ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.57 by dl, Wed Jul 7 19:52:31 2010 UTC vs.
Revision 1.140 by dl, Wed Nov 14 17:20:37 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. The pool attempts to maintain enough active (or
50 < * available) threads by dynamically adding, suspending, or resuming
51 < * internal worker threads, even if some tasks are stalled waiting to
52 < * join others. However, no such adjustments are guaranteed in the
53 < * face of blocked IO or other unmanaged synchronization. The nested
54 < * {@link ManagedBlocker} interface enables extension of the kinds of
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 52 | Line 63 | import java.util.concurrent.CountDownLat
63   * convenient form for informal monitoring.
64   *
65   * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the follwoing
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table. To avoid inadvertant
75 < * cyclic task dependencies and to improve performance, task
65 < * submissions to the current pool by an ongoing fork/join
66 < * computations may be implicitly translated to the corresponding
67 < * ForkJoinTask forms.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 73 | Line 81 | import java.util.concurrent.CountDownLat
81   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82   *  </tr>
83   *  <tr>
84 < *    <td> <b>Arange async execution</td>
84 > *    <td> <b>Arrange async execution</td>
85   *    <td> {@link #execute(ForkJoinTask)}</td>
86   *    <td> {@link ForkJoinTask#fork}</td>
87   *  </tr>
# Line 88 | Line 96 | import java.util.concurrent.CountDownLat
96   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97   *  </tr>
98   * </table>
91 *
92 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
93 * used for all parallel task execution in a program or subsystem.
94 * Otherwise, use would not usually outweigh the construction and
95 * bookkeeping overhead of creating a large set of threads. For
96 * example, a common pool could be used for the {@code SortTasks}
97 * illustrated in {@link RecursiveAction}. Because {@code
98 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
99 * daemon} mode, there is typically no need to explicitly {@link
100 * #shutdown} such a pool upon program exit.
99   *
100 < * <pre>
101 < * static final ForkJoinPool mainPool = new ForkJoinPool();
102 < * ...
103 < * public void sort(long[] array) {
104 < *   mainPool.invoke(new SortTask(array, 0, array.length));
105 < * }
106 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
108 > * these settings, default parameters are used.
109   *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
# Line 113 | Line 113 | import java.util.concurrent.CountDownLat
113   * {@code IllegalArgumentException}.
114   *
115   * <p>This implementation rejects submitted tasks (that is, by throwing
116 < * {@link RejectedExecutionException}) only when the pool is shut down.
116 > * {@link RejectedExecutionException}) only when the pool is shut down
117 > * or internal resources have been exhausted.
118   *
119   * @since 1.7
120   * @author Doug Lea
# Line 123 | Line 124 | public class ForkJoinPool extends Abstra
124      /*
125       * Implementation Overview
126       *
127 <     * This class provides the central bookkeeping and control for a
128 <     * set of worker threads: Submissions from non-FJ threads enter
129 <     * into a submission queue. Workers take these tasks and typically
130 <     * split them into subtasks that may be stolen by other workers.
131 <     * The main work-stealing mechanics implemented in class
132 <     * ForkJoinWorkerThread give first priority to processing tasks
133 <     * from their own queues (LIFO or FIFO, depending on mode), then
134 <     * to randomized FIFO steals of tasks in other worker queues, and
135 <     * lastly to new submissions. These mechanics do not consider
136 <     * affinities, loads, cache localities, etc, so rarely provide the
137 <     * best possible performance on a given machine, but portably
138 <     * provide good throughput by averaging over these factors.
139 <     * (Further, even if we did try to use such information, we do not
140 <     * usually have a basis for exploiting it. For example, some sets
141 <     * of tasks profit from cache affinities, but others are harmed by
142 <     * cache pollution effects.)
127 >     * This class and its nested classes provide the main
128 >     * functionality and control for a set of worker threads:
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135 >     *
136 >     * WorkQueues
137 >     * ==========
138 >     *
139 >     * Most operations occur within work-stealing queues (in nested
140 >     * class WorkQueue).  These are special forms of Deques that
141 >     * support only three of the four possible end-operations -- push,
142 >     * pop, and poll (aka steal), under the further constraints that
143 >     * push and pop are called only from the owning thread (or, as
144 >     * extended here, under a lock), while poll may be called from
145 >     * other threads.  (If you are unfamiliar with them, you probably
146 >     * want to read Herlihy and Shavit's book "The Art of
147 >     * Multiprocessor programming", chapter 16 describing these in
148 >     * more detail before proceeding.)  The main work-stealing queue
149 >     * design is roughly similar to those in the papers "Dynamic
150 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151 >     * (http://research.sun.com/scalable/pubs/index.html) and
152 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 >     * The main differences ultimately stem from GC requirements that
155 >     * we null out taken slots as soon as we can, to maintain as small
156 >     * a footprint as possible even in programs generating huge
157 >     * numbers of tasks. To accomplish this, we shift the CAS
158 >     * arbitrating pop vs poll (steal) from being on the indices
159 >     * ("base" and "top") to the slots themselves.  So, both a
160 >     * successful pop and poll mainly entail a CAS of a slot from
161 >     * non-null to null.  Because we rely on CASes of references, we
162 >     * do not need tag bits on base or top.  They are simple ints as
163 >     * used in any circular array-based queue (see for example
164 >     * ArrayDeque).  Updates to the indices must still be ordered in a
165 >     * way that guarantees that top == base means the queue is empty,
166 >     * but otherwise may err on the side of possibly making the queue
167 >     * appear nonempty when a push, pop, or poll have not fully
168 >     * committed. Note that this means that the poll operation,
169 >     * considered individually, is not wait-free. One thief cannot
170 >     * successfully continue until another in-progress one (or, if
171 >     * previously empty, a push) completes.  However, in the
172 >     * aggregate, we ensure at least probabilistic non-blockingness.
173 >     * If an attempted steal fails, a thief always chooses a different
174 >     * random victim target to try next. So, in order for one thief to
175 >     * progress, it suffices for any in-progress poll or new push on
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180 >     *
181 >     * This approach also enables support of a user mode in which local
182 >     * task processing is in FIFO, not LIFO order, simply by using
183 >     * poll rather than pop.  This can be useful in message-passing
184 >     * frameworks in which tasks are never joined.  However neither
185 >     * mode considers affinities, loads, cache localities, etc, so
186 >     * rarely provide the best possible performance on a given
187 >     * machine, but portably provide good throughput by averaging over
188 >     * these factors.  (Further, even if we did try to use such
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192 >     *
193 >     * WorkQueues are also used in a similar way for tasks submitted
194 >     * to the pool. We cannot mix these tasks in the same queues used
195 >     * for work-stealing (this would contaminate lifo/fifo
196 >     * processing). Instead, we randomly associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they are
202 >     * restricted to executing local tasks that they submitted (or in
203 >     * the case of CountedCompleters, others with the same root task).
204 >     * However, because most shared/external queue operations are more
205 >     * expensive than internal, and because, at steady state, external
206 >     * submitters will compete for CPU with workers, ForkJoinTask.join
207 >     * and related methods disable them from repeatedly helping to
208 >     * process tasks if all workers are active.  Insertion of tasks in
209 >     * shared mode requires a lock (mainly to protect in the case of
210 >     * resizing) but we use only a simple spinlock (using bits in
211 >     * field qlock), because submitters encountering a busy queue move
212 >     * on to try or create other queues -- they block only when
213 >     * creating and registering new queues.
214 >     *
215 >     * Management
216 >     * ==========
217       *
218       * The main throughput advantages of work-stealing stem from
219 <     * decentralized control -- workers mostly steal tasks from each
220 <     * other. We do not want to negate this by creating bottlenecks
221 <     * implementing the management responsibilities of this class. So
222 <     * we use a collection of techniques that avoid, reduce, or cope
223 <     * well with contention. These entail several instances of
224 <     * bit-packing into CASable fields to maintain only the minimally
225 <     * required atomicity. To enable such packing, we restrict maximum
226 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
227 <     * bit field), which is far in excess of normal operating range.
228 <     * Even though updates to some of these bookkeeping fields do
229 <     * sometimes contend with each other, they don't normally
230 <     * cache-contend with updates to others enough to warrant memory
231 <     * padding or isolation. So they are all held as fields of
232 <     * ForkJoinPool objects.  The main capabilities are as follows:
233 <     *
234 <     * 1. Creating and removing workers. Workers are recorded in the
235 <     * "workers" array. This is an array as opposed to some other data
236 <     * structure to support index-based random steals by workers.
237 <     * Updates to the array recording new workers and unrecording
238 <     * terminated ones are protected from each other by a lock
239 <     * (workerLock) but the array is otherwise concurrently readable,
240 <     * and accessed directly by workers. To simplify index-based
241 <     * operations, the array size is always a power of two, and all
242 <     * readers must tolerate null slots. Currently, all worker thread
243 <     * creation is on-demand, triggered by task submissions,
244 <     * replacement of terminated workers, and/or compensation for
245 <     * blocked workers. However, all other support code is set up to
246 <     * work with other policies.
247 <     *
248 <     * 2. Bookkeeping for dynamically adding and removing workers. We
249 <     * aim to approximately maintain the given level of parallelism.
250 <     * When some workers are known to be blocked (on joins or via
251 <     * ManagedBlocker), we may create or resume others to take their
252 <     * place until they unblock (see below). Implementing this
253 <     * requires counts of the number of "running" threads (i.e., those
254 <     * that are neither blocked nor artifically suspended) as well as
255 <     * the total number.  These two values are packed into one field,
256 <     * "workerCounts" because we need accurate snapshots when deciding
257 <     * to create, resume or suspend.  To support these decisions,
258 <     * updates to spare counts must be prospective (not
259 <     * retrospective).  For example, the running count is decremented
260 <     * before blocking by a thread about to block as a spare, but
261 <     * incremented by the thread about to unblock it. Updates upon
262 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
263 <     * cannot usually be prospective, so the running count is in
264 <     * general an upper bound of the number of productively running
265 <     * threads Updates to the workerCounts field sometimes transiently
266 <     * encounter a fair amount of contention when join dependencies
267 <     * are such that many threads block or unblock at about the same
268 <     * time. We alleviate this by sometimes performing an alternative
269 <     * action on contention like releasing waiters or locating spares.
270 <     *
271 <     * 3. Maintaining global run state. The run state of the pool
272 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
273 <     * those in other Executor implementations, as well as a count of
274 <     * "active" workers -- those that are, or soon will be, or
275 <     * recently were executing tasks. The runLevel and active count
276 <     * are packed together in order to correctly trigger shutdown and
277 <     * termination. Without care, active counts can be subject to very
278 <     * high contention.  We substantially reduce this contention by
279 <     * relaxing update rules.  A worker must claim active status
280 <     * prospectively, by activating if it sees that a submitted or
281 <     * stealable task exists (it may find after activating that the
282 <     * task no longer exists). It stays active while processing this
283 <     * task (if it exists) and any other local subtasks it produces,
284 <     * until it cannot find any other tasks. It then tries
285 <     * inactivating (see method preStep), but upon update contention
286 <     * instead scans for more tasks, later retrying inactivation if it
287 <     * doesn't find any.
288 <     *
289 <     * 4. Managing idle workers waiting for tasks. We cannot let
290 <     * workers spin indefinitely scanning for tasks when none are
291 <     * available. On the other hand, we must quickly prod them into
292 <     * action when new tasks are submitted or generated.  We
293 <     * park/unpark these idle workers using an event-count scheme.
294 <     * Field eventCount is incremented upon events that may enable
295 <     * workers that previously could not find a task to now find one:
296 <     * Submission of a new task to the pool, or another worker pushing
297 <     * a task onto a previously empty queue.  (We also use this
298 <     * mechanism for termination and reconfiguration actions that
299 <     * require wakeups of idle workers).  Each worker maintains its
300 <     * last known event count, and blocks when a scan for work did not
301 <     * find a task AND its lastEventCount matches the current
302 <     * eventCount. Waiting idle workers are recorded in a variant of
303 <     * Treiber stack headed by field eventWaiters which, when nonzero,
304 <     * encodes the thread index and count awaited for by the worker
305 <     * thread most recently calling eventSync. This thread in turn has
306 <     * a record (field nextEventWaiter) for the next waiting worker.
307 <     * In addition to allowing simpler decisions about need for
308 <     * wakeup, the event count bits in eventWaiters serve the role of
309 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
310 <     * in task diffusion, workers not otherwise occupied may invoke
311 <     * method releaseWaiters, that removes and signals (unparks)
312 <     * workers not waiting on current count. To minimize task
313 <     * production stalls associate with signalling, any worker pushing
314 <     * a task on an empty queue invokes the weaker method signalWork,
315 <     * that only releases idle workers until it detects interference
316 <     * by other threads trying to release, and lets them take
317 <     * over. The net effect is a tree-like diffusion of signals, where
318 <     * released threads (and possibly others) help with unparks.  To
319 <     * further reduce contention effects a bit, failed CASes to
320 <     * increment field eventCount are tolerated without retries.
321 <     * Conceptually they are merged into the same event, which is OK
322 <     * when their only purpose is to enable workers to scan for work.
323 <     *
324 <     * 5. Managing suspension of extra workers. When a worker is about
325 <     * to block waiting for a join (or via ManagedBlockers), we may
326 <     * create a new thread to maintain parallelism level, or at least
327 <     * avoid starvation (see below). Usually, extra threads are needed
328 <     * for only very short periods, yet join dependencies are such
329 <     * that we sometimes need them in bursts. Rather than create new
330 <     * threads each time this happens, we suspend no-longer-needed
331 <     * extra ones as "spares". For most purposes, we don't distinguish
332 <     * "extra" spare threads from normal "core" threads: On each call
333 <     * to preStep (the only point at which we can do this) a worker
334 <     * checks to see if there are now too many running workers, and if
335 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
336 <     * for suspended threads to resume before considering creating a
337 <     * new replacement. We don't need a special data structure to
338 <     * maintain spares; simply scanning the workers array looking for
339 <     * worker.isSuspended() is fine because the calling thread is
340 <     * otherwise not doing anything useful anyway; we are at least as
341 <     * happy if after locating a spare, the caller doesn't actually
342 <     * block because the join is ready before we try to adjust and
343 <     * compensate.  Note that this is intrinsically racy.  One thread
344 <     * may become a spare at about the same time as another is
345 <     * needlessly being created. We counteract this and related slop
346 <     * in part by requiring resumed spares to immediately recheck (in
347 <     * preStep) to see whether they they should re-suspend. The only
348 <     * effective difference between "extra" and "core" threads is that
349 <     * we allow the "extra" ones to time out and die if they are not
350 <     * resumed within a keep-alive interval of a few seconds. This is
351 <     * implemented mainly within ForkJoinWorkerThread, but requires
352 <     * some coordination (isTrimmed() -- meaning killed while
353 <     * suspended) to correctly maintain pool counts.
354 <     *
355 <     * 6. Deciding when to create new workers. The main dynamic
356 <     * control in this class is deciding when to create extra threads,
357 <     * in methods awaitJoin and awaitBlocker. We always need to create
358 <     * one when the number of running threads becomes zero. But
359 <     * because blocked joins are typically dependent, we don't
360 <     * necessarily need or want one-to-one replacement. Instead, we
361 <     * use a combination of heuristics that adds threads only when the
362 <     * pool appears to be approaching starvation.  These effectively
363 <     * reduce churn at the price of systematically undershooting
364 <     * target parallelism when many threads are blocked.  However,
365 <     * biasing toward undeshooting partially compensates for the above
366 <     * mechanics to suspend extra threads, that normally lead to
367 <     * overshoot because we can only suspend workers in-between
368 <     * top-level actions. It also better copes with the fact that some
369 <     * of the methods in this class tend to never become compiled (but
370 <     * are interpreted), so some components of the entire set of
371 <     * controls might execute many times faster than others. And
372 <     * similarly for cases where the apparent lack of work is just due
373 <     * to GC stalls and other transient system activity.
374 <     *
375 <     * Beware that there is a lot of representation-level coupling
376 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
377 <     * ForkJoinTask.  For example, direct access to "workers" array by
378 <     * workers, and direct access to ForkJoinTask.status by both
379 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
219 >     * decentralized control -- workers mostly take tasks from
220 >     * themselves or each other. We cannot negate this in the
221 >     * implementation of other management responsibilities. The main
222 >     * tactic for avoiding bottlenecks is packing nearly all
223 >     * essentially atomic control state into two volatile variables
224 >     * that are by far most often read (not written) as status and
225 >     * consistency checks.
226 >     *
227 >     * Field "ctl" contains 64 bits holding all the information needed
228 >     * to atomically decide to add, inactivate, enqueue (on an event
229 >     * queue), dequeue, and/or re-activate workers.  To enable this
230 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231 >     * far in excess of normal operating range) to allow ids, counts,
232 >     * and their negations (used for thresholding) to fit into 16bit
233 >     * fields.
234 >     *
235 >     * Field "plock" is a form of sequence lock with a saturating
236 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
237 >     * protecting updates to the workQueues array, as well as to
238 >     * enable shutdown.  When used as a lock, it is normally only very
239 >     * briefly held, so is nearly always available after at most a
240 >     * brief spin, but we use a monitor-based backup strategy to
241 >     * blocking when needed.
242 >     *
243 >     * Recording WorkQueues.  WorkQueues are recorded in the
244 >     * "workQueues" array that is created upon first use and expanded
245 >     * if necessary.  Updates to the array while recording new workers
246 >     * and unrecording terminated ones are protected from each other
247 >     * by a lock but the array is otherwise concurrently readable, and
248 >     * accessed directly.  To simplify index-based operations, the
249 >     * array size is always a power of two, and all readers must
250 >     * tolerate null slots. Worker queues are at odd indices Shared
251 >     * (submission) queues are at even indices, up to a maximum of 64
252 >     * slots, to limit growth even if array needs to expand to add
253 >     * more workers. Grouping them together in this way simplifies and
254 >     * speeds up task scanning.
255 >     *
256 >     * All worker thread creation is on-demand, triggered by task
257 >     * submissions, replacement of terminated workers, and/or
258 >     * compensation for blocked workers. However, all other support
259 >     * code is set up to work with other policies.  To ensure that we
260 >     * do not hold on to worker references that would prevent GC, ALL
261 >     * accesses to workQueues are via indices into the workQueues
262 >     * array (which is one source of some of the messy code
263 >     * constructions here). In essence, the workQueues array serves as
264 >     * a weak reference mechanism. Thus for example the wait queue
265 >     * field of ctl stores indices, not references.  Access to the
266 >     * workQueues in associated methods (for example signalWork) must
267 >     * both index-check and null-check the IDs. All such accesses
268 >     * ignore bad IDs by returning out early from what they are doing,
269 >     * since this can only be associated with termination, in which
270 >     * case it is OK to give up.  All uses of the workQueues array
271 >     * also check that it is non-null (even if previously
272 >     * non-null). This allows nulling during termination, which is
273 >     * currently not necessary, but remains an option for
274 >     * resource-revocation-based shutdown schemes. It also helps
275 >     * reduce JIT issuance of uncommon-trap code, which tends to
276 >     * unnecessarily complicate control flow in some methods.
277 >     *
278 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
279 >     * let workers spin indefinitely scanning for tasks when none can
280 >     * be found immediately, and we cannot start/resume workers unless
281 >     * there appear to be tasks available.  On the other hand, we must
282 >     * quickly prod them into action when new tasks are submitted or
283 >     * generated. In many usages, ramp-up time to activate workers is
284 >     * the main limiting factor in overall performance (this is
285 >     * compounded at program start-up by JIT compilation and
286 >     * allocation). So we try to streamline this as much as possible.
287 >     * We park/unpark workers after placing in an event wait queue
288 >     * when they cannot find work. This "queue" is actually a simple
289 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
290 >     * counter value (that reflects the number of times a worker has
291 >     * been inactivated) to avoid ABA effects (we need only as many
292 >     * version numbers as worker threads). Successors are held in
293 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
294 >     * races, mainly that a task-producing thread can miss seeing (and
295 >     * signalling) another thread that gave up looking for work but
296 >     * has not yet entered the wait queue. We solve this by requiring
297 >     * a full sweep of all workers (via repeated calls to method
298 >     * scan()) both before and after a newly waiting worker is added
299 >     * to the wait queue. During a rescan, the worker might release
300 >     * some other queued worker rather than itself, which has the same
301 >     * net effect. Because enqueued workers may actually be rescanning
302 >     * rather than waiting, we set and clear the "parker" field of
303 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
304 >     * requires a secondary recheck to avoid missed signals.)  Note
305 >     * the unusual conventions about Thread.interrupts surrounding
306 >     * parking and other blocking: Because interrupts are used solely
307 >     * to alert threads to check termination, which is checked anyway
308 >     * upon blocking, we clear status (using Thread.interrupted)
309 >     * before any call to park, so that park does not immediately
310 >     * return due to status being set via some other unrelated call to
311 >     * interrupt in user code.
312 >     *
313 >     * Signalling.  We create or wake up workers only when there
314 >     * appears to be at least one task they might be able to find and
315 >     * execute. However, many other threads may notice the same task
316 >     * and each signal to wake up a thread that might take it. So in
317 >     * general, pools will be over-signalled.  When a submission is
318 >     * added or another worker adds a task to a queue that is
319 >     * apparently empty, they signal waiting workers (or trigger
320 >     * creation of new ones if fewer than the given parallelism level
321 >     * -- see signalWork).  These primary signals are buttressed by
322 >     * signals whenever other threads scan for work or do not have a
323 >     * task to process. On most platforms, signalling (unpark)
324 >     * overhead time is noticeably long, and the time between
325 >     * signalling a thread and it actually making progress can be very
326 >     * noticeably long, so it is worth offloading these delays from
327 >     * critical paths as much as possible.
328 >     *
329 >     * Trimming workers. To release resources after periods of lack of
330 >     * use, a worker starting to wait when the pool is quiescent will
331 >     * time out and terminate if the pool has remained quiescent for a
332 >     * given period -- a short period if there are more threads than
333 >     * parallelism, longer as the number of threads decreases. This
334 >     * will slowly propagate, eventually terminating all workers after
335 >     * periods of non-use.
336 >     *
337 >     * Shutdown and Termination. A call to shutdownNow atomically sets
338 >     * a plock bit and then (non-atomically) sets each worker's
339 >     * qlock status, cancels all unprocessed tasks, and wakes up
340 >     * all waiting workers.  Detecting whether termination should
341 >     * commence after a non-abrupt shutdown() call requires more work
342 >     * and bookkeeping. We need consensus about quiescence (i.e., that
343 >     * there is no more work). The active count provides a primary
344 >     * indication but non-abrupt shutdown still requires a rechecking
345 >     * scan for any workers that are inactive but not queued.
346 >     *
347 >     * Joining Tasks
348 >     * =============
349 >     *
350 >     * Any of several actions may be taken when one worker is waiting
351 >     * to join a task stolen (or always held) by another.  Because we
352 >     * are multiplexing many tasks on to a pool of workers, we can't
353 >     * just let them block (as in Thread.join).  We also cannot just
354 >     * reassign the joiner's run-time stack with another and replace
355 >     * it later, which would be a form of "continuation", that even if
356 >     * possible is not necessarily a good idea since we sometimes need
357 >     * both an unblocked task and its continuation to progress.
358 >     * Instead we combine two tactics:
359 >     *
360 >     *   Helping: Arranging for the joiner to execute some task that it
361 >     *      would be running if the steal had not occurred.
362 >     *
363 >     *   Compensating: Unless there are already enough live threads,
364 >     *      method tryCompensate() may create or re-activate a spare
365 >     *      thread to compensate for blocked joiners until they unblock.
366 >     *
367 >     * A third form (implemented in tryRemoveAndExec) amounts to
368 >     * helping a hypothetical compensator: If we can readily tell that
369 >     * a possible action of a compensator is to steal and execute the
370 >     * task being joined, the joining thread can do so directly,
371 >     * without the need for a compensation thread (although at the
372 >     * expense of larger run-time stacks, but the tradeoff is
373 >     * typically worthwhile).
374 >     *
375 >     * The ManagedBlocker extension API can't use helping so relies
376 >     * only on compensation in method awaitBlocker.
377 >     *
378 >     * The algorithm in tryHelpStealer entails a form of "linear"
379 >     * helping: Each worker records (in field currentSteal) the most
380 >     * recent task it stole from some other worker. Plus, it records
381 >     * (in field currentJoin) the task it is currently actively
382 >     * joining. Method tryHelpStealer uses these markers to try to
383 >     * find a worker to help (i.e., steal back a task from and execute
384 >     * it) that could hasten completion of the actively joined task.
385 >     * In essence, the joiner executes a task that would be on its own
386 >     * local deque had the to-be-joined task not been stolen. This may
387 >     * be seen as a conservative variant of the approach in Wagner &
388 >     * Calder "Leapfrogging: a portable technique for implementing
389 >     * efficient futures" SIGPLAN Notices, 1993
390 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
391 >     * that: (1) We only maintain dependency links across workers upon
392 >     * steals, rather than use per-task bookkeeping.  This sometimes
393 >     * requires a linear scan of workQueues array to locate stealers,
394 >     * but often doesn't because stealers leave hints (that may become
395 >     * stale/wrong) of where to locate them.  A stealHint is only a
396 >     * hint because a worker might have had multiple steals and the
397 >     * hint records only one of them (usually the most current).
398 >     * Hinting isolates cost to when it is needed, rather than adding
399 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
400 >     * and potentially cyclic mutual steals.  (3) It is intentionally
401 >     * racy: field currentJoin is updated only while actively joining,
402 >     * which means that we miss links in the chain during long-lived
403 >     * tasks, GC stalls etc (which is OK since blocking in such cases
404 >     * is usually a good idea).  (4) We bound the number of attempts
405 >     * to find work (see MAX_HELP) and fall back to suspending the
406 >     * worker and if necessary replacing it with another.
407 >     *
408 >     * Helping actions for CountedCompleters are much simpler: Method
409 >     * helpComplete can take and execute any task with the same root
410 >     * as the task being waited on. However, this still entails some
411 >     * traversal of completer chains, so is less efficient than using
412 >     * CountedCompleters without explicit joins.
413 >     *
414 >     * It is impossible to keep exactly the target parallelism number
415 >     * of threads running at any given time.  Determining the
416 >     * existence of conservatively safe helping targets, the
417 >     * availability of already-created spares, and the apparent need
418 >     * to create new spares are all racy, so we rely on multiple
419 >     * retries of each.  Compensation in the apparent absence of
420 >     * helping opportunities is challenging to control on JVMs, where
421 >     * GC and other activities can stall progress of tasks that in
422 >     * turn stall out many other dependent tasks, without us being
423 >     * able to determine whether they will ever require compensation.
424 >     * Even though work-stealing otherwise encounters little
425 >     * degradation in the presence of more threads than cores,
426 >     * aggressively adding new threads in such cases entails risk of
427 >     * unwanted positive feedback control loops in which more threads
428 >     * cause more dependent stalls (as well as delayed progress of
429 >     * unblocked threads to the point that we know they are available)
430 >     * leading to more situations requiring more threads, and so
431 >     * on. This aspect of control can be seen as an (analytically
432 >     * intractable) game with an opponent that may choose the worst
433 >     * (for us) active thread to stall at any time.  We take several
434 >     * precautions to bound losses (and thus bound gains), mainly in
435 >     * methods tryCompensate and awaitJoin.
436 >     *
437 >     * Common Pool
438 >     * ===========
439 >     *
440 >     * The static commonPool always exists after static
441 >     * initialization.  Since it (or any other created pool) need
442 >     * never be used, we minimize initial construction overhead and
443 >     * footprint to the setup of about a dozen fields, with no nested
444 >     * allocation. Most bootstrapping occurs within method
445 >     * fullExternalPush during the first submission to the pool.
446 >     *
447 >     * When external threads submit to the common pool, they can
448 >     * perform some subtask processing (see externalHelpJoin and
449 >     * related methods).  We do not need to record whether these
450 >     * submissions are to the common pool -- if not, externalHelpJoin
451 >     * returns quicky (at the most helping to signal some common pool
452 >     * workers). These submitters would otherwise be blocked waiting
453 >     * for completion, so the extra effort (with liberally sprinkled
454 >     * task status checks) in inapplicable cases amounts to an odd
455 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
456 >     *
457 >     * Style notes
458 >     * ===========
459 >     *
460 >     * There is a lot of representation-level coupling among classes
461 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
462 >     * fields of WorkQueue maintain data structures managed by
463 >     * ForkJoinPool, so are directly accessed.  There is little point
464       * trying to reduce this, since any associated future changes in
465       * representations will need to be accompanied by algorithmic
466 <     * changes anyway.
467 <     *
468 <     * Style notes: There are lots of inline assignments (of form
469 <     * "while ((local = field) != 0)") which are usually the simplest
470 <     * way to ensure read orderings. Also several occurrences of the
471 <     * unusual "do {} while(!cas...)" which is the simplest way to
472 <     * force an update of a CAS'ed variable. There are also a few
473 <     * other coding oddities that help some methods perform reasonably
474 <     * even when interpreted (not compiled).
475 <     *
476 <     * The order of declarations in this file is: (1) statics (2)
477 <     * fields (along with constants used when unpacking some of them)
478 <     * (3) internal control methods (4) callbacks and other support
479 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
480 <     * methods (plus a few little helpers).
466 >     * changes anyway. Several methods intrinsically sprawl because
467 >     * they must accumulate sets of consistent reads of volatiles held
468 >     * in local variables.  Methods signalWork() and scan() are the
469 >     * main bottlenecks, so are especially heavily
470 >     * micro-optimized/mangled.  There are lots of inline assignments
471 >     * (of form "while ((local = field) != 0)") which are usually the
472 >     * simplest way to ensure the required read orderings (which are
473 >     * sometimes critical). This leads to a "C"-like style of listing
474 >     * declarations of these locals at the heads of methods or blocks.
475 >     * There are several occurrences of the unusual "do {} while
476 >     * (!cas...)"  which is the simplest way to force an update of a
477 >     * CAS'ed variable. There are also other coding oddities (including
478 >     * several unnecessary-looking hoisted null checks) that help
479 >     * some methods perform reasonably even when interpreted (not
480 >     * compiled).
481 >     *
482 >     * The order of declarations in this file is:
483 >     * (1) Static utility functions
484 >     * (2) Nested (static) classes
485 >     * (3) Static fields
486 >     * (4) Fields, along with constants used when unpacking some of them
487 >     * (5) Internal control methods
488 >     * (6) Callbacks and other support for ForkJoinTask methods
489 >     * (7) Exported methods
490 >     * (8) Static block initializing statics in minimally dependent order
491       */
492  
493 +    // Static utilities
494 +
495 +    /**
496 +     * If there is a security manager, makes sure caller has
497 +     * permission to modify threads.
498 +     */
499 +    private static void checkPermission() {
500 +        SecurityManager security = System.getSecurityManager();
501 +        if (security != null)
502 +            security.checkPermission(modifyThreadPermission);
503 +    }
504 +
505 +    // Nested classes
506 +
507      /**
508       * Factory for creating new {@link ForkJoinWorkerThread}s.
509       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 349 | Line 532 | public class ForkJoinPool extends Abstra
532      }
533  
534      /**
535 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
536 <     * overridden in ForkJoinPool constructors.
535 >     * Class for artificial tasks that are used to replace the target
536 >     * of local joins if they are removed from an interior queue slot
537 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
538 >     * actually do anything beyond having a unique identity.
539 >     */
540 >    static final class EmptyTask extends ForkJoinTask<Void> {
541 >        private static final long serialVersionUID = -7721805057305804111L;
542 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
543 >        public final Void getRawResult() { return null; }
544 >        public final void setRawResult(Void x) {}
545 >        public final boolean exec() { return true; }
546 >    }
547 >
548 >    /**
549 >     * Queues supporting work-stealing as well as external task
550 >     * submission. See above for main rationale and algorithms.
551 >     * Implementation relies heavily on "Unsafe" intrinsics
552 >     * and selective use of "volatile":
553 >     *
554 >     * Field "base" is the index (mod array.length) of the least valid
555 >     * queue slot, which is always the next position to steal (poll)
556 >     * from if nonempty. Reads and writes require volatile orderings
557 >     * but not CAS, because updates are only performed after slot
558 >     * CASes.
559 >     *
560 >     * Field "top" is the index (mod array.length) of the next queue
561 >     * slot to push to or pop from. It is written only by owner thread
562 >     * for push, or under lock for external/shared push, and accessed
563 >     * by other threads only after reading (volatile) base.  Both top
564 >     * and base are allowed to wrap around on overflow, but (top -
565 >     * base) (or more commonly -(base - top) to force volatile read of
566 >     * base before top) still estimates size. The lock ("qlock") is
567 >     * forced to -1 on termination, causing all further lock attempts
568 >     * to fail. (Note: we don't need CAS for termination state because
569 >     * upon pool shutdown, all shared-queues will stop being used
570 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
571 >     * within lock bodies are "impossible" (modulo JVM errors that
572 >     * would cause failure anyway.)
573 >     *
574 >     * The array slots are read and written using the emulation of
575 >     * volatiles/atomics provided by Unsafe. Insertions must in
576 >     * general use putOrderedObject as a form of releasing store to
577 >     * ensure that all writes to the task object are ordered before
578 >     * its publication in the queue.  All removals entail a CAS to
579 >     * null.  The array is always a power of two. To ensure safety of
580 >     * Unsafe array operations, all accesses perform explicit null
581 >     * checks and implicit bounds checks via power-of-two masking.
582 >     *
583 >     * In addition to basic queuing support, this class contains
584 >     * fields described elsewhere to control execution. It turns out
585 >     * to work better memory-layout-wise to include them in this class
586 >     * rather than a separate class.
587 >     *
588 >     * Performance on most platforms is very sensitive to placement of
589 >     * instances of both WorkQueues and their arrays -- we absolutely
590 >     * do not want multiple WorkQueue instances or multiple queue
591 >     * arrays sharing cache lines. (It would be best for queue objects
592 >     * and their arrays to share, but there is nothing available to
593 >     * help arrange that).  Unfortunately, because they are recorded
594 >     * in a common array, WorkQueue instances are often moved to be
595 >     * adjacent by garbage collectors. To reduce impact, we use field
596 >     * padding that works OK on common platforms; this effectively
597 >     * trades off slightly slower average field access for the sake of
598 >     * avoiding really bad worst-case access. (Until better JVM
599 >     * support is in place, this padding is dependent on transient
600 >     * properties of JVM field layout rules.)  We also take care in
601 >     * allocating, sizing and resizing the array. Non-shared queue
602 >     * arrays are initialized by workers before use. Others are
603 >     * allocated on first use.
604       */
605 <    public static final ForkJoinWorkerThreadFactory
606 <        defaultForkJoinWorkerThreadFactory =
607 <        new DefaultForkJoinWorkerThreadFactory();
605 >    static final class WorkQueue {
606 >        /**
607 >         * Capacity of work-stealing queue array upon initialization.
608 >         * Must be a power of two; at least 4, but should be larger to
609 >         * reduce or eliminate cacheline sharing among queues.
610 >         * Currently, it is much larger, as a partial workaround for
611 >         * the fact that JVMs often place arrays in locations that
612 >         * share GC bookkeeping (especially cardmarks) such that
613 >         * per-write accesses encounter serious memory contention.
614 >         */
615 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
616  
617 <    /**
618 <     * Permission required for callers of methods that may start or
619 <     * kill threads.
620 <     */
621 <    private static final RuntimePermission modifyThreadPermission =
622 <        new RuntimePermission("modifyThread");
617 >        /**
618 >         * Maximum size for queue arrays. Must be a power of two less
619 >         * than or equal to 1 << (31 - width of array entry) to ensure
620 >         * lack of wraparound of index calculations, but defined to a
621 >         * value a bit less than this to help users trap runaway
622 >         * programs before saturating systems.
623 >         */
624 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
625  
626 <    /**
627 <     * If there is a security manager, makes sure caller has
628 <     * permission to modify threads.
629 <     */
630 <    private static void checkPermission() {
631 <        SecurityManager security = System.getSecurityManager();
632 <        if (security != null)
633 <            security.checkPermission(modifyThreadPermission);
626 >        int seed;                  // for random scanning; initialize nonzero
627 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
628 >        int nextWait;              // encoded record of next event waiter
629 >        final int mode;            // lifo, fifo, or shared
630 >        int nsteals;               // cumulative number of steals
631 >        int poolIndex;             // index of this queue in pool (or 0)
632 >        int stealHint;             // index of most recent known stealer
633 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
634 >        volatile int base;         // index of next slot for poll
635 >        int top;                   // index of next slot for push
636 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
637 >        final ForkJoinPool pool;   // the containing pool (may be null)
638 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
639 >        volatile Thread parker;    // == owner during call to park; else null
640 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
641 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
642 >        // Heuristic padding to ameliorate unfortunate memory placements
643 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
644 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
645 >
646 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
647 >            this.mode = mode;
648 >            this.pool = pool;
649 >            this.owner = owner;
650 >            // Place indices in the center of array (that is not yet allocated)
651 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
652 >        }
653 >
654 >        /**
655 >         * Pushes a task. Call only by owner in unshared queues.
656 >         * Cases needing resizing or rejection are relyaed to fullPush
657 >         * (that also handles shared queues).
658 >         *
659 >         * @param task the task. Caller must ensure non-null.
660 >         * @throw RejectedExecutionException if array cannot be resized
661 >         */
662 >        final void push(ForkJoinTask<?> task) {
663 >            ForkJoinPool p; ForkJoinTask<?>[] a;
664 >            int s = top, n;
665 >            if ((a = array) != null && a.length > (n = s + 1 - base)) {
666 >                U.putOrderedObject
667 >                    (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
668 >                top = s + 1;
669 >                if (n <= 1 && (p = pool) != null)
670 >                    p.signalWork(this, 1);
671 >            }
672 >            else
673 >                fullPush(task, true);
674 >        }
675 >
676 >        /**
677 >         * Pushes a task if lock is free and array is either big
678 >         * enough or can be resized to be big enough. Note: a
679 >         * specialization of a common fast path of this method is in
680 >         * ForkJoinPool.externalPush. When called from a FJWT queue,
681 >         * this can fail only if the pool has been shut down or
682 >         * an out of memory error.
683 >         *
684 >         * @param task the task. Caller must ensure non-null.
685 >         * @param owned if true, throw RJE on failure
686 >         */
687 >        final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
688 >            ForkJoinPool p; ForkJoinTask<?>[] a;
689 >            if (owned) {
690 >                if (qlock < 0) // must be shutting down
691 >                    throw new RejectedExecutionException();
692 >            }
693 >            else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
694 >                return false;
695 >            try {
696 >                int s = top, oldLen, len;
697 >                if ((a = array) == null)
698 >                    a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
699 >                else if ((oldLen = a.length) > s + 1 - base)
700 >                    len = oldLen;
701 >                else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
702 >                    throw new RejectedExecutionException("Capacity exceeded");
703 >                else {
704 >                    int oldMask, b;
705 >                    ForkJoinTask<?>[] oldA = a;
706 >                    a = array = new ForkJoinTask<?>[len];
707 >                    if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
708 >                        int mask = len - 1;
709 >                        do {
710 >                            ForkJoinTask<?> x;
711 >                            int oldj = ((b & oldMask) << ASHIFT) + ABASE;
712 >                            int j    = ((b &    mask) << ASHIFT) + ABASE;
713 >                            x = (ForkJoinTask<?>)
714 >                                U.getObjectVolatile(oldA, oldj);
715 >                            if (x != null &&
716 >                                U.compareAndSwapObject(oldA, oldj, x, null))
717 >                                U.putObjectVolatile(a, j, x);
718 >                        } while (++b != s);
719 >                    }
720 >                }
721 >                U.putOrderedObject
722 >                    (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
723 >                top = s + 1;
724 >            } finally {
725 >                if (!owned)
726 >                    qlock = 0;
727 >            }
728 >            if ((p = pool) != null)
729 >                p.signalWork(this, 1);
730 >            return true;
731 >        }
732 >
733 >        /**
734 >         * Takes next task, if one exists, in LIFO order.  Call only
735 >         * by owner in unshared queues.
736 >         */
737 >        final ForkJoinTask<?> pop() {
738 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
739 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
740 >                for (int s; (s = top - 1) - base >= 0;) {
741 >                    long j = ((m & s) << ASHIFT) + ABASE;
742 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
743 >                        break;
744 >                    if (U.compareAndSwapObject(a, j, t, null)) {
745 >                        top = s;
746 >                        return t;
747 >                    }
748 >                }
749 >            }
750 >            return null;
751 >        }
752 >
753 >        /**
754 >         * Takes a task in FIFO order if b is base of queue and a task
755 >         * can be claimed without contention. Specialized versions
756 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
757 >         */
758 >        final ForkJoinTask<?> pollAt(int b) {
759 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
760 >            if ((a = array) != null) {
761 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
762 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
763 >                    base == b &&
764 >                    U.compareAndSwapObject(a, j, t, null)) {
765 >                    base = b + 1;
766 >                    return t;
767 >                }
768 >            }
769 >            return null;
770 >        }
771 >
772 >        /**
773 >         * Takes next task, if one exists, in FIFO order.
774 >         */
775 >        final ForkJoinTask<?> poll() {
776 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
777 >            while ((b = base) - top < 0 && (a = array) != null) {
778 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
779 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
780 >                if (t != null) {
781 >                    if (base == b &&
782 >                        U.compareAndSwapObject(a, j, t, null)) {
783 >                        base = b + 1;
784 >                        return t;
785 >                    }
786 >                }
787 >                else if (base == b) {
788 >                    if (b + 1 == top)
789 >                        break;
790 >                    Thread.yield(); // wait for lagging update (very rare)
791 >                }
792 >            }
793 >            return null;
794 >        }
795 >
796 >        /**
797 >         * Takes next task, if one exists, in order specified by mode.
798 >         */
799 >        final ForkJoinTask<?> nextLocalTask() {
800 >            return mode == 0 ? pop() : poll();
801 >        }
802 >
803 >        /**
804 >         * Returns next task, if one exists, in order specified by mode.
805 >         */
806 >        final ForkJoinTask<?> peek() {
807 >            ForkJoinTask<?>[] a = array; int m;
808 >            if (a == null || (m = a.length - 1) < 0)
809 >                return null;
810 >            int i = mode == 0 ? top - 1 : base;
811 >            int j = ((i & m) << ASHIFT) + ABASE;
812 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813 >        }
814 >
815 >        /**
816 >         * Pops the given task only if it is at the current top.
817 >         * (A shared version is available only via FJP.tryExternalUnpush)
818 >         */
819 >        final boolean tryUnpush(ForkJoinTask<?> t) {
820 >            ForkJoinTask<?>[] a; int s;
821 >            if ((a = array) != null && (s = top) != base &&
822 >                U.compareAndSwapObject
823 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
824 >                top = s;
825 >                return true;
826 >            }
827 >            return false;
828 >        }
829 >
830 >        /**
831 >         * Removes and cancels all known tasks, ignoring any exceptions.
832 >         */
833 >        final void cancelAll() {
834 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
835 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
836 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
837 >                ForkJoinTask.cancelIgnoringExceptions(t);
838 >        }
839 >
840 >        /**
841 >         * Computes next value for random probes.  Scans don't require
842 >         * a very high quality generator, but also not a crummy one.
843 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
844 >         * This is manually inlined in its usages in ForkJoinPool to
845 >         * avoid writes inside busy scan loops.
846 >         */
847 >        final int nextSeed() {
848 >            int r = seed;
849 >            r ^= r << 13;
850 >            r ^= r >>> 17;
851 >            return seed = r ^= r << 5;
852 >        }
853 >
854 >        /**
855 >         * Provides a more accurate estimate of size than (top - base)
856 >         * by ordering reads and checking whether a near-empty queue
857 >         * has at least one unclaimed task.
858 >         */
859 >        final int queueSize() {
860 >            ForkJoinTask<?>[] a; int k, s, n;
861 >            return ((n = base - (s = top)) < 0 &&
862 >                    (n != -1 ||
863 >                     ((a = array) != null && (k = a.length) > 0 &&
864 >                      U.getObject
865 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
866 >                -n : 0;
867 >        }
868 >
869 >        // Specialized execution methods
870 >
871 >        /**
872 >         * Pops and runs tasks until empty.
873 >         */
874 >        private void popAndExecAll() {
875 >            // A bit faster than repeated pop calls
876 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
877 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
878 >                   (s = top - 1) - base >= 0 &&
879 >                   (t = ((ForkJoinTask<?>)
880 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
881 >                   != null) {
882 >                if (U.compareAndSwapObject(a, j, t, null)) {
883 >                    top = s;
884 >                    t.doExec();
885 >                }
886 >            }
887 >        }
888 >
889 >        /**
890 >         * Polls and runs tasks until empty.
891 >         */
892 >        private void pollAndExecAll() {
893 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
894 >                t.doExec();
895 >        }
896 >
897 >        /**
898 >         * If present, removes from queue and executes the given task,
899 >         * or any other cancelled task. Returns (true) on any CAS
900 >         * or consistency check failure so caller can retry.
901 >         *
902 >         * @return false if no progress can be made, else true;
903 >         */
904 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905 >            boolean stat = true, removed = false, empty = true;
906 >            ForkJoinTask<?>[] a; int m, s, b, n;
907 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
908 >                (n = (s = top) - (b = base)) > 0) {
909 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
910 >                    int j = ((--s & m) << ASHIFT) + ABASE;
911 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
912 >                    if (t == null)                    // inconsistent length
913 >                        break;
914 >                    else if (t == task) {
915 >                        if (s + 1 == top) {           // pop
916 >                            if (!U.compareAndSwapObject(a, j, task, null))
917 >                                break;
918 >                            top = s;
919 >                            removed = true;
920 >                        }
921 >                        else if (base == b)           // replace with proxy
922 >                            removed = U.compareAndSwapObject(a, j, task,
923 >                                                             new EmptyTask());
924 >                        break;
925 >                    }
926 >                    else if (t.status >= 0)
927 >                        empty = false;
928 >                    else if (s + 1 == top) {          // pop and throw away
929 >                        if (U.compareAndSwapObject(a, j, t, null))
930 >                            top = s;
931 >                        break;
932 >                    }
933 >                    if (--n == 0) {
934 >                        if (!empty && base == b)
935 >                            stat = false;
936 >                        break;
937 >                    }
938 >                }
939 >            }
940 >            if (removed)
941 >                task.doExec();
942 >            return stat;
943 >        }
944 >
945 >        /**
946 >         * Polls for and executes the given task or any other task in
947 >         * its CountedCompleter computation
948 >         */
949 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
950 >            ForkJoinTask<?>[] a; int b; Object o;
951 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
952 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
953 >                if ((o = U.getObject(a, j)) == null ||
954 >                    !(o instanceof CountedCompleter))
955 >                    break;
956 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
957 >                    if (r == root) {
958 >                        if (base == b &&
959 >                            U.compareAndSwapObject(a, j, t, null)) {
960 >                            base = b + 1;
961 >                            t.doExec();
962 >                            return true;
963 >                        }
964 >                        else
965 >                            break; // restart
966 >                    }
967 >                    if ((r = r.completer) == null)
968 >                        break outer; // not part of root computation
969 >                }
970 >            }
971 >            return false;
972 >        }
973 >
974 >        /**
975 >         * Executes a top-level task and any local tasks remaining
976 >         * after execution.
977 >         */
978 >        final void runTask(ForkJoinTask<?> t) {
979 >            if (t != null) {
980 >                (currentSteal = t).doExec();
981 >                currentSteal = null;
982 >                if (++nsteals < 0) {     // spill on overflow
983 >                    ForkJoinPool p;
984 >                    if ((p = pool) != null)
985 >                        p.collectStealCount(this);
986 >                }
987 >                if (top != base) {       // process remaining local tasks
988 >                    if (mode == 0)
989 >                        popAndExecAll();
990 >                    else
991 >                        pollAndExecAll();
992 >                }
993 >            }
994 >        }
995 >
996 >        /**
997 >         * Executes a non-top-level (stolen) task.
998 >         */
999 >        final void runSubtask(ForkJoinTask<?> t) {
1000 >            if (t != null) {
1001 >                ForkJoinTask<?> ps = currentSteal;
1002 >                (currentSteal = t).doExec();
1003 >                currentSteal = ps;
1004 >            }
1005 >        }
1006 >
1007 >        /**
1008 >         * Returns true if owned and not known to be blocked.
1009 >         */
1010 >        final boolean isApparentlyUnblocked() {
1011 >            Thread wt; Thread.State s;
1012 >            return (eventCount >= 0 &&
1013 >                    (wt = owner) != null &&
1014 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1015 >                    s != Thread.State.WAITING &&
1016 >                    s != Thread.State.TIMED_WAITING);
1017 >        }
1018 >
1019 >        /**
1020 >         * If this owned and is not already interrupted, try to
1021 >         * interrupt and/or unpark, ignoring exceptions.
1022 >         */
1023 >        final void interruptOwner() {
1024 >            Thread wt, p;
1025 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1026 >                try {
1027 >                    wt.interrupt();
1028 >                } catch (SecurityException ignore) {
1029 >                }
1030 >            }
1031 >            if ((p = parker) != null)
1032 >                U.unpark(p);
1033 >        }
1034 >
1035 >        // Unsafe mechanics
1036 >        private static final sun.misc.Unsafe U;
1037 >        private static final long QLOCK;
1038 >        private static final int ABASE;
1039 >        private static final int ASHIFT;
1040 >        static {
1041 >            int s;
1042 >            try {
1043 >                U = getUnsafe();
1044 >                Class<?> k = WorkQueue.class;
1045 >                Class<?> ak = ForkJoinTask[].class;
1046 >                QLOCK = U.objectFieldOffset
1047 >                    (k.getDeclaredField("qlock"));
1048 >                ABASE = U.arrayBaseOffset(ak);
1049 >                s = U.arrayIndexScale(ak);
1050 >            } catch (Exception e) {
1051 >                throw new Error(e);
1052 >            }
1053 >            if ((s & (s-1)) != 0)
1054 >                throw new Error("data type scale not a power of two");
1055 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1056 >        }
1057      }
1058  
1059      /**
1060 <     * Generator for assigning sequence numbers as pool names.
1060 >     * Per-thread records for threads that submit to pools. Currently
1061 >     * holds only pseudo-random seed / index that is used to choose
1062 >     * submission queues in method externalPush. In the future, this may
1063 >     * also incorporate a means to implement different task rejection
1064 >     * and resubmission policies.
1065 >     *
1066 >     * Seeds for submitters and workers/workQueues work in basically
1067 >     * the same way but are initialized and updated using slightly
1068 >     * different mechanics. Both are initialized using the same
1069 >     * approach as in class ThreadLocal, where successive values are
1070 >     * unlikely to collide with previous values. Seeds are then
1071 >     * randomly modified upon collisions using xorshifts, which
1072 >     * requires a non-zero seed.
1073       */
1074 <    private static final AtomicInteger poolNumberGenerator =
1075 <        new AtomicInteger();
1074 >    static final class Submitter {
1075 >        int seed;
1076 >        Submitter(int s) { seed = s; }
1077 >    }
1078  
1079 <    /**
1080 <     * Absolute bound for parallelism level. Twice this number must
1081 <     * fit into a 16bit field to enable word-packing for some counts.
1082 <     */
1083 <    private static final int MAX_THREADS = 0x7fff;
1079 >    /** Property prefix for constructing common pool */
1080 >    private static final String propPrefix =
1081 >        "java.util.concurrent.ForkJoinPool.common.";
1082 >
1083 >    // static fields (initialized in static initializer below)
1084  
1085      /**
1086 <     * Array holding all worker threads in the pool.  Array size must
1087 <     * be a power of two.  Updates and replacements are protected by
391 <     * workerLock, but the array is always kept in a consistent enough
392 <     * state to be randomly accessed without locking by workers
393 <     * performing work-stealing, as well as other traversal-based
394 <     * methods in this class. All readers must tolerate that some
395 <     * array slots may be null.
1086 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1087 >     * overridden in ForkJoinPool constructors.
1088       */
1089 <    volatile ForkJoinWorkerThread[] workers;
1089 >    public static final ForkJoinWorkerThreadFactory
1090 >        defaultForkJoinWorkerThreadFactory;
1091  
1092      /**
1093 <     * Queue for external submissions.
1093 >     * Common (static) pool. Non-null for public use unless a static
1094 >     * construction exception, but internal usages null-check on use
1095 >     * to paranoically avoid potential initialization circularities
1096 >     * as well as to simplify generated code.
1097       */
1098 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1098 >    static final ForkJoinPool commonPool;
1099  
1100      /**
1101 <     * Lock protecting updates to workers array.
1101 >     * Permission required for callers of methods that may start or
1102 >     * kill threads.
1103       */
1104 <    private final ReentrantLock workerLock;
1104 >    private static final RuntimePermission modifyThreadPermission;
1105  
1106      /**
1107 <     * Latch released upon termination.
1107 >     * Per-thread submission bookkeeping. Shared across all pools
1108 >     * to reduce ThreadLocal pollution and because random motion
1109 >     * to avoid contention in one pool is likely to hold for others.
1110 >     * Lazily initialized on first submission (but null-checked
1111 >     * in other contexts to avoid unnecessary initialization).
1112       */
1113 <    private final Phaser termination;
1113 >    static final ThreadLocal<Submitter> submitters;
1114  
1115      /**
1116 <     * Creation factory for worker threads.
1116 >     * Common pool parallelism. Must equal commonPool.parallelism.
1117       */
1118 <    private final ForkJoinWorkerThreadFactory factory;
1118 >    static final int commonPoolParallelism;
1119  
1120      /**
1121 <     * Sum of per-thread steal counts, updated only when threads are
421 <     * idle or terminating.
1121 >     * Sequence number for creating workerNamePrefix.
1122       */
1123 <    private volatile long stealCount;
1123 >    private static int poolNumberSequence;
1124  
1125      /**
1126 <     * Encoded record of top of treiber stack of threads waiting for
1127 <     * events. The top 32 bits contain the count being waited for. The
428 <     * bottom word contains one plus the pool index of waiting worker
429 <     * thread.
1126 >     * Return the next sequence number. We don't expect this to
1127 >     * ever contend so use simple builtin sync.
1128       */
1129 <    private volatile long eventWaiters;
1129 >    private static final synchronized int nextPoolId() {
1130 >        return ++poolNumberSequence;
1131 >    }
1132  
1133 <    private static final int  EVENT_COUNT_SHIFT = 32;
434 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
1133 >    // static constants
1134  
1135      /**
1136 <     * A counter for events that may wake up worker threads:
1137 <     *   - Submission of a new task to the pool
1138 <     *   - A worker pushing a task on an empty queue
1139 <     *   - termination and reconfiguration
1136 >     * Initial timeout value (in nanoseconds) for the thread
1137 >     * triggering quiescence to park waiting for new work. On timeout,
1138 >     * the thread will instead try to shrink the number of
1139 >     * workers. The value should be large enough to avoid overly
1140 >     * aggressive shrinkage during most transient stalls (long GCs
1141 >     * etc).
1142       */
1143 <    private volatile int eventCount;
1143 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1144  
1145      /**
1146 <     * Lifecycle control. The low word contains the number of workers
446 <     * that are (probably) executing tasks. This value is atomically
447 <     * incremented before a worker gets a task to run, and decremented
448 <     * when worker has no tasks and cannot find any.  Bits 16-18
449 <     * contain runLevel value. When all are zero, the pool is
450 <     * running. Level transitions are monotonic (running -> shutdown
451 <     * -> terminating -> terminated) so each transition adds a bit.
452 <     * These are bundled together to ensure consistent read for
453 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
454 <     * and active threads is zero).
1146 >     * Timeout value when there are more threads than parallelism level
1147       */
1148 <    private volatile int runState;
457 <
458 <    // Note: The order among run level values matters.
459 <    private static final int RUNLEVEL_SHIFT     = 16;
460 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
461 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
462 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
463 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
464 <    private static final int ONE_ACTIVE         = 1; // active update delta
1148 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1149  
1150      /**
1151 <     * Holds number of total (i.e., created and not yet terminated)
1152 <     * and running (i.e., not blocked on joins or other managed sync)
1153 <     * threads, packed together to ensure consistent snapshot when
1154 <     * making decisions about creating and suspending spare
1155 <     * threads. Updated only by CAS. Note that adding a new worker
1156 <     * requires incrementing both counts, since workers start off in
473 <     * running state.  This field is also used for memory-fencing
474 <     * configuration parameters.
1151 >     * The maximum stolen->joining link depth allowed in method
1152 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1153 >     * chains are unbounded, but we use a fixed constant to avoid
1154 >     * (otherwise unchecked) cycles and to bound staleness of
1155 >     * traversal parameters at the expense of sometimes blocking when
1156 >     * we could be helping.
1157       */
1158 <    private volatile int workerCounts;
477 <
478 <    private static final int TOTAL_COUNT_SHIFT  = 16;
479 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
480 <    private static final int ONE_RUNNING        = 1;
481 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1158 >    private static final int MAX_HELP = 64;
1159  
1160      /**
1161 <     * The target parallelism level.
1162 <     * Accessed directly by ForkJoinWorkerThreads.
1161 >     * Increment for seed generators. See class ThreadLocal for
1162 >     * explanation.
1163       */
1164 <    final int parallelism;
1164 >    private static final int SEED_INCREMENT = 0x61c88647;
1165  
1166      /**
1167 <     * True if use local fifo, not default lifo, for local polling
1168 <     * Read by, and replicated by ForkJoinWorkerThreads
1167 >     * Bits and masks for control variables
1168 >     *
1169 >     * Field ctl is a long packed with:
1170 >     * AC: Number of active running workers minus target parallelism (16 bits)
1171 >     * TC: Number of total workers minus target parallelism (16 bits)
1172 >     * ST: true if pool is terminating (1 bit)
1173 >     * EC: the wait count of top waiting thread (15 bits)
1174 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1175 >     *
1176 >     * When convenient, we can extract the upper 32 bits of counts and
1177 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1178 >     * (int)ctl.  The ec field is never accessed alone, but always
1179 >     * together with id and st. The offsets of counts by the target
1180 >     * parallelism and the positionings of fields makes it possible to
1181 >     * perform the most common checks via sign tests of fields: When
1182 >     * ac is negative, there are not enough active workers, when tc is
1183 >     * negative, there are not enough total workers, and when e is
1184 >     * negative, the pool is terminating.  To deal with these possibly
1185 >     * negative fields, we use casts in and out of "short" and/or
1186 >     * signed shifts to maintain signedness.
1187 >     *
1188 >     * When a thread is queued (inactivated), its eventCount field is
1189 >     * set negative, which is the only way to tell if a worker is
1190 >     * prevented from executing tasks, even though it must continue to
1191 >     * scan for them to avoid queuing races. Note however that
1192 >     * eventCount updates lag releases so usage requires care.
1193 >     *
1194 >     * Field plock is an int packed with:
1195 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198 >     *
1199 >     * The sequence number enables simple consistency checks:
1200 >     * Staleness of read-only operations on the workQueues array can
1201 >     * be checked by comparing plock before vs after the reads.
1202       */
493    final boolean locallyFifo;
1203  
1204 <    /**
1205 <     * The uncaught exception handler used when any worker abruptly
1206 <     * terminates.
1207 <     */
1208 <    private final Thread.UncaughtExceptionHandler ueh;
1204 >    // bit positions/shifts for fields
1205 >    private static final int  AC_SHIFT   = 48;
1206 >    private static final int  TC_SHIFT   = 32;
1207 >    private static final int  ST_SHIFT   = 31;
1208 >    private static final int  EC_SHIFT   = 16;
1209  
1210 <    /**
1211 <     * Pool number, just for assigning useful names to worker threads
1212 <     */
1213 <    private final int poolNumber;
1210 >    // bounds
1211 >    private static final int  SMASK      = 0xffff;  // short bits
1212 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1213 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1214 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1215 >    private static final int  SHORT_SIGN = 1 << 15;
1216 >    private static final int  INT_SIGN   = 1 << 31;
1217  
1218 <    // utilities for updating fields
1218 >    // masks
1219 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1220 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1221 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1222  
1223 <    /**
1224 <     * Increments running count.  Also used by ForkJoinTask.
1225 <     */
511 <    final void incrementRunningCount() {
512 <        int c;
513 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
514 <                                               c = workerCounts,
515 <                                               c + ONE_RUNNING));
516 <    }
517 <    
518 <    /**
519 <     * Tries to decrement running count unless already zero
520 <     */
521 <    final boolean tryDecrementRunningCount() {
522 <        int wc = workerCounts;
523 <        if ((wc & RUNNING_COUNT_MASK) == 0)
524 <            return false;
525 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
526 <                                        wc, wc - ONE_RUNNING);
527 <    }
1223 >    // units for incrementing and decrementing
1224 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1225 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1226  
1227 <    /**
1228 <     * Tries incrementing active count; fails on contention.
1229 <     * Called by workers before executing tasks.
1230 <     *
1231 <     * @return true on success
1232 <     */
1233 <    final boolean tryIncrementActiveCount() {
536 <        int c;
537 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
538 <                                        c = runState, c + ONE_ACTIVE);
539 <    }
1227 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1228 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1229 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1230 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1231 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1232 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1233 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1234  
1235 <    /**
1236 <     * Tries decrementing active count; fails on contention.
1237 <     * Called when workers cannot find tasks to run.
544 <     */
545 <    final boolean tryDecrementActiveCount() {
546 <        int c;
547 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
548 <                                        c = runState, c - ONE_ACTIVE);
549 <    }
1235 >    // masks and units for dealing with e = (int)ctl
1236 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1237 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1238  
1239 <    /**
1240 <     * Advances to at least the given level. Returns true if not
1241 <     * already in at least the given level.
1242 <     */
1243 <    private boolean advanceRunLevel(int level) {
556 <        for (;;) {
557 <            int s = runState;
558 <            if ((s & level) != 0)
559 <                return false;
560 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
561 <                return true;
562 <        }
563 <    }
1239 >    // plock bits
1240 >    private static final int SHUTDOWN    = 1 << 31;
1241 >    private static final int PL_LOCK     = 2;
1242 >    private static final int PL_SIGNAL   = 1;
1243 >    private static final int PL_SPINS    = 1 << 8;
1244  
1245 <    // workers array maintenance
1245 >    // access mode for WorkQueue
1246 >    static final int LIFO_QUEUE          =  0;
1247 >    static final int FIFO_QUEUE          =  1;
1248 >    static final int SHARED_QUEUE        = -1;
1249  
1250 <    /**
1251 <     * Records and returns a workers array index for new worker.
1250 >    // Instance fields
1251 >
1252 >    /*
1253 >     * Field layout order in this class tends to matter more than one
1254 >     * would like. Runtime layout order is only loosely related to
1255 >     * declaration order and may differ across JVMs, but the following
1256 >     * empirically works OK on current JVMs.
1257 >     */
1258 >    volatile long stealCount;                  // collects worker counts
1259 >    volatile long ctl;                         // main pool control
1260 >    final int parallelism;                     // parallelism level
1261 >    final int localMode;                       // per-worker scheduling mode
1262 >    volatile int indexSeed;                    // worker/submitter index seed
1263 >    volatile int plock;                        // shutdown status and seqLock
1264 >    WorkQueue[] workQueues;                    // main registry
1265 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1266 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1267 >    final String workerNamePrefix;             // to create worker name string
1268 >
1269 >    /*
1270 >     * Acquires the plock lock to protect worker array and related
1271 >     * updates. This method is called only if an initial CAS on plock
1272 >     * fails. This acts as a spinLock for normal cases, but falls back
1273 >     * to builtin monitor to block when (rarely) needed. This would be
1274 >     * a terrible idea for a highly contended lock, but works fine as
1275 >     * a more conservative alternative to a pure spinlock.  See
1276 >     * internal ConcurrentHashMap documentation for further
1277 >     * explanation of nearly the same construction.
1278       */
1279 <    private int recordWorker(ForkJoinWorkerThread w) {
1280 <        // Try using slot totalCount-1. If not available, scan and/or resize
1281 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1282 <        final ReentrantLock lock = this.workerLock;
1283 <        lock.lock();
1284 <        try {
1285 <            ForkJoinWorkerThread[] ws = workers;
1286 <            int nws = ws.length;
1287 <            if (k < 0 || k >= nws || ws[k] != null) {
1288 <                for (k = 0; k < nws && ws[k] != null; ++k)
1289 <                    ;
1290 <                if (k == nws)
1291 <                    ws = Arrays.copyOf(ws, nws << 1);
1279 >    private int acquirePlock() {
1280 >        int spins = PL_SPINS, r = 0, ps, nps;
1281 >        for (;;) {
1282 >            if (((ps = plock) & PL_LOCK) == 0 &&
1283 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1284 >                return nps;
1285 >            else if (r == 0)
1286 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1287 >            else if (spins >= 0) {
1288 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1289 >                if (r >= 0)
1290 >                    --spins;
1291 >            }
1292 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1293 >                synchronized(this) {
1294 >                    if ((plock & PL_SIGNAL) != 0) {
1295 >                        try {
1296 >                            wait();
1297 >                        } catch (InterruptedException ie) {
1298 >                            try {
1299 >                                Thread.currentThread().interrupt();
1300 >                            } catch (SecurityException ignore) {
1301 >                            }
1302 >                        }
1303 >                    }
1304 >                    else
1305 >                        notifyAll();
1306 >                }
1307              }
584            ws[k] = w;
585            workers = ws; // volatile array write ensures slot visibility
586        } finally {
587            lock.unlock();
1308          }
589        return k;
1309      }
1310  
1311      /**
1312 <     * Nulls out record of worker in workers array
1312 >     * Unlocks and signals any thread waiting for plock. Called only
1313 >     * when CAS of seq value for unlock fails.
1314       */
1315 <    private void forgetWorker(ForkJoinWorkerThread w) {
1316 <        int idx = w.poolIndex;
1317 <        // Locking helps method recordWorker avoid unecessary expansion
1318 <        final ReentrantLock lock = this.workerLock;
1319 <        lock.lock();
1315 >    private void releasePlock(int ps) {
1316 >        plock = ps;
1317 >        synchronized(this) { notifyAll(); }
1318 >    }
1319 >
1320 >    //  Registering and deregistering workers
1321 >
1322 >    /**
1323 >     * Callback from ForkJoinWorkerThread constructor to establish its
1324 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1325 >     * to packing entries in front of the workQueues array, we treat
1326 >     * the array as a simple power-of-two hash table using per-thread
1327 >     * seed as hash, expanding as needed.
1328 >     *
1329 >     * @param w the worker's queue
1330 >     */
1331 >    final void registerWorker(WorkQueue w) {
1332 >        int s, ps; // generate a rarely colliding candidate index seed
1333 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1334 >                                          s = indexSeed, s += SEED_INCREMENT) ||
1335 >                     s == 0); // skip 0
1336 >        if (((ps = plock) & PL_LOCK) != 0 ||
1337 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1338 >            ps = acquirePlock();
1339 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1340          try {
1341 <            ForkJoinWorkerThread[] ws = workers;
1342 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1343 <                ws[idx] = null;
1341 >            WorkQueue[] ws;
1342 >            if (w != null && (ws = workQueues) != null) {
1343 >                w.seed = s;
1344 >                int n = ws.length, m = n - 1;
1345 >                int r = (s << 1) | 1;               // use odd-numbered indices
1346 >                if (ws[r &= m] != null) {           // collision
1347 >                    int probes = 0;                 // step by approx half size
1348 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1349 >                    while (ws[r = (r + step) & m] != null) {
1350 >                        if (++probes >= n) {
1351 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1352 >                            m = n - 1;
1353 >                            probes = 0;
1354 >                        }
1355 >                    }
1356 >                }
1357 >                w.eventCount = w.poolIndex = r;     // establish before recording
1358 >                ws[r] = w;
1359 >            }
1360          } finally {
1361 <            lock.unlock();
1361 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362 >                releasePlock(nps);
1363          }
1364      }
1365  
609    // adding and removing workers
610
1366      /**
1367 <     * Tries to create and add new worker. Assumes that worker counts
1368 <     * are already updated to accommodate the worker, so adjusts on
1369 <     * failure.
1370 <     *
1371 <     * @return new worker or null if creation failed
1372 <     */
1373 <    private ForkJoinWorkerThread addWorker() {
1374 <        ForkJoinWorkerThread w = null;
1375 <        try {
1376 <            w = factory.newThread(this);
1377 <        } finally { // Adjust on either null or exceptional factory return
1378 <            if (w == null) {
1379 <                onWorkerCreationFailure();
1380 <                return null;
1367 >     * Final callback from terminating worker, as well as upon failure
1368 >     * to construct or start a worker.  Removes record of worker from
1369 >     * array, and adjusts counts. If pool is shutting down, tries to
1370 >     * complete termination.
1371 >     *
1372 >     * @param wt the worker thread or null if construction failed
1373 >     * @param ex the exception causing failure, or null if none
1374 >     */
1375 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1376 >        WorkQueue w = null;
1377 >        if (wt != null && (w = wt.workQueue) != null) {
1378 >            int ps;
1379 >            collectStealCount(w);
1380 >            w.qlock = -1;                // ensure set
1381 >            if (((ps = plock) & PL_LOCK) != 0 ||
1382 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1383 >                ps = acquirePlock();
1384 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1385 >            try {
1386 >                int idx = w.poolIndex;
1387 >                WorkQueue[] ws = workQueues;
1388 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1389 >                    ws[idx] = null;
1390 >            } finally {
1391 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1392 >                    releasePlock(nps);
1393              }
1394          }
1395 <        w.start(recordWorker(w), ueh);
1396 <        return w;
1395 >
1396 >        long c;                             // adjust ctl counts
1397 >        do {} while (!U.compareAndSwapLong
1398 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1399 >                                           ((c - TC_UNIT) & TC_MASK) |
1400 >                                           (c & ~(AC_MASK|TC_MASK)))));
1401 >
1402 >        if (!tryTerminate(false, false) && w != null) {
1403 >            w.cancelAll();                  // cancel remaining tasks
1404 >            if (w.array != null)            // suppress signal if never ran
1405 >                signalWork(null, 1);        // wake up or create replacement
1406 >            if (ex == null)                 // help clean refs on way out
1407 >                ForkJoinTask.helpExpungeStaleExceptions();
1408 >        }
1409 >
1410 >        if (ex != null)                     // rethrow
1411 >            ForkJoinTask.rethrow(ex);
1412      }
1413  
1414      /**
1415 <     * Adjusts counts upon failure to create worker
1416 <     */
1417 <    private void onWorkerCreationFailure() {
1418 <        for (;;) {
1419 <            int wc = workerCounts;
1420 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
1421 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1422 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
1423 <                break;
1415 >     * Collect worker steal count into total. Called on termination
1416 >     * and upon int overflow of local count. (There is a possible race
1417 >     * in the latter case vs any caller of getStealCount, which can
1418 >     * make its results less accurate than usual.)
1419 >     */
1420 >    final void collectStealCount(WorkQueue w) {
1421 >        if (w != null) {
1422 >            long sc;
1423 >            int ns = w.nsteals;
1424 >            w.nsteals = 0; // handle overflow
1425 >            long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1426 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1427 >                                               sc = stealCount, sc + steals));
1428          }
643        tryTerminate(false); // in case of failure during shutdown
1429      }
1430  
1431 <    /**
1432 <     * Create enough total workers to establish target parallelism,
1433 <     * giving up if terminating or addWorker fails
1434 <     */
1435 <    private void ensureEnoughTotalWorkers() {
1436 <        int wc;
1437 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
1438 <               runState < TERMINATING) {
1439 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1440 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
1441 <                 addWorker() == null))
1442 <                break;
1431 >    // Submissions
1432 >
1433 >    /**
1434 >     * Unless shutting down, adds the given task to a submission queue
1435 >     * at submitter's current queue index (modulo submission
1436 >     * range). Only the most common path is directly handled in this
1437 >     * method. All others are relayed to fullExternalPush.
1438 >     *
1439 >     * @param task the task. Caller must ensure non-null.
1440 >     */
1441 >    final void externalPush(ForkJoinTask<?> task) {
1442 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1443 >        if ((z = submitters.get()) != null && plock > 0 &&
1444 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1445 >            (q = ws[m & z.seed & SQMASK]) != null &&
1446 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1447 >            int s = q.top, n;
1448 >            if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1449 >                U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1450 >                            task);
1451 >                q.top = s + 1;                     // push on to deque
1452 >                q.qlock = 0;
1453 >                if (n <= 1)
1454 >                    signalWork(q, 1);
1455 >                return;
1456 >            }
1457 >            q.qlock = 0;
1458          }
1459 +        fullExternalPush(task);
1460      }
1461  
1462      /**
1463 <     * Final callback from terminating worker.  Removes record of
1464 <     * worker from array, and adjusts counts. If pool is shutting
1465 <     * down, tries to complete terminatation, else possibly replaces
1466 <     * the worker.
1467 <     *
1468 <     * @param w the worker
1469 <     */
1470 <    final void workerTerminated(ForkJoinWorkerThread w) {
1471 <        if (w.active) { // force inactive
1472 <            w.active = false;
1473 <            do {} while (!tryDecrementActiveCount());
1474 <        }
1475 <        forgetWorker(w);
1476 <
1477 <        // Decrement total count, and if was running, running count
1478 <        // Spin (waiting for other updates) if either would be negative
1479 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
1480 <        int unit = ONE_TOTAL + nr;
1481 <        for (;;) {
1482 <            int wc = workerCounts;
1483 <            int rc = wc & RUNNING_COUNT_MASK;
1484 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
1485 <                Thread.yield(); // back off if waiting for other updates
1486 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1487 <                                              wc, wc - unit))
1488 <                break;
1463 >     * Full version of externalPush. This method is called, among
1464 >     * other times, upon the first submission of the first task to the
1465 >     * pool, so must perform secondary initialization: creating
1466 >     * workQueue array and setting plock to a valid value. It also
1467 >     * detects first submission by an external thread by looking up
1468 >     * its ThreadLocal, and creates a new shared queue if the one at
1469 >     * index if empty or contended. The lock bodies must be
1470 >     * exception-free (so no try/finally) so we optimistically
1471 >     * allocate new queues/arrays outside the locks and throw them
1472 >     * away if (very rarely) not needed. Note that the plock seq value
1473 >     * can eventually wrap around zero, but if so harmlessly fails to
1474 >     * reinitialize.
1475 >     */
1476 >    private void fullExternalPush(ForkJoinTask<?> task) {
1477 >        for (Submitter z = null;;) {
1478 >            WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1479 >            if ((ps = plock) < 0)
1480 >                throw new RejectedExecutionException();
1481 >            else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1482 >                int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1483 >                n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1484 >                WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1485 >                if ((ps & PL_LOCK) != 0 ||
1486 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1487 >                    ps = acquirePlock();
1488 >                if ((ws = workQueues) == null)
1489 >                    workQueues = nws;
1490 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1491 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1492 >                    releasePlock(nps);
1493 >            }
1494 >            else if (z == null && (z = submitters.get()) == null) {
1495 >                if (U.compareAndSwapInt(this, INDEXSEED,
1496 >                                        s = indexSeed, s += SEED_INCREMENT) &&
1497 >                    s != 0) // skip 0
1498 >                    submitters.set(z = new Submitter(s));
1499 >            }
1500 >            else {
1501 >                int k = (r = z.seed) & m & SQMASK;
1502 >                if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1503 >                    (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1504 >                    if (((ps = plock) & PL_LOCK) != 0 ||
1505 >                        !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1506 >                        ps = acquirePlock();
1507 >                    WorkQueue w = null;
1508 >                    if ((ws = workQueues) != null && k < ws.length &&
1509 >                        (w = ws[k]) == null)
1510 >                        ws[k] = q;
1511 >                    else
1512 >                        q = w;
1513 >                    int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1514 >                    if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1515 >                        releasePlock(nps);
1516 >                }
1517 >                if (q != null && q.qlock == 0 && q.fullPush(task, false))
1518 >                    return;
1519 >                r ^= r << 13;                // same xorshift as WorkQueues
1520 >                r ^= r >>> 17;
1521 >                z.seed = r ^= r << 5;        // move to a different index
1522 >            }
1523          }
689
690        accumulateStealCount(w); // collect final count
691        if (!tryTerminate(false))
692            ensureEnoughTotalWorkers();
1524      }
1525  
1526 <    // Waiting for and signalling events
1526 >    // Maintaining ctl counts
1527  
1528      /**
1529 <     * Releases workers blocked on a count not equal to current count.
1529 >     * Increments active count; mainly called upon return from blocking.
1530       */
1531 <    private void releaseWaiters() {
1532 <        long top;
1533 <        int id;
1534 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
1535 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
1536 <            ForkJoinWorkerThread[] ws = workers;
1537 <            ForkJoinWorkerThread w;
1538 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
1539 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1540 <                                          top, w.nextWaiter))
1541 <                LockSupport.unpark(w);
1531 >    final void incrementActiveCount() {
1532 >        long c;
1533 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1534 >    }
1535 >
1536 >    /**
1537 >     * Tries to create (at most one) or activate (possibly several)
1538 >     * workers if too few are active. On contention failure, continues
1539 >     * until at least one worker is signalled or the given queue is
1540 >     * empty or all workers are active.
1541 >     *
1542 >     * @param q if non-null, the queue holding tasks to be signalled
1543 >     * @param signals the target number of signals.
1544 >     */
1545 >    final void signalWork(WorkQueue q, int signals) {
1546 >        long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1547 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1548 >            if ((e = (int)c) > 0) {
1549 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1550 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1551 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1552 >                               ((long)(u + UAC_UNIT) << 32));
1553 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1554 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1555 >                        if ((p = w.parker) != null)
1556 >                            U.unpark(p);
1557 >                        if (--signals <= 0)
1558 >                            break;
1559 >                    }
1560 >                    else
1561 >                        signals = 1;
1562 >                    if ((q != null && q.queueSize() == 0))
1563 >                        break;
1564 >                }
1565 >                else
1566 >                    break;
1567 >            }
1568 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1569 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1570 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1571 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1572 >                    ForkJoinWorkerThread wt = null;
1573 >                    Throwable ex = null;
1574 >                    boolean started = false;
1575 >                    try {
1576 >                        ForkJoinWorkerThreadFactory fac;
1577 >                        if ((fac = factory) != null &&
1578 >                            (wt = fac.newThread(this)) != null) {
1579 >                            wt.start();
1580 >                            started = true;
1581 >                        }
1582 >                    } catch (Throwable rex) {
1583 >                        ex = rex;
1584 >                    }
1585 >                    if (!started)
1586 >                        deregisterWorker(wt, ex); // adjust counts on failure
1587 >                    break;
1588 >                }
1589 >            }
1590 >            else
1591 >                break;
1592          }
1593      }
1594  
1595 +    // Scanning for tasks
1596 +
1597      /**
1598 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry and wakes up all waiters
1598 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1599       */
1600 <    private void signalEvent() {
1601 <        int c;
1602 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
1603 <                                               c = eventCount, c+1));
722 <        releaseWaiters();
1600 >    final void runWorker(WorkQueue w) {
1601 >        // initialize queue array in this thread
1602 >        w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1603 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1604      }
1605  
1606      /**
1607 <     * Advances eventCount and releases waiters until interference by
1608 <     * other releasing threads is detected.
1609 <     */
1610 <    final void signalWork() {
1611 <        // EventCount CAS failures are OK -- any change in count suffices.
1612 <        int ec;
1613 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
1614 <        outer:for (;;) {
1615 <            long top = eventWaiters;
1616 <            ec = eventCount;
1617 <            for (;;) {
1618 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1619 <                int id = (int)(top & WAITER_INDEX_MASK);
1620 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1621 <                    return;
1622 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
1623 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1624 <                                               top, top = w.nextWaiter))
1625 <                    continue outer;      // possibly stale; reread
1626 <                LockSupport.unpark(w);
1627 <                if (top != eventWaiters) // let someone else take over
1628 <                    return;
1607 >     * Scans for and, if found, returns one task, else possibly
1608 >     * inactivates the worker. This method operates on single reads of
1609 >     * volatile state and is designed to be re-invoked continuously,
1610 >     * in part because it returns upon detecting inconsistencies,
1611 >     * contention, or state changes that indicate possible success on
1612 >     * re-invocation.
1613 >     *
1614 >     * The scan searches for tasks across a random permutation of
1615 >     * queues (starting at a random index and stepping by a random
1616 >     * relative prime, checking each at least once).  The scan
1617 >     * terminates upon either finding a non-empty queue, or completing
1618 >     * the sweep. If the worker is not inactivated, it takes and
1619 >     * returns a task from this queue. Otherwise, if not activated, it
1620 >     * signals workers (that may include itself) and returns so caller
1621 >     * can retry. Also returns for trtry if the worker array may have
1622 >     * changed during an empty scan.  On failure to find a task, we
1623 >     * take one of the following actions, after which the caller will
1624 >     * retry calling this method unless terminated.
1625 >     *
1626 >     * * If pool is terminating, terminate the worker.
1627 >     *
1628 >     * * If not already enqueued, try to inactivate and enqueue the
1629 >     * worker on wait queue. Or, if inactivating has caused the pool
1630 >     * to be quiescent, relay to idleAwaitWork to check for
1631 >     * termination and possibly shrink pool.
1632 >     *
1633 >     * * If already enqueued and none of the above apply, possibly
1634 >     * (with 1/2 probablility) park awaiting signal, else lingering to
1635 >     * help scan and signal.
1636 >     *
1637 >     * @param w the worker (via its WorkQueue)
1638 >     * @return a task or null if none found
1639 >     */
1640 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1641 >        WorkQueue[] ws; WorkQueue q;           // first update random seed
1642 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1643 >        int ps = plock, m;                     // volatile read order matters
1644 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1645 >            int ec = w.eventCount;             // ec is negative if inactive
1646 >            int step = (r >>> 16) | 1;         // relatively prime
1647 >            for (int j = (m + 1) << 2;  ; --j, r += step) {
1648 >                ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1649 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1650 >                    (a = q.array) != null) {   // probably nonempty
1651 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1652 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1653 >                    if (q.base == b && ec >= 0 && t != null &&
1654 >                        U.compareAndSwapObject(a, i, t, null)) {
1655 >                        if ((n = q.top - (q.base = b + 1)) > 0)
1656 >                            signalWork(q, n);
1657 >                        return t;              // taken
1658 >                    }
1659 >                    if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1660 >                        if ((n = q.queueSize() - 1) > 0)
1661 >                            signalWork(q, n);
1662 >                        break;                 // let caller retry after signal
1663 >                    }
1664 >                }
1665 >                else if (j < 0) {              // end of scan
1666 >                    long c = ctl; int e;
1667 >                    if (plock != ps)           // incomplete sweep
1668 >                        break;
1669 >                    if ((e = (int)c) < 0)      // pool is terminating
1670 >                        w.qlock = -1;
1671 >                    else if (ec >= 0) {        // try to enqueue/inactivate
1672 >                        long nc = ((long)ec |
1673 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1674 >                        w.nextWait = e;
1675 >                        w.eventCount = ec | INT_SIGN; // mark as inactive
1676 >                        if (ctl != c ||
1677 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1678 >                            w.eventCount = ec; // unmark on CAS failure
1679 >                        else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1680 >                            idleAwaitWork(w, nc, c);  // quiescent
1681 >                    }
1682 >                    else if (w.seed >= 0 && w.eventCount < 0) {
1683 >                        Thread wt = Thread.currentThread();
1684 >                        Thread.interrupted();  // clear status
1685 >                        U.putObject(wt, PARKBLOCKER, this);
1686 >                        w.parker = wt;         // emulate LockSupport.park
1687 >                        if (w.eventCount < 0)  // recheck
1688 >                            U.park(false, 0L);
1689 >                        w.parker = null;
1690 >                        U.putObject(wt, PARKBLOCKER, null);
1691 >                    }
1692 >                    break;
1693 >                }
1694              }
1695          }
1696 +        return null;
1697      }
1698  
1699      /**
1700 <     * If worker is inactive, blocks until terminating or event count
1701 <     * advances from last value held by worker; in any case helps
1702 <     * release others.
1703 <     *
1704 <     * @param w the calling worker thread
1705 <     */
1706 <    private void eventSync(ForkJoinWorkerThread w) {
1707 <        if (!w.active) {
1708 <            int prev = w.lastEventCount;
1709 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
1710 <                            ((long)(w.poolIndex + 1)));
1711 <            long top;
1712 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1713 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
1714 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
1715 <                   eventCount == prev) {
1716 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1717 <                                              w.nextWaiter = top, nextTop)) {
1718 <                    accumulateStealCount(w); // transfer steals while idle
1719 <                    Thread.interrupted();    // clear/ignore interrupt
1720 <                    while (eventCount == prev)
1721 <                        w.doPark();
1700 >     * If inactivating worker w has caused the pool to become
1701 >     * quiescent, checks for pool termination, and, so long as this is
1702 >     * not the only worker, waits for event for up to a given
1703 >     * duration.  On timeout, if ctl has not changed, terminates the
1704 >     * worker, which will in turn wake up another worker to possibly
1705 >     * repeat this process.
1706 >     *
1707 >     * @param w the calling worker
1708 >     * @param currentCtl the ctl value triggering possible quiescence
1709 >     * @param prevCtl the ctl value to restore if thread is terminated
1710 >     */
1711 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1712 >        if (w.eventCount < 0 &&
1713 >            (this == commonPool || !tryTerminate(false, false)) &&
1714 >            (int)prevCtl != 0) {
1715 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1716 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1717 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1718 >            Thread wt = Thread.currentThread();
1719 >            while (ctl == currentCtl) {
1720 >                Thread.interrupted();  // timed variant of version in scan()
1721 >                U.putObject(wt, PARKBLOCKER, this);
1722 >                w.parker = wt;
1723 >                if (ctl == currentCtl)
1724 >                    U.park(false, parkTime);
1725 >                w.parker = null;
1726 >                U.putObject(wt, PARKBLOCKER, null);
1727 >                if (ctl != currentCtl)
1728 >                    break;
1729 >                if (deadline - System.nanoTime() <= 0L &&
1730 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1731 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1732 >                    w.qlock = -1;   // shrink
1733                      break;
1734                  }
1735              }
778            w.lastEventCount = eventCount;
1736          }
780        releaseWaiters();
1737      }
1738  
1739      /**
1740 <     * Callback from workers invoked upon each top-level action (i.e.,
1741 <     * stealing a task or taking a submission and running
786 <     * it). Performs one or both of the following:
787 <     *
788 <     * * If the worker cannot find work, updates its active status to
789 <     * inactive and updates activeCount unless there is contention, in
790 <     * which case it may try again (either in this or a subsequent
791 <     * call).  Additionally, awaits the next task event and/or helps
792 <     * wake up other releasable waiters.
1740 >     * Scans through queues looking for work while joining a task;
1741 >     * if any are present, signals.
1742       *
1743 <     * * If there are too many running threads, suspends this worker
1744 <     * (first forcing inactivation if necessary).  If it is not
796 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
797 <     * -- killed while suspended within suspendAsSpare. Otherwise,
798 <     * upon resume it rechecks to make sure that it is still needed.
799 <     *
800 <     * @param w the worker
801 <     * @param worked false if the worker scanned for work but didn't
802 <     * find any (in which case it may block waiting for work).
1743 >     * @param task to return early if done
1744 >     * @param origin an index to start scan
1745       */
1746 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1747 <        boolean active = w.active;
1748 <        boolean inactivate = !worked & active;
1749 <        for (;;) {
1750 <            if (inactivate) {
1751 <                int rs = runState;
1752 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1753 <                                             rs, rs - ONE_ACTIVE))
1754 <                    inactivate = active = w.active = false;
1755 <            }
1756 <            int wc = workerCounts;
1757 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
1758 <                if (!worked)
817 <                    eventSync(w);
818 <                return;
1746 >    final int helpSignal(ForkJoinTask<?> task, int origin) {
1747 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1748 >        if (task != null && (ws = workQueues) != null &&
1749 >            (m = ws.length - 1) >= 0) {
1750 >            for (int i = 0; i <= m; ++i) {
1751 >                if ((s = task.status) < 0)
1752 >                    return s;
1753 >                if ((q = ws[(i + origin) & m]) != null &&
1754 >                    (n = q.queueSize()) > 0) {
1755 >                    signalWork(q, n);
1756 >                    if ((int)(ctl >> AC_SHIFT) >= 0)
1757 >                        break;
1758 >                }
1759              }
820            if (!(inactivate |= active) &&  // must inactivate to suspend
821                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
822                                         wc, wc - ONE_RUNNING) &&
823                !w.suspendAsSpare())        // false if trimmed
824                return;
1760          }
1761 +        return 0;
1762      }
1763  
1764      /**
1765 <     * Tries to decrement running count, and if so, possibly creates
1766 <     * or resumes compensating threads before blocking on task joinMe.
1767 <     * This code is sprawled out with manual inlining to evade some
1768 <     * JIT oddities.
1769 <     *
1770 <     * @param joinMe the task to join
1771 <     * @return task status on exit
1772 <     */
1773 <    final int tryAwaitJoin(ForkJoinTask<?> joinMe) {
1774 <        int cw = workerCounts; // read now to spoil CAS if counts change as ...
1775 <        releaseWaiters();      // ... a byproduct of releaseWaiters
1776 <        int stat = joinMe.status;
1777 <        if (stat >= 0 && // inline variant of tryDecrementRunningCount
1778 <            (cw & RUNNING_COUNT_MASK) > 0 &&
1779 <            UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1780 <                                     cw, cw - ONE_RUNNING)) {
1781 <            int pc = parallelism;
1782 <            int scans = 0;  // to require confirming passes to add threads
1783 <            outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1784 <                if ((stat = joinMe.status) < 0)
1785 <                    break;
1786 <                ForkJoinWorkerThread spare = null;
1787 <                ForkJoinWorkerThread[] ws = workers;
1788 <                int nws = ws.length;
1789 <                for (int i = 0; i < nws; ++i) {
1790 <                    ForkJoinWorkerThread w = ws[i];
1791 <                    if (w != null && w.isSuspended()) {
856 <                        spare = w;
857 <                        break;
1765 >     * Tries to locate and execute tasks for a stealer of the given
1766 >     * task, or in turn one of its stealers, Traces currentSteal ->
1767 >     * currentJoin links looking for a thread working on a descendant
1768 >     * of the given task and with a non-empty queue to steal back and
1769 >     * execute tasks from. The first call to this method upon a
1770 >     * waiting join will often entail scanning/search, (which is OK
1771 >     * because the joiner has nothing better to do), but this method
1772 >     * leaves hints in workers to speed up subsequent calls. The
1773 >     * implementation is very branchy to cope with potential
1774 >     * inconsistencies or loops encountering chains that are stale,
1775 >     * unknown, or so long that they are likely cyclic.
1776 >     *
1777 >     * @param joiner the joining worker
1778 >     * @param task the task to join
1779 >     * @return 0 if no progress can be made, negative if task
1780 >     * known complete, else positive
1781 >     */
1782 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1783 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1784 >        if (joiner != null && task != null) {       // hoist null checks
1785 >            restart: for (;;) {
1786 >                ForkJoinTask<?> subtask = task;     // current target
1787 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1788 >                    WorkQueue[] ws; int m, s, h;
1789 >                    if ((s = task.status) < 0) {
1790 >                        stat = s;
1791 >                        break restart;
1792                      }
1793 <                }
1794 <                if ((stat = joinMe.status) < 0) // recheck to narrow race
1795 <                    break;
1796 <                int wc = workerCounts;
1797 <                int rc = wc & RUNNING_COUNT_MASK;
1798 <                if (rc >= pc)
1799 <                    break;
1800 <                if (spare != null) {
1801 <                    if (spare.tryUnsuspend()) {
1802 <                        int c; // inline incrementRunningCount
1803 <                        do {} while (!UNSAFE.compareAndSwapInt
1804 <                                     (this, workerCountsOffset,
1805 <                                      c = workerCounts, c + ONE_RUNNING));
1806 <                        LockSupport.unpark(spare);
1807 <                        break;
1793 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1794 >                        break restart;              // shutting down
1795 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1796 >                        v.currentSteal != subtask) {
1797 >                        for (int origin = h;;) {    // find stealer
1798 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1799 >                                (subtask.status < 0 || j.currentJoin != subtask))
1800 >                                continue restart;   // occasional staleness check
1801 >                            if ((v = ws[h]) != null &&
1802 >                                v.currentSteal == subtask) {
1803 >                                j.stealHint = h;    // save hint
1804 >                                break;
1805 >                            }
1806 >                            if (h == origin)
1807 >                                break restart;      // cannot find stealer
1808 >                        }
1809 >                    }
1810 >                    for (;;) { // help stealer or descend to its stealer
1811 >                        ForkJoinTask[] a;  int b;
1812 >                        if (subtask.status < 0)     // surround probes with
1813 >                            continue restart;       //   consistency checks
1814 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1815 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1816 >                            ForkJoinTask<?> t =
1817 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1818 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1819 >                                v.currentSteal != subtask)
1820 >                                continue restart;   // stale
1821 >                            stat = 1;               // apparent progress
1822 >                            if (t != null && v.base == b &&
1823 >                                U.compareAndSwapObject(a, i, t, null)) {
1824 >                                v.base = b + 1;     // help stealer
1825 >                                joiner.runSubtask(t);
1826 >                            }
1827 >                            else if (v.base == b && ++steps == MAX_HELP)
1828 >                                break restart;      // v apparently stalled
1829 >                        }
1830 >                        else {                      // empty -- try to descend
1831 >                            ForkJoinTask<?> next = v.currentJoin;
1832 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1833 >                                v.currentSteal != subtask)
1834 >                                continue restart;   // stale
1835 >                            else if (next == null || ++steps == MAX_HELP)
1836 >                                break restart;      // dead-end or maybe cyclic
1837 >                            else {
1838 >                                subtask = next;
1839 >                                j = v;
1840 >                                break;
1841 >                            }
1842 >                        }
1843                      }
875                    continue;
876                }
877                int tc = wc >>> TOTAL_COUNT_SHIFT;
878                int sc = tc - pc;
879                if (rc > 0) {
880                    int p = pc;
881                    int s = sc;
882                    while (s-- >= 0) { // try keeping 3/4 live
883                        if (rc > (p -= (p >>> 2) + 1))
884                            break outer;
885                    }
886                }
887                if (scans++ > sc && tc < MAX_THREADS &&
888                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
889                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
890                    addWorker();
891                    break;
1844                  }
1845              }
894            if (stat >= 0)
895                stat = joinMe.internalAwaitDone();
896            int c; // inline incrementRunningCount
897            do {} while (!UNSAFE.compareAndSwapInt
898                         (this, workerCountsOffset,
899                          c = workerCounts, c + ONE_RUNNING));
1846          }
1847          return stat;
1848      }
1849  
1850      /**
1851 <     * Same idea as (and mostly pasted from) tryAwaitJoin, but
1852 <     * self-contained
1853 <     */
1854 <    final void awaitBlocker(ManagedBlocker blocker)
1855 <        throws InterruptedException {
1856 <        for (;;) {
1857 <            if (blocker.isReleasable())
1858 <                return;
1859 <            int cw = workerCounts;
1860 <            releaseWaiters();
1861 <            if ((cw & RUNNING_COUNT_MASK) > 0 &&
1862 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1863 <                                         cw, cw - ONE_RUNNING))
1864 <                break;
1865 <        }
1866 <        boolean done = false;
1867 <        int pc = parallelism;
1868 <        int scans = 0;
1869 <        outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
924 <            if (done = blocker.isReleasable())
925 <                break;
926 <            ForkJoinWorkerThread spare = null;
927 <            ForkJoinWorkerThread[] ws = workers;
928 <            int nws = ws.length;
929 <            for (int i = 0; i < nws; ++i) {
930 <                ForkJoinWorkerThread w = ws[i];
931 <                if (w != null && w.isSuspended()) {
932 <                    spare = w;
933 <                    break;
1851 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1852 >     * and run tasks within the target's computation
1853 >     *
1854 >     * @param task the task to join
1855 >     * @param mode if shared, exit upon completing any task
1856 >     * if all workers are active
1857 >     *
1858 >     */
1859 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1860 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1861 >        if (task != null && (ws = workQueues) != null &&
1862 >            (m = ws.length - 1) >= 0) {
1863 >            for (int j = 1, origin = j;;) {
1864 >                if ((s = task.status) < 0)
1865 >                    return s;
1866 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1867 >                    origin = j;
1868 >                    if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1869 >                        break;
1870                  }
1871 <            }
936 <            if (done = blocker.isReleasable())
937 <                break;
938 <            int wc = workerCounts;
939 <            int rc = wc & RUNNING_COUNT_MASK;
940 <            if (rc >= pc)
941 <                break;
942 <            if (spare != null) {
943 <                if (spare.tryUnsuspend()) {
944 <                    int c;
945 <                    do {} while (!UNSAFE.compareAndSwapInt
946 <                                 (this, workerCountsOffset,
947 <                                  c = workerCounts, c + ONE_RUNNING));
948 <                    LockSupport.unpark(spare);
1871 >                else if ((j = (j + 2) & m) == origin)
1872                      break;
1873 +            }
1874 +        }
1875 +        return 0;
1876 +    }
1877 +
1878 +    /**
1879 +     * Tries to decrement active count (sometimes implicitly) and
1880 +     * possibly release or create a compensating worker in preparation
1881 +     * for blocking. Fails on contention or termination. Otherwise,
1882 +     * adds a new thread if no idle workers are available and pool
1883 +     * may become starved.
1884 +     */
1885 +    final boolean tryCompensate() {
1886 +        int pc = parallelism, e, u, i, tc; long c;
1887 +        WorkQueue[] ws; WorkQueue w; Thread p;
1888 +        if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1889 +            if (e != 0 && (i = e & SMASK) < ws.length &&
1890 +                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1891 +                long nc = ((long)(w.nextWait & E_MASK) |
1892 +                           (c & (AC_MASK|TC_MASK)));
1893 +                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1894 +                    w.eventCount = (e + E_SEQ) & E_MASK;
1895 +                    if ((p = w.parker) != null)
1896 +                        U.unpark(p);
1897 +                    return true;   // replace with idle worker
1898                  }
951                continue;
1899              }
1900 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1901 <            int sc = tc - pc;
1902 <            if (rc > 0) {
1903 <                int p = pc;
1904 <                int s = sc;
1905 <                while (s-- >= 0) {
1906 <                    if (rc > (p -= (p >>> 2) + 1))
1907 <                        break outer;
1908 <                }
1909 <            }
1910 <            if (scans++ > sc && tc < MAX_THREADS &&
1911 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1912 <                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
1913 <                addWorker();
1914 <                break;
1900 >            else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1901 >                     (u >> UAC_SHIFT) + pc > 1) {
1902 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1903 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1904 >                    return true;    // no compensation
1905 >            }
1906 >            else if ((tc = u + pc) < MAX_CAP) {
1907 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1908 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1909 >                    Throwable ex = null;
1910 >                    ForkJoinWorkerThread wt = null;
1911 >                    try {
1912 >                        ForkJoinWorkerThreadFactory fac;
1913 >                        if ((fac = factory) != null &&
1914 >                            (wt = fac.newThread(this)) != null) {
1915 >                            wt.start();
1916 >                            return true;
1917 >                        }
1918 >                    } catch (Throwable rex) {
1919 >                        ex = rex;
1920 >                    }
1921 >                    deregisterWorker(wt, ex); // adjust counts etc
1922 >                }
1923              }
1924          }
1925 <        try {
1926 <            if (!done)
972 <                do {} while (!blocker.isReleasable() &&
973 <                             !blocker.block());
974 <        } finally {
975 <            int c;
976 <            do {} while (!UNSAFE.compareAndSwapInt
977 <                         (this, workerCountsOffset,
978 <                          c = workerCounts, c + ONE_RUNNING));
979 <        }
980 <    }  
1925 >        return false;
1926 >    }
1927  
1928      /**
1929 <     * Possibly initiates and/or completes termination.
1929 >     * Helps and/or blocks until the given task is done.
1930       *
1931 <     * @param now if true, unconditionally terminate, else only
1932 <     * if shutdown and empty queue and no active workers
1933 <     * @return true if now terminating or terminated
1931 >     * @param joiner the joining worker
1932 >     * @param task the task
1933 >     * @return task status on exit
1934       */
1935 <    private boolean tryTerminate(boolean now) {
1936 <        if (now)
1937 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1938 <        else if (runState < SHUTDOWN ||
1939 <                 !submissionQueue.isEmpty() ||
1940 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1941 <            return false;
1942 <
1943 <        if (advanceRunLevel(TERMINATING))
1944 <            startTerminating();
1945 <
1946 <        // Finish now if all threads terminated; else in some subsequent call
1947 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1948 <            advanceRunLevel(TERMINATED);
1949 <            termination.arrive();
1935 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1936 >        int s = 0;
1937 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1938 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1939 >            joiner.currentJoin = task;
1940 >            do {} while ((s = task.status) >= 0 &&
1941 >                         joiner.queueSize() > 0 &&
1942 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1943 >            if (s >= 0 && (s = task.status) >= 0 &&
1944 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1945 >                (task instanceof CountedCompleter))
1946 >                s = helpComplete(task, LIFO_QUEUE);
1947 >            while (s >= 0 && (s = task.status) >= 0) {
1948 >                if ((joiner.queueSize() > 0 ||           // try helping
1949 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1950 >                    (s = task.status) >= 0 && tryCompensate()) {
1951 >                    if (task.trySetSignal() && (s = task.status) >= 0) {
1952 >                        synchronized (task) {
1953 >                            if (task.status >= 0) {
1954 >                                try {                // see ForkJoinTask
1955 >                                    task.wait();     //  for explanation
1956 >                                } catch (InterruptedException ie) {
1957 >                                }
1958 >                            }
1959 >                            else
1960 >                                task.notifyAll();
1961 >                        }
1962 >                    }
1963 >                    long c;                          // re-activate
1964 >                    do {} while (!U.compareAndSwapLong
1965 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1966 >                }
1967 >            }
1968 >            joiner.currentJoin = prevJoin;
1969          }
1970 <        return true;
1970 >        return s;
1971      }
1972  
1973      /**
1974 <     * Actions on transition to TERMINATING
1974 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1975 >     * to help join only while there is continuous progress. (Caller
1976 >     * will then enter a timed wait.)
1977 >     *
1978 >     * @param joiner the joining worker
1979 >     * @param task the task
1980       */
1981 <    private void startTerminating() {
1982 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1983 <            cancelSubmissions();
1984 <            shutdownWorkers();
1985 <            cancelWorkerTasks();
1986 <            signalEvent();
1987 <            interruptWorkers();
1981 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1982 >        int s;
1983 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1984 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1985 >            joiner.currentJoin = task;
1986 >            do {} while ((s = task.status) >= 0 &&
1987 >                         joiner.queueSize() > 0 &&
1988 >                         joiner.tryRemoveAndExec(task));
1989 >            if (s >= 0 && (s = task.status) >= 0 &&
1990 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1991 >                (task instanceof CountedCompleter))
1992 >                s = helpComplete(task, LIFO_QUEUE);
1993 >            if (s >= 0 && joiner.queueSize() == 0) {
1994 >                do {} while (task.status >= 0 &&
1995 >                             tryHelpStealer(joiner, task) > 0);
1996 >            }
1997 >            joiner.currentJoin = prevJoin;
1998          }
1999      }
2000  
2001      /**
2002 <     * Clear out and cancel submissions, ignoring exceptions
2002 >     * Returns a (probably) non-empty steal queue, if one is found
2003 >     * during a random, then cyclic scan, else null.  This method must
2004 >     * be retried by caller if, by the time it tries to use the queue,
2005 >     * it is empty.
2006 >     * @param r a (random) seed for scanning
2007       */
2008 <    private void cancelSubmissions() {
2009 <        ForkJoinTask<?> task;
2010 <        while ((task = submissionQueue.poll()) != null) {
2011 <            try {
2012 <                task.cancel(false);
2013 <            } catch (Throwable ignore) {
2008 >    private WorkQueue findNonEmptyStealQueue(int r) {
2009 >        int step = (r >>> 16) | 1;
2010 >        for (WorkQueue[] ws;;) {
2011 >            int ps = plock, m;
2012 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2013 >                return null;
2014 >            for (int j = (m + 1) << 2; ; r += step) {
2015 >                WorkQueue q = ws[((r << 1) | 1) & m];
2016 >                if (q != null && q.queueSize() > 0)
2017 >                    return q;
2018 >                else if (--j < 0) {
2019 >                    if (plock == ps)
2020 >                        return null;
2021 >                    break;
2022 >                }
2023              }
2024          }
2025      }
2026  
2027      /**
2028 <     * Sets all worker run states to at least shutdown,
2029 <     * also resuming suspended workers
2030 <     */
2031 <    private void shutdownWorkers() {
2032 <        ForkJoinWorkerThread[] ws = workers;
2033 <        int nws = ws.length;
2034 <        for (int i = 0; i < nws; ++i) {
2035 <            ForkJoinWorkerThread w = ws[i];
2036 <            if (w != null)
2037 <                w.shutdown();
2028 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2029 >     * active count ctl maintenance, but rather than blocking
2030 >     * when tasks cannot be found, we rescan until all others cannot
2031 >     * find tasks either.
2032 >     */
2033 >    final void helpQuiescePool(WorkQueue w) {
2034 >        for (boolean active = true;;) {
2035 >            ForkJoinTask<?> localTask; // exhaust local queue
2036 >            while ((localTask = w.nextLocalTask()) != null)
2037 >                localTask.doExec();
2038 >            // Similar to loop in scan(), but ignoring submissions
2039 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2040 >            if (q != null) {
2041 >                ForkJoinTask<?> t; int b;
2042 >                if (!active) {      // re-establish active count
2043 >                    long c;
2044 >                    active = true;
2045 >                    do {} while (!U.compareAndSwapLong
2046 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2047 >                }
2048 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2049 >                    w.runSubtask(t);
2050 >            }
2051 >            else {
2052 >                long c;
2053 >                if (active) {       // decrement active count without queuing
2054 >                    active = false;
2055 >                    do {} while (!U.compareAndSwapLong
2056 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2057 >                }
2058 >                else
2059 >                    c = ctl;        // re-increment on exit
2060 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2061 >                    do {} while (!U.compareAndSwapLong
2062 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2063 >                    break;
2064 >                }
2065 >            }
2066          }
2067      }
2068  
2069      /**
2070 <     * Clears out and cancels all locally queued tasks
2070 >     * Gets and removes a local or stolen task for the given worker.
2071 >     *
2072 >     * @return a task, if available
2073       */
2074 <    private void cancelWorkerTasks() {
2075 <        ForkJoinWorkerThread[] ws = workers;
2076 <        int nws = ws.length;
2077 <        for (int i = 0; i < nws; ++i) {
2078 <            ForkJoinWorkerThread w = ws[i];
2079 <            if (w != null)
2080 <                w.cancelTasks();
2074 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2075 >        for (ForkJoinTask<?> t;;) {
2076 >            WorkQueue q; int b;
2077 >            if ((t = w.nextLocalTask()) != null)
2078 >                return t;
2079 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2080 >                return null;
2081 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2082 >                return t;
2083          }
2084      }
2085  
2086      /**
2087 <     * Unsticks all workers blocked on joins etc
2087 >     * Returns a cheap heuristic guide for task partitioning when
2088 >     * programmers, frameworks, tools, or languages have little or no
2089 >     * idea about task granularity.  In essence by offering this
2090 >     * method, we ask users only about tradeoffs in overhead vs
2091 >     * expected throughput and its variance, rather than how finely to
2092 >     * partition tasks.
2093 >     *
2094 >     * In a steady state strict (tree-structured) computation, each
2095 >     * thread makes available for stealing enough tasks for other
2096 >     * threads to remain active. Inductively, if all threads play by
2097 >     * the same rules, each thread should make available only a
2098 >     * constant number of tasks.
2099 >     *
2100 >     * The minimum useful constant is just 1. But using a value of 1
2101 >     * would require immediate replenishment upon each steal to
2102 >     * maintain enough tasks, which is infeasible.  Further,
2103 >     * partitionings/granularities of offered tasks should minimize
2104 >     * steal rates, which in general means that threads nearer the top
2105 >     * of computation tree should generate more than those nearer the
2106 >     * bottom. In perfect steady state, each thread is at
2107 >     * approximately the same level of computation tree. However,
2108 >     * producing extra tasks amortizes the uncertainty of progress and
2109 >     * diffusion assumptions.
2110 >     *
2111 >     * So, users will want to use values larger, but not much larger
2112 >     * than 1 to both smooth over transient shortages and hedge
2113 >     * against uneven progress; as traded off against the cost of
2114 >     * extra task overhead. We leave the user to pick a threshold
2115 >     * value to compare with the results of this call to guide
2116 >     * decisions, but recommend values such as 3.
2117 >     *
2118 >     * When all threads are active, it is on average OK to estimate
2119 >     * surplus strictly locally. In steady-state, if one thread is
2120 >     * maintaining say 2 surplus tasks, then so are others. So we can
2121 >     * just use estimated queue length.  However, this strategy alone
2122 >     * leads to serious mis-estimates in some non-steady-state
2123 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2124 >     * many of these by further considering the number of "idle"
2125 >     * threads, that are known to have zero queued tasks, so
2126 >     * compensate by a factor of (#idle/#active) threads.
2127 >     *
2128 >     * Note: The approximation of #busy workers as #active workers is
2129 >     * not very good under current signalling scheme, and should be
2130 >     * improved.
2131 >     */
2132 >    static int getSurplusQueuedTaskCount() {
2133 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2134 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2135 >            int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2136 >            int p = (pool = wt.pool).parallelism;
2137 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2138 >            return q.top - b - (a > (p >>>= 1) ? 0 :
2139 >                                a > (p >>>= 1) ? 1 :
2140 >                                a > (p >>>= 1) ? 2 :
2141 >                                a > (p >>>= 1) ? 4 :
2142 >                                8);
2143 >        }
2144 >        return 0;
2145 >    }
2146 >
2147 >    //  Termination
2148 >
2149 >    /**
2150 >     * Possibly initiates and/or completes termination.  The caller
2151 >     * triggering termination runs three passes through workQueues:
2152 >     * (0) Setting termination status, followed by wakeups of queued
2153 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2154 >     * threads (likely in external tasks, but possibly also blocked in
2155 >     * joins).  Each pass repeats previous steps because of potential
2156 >     * lagging thread creation.
2157 >     *
2158 >     * @param now if true, unconditionally terminate, else only
2159 >     * if no work and no active workers
2160 >     * @param enable if true, enable shutdown when next possible
2161 >     * @return true if now terminating or terminated
2162       */
2163 <    private void interruptWorkers() {
2164 <        ForkJoinWorkerThread[] ws = workers;
2165 <        int nws = ws.length;
2166 <        for (int i = 0; i < nws; ++i) {
2167 <            ForkJoinWorkerThread w = ws[i];
2168 <            if (w != null && !w.isTerminated()) {
2169 <                try {
2170 <                    w.interrupt();
2171 <                } catch (SecurityException ignore) {
2163 >    private boolean tryTerminate(boolean now, boolean enable) {
2164 >        if (this == commonPool)                     // cannot shut down
2165 >            return false;
2166 >        for (long c;;) {
2167 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2168 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2169 >                    synchronized (this) {
2170 >                        notifyAll();                // signal when 0 workers
2171 >                    }
2172 >                }
2173 >                return true;
2174 >            }
2175 >            if (plock >= 0) {                       // not yet enabled
2176 >                int ps;
2177 >                if (!enable)
2178 >                    return false;
2179 >                if (((ps = plock) & PL_LOCK) != 0 ||
2180 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2181 >                    ps = acquirePlock();
2182 >                int nps = SHUTDOWN;
2183 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2184 >                    releasePlock(nps);
2185 >            }
2186 >            if (!now) {                             // check if idle & no tasks
2187 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2188 >                    hasQueuedSubmissions())
2189 >                    return false;
2190 >                // Check for unqueued inactive workers. One pass suffices.
2191 >                WorkQueue[] ws = workQueues; WorkQueue w;
2192 >                if (ws != null) {
2193 >                    for (int i = 1; i < ws.length; i += 2) {
2194 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2195 >                            return false;
2196 >                    }
2197 >                }
2198 >            }
2199 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2200 >                for (int pass = 0; pass < 3; ++pass) {
2201 >                    WorkQueue[] ws = workQueues;
2202 >                    if (ws != null) {
2203 >                        WorkQueue w;
2204 >                        int n = ws.length;
2205 >                        for (int i = 0; i < n; ++i) {
2206 >                            if ((w = ws[i]) != null) {
2207 >                                w.qlock = -1;
2208 >                                if (pass > 0) {
2209 >                                    w.cancelAll();
2210 >                                    if (pass > 1)
2211 >                                        w.interruptOwner();
2212 >                                }
2213 >                            }
2214 >                        }
2215 >                        // Wake up workers parked on event queue
2216 >                        int i, e; long cc; Thread p;
2217 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2218 >                               (i = e & SMASK) < n &&
2219 >                               (w = ws[i]) != null) {
2220 >                            long nc = ((long)(w.nextWait & E_MASK) |
2221 >                                       ((cc + AC_UNIT) & AC_MASK) |
2222 >                                       (cc & (TC_MASK|STOP_BIT)));
2223 >                            if (w.eventCount == (e | INT_SIGN) &&
2224 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2225 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2226 >                                w.qlock = -1;
2227 >                                if ((p = w.parker) != null)
2228 >                                    U.unpark(p);
2229 >                            }
2230 >                        }
2231 >                    }
2232                  }
2233              }
2234          }
2235      }
2236  
2237 <    // misc support for ForkJoinWorkerThread
2237 >    // external operations on common pool
2238 >
2239 >    /**
2240 >     * Returns common pool queue for a thread that has submitted at
2241 >     * least one task.
2242 >     */
2243 >    static WorkQueue commonSubmitterQueue() {
2244 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2245 >        return ((z = submitters.get()) != null &&
2246 >                (p = commonPool) != null &&
2247 >                (ws = p.workQueues) != null &&
2248 >                (m = ws.length - 1) >= 0) ?
2249 >            ws[m & z.seed & SQMASK] : null;
2250 >    }
2251 >
2252 >    /**
2253 >     * Tries to pop the given task from submitter's queue in common pool.
2254 >     */
2255 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2256 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2257 >        ForkJoinTask<?>[] a;  int m, s; long j;
2258 >        if ((z = submitters.get()) != null &&
2259 >            (p = commonPool) != null &&
2260 >            (ws = p.workQueues) != null &&
2261 >            (m = ws.length - 1) >= 0 &&
2262 >            (q = ws[m & z.seed & SQMASK]) != null &&
2263 >            (s = q.top) != q.base &&
2264 >            (a = q.array) != null &&
2265 >            U.getObjectVolatile
2266 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2267 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2268 >            if (q.array == a && q.top == s && // recheck
2269 >                U.compareAndSwapObject(a, j, t, null)) {
2270 >                q.top = s - 1;
2271 >                q.qlock = 0;
2272 >                return true;
2273 >            }
2274 >            q.qlock = 0;
2275 >        }
2276 >        return false;
2277 >    }
2278  
2279      /**
2280 <     * Returns pool number
2280 >     * Tries to pop and run local tasks within the same computation
2281 >     * as the given root. On failure, tries to help complete from
2282 >     * other queues via helpComplete.
2283       */
2284 <    final int getPoolNumber() {
2285 <        return poolNumber;
2284 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2285 >        ForkJoinTask<?>[] a; int m;
2286 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2287 >            root != null && root.status >= 0) {
2288 >            for (;;) {
2289 >                int s; Object o; CountedCompleter<?> task = null;
2290 >                if ((s = q.top) - q.base > 0) {
2291 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2292 >                    if ((o = U.getObject(a, j)) != null &&
2293 >                        (o instanceof CountedCompleter)) {
2294 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2295 >                        do {
2296 >                            if (r == root) {
2297 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2298 >                                    if (q.array == a && q.top == s &&
2299 >                                        U.compareAndSwapObject(a, j, t, null)) {
2300 >                                        q.top = s - 1;
2301 >                                        task = t;
2302 >                                    }
2303 >                                    q.qlock = 0;
2304 >                                }
2305 >                                break;
2306 >                            }
2307 >                        } while((r = r.completer) != null);
2308 >                    }
2309 >                }
2310 >                if (task != null)
2311 >                    task.doExec();
2312 >                if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2313 >                    break;
2314 >                if (task == null) {
2315 >                    if (helpSignal(root, q.poolIndex) >= 0)
2316 >                        helpComplete(root, SHARED_QUEUE);
2317 >                    break;
2318 >                }
2319 >            }
2320 >        }
2321      }
2322  
2323      /**
2324 <     * Accumulates steal count from a worker, clearing
2325 <     * the worker's value
2324 >     * Tries to help execute or signal availability of the given task
2325 >     * from submitter's queue in common pool.
2326       */
2327 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2328 <        int sc = w.stealCount;
2329 <        if (sc != 0) {
2330 <            long c;
2331 <            w.stealCount = 0;
2332 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2333 <                                                    c = stealCount, c + sc));
2327 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2328 >        // Some hard-to-avoid overlap with tryExternalUnpush
2329 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2330 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2331 >        if (t != null && t.status >= 0 &&
2332 >            (z = submitters.get()) != null &&
2333 >            (p = commonPool) != null &&
2334 >            (ws = p.workQueues) != null &&
2335 >            (m = ws.length - 1) >= 0 &&
2336 >            (q = ws[m & z.seed & SQMASK]) != null &&
2337 >            (a = q.array) != null) {
2338 >            if ((s = q.top) != q.base &&
2339 >                U.getObjectVolatile
2340 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2341 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2342 >                if (q.array == a && q.top == s &&
2343 >                    U.compareAndSwapObject(a, j, t, null)) {
2344 >                    q.top = s - 1;
2345 >                    q.qlock = 0;
2346 >                    t.doExec();
2347 >                }
2348 >                else
2349 >                    q.qlock = 0;
2350 >            }
2351 >            if (t.status >= 0) {
2352 >                if (t instanceof CountedCompleter)
2353 >                    p.externalHelpComplete(q, t);
2354 >                else
2355 >                    p.helpSignal(t, q.poolIndex);
2356 >            }
2357          }
2358      }
2359  
2360      /**
2361 <     * Returns the approximate (non-atomic) number of idle threads per
1103 <     * active thread.
2361 >     * Restricted version of helpQuiescePool for external callers
2362       */
2363 <    final int idlePerActive() {
2364 <        int pc = parallelism; // use targeted parallelism, not rc
2365 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2366 <        // Use exact results for small values, saturate past 4
2367 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2363 >    static void externalHelpQuiescePool() {
2364 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2365 >        int r = ThreadLocalRandom.current().nextInt();
2366 >        if ((p = commonPool) != null &&
2367 >            (q = p.findNonEmptyStealQueue(r)) != null &&
2368 >            (b = q.base) - q.top < 0 &&
2369 >            (t = q.pollAt(b)) != null)
2370 >            t.doExec();
2371      }
2372  
2373 <    // Public and protected methods
2373 >    // Exported methods
2374  
2375      // Constructors
2376  
# Line 1154 | Line 2415 | public class ForkJoinPool extends Abstra
2415       * use {@link java.lang.Runtime#availableProcessors}.
2416       * @param factory the factory for creating new threads. For default value,
2417       * use {@link #defaultForkJoinWorkerThreadFactory}.
2418 <     * @param handler the handler for internal worker threads that
2419 <     * terminate due to unrecoverable errors encountered while executing
2420 <     * tasks. For default value, use <code>null</code>.
2421 <     * @param asyncMode if true,
2418 >     * @param handler the handler for internal worker threads that
2419 >     * terminate due to unrecoverable errors encountered while executing
2420 >     * tasks. For default value, use {@code null}.
2421 >     * @param asyncMode if true,
2422       * establishes local first-in-first-out scheduling mode for forked
2423       * tasks that are never joined. This mode may be more appropriate
2424       * than default locally stack-based mode in applications in which
2425       * worker threads only process event-style asynchronous tasks.
2426 <     * For default value, use <code>false</code>.
2426 >     * For default value, use {@code false}.
2427       * @throws IllegalArgumentException if parallelism less than or
2428       *         equal to zero, or greater than implementation limit
2429       * @throws NullPointerException if the factory is null
# Line 1171 | Line 2432 | public class ForkJoinPool extends Abstra
2432       *         because it does not hold {@link
2433       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2434       */
2435 <    public ForkJoinPool(int parallelism,
2435 >    public ForkJoinPool(int parallelism,
2436                          ForkJoinWorkerThreadFactory factory,
2437                          Thread.UncaughtExceptionHandler handler,
2438                          boolean asyncMode) {
2439          checkPermission();
2440          if (factory == null)
2441              throw new NullPointerException();
2442 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2442 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2443              throw new IllegalArgumentException();
2444          this.parallelism = parallelism;
2445          this.factory = factory;
2446          this.ueh = handler;
2447 <        this.locallyFifo = asyncMode;
2448 <        int arraySize = initialArraySizeFor(parallelism);
2449 <        this.workers = new ForkJoinWorkerThread[arraySize];
2450 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2451 <        this.workerLock = new ReentrantLock();
2452 <        this.termination = new Phaser(1);
2453 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2447 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2448 >        long np = (long)(-parallelism); // offset ctl counts
2449 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2450 >        int pn = nextPoolId();
2451 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2452 >        sb.append(Integer.toString(pn));
2453 >        sb.append("-worker-");
2454 >        this.workerNamePrefix = sb.toString();
2455      }
2456  
2457      /**
2458 <     * Returns initial power of two size for workers array.
2459 <     * @param pc the initial parallelism level
2460 <     */
2461 <    private static int initialArraySizeFor(int pc) {
2462 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2463 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2464 <        size |= size >>> 1;
2465 <        size |= size >>> 2;
2466 <        size |= size >>> 4;
2467 <        size |= size >>> 8;
2468 <        return size + 1;
2458 >     * Constructor for common pool, suitable only for static initialization.
2459 >     * Basically the same as above, but uses smallest possible initial footprint.
2460 >     */
2461 >    ForkJoinPool(int parallelism, long ctl,
2462 >                 ForkJoinWorkerThreadFactory factory,
2463 >                 Thread.UncaughtExceptionHandler handler) {
2464 >        this.parallelism = parallelism;
2465 >        this.ctl = ctl;
2466 >        this.factory = factory;
2467 >        this.ueh = handler;
2468 >        this.localMode = LIFO_QUEUE;
2469 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2470      }
2471  
1209    // Execution methods
1210
2472      /**
2473 <     * Common code for execute, invoke and submit
2473 >     * Returns the common pool instance.
2474 >     *
2475 >     * @return the common pool instance
2476       */
2477 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2478 <        if (task == null)
1216 <            throw new NullPointerException();
1217 <        if (runState >= SHUTDOWN)
1218 <            throw new RejectedExecutionException();
1219 <        // Convert submissions to current pool into forks
1220 <        Thread t = Thread.currentThread();
1221 <        ForkJoinWorkerThread w;
1222 <        if ((t instanceof ForkJoinWorkerThread) &&
1223 <            (w = (ForkJoinWorkerThread) t).pool == this)
1224 <            w.pushTask(task);
1225 <        else {
1226 <            submissionQueue.offer(task);
1227 <            signalEvent();
1228 <            ensureEnoughTotalWorkers();
1229 <        }
2477 >    public static ForkJoinPool commonPool() {
2478 >        return commonPool; // cannot be null (if so, a static init error)
2479      }
2480  
2481 +    // Execution methods
2482 +
2483      /**
2484       * Performs the given task, returning its result upon completion.
2485 <     * If the caller is already engaged in a fork/join computation in
2486 <     * the current pool, this method is equivalent in effect to
2487 <     * {@link ForkJoinTask#invoke}.
2485 >     * If the computation encounters an unchecked Exception or Error,
2486 >     * it is rethrown as the outcome of this invocation.  Rethrown
2487 >     * exceptions behave in the same way as regular exceptions, but,
2488 >     * when possible, contain stack traces (as displayed for example
2489 >     * using {@code ex.printStackTrace()}) of both the current thread
2490 >     * as well as the thread actually encountering the exception;
2491 >     * minimally only the latter.
2492       *
2493       * @param task the task
2494       * @return the task's result
# Line 1242 | Line 2497 | public class ForkJoinPool extends Abstra
2497       *         scheduled for execution
2498       */
2499      public <T> T invoke(ForkJoinTask<T> task) {
2500 <        doSubmit(task);
2500 >        if (task == null)
2501 >            throw new NullPointerException();
2502 >        externalPush(task);
2503          return task.join();
2504      }
2505  
2506      /**
2507       * Arranges for (asynchronous) execution of the given task.
1251     * If the caller is already engaged in a fork/join computation in
1252     * the current pool, this method is equivalent in effect to
1253     * {@link ForkJoinTask#fork}.
2508       *
2509       * @param task the task
2510       * @throws NullPointerException if the task is null
# Line 1258 | Line 2512 | public class ForkJoinPool extends Abstra
2512       *         scheduled for execution
2513       */
2514      public void execute(ForkJoinTask<?> task) {
2515 <        doSubmit(task);
2515 >        if (task == null)
2516 >            throw new NullPointerException();
2517 >        externalPush(task);
2518      }
2519  
2520      // AbstractExecutorService methods
# Line 1269 | Line 2525 | public class ForkJoinPool extends Abstra
2525       *         scheduled for execution
2526       */
2527      public void execute(Runnable task) {
2528 +        if (task == null)
2529 +            throw new NullPointerException();
2530          ForkJoinTask<?> job;
2531          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2532              job = (ForkJoinTask<?>) task;
2533          else
2534 <            job = ForkJoinTask.adapt(task, null);
2535 <        doSubmit(job);
2534 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2535 >        externalPush(job);
2536      }
2537  
2538      /**
2539       * Submits a ForkJoinTask for execution.
1282     * If the caller is already engaged in a fork/join computation in
1283     * the current pool, this method is equivalent in effect to
1284     * {@link ForkJoinTask#fork}.
2540       *
2541       * @param task the task to submit
2542       * @return the task
# Line 1290 | Line 2545 | public class ForkJoinPool extends Abstra
2545       *         scheduled for execution
2546       */
2547      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2548 <        doSubmit(task);
2548 >        if (task == null)
2549 >            throw new NullPointerException();
2550 >        externalPush(task);
2551          return task;
2552      }
2553  
# Line 1300 | Line 2557 | public class ForkJoinPool extends Abstra
2557       *         scheduled for execution
2558       */
2559      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2560 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2561 <        doSubmit(job);
2560 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2561 >        externalPush(job);
2562          return job;
2563      }
2564  
# Line 1311 | Line 2568 | public class ForkJoinPool extends Abstra
2568       *         scheduled for execution
2569       */
2570      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2571 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2572 <        doSubmit(job);
2571 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2572 >        externalPush(job);
2573          return job;
2574      }
2575  
# Line 1322 | Line 2579 | public class ForkJoinPool extends Abstra
2579       *         scheduled for execution
2580       */
2581      public ForkJoinTask<?> submit(Runnable task) {
2582 +        if (task == null)
2583 +            throw new NullPointerException();
2584          ForkJoinTask<?> job;
2585          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2586              job = (ForkJoinTask<?>) task;
2587          else
2588 <            job = ForkJoinTask.adapt(task, null);
2589 <        doSubmit(job);
2588 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2589 >        externalPush(job);
2590          return job;
2591      }
2592  
# Line 1336 | Line 2595 | public class ForkJoinPool extends Abstra
2595       * @throws RejectedExecutionException {@inheritDoc}
2596       */
2597      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2598 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2599 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2600 <        for (Callable<T> task : tasks)
2601 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2602 <        invoke(new InvokeAll<T>(forkJoinTasks));
2603 <
2598 >        // In previous versions of this class, this method constructed
2599 >        // a task to run ForkJoinTask.invokeAll, but now external
2600 >        // invocation of multiple tasks is at least as efficient.
2601 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2602 >        // Workaround needed because method wasn't declared with
2603 >        // wildcards in return type but should have been.
2604          @SuppressWarnings({"unchecked", "rawtypes"})
2605 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1347 <        return futures;
1348 <    }
2605 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2606  
2607 <    static final class InvokeAll<T> extends RecursiveAction {
2608 <        final ArrayList<ForkJoinTask<T>> tasks;
2609 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2610 <        public void compute() {
2611 <            try { invokeAll(tasks); }
2612 <            catch (Exception ignore) {}
2607 >        boolean done = false;
2608 >        try {
2609 >            for (Callable<T> t : tasks) {
2610 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2611 >                externalPush(f);
2612 >                fs.add(f);
2613 >            }
2614 >            for (ForkJoinTask<T> f : fs)
2615 >                f.quietlyJoin();
2616 >            done = true;
2617 >            return futures;
2618 >        } finally {
2619 >            if (!done)
2620 >                for (ForkJoinTask<T> f : fs)
2621 >                    f.cancel(false);
2622          }
1357        private static final long serialVersionUID = -7914297376763021607L;
2623      }
2624  
2625      /**
# Line 1386 | Line 2651 | public class ForkJoinPool extends Abstra
2651      }
2652  
2653      /**
2654 +     * Returns the targeted parallelism level of the common pool.
2655 +     *
2656 +     * @return the targeted parallelism level of the common pool
2657 +     */
2658 +    public static int getCommonPoolParallelism() {
2659 +        return commonPoolParallelism;
2660 +    }
2661 +
2662 +    /**
2663       * Returns the number of worker threads that have started but not
2664 <     * yet terminated.  This result returned by this method may differ
2664 >     * yet terminated.  The result returned by this method may differ
2665       * from {@link #getParallelism} when threads are created to
2666       * maintain parallelism when others are cooperatively blocked.
2667       *
2668       * @return the number of worker threads
2669       */
2670      public int getPoolSize() {
2671 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2671 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2672      }
2673  
2674      /**
# Line 1404 | Line 2678 | public class ForkJoinPool extends Abstra
2678       * @return {@code true} if this pool uses async mode
2679       */
2680      public boolean getAsyncMode() {
2681 <        return locallyFifo;
2681 >        return localMode != 0;
2682      }
2683  
2684      /**
# Line 1416 | Line 2690 | public class ForkJoinPool extends Abstra
2690       * @return the number of worker threads
2691       */
2692      public int getRunningThreadCount() {
2693 <        return workerCounts & RUNNING_COUNT_MASK;
2693 >        int rc = 0;
2694 >        WorkQueue[] ws; WorkQueue w;
2695 >        if ((ws = workQueues) != null) {
2696 >            for (int i = 1; i < ws.length; i += 2) {
2697 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2698 >                    ++rc;
2699 >            }
2700 >        }
2701 >        return rc;
2702      }
2703  
2704      /**
# Line 1427 | Line 2709 | public class ForkJoinPool extends Abstra
2709       * @return the number of active threads
2710       */
2711      public int getActiveThreadCount() {
2712 <        return runState & ACTIVE_COUNT_MASK;
2712 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2713 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2714      }
2715  
2716      /**
# Line 1442 | Line 2725 | public class ForkJoinPool extends Abstra
2725       * @return {@code true} if all threads are currently idle
2726       */
2727      public boolean isQuiescent() {
2728 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2728 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2729      }
2730  
2731      /**
# Line 1457 | Line 2740 | public class ForkJoinPool extends Abstra
2740       * @return the number of steals
2741       */
2742      public long getStealCount() {
2743 <        return stealCount;
2743 >        long count = stealCount;
2744 >        WorkQueue[] ws; WorkQueue w;
2745 >        if ((ws = workQueues) != null) {
2746 >            for (int i = 1; i < ws.length; i += 2) {
2747 >                if ((w = ws[i]) != null)
2748 >                    count += w.nsteals;
2749 >            }
2750 >        }
2751 >        return count;
2752      }
2753  
2754      /**
# Line 1472 | Line 2763 | public class ForkJoinPool extends Abstra
2763       */
2764      public long getQueuedTaskCount() {
2765          long count = 0;
2766 <        ForkJoinWorkerThread[] ws = workers;
2767 <        int nws = ws.length;
2768 <        for (int i = 0; i < nws; ++i) {
2769 <            ForkJoinWorkerThread w = ws[i];
2770 <            if (w != null)
2771 <                count += w.getQueueSize();
2766 >        WorkQueue[] ws; WorkQueue w;
2767 >        if ((ws = workQueues) != null) {
2768 >            for (int i = 1; i < ws.length; i += 2) {
2769 >                if ((w = ws[i]) != null)
2770 >                    count += w.queueSize();
2771 >            }
2772          }
2773          return count;
2774      }
2775  
2776      /**
2777       * Returns an estimate of the number of tasks submitted to this
2778 <     * pool that have not yet begun executing.  This method takes time
2779 <     * proportional to the number of submissions.
2778 >     * pool that have not yet begun executing.  This method may take
2779 >     * time proportional to the number of submissions.
2780       *
2781       * @return the number of queued submissions
2782       */
2783      public int getQueuedSubmissionCount() {
2784 <        return submissionQueue.size();
2784 >        int count = 0;
2785 >        WorkQueue[] ws; WorkQueue w;
2786 >        if ((ws = workQueues) != null) {
2787 >            for (int i = 0; i < ws.length; i += 2) {
2788 >                if ((w = ws[i]) != null)
2789 >                    count += w.queueSize();
2790 >            }
2791 >        }
2792 >        return count;
2793      }
2794  
2795      /**
# Line 1500 | Line 2799 | public class ForkJoinPool extends Abstra
2799       * @return {@code true} if there are any queued submissions
2800       */
2801      public boolean hasQueuedSubmissions() {
2802 <        return !submissionQueue.isEmpty();
2802 >        WorkQueue[] ws; WorkQueue w;
2803 >        if ((ws = workQueues) != null) {
2804 >            for (int i = 0; i < ws.length; i += 2) {
2805 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2806 >                    return true;
2807 >            }
2808 >        }
2809 >        return false;
2810      }
2811  
2812      /**
# Line 1511 | Line 2817 | public class ForkJoinPool extends Abstra
2817       * @return the next submission, or {@code null} if none
2818       */
2819      protected ForkJoinTask<?> pollSubmission() {
2820 <        return submissionQueue.poll();
2820 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2821 >        if ((ws = workQueues) != null) {
2822 >            for (int i = 0; i < ws.length; i += 2) {
2823 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2824 >                    return t;
2825 >            }
2826 >        }
2827 >        return null;
2828      }
2829  
2830      /**
# Line 1532 | Line 2845 | public class ForkJoinPool extends Abstra
2845       * @return the number of elements transferred
2846       */
2847      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1535        int n = submissionQueue.drainTo(c);
1536        ForkJoinWorkerThread[] ws = workers;
1537        int nws = ws.length;
1538        for (int i = 0; i < nws; ++i) {
1539            ForkJoinWorkerThread w = ws[i];
1540            if (w != null)
1541                n += w.drainTasksTo(c);
1542        }
1543        return n;
1544    }
1545
1546    /**
1547     * Returns count of total parks by existing workers.
1548     * Used during development only since not meaningful to users.
1549     */
1550    private int collectParkCount() {
2848          int count = 0;
2849 <        ForkJoinWorkerThread[] ws = workers;
2850 <        int nws = ws.length;
2851 <        for (int i = 0; i < nws; ++i) {
2852 <            ForkJoinWorkerThread w = ws[i];
2853 <            if (w != null)
2854 <                count += w.parkCount;
2849 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2850 >        if ((ws = workQueues) != null) {
2851 >            for (int i = 0; i < ws.length; ++i) {
2852 >                if ((w = ws[i]) != null) {
2853 >                    while ((t = w.poll()) != null) {
2854 >                        c.add(t);
2855 >                        ++count;
2856 >                    }
2857 >                }
2858 >            }
2859          }
2860          return count;
2861      }
# Line 1567 | Line 2868 | public class ForkJoinPool extends Abstra
2868       * @return a string identifying this pool, as well as its state
2869       */
2870      public String toString() {
2871 <        long st = getStealCount();
2872 <        long qt = getQueuedTaskCount();
2873 <        long qs = getQueuedSubmissionCount();
2874 <        int wc = workerCounts;
2875 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2876 <        int rc = wc & RUNNING_COUNT_MASK;
2871 >        // Use a single pass through workQueues to collect counts
2872 >        long qt = 0L, qs = 0L; int rc = 0;
2873 >        long st = stealCount;
2874 >        long c = ctl;
2875 >        WorkQueue[] ws; WorkQueue w;
2876 >        if ((ws = workQueues) != null) {
2877 >            for (int i = 0; i < ws.length; ++i) {
2878 >                if ((w = ws[i]) != null) {
2879 >                    int size = w.queueSize();
2880 >                    if ((i & 1) == 0)
2881 >                        qs += size;
2882 >                    else {
2883 >                        qt += size;
2884 >                        st += w.nsteals;
2885 >                        if (w.isApparentlyUnblocked())
2886 >                            ++rc;
2887 >                    }
2888 >                }
2889 >            }
2890 >        }
2891          int pc = parallelism;
2892 <        int rs = runState;
2893 <        int ac = rs & ACTIVE_COUNT_MASK;
2894 <        //        int pk = collectParkCount();
2892 >        int tc = pc + (short)(c >>> TC_SHIFT);
2893 >        int ac = pc + (int)(c >> AC_SHIFT);
2894 >        if (ac < 0) // ignore transient negative
2895 >            ac = 0;
2896 >        String level;
2897 >        if ((c & STOP_BIT) != 0)
2898 >            level = (tc == 0) ? "Terminated" : "Terminating";
2899 >        else
2900 >            level = plock < 0 ? "Shutting down" : "Running";
2901          return super.toString() +
2902 <            "[" + runLevelToString(rs) +
2902 >            "[" + level +
2903              ", parallelism = " + pc +
2904              ", size = " + tc +
2905              ", active = " + ac +
# Line 1586 | Line 2907 | public class ForkJoinPool extends Abstra
2907              ", steals = " + st +
2908              ", tasks = " + qt +
2909              ", submissions = " + qs +
1589            //            ", parks = " + pk +
2910              "]";
2911      }
2912  
1593    private static String runLevelToString(int s) {
1594        return ((s & TERMINATED) != 0 ? "Terminated" :
1595                ((s & TERMINATING) != 0 ? "Terminating" :
1596                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1597                  "Running")));
1598    }
1599
2913      /**
2914 <     * Initiates an orderly shutdown in which previously submitted
2915 <     * tasks are executed, but no new tasks will be accepted.
2916 <     * Invocation has no additional effect if already shut down.
2917 <     * Tasks that are in the process of being submitted concurrently
2918 <     * during the course of this method may or may not be rejected.
2914 >     * Possibly initiates an orderly shutdown in which previously
2915 >     * submitted tasks are executed, but no new tasks will be
2916 >     * accepted. Invocation has no effect on execution state if this
2917 >     * is the {@link #commonPool}, and no additional effect if
2918 >     * already shut down.  Tasks that are in the process of being
2919 >     * submitted concurrently during the course of this method may or
2920 >     * may not be rejected.
2921       *
2922       * @throws SecurityException if a security manager exists and
2923       *         the caller is not permitted to modify threads
# Line 1611 | Line 2926 | public class ForkJoinPool extends Abstra
2926       */
2927      public void shutdown() {
2928          checkPermission();
2929 <        advanceRunLevel(SHUTDOWN);
1615 <        tryTerminate(false);
2929 >        tryTerminate(false, true);
2930      }
2931  
2932      /**
2933 <     * Attempts to cancel and/or stop all tasks, and reject all
2934 <     * subsequently submitted tasks.  Tasks that are in the process of
2935 <     * being submitted or executed concurrently during the course of
2936 <     * this method may or may not be rejected. This method cancels
2937 <     * both existing and unexecuted tasks, in order to permit
2938 <     * termination in the presence of task dependencies. So the method
2939 <     * always returns an empty list (unlike the case for some other
2940 <     * Executors).
2933 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2934 >     * all subsequently submitted tasks.  Invocation has no effect on
2935 >     * execution state if this is the {@link #commonPool}, and no
2936 >     * additional effect if already shut down. Otherwise, tasks that
2937 >     * are in the process of being submitted or executed concurrently
2938 >     * during the course of this method may or may not be
2939 >     * rejected. This method cancels both existing and unexecuted
2940 >     * tasks, in order to permit termination in the presence of task
2941 >     * dependencies. So the method always returns an empty list
2942 >     * (unlike the case for some other Executors).
2943       *
2944       * @return an empty list
2945       * @throws SecurityException if a security manager exists and
# Line 1633 | Line 2949 | public class ForkJoinPool extends Abstra
2949       */
2950      public List<Runnable> shutdownNow() {
2951          checkPermission();
2952 <        tryTerminate(true);
2952 >        tryTerminate(true, true);
2953          return Collections.emptyList();
2954      }
2955  
# Line 1643 | Line 2959 | public class ForkJoinPool extends Abstra
2959       * @return {@code true} if all tasks have completed following shut down
2960       */
2961      public boolean isTerminated() {
2962 <        return runState >= TERMINATED;
2962 >        long c = ctl;
2963 >        return ((c & STOP_BIT) != 0L &&
2964 >                (short)(c >>> TC_SHIFT) == -parallelism);
2965      }
2966  
2967      /**
# Line 1651 | Line 2969 | public class ForkJoinPool extends Abstra
2969       * commenced but not yet completed.  This method may be useful for
2970       * debugging. A return of {@code true} reported a sufficient
2971       * period after shutdown may indicate that submitted tasks have
2972 <     * ignored or suppressed interruption, causing this executor not
2973 <     * to properly terminate.
2972 >     * ignored or suppressed interruption, or are waiting for IO,
2973 >     * causing this executor not to properly terminate. (See the
2974 >     * advisory notes for class {@link ForkJoinTask} stating that
2975 >     * tasks should not normally entail blocking operations.  But if
2976 >     * they do, they must abort them on interrupt.)
2977       *
2978       * @return {@code true} if terminating but not yet terminated
2979       */
2980      public boolean isTerminating() {
2981 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2981 >        long c = ctl;
2982 >        return ((c & STOP_BIT) != 0L &&
2983 >                (short)(c >>> TC_SHIFT) != -parallelism);
2984      }
2985  
2986      /**
# Line 1666 | Line 2989 | public class ForkJoinPool extends Abstra
2989       * @return {@code true} if this pool has been shut down
2990       */
2991      public boolean isShutdown() {
2992 <        return runState >= SHUTDOWN;
2992 >        return plock < 0;
2993      }
2994  
2995      /**
2996 <     * Blocks until all tasks have completed execution after a shutdown
2997 <     * request, or the timeout occurs, or the current thread is
2998 <     * interrupted, whichever happens first.
2996 >     * Blocks until all tasks have completed execution after a
2997 >     * shutdown request, or the timeout occurs, or the current thread
2998 >     * is interrupted, whichever happens first. Note that the {@link
2999 >     * #commonPool()} never terminates until program shutdown so
3000 >     * this method will always time out.
3001       *
3002       * @param timeout the maximum time to wait
3003       * @param unit the time unit of the timeout argument
# Line 1682 | Line 3007 | public class ForkJoinPool extends Abstra
3007       */
3008      public boolean awaitTermination(long timeout, TimeUnit unit)
3009          throws InterruptedException {
3010 <        try {
3011 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3012 <        } catch(TimeoutException ex) {
3013 <            return false;
3010 >        long nanos = unit.toNanos(timeout);
3011 >        if (isTerminated())
3012 >            return true;
3013 >        long startTime = System.nanoTime();
3014 >        boolean terminated = false;
3015 >        synchronized (this) {
3016 >            for (long waitTime = nanos, millis = 0L;;) {
3017 >                if (terminated = isTerminated() ||
3018 >                    waitTime <= 0L ||
3019 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3020 >                    break;
3021 >                wait(millis);
3022 >                waitTime = nanos - (System.nanoTime() - startTime);
3023 >            }
3024          }
3025 +        return terminated;
3026      }
3027  
3028      /**
3029       * Interface for extending managed parallelism for tasks running
3030       * in {@link ForkJoinPool}s.
3031       *
3032 <     * <p>A {@code ManagedBlocker} provides two methods.
3033 <     * Method {@code isReleasable} must return {@code true} if
3034 <     * blocking is not necessary. Method {@code block} blocks the
3035 <     * current thread if necessary (perhaps internally invoking
3036 <     * {@code isReleasable} before actually blocking).
3032 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3033 >     * {@code isReleasable} must return {@code true} if blocking is
3034 >     * not necessary. Method {@code block} blocks the current thread
3035 >     * if necessary (perhaps internally invoking {@code isReleasable}
3036 >     * before actually blocking). These actions are performed by any
3037 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3038 >     * unusual methods in this API accommodate synchronizers that may,
3039 >     * but don't usually, block for long periods. Similarly, they
3040 >     * allow more efficient internal handling of cases in which
3041 >     * additional workers may be, but usually are not, needed to
3042 >     * ensure sufficient parallelism.  Toward this end,
3043 >     * implementations of method {@code isReleasable} must be amenable
3044 >     * to repeated invocation.
3045       *
3046       * <p>For example, here is a ManagedBlocker based on a
3047       * ReentrantLock:
# Line 1715 | Line 3059 | public class ForkJoinPool extends Abstra
3059       *     return hasLock || (hasLock = lock.tryLock());
3060       *   }
3061       * }}</pre>
3062 +     *
3063 +     * <p>Here is a class that possibly blocks waiting for an
3064 +     * item on a given queue:
3065 +     *  <pre> {@code
3066 +     * class QueueTaker<E> implements ManagedBlocker {
3067 +     *   final BlockingQueue<E> queue;
3068 +     *   volatile E item = null;
3069 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3070 +     *   public boolean block() throws InterruptedException {
3071 +     *     if (item == null)
3072 +     *       item = queue.take();
3073 +     *     return true;
3074 +     *   }
3075 +     *   public boolean isReleasable() {
3076 +     *     return item != null || (item = queue.poll()) != null;
3077 +     *   }
3078 +     *   public E getItem() { // call after pool.managedBlock completes
3079 +     *     return item;
3080 +     *   }
3081 +     * }}</pre>
3082       */
3083      public static interface ManagedBlocker {
3084          /**
# Line 1757 | Line 3121 | public class ForkJoinPool extends Abstra
3121      public static void managedBlock(ManagedBlocker blocker)
3122          throws InterruptedException {
3123          Thread t = Thread.currentThread();
3124 <        if (t instanceof ForkJoinWorkerThread)
3125 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
3124 >        if (t instanceof ForkJoinWorkerThread) {
3125 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3126 >            while (!blocker.isReleasable()) { // variant of helpSignal
3127 >                WorkQueue[] ws; WorkQueue q; int m, n;
3128 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3129 >                    for (int i = 0; i <= m; ++i) {
3130 >                        if (blocker.isReleasable())
3131 >                            return;
3132 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3133 >                            p.signalWork(q, n);
3134 >                            if ((int)(p.ctl >> AC_SHIFT) >= 0)
3135 >                                break;
3136 >                        }
3137 >                    }
3138 >                }
3139 >                if (p.tryCompensate()) {
3140 >                    try {
3141 >                        do {} while (!blocker.isReleasable() &&
3142 >                                     !blocker.block());
3143 >                    } finally {
3144 >                        p.incrementActiveCount();
3145 >                    }
3146 >                    break;
3147 >                }
3148 >            }
3149 >        }
3150          else {
3151 <            do {} while (!blocker.isReleasable() && !blocker.block());
3151 >            do {} while (!blocker.isReleasable() &&
3152 >                         !blocker.block());
3153          }
3154      }
3155  
# Line 1769 | Line 3158 | public class ForkJoinPool extends Abstra
3158      // implement RunnableFuture.
3159  
3160      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3161 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3161 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3162      }
3163  
3164      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3165 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3165 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3166      }
3167  
3168      // Unsafe mechanics
3169 <
3170 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3171 <    private static final long workerCountsOffset =
3172 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
3173 <    private static final long runStateOffset =
3174 <        objectFieldOffset("runState", ForkJoinPool.class);
3175 <    private static final long eventCountOffset =
3176 <        objectFieldOffset("eventCount", ForkJoinPool.class);
3177 <    private static final long eventWaitersOffset =
3178 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
3179 <    private static final long stealCountOffset =
3180 <        objectFieldOffset("stealCount",ForkJoinPool.class);
3181 <
3182 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3169 >    private static final sun.misc.Unsafe U;
3170 >    private static final long CTL;
3171 >    private static final long PARKBLOCKER;
3172 >    private static final int ABASE;
3173 >    private static final int ASHIFT;
3174 >    private static final long STEALCOUNT;
3175 >    private static final long PLOCK;
3176 >    private static final long INDEXSEED;
3177 >    private static final long QLOCK;
3178 >
3179 >    static {
3180 >        // Establish common pool parameters
3181 >        // TBD: limit or report ignored exceptions?
3182 >
3183 >        int par = 0;
3184 >        ForkJoinWorkerThreadFactory fac = null;
3185 >        Thread.UncaughtExceptionHandler handler = null;
3186          try {
3187 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3188 <        } catch (NoSuchFieldException e) {
3189 <            // Convert Exception to corresponding Error
3190 <            NoSuchFieldError error = new NoSuchFieldError(field);
3191 <            error.initCause(e);
3192 <            throw error;
3187 >            String pp = System.getProperty(propPrefix + "parallelism");
3188 >            String hp = System.getProperty(propPrefix + "exceptionHandler");
3189 >            String fp = System.getProperty(propPrefix + "threadFactory");
3190 >            if (fp != null)
3191 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3192 >                       getSystemClassLoader().loadClass(fp).newInstance());
3193 >            if (hp != null)
3194 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3195 >                           getSystemClassLoader().loadClass(hp).newInstance());
3196 >            if (pp != null)
3197 >                par = Integer.parseInt(pp);
3198 >        } catch(Exception ignore) {
3199          }
3200 +
3201 +        int s; // initialize field offsets for CAS etc
3202 +        try {
3203 +            U = getUnsafe();
3204 +            Class<?> k = ForkJoinPool.class;
3205 +            CTL = U.objectFieldOffset
3206 +                (k.getDeclaredField("ctl"));
3207 +            STEALCOUNT = U.objectFieldOffset
3208 +                (k.getDeclaredField("stealCount"));
3209 +            PLOCK = U.objectFieldOffset
3210 +                (k.getDeclaredField("plock"));
3211 +            INDEXSEED = U.objectFieldOffset
3212 +                (k.getDeclaredField("indexSeed"));
3213 +            Class<?> tk = Thread.class;
3214 +            PARKBLOCKER = U.objectFieldOffset
3215 +                (tk.getDeclaredField("parkBlocker"));
3216 +            Class<?> wk = WorkQueue.class;
3217 +            QLOCK = U.objectFieldOffset
3218 +                (wk.getDeclaredField("qlock"));
3219 +            Class<?> ak = ForkJoinTask[].class;
3220 +            ABASE = U.arrayBaseOffset(ak);
3221 +            s = U.arrayIndexScale(ak);
3222 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3223 +        } catch (Exception e) {
3224 +            throw new Error(e);
3225 +        }
3226 +        if ((s & (s-1)) != 0)
3227 +            throw new Error("data type scale not a power of two");
3228 +
3229 +        /*
3230 +         * For extra caution, computations to set up pool state are
3231 +         * here; the constructor just assigns these values to fields.
3232 +         */
3233 +        ForkJoinWorkerThreadFactory defaultFac =
3234 +            defaultForkJoinWorkerThreadFactory =
3235 +            new DefaultForkJoinWorkerThreadFactory();
3236 +        if (fac == null)
3237 +            fac = defaultFac;
3238 +        if (par <= 0)
3239 +            par = Runtime.getRuntime().availableProcessors();
3240 +        if (par > MAX_CAP)
3241 +            par = MAX_CAP;
3242 +        long np = (long)(-par); // precompute initial ctl value
3243 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3244 +
3245 +        commonPoolParallelism = par;
3246 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3247 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3248 +        submitters = new ThreadLocal<Submitter>();
3249      }
3250  
3251      /**
# Line 1828 | Line 3275 | public class ForkJoinPool extends Abstra
3275              }
3276          }
3277      }
3278 +
3279   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines