
1094 >        return ++poolNumberSequence;
1095      }
1096  
1097 +    // static constants
1098 +
1099      /**
1100 <     * Decrements running count unless already zero
1100 >     * Initial timeout value (in nanoseconds) for the thread
1101 >     * triggering quiescence to park waiting for new work. On timeout,
1102 >     * the thread will instead try to shrink the number of
1103 >     * workers. The value should be large enough to avoid overly
1104 >     * aggressive shrinkage during most transient stalls (long GCs
1105 >     * etc).
1106       */
1107 <    final boolean tryDecrementRunningCount() {
542 <        int wc = workerCounts;
543 <        if ((wc & RUNNING_COUNT_MASK) == 0)
544 <            return false;
545 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                        wc, wc - ONE_RUNNING);
547 <    }
1107 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1108  
1109      /**
1110 <     * Write fence for user modifications of pool parameters
551 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
1110 >     * Timeout value when there are more threads than parallelism level
1111       */
1112 <    private void workerCountWriteFence() {
554 <        int wc;
555 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
556 <                                 wc = workerCounts, wc);
557 <    }
1112 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1113  
1114      /**
1115 <     * Read fence for external reads of pool parameters
561 <     * (parallelism. maxPoolSize, etc).
1115 >     * Tolerance for idle timeouts, to cope with timer undershoots
1116       */
1117 <    private void workerCountReadFence() {
564 <        int ignore = workerCounts;
565 <    }
1117 >    private static final long TIMEOUT_SLOP = 2000000L;
1118  
1119      /**
1120 <     * Tries incrementing active count; fails on contention.
1121 <     * Called by workers before executing tasks.
1122 <     *
1123 <     * @return true on success
1120 >     * The maximum stolen->joining link depth allowed in method
1121 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1122 >     * chains are unbounded, but we use a fixed constant to avoid
1123 >     * (otherwise unchecked) cycles and to bound staleness of
1124 >     * traversal parameters at the expense of sometimes blocking when
1125 >     * we could be helping.
1126       */
1127 <    final boolean tryIncrementActiveCount() {
574 <        int c;
575 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 <                                        c = runState, c + ONE_ACTIVE);
577 <    }
1127 >    private static final int MAX_HELP = 64;
1128  
1129      /**
1130 <     * Tries decrementing active count; fails on contention.
1131 <     * Called when workers cannot find tasks to run.
1130 >     * Increment for seed generators. See class ThreadLocal for
1131 >     * explanation.
1132       */
1133 <    final boolean tryDecrementActiveCount() {
584 <        int c;
585 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
586 <                                        c = runState, c - ONE_ACTIVE);
587 <    }
1133 >    private static final int SEED_INCREMENT = 0x61c88647;
1134  
1135      /**
1136 <     * Advances to at least the given level. Returns true if not
1137 <     * already in at least the given level.
1136 >     * Bits and masks for control variables
1137 >     *
1138 >     * Field ctl is a long packed with:
1139 >     * AC: Number of active running workers minus target parallelism (16 bits)
1140 >     * TC: Number of total workers minus target parallelism (16 bits)
1141 >     * ST: true if pool is terminating (1 bit)
1142 >     * EC: the wait count of top waiting thread (15 bits)
1143 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144 >     *
1145 >     * When convenient, we can extract the upper 32 bits of counts and
1146 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147 >     * (int)ctl.  The ec field is never accessed alone, but always
1148 >     * together with id and st. The offsets of counts by the target
1149 >     * parallelism and the positionings of fields makes it possible to
1150 >     * perform the most common checks via sign tests of fields: When
1151 >     * ac is negative, there are not enough active workers, when tc is
1152 >     * negative, there are not enough total workers, and when e is
1153 >     * negative, the pool is terminating.  To deal with these possibly
1154 >     * negative fields, we use casts in and out of "short" and/or
1155 >     * signed shifts to maintain signedness.
1156 >     *
1157 >     * When a thread is queued (inactivated), its eventCount field is
1158 >     * set negative, which is the only way to tell if a worker is
1159 >     * prevented from executing tasks, even though it must continue to
1160 >     * scan for them to avoid queuing races. Note however that
1161 >     * eventCount updates lag releases so usage requires care.
1162 >     *
1163 >     * Field plock is an int packed with:
1164 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 >     *
1168 >     * The sequence number enables simple consistency checks:
1169 >     * Staleness of read-only operations on the workQueues array can
1170 >     * be checked by comparing plock before vs after the reads.
1171       */
593    private boolean advanceRunLevel(int level) {
594        for (;;) {
595            int s = runState;
596            if ((s & level) != 0)
597                return false;
598            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
599                return true;
600        }
601    }
1172  
1173 <    // workers array maintenance
1173 >    // bit positions/shifts for fields
1174 >    private static final int  AC_SHIFT   = 48;
1175 >    private static final int  TC_SHIFT   = 32;
1176 >    private static final int  ST_SHIFT   = 31;
1177 >    private static final int  EC_SHIFT   = 16;
1178  
1179 <    /**
1180 <     * Records and returns a workers array index for new worker.
1179 >    // bounds
1180 >    private static final int  SMASK      = 0xffff;  // short bits
1181 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1182 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1183 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1184 >    private static final int  SHORT_SIGN = 1 << 15;
1185 >    private static final int  INT_SIGN   = 1 << 31;
1186 >
1187 >    // masks
1188 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1189 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1190 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1191 >
1192 >    // units for incrementing and decrementing
1193 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1194 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1195 >
1196 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1197 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1198 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1199 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1200 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1201 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1202 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1203 >
1204 >    // masks and units for dealing with e = (int)ctl
1205 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1206 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1207 >
1208 >    // plock bits
1209 >    private static final int SHUTDOWN    = 1 << 31;
1210 >    private static final int PL_LOCK     = 2;
1211 >    private static final int PL_SIGNAL   = 1;
1212 >    private static final int PL_SPINS    = 1 << 8;
1213 >
1214 >    // access mode for WorkQueue
1215 >    static final int LIFO_QUEUE          =  0;
1216 >    static final int FIFO_QUEUE          =  1;
1217 >    static final int SHARED_QUEUE        = -1;
1218 >
1219 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1220 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1221 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1222 >
1223 >    // Instance fields
1224 >
1225 >    /*
1226 >     * Field layout of this class tends to matter more than one would
1227 >     * like. Runtime layout order is only loosely related to
1228 >     * declaration order and may differ across JVMs, but the following
1229 >     * empirically works OK on current JVMs.
1230 >     */
1231 >
1232 >    // Heuristic padding to ameliorate unfortunate memory placements
1233 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234 >
1235 >    volatile long stealCount;                  // collects worker counts
1236 >    volatile long ctl;                         // main pool control
1237 >    volatile int plock;                        // shutdown status and seqLock
1238 >    volatile int indexSeed;                    // worker/submitter index seed
1239 >    final int config;                          // mode and parallelism level
1240 >    WorkQueue[] workQueues;                    // main registry
1241 >    final ForkJoinWorkerThreadFactory factory;
1242 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 >    final String workerNamePrefix;             // to create worker name string
1244 >
1245 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 >    volatile Object pad18, pad19, pad1a, pad1b;
1247 >
1248 >    /*
1249 >     * Acquires the plock lock to protect worker array and related
1250 >     * updates. This method is called only if an initial CAS on plock
1251 >     * fails. This acts as a spinlock for normal cases, but falls back
1252 >     * to builtin monitor to block when (rarely) needed. This would be
1253 >     * a terrible idea for a highly contended lock, but works fine as
1254 >     * a more conservative alternative to a pure spinlock.
1255       */
1256 <    private int recordWorker(ForkJoinWorkerThread w) {
1257 <        // Try using slot totalCount-1. If not available, scan and/or resize
1258 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1259 <        final ReentrantLock lock = this.workerLock;
1260 <        lock.lock();
1261 <        try {
1262 <            ForkJoinWorkerThread[] ws = workers;
1263 <            int nws = ws.length;
1264 <            if (k < 0 || k >= nws || ws[k] != null) {
1265 <                for (k = 0; k < nws && ws[k] != null; ++k)
1266 <                    ;
1267 <                if (k == nws)
1268 <                    ws = Arrays.copyOf(ws, nws << 1);
1256 >    private int acquirePlock() {
1257 >        int spins = PL_SPINS, r = 0, ps, nps;
1258 >        for (;;) {
1259 >            if (((ps = plock) & PL_LOCK) == 0 &&
1260 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 >                return nps;
1262 >            else if (r == 0) { // randomize spins if possible
1263 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 >                if ((t instanceof ForkJoinWorkerThread) &&
1265 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 >                    r = w.seed;
1267 >                else if ((z = submitters.get()) != null)
1268 >                    r = z.seed;
1269 >                else
1270 >                    r = 1;
1271 >            }
1272 >            else if (spins >= 0) {
1273 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 >                if (r >= 0)
1275 >                    --spins;
1276 >            }
1277 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 >                synchronized (this) {
1279 >                    if ((plock & PL_SIGNAL) != 0) {
1280 >                        try {
1281 >                            wait();
1282 >                        } catch (InterruptedException ie) {
1283 >                            try {
1284 >                                Thread.currentThread().interrupt();
1285 >                            } catch (SecurityException ignore) {
1286 >                            }
1287 >                        }
1288 >                    }
1289 >                    else
1290 >                        notifyAll();
1291 >                }
1292              }
622            ws[k] = w;
623            workers = ws; // volatile array write ensures slot visibility
624        } finally {
625            lock.unlock();
1293          }
627        return k;
1294      }
1295  
1296      /**
1297 <     * Nulls out record of worker in workers array
1297 >     * Unlocks and signals any thread waiting for plock. Called only
1298 >     * when CAS of seq value for unlock fails.
1299       */
1300 <    private void forgetWorker(ForkJoinWorkerThread w) {
1301 <        int idx = w.poolIndex;
1302 <        // Locking helps method recordWorker avoid unecessary expansion
1303 <        final ReentrantLock lock = this.workerLock;
1304 <        lock.lock();
1305 <        try {
1306 <            ForkJoinWorkerThread[] ws = workers;
1307 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1308 <                ws[idx] = null;
1309 <        } finally {
1310 <            lock.unlock();
1300 >    private void releasePlock(int ps) {
1301 >        plock = ps;
1302 >        synchronized (this) { notifyAll(); }
1303 >    }
1304 >
1305 >    /**
1306 >     * Tries to create and start one worker if fewer than target
1307 >     * parallelism level exist. Adjusts counts etc on failure.
1308 >     */
1309 >    private void tryAddWorker() {
1310 >        long c; int u;
1311 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1312 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1313 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1314 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1315 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1316 >                ForkJoinWorkerThreadFactory fac;
1317 >                Throwable ex = null;
1318 >                ForkJoinWorkerThread wt = null;
1319 >                try {
1320 >                    if ((fac = factory) != null &&
1321 >                        (wt = fac.newThread(this)) != null) {
1322 >                        wt.start();
1323 >                        break;
1324 >                    }
1325 >                } catch (Throwable e) {
1326 >                    ex = e;
1327 >                }
1328 >                deregisterWorker(wt, ex);
1329 >                break;
1330 >            }
1331          }
1332      }
1333  
1334 <    // adding and removing workers
1334 >    //  Registering and deregistering workers
1335  
1336      /**
1337 <     * Tries to create and add new worker. Assumes that worker counts
1338 <     * are already updated to accommodate the worker, so adjusts on
1339 <     * failure.
1340 <     *
1341 <     * @return new worker or null if creation failed
1342 <     */
1343 <    private ForkJoinWorkerThread addWorker() {
1344 <        ForkJoinWorkerThread w = null;
1337 >     * Callback from ForkJoinWorkerThread to establish and record its
1338 >     * WorkQueue. To avoid scanning bias due to packing entries in
1339 >     * front of the workQueues array, we treat the array as a simple
1340 >     * power-of-two hash table using per-thread seed as hash,
1341 >     * expanding as needed.
1342 >     *
1343 >     * @param wt the worker thread
1344 >     * @return the worker's queue
1345 >     */
1346 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1347 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1348 >        wt.setDaemon(true);
1349 >        if ((handler = ueh) != null)
1350 >            wt.setUncaughtExceptionHandler(handler);
1351 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1352 >                                          s += SEED_INCREMENT) ||
1353 >                     s == 0); // skip 0
1354 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1359          try {
1360 <            w = factory.newThread(this);
1361 <        } finally { // Adjust on either null or exceptional factory return
1362 <            if (w == null) {
1363 <                onWorkerCreationFailure();
1364 <                return null;
1360 >            if ((ws = workQueues) != null) {    // skip if shutting down
1361 >                int n = ws.length, m = n - 1;
1362 >                int r = (s << 1) | 1;           // use odd-numbered indices
1363 >                if (ws[r &= m] != null) {       // collision
1364 >                    int probes = 0;             // step by approx half size
1365 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1366 >                    while (ws[r = (r + step) & m] != null) {
1367 >                        if (++probes >= n) {
1368 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369 >                            m = n - 1;
1370 >                            probes = 0;
1371 >                        }
1372 >                    }
1373 >                }
1374 >                w.eventCount = w.poolIndex = r; // volatile write orders
1375 >                ws[r] = w;
1376              }
1377 +        } finally {
1378 +            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379 +                releasePlock(nps);
1380          }
1381 <        w.start(recordWorker(w), locallyFifo, ueh);
1381 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1382          return w;
1383      }
1384  
1385      /**
1386 <     * Adjusts counts upon failure to create worker
1387 <     */
1388 <    private void onWorkerCreationFailure() {
1389 <        for (;;) {
1390 <            int wc = workerCounts;
1391 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
1392 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1393 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
1394 <                break;
1386 >     * Final callback from terminating worker, as well as upon failure
1387 >     * to construct or start a worker.  Removes record of worker from
1388 >     * array, and adjusts counts. If pool is shutting down, tries to
1389 >     * complete termination.
1390 >     *
1391 >     * @param wt the worker thread or null if construction failed
1392 >     * @param ex the exception causing failure, or null if none
1393 >     */
1394 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1395 >        WorkQueue w = null;
1396 >        if (wt != null && (w = wt.workQueue) != null) {
1397 >            int ps;
1398 >            w.qlock = -1;                // ensure set
1399 >            long ns = w.nsteals, sc;     // collect steal count
1400 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1401 >                                               sc = stealCount, sc + ns));
1402 >            if (((ps = plock) & PL_LOCK) != 0 ||
1403 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404 >                ps = acquirePlock();
1405 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406 >            try {
1407 >                int idx = w.poolIndex;
1408 >                WorkQueue[] ws = workQueues;
1409 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1410 >                    ws[idx] = null;
1411 >            } finally {
1412 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1413 >                    releasePlock(nps);
1414 >            }
1415          }
681        tryTerminate(false); // in case of failure during shutdown
682    }
1416  
1417 <    /**
1418 <     * Create enough total workers to establish target parallelism,
1419 <     * giving up if terminating or addWorker fails
1420 <     */
1421 <    private void ensureEnoughTotalWorkers() {
1422 <        int wc;
1423 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
1424 <               runState < TERMINATING) {
1425 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1426 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
1427 <                 addWorker() == null))
1428 <                break;
1417 >        long c;                          // adjust ctl counts
1418 >        do {} while (!U.compareAndSwapLong
1419 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1420 >                                           ((c - TC_UNIT) & TC_MASK) |
1421 >                                           (c & ~(AC_MASK|TC_MASK)))));
1422 >
1423 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1424 >            w.cancelAll();               // cancel remaining tasks
1425 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1426 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1427 >                if (e > 0) {             // activate or create replacement
1428 >                    if ((ws = workQueues) == null ||
1429 >                        (i = e & SMASK) >= ws.length ||
1430 >                        (v = ws[i]) == null)
1431 >                        break;
1432 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1433 >                               ((long)(u + UAC_UNIT) << 32));
1434 >                    if (v.eventCount != (e | INT_SIGN))
1435 >                        break;
1436 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1437 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1438 >                        if ((p = v.parker) != null)
1439 >                            U.unpark(p);
1440 >                        break;
1441 >                    }
1442 >                }
1443 >                else {
1444 >                    if ((short)u < 0)
1445 >                        tryAddWorker();
1446 >                    break;
1447 >                }
1448 >            }
1449 >        }
1450 >        if (ex == null)                     // help clean refs on way out
1451 >            ForkJoinTask.helpExpungeStaleExceptions();
1452 >        else                                // rethrow
1453 >            ForkJoinTask.rethrow(ex);
1454 >    }
1455 >
1456 >    // Submissions
1457 >
1458 >    /**
1459 >     * Unless shutting down, adds the given task to a submission queue
1460 >     * at submitter's current queue index (modulo submission
1461 >     * range). Only the most common path is directly handled in this
1462 >     * method. All others are relayed to fullExternalPush.
1463 >     *
1464 >     * @param task the task. Caller must ensure non-null.
1465 >     */
1466 >    final void externalPush(ForkJoinTask<?> task) {
1467 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1468 >        if ((z = submitters.get()) != null && plock > 0 &&
1469 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1470 >            (q = ws[m & z.seed & SQMASK]) != null &&
1471 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1472 >            int b = q.base, s = q.top, n, an;
1473 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1474 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1475 >                U.putOrderedObject(a, j, task);
1476 >                q.top = s + 1;                     // push on to deque
1477 >                q.qlock = 0;
1478 >                if (n <= 2)
1479 >                    signalWork(q);
1480 >                return;
1481 >            }
1482 >            q.qlock = 0;
1483          }
1484 +        fullExternalPush(task);
1485      }
1486  
1487      /**
1488 <     * Final callback from terminating worker.  Removes record of
1489 <     * worker from array, and adjusts counts. If pool is shutting
1490 <     * down, tries to complete terminatation, else possibly replaces
1491 <     * the worker.
1492 <     *
1493 <     * @param w the worker
1494 <     */
1495 <    final void workerTerminated(ForkJoinWorkerThread w) {
1496 <        if (w.active) { // force inactive
1497 <            w.active = false;
1498 <            do {} while (!tryDecrementActiveCount());
1499 <        }
1500 <        forgetWorker(w);
1501 <
1502 <        // Decrement total count, and if was running, running count
1503 <        // Spin (waiting for other updates) if either would be negative
1504 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
1505 <        int unit = ONE_TOTAL + nr;
1506 <        for (;;) {
1507 <            int wc = workerCounts;
1508 <            int rc = wc & RUNNING_COUNT_MASK;
1509 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
1510 <                Thread.yield(); // back off if waiting for other updates
1511 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1512 <                                              wc, wc - unit))
1513 <                break;
1488 >     * Full version of externalPush. This method is called, among
1489 >     * other times, upon the first submission of the first task to the
1490 >     * pool, so must perform secondary initialization.  It also
1491 >     * detects first submission by an external thread by looking up
1492 >     * its ThreadLocal, and creates a new shared queue if the one at
1493 >     * index if empty or contended. The plock lock body must be
1494 >     * exception-free (so no try/finally) so we optimistically
1495 >     * allocate new queues outside the lock and throw them away if
1496 >     * (very rarely) not needed.
1497 >     *
1498 >     * Secondary initialization occurs when plock is zero, to create
1499 >     * workQueue array and set plock to a valid value.  This lock body
1500 >     * must also be exception-free. Because the plock seq value can
1501 >     * eventually wrap around zero, this method harmlessly fails to
1502 >     * reinitialize if workQueues exists, while still advancing plock.
1503 >     */
1504 >    private void fullExternalPush(ForkJoinTask<?> task) {
1505 >        int r = 0; // random index seed
1506 >        for (Submitter z = submitters.get();;) {
1507 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1508 >            if (z == null) {
1509 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1510 >                                        r += SEED_INCREMENT) && r != 0)
1511 >                    submitters.set(z = new Submitter(r));
1512 >            }
1513 >            else if (r == 0) {                  // move to a different index
1514 >                r = z.seed;
1515 >                r ^= r << 13;                   // same xorshift as WorkQueues
1516 >                r ^= r >>> 17;
1517 >                z.seed = r ^ (r << 5);
1518 >            }
1519 >            else if ((ps = plock) < 0)
1520 >                throw new RejectedExecutionException();
1521 >            else if (ps == 0 || (ws = workQueues) == null ||
1522 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1523 >                int p = config & SMASK;         // find power of two table size
1524 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1525 >                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1526 >                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1527 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1528 >                                   new WorkQueue[n] : null);
1529 >                if (((ps = plock) & PL_LOCK) != 0 ||
1530 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1531 >                    ps = acquirePlock();
1532 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1533 >                    workQueues = nws;
1534 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1535 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1536 >                    releasePlock(nps);
1537 >            }
1538 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1539 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1540 >                    ForkJoinTask<?>[] a = q.array;
1541 >                    int s = q.top;
1542 >                    boolean submitted = false;
1543 >                    try {                      // locked version of push
1544 >                        if ((a != null && a.length > s + 1 - q.base) ||
1545 >                            (a = q.growArray()) != null) {   // must presize
1546 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1547 >                            U.putOrderedObject(a, j, task);
1548 >                            q.top = s + 1;
1549 >                            submitted = true;
1550 >                        }
1551 >                    } finally {
1552 >                        q.qlock = 0;  // unlock
1553 >                    }
1554 >                    if (submitted) {
1555 >                        signalWork(q);
1556 >                        return;
1557 >                    }
1558 >                }
1559 >                r = 0; // move on failure
1560 >            }
1561 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1562 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1563 >                if (((ps = plock) & PL_LOCK) != 0 ||
1564 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1565 >                    ps = acquirePlock();
1566 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1567 >                    ws[k] = q;
1568 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1569 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1570 >                    releasePlock(nps);
1571 >            }
1572 >            else
1573 >                r = 0; // try elsewhere while lock held
1574          }
727
728        accumulateStealCount(w); // collect final count
729        if (!tryTerminate(false))
730            ensureEnoughTotalWorkers();
1575      }
1576  
1577 <    // Waiting for and signalling events
1577 >    // Maintaining ctl counts
1578  
1579      /**
1580 <     * Ensures eventCount on exit is different (mod 2^32) than on
737 <     * entry.  CAS failures are OK -- any change in count suffices.
1580 >     * Increments active count; mainly called upon return from blocking.
1581       */
1582 <    private void advanceEventCount() {
1583 <        int c;
1584 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1582 >    final void incrementActiveCount() {
1583 >        long c;
1584 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1585      }
1586  
1587      /**
1588 <     * Releases workers blocked on a count not equal to current count.
1588 >     * Tries to create or activate a worker if too few are active.
1589 >     *
1590 >     * @param q the (non-null) queue holding tasks to be signalled
1591       */
1592 <    final void releaseWaiters() {
1593 <        long top;
1594 <        int id;
1595 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
1596 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
1597 <            ForkJoinWorkerThread[] ws = workers;
1598 <            ForkJoinWorkerThread w;
1599 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
1600 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1601 <                                          top, w.nextWaiter))
1602 <                LockSupport.unpark(w);
1592 >    final void signalWork(WorkQueue q) {
1593 >        int hint = q.poolIndex;
1594 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1595 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1596 >            if ((e = (int)c) > 0) {
1597 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1598 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1599 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1600 >                               ((long)(u + UAC_UNIT) << 32));
1601 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1602 >                        w.hint = hint;
1603 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1604 >                        if ((p = w.parker) != null)
1605 >                            U.unpark(p);
1606 >                        break;
1607 >                    }
1608 >                    if (q.top - q.base <= 0)
1609 >                        break;
1610 >                }
1611 >                else
1612 >                    break;
1613 >            }
1614 >            else {
1615 >                if ((short)u < 0)
1616 >                    tryAddWorker();
1617 >                break;
1618 >            }
1619          }
1620      }
1621  
1622 +    // Scanning for tasks
1623 +
1624      /**
1625 <     * Advances eventCount and releases waiters until interference by
763 <     * other releasing threads is detected.
1625 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626       */
1627 <    final void signalWork() {
1628 <        int ec;
1629 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
1630 <        outer:for (;;) {
1631 <            long top = eventWaiters;
1632 <            ec = eventCount;
1633 <            for (;;) {
1634 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1635 <                int id = (int)(top & WAITER_INDEX_MASK);
1636 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1637 <                    return;
1638 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
1639 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1640 <                                               top, top = w.nextWaiter))
1641 <                    continue outer;      // possibly stale; reread
1642 <                LockSupport.unpark(w);
1643 <                if (top != eventWaiters) // let someone else take over
1644 <                    return;
1627 >    final void runWorker(WorkQueue w) {
1628 >        w.growArray(); // allocate queue
1629 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1630 >    }
1631 >
1632 >    /**
1633 >     * Scans for and, if found, returns one task, else possibly
1634 >     * inactivates the worker. This method operates on single reads of
1635 >     * volatile state and is designed to be re-invoked continuously,
1636 >     * in part because it returns upon detecting inconsistencies,
1637 >     * contention, or state changes that indicate possible success on
1638 >     * re-invocation.
1639 >     *
1640 >     * The scan searches for tasks across queues (starting at a random
1641 >     * index, and relying on registerWorker to irregularly scatter
1642 >     * them within array to avoid bias), checking each at least twice.
1643 >     * The scan terminates upon either finding a non-empty queue, or
1644 >     * completing the sweep. If the worker is not inactivated, it
1645 >     * takes and returns a task from this queue. Otherwise, if not
1646 >     * activated, it signals workers (that may include itself) and
1647 >     * returns so caller can retry. Also returns for true if the
1648 >     * worker array may have changed during an empty scan.  On failure
1649 >     * to find a task, we take one of the following actions, after
1650 >     * which the caller will retry calling this method unless
1651 >     * terminated.
1652 >     *
1653 >     * * If pool is terminating, terminate the worker.
1654 >     *
1655 >     * * If not already enqueued, try to inactivate and enqueue the
1656 >     * worker on wait queue. Or, if inactivating has caused the pool
1657 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1658 >     * pool.
1659 >     *
1660 >     * * If already enqueued and none of the above apply, possibly
1661 >     * park awaiting signal, else lingering to help scan and signal.
1662 >     *
1663 >     * * If a non-empty queue discovered or left as a hint,
1664 >     * help wake up other workers before return.
1665 >     *
1666 >     * @param w the worker (via its WorkQueue)
1667 >     * @return a task or null if none found
1668 >     */
1669 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1670 >        WorkQueue[] ws; int m;
1671 >        int ps = plock;                          // read plock before ws
1672 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1673 >            int ec = w.eventCount;               // ec is negative if inactive
1674 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 >            w.hint = -1;                         // update seed and clear hint
1676 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1677 >            do {
1678 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1679 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1680 >                    (a = q.array) != null) {     // probably nonempty
1681 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1683 >                        U.getObjectVolatile(a, i);
1684 >                    if (q.base == b && ec >= 0 && t != null &&
1685 >                        U.compareAndSwapObject(a, i, t, null)) {
1686 >                        if ((q.base = b + 1) - q.top < 0)
1687 >                            signalWork(q);
1688 >                        return t;                // taken
1689 >                    }
1690 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1691 >                        w.hint = (r + j) & m;    // help signal below
1692 >                        break;                   // cannot take
1693 >                    }
1694 >                }
1695 >            } while (--j >= 0);
1696 >
1697 >            int h, e, ns; long c, sc; WorkQueue q;
1698 >            if ((ns = w.nsteals) != 0) {
1699 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1700 >                                         sc = stealCount, sc + ns))
1701 >                    w.nsteals = 0;               // collect steals and rescan
1702 >            }
1703 >            else if (plock != ps)                // consistency check
1704 >                ;                                // skip
1705 >            else if ((e = (int)(c = ctl)) < 0)
1706 >                w.qlock = -1;                    // pool is terminating
1707 >            else {
1708 >                if ((h = w.hint) < 0) {
1709 >                    if (ec >= 0) {               // try to enqueue/inactivate
1710 >                        long nc = (((long)ec |
1711 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1712 >                        w.nextWait = e;          // link and mark inactive
1713 >                        w.eventCount = ec | INT_SIGN;
1714 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1715 >                            w.eventCount = ec;   // unmark on CAS failure
1716 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1717 >                            idleAwaitWork(w, nc, c);
1718 >                    }
1719 >                    else if (w.eventCount < 0 && ctl == c) {
1720 >                        Thread wt = Thread.currentThread();
1721 >                        Thread.interrupted();    // clear status
1722 >                        U.putObject(wt, PARKBLOCKER, this);
1723 >                        w.parker = wt;           // emulate LockSupport.park
1724 >                        if (w.eventCount < 0)    // recheck
1725 >                            U.park(false, 0L);   // block
1726 >                        w.parker = null;
1727 >                        U.putObject(wt, PARKBLOCKER, null);
1728 >                    }
1729 >                }
1730 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1731 >                    (ws = workQueues) != null && h < ws.length &&
1732 >                    (q = ws[h]) != null) {      // signal others before retry
1733 >                    WorkQueue v; Thread p; int u, i, s;
1734 >                    for (int n = (config & SMASK) - 1;;) {
1735 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1736 >                        if (((s = idleCount - q.base + q.top) <= n &&
1737 >                             (n = s) <= 0) ||
1738 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1739 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1740 >                            (v = ws[i]) == null)
1741 >                            break;
1742 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1743 >                                   ((long)(u + UAC_UNIT) << 32));
1744 >                        if (v.eventCount != (e | INT_SIGN) ||
1745 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1746 >                            break;
1747 >                        v.hint = h;
1748 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1749 >                        if ((p = v.parker) != null)
1750 >                            U.unpark(p);
1751 >                        if (--n <= 0)
1752 >                            break;
1753 >                    }
1754 >                }
1755              }
1756          }
1757 +        return null;
1758      }
1759  
1760      /**
1761 <     * If worker is inactive, blocks until terminating or event count
1762 <     * advances from last value held by worker; in any case helps
1763 <     * release others.
1764 <     *
1765 <     * @param w the calling worker thread
1766 <     */
1767 <    private void eventSync(ForkJoinWorkerThread w) {
1768 <        if (!w.active) {
1769 <            int prev = w.lastEventCount;
1770 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
1771 <                            ((long)(w.poolIndex + 1)));
1772 <            long top;
1773 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1774 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
1775 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
1776 <                   eventCount == prev) {
1777 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1778 <                                              w.nextWaiter = top, nextTop)) {
1779 <                    accumulateStealCount(w); // transfer steals while idle
1780 <                    Thread.interrupted();    // clear/ignore interrupt
1781 <                    while (eventCount == prev)
1782 <                        w.doPark();
1761 >     * If inactivating worker w has caused the pool to become
1762 >     * quiescent, checks for pool termination, and, so long as this is
1763 >     * not the only worker, waits for event for up to a given
1764 >     * duration.  On timeout, if ctl has not changed, terminates the
1765 >     * worker, which will in turn wake up another worker to possibly
1766 >     * repeat this process.
1767 >     *
1768 >     * @param w the calling worker
1769 >     * @param currentCtl the ctl value triggering possible quiescence
1770 >     * @param prevCtl the ctl value to restore if thread is terminated
1771 >     */
1772 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1773 >        if (w != null && w.eventCount < 0 &&
1774 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1775 >            ctl == currentCtl) {
1776 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1777 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1778 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1779 >            Thread wt = Thread.currentThread();
1780 >            while (ctl == currentCtl) {
1781 >                Thread.interrupted();  // timed variant of version in scan()
1782 >                U.putObject(wt, PARKBLOCKER, this);
1783 >                w.parker = wt;
1784 >                if (ctl == currentCtl)
1785 >                    U.park(false, parkTime);
1786 >                w.parker = null;
1787 >                U.putObject(wt, PARKBLOCKER, null);
1788 >                if (ctl != currentCtl)
1789 >                    break;
1790 >                if (deadline - System.nanoTime() <= 0L &&
1791 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1792 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1793 >                    w.hint = -1;
1794 >                    w.qlock = -1;   // shrink
1795                      break;
1796                  }
1797              }
813            w.lastEventCount = eventCount;
1798          }
815        releaseWaiters();
1799      }
1800  
1801      /**
1802 <     * Callback from workers invoked upon each top-level action (i.e.,
1803 <     * stealing a task or taking a submission and running
1804 <     * it). Performs one or both of the following:
1805 <     *
1806 <     * * If the worker cannot find work, updates its active status to
1807 <     * inactive and updates activeCount unless there is contention, in
1808 <     * which case it may try again (either in this or a subsequent
1809 <     * call).  Additionally, awaits the next task event and/or helps
1810 <     * wake up other releasable waiters.
1811 <     *
1812 <     * * If there are too many running threads, suspends this worker
1813 <     * (first forcing inactivation if necessary).  If it is not
1814 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
1815 <     * -- killed while suspended within suspendAsSpare. Otherwise,
1816 <     * upon resume it rechecks to make sure that it is still needed.
1817 <     *
1818 <     * @param w the worker
1819 <     * @param worked false if the worker scanned for work but didn't
1820 <     * find any (in which case it may block waiting for work).
1821 <     */
1822 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1823 <        boolean active = w.active;
1824 <        boolean inactivate = !worked & active;
1825 <        for (;;) {
1826 <            if (inactivate) {
1827 <                int c = runState;
1828 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1829 <                                             c, c - ONE_ACTIVE))
1830 <                    inactivate = active = w.active = false;
1831 <            }
1832 <            int wc = workerCounts;
1833 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
1834 <                if (!worked)
1835 <                    eventSync(w);
1836 <                return;
1802 >     * Scans through queues looking for work while joining a task; if
1803 >     * any present, signals. May return early if more signalling is
1804 >     * detectably unneeded.
1805 >     *
1806 >     * @param task return early if done
1807 >     * @param origin an index to start scan
1808 >     */
1809 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1810 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1811 >        if (task != null && task.status >= 0 &&
1812 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1813 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1814 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1815 >                WorkQueue q = ws[k++ & m];
1816 >                for (int n = m;;) { // limit to at most m signals
1817 >                    if (task.status < 0)
1818 >                        break outer;
1819 >                    if (q == null ||
1820 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1821 >                        break;
1822 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1823 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1824 >                        (w = ws[i]) == null)
1825 >                        break outer;
1826 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1827 >                               ((long)(u + UAC_UNIT) << 32));
1828 >                    if (w.eventCount != (e | INT_SIGN))
1829 >                        break outer;
1830 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1831 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 >                        if ((p = w.parker) != null)
1833 >                            U.unpark(p);
1834 >                        if (--n <= 0)
1835 >                            break;
1836 >                    }
1837 >                }
1838              }
855            if (!(inactivate |= active) &&  // must inactivate to suspend
856                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
857                                         wc, wc - ONE_RUNNING) &&
858                !w.suspendAsSpare())        // false if trimmed
859                return;
1839          }
1840      }
1841  
1842      /**
1843 <     * Adjusts counts and creates or resumes compensating threads for
1844 <     * a worker blocking on task joinMe.  First tries resuming an
1845 <     * existing spare (which usually also avoids any count
1846 <     * adjustment), but must then decrement running count to determine
1847 <     * whether a new thread is needed. See above for fuller
1848 <     * explanation. This code is sprawled out non-modularly mainly
1849 <     * because adaptive spinning works best if the entire method is
1850 <     * either interpreted or compiled vs having only some pieces of it
1851 <     * compiled.
1852 <     *
1853 <     * @param joinMe the task to join
1854 <     * @return task status on exit (to simplify usage by callers)
1855 <     */
1856 <    final int awaitJoin(ForkJoinTask<?> joinMe) {
1857 <        int pc = parallelism;
1858 <        boolean adj = false;        // true when running count adjusted
1859 <        int scans = 0;
1860 <
1861 <        while (joinMe.status >= 0) {
1862 <            ForkJoinWorkerThread spare = null;
1863 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1864 <                ForkJoinWorkerThread[] ws = workers;
1865 <                int nws = ws.length;
1866 <                for (int i = 0; i < nws; ++i) {
1867 <                    ForkJoinWorkerThread w = ws[i];
1868 <                    if (w != null && w.isSuspended()) {
1869 <                        spare = w;
891 <                        break;
1843 >     * Tries to locate and execute tasks for a stealer of the given
1844 >     * task, or in turn one of its stealers, Traces currentSteal ->
1845 >     * currentJoin links looking for a thread working on a descendant
1846 >     * of the given task and with a non-empty queue to steal back and
1847 >     * execute tasks from. The first call to this method upon a
1848 >     * waiting join will often entail scanning/search, (which is OK
1849 >     * because the joiner has nothing better to do), but this method
1850 >     * leaves hints in workers to speed up subsequent calls. The
1851 >     * implementation is very branchy to cope with potential
1852 >     * inconsistencies or loops encountering chains that are stale,
1853 >     * unknown, or so long that they are likely cyclic.
1854 >     *
1855 >     * @param joiner the joining worker
1856 >     * @param task the task to join
1857 >     * @return 0 if no progress can be made, negative if task
1858 >     * known complete, else positive
1859 >     */
1860 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1862 >        if (joiner != null && task != null) {       // hoist null checks
1863 >            restart: for (;;) {
1864 >                ForkJoinTask<?> subtask = task;     // current target
1865 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1866 >                    WorkQueue[] ws; int m, s, h;
1867 >                    if ((s = task.status) < 0) {
1868 >                        stat = s;
1869 >                        break restart;
1870                      }
1871 <                }
1872 <                if (joinMe.status < 0)
1873 <                    break;
1874 <            }
1875 <            int wc = workerCounts;
1876 <            int rc = wc & RUNNING_COUNT_MASK;
1877 <            int dc = pc - rc;
1878 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
1879 <                if (adj) {
1880 <                    int c;
1881 <                    do {} while (!UNSAFE.compareAndSwapInt
1882 <                                 (this, workerCountsOffset,
1883 <                                  c = workerCounts, c + ONE_RUNNING));
1884 <                }
1885 <                adj = true;
1886 <                LockSupport.unpark(spare);
1887 <            }
1888 <            else if (adj) {
1889 <                if (dc <= 0)
1890 <                    break;
1891 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
1892 <                if (scans > tc) {
1893 <                    int ts = (tc - pc) * pc;
1894 <                    if (rc != 0 &&  (dc * dc < ts || !maintainsParallelism))
1895 <                        break;
1896 <                    if (scans > ts && tc < maxPoolSize &&
1897 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1898 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
1899 <                        addWorker();
1900 <                        break;
1871 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1872 >                        break restart;              // shutting down
1873 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1874 >                        v.currentSteal != subtask) {
1875 >                        for (int origin = h;;) {    // find stealer
1876 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1877 >                                (subtask.status < 0 || j.currentJoin != subtask))
1878 >                                continue restart;   // occasional staleness check
1879 >                            if ((v = ws[h]) != null &&
1880 >                                v.currentSteal == subtask) {
1881 >                                j.hint = h;        // save hint
1882 >                                break;
1883 >                            }
1884 >                            if (h == origin)
1885 >                                break restart;      // cannot find stealer
1886 >                        }
1887 >                    }
1888 >                    for (;;) { // help stealer or descend to its stealer
1889 >                        ForkJoinTask[] a;  int b;
1890 >                        if (subtask.status < 0)     // surround probes with
1891 >                            continue restart;       //   consistency checks
1892 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1893 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1894 >                            ForkJoinTask<?> t =
1895 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1896 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1897 >                                v.currentSteal != subtask)
1898 >                                continue restart;   // stale
1899 >                            stat = 1;               // apparent progress
1900 >                            if (t != null && v.base == b &&
1901 >                                U.compareAndSwapObject(a, i, t, null)) {
1902 >                                v.base = b + 1;     // help stealer
1903 >                                joiner.runSubtask(t);
1904 >                            }
1905 >                            else if (v.base == b && ++steps == MAX_HELP)
1906 >                                break restart;      // v apparently stalled
1907 >                        }
1908 >                        else {                      // empty -- try to descend
1909 >                            ForkJoinTask<?> next = v.currentJoin;
1910 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1911 >                                v.currentSteal != subtask)
1912 >                                continue restart;   // stale
1913 >                            else if (next == null || ++steps == MAX_HELP)
1914 >                                break restart;      // dead-end or maybe cyclic
1915 >                            else {
1916 >                                subtask = next;
1917 >                                j = v;
1918 >                                break;
1919 >                            }
1920 >                        }
1921                      }
1922                  }
1923              }
926            else if (rc != 0)
927                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
928                                                wc, wc - ONE_RUNNING);
929            if ((scans++ & 1) == 0)
930                releaseWaiters();   // help others progress
931            else
932                Thread.yield();     // avoid starving productive threads
933        }
934
935        if (adj) {
936            joinMe.internalAwaitDone();
937            int c;
938            do {} while (!UNSAFE.compareAndSwapInt
939                         (this, workerCountsOffset,
940                          c = workerCounts, c + ONE_RUNNING));
1924          }
1925 <        return joinMe.status;
1925 >        return stat;
1926      }
1927  
1928      /**
1929 <     * Same idea as awaitJoin
1930 <     */
1931 <    final void awaitBlocker(ManagedBlocker blocker, boolean maintainPar)
1932 <        throws InterruptedException {
1933 <        maintainPar &= maintainsParallelism;
1934 <        int pc = parallelism;
1935 <        boolean adj = false;        // true when running count adjusted
1936 <        int scans = 0;
1937 <        boolean done;
1938 <
1939 <        for (;;) {
1940 <            if (done = blocker.isReleasable())
1941 <                break;
1942 <            ForkJoinWorkerThread spare = null;
1943 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1944 <                ForkJoinWorkerThread[] ws = workers;
1945 <                int nws = ws.length;
1946 <                for (int i = 0; i < nws; ++i) {
964 <                    ForkJoinWorkerThread w = ws[i];
965 <                    if (w != null && w.isSuspended()) {
966 <                        spare = w;
1929 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1930 >     * and run tasks within the target's computation.
1931 >     *
1932 >     * @param task the task to join
1933 >     * @param mode if shared, exit upon completing any task
1934 >     * if all workers are active
1935 >     */
1936 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1937 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1938 >        if (task != null && (ws = workQueues) != null &&
1939 >            (m = ws.length - 1) >= 0) {
1940 >            for (int j = 1, origin = j;;) {
1941 >                if ((s = task.status) < 0)
1942 >                    return s;
1943 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1944 >                    origin = j;
1945 >                    if (mode == SHARED_QUEUE &&
1946 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1947                          break;
968                    }
1948                  }
1949 <                if (done = blocker.isReleasable())
1949 >                else if ((j = (j + 2) & m) == origin)
1950                      break;
1951              }
1952 <            int wc = workerCounts;
1953 <            int rc = wc & RUNNING_COUNT_MASK;
1954 <            int dc = pc - rc;
1955 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
1956 <                if (adj) {
1957 <                    int c;
1958 <                    do {} while (!UNSAFE.compareAndSwapInt
1959 <                                 (this, workerCountsOffset,
1960 <                                  c = workerCounts, c + ONE_RUNNING));
1952 >        }
1953 >        return 0;
1954 >    }
1955 >
1956 >    /**
1957 >     * Tries to decrement active count (sometimes implicitly) and
1958 >     * possibly release or create a compensating worker in preparation
1959 >     * for blocking. Fails on contention or termination. Otherwise,
1960 >     * adds a new thread if no idle workers are available and pool
1961 >     * may become starved.
1962 >     */
1963 >    final boolean tryCompensate() {
1964 >        int pc = config & SMASK, e, i, tc; long c;
1965 >        WorkQueue[] ws; WorkQueue w; Thread p;
1966 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1967 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1968 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1969 >                long nc = ((long)(w.nextWait & E_MASK) |
1970 >                           (c & (AC_MASK|TC_MASK)));
1971 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1972 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1973 >                    if ((p = w.parker) != null)
1974 >                        U.unpark(p);
1975 >                    return true;   // replace with idle worker
1976                  }
983                adj = true;
984                LockSupport.unpark(spare);
1977              }
1978 <            else if (adj) {
1979 <                if (dc <= 0)
1980 <                    break;
1981 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
1982 <                if (scans > tc) {
1983 <                    int ts = (tc - pc) * pc;
1984 <                    if (rc != 0 &&  (dc * dc < ts || !maintainPar))
1985 <                        break;
1986 <                    if (scans > ts && tc < maxPoolSize &&
1987 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1988 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
1989 <                        addWorker();
1990 <                        break;
1978 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1979 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1980 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1981 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1982 >                    return true;   // no compensation
1983 >            }
1984 >            else if (tc + pc < MAX_CAP) {
1985 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1986 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1987 >                    ForkJoinWorkerThreadFactory fac;
1988 >                    Throwable ex = null;
1989 >                    ForkJoinWorkerThread wt = null;
1990 >                    try {
1991 >                        if ((fac = factory) != null &&
1992 >                            (wt = fac.newThread(this)) != null) {
1993 >                            wt.start();
1994 >                            return true;
1995 >                        }
1996 >                    } catch (Throwable rex) {
1997 >                        ex = rex;
1998                      }
1999 +                    deregisterWorker(wt, ex); // clean up and return false
2000                  }
2001              }
1002            else if (rc != 0)
1003                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1004                                                wc, wc - ONE_RUNNING);
1005            if ((++scans & 1) == 0)
1006                releaseWaiters();   // help others progress
1007            else
1008                Thread.yield();     // avoid starving productive threads
1009        }
1010
1011        try {
1012            if (!done)
1013                do {} while (!blocker.isReleasable() && !blocker.block());
1014        } finally {
1015            if (adj) {
1016                int c;
1017                do {} while (!UNSAFE.compareAndSwapInt
1018                             (this, workerCountsOffset,
1019                              c = workerCounts, c + ONE_RUNNING));
1020            }
2002          }
2003 +        return false;
2004      }
2005  
2006      /**
2007 <     * Unless there are not enough other running threads, adjusts
1026 <     * counts and blocks a worker performing helpJoin that cannot find
1027 <     * any work.
2007 >     * Helps and/or blocks until the given task is done.
2008       *
2009 <     * @return true if joinMe now done
2009 >     * @param joiner the joining worker
2010 >     * @param task the task
2011 >     * @return task status on exit
2012       */
2013 <    final boolean tryAwaitBusyJoin(ForkJoinTask<?> joinMe) {
2014 <        int pc = parallelism;
2015 <        outer:for (;;) {
2016 <            releaseWaiters();
2017 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
2018 <                ForkJoinWorkerThread[] ws = workers;
2019 <                int nws = ws.length;
2020 <                for (int i = 0; i < nws; ++i) {
2021 <                    ForkJoinWorkerThread w = ws[i];
2022 <                    if (w != null && w.isSuspended()) {
2023 <                        if (joinMe.status < 0)
2024 <                            return true;
2025 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
2026 <                            break;
2027 <                        if (w.tryUnsuspend()) {
2028 <                            LockSupport.unpark(w);
2029 <                            break outer;
2013 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2014 >        int s = 0;
2015 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2016 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2017 >            joiner.currentJoin = task;
2018 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2019 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2020 >            if (s >= 0 && (s = task.status) >= 0) {
2021 >                helpSignal(task, joiner.poolIndex);
2022 >                if ((s = task.status) >= 0 &&
2023 >                    (task instanceof CountedCompleter))
2024 >                    s = helpComplete(task, LIFO_QUEUE);
2025 >            }
2026 >            while (s >= 0 && (s = task.status) >= 0) {
2027 >                if ((!joiner.isEmpty() ||           // try helping
2028 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2029 >                    (s = task.status) >= 0) {
2030 >                    helpSignal(task, joiner.poolIndex);
2031 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2032 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2033 >                            synchronized (task) {
2034 >                                if (task.status >= 0) {
2035 >                                    try {                // see ForkJoinTask
2036 >                                        task.wait();     //  for explanation
2037 >                                    } catch (InterruptedException ie) {
2038 >                                    }
2039 >                                }
2040 >                                else
2041 >                                    task.notifyAll();
2042 >                            }
2043                          }
2044 <                        continue outer;
2044 >                        long c;                          // re-activate
2045 >                        do {} while (!U.compareAndSwapLong
2046 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2047                      }
2048                  }
2049              }
2050 <            if (joinMe.status < 0)
1054 <                return true;
1055 <            int wc = workerCounts;
1056 <            if ((wc & RUNNING_COUNT_MASK) <= 2 ||
1057 <                (wc >>> TOTAL_COUNT_SHIFT) < pc)
1058 <                return false;  // keep this thread alive
1059 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1060 <                                         wc, wc - ONE_RUNNING))
1061 <                break;
2050 >            joiner.currentJoin = prevJoin;
2051          }
2052 <
1064 <        joinMe.internalAwaitDone();
1065 <        int c;
1066 <        do {} while (!UNSAFE.compareAndSwapInt
1067 <                     (this, workerCountsOffset,
1068 <                      c = workerCounts, c + ONE_RUNNING));
1069 <        return true;
2052 >        return s;
2053      }
2054  
2055      /**
2056 <     * Possibly initiates and/or completes termination.
2056 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2057 >     * to help join only while there is continuous progress. (Caller
2058 >     * will then enter a timed wait.)
2059       *
2060 <     * @param now if true, unconditionally terminate, else only
2061 <     * if shutdown and empty queue and no active workers
1077 <     * @return true if now terminating or terminated
1078 <     */
1079 <    private boolean tryTerminate(boolean now) {
1080 <        if (now)
1081 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1082 <        else if (runState < SHUTDOWN ||
1083 <                 !submissionQueue.isEmpty() ||
1084 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1085 <            return false;
1086 <
1087 <        if (advanceRunLevel(TERMINATING))
1088 <            startTerminating();
1089 <
1090 <        // Finish now if all threads terminated; else in some subsequent call
1091 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1092 <            advanceRunLevel(TERMINATED);
1093 <            terminationLatch.countDown();
1094 <        }
1095 <        return true;
1096 <    }
1097 <
1098 <    /**
1099 <     * Actions on transition to TERMINATING
2060 >     * @param joiner the joining worker
2061 >     * @param task the task
2062       */
2063 <    private void startTerminating() {
2064 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
2065 <            cancelSubmissions();
2066 <            shutdownWorkers();
2067 <            cancelWorkerTasks();
2068 <            advanceEventCount();
2069 <            releaseWaiters();
2070 <            interruptWorkers();
2063 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2064 >        int s;
2065 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2066 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2067 >            joiner.currentJoin = task;
2068 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2069 >                         joiner.tryRemoveAndExec(task));
2070 >            if (s >= 0 && (s = task.status) >= 0) {
2071 >                helpSignal(task, joiner.poolIndex);
2072 >                if ((s = task.status) >= 0 &&
2073 >                    (task instanceof CountedCompleter))
2074 >                    s = helpComplete(task, LIFO_QUEUE);
2075 >            }
2076 >            if (s >= 0 && joiner.isEmpty()) {
2077 >                do {} while (task.status >= 0 &&
2078 >                             tryHelpStealer(joiner, task) > 0);
2079 >            }
2080 >            joiner.currentJoin = prevJoin;
2081          }
2082      }
2083  
2084      /**
2085 <     * Clear out and cancel submissions, ignoring exceptions
2085 >     * Returns a (probably) non-empty steal queue, if one is found
2086 >     * during a scan, else null.  This method must be retried by
2087 >     * caller if, by the time it tries to use the queue, it is empty.
2088 >     * @param r a (random) seed for scanning
2089       */
2090 <    private void cancelSubmissions() {
2091 <        ForkJoinTask<?> task;
2092 <        while ((task = submissionQueue.poll()) != null) {
2093 <            try {
2094 <                task.cancel(false);
2095 <            } catch (Throwable ignore) {
2090 >    private WorkQueue findNonEmptyStealQueue(int r) {
2091 >        for (;;) {
2092 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2093 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2094 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2095 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2096 >                        q.base - q.top < 0)
2097 >                        return q;
2098 >                }
2099              }
2100 +            if (plock == ps)
2101 +                return null;
2102          }
2103      }
2104  
2105      /**
2106 <     * Sets all worker run states to at least shutdown,
2107 <     * also resuming suspended workers
2108 <     */
2109 <    private void shutdownWorkers() {
2110 <        ForkJoinWorkerThread[] ws = workers;
2111 <        int nws = ws.length;
2112 <        for (int i = 0; i < nws; ++i) {
2113 <            ForkJoinWorkerThread w = ws[i];
2114 <            if (w != null)
2115 <                w.shutdown();
2106 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2107 >     * active count ctl maintenance, but rather than blocking
2108 >     * when tasks cannot be found, we rescan until all others cannot
2109 >     * find tasks either.
2110 >     */
2111 >    final void helpQuiescePool(WorkQueue w) {
2112 >        for (boolean active = true;;) {
2113 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2114 >            while ((t = w.nextLocalTask()) != null) {
2115 >                if (w.base - w.top < 0)
2116 >                    signalWork(w);
2117 >                t.doExec();
2118 >            }
2119 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2120 >                if (!active) {      // re-establish active count
2121 >                    active = true;
2122 >                    do {} while (!U.compareAndSwapLong
2123 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2124 >                }
2125 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2126 >                    if (q.base - q.top < 0)
2127 >                        signalWork(q);
2128 >                    w.runSubtask(t);
2129 >                }
2130 >            }
2131 >            else if (active) {       // decrement active count without queuing
2132 >                long nc = (c = ctl) - AC_UNIT;
2133 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2134 >                    return;          // bypass decrement-then-increment
2135 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2136 >                    active = false;
2137 >            }
2138 >            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2139 >                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2140 >                return;
2141          }
2142      }
2143  
2144      /**
2145 <     * Clears out and cancels all locally queued tasks
2145 >     * Gets and removes a local or stolen task for the given worker.
2146 >     *
2147 >     * @return a task, if available
2148       */
2149 <    private void cancelWorkerTasks() {
2150 <        ForkJoinWorkerThread[] ws = workers;
2151 <        int nws = ws.length;
2152 <        for (int i = 0; i < nws; ++i) {
2153 <            ForkJoinWorkerThread w = ws[i];
2154 <            if (w != null)
2155 <                w.cancelTasks();
2149 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2150 >        for (ForkJoinTask<?> t;;) {
2151 >            WorkQueue q; int b;
2152 >            if ((t = w.nextLocalTask()) != null)
2153 >                return t;
2154 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2155 >                return null;
2156 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2157 >                if (q.base - q.top < 0)
2158 >                    signalWork(q);
2159 >                return t;
2160 >            }
2161          }
2162      }
2163  
2164      /**
2165 <     * Unsticks all workers blocked on joins etc
2165 >     * Returns a cheap heuristic guide for task partitioning when
2166 >     * programmers, frameworks, tools, or languages have little or no
2167 >     * idea about task granularity.  In essence by offering this
2168 >     * method, we ask users only about tradeoffs in overhead vs
2169 >     * expected throughput and its variance, rather than how finely to
2170 >     * partition tasks.
2171 >     *
2172 >     * In a steady state strict (tree-structured) computation, each
2173 >     * thread makes available for stealing enough tasks for other
2174 >     * threads to remain active. Inductively, if all threads play by
2175 >     * the same rules, each thread should make available only a
2176 >     * constant number of tasks.
2177 >     *
2178 >     * The minimum useful constant is just 1. But using a value of 1
2179 >     * would require immediate replenishment upon each steal to
2180 >     * maintain enough tasks, which is infeasible.  Further,
2181 >     * partitionings/granularities of offered tasks should minimize
2182 >     * steal rates, which in general means that threads nearer the top
2183 >     * of computation tree should generate more than those nearer the
2184 >     * bottom. In perfect steady state, each thread is at
2185 >     * approximately the same level of computation tree. However,
2186 >     * producing extra tasks amortizes the uncertainty of progress and
2187 >     * diffusion assumptions.
2188 >     *
2189 >     * So, users will want to use values larger, but not much larger
2190 >     * than 1 to both smooth over transient shortages and hedge
2191 >     * against uneven progress; as traded off against the cost of
2192 >     * extra task overhead. We leave the user to pick a threshold
2193 >     * value to compare with the results of this call to guide
2194 >     * decisions, but recommend values such as 3.
2195 >     *
2196 >     * When all threads are active, it is on average OK to estimate
2197 >     * surplus strictly locally. In steady-state, if one thread is
2198 >     * maintaining say 2 surplus tasks, then so are others. So we can
2199 >     * just use estimated queue length.  However, this strategy alone
2200 >     * leads to serious mis-estimates in some non-steady-state
2201 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2202 >     * many of these by further considering the number of "idle"
2203 >     * threads, that are known to have zero queued tasks, so
2204 >     * compensate by a factor of (#idle/#active) threads.
2205 >     *
2206 >     * Note: The approximation of #busy workers as #active workers is
2207 >     * not very good under current signalling scheme, and should be
2208 >     * improved.
2209 >     */
2210 >    static int getSurplusQueuedTaskCount() {
2211 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2212 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2213 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2214 >            int n = (q = wt.workQueue).top - q.base;
2215 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2216 >            return n - (a > (p >>>= 1) ? 0 :
2217 >                        a > (p >>>= 1) ? 1 :
2218 >                        a > (p >>>= 1) ? 2 :
2219 >                        a > (p >>>= 1) ? 4 :
2220 >                        8);
2221 >        }
2222 >        return 0;
2223 >    }
2224 >
2225 >    //  Termination
2226 >
2227 >    /**
2228 >     * Possibly initiates and/or completes termination.  The caller
2229 >     * triggering termination runs three passes through workQueues:
2230 >     * (0) Setting termination status, followed by wakeups of queued
2231 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2232 >     * threads (likely in external tasks, but possibly also blocked in
2233 >     * joins).  Each pass repeats previous steps because of potential
2234 >     * lagging thread creation.
2235 >     *
2236 >     * @param now if true, unconditionally terminate, else only
2237 >     * if no work and no active workers
2238 >     * @param enable if true, enable shutdown when next possible
2239 >     * @return true if now terminating or terminated
2240       */
2241 <    private void interruptWorkers() {
2242 <        ForkJoinWorkerThread[] ws = workers;
2243 <        int nws = ws.length;
2244 <        for (int i = 0; i < nws; ++i) {
2245 <            ForkJoinWorkerThread w = ws[i];
2246 <            if (w != null && !w.isTerminated()) {
2247 <                try {
2248 <                    w.interrupt();
2249 <                } catch (SecurityException ignore) {
2241 >    private boolean tryTerminate(boolean now, boolean enable) {
2242 >        int ps;
2243 >        if (this == common)                    // cannot shut down
2244 >            return false;
2245 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2246 >            if (!enable)
2247 >                return false;
2248 >            if ((ps & PL_LOCK) != 0 ||
2249 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2250 >                ps = acquirePlock();
2251 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2252 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2253 >                releasePlock(nps);
2254 >        }
2255 >        for (long c;;) {
2256 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2257 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2258 >                    synchronized (this) {
2259 >                        notifyAll();               // signal when 0 workers
2260 >                    }
2261 >                }
2262 >                return true;
2263 >            }
2264 >            if (!now) {                            // check if idle & no tasks
2265 >                WorkQueue[] ws; WorkQueue w;
2266 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2267 >                    return false;
2268 >                if ((ws = workQueues) != null) {
2269 >                    for (int i = 0; i < ws.length; ++i) {
2270 >                        if ((w = ws[i]) != null) {
2271 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2272 >                                signalWork(w);
2273 >                                return false;
2274 >                            }
2275 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2276 >                                return false;      // unqueued inactive worker
2277 >                        }
2278 >                    }
2279 >                }
2280 >            }
2281 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2282 >                for (int pass = 0; pass < 3; ++pass) {
2283 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2284 >                    if ((ws = workQueues) != null) {
2285 >                        int n = ws.length;
2286 >                        for (int i = 0; i < n; ++i) {
2287 >                            if ((w = ws[i]) != null) {
2288 >                                w.qlock = -1;
2289 >                                if (pass > 0) {
2290 >                                    w.cancelAll();
2291 >                                    if (pass > 1 && (wt = w.owner) != null) {
2292 >                                        if (!wt.isInterrupted()) {
2293 >                                            try {
2294 >                                                wt.interrupt();
2295 >                                            } catch (Throwable ignore) {
2296 >                                            }
2297 >                                        }
2298 >                                        U.unpark(wt);
2299 >                                    }
2300 >                                }
2301 >                            }
2302 >                        }
2303 >                        // Wake up workers parked on event queue
2304 >                        int i, e; long cc; Thread p;
2305 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2306 >                               (i = e & SMASK) < n && i >= 0 &&
2307 >                               (w = ws[i]) != null) {
2308 >                            long nc = ((long)(w.nextWait & E_MASK) |
2309 >                                       ((cc + AC_UNIT) & AC_MASK) |
2310 >                                       (cc & (TC_MASK|STOP_BIT)));
2311 >                            if (w.eventCount == (e | INT_SIGN) &&
2312 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2313 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2314 >                                w.qlock = -1;
2315 >                                if ((p = w.parker) != null)
2316 >                                    U.unpark(p);
2317 >                            }
2318 >                        }
2319 >                    }
2320                  }
2321              }
2322          }
2323      }
2324  
2325 <    // misc support for ForkJoinWorkerThread
2325 >    // external operations on common pool
2326  
2327      /**
2328 <     * Returns pool number
2328 >     * Returns common pool queue for a thread that has submitted at
2329 >     * least one task.
2330       */
2331 <    final int getPoolNumber() {
2332 <        return poolNumber;
2331 >    static WorkQueue commonSubmitterQueue() {
2332 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2333 >        return ((z = submitters.get()) != null &&
2334 >                (p = common) != null &&
2335 >                (ws = p.workQueues) != null &&
2336 >                (m = ws.length - 1) >= 0) ?
2337 >            ws[m & z.seed & SQMASK] : null;
2338 >    }
2339 >
2340 >    /**
2341 >     * Tries to pop the given task from submitter's queue in common pool.
2342 >     */
2343 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2344 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2345 >        ForkJoinTask<?>[] a;  int m, s;
2346 >        if (t != null &&
2347 >            (z = submitters.get()) != null &&
2348 >            (p = common) != null &&
2349 >            (ws = p.workQueues) != null &&
2350 >            (m = ws.length - 1) >= 0 &&
2351 >            (q = ws[m & z.seed & SQMASK]) != null &&
2352 >            (s = q.top) != q.base &&
2353 >            (a = q.array) != null) {
2354 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2355 >            if (U.getObject(a, j) == t &&
2356 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2357 >                if (q.array == a && q.top == s && // recheck
2358 >                    U.compareAndSwapObject(a, j, t, null)) {
2359 >                    q.top = s - 1;
2360 >                    q.qlock = 0;
2361 >                    return true;
2362 >                }
2363 >                q.qlock = 0;
2364 >            }
2365 >        }
2366 >        return false;
2367      }
2368  
2369      /**
2370 <     * Accumulates steal count from a worker, clearing
2371 <     * the worker's value
2370 >     * Tries to pop and run local tasks within the same computation
2371 >     * as the given root. On failure, tries to help complete from
2372 >     * other queues via helpComplete.
2373       */
2374 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2375 <        int sc = w.stealCount;
2376 <        if (sc != 0) {
2377 <            long c;
2378 <            w.stealCount = 0;
2379 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2380 <                                                    c = stealCount, c + sc));
2374 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2375 >        ForkJoinTask<?>[] a; int m;
2376 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2377 >            root != null && root.status >= 0) {
2378 >            for (;;) {
2379 >                int s, u; Object o; CountedCompleter<?> task = null;
2380 >                if ((s = q.top) - q.base > 0) {
2381 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2382 >                    if ((o = U.getObject(a, j)) != null &&
2383 >                        (o instanceof CountedCompleter)) {
2384 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2385 >                        do {
2386 >                            if (r == root) {
2387 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2388 >                                    if (q.array == a && q.top == s &&
2389 >                                        U.compareAndSwapObject(a, j, t, null)) {
2390 >                                        q.top = s - 1;
2391 >                                        task = t;
2392 >                                    }
2393 >                                    q.qlock = 0;
2394 >                                }
2395 >                                break;
2396 >                            }
2397 >                        } while ((r = r.completer) != null);
2398 >                    }
2399 >                }
2400 >                if (task != null)
2401 >                    task.doExec();
2402 >                if (root.status < 0 ||
2403 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2404 >                    break;
2405 >                if (task == null) {
2406 >                    helpSignal(root, q.poolIndex);
2407 >                    if (root.status >= 0)
2408 >                        helpComplete(root, SHARED_QUEUE);
2409 >                    break;
2410 >                }
2411 >            }
2412          }
2413      }
2414  
2415      /**
2416 <     * Returns the approximate (non-atomic) number of idle threads per
2417 <     * active thread.
2416 >     * Tries to help execute or signal availability of the given task
2417 >     * from submitter's queue in common pool.
2418       */
2419 <    final int idlePerActive() {
2420 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2421 <        int pc = parallelism; // use targeted parallelism, not rc
2422 <        // Use exact results for small values, saturate past 4
2423 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2419 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2420 >        // Some hard-to-avoid overlap with tryExternalUnpush
2421 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2422 >        ForkJoinTask<?>[] a;  int m, s, n;
2423 >        if (t != null &&
2424 >            (z = submitters.get()) != null &&
2425 >            (p = common) != null &&
2426 >            (ws = p.workQueues) != null &&
2427 >            (m = ws.length - 1) >= 0 &&
2428 >            (q = ws[m & z.seed & SQMASK]) != null &&
2429 >            (a = q.array) != null) {
2430 >            int am = a.length - 1;
2431 >            if ((s = q.top) != q.base) {
2432 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2433 >                if (U.getObject(a, j) == t &&
2434 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2435 >                    if (q.array == a && q.top == s &&
2436 >                        U.compareAndSwapObject(a, j, t, null)) {
2437 >                        q.top = s - 1;
2438 >                        q.qlock = 0;
2439 >                        t.doExec();
2440 >                    }
2441 >                    else
2442 >                        q.qlock = 0;
2443 >                }
2444 >            }
2445 >            if (t.status >= 0) {
2446 >                if (t instanceof CountedCompleter)
2447 >                    p.externalHelpComplete(q, t);
2448 >                else
2449 >                    p.helpSignal(t, q.poolIndex);
2450 >            }
2451 >        }
2452      }
2453  
2454 <    // Public and protected methods
2454 >    // Exported methods
2455  
2456      // Constructors
2457  
2458      /**
2459       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2460 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
2461 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
2460 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2461 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2462 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2463       *
2464       * @throws SecurityException if a security manager exists and
2465       *         the caller is not permitted to modify threads
# Line 1216 | Line 2468 | public class ForkJoinPool extends Abstra
2468       */
2469      public ForkJoinPool() {
2470          this(Runtime.getRuntime().availableProcessors(),
2471 <             defaultForkJoinWorkerThreadFactory);
2471 >             defaultForkJoinWorkerThreadFactory, null, false);
2472      }
2473  
2474      /**
2475       * Creates a {@code ForkJoinPool} with the indicated parallelism
2476 <     * level and using the {@linkplain
2477 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
2476 >     * level, the {@linkplain
2477 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2478 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2479       *
2480       * @param parallelism the parallelism level
2481       * @throws IllegalArgumentException if parallelism less than or
# Line 1233 | Line 2486 | public class ForkJoinPool extends Abstra
2486       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2487       */
2488      public ForkJoinPool(int parallelism) {
2489 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1237 <    }
1238 <
1239 <    /**
1240 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1241 <     * java.lang.Runtime#availableProcessors}, and using the given
1242 <     * thread factory.
1243 <     *
1244 <     * @param factory the factory for creating new threads
1245 <     * @throws NullPointerException if the factory is null
1246 <     * @throws SecurityException if a security manager exists and
1247 <     *         the caller is not permitted to modify threads
1248 <     *         because it does not hold {@link
1249 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1250 <     */
1251 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1252 <        this(Runtime.getRuntime().availableProcessors(), factory);
2489 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2490      }
2491  
2492      /**
2493 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1257 <     * thread factory.
2493 >     * Creates a {@code ForkJoinPool} with the given parameters.
2494       *
2495 <     * @param parallelism the parallelism level
2496 <     * @param factory the factory for creating new threads
2495 >     * @param parallelism the parallelism level. For default value,
2496 >     * use {@link java.lang.Runtime#availableProcessors}.
2497 >     * @param factory the factory for creating new threads. For default value,
2498 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2499 >     * @param handler the handler for internal worker threads that
2500 >     * terminate due to unrecoverable errors encountered while executing
2501 >     * tasks. For default value, use {@code null}.
2502 >     * @param asyncMode if true,
2503 >     * establishes local first-in-first-out scheduling mode for forked
2504 >     * tasks that are never joined. This mode may be more appropriate
2505 >     * than default locally stack-based mode in applications in which
2506 >     * worker threads only process event-style asynchronous tasks.
2507 >     * For default value, use {@code false}.
2508       * @throws IllegalArgumentException if parallelism less than or
2509       *         equal to zero, or greater than implementation limit
2510       * @throws NullPointerException if the factory is null
# Line 1266 | Line 2513 | public class ForkJoinPool extends Abstra
2513       *         because it does not hold {@link
2514       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2515       */
2516 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2516 >    public ForkJoinPool(int parallelism,
2517 >                        ForkJoinWorkerThreadFactory factory,
2518 >                        Thread.UncaughtExceptionHandler handler,
2519 >                        boolean asyncMode) {
2520          checkPermission();
2521          if (factory == null)
2522              throw new NullPointerException();
2523 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2523 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2524              throw new IllegalArgumentException();
1275        this.poolNumber = poolNumberGenerator.incrementAndGet();
1276        int arraySize = initialArraySizeFor(parallelism);
1277        this.parallelism = parallelism;
2525          this.factory = factory;
2526 <        this.maxPoolSize = MAX_THREADS;
2527 <        this.maintainsParallelism = true;
2528 <        this.workers = new ForkJoinWorkerThread[arraySize];
2529 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2530 <        this.workerLock = new ReentrantLock();
2531 <        this.terminationLatch = new CountDownLatch(1);
2526 >        this.ueh = handler;
2527 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2528 >        long np = (long)(-parallelism); // offset ctl counts
2529 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2530 >        int pn = nextPoolId();
2531 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2532 >        sb.append(Integer.toString(pn));
2533 >        sb.append("-worker-");
2534 >        this.workerNamePrefix = sb.toString();
2535      }
2536  
2537      /**
2538 <     * Returns initial power of two size for workers array.
2539 <     * @param pc the initial parallelism level
2540 <     */
2541 <    private static int initialArraySizeFor(int pc) {
2542 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2543 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2544 <        size |= size >>> 1;
2545 <        size |= size >>> 2;
2546 <        size |= size >>> 4;
2547 <        size |= size >>> 8;
2548 <        return size + 1;
2538 >     * Constructor for common pool, suitable only for static initialization.
2539 >     * Basically the same as above, but uses smallest possible initial footprint.
2540 >     */
2541 >    ForkJoinPool(int parallelism, long ctl,
2542 >                 ForkJoinWorkerThreadFactory factory,
2543 >                 Thread.UncaughtExceptionHandler handler) {
2544 >        this.config = parallelism;
2545 >        this.ctl = ctl;
2546 >        this.factory = factory;
2547 >        this.ueh = handler;
2548 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2549      }
2550  
1301    // Execution methods
1302
2551      /**
2552 <     * Common code for execute, invoke and submit
2553 <     */
2554 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2555 <        if (task == null)
2556 <            throw new NullPointerException();
2557 <        if (runState >= SHUTDOWN)
2558 <            throw new RejectedExecutionException();
2559 <        submissionQueue.offer(task);
2560 <        advanceEventCount();
2561 <        releaseWaiters();
2562 <        ensureEnoughTotalWorkers();
2552 >     * Returns the common pool instance. This pool is statically
2553 >     * constructed; its run state is unaffected by attempts to {@link
2554 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2555 >     * ongoing processing are automatically terminated upon program
2556 >     * {@link System#exit}.  Any program that relies on asynchronous
2557 >     * task processing to complete before program termination should
2558 >     * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2559 >     * exit.
2560 >     *
2561 >     * @return the common pool instance
2562 >     * @since 1.8
2563 >     */
2564 >    public static ForkJoinPool commonPool() {
2565 >        // assert common != null : "static init error";
2566 >        return common;
2567      }
2568  
2569 +    // Execution methods
2570 +
2571      /**
2572       * Performs the given task, returning its result upon completion.
2573 +     * If the computation encounters an unchecked Exception or Error,
2574 +     * it is rethrown as the outcome of this invocation.  Rethrown
2575 +     * exceptions behave in the same way as regular exceptions, but,
2576 +     * when possible, contain stack traces (as displayed for example
2577 +     * using {@code ex.printStackTrace()}) of both the current thread
2578 +     * as well as the thread actually encountering the exception;
2579 +     * minimally only the latter.
2580       *
2581       * @param task the task
2582       * @return the task's result
# Line 1324 | Line 2585 | public class ForkJoinPool extends Abstra
2585       *         scheduled for execution
2586       */
2587      public <T> T invoke(ForkJoinTask<T> task) {
2588 <        doSubmit(task);
2588 >        if (task == null)
2589 >            throw new NullPointerException();
2590 >        externalPush(task);
2591          return task.join();
2592      }
2593  
# Line 1337 | Line 2600 | public class ForkJoinPool extends Abstra
2600       *         scheduled for execution
2601       */
2602      public void execute(ForkJoinTask<?> task) {
2603 <        doSubmit(task);
2603 >        if (task == null)
2604 >            throw new NullPointerException();
2605 >        externalPush(task);
2606      }
2607  
2608      // AbstractExecutorService methods
# Line 1348 | Line 2613 | public class ForkJoinPool extends Abstra
2613       *         scheduled for execution
2614       */
2615      public void execute(Runnable task) {
2616 +        if (task == null)
2617 +            throw new NullPointerException();
2618          ForkJoinTask<?> job;
2619          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2620              job = (ForkJoinTask<?>) task;
2621          else
2622 <            job = ForkJoinTask.adapt(task, null);
2623 <        doSubmit(job);
2622 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2623 >        externalPush(job);
2624 >    }
2625 >
2626 >    /**
2627 >     * Submits a ForkJoinTask for execution.
2628 >     *
2629 >     * @param task the task to submit
2630 >     * @return the task
2631 >     * @throws NullPointerException if the task is null
2632 >     * @throws RejectedExecutionException if the task cannot be
2633 >     *         scheduled for execution
2634 >     */
2635 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2636 >        if (task == null)
2637 >            throw new NullPointerException();
2638 >        externalPush(task);
2639 >        return task;
2640      }
2641  
2642      /**
# Line 1362 | Line 2645 | public class ForkJoinPool extends Abstra
2645       *         scheduled for execution
2646       */
2647      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2648 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2649 <        doSubmit(job);
2648 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2649 >        externalPush(job);
2650          return job;
2651      }
2652  
# Line 1373 | Line 2656 | public class ForkJoinPool extends Abstra
2656       *         scheduled for execution
2657       */
2658      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2659 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2660 <        doSubmit(job);
2659 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2660 >        externalPush(job);
2661          return job;
2662      }
2663  
# Line 1384 | Line 2667 | public class ForkJoinPool extends Abstra
2667       *         scheduled for execution
2668       */
2669      public ForkJoinTask<?> submit(Runnable task) {
2670 +        if (task == null)
2671 +            throw new NullPointerException();
2672          ForkJoinTask<?> job;
2673          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2674              job = (ForkJoinTask<?>) task;
2675          else
2676 <            job = ForkJoinTask.adapt(task, null);
2677 <        doSubmit(job);
2676 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2677 >        externalPush(job);
2678          return job;
2679      }
2680  
2681      /**
1397     * Submits a ForkJoinTask for execution.
1398     *
1399     * @param task the task to submit
1400     * @return the task
1401     * @throws NullPointerException if the task is null
1402     * @throws RejectedExecutionException if the task cannot be
1403     *         scheduled for execution
1404     */
1405    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1406        doSubmit(task);
1407        return task;
1408    }
1409
1410    /**
2682       * @throws NullPointerException       {@inheritDoc}
2683       * @throws RejectedExecutionException {@inheritDoc}
2684       */
2685      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2686 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2687 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2688 <        for (Callable<T> task : tasks)
2689 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2690 <        invoke(new InvokeAll<T>(forkJoinTasks));
2691 <
2686 >        // In previous versions of this class, this method constructed
2687 >        // a task to run ForkJoinTask.invokeAll, but now external
2688 >        // invocation of multiple tasks is at least as efficient.
2689 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2690 >        // Workaround needed because method wasn't declared with
2691 >        // wildcards in return type but should have been.
2692          @SuppressWarnings({"unchecked", "rawtypes"})
2693 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1423 <        return futures;
1424 <    }
2693 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2694  
2695 <    static final class InvokeAll<T> extends RecursiveAction {
2696 <        final ArrayList<ForkJoinTask<T>> tasks;
2697 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2698 <        public void compute() {
2699 <            try { invokeAll(tasks); }
2700 <            catch (Exception ignore) {}
2695 >        boolean done = false;
2696 >        try {
2697 >            for (Callable<T> t : tasks) {
2698 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2699 >                externalPush(f);
2700 >                fs.add(f);
2701 >            }
2702 >            for (ForkJoinTask<T> f : fs)
2703 >                f.quietlyJoin();
2704 >            done = true;
2705 >            return futures;
2706 >        } finally {
2707 >            if (!done)
2708 >                for (ForkJoinTask<T> f : fs)
2709 >                    f.cancel(false);
2710          }
1433        private static final long serialVersionUID = -7914297376763021607L;
2711      }
2712  
2713      /**
# Line 1449 | Line 2726 | public class ForkJoinPool extends Abstra
2726       * @return the handler, or {@code null} if none
2727       */
2728      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1452        workerCountReadFence();
2729          return ueh;
2730      }
2731  
2732      /**
2733 <     * Sets the handler for internal worker threads that terminate due
1458 <     * to unrecoverable errors encountered while executing tasks.
1459 <     * Unless set, the current default or ThreadGroup handler is used
1460 <     * as handler.
1461 <     *
1462 <     * @param h the new handler
1463 <     * @return the old handler, or {@code null} if none
1464 <     * @throws SecurityException if a security manager exists and
1465 <     *         the caller is not permitted to modify threads
1466 <     *         because it does not hold {@link
1467 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1468 <     */
1469 <    public Thread.UncaughtExceptionHandler
1470 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1471 <        checkPermission();
1472 <        Thread.UncaughtExceptionHandler old = ueh;
1473 <        if (h != old) {
1474 <            ueh = h;
1475 <            ForkJoinWorkerThread[] ws = workers;
1476 <            int nws = ws.length;
1477 <            for (int i = 0; i < nws; ++i) {
1478 <                ForkJoinWorkerThread w = ws[i];
1479 <                if (w != null)
1480 <                    w.setUncaughtExceptionHandler(h);
1481 <            }
1482 <        }
1483 <        return old;
1484 <    }
1485 <
1486 <    /**
1487 <     * Sets the target parallelism level of this pool.
2733 >     * Returns the targeted parallelism level of this pool.
2734       *
2735 <     * @param parallelism the target parallelism
1490 <     * @throws IllegalArgumentException if parallelism less than or
1491 <     * equal to zero or greater than maximum size bounds
1492 <     * @throws SecurityException if a security manager exists and
1493 <     *         the caller is not permitted to modify threads
1494 <     *         because it does not hold {@link
1495 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2735 >     * @return the targeted parallelism level of this pool
2736       */
2737 <    public void setParallelism(int parallelism) {
2738 <        checkPermission();
1499 <        if (parallelism <= 0 || parallelism > maxPoolSize)
1500 <            throw new IllegalArgumentException();
1501 <        workerCountReadFence();
1502 <        int pc = this.parallelism;
1503 <        if (pc != parallelism) {
1504 <            this.parallelism = parallelism;
1505 <            workerCountWriteFence();
1506 <            // Release spares. If too many, some will die after re-suspend
1507 <            ForkJoinWorkerThread[] ws = workers;
1508 <            int nws = ws.length;
1509 <            for (int i = 0; i < nws; ++i) {
1510 <                ForkJoinWorkerThread w = ws[i];
1511 <                if (w != null && w.tryUnsuspend()) {
1512 <                    int c;
1513 <                    do {} while (!UNSAFE.compareAndSwapInt
1514 <                                 (this, workerCountsOffset,
1515 <                                  c = workerCounts, c + ONE_RUNNING));
1516 <                    LockSupport.unpark(w);
1517 <                }
1518 <            }
1519 <            ensureEnoughTotalWorkers();
1520 <            advanceEventCount();
1521 <            releaseWaiters(); // force config recheck by existing workers
1522 <        }
2737 >    public int getParallelism() {
2738 >        return config & SMASK;
2739      }
2740  
2741      /**
2742 <     * Returns the targeted parallelism level of this pool.
2742 >     * Returns the targeted parallelism level of the common pool.
2743       *
2744 <     * @return the targeted parallelism level of this pool
2744 >     * @return the targeted parallelism level of the common pool
2745 >     * @since 1.8
2746       */
2747 <    public int getParallelism() {
2748 <        //        workerCountReadFence(); // inlined below
1532 <        int ignore = workerCounts;
1533 <        return parallelism;
2747 >    public static int getCommonPoolParallelism() {
2748 >        return commonParallelism;
2749      }
2750  
2751      /**
2752       * Returns the number of worker threads that have started but not
2753 <     * yet terminated.  This result returned by this method may differ
2753 >     * yet terminated.  The result returned by this method may differ
2754       * from {@link #getParallelism} when threads are created to
2755       * maintain parallelism when others are cooperatively blocked.
2756       *
2757       * @return the number of worker threads
2758       */
2759      public int getPoolSize() {
2760 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1546 <    }
1547 <
1548 <    /**
1549 <     * Returns the maximum number of threads allowed to exist in the
1550 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
1551 <     * maximum is an implementation-defined value designed only to
1552 <     * prevent runaway growth.
1553 <     *
1554 <     * @return the maximum
1555 <     */
1556 <    public int getMaximumPoolSize() {
1557 <        workerCountReadFence();
1558 <        return maxPoolSize;
1559 <    }
1560 <
1561 <    /**
1562 <     * Sets the maximum number of threads allowed to exist in the
1563 <     * pool. The given value should normally be greater than or equal
1564 <     * to the {@link #getParallelism parallelism} level. Setting this
1565 <     * value has no effect on current pool size. It controls
1566 <     * construction of new threads. The use of this method may cause
1567 <     * tasks that intrinsically require extra threads for dependent
1568 <     * computations to indefinitely stall. If you are instead trying
1569 <     * to minimize internal thread creation, consider setting {@link
1570 <     * #setMaintainsParallelism} as false.
1571 <     *
1572 <     * @throws IllegalArgumentException if negative or greater than
1573 <     * internal implementation limit
1574 <     */
1575 <    public void setMaximumPoolSize(int newMax) {
1576 <        if (newMax < 0 || newMax > MAX_THREADS)
1577 <            throw new IllegalArgumentException();
1578 <        maxPoolSize = newMax;
1579 <        workerCountWriteFence();
1580 <    }
1581 <
1582 <    /**
1583 <     * Returns {@code true} if this pool dynamically maintains its
1584 <     * target parallelism level. If false, new threads are added only
1585 <     * to avoid possible starvation.  This setting is by default true.
1586 <     *
1587 <     * @return {@code true} if maintains parallelism
1588 <     */
1589 <    public boolean getMaintainsParallelism() {
1590 <        workerCountReadFence();
1591 <        return maintainsParallelism;
1592 <    }
1593 <
1594 <    /**
1595 <     * Sets whether this pool dynamically maintains its target
1596 <     * parallelism level. If false, new threads are added only to
1597 <     * avoid possible starvation.
1598 <     *
1599 <     * @param enable {@code true} to maintain parallelism
1600 <     */
1601 <    public void setMaintainsParallelism(boolean enable) {
1602 <        maintainsParallelism = enable;
1603 <        workerCountWriteFence();
1604 <    }
1605 <
1606 <    /**
1607 <     * Establishes local first-in-first-out scheduling mode for forked
1608 <     * tasks that are never joined. This mode may be more appropriate
1609 <     * than default locally stack-based mode in applications in which
1610 <     * worker threads only process asynchronous tasks.  This method is
1611 <     * designed to be invoked only when the pool is quiescent, and
1612 <     * typically only before any tasks are submitted. The effects of
1613 <     * invocations at other times may be unpredictable.
1614 <     *
1615 <     * @param async if {@code true}, use locally FIFO scheduling
1616 <     * @return the previous mode
1617 <     * @see #getAsyncMode
1618 <     */
1619 <    public boolean setAsyncMode(boolean async) {
1620 <        workerCountReadFence();
1621 <        boolean oldMode = locallyFifo;
1622 <        if (oldMode != async) {
1623 <            locallyFifo = async;
1624 <            workerCountWriteFence();
1625 <            ForkJoinWorkerThread[] ws = workers;
1626 <            int nws = ws.length;
1627 <            for (int i = 0; i < nws; ++i) {
1628 <                ForkJoinWorkerThread w = ws[i];
1629 <                if (w != null)
1630 <                    w.setAsyncMode(async);
1631 <            }
1632 <        }
1633 <        return oldMode;
2760 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2761      }
2762  
2763      /**
# Line 1638 | Line 2765 | public class ForkJoinPool extends Abstra
2765       * scheduling mode for forked tasks that are never joined.
2766       *
2767       * @return {@code true} if this pool uses async mode
1641     * @see #setAsyncMode
2768       */
2769      public boolean getAsyncMode() {
2770 <        workerCountReadFence();
1645 <        return locallyFifo;
2770 >        return (config >>> 16) == FIFO_QUEUE;
2771      }
2772  
2773      /**
# Line 1654 | Line 2779 | public class ForkJoinPool extends Abstra
2779       * @return the number of worker threads
2780       */
2781      public int getRunningThreadCount() {
2782 <        return workerCounts & RUNNING_COUNT_MASK;
2782 >        int rc = 0;
2783 >        WorkQueue[] ws; WorkQueue w;
2784 >        if ((ws = workQueues) != null) {
2785 >            for (int i = 1; i < ws.length; i += 2) {
2786 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2787 >                    ++rc;
2788 >            }
2789 >        }
2790 >        return rc;
2791      }
2792  
2793      /**
# Line 1665 | Line 2798 | public class ForkJoinPool extends Abstra
2798       * @return the number of active threads
2799       */
2800      public int getActiveThreadCount() {
2801 <        return runState & ACTIVE_COUNT_MASK;
2801 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2802 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2803      }
2804  
2805      /**
# Line 1680 | Line 2814 | public class ForkJoinPool extends Abstra
2814       * @return {@code true} if all threads are currently idle
2815       */
2816      public boolean isQuiescent() {
2817 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2817 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2818      }
2819  
2820      /**
# Line 1695 | Line 2829 | public class ForkJoinPool extends Abstra
2829       * @return the number of steals
2830       */
2831      public long getStealCount() {
2832 <        return stealCount;
2832 >        long count = stealCount;
2833 >        WorkQueue[] ws; WorkQueue w;
2834 >        if ((ws = workQueues) != null) {
2835 >            for (int i = 1; i < ws.length; i += 2) {
2836 >                if ((w = ws[i]) != null)
2837 >                    count += w.nsteals;
2838 >            }
2839 >        }
2840 >        return count;
2841      }
2842  
2843      /**
# Line 1710 | Line 2852 | public class ForkJoinPool extends Abstra
2852       */
2853      public long getQueuedTaskCount() {
2854          long count = 0;
2855 <        ForkJoinWorkerThread[] ws = workers;
2856 <        int nws = ws.length;
2857 <        for (int i = 0; i < nws; ++i) {
2858 <            ForkJoinWorkerThread w = ws[i];
2859 <            if (w != null)
2860 <                count += w.getQueueSize();
2855 >        WorkQueue[] ws; WorkQueue w;
2856 >        if ((ws = workQueues) != null) {
2857 >            for (int i = 1; i < ws.length; i += 2) {
2858 >                if ((w = ws[i]) != null)
2859 >                    count += w.queueSize();
2860 >            }
2861          }
2862          return count;
2863      }
2864  
2865      /**
2866       * Returns an estimate of the number of tasks submitted to this
2867 <     * pool that have not yet begun executing.  This method takes time
2868 <     * proportional to the number of submissions.
2867 >     * pool that have not yet begun executing.  This method may take
2868 >     * time proportional to the number of submissions.
2869       *
2870       * @return the number of queued submissions
2871       */
2872      public int getQueuedSubmissionCount() {
2873 <        return submissionQueue.size();
2873 >        int count = 0;
2874 >        WorkQueue[] ws; WorkQueue w;
2875 >        if ((ws = workQueues) != null) {
2876 >            for (int i = 0; i < ws.length; i += 2) {
2877 >                if ((w = ws[i]) != null)
2878 >                    count += w.queueSize();
2879 >            }
2880 >        }
2881 >        return count;
2882      }
2883  
2884      /**
# Line 1738 | Line 2888 | public class ForkJoinPool extends Abstra
2888       * @return {@code true} if there are any queued submissions
2889       */
2890      public boolean hasQueuedSubmissions() {
2891 <        return !submissionQueue.isEmpty();
2891 >        WorkQueue[] ws; WorkQueue w;
2892 >        if ((ws = workQueues) != null) {
2893 >            for (int i = 0; i < ws.length; i += 2) {
2894 >                if ((w = ws[i]) != null && !w.isEmpty())
2895 >                    return true;
2896 >            }
2897 >        }
2898 >        return false;
2899      }
2900  
2901      /**
# Line 1749 | Line 2906 | public class ForkJoinPool extends Abstra
2906       * @return the next submission, or {@code null} if none
2907       */
2908      protected ForkJoinTask<?> pollSubmission() {
2909 <        return submissionQueue.poll();
2909 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2910 >        if ((ws = workQueues) != null) {
2911 >            for (int i = 0; i < ws.length; i += 2) {
2912 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2913 >                    return t;
2914 >            }
2915 >        }
2916 >        return null;
2917      }
2918  
2919      /**
# Line 1770 | Line 2934 | public class ForkJoinPool extends Abstra
2934       * @return the number of elements transferred
2935       */
2936      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2937 <        int n = submissionQueue.drainTo(c);
2938 <        ForkJoinWorkerThread[] ws = workers;
2939 <        int nws = ws.length;
2940 <        for (int i = 0; i < nws; ++i) {
2941 <            ForkJoinWorkerThread w = ws[i];
2942 <            if (w != null)
2943 <                n += w.drainTasksTo(c);
2937 >        int count = 0;
2938 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2939 >        if ((ws = workQueues) != null) {
2940 >            for (int i = 0; i < ws.length; ++i) {
2941 >                if ((w = ws[i]) != null) {
2942 >                    while ((t = w.poll()) != null) {
2943 >                        c.add(t);
2944 >                        ++count;
2945 >                    }
2946 >                }
2947 >            }
2948          }
2949 <        return n;
2949 >        return count;
2950      }
2951  
2952      /**
# Line 1789 | Line 2957 | public class ForkJoinPool extends Abstra
2957       * @return a string identifying this pool, as well as its state
2958       */
2959      public String toString() {
2960 <        long st = getStealCount();
2961 <        long qt = getQueuedTaskCount();
2962 <        long qs = getQueuedSubmissionCount();
2963 <        int wc = workerCounts;
2964 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2965 <        int rc = wc & RUNNING_COUNT_MASK;
2966 <        int pc = parallelism;
2967 <        int rs = runState;
2968 <        int ac = rs & ACTIVE_COUNT_MASK;
2960 >        // Use a single pass through workQueues to collect counts
2961 >        long qt = 0L, qs = 0L; int rc = 0;
2962 >        long st = stealCount;
2963 >        long c = ctl;
2964 >        WorkQueue[] ws; WorkQueue w;
2965 >        if ((ws = workQueues) != null) {
2966 >            for (int i = 0; i < ws.length; ++i) {
2967 >                if ((w = ws[i]) != null) {
2968 >                    int size = w.queueSize();
2969 >                    if ((i & 1) == 0)
2970 >                        qs += size;
2971 >                    else {
2972 >                        qt += size;
2973 >                        st += w.nsteals;
2974 >                        if (w.isApparentlyUnblocked())
2975 >                            ++rc;
2976 >                    }
2977 >                }
2978 >            }
2979 >        }
2980 >        int pc = (config & SMASK);
2981 >        int tc = pc + (short)(c >>> TC_SHIFT);
2982 >        int ac = pc + (int)(c >> AC_SHIFT);
2983 >        if (ac < 0) // ignore transient negative
2984 >            ac = 0;
2985 >        String level;
2986 >        if ((c & STOP_BIT) != 0)
2987 >            level = (tc == 0) ? "Terminated" : "Terminating";
2988 >        else
2989 >            level = plock < 0 ? "Shutting down" : "Running";
2990          return super.toString() +
2991 <            "[" + runLevelToString(rs) +
2991 >            "[" + level +
2992              ", parallelism = " + pc +
2993              ", size = " + tc +
2994              ", active = " + ac +
# Line 1810 | Line 2999 | public class ForkJoinPool extends Abstra
2999              "]";
3000      }
3001  
1813    private static String runLevelToString(int s) {
1814        return ((s & TERMINATED) != 0 ? "Terminated" :
1815                ((s & TERMINATING) != 0 ? "Terminating" :
1816                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1817                  "Running")));
1818    }
1819
3002      /**
3003 <     * Initiates an orderly shutdown in which previously submitted
3004 <     * tasks are executed, but no new tasks will be accepted.
3005 <     * Invocation has no additional effect if already shut down.
3006 <     * Tasks that are in the process of being submitted concurrently
3007 <     * during the course of this method may or may not be rejected.
3003 >     * Possibly initiates an orderly shutdown in which previously
3004 >     * submitted tasks are executed, but no new tasks will be
3005 >     * accepted. Invocation has no effect on execution state if this
3006 >     * is the {@link #commonPool()}, and no additional effect if
3007 >     * already shut down.  Tasks that are in the process of being
3008 >     * submitted concurrently during the course of this method may or
3009 >     * may not be rejected.
3010       *
3011       * @throws SecurityException if a security manager exists and
3012       *         the caller is not permitted to modify threads
# Line 1831 | Line 3015 | public class ForkJoinPool extends Abstra
3015       */
3016      public void shutdown() {
3017          checkPermission();
3018 <        advanceRunLevel(SHUTDOWN);
1835 <        tryTerminate(false);
3018 >        tryTerminate(false, true);
3019      }
3020  
3021      /**
3022 <     * Attempts to cancel and/or stop all tasks, and reject all
3023 <     * subsequently submitted tasks.  Tasks that are in the process of
3024 <     * being submitted or executed concurrently during the course of
3025 <     * this method may or may not be rejected. This method cancels
3026 <     * both existing and unexecuted tasks, in order to permit
3027 <     * termination in the presence of task dependencies. So the method
3028 <     * always returns an empty list (unlike the case for some other
3029 <     * Executors).
3022 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3023 >     * all subsequently submitted tasks.  Invocation has no effect on
3024 >     * execution state if this is the {@link #commonPool()}, and no
3025 >     * additional effect if already shut down. Otherwise, tasks that
3026 >     * are in the process of being submitted or executed concurrently
3027 >     * during the course of this method may or may not be
3028 >     * rejected. This method cancels both existing and unexecuted
3029 >     * tasks, in order to permit termination in the presence of task
3030 >     * dependencies. So the method always returns an empty list
3031 >     * (unlike the case for some other Executors).
3032       *
3033       * @return an empty list
3034       * @throws SecurityException if a security manager exists and
# Line 1853 | Line 3038 | public class ForkJoinPool extends Abstra
3038       */
3039      public List<Runnable> shutdownNow() {
3040          checkPermission();
3041 <        tryTerminate(true);
3041 >        tryTerminate(true, true);
3042          return Collections.emptyList();
3043      }
3044  
# Line 1863 | Line 3048 | public class ForkJoinPool extends Abstra
3048       * @return {@code true} if all tasks have completed following shut down
3049       */
3050      public boolean isTerminated() {
3051 <        return runState >= TERMINATED;
3051 >        long c = ctl;
3052 >        return ((c & STOP_BIT) != 0L &&
3053 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3054      }
3055  
3056      /**
# Line 1871 | Line 3058 | public class ForkJoinPool extends Abstra
3058       * commenced but not yet completed.  This method may be useful for
3059       * debugging. A return of {@code true} reported a sufficient
3060       * period after shutdown may indicate that submitted tasks have
3061 <     * ignored or suppressed interruption, causing this executor not
3062 <     * to properly terminate.
3061 >     * ignored or suppressed interruption, or are waiting for I/O,
3062 >     * causing this executor not to properly terminate. (See the
3063 >     * advisory notes for class {@link ForkJoinTask} stating that
3064 >     * tasks should not normally entail blocking operations.  But if
3065 >     * they do, they must abort them on interrupt.)
3066       *
3067       * @return {@code true} if terminating but not yet terminated
3068       */
3069      public boolean isTerminating() {
3070 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
3070 >        long c = ctl;
3071 >        return ((c & STOP_BIT) != 0L &&
3072 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3073      }
3074  
3075      /**
# Line 1886 | Line 3078 | public class ForkJoinPool extends Abstra
3078       * @return {@code true} if this pool has been shut down
3079       */
3080      public boolean isShutdown() {
3081 <        return runState >= SHUTDOWN;
3081 >        return plock < 0;
3082      }
3083  
3084      /**
3085 <     * Blocks until all tasks have completed execution after a shutdown
3086 <     * request, or the timeout occurs, or the current thread is
3087 <     * interrupted, whichever happens first.
3085 >     * Blocks until all tasks have completed execution after a
3086 >     * shutdown request, or the timeout occurs, or the current thread
3087 >     * is interrupted, whichever happens first. Because the {@link
3088 >     * #commonPool()} never terminates until program shutdown, when
3089 >     * applied to the common pool, this method is equivalent to {@link
3090 >     * #awaitQuiescence} but always returns {@code false}.
3091       *
3092       * @param timeout the maximum time to wait
3093       * @param unit the time unit of the timeout argument
# Line 1902 | Line 3097 | public class ForkJoinPool extends Abstra
3097       */
3098      public boolean awaitTermination(long timeout, TimeUnit unit)
3099          throws InterruptedException {
3100 <        return terminationLatch.await(timeout, unit);
3100 >        if (Thread.interrupted())
3101 >            throw new InterruptedException();
3102 >        if (this == common) {
3103 >            awaitQuiescence(timeout, unit);
3104 >            return false;
3105 >        }
3106 >        long nanos = unit.toNanos(timeout);
3107 >        if (isTerminated())
3108 >            return true;
3109 >        long startTime = System.nanoTime();
3110 >        boolean terminated = false;
3111 >        synchronized (this) {
3112 >            for (long waitTime = nanos, millis = 0L;;) {
3113 >                if (terminated = isTerminated() ||
3114 >                    waitTime <= 0L ||
3115 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3116 >                    break;
3117 >                wait(millis);
3118 >                waitTime = nanos - (System.nanoTime() - startTime);
3119 >            }
3120 >        }
3121 >        return terminated;
3122 >    }
3123 >
3124 >    /**
3125 >     * If called by a ForkJoinTask operating in this pool, equivalent
3126 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3127 >     * waits and/or attempts to assist performing tasks until this
3128 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3129 >     *
3130 >     * @param timeout the maximum time to wait
3131 >     * @param unit the time unit of the timeout argument
3132 >     * @return {@code true} if quiescent; {@code false} if the
3133 >     * timeout elapsed.
3134 >     */
3135 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3136 >        long nanos = unit.toNanos(timeout);
3137 >        ForkJoinWorkerThread wt;
3138 >        Thread thread = Thread.currentThread();
3139 >        if ((thread instanceof ForkJoinWorkerThread) &&
3140 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3141 >            helpQuiescePool(wt.workQueue);
3142 >            return true;
3143 >        }
3144 >        long startTime = System.nanoTime();
3145 >        WorkQueue[] ws;
3146 >        int r = 0, m;
3147 >        boolean found = true;
3148 >        while (!isQuiescent() && (ws = workQueues) != null &&
3149 >               (m = ws.length - 1) >= 0) {
3150 >            if (!found) {
3151 >                if ((System.nanoTime() - startTime) > nanos)
3152 >                    return false;
3153 >                Thread.yield(); // cannot block
3154 >            }
3155 >            found = false;
3156 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3157 >                ForkJoinTask<?> t; WorkQueue q; int b;
3158 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3159 >                    found = true;
3160 >                    if ((t = q.pollAt(b)) != null) {
3161 >                        if (q.base - q.top < 0)
3162 >                            signalWork(q);
3163 >                        t.doExec();
3164 >                    }
3165 >                    break;
3166 >                }
3167 >            }
3168 >        }
3169 >        return true;
3170 >    }
3171 >
3172 >    /**
3173 >     * Waits and/or attempts to assist performing tasks indefinitely
3174 >     * until the {@link #commonPool()} {@link #isQuiescent}
3175 >     */
3176 >    static void quiesceCommonPool() {
3177 >        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3178      }
3179  
3180      /**
3181       * Interface for extending managed parallelism for tasks running
3182       * in {@link ForkJoinPool}s.
3183       *
3184 <     * <p>A {@code ManagedBlocker} provides two methods.
3185 <     * Method {@code isReleasable} must return {@code true} if
3186 <     * blocking is not necessary. Method {@code block} blocks the
3187 <     * current thread if necessary (perhaps internally invoking
3188 <     * {@code isReleasable} before actually blocking).
3184 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3185 >     * {@code isReleasable} must return {@code true} if blocking is
3186 >     * not necessary. Method {@code block} blocks the current thread
3187 >     * if necessary (perhaps internally invoking {@code isReleasable}
3188 >     * before actually blocking). These actions are performed by any
3189 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3190 >     * unusual methods in this API accommodate synchronizers that may,
3191 >     * but don't usually, block for long periods. Similarly, they
3192 >     * allow more efficient internal handling of cases in which
3193 >     * additional workers may be, but usually are not, needed to
3194 >     * ensure sufficient parallelism.  Toward this end,
3195 >     * implementations of method {@code isReleasable} must be amenable
3196 >     * to repeated invocation.
3197       *
3198       * <p>For example, here is a ManagedBlocker based on a
3199       * ReentrantLock:
# Line 1931 | Line 3211 | public class ForkJoinPool extends Abstra
3211       *     return hasLock || (hasLock = lock.tryLock());
3212       *   }
3213       * }}</pre>
3214 +     *
3215 +     * <p>Here is a class that possibly blocks waiting for an
3216 +     * item on a given queue:
3217 +     *  <pre> {@code
3218 +     * class QueueTaker<E> implements ManagedBlocker {
3219 +     *   final BlockingQueue<E> queue;
3220 +     *   volatile E item = null;
3221 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3222 +     *   public boolean block() throws InterruptedException {
3223 +     *     if (item == null)
3224 +     *       item = queue.take();
3225 +     *     return true;
3226 +     *   }
3227 +     *   public boolean isReleasable() {
3228 +     *     return item != null || (item = queue.poll()) != null;
3229 +     *   }
3230 +     *   public E getItem() { // call after pool.managedBlock completes
3231 +     *     return item;
3232 +     *   }
3233 +     * }}</pre>
3234       */
3235      public static interface ManagedBlocker {
3236          /**
# Line 1954 | Line 3254 | public class ForkJoinPool extends Abstra
3254       * Blocks in accord with the given blocker.  If the current thread
3255       * is a {@link ForkJoinWorkerThread}, this method possibly
3256       * arranges for a spare thread to be activated if necessary to
3257 <     * ensure parallelism while the current thread is blocked.
1958 <     *
1959 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1960 <     * supports it ({@link #getMaintainsParallelism}), this method
1961 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1962 <     * it activates a thread only if necessary to avoid complete
1963 <     * starvation. This option may be preferable when blockages use
1964 <     * timeouts, or are almost always brief.
3257 >     * ensure sufficient parallelism while the current thread is blocked.
3258       *
3259       * <p>If the caller is not a {@link ForkJoinTask}, this method is
3260       * behaviorally equivalent to
# Line 1975 | Line 3268 | public class ForkJoinPool extends Abstra
3268       * first be expanded to ensure parallelism, and later adjusted.
3269       *
3270       * @param blocker the blocker
1978     * @param maintainParallelism if {@code true} and supported by
1979     * this pool, attempt to maintain the pool's nominal parallelism;
1980     * otherwise activate a thread only if necessary to avoid
1981     * complete starvation.
3271       * @throws InterruptedException if blocker.block did so
3272       */
3273 <    public static void managedBlock(ManagedBlocker blocker,
1985 <                                    boolean maintainParallelism)
3273 >    public static void managedBlock(ManagedBlocker blocker)
3274          throws InterruptedException {
3275          Thread t = Thread.currentThread();
3276 <        if (t instanceof ForkJoinWorkerThread)
3277 <            ((ForkJoinWorkerThread) t).pool.
3278 <                awaitBlocker(blocker, maintainParallelism);
3279 <        else
3280 <            awaitBlocker(blocker);
3281 <    }
3282 <
3283 <    /**
3284 <     * Performs Non-FJ blocking
3285 <     */
3286 <    private static void awaitBlocker(ManagedBlocker blocker)
3287 <        throws InterruptedException {
3288 <        do {} while (!blocker.isReleasable() && !blocker.block());
3276 >        if (t instanceof ForkJoinWorkerThread) {
3277 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3278 >            while (!blocker.isReleasable()) { // variant of helpSignal
3279 >                WorkQueue[] ws; WorkQueue q; int m, u;
3280 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3281 >                    for (int i = 0; i <= m; ++i) {
3282 >                        if (blocker.isReleasable())
3283 >                            return;
3284 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3285 >                            p.signalWork(q);
3286 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3287 >                                (u >> UAC_SHIFT) >= 0)
3288 >                                break;
3289 >                        }
3290 >                    }
3291 >                }
3292 >                if (p.tryCompensate()) {
3293 >                    try {
3294 >                        do {} while (!blocker.isReleasable() &&
3295 >                                     !blocker.block());
3296 >                    } finally {
3297 >                        p.incrementActiveCount();
3298 >                    }
3299 >                    break;
3300 >                }
3301 >            }
3302 >        }
3303 >        else {
3304 >            do {} while (!blocker.isReleasable() &&
3305 >                         !blocker.block());
3306 >        }
3307      }
3308  
3309      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2005 | Line 3311 | public class ForkJoinPool extends Abstra
3311      // implement RunnableFuture.
3312  
3313      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3314 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3314 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3315      }
3316  
3317      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3318 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3318 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3319      }
3320  
3321      // Unsafe mechanics
3322 +    private static final sun.misc.Unsafe U;
3323 +    private static final long CTL;
3324 +    private static final long PARKBLOCKER;
3325 +    private static final int ABASE;
3326 +    private static final int ASHIFT;
3327 +    private static final long STEALCOUNT;
3328 +    private static final long PLOCK;
3329 +    private static final long INDEXSEED;
3330 +    private static final long QLOCK;
3331  
3332 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3333 <    private static final long workerCountsOffset =
3334 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
3335 <    private static final long runStateOffset =
3336 <        objectFieldOffset("runState", ForkJoinPool.class);
3337 <    private static final long eventCountOffset =
3338 <        objectFieldOffset("eventCount", ForkJoinPool.class);
3339 <    private static final long eventWaitersOffset =
3340 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
3341 <    private static final long stealCountOffset =
3342 <        objectFieldOffset("stealCount",ForkJoinPool.class);
3332 >    static {
3333 >        int s; // initialize field offsets for CAS etc
3334 >        try {
3335 >            U = getUnsafe();
3336 >            Class<?> k = ForkJoinPool.class;
3337 >            CTL = U.objectFieldOffset
3338 >                (k.getDeclaredField("ctl"));
3339 >            STEALCOUNT = U.objectFieldOffset
3340 >                (k.getDeclaredField("stealCount"));
3341 >            PLOCK = U.objectFieldOffset
3342 >                (k.getDeclaredField("plock"));
3343 >            INDEXSEED = U.objectFieldOffset
3344 >                (k.getDeclaredField("indexSeed"));
3345 >            Class<?> tk = Thread.class;
3346 >            PARKBLOCKER = U.objectFieldOffset
3347 >                (tk.getDeclaredField("parkBlocker"));
3348 >            Class<?> wk = WorkQueue.class;
3349 >            QLOCK = U.objectFieldOffset
3350 >                (wk.getDeclaredField("qlock"));
3351 >            Class<?> ak = ForkJoinTask[].class;
3352 >            ABASE = U.arrayBaseOffset(ak);
3353 >            s = U.arrayIndexScale(ak);
3354 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3355 >        } catch (Exception e) {
3356 >            throw new Error(e);
3357 >        }
3358 >        if ((s & (s-1)) != 0)
3359 >            throw new Error("data type scale not a power of two");
3360 >
3361 >        submitters = new ThreadLocal<Submitter>();
3362 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3363 >            new DefaultForkJoinWorkerThreadFactory();
3364 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3365 >
3366 >        /*
3367 >         * Establish common pool parameters.  For extra caution,
3368 >         * computations to set up common pool state are here; the
3369 >         * constructor just assigns these values to fields.
3370 >         */
3371  
3372 +        int par = 0;
3373 +        Thread.UncaughtExceptionHandler handler = null;
3374 +        try {  // TBD: limit or report ignored exceptions?
3375 +            String pp = System.getProperty
3376 +                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3377 +            String hp = System.getProperty
3378 +                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3379 +            String fp = System.getProperty
3380 +                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3381 +            if (fp != null)
3382 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3383 +                       getSystemClassLoader().loadClass(fp).newInstance());
3384 +            if (hp != null)
3385 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3386 +                           getSystemClassLoader().loadClass(hp).newInstance());
3387 +            if (pp != null)
3388 +                par = Integer.parseInt(pp);
3389 +        } catch (Exception ignore) {
3390 +        }
3391 +
3392 +        if (par <= 0)
3393 +            par = Runtime.getRuntime().availableProcessors();
3394 +        if (par > MAX_CAP)
3395 +            par = MAX_CAP;
3396 +        commonParallelism = par;
3397 +        long np = (long)(-par); // precompute initial ctl value
3398 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3399  
3400 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2031 <        try {
2032 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2033 <        } catch (NoSuchFieldException e) {
2034 <            // Convert Exception to corresponding Error
2035 <            NoSuchFieldError error = new NoSuchFieldError(field);
2036 <            error.initCause(e);
2037 <            throw error;
2038 <        }
3400 >        common = new ForkJoinPool(par, ct, fac, handler);
3401      }
3402  
3403      /**
# Line 2048 | Line 3410 | public class ForkJoinPool extends Abstra
3410      private static sun.misc.Unsafe getUnsafe() {
3411          try {
3412              return sun.misc.Unsafe.getUnsafe();
3413 <        } catch (SecurityException se) {
3414 <            try {
3415 <                return java.security.AccessController.doPrivileged
3416 <                    (new java.security
3417 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3418 <                        public sun.misc.Unsafe run() throws Exception {
3419 <                            java.lang.reflect.Field f = sun.misc
3420 <                                .Unsafe.class.getDeclaredField("theUnsafe");
3421 <                            f.setAccessible(true);
3422 <                            return (sun.misc.Unsafe) f.get(null);
3423 <                        }});
3424 <            } catch (java.security.PrivilegedActionException e) {
3425 <                throw new RuntimeException("Could not initialize intrinsics",
3426 <                                           e.getCause());
3427 <            }
3413 >        } catch (SecurityException tryReflectionInstead) {}
3414 >        try {
3415 >            return java.security.AccessController.doPrivileged
3416 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3417 >                public sun.misc.Unsafe run() throws Exception {
3418 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3419 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3420 >                        f.setAccessible(true);
3421 >                        Object x = f.get(null);
3422 >                        if (k.isInstance(x))
3423 >                            return k.cast(x);
3424 >                    }
3425 >                    throw new NoSuchFieldError("the Unsafe");
3426 >                }});
3427 >        } catch (java.security.PrivilegedActionException e) {
3428 >            throw new RuntimeException("Could not initialize intrinsics",
3429 >                                       e.getCause());
3430          }
3431      }
3432   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines