ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.56 by dl, Thu May 27 16:46:48 2010 UTC vs.
Revision 1.74 by jsr166, Tue Sep 7 06:32:45 2010 UTC

# Line 7 | Line 7
7   package jsr166y;
8  
9   import java.util.concurrent.*;
10
10   import java.util.ArrayList;
11   import java.util.Arrays;
12   import java.util.Collection;
# Line 21 | Line 20 | import java.util.concurrent.CountDownLat
20   /**
21   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22   * A {@code ForkJoinPool} provides the entry point for submissions
23 < * from non-{@code ForkJoinTask}s, as well as management and
23 > * from non-{@code ForkJoinTask} clients, as well as management and
24   * monitoring operations.
25   *
26   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 29 | import java.util.concurrent.CountDownLat
29   * execute subtasks created by other active tasks (eventually blocking
30   * waiting for work if none exist). This enables efficient processing
31   * when most tasks spawn other subtasks (as do most {@code
32 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
33 < * execution of some plain {@code Runnable}- or {@code Callable}-
34 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
32 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
33 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
34 > * with event-style tasks that are never joined.
35   *
36   * <p>A {@code ForkJoinPool} is constructed with a given target
37   * parallelism level; by default, equal to the number of available
38 < * processors. Unless configured otherwise via {@link
39 < * #setMaintainsParallelism}, the pool attempts to maintain this
40 < * number of active (or available) threads by dynamically adding,
41 < * suspending, or resuming internal worker threads, even if some tasks
42 < * are stalled waiting to join others. However, no such adjustments
43 < * are performed in the face of blocked IO or other unmanaged
44 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
38 > * processors. The pool attempts to maintain enough active (or
39 > * available) threads by dynamically adding, suspending, or resuming
40 > * internal worker threads, even if some tasks are stalled waiting to
41 > * join others. However, no such adjustments are guaranteed in the
42 > * face of blocked IO or other unmanaged synchronization. The nested
43 > * {@link ManagedBlocker} interface enables extension of the kinds of
44 > * synchronization accommodated.
45   *
46   * <p>In addition to execution and lifecycle control methods, this
47   * class provides status check methods (for example
# Line 65 | Line 50 | import java.util.concurrent.CountDownLat
50   * {@link #toString} returns indications of pool state in a
51   * convenient form for informal monitoring.
52   *
53 + * <p> As is the case with other ExecutorServices, there are three
54 + * main task execution methods summarized in the following
55 + * table. These are designed to be used by clients not already engaged
56 + * in fork/join computations in the current pool.  The main forms of
57 + * these methods accept instances of {@code ForkJoinTask}, but
58 + * overloaded forms also allow mixed execution of plain {@code
59 + * Runnable}- or {@code Callable}- based activities as well.  However,
60 + * tasks that are already executing in a pool should normally
61 + * <em>NOT</em> use these pool execution methods, but instead use the
62 + * within-computation forms listed in the table.
63 + *
64 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
65 + *  <tr>
66 + *    <td></td>
67 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
68 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
69 + *  </tr>
70 + *  <tr>
71 + *    <td> <b>Arrange async execution</td>
72 + *    <td> {@link #execute(ForkJoinTask)}</td>
73 + *    <td> {@link ForkJoinTask#fork}</td>
74 + *  </tr>
75 + *  <tr>
76 + *    <td> <b>Await and obtain result</td>
77 + *    <td> {@link #invoke(ForkJoinTask)}</td>
78 + *    <td> {@link ForkJoinTask#invoke}</td>
79 + *  </tr>
80 + *  <tr>
81 + *    <td> <b>Arrange exec and obtain Future</td>
82 + *    <td> {@link #submit(ForkJoinTask)}</td>
83 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
84 + *  </tr>
85 + * </table>
86 + *
87   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
88   * used for all parallel task execution in a program or subsystem.
89   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 108 | import java.util.concurrent.CountDownLat
108   * {@code IllegalArgumentException}.
109   *
110   * <p>This implementation rejects submitted tasks (that is, by throwing
111 < * {@link RejectedExecutionException}) only when the pool is shut down.
111 > * {@link RejectedExecutionException}) only when the pool is shut down
112 > * or internal resources have been exhausted.
113   *
114   * @since 1.7
115   * @author Doug Lea
# Line 116 | Line 136 | public class ForkJoinPool extends Abstra
136       * of tasks profit from cache affinities, but others are harmed by
137       * cache pollution effects.)
138       *
139 +     * Beyond work-stealing support and essential bookkeeping, the
140 +     * main responsibility of this framework is to take actions when
141 +     * one worker is waiting to join a task stolen (or always held by)
142 +     * another.  Because we are multiplexing many tasks on to a pool
143 +     * of workers, we can't just let them block (as in Thread.join).
144 +     * We also cannot just reassign the joiner's run-time stack with
145 +     * another and replace it later, which would be a form of
146 +     * "continuation", that even if possible is not necessarily a good
147 +     * idea. Given that the creation costs of most threads on most
148 +     * systems mainly surrounds setting up runtime stacks, thread
149 +     * creation and switching is usually not much more expensive than
150 +     * stack creation and switching, and is more flexible). Instead we
151 +     * combine two tactics:
152 +     *
153 +     *   Helping: Arranging for the joiner to execute some task that it
154 +     *      would be running if the steal had not occurred.  Method
155 +     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
156 +     *      links to try to find such a task.
157 +     *
158 +     *   Compensating: Unless there are already enough live threads,
159 +     *      method helpMaintainParallelism() may create or
160 +     *      re-activate a spare thread to compensate for blocked
161 +     *      joiners until they unblock.
162 +     *
163 +     * It is impossible to keep exactly the target (parallelism)
164 +     * number of threads running at any given time.  Determining
165 +     * existence of conservatively safe helping targets, the
166 +     * availability of already-created spares, and the apparent need
167 +     * to create new spares are all racy and require heuristic
168 +     * guidance, so we rely on multiple retries of each.  Compensation
169 +     * occurs in slow-motion. It is triggered only upon timeouts of
170 +     * Object.wait used for joins. This reduces poor decisions that
171 +     * would otherwise be made when threads are waiting for others
172 +     * that are stalled because of unrelated activities such as
173 +     * garbage collection.
174 +     *
175 +     * The ManagedBlocker extension API can't use helping so relies
176 +     * only on compensation in method awaitBlocker.
177 +     *
178       * The main throughput advantages of work-stealing stem from
179       * decentralized control -- workers mostly steal tasks from each
180       * other. We do not want to negate this by creating bottlenecks
181 <     * implementing the management responsibilities of this class. So
182 <     * we use a collection of techniques that avoid, reduce, or cope
183 <     * well with contention. These entail several instances of
184 <     * bit-packing into CASable fields to maintain only the minimally
185 <     * required atomicity. To enable such packing, we restrict maximum
186 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
187 <     * bit field), which is far in excess of normal operating range.
188 <     * Even though updates to some of these bookkeeping fields do
189 <     * sometimes contend with each other, they don't normally
190 <     * cache-contend with updates to others enough to warrant memory
191 <     * padding or isolation. So they are all held as fields of
192 <     * ForkJoinPool objects.  The main capabilities are as follows:
181 >     * implementing other management responsibilities. So we use a
182 >     * collection of techniques that avoid, reduce, or cope well with
183 >     * contention. These entail several instances of bit-packing into
184 >     * CASable fields to maintain only the minimally required
185 >     * atomicity. To enable such packing, we restrict maximum
186 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
187 >     * unbalanced increments and decrements) to fit into a 16 bit
188 >     * field, which is far in excess of normal operating range.  Even
189 >     * though updates to some of these bookkeeping fields do sometimes
190 >     * contend with each other, they don't normally cache-contend with
191 >     * updates to others enough to warrant memory padding or
192 >     * isolation. So they are all held as fields of ForkJoinPool
193 >     * objects.  The main capabilities are as follows:
194       *
195       * 1. Creating and removing workers. Workers are recorded in the
196       * "workers" array. This is an array as opposed to some other data
# Line 146 | Line 206 | public class ForkJoinPool extends Abstra
206       * blocked workers. However, all other support code is set up to
207       * work with other policies.
208       *
209 +     * To ensure that we do not hold on to worker references that
210 +     * would prevent GC, ALL accesses to workers are via indices into
211 +     * the workers array (which is one source of some of the unusual
212 +     * code constructions here). In essence, the workers array serves
213 +     * as a WeakReference mechanism. Thus for example the event queue
214 +     * stores worker indices, not worker references. Access to the
215 +     * workers in associated methods (for example releaseEventWaiters)
216 +     * must both index-check and null-check the IDs. All such accesses
217 +     * ignore bad IDs by returning out early from what they are doing,
218 +     * since this can only be associated with shutdown, in which case
219 +     * it is OK to give up. On termination, we just clobber these
220 +     * data structures without trying to use them.
221 +     *
222       * 2. Bookkeeping for dynamically adding and removing workers. We
223 <     * maintain a given level of parallelism (or, if
224 <     * maintainsParallelism is false, at least avoid starvation). When
152 <     * some workers are known to be blocked (on joins or via
223 >     * aim to approximately maintain the given level of parallelism.
224 >     * When some workers are known to be blocked (on joins or via
225       * ManagedBlocker), we may create or resume others to take their
226       * place until they unblock (see below). Implementing this
227       * requires counts of the number of "running" threads (i.e., those
228 <     * that are neither blocked nor artifically suspended) as well as
228 >     * that are neither blocked nor artificially suspended) as well as
229       * the total number.  These two values are packed into one field,
230       * "workerCounts" because we need accurate snapshots when deciding
231 <     * to create, resume or suspend.  To support these decisions,
232 <     * updates to spare counts must be prospective (not
233 <     * retrospective).  For example, the running count is decremented
234 <     * before blocking by a thread about to block as a spare, but
163 <     * incremented by the thread about to unblock it. Updates upon
164 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
165 <     * cannot usually be prospective, so the running count is in
166 <     * general an upper bound of the number of productively running
167 <     * threads Updates to the workerCounts field sometimes transiently
168 <     * encounter a fair amount of contention when join dependencies
169 <     * are such that many threads block or unblock at about the same
170 <     * time. We alleviate this by sometimes bundling updates (for
171 <     * example blocking one thread on join and resuming a spare cancel
172 <     * each other out), and in most other cases performing an
173 <     * alternative action like releasing waiters or locating spares.
231 >     * to create, resume or suspend.  Note however that the
232 >     * correspondence of these counts to reality is not guaranteed. In
233 >     * particular updates for unblocked threads may lag until they
234 >     * actually wake up.
235       *
236       * 3. Maintaining global run state. The run state of the pool
237       * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
# Line 199 | Line 260 | public class ForkJoinPool extends Abstra
260       * workers that previously could not find a task to now find one:
261       * Submission of a new task to the pool, or another worker pushing
262       * a task onto a previously empty queue.  (We also use this
263 <     * mechanism for termination and reconfiguration actions that
263 >     * mechanism for configuration and termination actions that
264       * require wakeups of idle workers).  Each worker maintains its
265       * last known event count, and blocks when a scan for work did not
266       * find a task AND its lastEventCount matches the current
# Line 210 | Line 271 | public class ForkJoinPool extends Abstra
271       * a record (field nextEventWaiter) for the next waiting worker.
272       * In addition to allowing simpler decisions about need for
273       * wakeup, the event count bits in eventWaiters serve the role of
274 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
275 <     * in task diffusion, workers not otherwise occupied may invoke
276 <     * method releaseWaiters, that removes and signals (unparks)
277 <     * workers not waiting on current count. To minimize task
278 <     * production stalls associate with signalling, any worker pushing
279 <     * a task on an empty queue invokes the weaker method signalWork,
219 <     * that only releases idle workers until it detects interference
220 <     * by other threads trying to release, and lets them take
221 <     * over. The net effect is a tree-like diffusion of signals, where
222 <     * released threads (and possibly others) help with unparks.  To
223 <     * further reduce contention effects a bit, failed CASes to
224 <     * increment field eventCount are tolerated without retries.
274 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
275 >     * released threads also try to release at most two others.  The
276 >     * net effect is a tree-like diffusion of signals, where released
277 >     * threads (and possibly others) help with unparks.  To further
278 >     * reduce contention effects a bit, failed CASes to increment
279 >     * field eventCount are tolerated without retries in signalWork.
280       * Conceptually they are merged into the same event, which is OK
281       * when their only purpose is to enable workers to scan for work.
282       *
283 <     * 5. Managing suspension of extra workers. When a worker is about
284 <     * to block waiting for a join (or via ManagedBlockers), we may
285 <     * create a new thread to maintain parallelism level, or at least
286 <     * avoid starvation (see below). Usually, extra threads are needed
287 <     * for only very short periods, yet join dependencies are such
288 <     * that we sometimes need them in bursts. Rather than create new
289 <     * threads each time this happens, we suspend no-longer-needed
290 <     * extra ones as "spares". For most purposes, we don't distinguish
291 <     * "extra" spare threads from normal "core" threads: On each call
292 <     * to preStep (the only point at which we can do this) a worker
293 <     * checks to see if there are now too many running workers, and if
294 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
295 <     * for suspended threads to resume before considering creating a
296 <     * new replacement. We don't need a special data structure to
297 <     * maintain spares; simply scanning the workers array looking for
298 <     * worker.isSuspended() is fine because the calling thread is
299 <     * otherwise not doing anything useful anyway; we are at least as
300 <     * happy if after locating a spare, the caller doesn't actually
301 <     * block because the join is ready before we try to adjust and
302 <     * compensate.  Note that this is intrinsically racy.  One thread
303 <     * may become a spare at about the same time as another is
304 <     * needlessly being created. We counteract this and related slop
305 <     * in part by requiring resumed spares to immediately recheck (in
306 <     * preStep) to see whether they they should re-suspend. The only
307 <     * effective difference between "extra" and "core" threads is that
308 <     * we allow the "extra" ones to time out and die if they are not
309 <     * resumed within a keep-alive interval of a few seconds. This is
310 <     * implemented mainly within ForkJoinWorkerThread, but requires
311 <     * some coordination (isTrimmed() -- meaning killed while
312 <     * suspended) to correctly maintain pool counts.
313 <     *
314 <     * 6. Deciding when to create new workers. The main dynamic
315 <     * control in this class is deciding when to create extra threads,
316 <     * in methods awaitJoin and awaitBlocker. We always
317 <     * need to create one when the number of running threads becomes
318 <     * zero. But because blocked joins are typically dependent, we
319 <     * don't necessarily need or want one-to-one replacement. Using a
320 <     * one-to-one compensation rule often leads to enough useless
321 <     * overhead creating, suspending, resuming, and/or killing threads
322 <     * to signficantly degrade throughput.  We use a rule reflecting
323 <     * the idea that, the more spare threads you already have, the
324 <     * more evidence you need to create another one. The "evidence"
325 <     * here takes two forms: (1) Using a creation threshold expressed
326 <     * in terms of the current deficit -- target minus running
327 <     * threads. To reduce flickering and drift around target values,
328 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
329 <     * (where dc is deficit, sc is number of spare threads and pc is
330 <     * target parallelism.)  (2) Using a form of adaptive
331 <     * spionning. requiring a number of threshold checks proportional
332 <     * to the number of spare threads.  This effectively reduces churn
333 <     * at the price of systematically undershooting target parallelism
279 <     * when many threads are blocked.  However, biasing toward
280 <     * undeshooting partially compensates for the above mechanics to
281 <     * suspend extra threads, that normally lead to overshoot because
282 <     * we can only suspend workers in-between top-level actions. It
283 <     * also better copes with the fact that some of the methods in
284 <     * this class tend to never become compiled (but are interpreted),
285 <     * so some components of the entire set of controls might execute
286 <     * many times faster than others. And similarly for cases where
287 <     * the apparent lack of work is just due to GC stalls and other
288 <     * transient system activity.
289 <     *
290 <     * 7. Maintaining other configuration parameters and monitoring
291 <     * statistics. Updates to fields controlling parallelism level,
292 <     * max size, etc can only meaningfully take effect for individual
293 <     * threads upon their next top-level actions; i.e., between
294 <     * stealing/running tasks/submission, which are separated by calls
295 <     * to preStep.  Memory ordering for these (assumed infrequent)
296 <     * reconfiguration calls is ensured by using reads and writes to
297 <     * volatile field workerCounts (that must be read in preStep anyway)
298 <     * as "fences" -- user-level reads are preceded by reads of
299 <     * workCounts, and writes are followed by no-op CAS to
300 <     * workerCounts. The values reported by other management and
301 <     * monitoring methods are either computed on demand, or are kept
302 <     * in fields that are only updated when threads are otherwise
303 <     * idle.
283 >     * 5. Managing suspension of extra workers. When a worker notices
284 >     * (usually upon timeout of a wait()) that there are too few
285 >     * running threads, we may create a new thread to maintain
286 >     * parallelism level, or at least avoid starvation. Usually, extra
287 >     * threads are needed for only very short periods, yet join
288 >     * dependencies are such that we sometimes need them in
289 >     * bursts. Rather than create new threads each time this happens,
290 >     * we suspend no-longer-needed extra ones as "spares". For most
291 >     * purposes, we don't distinguish "extra" spare threads from
292 >     * normal "core" threads: On each call to preStep (the only point
293 >     * at which we can do this) a worker checks to see if there are
294 >     * now too many running workers, and if so, suspends itself.
295 >     * Method helpMaintainParallelism looks for suspended threads to
296 >     * resume before considering creating a new replacement. The
297 >     * spares themselves are encoded on another variant of a Treiber
298 >     * Stack, headed at field "spareWaiters".  Note that the use of
299 >     * spares is intrinsically racy.  One thread may become a spare at
300 >     * about the same time as another is needlessly being created. We
301 >     * counteract this and related slop in part by requiring resumed
302 >     * spares to immediately recheck (in preStep) to see whether they
303 >     * should re-suspend.
304 >     *
305 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
306 >     * shed unused workers: The oldest (first) event queue waiter uses
307 >     * a timed rather than hard wait. When this wait times out without
308 >     * a normal wakeup, it tries to shutdown any one (for convenience
309 >     * the newest) other spare or event waiter via
310 >     * tryShutdownUnusedWorker. This eventually reduces the number of
311 >     * worker threads to a minimum of one after a long enough period
312 >     * without use.
313 >     *
314 >     * 7. Deciding when to create new workers. The main dynamic
315 >     * control in this class is deciding when to create extra threads
316 >     * in method helpMaintainParallelism. We would like to keep
317 >     * exactly #parallelism threads running, which is an impossible
318 >     * task. We always need to create one when the number of running
319 >     * threads would become zero and all workers are busy. Beyond
320 >     * this, we must rely on heuristics that work well in the
321 >     * presence of transient phenomena such as GC stalls, dynamic
322 >     * compilation, and wake-up lags. These transients are extremely
323 >     * common -- we are normally trying to fully saturate the CPUs on
324 >     * a machine, so almost any activity other than running tasks
325 >     * impedes accuracy. Our main defense is to allow parallelism to
326 >     * lapse for a while during joins, and use a timeout to see if,
327 >     * after the resulting settling, there is still a need for
328 >     * additional workers.  This also better copes with the fact that
329 >     * some of the methods in this class tend to never become compiled
330 >     * (but are interpreted), so some components of the entire set of
331 >     * controls might execute 100 times faster than others. And
332 >     * similarly for cases where the apparent lack of work is just due
333 >     * to GC stalls and other transient system activity.
334       *
335       * Beware that there is a lot of representation-level coupling
336       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 313 | Line 343 | public class ForkJoinPool extends Abstra
343       *
344       * Style notes: There are lots of inline assignments (of form
345       * "while ((local = field) != 0)") which are usually the simplest
346 <     * way to ensure read orderings. Also several occurrences of the
347 <     * unusual "do {} while(!cas...)" which is the simplest way to
348 <     * force an update of a CAS'ed variable. There are also a few
349 <     * other coding oddities that help some methods perform reasonably
350 <     * even when interpreted (not compiled).
346 >     * way to ensure the required read orderings (which are sometimes
347 >     * critical). Also several occurrences of the unusual "do {}
348 >     * while (!cas...)" which is the simplest way to force an update of
349 >     * a CAS'ed variable. There are also other coding oddities that
350 >     * help some methods perform reasonably even when interpreted (not
351 >     * compiled), at the expense of some messy constructions that
352 >     * reduce byte code counts.
353       *
354       * The order of declarations in this file is: (1) statics (2)
355       * fields (along with constants used when unpacking some of them)
# Line 346 | Line 378 | public class ForkJoinPool extends Abstra
378       * Default ForkJoinWorkerThreadFactory implementation; creates a
379       * new ForkJoinWorkerThread.
380       */
381 <    static class  DefaultForkJoinWorkerThreadFactory
381 >    static class DefaultForkJoinWorkerThreadFactory
382          implements ForkJoinWorkerThreadFactory {
383          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
384              return new ForkJoinWorkerThread(pool);
# Line 385 | Line 417 | public class ForkJoinPool extends Abstra
417          new AtomicInteger();
418  
419      /**
420 <     * Absolute bound for parallelism level. Twice this number must
421 <     * fit into a 16bit field to enable word-packing for some counts.
420 >     * The time to block in a join (see awaitJoin) before checking if
421 >     * a new worker should be (re)started to maintain parallelism
422 >     * level. The value should be short enough to maintain global
423 >     * responsiveness and progress but long enough to avoid
424 >     * counterproductive firings during GC stalls or unrelated system
425 >     * activity, and to not bog down systems with continual re-firings
426 >     * on GCs or legitimately long waits.
427 >     */
428 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
429 >
430 >    /**
431 >     * The wakeup interval (in nanoseconds) for the oldest worker
432 >     * waiting for an event invokes tryShutdownUnusedWorker to shrink
433 >     * the number of workers.  The exact value does not matter too
434 >     * much, but should be long enough to slowly release resources
435 >     * during long periods without use without disrupting normal use.
436 >     */
437 >    private static final long SHRINK_RATE_NANOS =
438 >        30L * 1000L * 1000L * 1000L; // 2 per minute
439 >
440 >    /**
441 >     * Absolute bound for parallelism level. Twice this number plus
442 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
443 >     * word-packing for some counts and indices.
444       */
445 <    private static final int MAX_THREADS = 0x7fff;
445 >    private static final int MAX_WORKERS   = 0x7fff;
446  
447      /**
448       * Array holding all worker threads in the pool.  Array size must
# Line 414 | Line 468 | public class ForkJoinPool extends Abstra
468      /**
469       * Latch released upon termination.
470       */
471 <    private final CountDownLatch terminationLatch;
471 >    private final Phaser termination;
472  
473      /**
474       * Creation factory for worker threads.
# Line 428 | Line 482 | public class ForkJoinPool extends Abstra
482      private volatile long stealCount;
483  
484      /**
485 <     * Encoded record of top of treiber stack of threads waiting for
485 >     * Encoded record of top of Treiber stack of threads waiting for
486       * events. The top 32 bits contain the count being waited for. The
487 <     * bottom word contains one plus the pool index of waiting worker
488 <     * thread.
487 >     * bottom 16 bits contains one plus the pool index of waiting
488 >     * worker thread. (Bits 16-31 are unused.)
489       */
490      private volatile long eventWaiters;
491  
492      private static final int  EVENT_COUNT_SHIFT = 32;
493 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
493 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
494  
495      /**
496       * A counter for events that may wake up worker threads:
497       *   - Submission of a new task to the pool
498       *   - A worker pushing a task on an empty queue
499 <     *   - termination and reconfiguration
499 >     *   - termination
500       */
501      private volatile int eventCount;
502  
503      /**
504 +     * Encoded record of top of Treiber stack of spare threads waiting
505 +     * for resumption. The top 16 bits contain an arbitrary count to
506 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
507 +     * index of waiting worker thread.
508 +     */
509 +    private volatile int spareWaiters;
510 +
511 +    private static final int SPARE_COUNT_SHIFT = 16;
512 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
513 +
514 +    /**
515       * Lifecycle control. The low word contains the number of workers
516       * that are (probably) executing tasks. This value is atomically
517       * incremented before a worker gets a task to run, and decremented
# Line 457 | Line 522 | public class ForkJoinPool extends Abstra
522       * These are bundled together to ensure consistent read for
523       * termination checks (i.e., that runLevel is at least SHUTDOWN
524       * and active threads is zero).
525 +     *
526 +     * Notes: Most direct CASes are dependent on these bitfield
527 +     * positions.  Also, this field is non-private to enable direct
528 +     * performance-sensitive CASes in ForkJoinWorkerThread.
529       */
530 <    private volatile int runState;
530 >    volatile int runState;
531  
532      // Note: The order among run level values matters.
533      private static final int RUNLEVEL_SHIFT     = 16;
# Line 466 | Line 535 | public class ForkJoinPool extends Abstra
535      private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
536      private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537      private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
469    private static final int ONE_ACTIVE         = 1; // active update delta
538  
539      /**
540       * Holds number of total (i.e., created and not yet terminated)
# Line 475 | Line 543 | public class ForkJoinPool extends Abstra
543       * making decisions about creating and suspending spare
544       * threads. Updated only by CAS. Note that adding a new worker
545       * requires incrementing both counts, since workers start off in
546 <     * running state.  This field is also used for memory-fencing
479 <     * configuration parameters.
546 >     * running state.
547       */
548      private volatile int workerCounts;
549  
# Line 485 | Line 552 | public class ForkJoinPool extends Abstra
552      private static final int ONE_RUNNING        = 1;
553      private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
554  
488    /*
489     * Fields parallelism. maxPoolSize, and maintainsParallelism are
490     * non-volatile, but external reads/writes use workerCount fences
491     * to ensure visability.
492     */
493
555      /**
556       * The target parallelism level.
557 +     * Accessed directly by ForkJoinWorkerThreads.
558       */
559 <    private int parallelism;
498 <
499 <    /**
500 <     * The maximum allowed pool size.
501 <     */
502 <    private int maxPoolSize;
559 >    final int parallelism;
560  
561      /**
562       * True if use local fifo, not default lifo, for local polling
563 <     * Replicated by ForkJoinWorkerThreads
563 >     * Read by, and replicated by ForkJoinWorkerThreads
564       */
565 <    private volatile boolean locallyFifo;
565 >    final boolean locallyFifo;
566  
567      /**
568 <     * Controls whether to add spares to maintain parallelism
568 >     * The uncaught exception handler used when any worker abruptly
569 >     * terminates.
570       */
571 <    private boolean maintainsParallelism;
514 <
515 <    /**
516 <     * The uncaught exception handler used when any worker
517 <     * abruptly terminates
518 <     */
519 <    private volatile Thread.UncaughtExceptionHandler ueh;
571 >    private final Thread.UncaughtExceptionHandler ueh;
572  
573      /**
574       * Pool number, just for assigning useful names to worker threads
575       */
576      private final int poolNumber;
577  
578 <    // utilities for updating fields
578 >    // Utilities for CASing fields. Note that most of these
579 >    // are usually manually inlined by callers
580  
581      /**
582 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
582 >     * Increments running count part of workerCounts
583       */
584 <    final void updateRunningCount(int delta) {
585 <        int wc;
584 >    final void incrementRunningCount() {
585 >        int c;
586          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 <                                               wc = workerCounts,
588 <                                               wc + delta));
587 >                                               c = workerCounts,
588 >                                               c + ONE_RUNNING));
589      }
590  
591      /**
592 <     * Decrements running count unless already zero
592 >     * Tries to decrement running count unless already zero
593       */
594      final boolean tryDecrementRunningCount() {
595          int wc = workerCounts;
# Line 547 | Line 600 | public class ForkJoinPool extends Abstra
600      }
601  
602      /**
603 <     * Write fence for user modifications of pool parameters
604 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
552 <     */
553 <    private void workerCountWriteFence() {
554 <        int wc;
555 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
556 <                                 wc = workerCounts, wc);
557 <    }
558 <
559 <    /**
560 <     * Read fence for external reads of pool parameters
561 <     * (parallelism. maxPoolSize, etc).
562 <     */
563 <    private void workerCountReadFence() {
564 <        int ignore = workerCounts;
565 <    }
566 <
567 <    /**
568 <     * Tries incrementing active count; fails on contention.
569 <     * Called by workers before executing tasks.
603 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
604 >     * (rarely) necessary when other count updates lag.
605       *
606 <     * @return true on success
606 >     * @param dr -- either zero or ONE_RUNNING
607 >     * @param dt == either zero or ONE_TOTAL
608       */
609 <    final boolean tryIncrementActiveCount() {
610 <        int c;
611 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
612 <                                        c = runState, c + ONE_ACTIVE);
609 >    private void decrementWorkerCounts(int dr, int dt) {
610 >        for (;;) {
611 >            int wc = workerCounts;
612 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
613 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
614 >                if ((runState & TERMINATED) != 0)
615 >                    return; // lagging termination on a backout
616 >                Thread.yield();
617 >            }
618 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619 >                                         wc, wc - (dr + dt)))
620 >                return;
621 >        }
622      }
623  
624      /**
# Line 583 | Line 628 | public class ForkJoinPool extends Abstra
628      final boolean tryDecrementActiveCount() {
629          int c;
630          return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 <                                        c = runState, c - ONE_ACTIVE);
631 >                                        c = runState, c - 1);
632      }
633  
634      /**
# Line 612 | Line 657 | public class ForkJoinPool extends Abstra
657          lock.lock();
658          try {
659              ForkJoinWorkerThread[] ws = workers;
660 <            int nws = ws.length;
661 <            if (k < 0 || k >= nws || ws[k] != null) {
662 <                for (k = 0; k < nws && ws[k] != null; ++k)
660 >            int n = ws.length;
661 >            if (k < 0 || k >= n || ws[k] != null) {
662 >                for (k = 0; k < n && ws[k] != null; ++k)
663                      ;
664 <                if (k == nws)
665 <                    ws = Arrays.copyOf(ws, nws << 1);
664 >                if (k == n)
665 >                    ws = Arrays.copyOf(ws, n << 1);
666              }
667              ws[k] = w;
668              workers = ws; // volatile array write ensures slot visibility
# Line 628 | Line 673 | public class ForkJoinPool extends Abstra
673      }
674  
675      /**
676 <     * Nulls out record of worker in workers array
676 >     * Nulls out record of worker in workers array.
677       */
678      private void forgetWorker(ForkJoinWorkerThread w) {
679          int idx = w.poolIndex;
680 <        // Locking helps method recordWorker avoid unecessary expansion
680 >        // Locking helps method recordWorker avoid unnecessary expansion
681          final ReentrantLock lock = this.workerLock;
682          lock.lock();
683          try {
# Line 644 | Line 689 | public class ForkJoinPool extends Abstra
689          }
690      }
691  
647    // adding and removing workers
648
692      /**
693 <     * Tries to create and add new worker. Assumes that worker counts
694 <     * are already updated to accommodate the worker, so adjusts on
695 <     * failure.
693 >     * Final callback from terminating worker.  Removes record of
694 >     * worker from array, and adjusts counts. If pool is shutting
695 >     * down, tries to complete termination.
696       *
697 <     * @return new worker or null if creation failed
697 >     * @param w the worker
698       */
699 <    private ForkJoinWorkerThread addWorker() {
700 <        ForkJoinWorkerThread w = null;
701 <        try {
702 <            w = factory.newThread(this);
703 <        } finally { // Adjust on either null or exceptional factory return
704 <            if (w == null) {
662 <                onWorkerCreationFailure();
663 <                return null;
664 <            }
665 <        }
666 <        w.start(recordWorker(w), locallyFifo, ueh);
667 <        return w;
699 >    final void workerTerminated(ForkJoinWorkerThread w) {
700 >        forgetWorker(w);
701 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 >        while (w.stealCount != 0) // collect final count
703 >            tryAccumulateStealCount(w);
704 >        tryTerminate(false);
705      }
706  
707 +    // Waiting for and signalling events
708 +
709      /**
710 <     * Adjusts counts upon failure to create worker
710 >     * Releases workers blocked on a count not equal to current count.
711 >     * Normally called after precheck that eventWaiters isn't zero to
712 >     * avoid wasted array checks. Gives up upon a change in count or
713 >     * upon releasing two workers, letting others take over.
714       */
715 <    private void onWorkerCreationFailure() {
716 <        for (;;) {
717 <            int wc = workerCounts;
718 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
719 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
720 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
715 >    private void releaseEventWaiters() {
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        int n = ws.length;
718 >        long h = eventWaiters;
719 >        int ec = eventCount;
720 >        boolean releasedOne = false;
721 >        ForkJoinWorkerThread w; int id;
722 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
723 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
724 >               id < n && (w = ws[id]) != null) {
725 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
726 >                                          h,  w.nextWaiter)) {
727 >                LockSupport.unpark(w);
728 >                if (releasedOne) // exit on second release
729 >                    break;
730 >                releasedOne = true;
731 >            }
732 >            if (eventCount != ec)
733                  break;
734 +            h = eventWaiters;
735          }
681        tryTerminate(false); // in case of failure during shutdown
736      }
737  
738      /**
739 <     * Create enough total workers to establish target parallelism,
740 <     * giving up if terminating or addWorker fails
739 >     * Tries to advance eventCount and releases waiters. Called only
740 >     * from workers.
741       */
742 <    private void ensureEnoughTotalWorkers() {
743 <        int wc;
744 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
745 <               runState < TERMINATING) {
746 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
693 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
694 <                 addWorker() == null))
695 <                break;
696 <        }
742 >    final void signalWork() {
743 >        int c; // try to increment event count -- CAS failure OK
744 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
745 >        if (eventWaiters != 0L)
746 >            releaseEventWaiters();
747      }
748  
749      /**
750 <     * Final callback from terminating worker.  Removes record of
751 <     * worker from array, and adjusts counts. If pool is shutting
702 <     * down, tries to complete terminatation, else possibly replaces
703 <     * the worker.
750 >     * Adds the given worker to event queue and blocks until
751 >     * terminating or event count advances from the given value
752       *
753 <     * @param w the worker
753 >     * @param w the calling worker thread
754 >     * @param ec the count
755       */
756 <    final void workerTerminated(ForkJoinWorkerThread w) {
757 <        if (w.active) { // force inactive
758 <            w.active = false;
759 <            do {} while (!tryDecrementActiveCount());
760 <        }
761 <        forgetWorker(w);
762 <
763 <        // Decrement total count, and if was running, running count
764 <        // Spin (waiting for other updates) if either would be negative
765 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
717 <        int unit = ONE_TOTAL + nr;
718 <        for (;;) {
719 <            int wc = workerCounts;
720 <            int rc = wc & RUNNING_COUNT_MASK;
721 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
722 <                Thread.yield(); // back off if waiting for other updates
723 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
724 <                                              wc, wc - unit))
756 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
757 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
758 >        long h;
759 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
760 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
761 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
762 >               eventCount == ec) {
763 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
764 >                                          w.nextWaiter = h, nh)) {
765 >                awaitEvent(w, ec);
766                  break;
767 +            }
768          }
727
728        accumulateStealCount(w); // collect final count
729        if (!tryTerminate(false))
730            ensureEnoughTotalWorkers();
769      }
770  
733    // Waiting for and signalling events
734
771      /**
772 <     * Ensures eventCount on exit is different (mod 2^32) than on
773 <     * entry.  CAS failures are OK -- any change in count suffices.
772 >     * Blocks the given worker (that has already been entered as an
773 >     * event waiter) until terminating or event count advances from
774 >     * the given value. The oldest (first) waiter uses a timed wait to
775 >     * occasionally one-by-one shrink the number of workers (to a
776 >     * minimum of one) if the pool has not been used for extended
777 >     * periods.
778 >     *
779 >     * @param w the calling worker thread
780 >     * @param ec the count
781       */
782 <    private void advanceEventCount() {
783 <        int c;
784 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
782 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
783 >        while (eventCount == ec) {
784 >            if (tryAccumulateStealCount(w)) { // transfer while idle
785 >                boolean untimed = (w.nextWaiter != 0L ||
786 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
787 >                long startTime = untimed? 0 : System.nanoTime();
788 >                Thread.interrupted();         // clear/ignore interrupt
789 >                if (eventCount != ec || w.runState != 0 ||
790 >                    runState >= TERMINATING)  // recheck after clear
791 >                    break;
792 >                if (untimed)
793 >                    LockSupport.park(w);
794 >                else {
795 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
796 >                    if (eventCount != ec || w.runState != 0 ||
797 >                        runState >= TERMINATING)
798 >                        break;
799 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800 >                        tryShutdownUnusedWorker(ec);
801 >                }
802 >            }
803 >        }
804      }
805  
806 +    // Maintaining parallelism
807 +
808      /**
809 <     * Releases workers blocked on a count not equal to current count.
809 >     * Pushes worker onto the spare stack.
810       */
811 <    final void releaseWaiters() {
812 <        long top;
813 <        int id;
814 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
751 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
752 <            ForkJoinWorkerThread[] ws = workers;
753 <            ForkJoinWorkerThread w;
754 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
755 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
756 <                                          top, w.nextWaiter))
757 <                LockSupport.unpark(w);
758 <        }
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815      }
816  
817      /**
818 <     * Advances eventCount and releases waiters until interference by
819 <     * other releasing threads is detected.
818 >     * Tries (once) to resume a spare if the number of running
819 >     * threads is less than target.
820       */
821 <    final void signalWork() {
822 <        int ec;
823 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
824 <        outer:for (;;) {
825 <            long top = eventWaiters;
826 <            ec = eventCount;
827 <            for (;;) {
828 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
829 <                int id = (int)(top & WAITER_INDEX_MASK);
830 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
831 <                    return;
832 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
833 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
834 <                                               top, top = w.nextWaiter))
835 <                    continue outer;      // possibly stale; reread
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823 >        ForkJoinWorkerThread[] ws = workers;
824 >        int n = ws.length;
825 >        ForkJoinWorkerThread w;
826 >        if ((sw = spareWaiters) != 0 &&
827 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
828 >            id < n && (w = ws[id]) != null &&
829 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
830 >            spareWaiters == sw &&
831 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
832 >                                     sw, w.nextSpare)) {
833 >            int c; // increment running count before resume
834 >            do {} while (!UNSAFE.compareAndSwapInt
835 >                         (this, workerCountsOffset,
836 >                          c = workerCounts, c + ONE_RUNNING));
837 >            if (w.tryUnsuspend())
838                  LockSupport.unpark(w);
839 <                if (top != eventWaiters) // let someone else take over
840 <                    return;
783 <            }
839 >            else   // back out if w was shutdown
840 >                decrementWorkerCounts(ONE_RUNNING, 0);
841          }
842      }
843  
844      /**
845 <     * If worker is inactive, blocks until terminating or event count
846 <     * advances from last value held by worker; in any case helps
847 <     * release others.
848 <     *
849 <     * @param w the calling worker thread
845 >     * Tries to increase the number of running workers if below target
846 >     * parallelism: If a spare exists tries to resume it via
847 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
848 >     * existing workers are busy, adds a new worker. In all cases also
849 >     * helps wake up releasable workers waiting for work.
850       */
851 <    private void eventSync(ForkJoinWorkerThread w) {
852 <        if (!w.active) {
853 <            int prev = w.lastEventCount;
854 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
855 <                            ((long)(w.poolIndex + 1)));
856 <            long top;
857 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
858 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
859 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
860 <                   eventCount == prev) {
861 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
862 <                                              w.nextWaiter = top, nextTop)) {
863 <                    accumulateStealCount(w); // transfer steals while idle
864 <                    Thread.interrupted();    // clear/ignore interrupt
865 <                    while (eventCount == prev)
866 <                        w.doPark();
851 >    private void helpMaintainParallelism() {
852 >        int pc = parallelism;
853 >        int wc, rs, tc;
854 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
855 >               (rs = runState) < TERMINATING) {
856 >            if (spareWaiters != 0)
857 >                tryResumeSpare();
858 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
859 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
860 >                break;   // enough total
861 >            else if (runState == rs && workerCounts == wc &&
862 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
863 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
864 >                ForkJoinWorkerThread w = null;
865 >                try {
866 >                    w = factory.newThread(this);
867 >                } finally { // adjust on null or exceptional factory return
868 >                    if (w == null) {
869 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
870 >                        tryTerminate(false); // handle failure during shutdown
871 >                    }
872 >                }
873 >                if (w == null)
874                      break;
875 +                w.start(recordWorker(w), ueh);
876 +                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877 +                    int c; // advance event count
878 +                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879 +                                             c = eventCount, c+1);
880 +                    break; // add at most one unless total below target
881                  }
882              }
813            w.lastEventCount = eventCount;
883          }
884 <        releaseWaiters();
884 >        if (eventWaiters != 0L)
885 >            releaseEventWaiters();
886      }
887  
888      /**
889 <     * Callback from workers invoked upon each top-level action (i.e.,
890 <     * stealing a task or taking a submission and running
891 <     * it). Performs one or both of the following:
889 >     * Callback from the oldest waiter in awaitEvent waking up after a
890 >     * period of non-use. If all workers are idle, tries (once) to
891 >     * shutdown an event waiter or a spare, if one exists. Note that
892 >     * we don't need CAS or locks here because the method is called
893 >     * only from one thread occasionally waking (and even misfires are
894 >     * OK). Note that until the shutdown worker fully terminates,
895 >     * workerCounts will overestimate total count, which is tolerable.
896       *
897 <     * * If the worker cannot find work, updates its active status to
898 <     * inactive and updates activeCount unless there is contention, in
825 <     * which case it may try again (either in this or a subsequent
826 <     * call).  Additionally, awaits the next task event and/or helps
827 <     * wake up other releasable waiters.
828 <     *
829 <     * * If there are too many running threads, suspends this worker
830 <     * (first forcing inactivation if necessary).  If it is not
831 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
832 <     * -- killed while suspended within suspendAsSpare. Otherwise,
833 <     * upon resume it rechecks to make sure that it is still needed.
834 <     *
835 <     * @param w the worker
836 <     * @param worked false if the worker scanned for work but didn't
837 <     * find any (in which case it may block waiting for work).
897 >     * @param ec the event count waited on by caller (to abort
898 >     * attempt if count has since changed).
899       */
900 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
901 <        boolean active = w.active;
902 <        boolean inactivate = !worked & active;
903 <        for (;;) {
904 <            if (inactivate) {
905 <                int c = runState;
906 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
907 <                                             c, c - ONE_ACTIVE))
908 <                    inactivate = active = w.active = false;
900 >    private void tryShutdownUnusedWorker(int ec) {
901 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
902 >            ForkJoinWorkerThread[] ws = workers;
903 >            int n = ws.length;
904 >            ForkJoinWorkerThread w = null;
905 >            boolean shutdown = false;
906 >            int sw;
907 >            long h;
908 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
909 >                int id = (sw & SPARE_ID_MASK) - 1;
910 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
911 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912 >                                             sw, w.nextSpare))
913 >                    shutdown = true;
914              }
915 <            int wc = workerCounts;
916 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
917 <                if (!worked)
918 <                    eventSync(w);
919 <                return;
915 >            else if ((h = eventWaiters) != 0L) {
916 >                long nh;
917 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921 >                    shutdown = true;
922 >            }
923 >            if (w != null && shutdown) {
924 >                w.shutdown();
925 >                LockSupport.unpark(w);
926              }
855            if (!(inactivate |= active) &&  // must inactivate to suspend
856                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
857                                         wc, wc - ONE_RUNNING) &&
858                !w.suspendAsSpare())        // false if trimmed
859                return;
927          }
928 +        releaseEventWaiters(); // in case of interference
929      }
930  
931      /**
932 <     * Adjusts counts and creates or resumes compensating threads for
933 <     * a worker blocking on task joinMe.  First tries resuming an
934 <     * existing spare (which usually also avoids any count
867 <     * adjustment), but must then decrement running count to determine
868 <     * whether a new thread is needed. See above for fuller
869 <     * explanation. This code is sprawled out non-modularly mainly
870 <     * because adaptive spinning works best if the entire method is
871 <     * either interpreted or compiled vs having only some pieces of it
872 <     * compiled.
932 >     * Callback from workers invoked upon each top-level action (i.e.,
933 >     * stealing a task or taking a submission and running it).
934 >     * Performs one or more of the following:
935       *
936 <     * @param joinMe the task to join
937 <     * @return task status on exit (to simplify usage by callers)
936 >     * 1. If the worker is active and either did not run a task
937 >     *    or there are too many workers, try to set its active status
938 >     *    to inactive and update activeCount. On contention, we may
939 >     *    try again in this or a subsequent call.
940 >     *
941 >     * 2. If not enough total workers, help create some.
942 >     *
943 >     * 3. If there are too many running workers, suspend this worker
944 >     *    (first forcing inactive if necessary).  If it is not needed,
945 >     *    it may be shutdown while suspended (via
946 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947 >     *    rechecks running thread count and need for event sync.
948 >     *
949 >     * 4. If worker did not run a task, await the next task event via
950 >     *    eventSync if necessary (first forcing inactivation), upon
951 >     *    which the worker may be shutdown via
952 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
953 >     *    existing event waiters that are now releasable,
954 >     *
955 >     * @param w the worker
956 >     * @param ran true if worker ran a task since last call to this method
957       */
958 <    final int awaitJoin(ForkJoinTask<?> joinMe) {
958 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
959 >        int wec = w.lastEventCount;
960 >        boolean active = w.active;
961 >        boolean inactivate = false;
962          int pc = parallelism;
963 <        boolean adj = false;        // true when running count adjusted
964 <        int scans = 0;
965 <
966 <        while (joinMe.status >= 0) {
967 <            ForkJoinWorkerThread spare = null;
884 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
885 <                ForkJoinWorkerThread[] ws = workers;
886 <                int nws = ws.length;
887 <                for (int i = 0; i < nws; ++i) {
888 <                    ForkJoinWorkerThread w = ws[i];
889 <                    if (w != null && w.isSuspended()) {
890 <                        spare = w;
891 <                        break;
892 <                    }
893 <                }
894 <                if (joinMe.status < 0)
895 <                    break;
896 <            }
963 >        int rs;
964 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967 >                inactivate = active = w.active = false;
968              int wc = workerCounts;
969 <            int rc = wc & RUNNING_COUNT_MASK;
970 <            int dc = pc - rc;
971 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
972 <                if (adj) {
973 <                    int c;
974 <                    do {} while (!UNSAFE.compareAndSwapInt
904 <                                 (this, workerCountsOffset,
905 <                                  c = workerCounts, c + ONE_RUNNING));
906 <                }
907 <                adj = true;
908 <                LockSupport.unpark(spare);
969 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
970 >                if (!(inactivate |= active) && // must inactivate to suspend
971 >                    workerCounts == wc &&      // try to suspend as spare
972 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973 >                                             wc, wc - ONE_RUNNING))
974 >                    w.suspendAsSpare();
975              }
976 <            else if (adj) {
977 <                if (dc <= 0)
976 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977 >                helpMaintainParallelism();     // not enough workers
978 >            else if (!ran) {
979 >                long h = eventWaiters;
980 >                int ec = eventCount;
981 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982 >                    releaseEventWaiters();     // release others before waiting
983 >                else if (ec != wec) {
984 >                    w.lastEventCount = ec;     // no need to wait
985                      break;
913                int tc = wc >>> TOTAL_COUNT_SHIFT;
914                if (scans > tc) {
915                    int ts = (tc - pc) * pc;
916                    if (rc != 0 &&  (dc * dc < ts || !maintainsParallelism))
917                        break;
918                    if (scans > ts && tc < maxPoolSize &&
919                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
920                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
921                        addWorker();
922                        break;
923                    }
986                  }
987 +                else if (!(inactivate |= active))
988 +                    eventSync(w, wec);         // must inactivate before sync
989              }
926            else if (rc != 0)
927                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
928                                                wc, wc - ONE_RUNNING);
929            if ((scans++ & 1) == 0)
930                releaseWaiters();   // help others progress
990              else
991 <                Thread.yield();     // avoid starving productive threads
933 <        }
934 <
935 <        if (adj) {
936 <            joinMe.internalAwaitDone();
937 <            int c;
938 <            do {} while (!UNSAFE.compareAndSwapInt
939 <                         (this, workerCountsOffset,
940 <                          c = workerCounts, c + ONE_RUNNING));
991 >                break;
992          }
942        return joinMe.status;
993      }
994  
995      /**
996 <     * Same idea as awaitJoin
996 >     * Helps and/or blocks awaiting join of the given task.
997 >     * See above for explanation.
998 >     *
999 >     * @param joinMe the task to join
1000 >     * @param worker the current worker thread
1001       */
1002 <    final void awaitBlocker(ManagedBlocker blocker, boolean maintainPar)
1003 <        throws InterruptedException {
1004 <        maintainPar &= maintainsParallelism;
1005 <        int pc = parallelism;
1006 <        boolean adj = false;        // true when running count adjusted
1007 <        int scans = 0;
954 <        boolean done;
955 <
956 <        for (;;) {
957 <            if (done = blocker.isReleasable())
1002 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1003 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1004 >        while (joinMe.status >= 0) {
1005 >            int wc;
1006 >            worker.helpJoinTask(joinMe);
1007 >            if (joinMe.status < 0)
1008                  break;
1009 <            ForkJoinWorkerThread spare = null;
1010 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1011 <                ForkJoinWorkerThread[] ws = workers;
1012 <                int nws = ws.length;
1013 <                for (int i = 0; i < nws; ++i) {
1014 <                    ForkJoinWorkerThread w = ws[i];
1015 <                    if (w != null && w.isSuspended()) {
1016 <                        spare = w;
1017 <                        break;
1018 <                    }
1019 <                }
1020 <                if (done = blocker.isReleasable())
1021 <                    break;
1022 <            }
1023 <            int wc = workerCounts;
974 <            int rc = wc & RUNNING_COUNT_MASK;
975 <            int dc = pc - rc;
976 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
977 <                if (adj) {
978 <                    int c;
979 <                    do {} while (!UNSAFE.compareAndSwapInt
980 <                                 (this, workerCountsOffset,
981 <                                  c = workerCounts, c + ONE_RUNNING));
982 <                }
983 <                adj = true;
984 <                LockSupport.unpark(spare);
985 <            }
986 <            else if (adj) {
987 <                if (dc <= 0)
988 <                    break;
989 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
990 <                if (scans > tc) {
991 <                    int ts = (tc - pc) * pc;
992 <                    if (rc != 0 &&  (dc * dc < ts || !maintainPar))
993 <                        break;
994 <                    if (scans > ts && tc < maxPoolSize &&
995 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
996 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
997 <                        addWorker();
998 <                        break;
999 <                    }
1000 <                }
1001 <            }
1002 <            else if (rc != 0)
1003 <                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1004 <                                                wc, wc - ONE_RUNNING);
1005 <            if ((++scans & 1) == 0)
1006 <                releaseWaiters();   // help others progress
1007 <            else
1008 <                Thread.yield();     // avoid starving productive threads
1009 <        }
1010 <
1011 <        try {
1012 <            if (!done)
1013 <                do {} while (!blocker.isReleasable() && !blocker.block());
1014 <        } finally {
1015 <            if (adj) {
1016 <                int c;
1009 >            else if (retries > 0)
1010 >                --retries;
1011 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1012 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1013 >                                              wc, wc - ONE_RUNNING)) {
1014 >                int stat, c; long h;
1015 >                while ((stat = joinMe.status) >= 0 &&
1016 >                       (h = eventWaiters) != 0L && // help release others
1017 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018 >                    releaseEventWaiters();
1019 >                if (stat >= 0 &&
1020 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021 >                     (stat =
1022 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023 >                    helpMaintainParallelism(); // timeout or no running workers
1024                  do {} while (!UNSAFE.compareAndSwapInt
1025                               (this, workerCountsOffset,
1026                                c = workerCounts, c + ONE_RUNNING));
1027 +                if (stat < 0)
1028 +                    break;   // else restart
1029              }
1030          }
1031      }
1032  
1033      /**
1034 <     * Unless there are not enough other running threads, adjusts
1026 <     * counts and blocks a worker performing helpJoin that cannot find
1027 <     * any work.
1028 <     *
1029 <     * @return true if joinMe now done
1034 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1035       */
1036 <    final boolean tryAwaitBusyJoin(ForkJoinTask<?> joinMe) {
1037 <        int pc = parallelism;
1038 <        outer:for (;;) {
1039 <            releaseWaiters();
1040 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1041 <                ForkJoinWorkerThread[] ws = workers;
1042 <                int nws = ws.length;
1043 <                for (int i = 0; i < nws; ++i) {
1044 <                    ForkJoinWorkerThread w = ws[i];
1045 <                    if (w != null && w.isSuspended()) {
1046 <                        if (joinMe.status < 0)
1047 <                            return true;
1048 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
1036 >    final void awaitBlocker(ManagedBlocker blocker)
1037 >        throws InterruptedException {
1038 >        while (!blocker.isReleasable()) {
1039 >            int wc = workerCounts;
1040 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1041 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1042 >                                         wc, wc - ONE_RUNNING)) {
1043 >                try {
1044 >                    while (!blocker.isReleasable()) {
1045 >                        long h = eventWaiters;
1046 >                        if (h != 0L &&
1047 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1048 >                            releaseEventWaiters();
1049 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1050 >                                 runState < TERMINATING)
1051 >                            helpMaintainParallelism();
1052 >                        else if (blocker.block())
1053                              break;
1045                        if (w.tryUnsuspend()) {
1046                            LockSupport.unpark(w);
1047                            break outer;
1048                        }
1049                        continue outer;
1054                      }
1055 +                } finally {
1056 +                    int c;
1057 +                    do {} while (!UNSAFE.compareAndSwapInt
1058 +                                 (this, workerCountsOffset,
1059 +                                  c = workerCounts, c + ONE_RUNNING));
1060                  }
1052            }
1053            if (joinMe.status < 0)
1054                return true;
1055            int wc = workerCounts;
1056            if ((wc & RUNNING_COUNT_MASK) <= 2 ||
1057                (wc >>> TOTAL_COUNT_SHIFT) < pc)
1058                return false;  // keep this thread alive
1059            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1060                                         wc, wc - ONE_RUNNING))
1061                  break;
1062 +            }
1063          }
1063
1064        joinMe.internalAwaitDone();
1065        int c;
1066        do {} while (!UNSAFE.compareAndSwapInt
1067                     (this, workerCountsOffset,
1068                      c = workerCounts, c + ONE_RUNNING));
1069        return true;
1064      }
1065  
1066      /**
# Line 1090 | Line 1084 | public class ForkJoinPool extends Abstra
1084          // Finish now if all threads terminated; else in some subsequent call
1085          if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1086              advanceRunLevel(TERMINATED);
1087 <            terminationLatch.countDown();
1087 >            termination.arrive();
1088          }
1089          return true;
1090      }
1091  
1092      /**
1093       * Actions on transition to TERMINATING
1094 +     *
1095 +     * Runs up to four passes through workers: (0) shutting down each
1096 +     * (without waking up if parked) to quickly spread notifications
1097 +     * without unnecessary bouncing around event queues etc (1) wake
1098 +     * up and help cancel tasks (2) interrupt (3) mop up races with
1099 +     * interrupted workers
1100       */
1101      private void startTerminating() {
1102 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1103 <            cancelSubmissions();
1104 <            shutdownWorkers();
1105 <            cancelWorkerTasks();
1106 <            advanceEventCount();
1107 <            releaseWaiters();
1108 <            interruptWorkers();
1102 >        cancelSubmissions();
1103 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1104 >            int c; // advance event count
1105 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1106 >                                     c = eventCount, c+1);
1107 >            eventWaiters = 0L; // clobber lists
1108 >            spareWaiters = 0;
1109 >            for (ForkJoinWorkerThread w : workers) {
1110 >                if (w != null) {
1111 >                    w.shutdown();
1112 >                    if (passes > 0 && !w.isTerminated()) {
1113 >                        w.cancelTasks();
1114 >                        LockSupport.unpark(w);
1115 >                        if (passes > 1) {
1116 >                            try {
1117 >                                w.interrupt();
1118 >                            } catch (SecurityException ignore) {
1119 >                            }
1120 >                        }
1121 >                    }
1122 >                }
1123 >            }
1124          }
1125      }
1126  
1127      /**
1128 <     * Clear out and cancel submissions, ignoring exceptions
1128 >     * Clears out and cancels submissions, ignoring exceptions.
1129       */
1130      private void cancelSubmissions() {
1131          ForkJoinTask<?> task;
# Line 1122 | Line 1137 | public class ForkJoinPool extends Abstra
1137          }
1138      }
1139  
1125    /**
1126     * Sets all worker run states to at least shutdown,
1127     * also resuming suspended workers
1128     */
1129    private void shutdownWorkers() {
1130        ForkJoinWorkerThread[] ws = workers;
1131        int nws = ws.length;
1132        for (int i = 0; i < nws; ++i) {
1133            ForkJoinWorkerThread w = ws[i];
1134            if (w != null)
1135                w.shutdown();
1136        }
1137    }
1138
1139    /**
1140     * Clears out and cancels all locally queued tasks
1141     */
1142    private void cancelWorkerTasks() {
1143        ForkJoinWorkerThread[] ws = workers;
1144        int nws = ws.length;
1145        for (int i = 0; i < nws; ++i) {
1146            ForkJoinWorkerThread w = ws[i];
1147            if (w != null)
1148                w.cancelTasks();
1149        }
1150    }
1151
1152    /**
1153     * Unsticks all workers blocked on joins etc
1154     */
1155    private void interruptWorkers() {
1156        ForkJoinWorkerThread[] ws = workers;
1157        int nws = ws.length;
1158        for (int i = 0; i < nws; ++i) {
1159            ForkJoinWorkerThread w = ws[i];
1160            if (w != null && !w.isTerminated()) {
1161                try {
1162                    w.interrupt();
1163                } catch (SecurityException ignore) {
1164                }
1165            }
1166        }
1167    }
1168
1140      // misc support for ForkJoinWorkerThread
1141  
1142      /**
1143 <     * Returns pool number
1143 >     * Returns pool number.
1144       */
1145      final int getPoolNumber() {
1146          return poolNumber;
1147      }
1148  
1149      /**
1150 <     * Accumulates steal count from a worker, clearing
1151 <     * the worker's value
1150 >     * Tries to accumulate steal count from a worker, clearing
1151 >     * the worker's value if successful.
1152 >     *
1153 >     * @return true if worker steal count now zero
1154       */
1155 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1155 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1156          int sc = w.stealCount;
1157 <        if (sc != 0) {
1158 <            long c;
1159 <            w.stealCount = 0;
1160 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1161 <                                                    c = stealCount, c + sc));
1157 >        long c = stealCount;
1158 >        // CAS even if zero, for fence effects
1159 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1160 >            if (sc != 0)
1161 >                w.stealCount = 0;
1162 >            return true;
1163          }
1164 +        return sc == 0;
1165      }
1166  
1167      /**
# Line 1194 | Line 1169 | public class ForkJoinPool extends Abstra
1169       * active thread.
1170       */
1171      final int idlePerActive() {
1172 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1173 <        int pc = parallelism; // use targeted parallelism, not rc
1172 >        int pc = parallelism; // use parallelism, not rc
1173 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1174          // Use exact results for small values, saturate past 4
1175 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1175 >        return ((pc <= ac) ? 0 :
1176 >                (pc >>> 1 <= ac) ? 1 :
1177 >                (pc >>> 2 <= ac) ? 3 :
1178 >                pc >>> 3);
1179      }
1180  
1181      // Public and protected methods
# Line 1206 | Line 1184 | public class ForkJoinPool extends Abstra
1184  
1185      /**
1186       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1187 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1188 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1187 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1188 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1189 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1190       *
1191       * @throws SecurityException if a security manager exists and
1192       *         the caller is not permitted to modify threads
# Line 1216 | Line 1195 | public class ForkJoinPool extends Abstra
1195       */
1196      public ForkJoinPool() {
1197          this(Runtime.getRuntime().availableProcessors(),
1198 <             defaultForkJoinWorkerThreadFactory);
1198 >             defaultForkJoinWorkerThreadFactory, null, false);
1199      }
1200  
1201      /**
1202       * Creates a {@code ForkJoinPool} with the indicated parallelism
1203 <     * level and using the {@linkplain
1204 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1203 >     * level, the {@linkplain
1204 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1205 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1206       *
1207       * @param parallelism the parallelism level
1208       * @throws IllegalArgumentException if parallelism less than or
# Line 1233 | Line 1213 | public class ForkJoinPool extends Abstra
1213       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1214       */
1215      public ForkJoinPool(int parallelism) {
1216 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1216 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1217      }
1218  
1219      /**
1220 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1241 <     * java.lang.Runtime#availableProcessors}, and using the given
1242 <     * thread factory.
1220 >     * Creates a {@code ForkJoinPool} with the given parameters.
1221       *
1222 <     * @param factory the factory for creating new threads
1223 <     * @throws NullPointerException if the factory is null
1224 <     * @throws SecurityException if a security manager exists and
1225 <     *         the caller is not permitted to modify threads
1226 <     *         because it does not hold {@link
1227 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1228 <     */
1229 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1230 <        this(Runtime.getRuntime().availableProcessors(), factory);
1231 <    }
1232 <
1233 <    /**
1234 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1257 <     * thread factory.
1258 <     *
1259 <     * @param parallelism the parallelism level
1260 <     * @param factory the factory for creating new threads
1222 >     * @param parallelism the parallelism level. For default value,
1223 >     * use {@link java.lang.Runtime#availableProcessors}.
1224 >     * @param factory the factory for creating new threads. For default value,
1225 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1226 >     * @param handler the handler for internal worker threads that
1227 >     * terminate due to unrecoverable errors encountered while executing
1228 >     * tasks. For default value, use {@code null}.
1229 >     * @param asyncMode if true,
1230 >     * establishes local first-in-first-out scheduling mode for forked
1231 >     * tasks that are never joined. This mode may be more appropriate
1232 >     * than default locally stack-based mode in applications in which
1233 >     * worker threads only process event-style asynchronous tasks.
1234 >     * For default value, use {@code false}.
1235       * @throws IllegalArgumentException if parallelism less than or
1236       *         equal to zero, or greater than implementation limit
1237       * @throws NullPointerException if the factory is null
# Line 1266 | Line 1240 | public class ForkJoinPool extends Abstra
1240       *         because it does not hold {@link
1241       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1242       */
1243 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1243 >    public ForkJoinPool(int parallelism,
1244 >                        ForkJoinWorkerThreadFactory factory,
1245 >                        Thread.UncaughtExceptionHandler handler,
1246 >                        boolean asyncMode) {
1247          checkPermission();
1248          if (factory == null)
1249              throw new NullPointerException();
1250 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1250 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1251              throw new IllegalArgumentException();
1275        this.poolNumber = poolNumberGenerator.incrementAndGet();
1276        int arraySize = initialArraySizeFor(parallelism);
1252          this.parallelism = parallelism;
1253          this.factory = factory;
1254 <        this.maxPoolSize = MAX_THREADS;
1255 <        this.maintainsParallelism = true;
1254 >        this.ueh = handler;
1255 >        this.locallyFifo = asyncMode;
1256 >        int arraySize = initialArraySizeFor(parallelism);
1257          this.workers = new ForkJoinWorkerThread[arraySize];
1258          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1259          this.workerLock = new ReentrantLock();
1260 <        this.terminationLatch = new CountDownLatch(1);
1260 >        this.termination = new Phaser(1);
1261 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1262      }
1263  
1264      /**
# Line 1289 | Line 1266 | public class ForkJoinPool extends Abstra
1266       * @param pc the initial parallelism level
1267       */
1268      private static int initialArraySizeFor(int pc) {
1269 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1270 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1269 >        // If possible, initially allocate enough space for one spare
1270 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1271 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1272          size |= size >>> 1;
1273          size |= size >>> 2;
1274          size |= size >>> 4;
# Line 1309 | Line 1287 | public class ForkJoinPool extends Abstra
1287          if (runState >= SHUTDOWN)
1288              throw new RejectedExecutionException();
1289          submissionQueue.offer(task);
1290 <        advanceEventCount();
1291 <        releaseWaiters();
1292 <        ensureEnoughTotalWorkers();
1290 >        int c; // try to increment event count -- CAS failure OK
1291 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1292 >        helpMaintainParallelism(); // create, start, or resume some workers
1293      }
1294  
1295      /**
# Line 1357 | Line 1335 | public class ForkJoinPool extends Abstra
1335      }
1336  
1337      /**
1338 +     * Submits a ForkJoinTask for execution.
1339 +     *
1340 +     * @param task the task to submit
1341 +     * @return the task
1342 +     * @throws NullPointerException if the task is null
1343 +     * @throws RejectedExecutionException if the task cannot be
1344 +     *         scheduled for execution
1345 +     */
1346 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1347 +        doSubmit(task);
1348 +        return task;
1349 +    }
1350 +
1351 +    /**
1352       * @throws NullPointerException if the task is null
1353       * @throws RejectedExecutionException if the task cannot be
1354       *         scheduled for execution
# Line 1394 | Line 1386 | public class ForkJoinPool extends Abstra
1386      }
1387  
1388      /**
1397     * Submits a ForkJoinTask for execution.
1398     *
1399     * @param task the task to submit
1400     * @return the task
1401     * @throws NullPointerException if the task is null
1402     * @throws RejectedExecutionException if the task cannot be
1403     *         scheduled for execution
1404     */
1405    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1406        doSubmit(task);
1407        return task;
1408    }
1409
1410    /**
1389       * @throws NullPointerException       {@inheritDoc}
1390       * @throws RejectedExecutionException {@inheritDoc}
1391       */
# Line 1449 | Line 1427 | public class ForkJoinPool extends Abstra
1427       * @return the handler, or {@code null} if none
1428       */
1429      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1452        workerCountReadFence();
1430          return ueh;
1431      }
1432  
1433      /**
1457     * Sets the handler for internal worker threads that terminate due
1458     * to unrecoverable errors encountered while executing tasks.
1459     * Unless set, the current default or ThreadGroup handler is used
1460     * as handler.
1461     *
1462     * @param h the new handler
1463     * @return the old handler, or {@code null} if none
1464     * @throws SecurityException if a security manager exists and
1465     *         the caller is not permitted to modify threads
1466     *         because it does not hold {@link
1467     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1468     */
1469    public Thread.UncaughtExceptionHandler
1470        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1471        checkPermission();
1472        Thread.UncaughtExceptionHandler old = ueh;
1473        if (h != old) {
1474            ueh = h;
1475            ForkJoinWorkerThread[] ws = workers;
1476            int nws = ws.length;
1477            for (int i = 0; i < nws; ++i) {
1478                ForkJoinWorkerThread w = ws[i];
1479                if (w != null)
1480                    w.setUncaughtExceptionHandler(h);
1481            }
1482        }
1483        return old;
1484    }
1485
1486    /**
1487     * Sets the target parallelism level of this pool.
1488     *
1489     * @param parallelism the target parallelism
1490     * @throws IllegalArgumentException if parallelism less than or
1491     * equal to zero or greater than maximum size bounds
1492     * @throws SecurityException if a security manager exists and
1493     *         the caller is not permitted to modify threads
1494     *         because it does not hold {@link
1495     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1496     */
1497    public void setParallelism(int parallelism) {
1498        checkPermission();
1499        if (parallelism <= 0 || parallelism > maxPoolSize)
1500            throw new IllegalArgumentException();
1501        workerCountReadFence();
1502        int pc = this.parallelism;
1503        if (pc != parallelism) {
1504            this.parallelism = parallelism;
1505            workerCountWriteFence();
1506            // Release spares. If too many, some will die after re-suspend
1507            ForkJoinWorkerThread[] ws = workers;
1508            int nws = ws.length;
1509            for (int i = 0; i < nws; ++i) {
1510                ForkJoinWorkerThread w = ws[i];
1511                if (w != null && w.tryUnsuspend()) {
1512                    int c;
1513                    do {} while (!UNSAFE.compareAndSwapInt
1514                                 (this, workerCountsOffset,
1515                                  c = workerCounts, c + ONE_RUNNING));
1516                    LockSupport.unpark(w);
1517                }
1518            }
1519            ensureEnoughTotalWorkers();
1520            advanceEventCount();
1521            releaseWaiters(); // force config recheck by existing workers
1522        }
1523    }
1524
1525    /**
1434       * Returns the targeted parallelism level of this pool.
1435       *
1436       * @return the targeted parallelism level of this pool
1437       */
1438      public int getParallelism() {
1531        //        workerCountReadFence(); // inlined below
1532        int ignore = workerCounts;
1439          return parallelism;
1440      }
1441  
# Line 1546 | Line 1452 | public class ForkJoinPool extends Abstra
1452      }
1453  
1454      /**
1549     * Returns the maximum number of threads allowed to exist in the
1550     * pool. Unless set using {@link #setMaximumPoolSize}, the
1551     * maximum is an implementation-defined value designed only to
1552     * prevent runaway growth.
1553     *
1554     * @return the maximum
1555     */
1556    public int getMaximumPoolSize() {
1557        workerCountReadFence();
1558        return maxPoolSize;
1559    }
1560
1561    /**
1562     * Sets the maximum number of threads allowed to exist in the
1563     * pool. The given value should normally be greater than or equal
1564     * to the {@link #getParallelism parallelism} level. Setting this
1565     * value has no effect on current pool size. It controls
1566     * construction of new threads. The use of this method may cause
1567     * tasks that intrinsically require extra threads for dependent
1568     * computations to indefinitely stall. If you are instead trying
1569     * to minimize internal thread creation, consider setting {@link
1570     * #setMaintainsParallelism} as false.
1571     *
1572     * @throws IllegalArgumentException if negative or greater than
1573     * internal implementation limit
1574     */
1575    public void setMaximumPoolSize(int newMax) {
1576        if (newMax < 0 || newMax > MAX_THREADS)
1577            throw new IllegalArgumentException();
1578        maxPoolSize = newMax;
1579        workerCountWriteFence();
1580    }
1581
1582    /**
1583     * Returns {@code true} if this pool dynamically maintains its
1584     * target parallelism level. If false, new threads are added only
1585     * to avoid possible starvation.  This setting is by default true.
1586     *
1587     * @return {@code true} if maintains parallelism
1588     */
1589    public boolean getMaintainsParallelism() {
1590        workerCountReadFence();
1591        return maintainsParallelism;
1592    }
1593
1594    /**
1595     * Sets whether this pool dynamically maintains its target
1596     * parallelism level. If false, new threads are added only to
1597     * avoid possible starvation.
1598     *
1599     * @param enable {@code true} to maintain parallelism
1600     */
1601    public void setMaintainsParallelism(boolean enable) {
1602        maintainsParallelism = enable;
1603        workerCountWriteFence();
1604    }
1605
1606    /**
1607     * Establishes local first-in-first-out scheduling mode for forked
1608     * tasks that are never joined. This mode may be more appropriate
1609     * than default locally stack-based mode in applications in which
1610     * worker threads only process asynchronous tasks.  This method is
1611     * designed to be invoked only when the pool is quiescent, and
1612     * typically only before any tasks are submitted. The effects of
1613     * invocations at other times may be unpredictable.
1614     *
1615     * @param async if {@code true}, use locally FIFO scheduling
1616     * @return the previous mode
1617     * @see #getAsyncMode
1618     */
1619    public boolean setAsyncMode(boolean async) {
1620        workerCountReadFence();
1621        boolean oldMode = locallyFifo;
1622        if (oldMode != async) {
1623            locallyFifo = async;
1624            workerCountWriteFence();
1625            ForkJoinWorkerThread[] ws = workers;
1626            int nws = ws.length;
1627            for (int i = 0; i < nws; ++i) {
1628                ForkJoinWorkerThread w = ws[i];
1629                if (w != null)
1630                    w.setAsyncMode(async);
1631            }
1632        }
1633        return oldMode;
1634    }
1635
1636    /**
1455       * Returns {@code true} if this pool uses local first-in-first-out
1456       * scheduling mode for forked tasks that are never joined.
1457       *
1458       * @return {@code true} if this pool uses async mode
1641     * @see #setAsyncMode
1459       */
1460      public boolean getAsyncMode() {
1644        workerCountReadFence();
1461          return locallyFifo;
1462      }
1463  
# Line 1710 | Line 1526 | public class ForkJoinPool extends Abstra
1526       */
1527      public long getQueuedTaskCount() {
1528          long count = 0;
1529 <        ForkJoinWorkerThread[] ws = workers;
1714 <        int nws = ws.length;
1715 <        for (int i = 0; i < nws; ++i) {
1716 <            ForkJoinWorkerThread w = ws[i];
1529 >        for (ForkJoinWorkerThread w : workers)
1530              if (w != null)
1531                  count += w.getQueueSize();
1719        }
1532          return count;
1533      }
1534  
# Line 1770 | Line 1582 | public class ForkJoinPool extends Abstra
1582       * @return the number of elements transferred
1583       */
1584      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1585 <        int n = submissionQueue.drainTo(c);
1586 <        ForkJoinWorkerThread[] ws = workers;
1775 <        int nws = ws.length;
1776 <        for (int i = 0; i < nws; ++i) {
1777 <            ForkJoinWorkerThread w = ws[i];
1585 >        int count = submissionQueue.drainTo(c);
1586 >        for (ForkJoinWorkerThread w : workers)
1587              if (w != null)
1588 <                n += w.drainTasksTo(c);
1589 <        }
1781 <        return n;
1588 >                count += w.drainTasksTo(c);
1589 >        return count;
1590      }
1591  
1592      /**
# Line 1902 | Line 1710 | public class ForkJoinPool extends Abstra
1710       */
1711      public boolean awaitTermination(long timeout, TimeUnit unit)
1712          throws InterruptedException {
1713 <        return terminationLatch.await(timeout, unit);
1713 >        try {
1714 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1715 >        } catch (TimeoutException ex) {
1716 >            return false;
1717 >        }
1718      }
1719  
1720      /**
1721       * Interface for extending managed parallelism for tasks running
1722       * in {@link ForkJoinPool}s.
1723       *
1724 <     * <p>A {@code ManagedBlocker} provides two methods.
1725 <     * Method {@code isReleasable} must return {@code true} if
1726 <     * blocking is not necessary. Method {@code block} blocks the
1727 <     * current thread if necessary (perhaps internally invoking
1728 <     * {@code isReleasable} before actually blocking).
1724 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1725 >     * {@code isReleasable} must return {@code true} if blocking is
1726 >     * not necessary. Method {@code block} blocks the current thread
1727 >     * if necessary (perhaps internally invoking {@code isReleasable}
1728 >     * before actually blocking). The unusual methods in this API
1729 >     * accommodate synchronizers that may, but don't usually, block
1730 >     * for long periods. Similarly, they allow more efficient internal
1731 >     * handling of cases in which additional workers may be, but
1732 >     * usually are not, needed to ensure sufficient parallelism.
1733 >     * Toward this end, implementations of method {@code isReleasable}
1734 >     * must be amenable to repeated invocation.
1735       *
1736       * <p>For example, here is a ManagedBlocker based on a
1737       * ReentrantLock:
# Line 1931 | Line 1749 | public class ForkJoinPool extends Abstra
1749       *     return hasLock || (hasLock = lock.tryLock());
1750       *   }
1751       * }}</pre>
1752 +     *
1753 +     * <p>Here is a class that possibly blocks waiting for an
1754 +     * item on a given queue:
1755 +     *  <pre> {@code
1756 +     * class QueueTaker<E> implements ManagedBlocker {
1757 +     *   final BlockingQueue<E> queue;
1758 +     *   volatile E item = null;
1759 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1760 +     *   public boolean block() throws InterruptedException {
1761 +     *     if (item == null)
1762 +     *       item = queue.take();
1763 +     *     return true;
1764 +     *   }
1765 +     *   public boolean isReleasable() {
1766 +     *     return item != null || (item = queue.poll()) != null;
1767 +     *   }
1768 +     *   public E getItem() { // call after pool.managedBlock completes
1769 +     *     return item;
1770 +     *   }
1771 +     * }}</pre>
1772       */
1773      public static interface ManagedBlocker {
1774          /**
# Line 1954 | Line 1792 | public class ForkJoinPool extends Abstra
1792       * Blocks in accord with the given blocker.  If the current thread
1793       * is a {@link ForkJoinWorkerThread}, this method possibly
1794       * arranges for a spare thread to be activated if necessary to
1795 <     * ensure parallelism while the current thread is blocked.
1958 <     *
1959 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1960 <     * supports it ({@link #getMaintainsParallelism}), this method
1961 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1962 <     * it activates a thread only if necessary to avoid complete
1963 <     * starvation. This option may be preferable when blockages use
1964 <     * timeouts, or are almost always brief.
1795 >     * ensure sufficient parallelism while the current thread is blocked.
1796       *
1797       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1798       * behaviorally equivalent to
# Line 1975 | Line 1806 | public class ForkJoinPool extends Abstra
1806       * first be expanded to ensure parallelism, and later adjusted.
1807       *
1808       * @param blocker the blocker
1978     * @param maintainParallelism if {@code true} and supported by
1979     * this pool, attempt to maintain the pool's nominal parallelism;
1980     * otherwise activate a thread only if necessary to avoid
1981     * complete starvation.
1809       * @throws InterruptedException if blocker.block did so
1810       */
1811 <    public static void managedBlock(ManagedBlocker blocker,
1985 <                                    boolean maintainParallelism)
1811 >    public static void managedBlock(ManagedBlocker blocker)
1812          throws InterruptedException {
1813          Thread t = Thread.currentThread();
1814 <        if (t instanceof ForkJoinWorkerThread)
1815 <            ((ForkJoinWorkerThread) t).pool.
1816 <                awaitBlocker(blocker, maintainParallelism);
1817 <        else
1818 <            awaitBlocker(blocker);
1819 <    }
1820 <
1995 <    /**
1996 <     * Performs Non-FJ blocking
1997 <     */
1998 <    private static void awaitBlocker(ManagedBlocker blocker)
1999 <        throws InterruptedException {
2000 <        do {} while (!blocker.isReleasable() && !blocker.block());
1814 >        if (t instanceof ForkJoinWorkerThread) {
1815 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1816 >            w.pool.awaitBlocker(blocker);
1817 >        }
1818 >        else {
1819 >            do {} while (!blocker.isReleasable() && !blocker.block());
1820 >        }
1821      }
1822  
1823      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2025 | Line 1845 | public class ForkJoinPool extends Abstra
1845          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1846      private static final long stealCountOffset =
1847          objectFieldOffset("stealCount",ForkJoinPool.class);
1848 <
1848 >    private static final long spareWaitersOffset =
1849 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1850  
1851      private static long objectFieldOffset(String field, Class<?> klazz) {
1852          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines