ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.57 by dl, Wed Jul 7 19:52:31 2010 UTC vs.
Revision 1.158 by dl, Sat Dec 15 20:21:30 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. The pool attempts to maintain enough active (or
50 < * available) threads by dynamically adding, suspending, or resuming
51 < * internal worker threads, even if some tasks are stalled waiting to
52 < * join others. However, no such adjustments are guaranteed in the
53 < * face of blocked IO or other unmanaged synchronization. The nested
54 < * {@link ManagedBlocker} interface enables extension of the kinds of
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 51 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the follwoing
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table. To avoid inadvertant
75 < * cyclic task dependencies and to improve performance, task
65 < * submissions to the current pool by an ongoing fork/join
66 < * computations may be implicitly translated to the corresponding
67 < * ForkJoinTask forms.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 73 | Line 81 | import java.util.concurrent.CountDownLat
81   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82   *  </tr>
83   *  <tr>
84 < *    <td> <b>Arange async execution</td>
84 > *    <td> <b>Arrange async execution</td>
85   *    <td> {@link #execute(ForkJoinTask)}</td>
86   *    <td> {@link ForkJoinTask#fork}</td>
87   *  </tr>
# Line 88 | Line 96 | import java.util.concurrent.CountDownLat
96   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97   *  </tr>
98   * </table>
91 *
92 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
93 * used for all parallel task execution in a program or subsystem.
94 * Otherwise, use would not usually outweigh the construction and
95 * bookkeeping overhead of creating a large set of threads. For
96 * example, a common pool could be used for the {@code SortTasks}
97 * illustrated in {@link RecursiveAction}. Because {@code
98 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
99 * daemon} mode, there is typically no need to explicitly {@link
100 * #shutdown} such a pool upon program exit.
99   *
100 < * <pre>
101 < * static final ForkJoinPool mainPool = new ForkJoinPool();
102 < * ...
103 < * public void sort(long[] array) {
104 < *   mainPool.invoke(new SortTask(array, 0, array.length));
105 < * }
106 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 113 | Line 114 | import java.util.concurrent.CountDownLat
114   * {@code IllegalArgumentException}.
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117 < * {@link RejectedExecutionException}) only when the pool is shut down.
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 123 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
136 <     * lastly to new submissions. These mechanics do not consider
137 <     * affinities, loads, cache localities, etc, so rarely provide the
138 <     * best possible performance on a given machine, but portably
139 <     * provide good throughput by averaging over these factors.
140 <     * (Further, even if we did try to use such information, we do not
141 <     * usually have a basis for exploiting it. For example, some sets
142 <     * of tasks profit from cache affinities, but others are harmed by
143 <     * cache pollution effects.)
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220 <     * decentralized control -- workers mostly steal tasks from each
221 <     * other. We do not want to negate this by creating bottlenecks
222 <     * implementing the management responsibilities of this class. So
223 <     * we use a collection of techniques that avoid, reduce, or cope
224 <     * well with contention. These entail several instances of
225 <     * bit-packing into CASable fields to maintain only the minimally
226 <     * required atomicity. To enable such packing, we restrict maximum
227 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
228 <     * bit field), which is far in excess of normal operating range.
229 <     * Even though updates to some of these bookkeeping fields do
230 <     * sometimes contend with each other, they don't normally
231 <     * cache-contend with updates to others enough to warrant memory
232 <     * padding or isolation. So they are all held as fields of
233 <     * ForkJoinPool objects.  The main capabilities are as follows:
234 <     *
235 <     * 1. Creating and removing workers. Workers are recorded in the
236 <     * "workers" array. This is an array as opposed to some other data
237 <     * structure to support index-based random steals by workers.
238 <     * Updates to the array recording new workers and unrecording
239 <     * terminated ones are protected from each other by a lock
240 <     * (workerLock) but the array is otherwise concurrently readable,
241 <     * and accessed directly by workers. To simplify index-based
242 <     * operations, the array size is always a power of two, and all
243 <     * readers must tolerate null slots. Currently, all worker thread
244 <     * creation is on-demand, triggered by task submissions,
245 <     * replacement of terminated workers, and/or compensation for
246 <     * blocked workers. However, all other support code is set up to
247 <     * work with other policies.
248 <     *
249 <     * 2. Bookkeeping for dynamically adding and removing workers. We
250 <     * aim to approximately maintain the given level of parallelism.
251 <     * When some workers are known to be blocked (on joins or via
252 <     * ManagedBlocker), we may create or resume others to take their
253 <     * place until they unblock (see below). Implementing this
254 <     * requires counts of the number of "running" threads (i.e., those
255 <     * that are neither blocked nor artifically suspended) as well as
256 <     * the total number.  These two values are packed into one field,
257 <     * "workerCounts" because we need accurate snapshots when deciding
258 <     * to create, resume or suspend.  To support these decisions,
259 <     * updates to spare counts must be prospective (not
260 <     * retrospective).  For example, the running count is decremented
261 <     * before blocking by a thread about to block as a spare, but
262 <     * incremented by the thread about to unblock it. Updates upon
263 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
264 <     * cannot usually be prospective, so the running count is in
265 <     * general an upper bound of the number of productively running
266 <     * threads Updates to the workerCounts field sometimes transiently
267 <     * encounter a fair amount of contention when join dependencies
268 <     * are such that many threads block or unblock at about the same
269 <     * time. We alleviate this by sometimes performing an alternative
270 <     * action on contention like releasing waiters or locating spares.
271 <     *
272 <     * 3. Maintaining global run state. The run state of the pool
273 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
274 <     * those in other Executor implementations, as well as a count of
275 <     * "active" workers -- those that are, or soon will be, or
276 <     * recently were executing tasks. The runLevel and active count
277 <     * are packed together in order to correctly trigger shutdown and
278 <     * termination. Without care, active counts can be subject to very
279 <     * high contention.  We substantially reduce this contention by
280 <     * relaxing update rules.  A worker must claim active status
281 <     * prospectively, by activating if it sees that a submitted or
282 <     * stealable task exists (it may find after activating that the
283 <     * task no longer exists). It stays active while processing this
284 <     * task (if it exists) and any other local subtasks it produces,
285 <     * until it cannot find any other tasks. It then tries
286 <     * inactivating (see method preStep), but upon update contention
287 <     * instead scans for more tasks, later retrying inactivation if it
288 <     * doesn't find any.
289 <     *
290 <     * 4. Managing idle workers waiting for tasks. We cannot let
291 <     * workers spin indefinitely scanning for tasks when none are
292 <     * available. On the other hand, we must quickly prod them into
293 <     * action when new tasks are submitted or generated.  We
294 <     * park/unpark these idle workers using an event-count scheme.
295 <     * Field eventCount is incremented upon events that may enable
296 <     * workers that previously could not find a task to now find one:
297 <     * Submission of a new task to the pool, or another worker pushing
298 <     * a task onto a previously empty queue.  (We also use this
299 <     * mechanism for termination and reconfiguration actions that
300 <     * require wakeups of idle workers).  Each worker maintains its
301 <     * last known event count, and blocks when a scan for work did not
302 <     * find a task AND its lastEventCount matches the current
303 <     * eventCount. Waiting idle workers are recorded in a variant of
304 <     * Treiber stack headed by field eventWaiters which, when nonzero,
305 <     * encodes the thread index and count awaited for by the worker
306 <     * thread most recently calling eventSync. This thread in turn has
307 <     * a record (field nextEventWaiter) for the next waiting worker.
308 <     * In addition to allowing simpler decisions about need for
309 <     * wakeup, the event count bits in eventWaiters serve the role of
310 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
311 <     * in task diffusion, workers not otherwise occupied may invoke
312 <     * method releaseWaiters, that removes and signals (unparks)
313 <     * workers not waiting on current count. To minimize task
314 <     * production stalls associate with signalling, any worker pushing
315 <     * a task on an empty queue invokes the weaker method signalWork,
316 <     * that only releases idle workers until it detects interference
317 <     * by other threads trying to release, and lets them take
318 <     * over. The net effect is a tree-like diffusion of signals, where
319 <     * released threads (and possibly others) help with unparks.  To
320 <     * further reduce contention effects a bit, failed CASes to
321 <     * increment field eventCount are tolerated without retries.
322 <     * Conceptually they are merged into the same event, which is OK
323 <     * when their only purpose is to enable workers to scan for work.
324 <     *
325 <     * 5. Managing suspension of extra workers. When a worker is about
326 <     * to block waiting for a join (or via ManagedBlockers), we may
327 <     * create a new thread to maintain parallelism level, or at least
328 <     * avoid starvation (see below). Usually, extra threads are needed
329 <     * for only very short periods, yet join dependencies are such
330 <     * that we sometimes need them in bursts. Rather than create new
331 <     * threads each time this happens, we suspend no-longer-needed
332 <     * extra ones as "spares". For most purposes, we don't distinguish
333 <     * "extra" spare threads from normal "core" threads: On each call
334 <     * to preStep (the only point at which we can do this) a worker
335 <     * checks to see if there are now too many running workers, and if
336 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
337 <     * for suspended threads to resume before considering creating a
338 <     * new replacement. We don't need a special data structure to
339 <     * maintain spares; simply scanning the workers array looking for
340 <     * worker.isSuspended() is fine because the calling thread is
341 <     * otherwise not doing anything useful anyway; we are at least as
342 <     * happy if after locating a spare, the caller doesn't actually
343 <     * block because the join is ready before we try to adjust and
344 <     * compensate.  Note that this is intrinsically racy.  One thread
345 <     * may become a spare at about the same time as another is
346 <     * needlessly being created. We counteract this and related slop
347 <     * in part by requiring resumed spares to immediately recheck (in
348 <     * preStep) to see whether they they should re-suspend. The only
349 <     * effective difference between "extra" and "core" threads is that
350 <     * we allow the "extra" ones to time out and die if they are not
351 <     * resumed within a keep-alive interval of a few seconds. This is
352 <     * implemented mainly within ForkJoinWorkerThread, but requires
353 <     * some coordination (isTrimmed() -- meaning killed while
354 <     * suspended) to correctly maintain pool counts.
355 <     *
356 <     * 6. Deciding when to create new workers. The main dynamic
357 <     * control in this class is deciding when to create extra threads,
358 <     * in methods awaitJoin and awaitBlocker. We always need to create
359 <     * one when the number of running threads becomes zero. But
360 <     * because blocked joins are typically dependent, we don't
361 <     * necessarily need or want one-to-one replacement. Instead, we
362 <     * use a combination of heuristics that adds threads only when the
363 <     * pool appears to be approaching starvation.  These effectively
364 <     * reduce churn at the price of systematically undershooting
365 <     * target parallelism when many threads are blocked.  However,
366 <     * biasing toward undeshooting partially compensates for the above
367 <     * mechanics to suspend extra threads, that normally lead to
368 <     * overshoot because we can only suspend workers in-between
369 <     * top-level actions. It also better copes with the fact that some
370 <     * of the methods in this class tend to never become compiled (but
371 <     * are interpreted), so some components of the entire set of
372 <     * controls might execute many times faster than others. And
373 <     * similarly for cases where the apparent lack of work is just due
374 <     * to GC stalls and other transient system activity.
375 <     *
376 <     * Beware that there is a lot of representation-level coupling
377 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
378 <     * ForkJoinTask.  For example, direct access to "workers" array by
379 <     * workers, and direct access to ForkJoinTask.status by both
380 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362 >     *
363 >     *   Helping: Arranging for the joiner to execute some task that it
364 >     *      would be running if the steal had not occurred.
365 >     *
366 >     *   Compensating: Unless there are already enough live threads,
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377 >     *
378 >     * The ManagedBlocker extension API can't use helping so relies
379 >     * only on compensation in method awaitBlocker.
380 >     *
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static commonPool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467       * trying to reduce this, since any associated future changes in
468       * representations will need to be accompanied by algorithmic
469 <     * changes anyway.
470 <     *
471 <     * Style notes: There are lots of inline assignments (of form
472 <     * "while ((local = field) != 0)") which are usually the simplest
473 <     * way to ensure read orderings. Also several occurrences of the
474 <     * unusual "do {} while(!cas...)" which is the simplest way to
475 <     * force an update of a CAS'ed variable. There are also a few
476 <     * other coding oddities that help some methods perform reasonably
477 <     * even when interpreted (not compiled).
478 <     *
479 <     * The order of declarations in this file is: (1) statics (2)
480 <     * fields (along with constants used when unpacking some of them)
481 <     * (3) internal control methods (4) callbacks and other support
482 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
483 <     * methods (plus a few little helpers).
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494 >     */
495 >
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501       */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509  
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 341 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 +     * Per-thread records for threads that submit to pools. Currently
539 +     * holds only pseudo-random seed / index that is used to choose
540 +     * submission queues in method externalPush. In the future, this may
541 +     * also incorporate a means to implement different task rejection
542 +     * and resubmission policies.
543 +     *
544 +     * Seeds for submitters and workers/workQueues work in basically
545 +     * the same way but are initialized and updated using slightly
546 +     * different mechanics. Both are initialized using the same
547 +     * approach as in class ThreadLocal, where successive values are
548 +     * unlikely to collide with previous values. Seeds are then
549 +     * randomly modified upon collisions using xorshifts, which
550 +     * requires a non-zero seed.
551 +     */
552 +    static final class Submitter {
553 +        int seed;
554 +        Submitter(int s) { seed = s; }
555 +    }
556 +
557 +    /**
558 +     * Class for artificial tasks that are used to replace the target
559 +     * of local joins if they are removed from an interior queue slot
560 +     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 +     * actually do anything beyond having a unique identity.
562 +     */
563 +    static final class EmptyTask extends ForkJoinTask<Void> {
564 +        private static final long serialVersionUID = -7721805057305804111L;
565 +        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 +        public final Void getRawResult() { return null; }
567 +        public final void setRawResult(Void x) {}
568 +        public final boolean exec() { return true; }
569 +    }
570 +
571 +    /**
572 +     * Queues supporting work-stealing as well as external task
573 +     * submission. See above for main rationale and algorithms.
574 +     * Implementation relies heavily on "Unsafe" intrinsics
575 +     * and selective use of "volatile":
576 +     *
577 +     * Field "base" is the index (mod array.length) of the least valid
578 +     * queue slot, which is always the next position to steal (poll)
579 +     * from if nonempty. Reads and writes require volatile orderings
580 +     * but not CAS, because updates are only performed after slot
581 +     * CASes.
582 +     *
583 +     * Field "top" is the index (mod array.length) of the next queue
584 +     * slot to push to or pop from. It is written only by owner thread
585 +     * for push, or under lock for external/shared push, and accessed
586 +     * by other threads only after reading (volatile) base.  Both top
587 +     * and base are allowed to wrap around on overflow, but (top -
588 +     * base) (or more commonly -(base - top) to force volatile read of
589 +     * base before top) still estimates size. The lock ("qlock") is
590 +     * forced to -1 on termination, causing all further lock attempts
591 +     * to fail. (Note: we don't need CAS for termination state because
592 +     * upon pool shutdown, all shared-queues will stop being used
593 +     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 +     * within lock bodies are "impossible" (modulo JVM errors that
595 +     * would cause failure anyway.)
596 +     *
597 +     * The array slots are read and written using the emulation of
598 +     * volatiles/atomics provided by Unsafe. Insertions must in
599 +     * general use putOrderedObject as a form of releasing store to
600 +     * ensure that all writes to the task object are ordered before
601 +     * its publication in the queue.  All removals entail a CAS to
602 +     * null.  The array is always a power of two. To ensure safety of
603 +     * Unsafe array operations, all accesses perform explicit null
604 +     * checks and implicit bounds checks via power-of-two masking.
605 +     *
606 +     * In addition to basic queuing support, this class contains
607 +     * fields described elsewhere to control execution. It turns out
608 +     * to work better memory-layout-wise to include them in this class
609 +     * rather than a separate class.
610 +     *
611 +     * Performance on most platforms is very sensitive to placement of
612 +     * instances of both WorkQueues and their arrays -- we absolutely
613 +     * do not want multiple WorkQueue instances or multiple queue
614 +     * arrays sharing cache lines. (It would be best for queue objects
615 +     * and their arrays to share, but there is nothing available to
616 +     * help arrange that).  Unfortunately, because they are recorded
617 +     * in a common array, WorkQueue instances are often moved to be
618 +     * adjacent by garbage collectors. To reduce impact, we use field
619 +     * padding that works OK on common platforms; this effectively
620 +     * trades off slightly slower average field access for the sake of
621 +     * avoiding really bad worst-case access. (Until better JVM
622 +     * support is in place, this padding is dependent on transient
623 +     * properties of JVM field layout rules.) We also take care in
624 +     * allocating, sizing and resizing the array. Non-shared queue
625 +     * arrays are initialized by workers before use. Others are
626 +     * allocated on first use.
627 +     */
628 +    static final class WorkQueue {
629 +        /**
630 +         * Capacity of work-stealing queue array upon initialization.
631 +         * Must be a power of two; at least 4, but should be larger to
632 +         * reduce or eliminate cacheline sharing among queues.
633 +         * Currently, it is much larger, as a partial workaround for
634 +         * the fact that JVMs often place arrays in locations that
635 +         * share GC bookkeeping (especially cardmarks) such that
636 +         * per-write accesses encounter serious memory contention.
637 +         */
638 +        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639 +
640 +        /**
641 +         * Maximum size for queue arrays. Must be a power of two less
642 +         * than or equal to 1 << (31 - width of array entry) to ensure
643 +         * lack of wraparound of index calculations, but defined to a
644 +         * value a bit less than this to help users trap runaway
645 +         * programs before saturating systems.
646 +         */
647 +        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648 +
649 +        // Heuristic padding to ameliorate unfortunate memory placements
650 +        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 +
652 +        int seed;                  // for random scanning; initialize nonzero
653 +        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 +        int nextWait;              // encoded record of next event waiter
655 +        int hint;                  // steal or signal hint (index)
656 +        int poolIndex;             // index of this queue in pool (or 0)
657 +        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 +        int nsteals;               // number of steals
659 +        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 +        volatile int base;         // index of next slot for poll
661 +        int top;                   // index of next slot for push
662 +        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 +        final ForkJoinPool pool;   // the containing pool (may be null)
664 +        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 +        volatile Thread parker;    // == owner during call to park; else null
666 +        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 +        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 +
669 +        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 +        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 +
672 +        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 +                  int seed) {
674 +            this.pool = pool;
675 +            this.owner = owner;
676 +            this.mode = mode;
677 +            this.seed = seed;
678 +            // Place indices in the center of array (that is not yet allocated)
679 +            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 +        }
681 +
682 +        /**
683 +         * Returns the approximate number of tasks in the queue.
684 +         */
685 +        final int queueSize() {
686 +            int n = base - top;       // non-owner callers must read base first
687 +            return (n >= 0) ? 0 : -n; // ignore transient negative
688 +        }
689 +
690 +       /**
691 +         * Provides a more accurate estimate of whether this queue has
692 +         * any tasks than does queueSize, by checking whether a
693 +         * near-empty queue has at least one unclaimed task.
694 +         */
695 +        final boolean isEmpty() {
696 +            ForkJoinTask<?>[] a; int m, s;
697 +            int n = base - (s = top);
698 +            return (n >= 0 ||
699 +                    (n == -1 &&
700 +                     ((a = array) == null ||
701 +                      (m = a.length - 1) < 0 ||
702 +                      U.getObject
703 +                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 +        }
705 +
706 +        /**
707 +         * Pushes a task. Call only by owner in unshared queues.  (The
708 +         * shared-queue version is embedded in method externalPush.)
709 +         *
710 +         * @param task the task. Caller must ensure non-null.
711 +         * @throw RejectedExecutionException if array cannot be resized
712 +         */
713 +        final void push(ForkJoinTask<?> task) {
714 +            ForkJoinTask<?>[] a; ForkJoinPool p;
715 +            int s = top, m, n;
716 +            if ((a = array) != null) {    // ignore if queue removed
717 +                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 +                U.putOrderedObject(a, j, task);
719 +                if ((n = (top = s + 1) - base) <= 2) {
720 +                    if ((p = pool) != null)
721 +                        p.signalWork(this);
722 +                }
723 +                else if (n >= m)
724 +                    growArray();
725 +            }
726 +        }
727 +
728 +       /**
729 +         * Initializes or doubles the capacity of array. Call either
730 +         * by owner or with lock held -- it is OK for base, but not
731 +         * top, to move while resizings are in progress.
732 +         */
733 +        final ForkJoinTask<?>[] growArray() {
734 +            ForkJoinTask<?>[] oldA = array;
735 +            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 +            if (size > MAXIMUM_QUEUE_CAPACITY)
737 +                throw new RejectedExecutionException("Queue capacity exceeded");
738 +            int oldMask, t, b;
739 +            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 +            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 +                (t = top) - (b = base) > 0) {
742 +                int mask = size - 1;
743 +                do {
744 +                    ForkJoinTask<?> x;
745 +                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 +                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 +                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 +                    if (x != null &&
749 +                        U.compareAndSwapObject(oldA, oldj, x, null))
750 +                        U.putObjectVolatile(a, j, x);
751 +                } while (++b != t);
752 +            }
753 +            return a;
754 +        }
755 +
756 +        /**
757 +         * Takes next task, if one exists, in LIFO order.  Call only
758 +         * by owner in unshared queues.
759 +         */
760 +        final ForkJoinTask<?> pop() {
761 +            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 +            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 +                for (int s; (s = top - 1) - base >= 0;) {
764 +                    long j = ((m & s) << ASHIFT) + ABASE;
765 +                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 +                        break;
767 +                    if (U.compareAndSwapObject(a, j, t, null)) {
768 +                        top = s;
769 +                        return t;
770 +                    }
771 +                }
772 +            }
773 +            return null;
774 +        }
775 +
776 +        /**
777 +         * Takes a task in FIFO order if b is base of queue and a task
778 +         * can be claimed without contention. Specialized versions
779 +         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 +         */
781 +        final ForkJoinTask<?> pollAt(int b) {
782 +            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 +            if ((a = array) != null) {
784 +                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 +                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 +                    base == b &&
787 +                    U.compareAndSwapObject(a, j, t, null)) {
788 +                    base = b + 1;
789 +                    return t;
790 +                }
791 +            }
792 +            return null;
793 +        }
794 +
795 +        /**
796 +         * Takes next task, if one exists, in FIFO order.
797 +         */
798 +        final ForkJoinTask<?> poll() {
799 +            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 +            while ((b = base) - top < 0 && (a = array) != null) {
801 +                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 +                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 +                if (t != null) {
804 +                    if (base == b &&
805 +                        U.compareAndSwapObject(a, j, t, null)) {
806 +                        base = b + 1;
807 +                        return t;
808 +                    }
809 +                }
810 +                else if (base == b) {
811 +                    if (b + 1 == top)
812 +                        break;
813 +                    Thread.yield(); // wait for lagging update (very rare)
814 +                }
815 +            }
816 +            return null;
817 +        }
818 +
819 +        /**
820 +         * Takes next task, if one exists, in order specified by mode.
821 +         */
822 +        final ForkJoinTask<?> nextLocalTask() {
823 +            return mode == 0 ? pop() : poll();
824 +        }
825 +
826 +        /**
827 +         * Returns next task, if one exists, in order specified by mode.
828 +         */
829 +        final ForkJoinTask<?> peek() {
830 +            ForkJoinTask<?>[] a = array; int m;
831 +            if (a == null || (m = a.length - 1) < 0)
832 +                return null;
833 +            int i = mode == 0 ? top - 1 : base;
834 +            int j = ((i & m) << ASHIFT) + ABASE;
835 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 +        }
837 +
838 +        /**
839 +         * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841 +         */
842 +        final boolean tryUnpush(ForkJoinTask<?> t) {
843 +            ForkJoinTask<?>[] a; int s;
844 +            if ((a = array) != null && (s = top) != base &&
845 +                U.compareAndSwapObject
846 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 +                top = s;
848 +                return true;
849 +            }
850 +            return false;
851 +        }
852 +
853 +        /**
854 +         * Removes and cancels all known tasks, ignoring any exceptions.
855 +         */
856 +        final void cancelAll() {
857 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 +                ForkJoinTask.cancelIgnoringExceptions(t);
861 +        }
862 +
863 +        /**
864 +         * Computes next value for random probes.  Scans don't require
865 +         * a very high quality generator, but also not a crummy one.
866 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 +         * This is manually inlined in its usages in ForkJoinPool to
868 +         * avoid writes inside busy scan loops.
869 +         */
870 +        final int nextSeed() {
871 +            int r = seed;
872 +            r ^= r << 13;
873 +            r ^= r >>> 17;
874 +            return seed = r ^= r << 5;
875 +        }
876 +
877 +        // Specialized execution methods
878 +
879 +        /**
880 +         * Pops and runs tasks until empty.
881 +         */
882 +        private void popAndExecAll() {
883 +            // A bit faster than repeated pop calls
884 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 +                   (s = top - 1) - base >= 0 &&
887 +                   (t = ((ForkJoinTask<?>)
888 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 +                   != null) {
890 +                if (U.compareAndSwapObject(a, j, t, null)) {
891 +                    top = s;
892 +                    t.doExec();
893 +                }
894 +            }
895 +        }
896 +
897 +        /**
898 +         * Polls and runs tasks until empty.
899 +         */
900 +        private void pollAndExecAll() {
901 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 +                t.doExec();
903 +        }
904 +
905 +        /**
906 +         * If present, removes from queue and executes the given task,
907 +         * or any other cancelled task. Returns (true) on any CAS
908 +         * or consistency check failure so caller can retry.
909 +         *
910 +         * @return false if no progress can be made, else true;
911 +         */
912 +        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 +            boolean stat = true, removed = false, empty = true;
914 +            ForkJoinTask<?>[] a; int m, s, b, n;
915 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 +                (n = (s = top) - (b = base)) > 0) {
917 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 +                    int j = ((--s & m) << ASHIFT) + ABASE;
919 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 +                    if (t == null)                    // inconsistent length
921 +                        break;
922 +                    else if (t == task) {
923 +                        if (s + 1 == top) {           // pop
924 +                            if (!U.compareAndSwapObject(a, j, task, null))
925 +                                break;
926 +                            top = s;
927 +                            removed = true;
928 +                        }
929 +                        else if (base == b)           // replace with proxy
930 +                            removed = U.compareAndSwapObject(a, j, task,
931 +                                                             new EmptyTask());
932 +                        break;
933 +                    }
934 +                    else if (t.status >= 0)
935 +                        empty = false;
936 +                    else if (s + 1 == top) {          // pop and throw away
937 +                        if (U.compareAndSwapObject(a, j, t, null))
938 +                            top = s;
939 +                        break;
940 +                    }
941 +                    if (--n == 0) {
942 +                        if (!empty && base == b)
943 +                            stat = false;
944 +                        break;
945 +                    }
946 +                }
947 +            }
948 +            if (removed)
949 +                task.doExec();
950 +            return stat;
951 +        }
952 +
953 +        /**
954 +         * Polls for and executes the given task or any other task in
955 +         * its CountedCompleter computation
956 +         */
957 +        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 +            ForkJoinTask<?>[] a; int b; Object o;
959 +            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 +                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 +                if ((o = U.getObject(a, j)) == null ||
962 +                    !(o instanceof CountedCompleter))
963 +                    break;
964 +                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 +                    if (r == root) {
966 +                        if (base == b &&
967 +                            U.compareAndSwapObject(a, j, t, null)) {
968 +                            base = b + 1;
969 +                            t.doExec();
970 +                            return true;
971 +                        }
972 +                        else
973 +                            break; // restart
974 +                    }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977 +                }
978 +            }
979 +            return false;
980 +        }
981 +
982 +        /**
983 +         * Executes a top-level task and any local tasks remaining
984 +         * after execution.
985 +         */
986 +        final void runTask(ForkJoinTask<?> t) {
987 +            if (t != null) {
988 +                (currentSteal = t).doExec();
989 +                currentSteal = null;
990 +                if (base - top < 0) {       // process remaining local tasks
991 +                    if (mode == 0)
992 +                        popAndExecAll();
993 +                    else
994 +                        pollAndExecAll();
995 +                }
996 +                ++nsteals;
997 +                hint = -1;
998 +            }
999 +        }
1000 +
1001 +        /**
1002 +         * Executes a non-top-level (stolen) task.
1003 +         */
1004 +        final void runSubtask(ForkJoinTask<?> t) {
1005 +            if (t != null) {
1006 +                ForkJoinTask<?> ps = currentSteal;
1007 +                (currentSteal = t).doExec();
1008 +                currentSteal = ps;
1009 +            }
1010 +        }
1011 +
1012 +        /**
1013 +         * Returns true if owned and not known to be blocked.
1014 +         */
1015 +        final boolean isApparentlyUnblocked() {
1016 +            Thread wt; Thread.State s;
1017 +            return (eventCount >= 0 &&
1018 +                    (wt = owner) != null &&
1019 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1020 +                    s != Thread.State.WAITING &&
1021 +                    s != Thread.State.TIMED_WAITING);
1022 +        }
1023 +
1024 +        /**
1025 +         * If this owned and is not already interrupted, try to
1026 +         * interrupt and/or unpark, ignoring exceptions.
1027 +         */
1028 +        final void interruptOwner() {
1029 +            Thread wt, p;
1030 +            if ((wt = owner) != null && !wt.isInterrupted()) {
1031 +                try {
1032 +                    wt.interrupt();
1033 +                } catch (SecurityException ignore) {
1034 +                }
1035 +            }
1036 +            if ((p = parker) != null)
1037 +                U.unpark(p);
1038 +        }
1039 +
1040 +        // Unsafe mechanics
1041 +        private static final sun.misc.Unsafe U;
1042 +        private static final long QLOCK;
1043 +        private static final int ABASE;
1044 +        private static final int ASHIFT;
1045 +        static {
1046 +            int s;
1047 +            try {
1048 +                U = getUnsafe();
1049 +                Class<?> k = WorkQueue.class;
1050 +                Class<?> ak = ForkJoinTask[].class;
1051 +                QLOCK = U.objectFieldOffset
1052 +                    (k.getDeclaredField("qlock"));
1053 +                ABASE = U.arrayBaseOffset(ak);
1054 +                s = U.arrayIndexScale(ak);
1055 +            } catch (Exception e) {
1056 +                throw new Error(e);
1057 +            }
1058 +            if ((s & (s-1)) != 0)
1059 +                throw new Error("data type scale not a power of two");
1060 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1061 +        }
1062 +    }
1063 +
1064 +    // static fields (initialized in static initializer below)
1065 +
1066 +    /**
1067       * Creates a new ForkJoinWorkerThread. This factory is used unless
1068       * overridden in ForkJoinPool constructors.
1069       */
1070      public static final ForkJoinWorkerThreadFactory
1071 <        defaultForkJoinWorkerThreadFactory =
1072 <        new DefaultForkJoinWorkerThreadFactory();
1071 >        defaultForkJoinWorkerThreadFactory;
1072 >
1073 >    /**
1074 >     * Per-thread submission bookkeeping. Shared across all pools
1075 >     * to reduce ThreadLocal pollution and because random motion
1076 >     * to avoid contention in one pool is likely to hold for others.
1077 >     * Lazily initialized on first submission (but null-checked
1078 >     * in other contexts to avoid unnecessary initialization).
1079 >     */
1080 >    static final ThreadLocal<Submitter> submitters;
1081  
1082      /**
1083       * Permission required for callers of methods that may start or
1084       * kill threads.
1085       */
1086 <    private static final RuntimePermission modifyThreadPermission =
364 <        new RuntimePermission("modifyThread");
1086 >    private static final RuntimePermission modifyThreadPermission;
1087  
1088      /**
1089 <     * If there is a security manager, makes sure caller has
1090 <     * permission to modify threads.
1089 >     * Common (static) pool. Non-null for public use unless a static
1090 >     * construction exception, but internal usages null-check on use
1091 >     * to paranoically avoid potential initialization circularities
1092 >     * as well as to simplify generated code.
1093       */
1094 <    private static void checkPermission() {
371 <        SecurityManager security = System.getSecurityManager();
372 <        if (security != null)
373 <            security.checkPermission(modifyThreadPermission);
374 <    }
1094 >    static final ForkJoinPool commonPool;
1095  
1096      /**
1097 <     * Generator for assigning sequence numbers as pool names.
1097 >     * Common pool parallelism. Must equal commonPool.parallelism.
1098       */
1099 <    private static final AtomicInteger poolNumberGenerator =
380 <        new AtomicInteger();
1099 >    static final int commonPoolParallelism;
1100  
1101      /**
1102 <     * Absolute bound for parallelism level. Twice this number must
384 <     * fit into a 16bit field to enable word-packing for some counts.
1102 >     * Sequence number for creating workerNamePrefix.
1103       */
1104 <    private static final int MAX_THREADS = 0x7fff;
1104 >    private static int poolNumberSequence;
1105  
1106      /**
1107 <     * Array holding all worker threads in the pool.  Array size must
1108 <     * be a power of two.  Updates and replacements are protected by
391 <     * workerLock, but the array is always kept in a consistent enough
392 <     * state to be randomly accessed without locking by workers
393 <     * performing work-stealing, as well as other traversal-based
394 <     * methods in this class. All readers must tolerate that some
395 <     * array slots may be null.
1107 >     * Return the next sequence number. We don't expect this to
1108 >     * ever contend so use simple builtin sync.
1109       */
1110 <    volatile ForkJoinWorkerThread[] workers;
1110 >    private static final synchronized int nextPoolId() {
1111 >        return ++poolNumberSequence;
1112 >    }
1113 >
1114 >    // static constants
1115  
1116      /**
1117 <     * Queue for external submissions.
1117 >     * Initial timeout value (in nanoseconds) for the thread
1118 >     * triggering quiescence to park waiting for new work. On timeout,
1119 >     * the thread will instead try to shrink the number of
1120 >     * workers. The value should be large enough to avoid overly
1121 >     * aggressive shrinkage during most transient stalls (long GCs
1122 >     * etc).
1123       */
1124 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1124 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1125  
1126      /**
1127 <     * Lock protecting updates to workers array.
1127 >     * Timeout value when there are more threads than parallelism level
1128       */
1129 <    private final ReentrantLock workerLock;
1129 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1130  
1131      /**
1132 <     * Latch released upon termination.
1132 >     * Tolerance for idle timeouts, to cope with timer undershoots
1133       */
1134 <    private final Phaser termination;
1134 >    private static final long TIMEOUT_SLOP = 2000000L; // 20ms
1135  
1136      /**
1137 <     * Creation factory for worker threads.
1137 >     * The maximum stolen->joining link depth allowed in method
1138 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1139 >     * chains are unbounded, but we use a fixed constant to avoid
1140 >     * (otherwise unchecked) cycles and to bound staleness of
1141 >     * traversal parameters at the expense of sometimes blocking when
1142 >     * we could be helping.
1143       */
1144 <    private final ForkJoinWorkerThreadFactory factory;
1144 >    private static final int MAX_HELP = 64;
1145  
1146      /**
1147 <     * Sum of per-thread steal counts, updated only when threads are
1148 <     * idle or terminating.
1147 >     * Increment for seed generators. See class ThreadLocal for
1148 >     * explanation.
1149       */
1150 <    private volatile long stealCount;
1150 >    private static final int SEED_INCREMENT = 0x61c88647;
1151  
1152      /**
1153 <     * Encoded record of top of treiber stack of threads waiting for
1154 <     * events. The top 32 bits contain the count being waited for. The
1155 <     * bottom word contains one plus the pool index of waiting worker
1156 <     * thread.
1153 >     * Bits and masks for control variables
1154 >     *
1155 >     * Field ctl is a long packed with:
1156 >     * AC: Number of active running workers minus target parallelism (16 bits)
1157 >     * TC: Number of total workers minus target parallelism (16 bits)
1158 >     * ST: true if pool is terminating (1 bit)
1159 >     * EC: the wait count of top waiting thread (15 bits)
1160 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1161 >     *
1162 >     * When convenient, we can extract the upper 32 bits of counts and
1163 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1164 >     * (int)ctl.  The ec field is never accessed alone, but always
1165 >     * together with id and st. The offsets of counts by the target
1166 >     * parallelism and the positionings of fields makes it possible to
1167 >     * perform the most common checks via sign tests of fields: When
1168 >     * ac is negative, there are not enough active workers, when tc is
1169 >     * negative, there are not enough total workers, and when e is
1170 >     * negative, the pool is terminating.  To deal with these possibly
1171 >     * negative fields, we use casts in and out of "short" and/or
1172 >     * signed shifts to maintain signedness.
1173 >     *
1174 >     * When a thread is queued (inactivated), its eventCount field is
1175 >     * set negative, which is the only way to tell if a worker is
1176 >     * prevented from executing tasks, even though it must continue to
1177 >     * scan for them to avoid queuing races. Note however that
1178 >     * eventCount updates lag releases so usage requires care.
1179 >     *
1180 >     * Field plock is an int packed with:
1181 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1182 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1183 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1184 >     *
1185 >     * The sequence number enables simple consistency checks:
1186 >     * Staleness of read-only operations on the workQueues array can
1187 >     * be checked by comparing plock before vs after the reads.
1188       */
431    private volatile long eventWaiters;
1189  
1190 <    private static final int  EVENT_COUNT_SHIFT = 32;
1191 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
1190 >    // bit positions/shifts for fields
1191 >    private static final int  AC_SHIFT   = 48;
1192 >    private static final int  TC_SHIFT   = 32;
1193 >    private static final int  ST_SHIFT   = 31;
1194 >    private static final int  EC_SHIFT   = 16;
1195  
1196 <    /**
1197 <     * A counter for events that may wake up worker threads:
1198 <     *   - Submission of a new task to the pool
1199 <     *   - A worker pushing a task on an empty queue
1200 <     *   - termination and reconfiguration
1201 <     */
1202 <    private volatile int eventCount;
1196 >    // bounds
1197 >    private static final int  SMASK      = 0xffff;  // short bits
1198 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1199 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1200 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1201 >    private static final int  SHORT_SIGN = 1 << 15;
1202 >    private static final int  INT_SIGN   = 1 << 31;
1203  
1204 <    /**
1205 <     * Lifecycle control. The low word contains the number of workers
1206 <     * that are (probably) executing tasks. This value is atomically
1207 <     * incremented before a worker gets a task to run, and decremented
448 <     * when worker has no tasks and cannot find any.  Bits 16-18
449 <     * contain runLevel value. When all are zero, the pool is
450 <     * running. Level transitions are monotonic (running -> shutdown
451 <     * -> terminating -> terminated) so each transition adds a bit.
452 <     * These are bundled together to ensure consistent read for
453 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
454 <     * and active threads is zero).
455 <     */
456 <    private volatile int runState;
1204 >    // masks
1205 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1206 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1207 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1208  
1209 <    // Note: The order among run level values matters.
1210 <    private static final int RUNLEVEL_SHIFT     = 16;
1211 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
461 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
462 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
463 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
464 <    private static final int ONE_ACTIVE         = 1; // active update delta
1209 >    // units for incrementing and decrementing
1210 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1211 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1212  
1213 <    /**
1214 <     * Holds number of total (i.e., created and not yet terminated)
1215 <     * and running (i.e., not blocked on joins or other managed sync)
1216 <     * threads, packed together to ensure consistent snapshot when
1217 <     * making decisions about creating and suspending spare
1218 <     * threads. Updated only by CAS. Note that adding a new worker
1219 <     * requires incrementing both counts, since workers start off in
473 <     * running state.  This field is also used for memory-fencing
474 <     * configuration parameters.
475 <     */
476 <    private volatile int workerCounts;
1213 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1214 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1215 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1216 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1217 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1218 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1219 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1220  
1221 <    private static final int TOTAL_COUNT_SHIFT  = 16;
1222 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
1223 <    private static final int ONE_RUNNING        = 1;
481 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1221 >    // masks and units for dealing with e = (int)ctl
1222 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1223 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1224  
1225 <    /**
1226 <     * The target parallelism level.
1227 <     * Accessed directly by ForkJoinWorkerThreads.
1228 <     */
1229 <    final int parallelism;
1225 >    // plock bits
1226 >    private static final int SHUTDOWN    = 1 << 31;
1227 >    private static final int PL_LOCK     = 2;
1228 >    private static final int PL_SIGNAL   = 1;
1229 >    private static final int PL_SPINS    = 1 << 8;
1230  
1231 <    /**
1232 <     * True if use local fifo, not default lifo, for local polling
1233 <     * Read by, and replicated by ForkJoinWorkerThreads
1234 <     */
493 <    final boolean locallyFifo;
1231 >    // access mode for WorkQueue
1232 >    static final int LIFO_QUEUE          =  0;
1233 >    static final int FIFO_QUEUE          =  1;
1234 >    static final int SHARED_QUEUE        = -1;
1235  
1236 <    /**
1237 <     * The uncaught exception handler used when any worker abruptly
1238 <     * terminates.
498 <     */
499 <    private final Thread.UncaughtExceptionHandler ueh;
1236 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1237 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1238 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1239  
1240 <    /**
502 <     * Pool number, just for assigning useful names to worker threads
503 <     */
504 <    private final int poolNumber;
1240 >    // Instance fields
1241  
1242 <    // utilities for updating fields
1242 >    /*
1243 >     * Field layout of this class tends to matter more than one would
1244 >     * like. Runtime layout order is only loosely related to
1245 >     * declaration order and may differ across JVMs, but the following
1246 >     * empirically works OK on current JVMs.
1247 >     */
1248 >
1249 >    // Heuristic padding to ameliorate unfortunate memory placements
1250 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1251 >
1252 >    volatile long stealCount;                  // collects worker counts
1253 >    volatile long ctl;                         // main pool control
1254 >    volatile int plock;                        // shutdown status and seqLock
1255 >    volatile int indexSeed;                    // worker/submitter index seed
1256 >    final int config;                          // mode and parallelism level
1257 >    WorkQueue[] workQueues;                    // main registry
1258 >    final ForkJoinWorkerThreadFactory factory;
1259 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1260 >    final String workerNamePrefix;             // to create worker name string
1261  
1262 <    /**
1263 <     * Increments running count.  Also used by ForkJoinTask.
1264 <     */
1265 <    final void incrementRunningCount() {
1266 <        int c;
1267 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1268 <                                               c = workerCounts,
1269 <                                               c + ONE_RUNNING));
1270 <    }
1271 <    
1272 <    /**
1273 <     * Tries to decrement running count unless already zero
1262 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1263 >    volatile Object pad18, pad19, pad1a, pad1b;
1264 >
1265 >    /*
1266 >     * Acquires the plock lock to protect worker array and related
1267 >     * updates. This method is called only if an initial CAS on plock
1268 >     * fails. This acts as a spinLock for normal cases, but falls back
1269 >     * to builtin monitor to block when (rarely) needed. This would be
1270 >     * a terrible idea for a highly contended lock, but works fine as
1271 >     * a more conservative alternative to a pure spinlock.  See
1272 >     * internal ConcurrentHashMap documentation for further
1273 >     * explanation of nearly the same construction.
1274       */
1275 <    final boolean tryDecrementRunningCount() {
1276 <        int wc = workerCounts;
1277 <        if ((wc & RUNNING_COUNT_MASK) == 0)
1278 <            return false;
1279 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1280 <                                        wc, wc - ONE_RUNNING);
1275 >    private int acquirePlock() {
1276 >        int spins = PL_SPINS, r = 0, ps, nps;
1277 >        for (;;) {
1278 >            if (((ps = plock) & PL_LOCK) == 0 &&
1279 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1280 >                return nps;
1281 >            else if (r == 0) { // randomize spins if possible
1282 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1283 >                if ((t instanceof ForkJoinWorkerThread) &&
1284 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1285 >                    r = w.seed;
1286 >                else if ((z = submitters.get()) != null)
1287 >                    r = z.seed;
1288 >                else
1289 >                    r = 1;
1290 >            }
1291 >            else if (spins >= 0) {
1292 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1293 >                if (r >= 0)
1294 >                    --spins;
1295 >            }
1296 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1297 >                synchronized (this) {
1298 >                    if ((plock & PL_SIGNAL) != 0) {
1299 >                        try {
1300 >                            wait();
1301 >                        } catch (InterruptedException ie) {
1302 >                            try {
1303 >                                Thread.currentThread().interrupt();
1304 >                            } catch (SecurityException ignore) {
1305 >                            }
1306 >                        }
1307 >                    }
1308 >                    else
1309 >                        notifyAll();
1310 >                }
1311 >            }
1312 >        }
1313      }
1314  
1315      /**
1316 <     * Tries incrementing active count; fails on contention.
1317 <     * Called by workers before executing tasks.
532 <     *
533 <     * @return true on success
1316 >     * Unlocks and signals any thread waiting for plock. Called only
1317 >     * when CAS of seq value for unlock fails.
1318       */
1319 <    final boolean tryIncrementActiveCount() {
1320 <        int c;
1321 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
538 <                                        c = runState, c + ONE_ACTIVE);
1319 >    private void releasePlock(int ps) {
1320 >        plock = ps;
1321 >        synchronized (this) { notifyAll(); }
1322      }
1323  
1324      /**
1325 <     * Tries decrementing active count; fails on contention.
1326 <     * Called when workers cannot find tasks to run.
1327 <     */
1328 <    final boolean tryDecrementActiveCount() {
1329 <        int c;
1330 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1331 <                                        c = runState, c - ONE_ACTIVE);
1325 >     * Performs secondary initialization, called when plock is zero.
1326 >     * Creates workQueue array and sets plock to a valid value.  The
1327 >     * lock body must be exception-free (so no try/finally) so we
1328 >     * optimistically allocate new array outside the lock and throw
1329 >     * away if (very rarely) not needed. (A similar tactic is used in
1330 >     * fullExternalPush.)  Because the plock seq value can eventually
1331 >     * wrap around zero, this method harmlessly fails to reinitialize
1332 >     * if workQueues exists, while still advancing plock.
1333 >     *
1334 >     * Additionally tries to create the first worker.
1335 >     */
1336 >    private void initWorkers() {
1337 >        WorkQueue[] ws, nws; int ps;
1338 >        int p = config & SMASK;        // find power of two table size
1339 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1340 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1341 >        n = (n + 1) << 1;
1342 >        if ((ws = workQueues) == null || ws.length == 0)
1343 >            nws = new WorkQueue[n];
1344 >        else
1345 >            nws = null;
1346 >        if (((ps = plock) & PL_LOCK) != 0 ||
1347 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1348 >            ps = acquirePlock();
1349 >        if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1350 >            workQueues = nws;
1351 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1352 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1353 >            releasePlock(nps);
1354 >        tryAddWorker();
1355      }
1356  
1357      /**
1358 <     * Advances to at least the given level. Returns true if not
1359 <     * already in at least the given level.
1360 <     */
1361 <    private boolean advanceRunLevel(int level) {
1362 <        for (;;) {
1363 <            int s = runState;
1364 <            if ((s & level) != 0)
1365 <                return false;
1366 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1367 <                return true;
1358 >     * Tries to create and start one worker if fewer than target
1359 >     * parallelism level exist. Adjusts counts etc on failure.
1360 >     */
1361 >    private void tryAddWorker() {
1362 >        long c; int u;
1363 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1364 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1365 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1368 >                ForkJoinWorkerThreadFactory fac;
1369 >                Throwable ex = null;
1370 >                ForkJoinWorkerThread wt = null;
1371 >                try {
1372 >                    if ((fac = factory) != null &&
1373 >                        (wt = fac.newThread(this)) != null) {
1374 >                        wt.start();
1375 >                        break;
1376 >                    }
1377 >                } catch (Throwable e) {
1378 >                    ex = e;
1379 >                }
1380 >                deregisterWorker(wt, ex);
1381 >                break;
1382 >            }
1383          }
1384      }
1385  
1386 <    // workers array maintenance
1386 >    //  Registering and deregistering workers
1387  
1388      /**
1389 <     * Records and returns a workers array index for new worker.
1390 <     */
1391 <    private int recordWorker(ForkJoinWorkerThread w) {
1392 <        // Try using slot totalCount-1. If not available, scan and/or resize
1393 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1394 <        final ReentrantLock lock = this.workerLock;
1395 <        lock.lock();
1389 >     * Callback from ForkJoinWorkerThread to establish and record its
1390 >     * WorkQueue. To avoid scanning bias due to packing entries in
1391 >     * front of the workQueues array, we treat the array as a simple
1392 >     * power-of-two hash table using per-thread seed as hash,
1393 >     * expanding as needed.
1394 >     *
1395 >     * @param wt the worker thread
1396 >     * @return the worker's queue
1397 >     */
1398 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1399 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1400 >        wt.setDaemon(true);
1401 >        if ((handler = ueh) != null)
1402 >            wt.setUncaughtExceptionHandler(handler);
1403 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1404 >                                          s += SEED_INCREMENT) ||
1405 >                     s == 0); // skip 0
1406 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1407 >        if (((ps = plock) & PL_LOCK) != 0 ||
1408 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1409 >            ps = acquirePlock();
1410 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1411          try {
1412 <            ForkJoinWorkerThread[] ws = workers;
1413 <            int nws = ws.length;
1414 <            if (k < 0 || k >= nws || ws[k] != null) {
1415 <                for (k = 0; k < nws && ws[k] != null; ++k)
1416 <                    ;
1417 <                if (k == nws)
1418 <                    ws = Arrays.copyOf(ws, nws << 1);
1412 >            if ((ws = workQueues) != null) {    // skip if shutting down
1413 >                int n = ws.length, m = n - 1;
1414 >                int r = (s << 1) | 1;           // use odd-numbered indices
1415 >                if (ws[r &= m] != null) {       // collision
1416 >                    int probes = 0;             // step by approx half size
1417 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1418 >                    while (ws[r = (r + step) & m] != null) {
1419 >                        if (++probes >= n) {
1420 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1421 >                            m = n - 1;
1422 >                            probes = 0;
1423 >                        }
1424 >                    }
1425 >                }
1426 >                w.eventCount = w.poolIndex = r; // volatile write orders
1427 >                ws[r] = w;
1428              }
584            ws[k] = w;
585            workers = ws; // volatile array write ensures slot visibility
1429          } finally {
1430 <            lock.unlock();
1430 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1431 >                releasePlock(nps);
1432          }
1433 <        return k;
1433 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1434 >        return w;
1435      }
1436  
1437      /**
1438 <     * Nulls out record of worker in workers array
1439 <     */
1440 <    private void forgetWorker(ForkJoinWorkerThread w) {
1441 <        int idx = w.poolIndex;
1442 <        // Locking helps method recordWorker avoid unecessary expansion
1443 <        final ReentrantLock lock = this.workerLock;
1444 <        lock.lock();
1445 <        try {
1446 <            ForkJoinWorkerThread[] ws = workers;
1447 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1448 <                ws[idx] = null;
1449 <        } finally {
1450 <            lock.unlock();
1438 >     * Final callback from terminating worker, as well as upon failure
1439 >     * to construct or start a worker.  Removes record of worker from
1440 >     * array, and adjusts counts. If pool is shutting down, tries to
1441 >     * complete termination.
1442 >     *
1443 >     * @param wt the worker thread or null if construction failed
1444 >     * @param ex the exception causing failure, or null if none
1445 >     */
1446 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1447 >        WorkQueue w = null;
1448 >        if (wt != null && (w = wt.workQueue) != null) {
1449 >            int ps;
1450 >            w.qlock = -1;                // ensure set
1451 >            long ns = w.nsteals, sc;     // collect steal count
1452 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1453 >                                               sc = stealCount, sc + ns));
1454 >            if (((ps = plock) & PL_LOCK) != 0 ||
1455 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1456 >                ps = acquirePlock();
1457 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1458 >            try {
1459 >                int idx = w.poolIndex;
1460 >                WorkQueue[] ws = workQueues;
1461 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1462 >                    ws[idx] = null;
1463 >            } finally {
1464 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1465 >                    releasePlock(nps);
1466 >            }
1467          }
607    }
608
609    // adding and removing workers
1468  
1469 <    /**
1470 <     * Tries to create and add new worker. Assumes that worker counts
1471 <     * are already updated to accommodate the worker, so adjusts on
1472 <     * failure.
1473 <     *
1474 <     * @return new worker or null if creation failed
1475 <     */
1476 <    private ForkJoinWorkerThread addWorker() {
1477 <        ForkJoinWorkerThread w = null;
1478 <        try {
1479 <            w = factory.newThread(this);
1480 <        } finally { // Adjust on either null or exceptional factory return
1481 <            if (w == null) {
1482 <                onWorkerCreationFailure();
1483 <                return null;
1469 >        long c;                             // adjust ctl counts
1470 >        do {} while (!U.compareAndSwapLong
1471 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1472 >                                           ((c - TC_UNIT) & TC_MASK) |
1473 >                                           (c & ~(AC_MASK|TC_MASK)))));
1474 >
1475 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1476 >            w.cancelAll();                  // cancel remaining tasks
1477 >            int e, u, i, n; WorkQueue[] ws; WorkQueue v; Thread p;
1478 >            while ((u = (int)((c = ctl) >>> 32)) < 0) {
1479 >                if ((e = (int)c) > 0) {     // activate or create replacement
1480 >                    if ((ws = workQueues) != null &&
1481 >                        ws.length > (i = e & SMASK) &&
1482 >                        (v = ws[i]) != null && v.eventCount == (e | INT_SIGN)) {
1483 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1484 >                                   ((long)(u + UAC_UNIT) << 32));
1485 >                        if (U.compareAndSwapLong(this, CTL, c, nc)) {
1486 >                            v.eventCount = (e + E_SEQ) & E_MASK;
1487 >                            if ((p = v.parker) != null)
1488 >                                U.unpark(p);
1489 >                            break;
1490 >                        }
1491 >                    }
1492 >                    else
1493 >                        break;
1494 >                }
1495 >                else {
1496 >                    if ((short)u < 0)
1497 >                        tryAddWorker();
1498 >                    break;
1499 >                }
1500              }
1501          }
1502 <        w.start(recordWorker(w), ueh);
1503 <        return w;
1502 >        if (ex == null)                     // help clean refs on way out
1503 >            ForkJoinTask.helpExpungeStaleExceptions();
1504 >        else                                // rethrow
1505 >            ForkJoinTask.rethrow(ex);
1506 >    }
1507 >
1508 >    // Submissions
1509 >
1510 >    /**
1511 >     * Unless shutting down, adds the given task to a submission queue
1512 >     * at submitter's current queue index (modulo submission
1513 >     * range). Only the most common path is directly handled in this
1514 >     * method. All others are relayed to fullExternalPush.
1515 >     *
1516 >     * @param task the task. Caller must ensure non-null.
1517 >     */
1518 >    final void externalPush(ForkJoinTask<?> task) {
1519 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1520 >        if ((z = submitters.get()) != null && plock > 0 &&
1521 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1522 >            (q = ws[m & z.seed & SQMASK]) != null &&
1523 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1524 >            int b = q.base, s = q.top, n, an;
1525 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1526 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1527 >                U.putOrderedObject(a, j, task);
1528 >                q.top = s + 1;                     // push on to deque
1529 >                q.qlock = 0;
1530 >                if (n <= 2)
1531 >                    signalWork(q);
1532 >                return;
1533 >            }
1534 >            q.qlock = 0;
1535 >        }
1536 >        fullExternalPush(task);
1537      }
1538  
1539      /**
1540 <     * Adjusts counts upon failure to create worker
1541 <     */
1542 <    private void onWorkerCreationFailure() {
1543 <        for (;;) {
1544 <            int wc = workerCounts;
1545 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
1546 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1547 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
1548 <                break;
1540 >     * Full version of externalPush. This method is called, among
1541 >     * other times, upon the first submission of the first task to the
1542 >     * pool, so must perform secondary initialization (via
1543 >     * initWorkers). It also detects first submission by an external
1544 >     * thread by looking up its ThreadLocal, and creates a new shared
1545 >     * queue if the one at index if empty or contended. The plock lock
1546 >     * body must be exception-free (so no try/finally) so we
1547 >     * optimistically allocate new queues outside the lock and throw
1548 >     * them away if (very rarely) not needed.
1549 >     */
1550 >    private void fullExternalPush(ForkJoinTask<?> task) {
1551 >        int r = 0; // random index seed
1552 >        for (Submitter z = submitters.get();;) {
1553 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1554 >            if (z == null) {
1555 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1556 >                                        r += SEED_INCREMENT) && r != 0)
1557 >                    submitters.set(z = new Submitter(r));
1558 >            }
1559 >            else if (r == 0) {               // move to a different index
1560 >                r = z.seed;
1561 >                r ^= r << 13;                // same xorshift as WorkQueues
1562 >                r ^= r >>> 17;
1563 >                z.seed = r ^ (r << 5);
1564 >            }
1565 >            else if ((ps = plock) < 0)
1566 >                throw new RejectedExecutionException();
1567 >            else if (ps == 0 || (ws = workQueues) == null ||
1568 >                     (m = ws.length - 1) < 0)
1569 >                initWorkers();
1570 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1571 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1572 >                    ForkJoinTask<?>[] a = q.array;
1573 >                    int s = q.top;
1574 >                    boolean submitted = false;
1575 >                    try {                      // locked version of push
1576 >                        if ((a != null && a.length > s + 1 - q.base) ||
1577 >                            (a = q.growArray()) != null) {   // must presize
1578 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1579 >                            U.putOrderedObject(a, j, task);
1580 >                            q.top = s + 1;
1581 >                            submitted = true;
1582 >                        }
1583 >                    } finally {
1584 >                        q.qlock = 0;  // unlock
1585 >                    }
1586 >                    if (submitted) {
1587 >                        signalWork(q);
1588 >                        return;
1589 >                    }
1590 >                }
1591 >                r = 0; // move on failure
1592 >            }
1593 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1594 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1595 >                if (((ps = plock) & PL_LOCK) != 0 ||
1596 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1597 >                    ps = acquirePlock();
1598 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1599 >                    ws[k] = q;
1600 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1601 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1602 >                    releasePlock(nps);
1603 >            }
1604 >            else
1605 >                r = 0; // try elsewhere while lock held
1606          }
643        tryTerminate(false); // in case of failure during shutdown
1607      }
1608  
1609 +    // Maintaining ctl counts
1610 +
1611      /**
1612 <     * Create enough total workers to establish target parallelism,
648 <     * giving up if terminating or addWorker fails
1612 >     * Increments active count; mainly called upon return from blocking.
1613       */
1614 <    private void ensureEnoughTotalWorkers() {
1615 <        int wc;
1616 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
653 <               runState < TERMINATING) {
654 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
655 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
656 <                 addWorker() == null))
657 <                break;
658 <        }
1614 >    final void incrementActiveCount() {
1615 >        long c;
1616 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1617      }
1618  
1619      /**
1620 <     * Final callback from terminating worker.  Removes record of
1621 <     * worker from array, and adjusts counts. If pool is shutting
1622 <     * down, tries to complete terminatation, else possibly replaces
1623 <     * the worker.
1624 <     *
1625 <     * @param w the worker
1626 <     */
1627 <    final void workerTerminated(ForkJoinWorkerThread w) {
1628 <        if (w.active) { // force inactive
1629 <            w.active = false;
1630 <            do {} while (!tryDecrementActiveCount());
1631 <        }
1632 <        forgetWorker(w);
1633 <
1634 <        // Decrement total count, and if was running, running count
1635 <        // Spin (waiting for other updates) if either would be negative
1636 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
1637 <        int unit = ONE_TOTAL + nr;
1638 <        for (;;) {
1639 <            int wc = workerCounts;
1640 <            int rc = wc & RUNNING_COUNT_MASK;
1641 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
1642 <                Thread.yield(); // back off if waiting for other updates
1643 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1644 <                                              wc, wc - unit))
1620 >     * Tries to create or activate a worker if too few are active.
1621 >     *
1622 >     * @param q the (non-null) queue holding tasks to be signalled
1623 >     */
1624 >    final void signalWork(WorkQueue q) {
1625 >        int hint = q.poolIndex;
1626 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1627 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1628 >            if ((e = (int)c) > 0) {
1629 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1630 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1631 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1632 >                               ((long)(u + UAC_UNIT) << 32));
1633 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1634 >                        w.hint = hint;
1635 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1636 >                        if ((p = w.parker) != null)
1637 >                            U.unpark(p);
1638 >                        break;
1639 >                    }
1640 >                    if (q.top - q.base <= 0)
1641 >                        break;
1642 >                }
1643 >                else
1644 >                    break;
1645 >            }
1646 >            else {
1647 >                if ((short)u < 0)
1648 >                    tryAddWorker();
1649                  break;
1650 +            }
1651          }
689
690        accumulateStealCount(w); // collect final count
691        if (!tryTerminate(false))
692            ensureEnoughTotalWorkers();
1652      }
1653  
1654 <    // Waiting for and signalling events
696 <
697 <    /**
698 <     * Releases workers blocked on a count not equal to current count.
699 <     */
700 <    private void releaseWaiters() {
701 <        long top;
702 <        int id;
703 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
704 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
705 <            ForkJoinWorkerThread[] ws = workers;
706 <            ForkJoinWorkerThread w;
707 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
708 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
709 <                                          top, w.nextWaiter))
710 <                LockSupport.unpark(w);
711 <        }
712 <    }
1654 >    // Scanning for tasks
1655  
1656      /**
1657 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry and wakes up all waiters
1657 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1658       */
1659 <    private void signalEvent() {
1660 <        int c;
1661 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
1662 <                                               c = eventCount, c+1));
1663 <        releaseWaiters();
1664 <    }
1659 >    final void runWorker(WorkQueue w) {
1660 >        w.growArray(); // allocate queue
1661 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1662 >    }
1663 >
1664 >    /**
1665 >     * Scans for and, if found, returns one task, else possibly
1666 >     * inactivates the worker. This method operates on single reads of
1667 >     * volatile state and is designed to be re-invoked continuously,
1668 >     * in part because it returns upon detecting inconsistencies,
1669 >     * contention, or state changes that indicate possible success on
1670 >     * re-invocation.
1671 >     *
1672 >     * The scan searches for tasks across queues (starting at a random
1673 >     * index, and relying on registerWorker to irregularly scatter
1674 >     * them within array to avoid bias), checking each at least twice.
1675 >     * The scan terminates upon either finding a non-empty queue, or
1676 >     * completing the sweep. If the worker is not inactivated, it
1677 >     * takes and returns a task from this queue. Otherwise, if not
1678 >     * activated, it signals workers (that may include itself) and
1679 >     * returns so caller can retry. Also returns for true if the
1680 >     * worker array may have changed during an empty scan.  On failure
1681 >     * to find a task, we take one of the following actions, after
1682 >     * which the caller will retry calling this method unless
1683 >     * terminated.
1684 >     *
1685 >     * * If pool is terminating, terminate the worker.
1686 >     *
1687 >     * * If not already enqueued, try to inactivate and enqueue the
1688 >     * worker on wait queue. Or, if inactivating has caused the pool
1689 >     * to be quiescent, relay to idleAwaitWork to check for
1690 >     * termination and possibly shrink pool.
1691 >     *
1692 >     * * If already enqueued and none of the above apply, possibly
1693 >     * (with 1/2 probability) park awaiting signal, else lingering to
1694 >     * help scan and signal.
1695 >     *
1696 >     * @param w the worker (via its WorkQueue)
1697 >     * @return a task or null if none found
1698 >     */
1699 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1700 >        WorkQueue[] ws; int m;
1701 >        int ps = plock;                          // read plock before ws
1702 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1703 >            int ec = w.eventCount;               // ec is negative if inactive
1704 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1705 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1706 >            do {
1707 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1708 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1709 >                    (a = q.array) != null) {     // probably nonempty
1710 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1711 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1712 >                        U.getObjectVolatile(a, i);
1713 >                    if (q.base == b && ec >= 0 && t != null &&
1714 >                        U.compareAndSwapObject(a, i, t, null)) {
1715 >                        if ((q.base = b + 1) - q.top < 0)
1716 >                            signalWork(q);
1717 >                        return t;                // taken
1718 >                    }
1719 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1720 >                        w.hint = (r + j) & m;    // help signal below
1721 >                        break;                   // cannot take
1722 >                    }
1723 >                }
1724 >            } while (--j >= 0);
1725  
1726 <    /**
1727 <     * Advances eventCount and releases waiters until interference by
1728 <     * other releasing threads is detected.
1729 <     */
1730 <    final void signalWork() {
1731 <        // EventCount CAS failures are OK -- any change in count suffices.
1732 <        int ec;
1733 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
1734 <        outer:for (;;) {
1735 <            long top = eventWaiters;
1736 <            ec = eventCount;
1737 <            for (;;) {
1738 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1739 <                int id = (int)(top & WAITER_INDEX_MASK);
1740 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1741 <                    return;
1742 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
1743 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1744 <                                               top, top = w.nextWaiter))
1745 <                    continue outer;      // possibly stale; reread
1746 <                LockSupport.unpark(w);
1747 <                if (top != eventWaiters) // let someone else take over
1748 <                    return;
1726 >            long c, sc; int e, ns, h;
1727 >            if ((h = w.hint) < 0) {
1728 >                if ((ns = w.nsteals) != 0) {
1729 >                    if (U.compareAndSwapLong(this, STEALCOUNT,
1730 >                                             sc = stealCount, sc + ns))
1731 >                        w.nsteals = 0;           // collect steals
1732 >                }
1733 >                else if (plock != ps)            // consistency check
1734 >                    ;                            // skip
1735 >                else if ((e = (int)(c = ctl)) < 0)
1736 >                    w.qlock = -1;                // pool is terminating
1737 >                else if (ec >= 0) {              // try to enqueue/inactivate
1738 >                    long nc = ((long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1739 >                    w.nextWait = e;              // link and mark inactive
1740 >                    w.eventCount = ec | INT_SIGN;
1741 >                    if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1742 >                        w.eventCount = ec;       // unmark on CAS failure
1743 >                    else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1744 >                        idleAwaitWork(w, nc, c);
1745 >                }
1746 >                else if (w.eventCount < 0) {     // block
1747 >                    Thread wt = Thread.currentThread();
1748 >                    Thread.interrupted();        // clear status
1749 >                    U.putObject(wt, PARKBLOCKER, this);
1750 >                    w.parker = wt;               // emulate LockSupport.park
1751 >                    if (w.eventCount < 0)        // recheck
1752 >                        U.park(false, 0L);
1753 >                    w.parker = null;
1754 >                    U.putObject(wt, PARKBLOCKER, null);
1755 >                }
1756              }
1757 +            if (h >= 0 || w.hint >= 0)           // signal others before retry
1758 +                helpSignalHint(w);
1759          }
1760 +        return null;
1761      }
1762  
1763      /**
1764 <     * If worker is inactive, blocks until terminating or event count
1765 <     * advances from last value held by worker; in any case helps
1766 <     * release others.
1767 <     *
1768 <     * @param w the calling worker thread
1769 <     */
1770 <    private void eventSync(ForkJoinWorkerThread w) {
1771 <        if (!w.active) {
1772 <            int prev = w.lastEventCount;
1773 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
1774 <                            ((long)(w.poolIndex + 1)));
1775 <            long top;
1776 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1777 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
1778 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
1779 <                   eventCount == prev) {
1780 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1781 <                                              w.nextWaiter = top, nextTop)) {
1782 <                    accumulateStealCount(w); // transfer steals while idle
1783 <                    Thread.interrupted();    // clear/ignore interrupt
1784 <                    while (eventCount == prev)
1785 <                        w.doPark();
1764 >     * If inactivating worker w has caused the pool to become
1765 >     * quiescent, checks for pool termination, and, so long as this is
1766 >     * not the only worker, waits for event for up to a given
1767 >     * duration.  On timeout, if ctl has not changed, terminates the
1768 >     * worker, which will in turn wake up another worker to possibly
1769 >     * repeat this process.
1770 >     *
1771 >     * @param w the calling worker
1772 >     * @param currentCtl the ctl value triggering possible quiescence
1773 >     * @param prevCtl the ctl value to restore if thread is terminated
1774 >     */
1775 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 >        if (w != null && w.eventCount < 0 &&
1777 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1778 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1779 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1780 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1781 >            Thread wt = Thread.currentThread();
1782 >            while (ctl == currentCtl) {
1783 >                Thread.interrupted();  // timed variant of version in scan()
1784 >                U.putObject(wt, PARKBLOCKER, this);
1785 >                w.parker = wt;
1786 >                if (ctl == currentCtl)
1787 >                    U.park(false, parkTime);
1788 >                w.parker = null;
1789 >                U.putObject(wt, PARKBLOCKER, null);
1790 >                if (ctl != currentCtl)
1791 >                    break;
1792 >                if (deadline - System.nanoTime() <= 0L &&
1793 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1794 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1795 >                    w.qlock = -1;   // shrink
1796                      break;
1797                  }
1798              }
778            w.lastEventCount = eventCount;
1799          }
780        releaseWaiters();
1800      }
1801  
1802      /**
1803 <     * Callback from workers invoked upon each top-level action (i.e.,
1804 <     * stealing a task or taking a submission and running
1805 <     * it). Performs one or both of the following:
1806 <     *
1807 <     * * If the worker cannot find work, updates its active status to
1808 <     * inactive and updates activeCount unless there is contention, in
1809 <     * which case it may try again (either in this or a subsequent
1810 <     * call).  Additionally, awaits the next task event and/or helps
1811 <     * wake up other releasable waiters.
1812 <     *
1813 <     * * If there are too many running threads, suspends this worker
1814 <     * (first forcing inactivation if necessary).  If it is not
1815 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
1816 <     * -- killed while suspended within suspendAsSpare. Otherwise,
1817 <     * upon resume it rechecks to make sure that it is still needed.
1818 <     *
1819 <     * @param w the worker
1820 <     * @param worked false if the worker scanned for work but didn't
1821 <     * find any (in which case it may block waiting for work).
1822 <     */
1823 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1824 <        boolean active = w.active;
1825 <        boolean inactivate = !worked & active;
1826 <        for (;;) {
1827 <            if (inactivate) {
1828 <                int rs = runState;
1829 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1830 <                                             rs, rs - ONE_ACTIVE))
1831 <                    inactivate = active = w.active = false;
1832 <            }
1833 <            int wc = workerCounts;
1834 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
1835 <                if (!worked)
1836 <                    eventSync(w);
1837 <                return;
1803 >     * Scans through queues looking for work while joining a task; if
1804 >     * any present, signals. May return early if more signalling is
1805 >     * detectably unneeded.
1806 >     *
1807 >     * @param task return early if done
1808 >     * @param origin an index to start scan
1809 >     */
1810 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1811 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1812 >        if (task != null && task.status >= 0 &&
1813 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1814 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1815 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1816 >                WorkQueue q = ws[k++ & m];
1817 >                for (int n = m;;) { // limit to at most m signals
1818 >                    if (task.status < 0)
1819 >                        break outer;
1820 >                    if (q == null ||
1821 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1822 >                        break;
1823 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1824 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1825 >                        (w = ws[i]) == null)
1826 >                        break outer;
1827 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1828 >                               ((long)(u + UAC_UNIT) << 32));
1829 >                    if (w.eventCount == (e | INT_SIGN) &&
1830 >                        U.compareAndSwapLong(this, CTL, c, nc)) {
1831 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 >                        if ((p = w.parker) != null)
1833 >                            U.unpark(p);
1834 >                        if (--n <= 0)
1835 >                            break;
1836 >                    }
1837 >                }
1838              }
820            if (!(inactivate |= active) &&  // must inactivate to suspend
821                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
822                                         wc, wc - ONE_RUNNING) &&
823                !w.suspendAsSpare())        // false if trimmed
824                return;
1839          }
1840      }
1841  
1842      /**
1843 <     * Tries to decrement running count, and if so, possibly creates
830 <     * or resumes compensating threads before blocking on task joinMe.
831 <     * This code is sprawled out with manual inlining to evade some
832 <     * JIT oddities.
1843 >     * Signals other workers if tasks are present in hinted queue.
1844       *
1845 <     * @param joinMe the task to join
835 <     * @return task status on exit
1845 >     * @param caller the worker with the hint
1846       */
1847 <    final int tryAwaitJoin(ForkJoinTask<?> joinMe) {
1848 <        int cw = workerCounts; // read now to spoil CAS if counts change as ...
1849 <        releaseWaiters();      // ... a byproduct of releaseWaiters
1850 <        int stat = joinMe.status;
1851 <        if (stat >= 0 && // inline variant of tryDecrementRunningCount
1852 <            (cw & RUNNING_COUNT_MASK) > 0 &&
1853 <            UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1854 <                                     cw, cw - ONE_RUNNING)) {
1855 <            int pc = parallelism;
1856 <            int scans = 0;  // to require confirming passes to add threads
1857 <            outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1858 <                if ((stat = joinMe.status) < 0)
1859 <                    break;
1860 <                ForkJoinWorkerThread spare = null;
851 <                ForkJoinWorkerThread[] ws = workers;
852 <                int nws = ws.length;
853 <                for (int i = 0; i < nws; ++i) {
854 <                    ForkJoinWorkerThread w = ws[i];
855 <                    if (w != null && w.isSuspended()) {
856 <                        spare = w;
1847 >    private void helpSignalHint(WorkQueue caller) {
1848 >        WorkQueue[] ws; WorkQueue q, w; Thread p; long c; int h, m, u, e, i, s;
1849 >        if (caller != null && (h = caller.hint) >= 0) {
1850 >            caller.hint = -1;
1851 >            if ((u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1852 >                (ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1853 >                (q = ws[h & m]) != null) {
1854 >                for (int n = (m >>> 2) | 1;;) { // limit signals
1855 >                    int idleCount = (caller.eventCount < 0) ? 0 : -1;
1856 >                    if (((s = idleCount - q.base + q.top) <= n &&
1857 >                         (n = s) <= 0) ||
1858 >                        (u = (int)((c = ctl) >>> 32)) >= 0 ||
1859 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1860 >                        (w = ws[i]) == null)
1861                          break;
1862 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1863 +                               ((long)(u + UAC_UNIT) << 32));
1864 +                    if (w.eventCount == (e | INT_SIGN) &&
1865 +                        U.compareAndSwapLong(this, CTL, c, nc)) {
1866 +                        w.hint = h;
1867 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1868 +                        if ((p = w.parker) != null)
1869 +                            U.unpark(p);
1870 +                        if (--n <= 0)
1871 +                            break;
1872                      }
1873                  }
1874 <                if ((stat = joinMe.status) < 0) // recheck to narrow race
1875 <                    break;
1876 <                int wc = workerCounts;
1877 <                int rc = wc & RUNNING_COUNT_MASK;
1878 <                if (rc >= pc)
1879 <                    break;
1880 <                if (spare != null) {
1881 <                    if (spare.tryUnsuspend()) {
1882 <                        int c; // inline incrementRunningCount
1883 <                        do {} while (!UNSAFE.compareAndSwapInt
1884 <                                     (this, workerCountsOffset,
1885 <                                      c = workerCounts, c + ONE_RUNNING));
1886 <                        LockSupport.unpark(spare);
1887 <                        break;
1874 >            }
1875 >        }
1876 >    }
1877 >
1878 >    /**
1879 >     * Tries to locate and execute tasks for a stealer of the given
1880 >     * task, or in turn one of its stealers, Traces currentSteal ->
1881 >     * currentJoin links looking for a thread working on a descendant
1882 >     * of the given task and with a non-empty queue to steal back and
1883 >     * execute tasks from. The first call to this method upon a
1884 >     * waiting join will often entail scanning/search, (which is OK
1885 >     * because the joiner has nothing better to do), but this method
1886 >     * leaves hints in workers to speed up subsequent calls. The
1887 >     * implementation is very branchy to cope with potential
1888 >     * inconsistencies or loops encountering chains that are stale,
1889 >     * unknown, or so long that they are likely cyclic.
1890 >     *
1891 >     * @param joiner the joining worker
1892 >     * @param task the task to join
1893 >     * @return 0 if no progress can be made, negative if task
1894 >     * known complete, else positive
1895 >     */
1896 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1897 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1898 >        if (joiner != null && task != null) {       // hoist null checks
1899 >            restart: for (;;) {
1900 >                ForkJoinTask<?> subtask = task;     // current target
1901 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1902 >                    WorkQueue[] ws; int m, s, h;
1903 >                    if ((s = task.status) < 0) {
1904 >                        stat = s;
1905 >                        break restart;
1906 >                    }
1907 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1908 >                        break restart;              // shutting down
1909 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1910 >                        v.currentSteal != subtask) {
1911 >                        for (int origin = h;;) {    // find stealer
1912 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1913 >                                (subtask.status < 0 || j.currentJoin != subtask))
1914 >                                continue restart;   // occasional staleness check
1915 >                            if ((v = ws[h]) != null &&
1916 >                                v.currentSteal == subtask) {
1917 >                                j.hint = h;        // save hint
1918 >                                break;
1919 >                            }
1920 >                            if (h == origin)
1921 >                                break restart;      // cannot find stealer
1922 >                        }
1923 >                    }
1924 >                    for (;;) { // help stealer or descend to its stealer
1925 >                        ForkJoinTask[] a;  int b;
1926 >                        if (subtask.status < 0)     // surround probes with
1927 >                            continue restart;       //   consistency checks
1928 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1929 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1930 >                            ForkJoinTask<?> t =
1931 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1932 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1933 >                                v.currentSteal != subtask)
1934 >                                continue restart;   // stale
1935 >                            stat = 1;               // apparent progress
1936 >                            if (t != null && v.base == b &&
1937 >                                U.compareAndSwapObject(a, i, t, null)) {
1938 >                                v.base = b + 1;     // help stealer
1939 >                                joiner.runSubtask(t);
1940 >                            }
1941 >                            else if (v.base == b && ++steps == MAX_HELP)
1942 >                                break restart;      // v apparently stalled
1943 >                        }
1944 >                        else {                      // empty -- try to descend
1945 >                            ForkJoinTask<?> next = v.currentJoin;
1946 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1947 >                                v.currentSteal != subtask)
1948 >                                continue restart;   // stale
1949 >                            else if (next == null || ++steps == MAX_HELP)
1950 >                                break restart;      // dead-end or maybe cyclic
1951 >                            else {
1952 >                                subtask = next;
1953 >                                j = v;
1954 >                                break;
1955 >                            }
1956 >                        }
1957                      }
875                    continue;
876                }
877                int tc = wc >>> TOTAL_COUNT_SHIFT;
878                int sc = tc - pc;
879                if (rc > 0) {
880                    int p = pc;
881                    int s = sc;
882                    while (s-- >= 0) { // try keeping 3/4 live
883                        if (rc > (p -= (p >>> 2) + 1))
884                            break outer;
885                    }
886                }
887                if (scans++ > sc && tc < MAX_THREADS &&
888                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
889                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
890                    addWorker();
891                    break;
1958                  }
1959              }
894            if (stat >= 0)
895                stat = joinMe.internalAwaitDone();
896            int c; // inline incrementRunningCount
897            do {} while (!UNSAFE.compareAndSwapInt
898                         (this, workerCountsOffset,
899                          c = workerCounts, c + ONE_RUNNING));
1960          }
1961          return stat;
1962      }
1963  
1964      /**
1965 <     * Same idea as (and mostly pasted from) tryAwaitJoin, but
1966 <     * self-contained
1967 <     */
1968 <    final void awaitBlocker(ManagedBlocker blocker)
1969 <        throws InterruptedException {
1970 <        for (;;) {
1971 <            if (blocker.isReleasable())
1972 <                return;
1973 <            int cw = workerCounts;
1974 <            releaseWaiters();
1975 <            if ((cw & RUNNING_COUNT_MASK) > 0 &&
1976 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1977 <                                         cw, cw - ONE_RUNNING))
1978 <                break;
1979 <        }
1980 <        boolean done = false;
1981 <        int pc = parallelism;
1982 <        int scans = 0;
1983 <        outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1984 <            if (done = blocker.isReleasable())
925 <                break;
926 <            ForkJoinWorkerThread spare = null;
927 <            ForkJoinWorkerThread[] ws = workers;
928 <            int nws = ws.length;
929 <            for (int i = 0; i < nws; ++i) {
930 <                ForkJoinWorkerThread w = ws[i];
931 <                if (w != null && w.isSuspended()) {
932 <                    spare = w;
933 <                    break;
1965 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1966 >     * and run tasks within the target's computation.
1967 >     *
1968 >     * @param task the task to join
1969 >     * @param mode if shared, exit upon completing any task
1970 >     * if all workers are active
1971 >     *
1972 >     */
1973 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1974 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1975 >        if (task != null && (ws = workQueues) != null &&
1976 >            (m = ws.length - 1) >= 0) {
1977 >            for (int j = 1, origin = j;;) {
1978 >                if ((s = task.status) < 0)
1979 >                    return s;
1980 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1981 >                    origin = j;
1982 >                    if (mode == SHARED_QUEUE &&
1983 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1984 >                        break;
1985                  }
1986 <            }
936 <            if (done = blocker.isReleasable())
937 <                break;
938 <            int wc = workerCounts;
939 <            int rc = wc & RUNNING_COUNT_MASK;
940 <            if (rc >= pc)
941 <                break;
942 <            if (spare != null) {
943 <                if (spare.tryUnsuspend()) {
944 <                    int c;
945 <                    do {} while (!UNSAFE.compareAndSwapInt
946 <                                 (this, workerCountsOffset,
947 <                                  c = workerCounts, c + ONE_RUNNING));
948 <                    LockSupport.unpark(spare);
1986 >                else if ((j = (j + 2) & m) == origin)
1987                      break;
950                }
951                continue;
1988              }
1989 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1990 <            int sc = tc - pc;
1991 <            if (rc > 0) {
1992 <                int p = pc;
1993 <                int s = sc;
1994 <                while (s-- >= 0) {
1995 <                    if (rc > (p -= (p >>> 2) + 1))
1996 <                        break outer;
1989 >        }
1990 >        return 0;
1991 >    }
1992 >
1993 >    /**
1994 >     * Tries to decrement active count (sometimes implicitly) and
1995 >     * possibly release or create a compensating worker in preparation
1996 >     * for blocking. Fails on contention or termination. Otherwise,
1997 >     * adds a new thread if no idle workers are available and pool
1998 >     * may become starved.
1999 >     */
2000 >    final boolean tryCompensate() {
2001 >        int pc = config & SMASK, e, i, tc; long c;
2002 >        WorkQueue[] ws; WorkQueue w; Thread p;
2003 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
2004 >            if (e != 0 && (i = e & SMASK) < ws.length &&
2005 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
2006 >                long nc = ((long)(w.nextWait & E_MASK) |
2007 >                           (c & (AC_MASK|TC_MASK)));
2008 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
2009 >                    w.eventCount = (e + E_SEQ) & E_MASK;
2010 >                    if ((p = w.parker) != null)
2011 >                        U.unpark(p);
2012 >                    return true;   // replace with idle worker
2013                  }
2014              }
2015 <            if (scans++ > sc && tc < MAX_THREADS &&
2016 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
2017 <                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
2018 <                addWorker();
2019 <                break;
2015 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
2016 >                     (int)(c >> AC_SHIFT) + pc > 1) {
2017 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2018 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2019 >                    return true;   // no compensation
2020 >            }
2021 >            else if (tc + pc < MAX_CAP) {
2022 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2023 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
2024 >                    ForkJoinWorkerThreadFactory fac;
2025 >                    Throwable ex = null;
2026 >                    ForkJoinWorkerThread wt = null;
2027 >                    try {
2028 >                        if ((fac = factory) != null &&
2029 >                            (wt = fac.newThread(this)) != null) {
2030 >                            wt.start();
2031 >                            return true;
2032 >                        }
2033 >                    } catch (Throwable rex) {
2034 >                        ex = rex;
2035 >                    }
2036 >                    deregisterWorker(wt, ex); // clean up and return false
2037 >                }
2038              }
2039          }
2040 <        try {
2041 <            if (!done)
972 <                do {} while (!blocker.isReleasable() &&
973 <                             !blocker.block());
974 <        } finally {
975 <            int c;
976 <            do {} while (!UNSAFE.compareAndSwapInt
977 <                         (this, workerCountsOffset,
978 <                          c = workerCounts, c + ONE_RUNNING));
979 <        }
980 <    }  
2040 >        return false;
2041 >    }
2042  
2043      /**
2044 <     * Possibly initiates and/or completes termination.
2044 >     * Helps and/or blocks until the given task is done.
2045       *
2046 <     * @param now if true, unconditionally terminate, else only
2047 <     * if shutdown and empty queue and no active workers
2048 <     * @return true if now terminating or terminated
2046 >     * @param joiner the joining worker
2047 >     * @param task the task
2048 >     * @return task status on exit
2049       */
2050 <    private boolean tryTerminate(boolean now) {
2051 <        if (now)
2052 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
2053 <        else if (runState < SHUTDOWN ||
2054 <                 !submissionQueue.isEmpty() ||
2055 <                 (runState & ACTIVE_COUNT_MASK) != 0)
2056 <            return false;
2057 <
2058 <        if (advanceRunLevel(TERMINATING))
2059 <            startTerminating();
2060 <
2061 <        // Finish now if all threads terminated; else in some subsequent call
2062 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
2063 <            advanceRunLevel(TERMINATED);
2064 <            termination.arrive();
2050 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2051 >        int s = 0;
2052 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2053 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2054 >            joiner.currentJoin = task;
2055 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2056 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2057 >            if (s >= 0 && (s = task.status) >= 0) {
2058 >                helpSignal(task, joiner.poolIndex);
2059 >                if ((s = task.status) >= 0 &&
2060 >                    (task instanceof CountedCompleter))
2061 >                    s = helpComplete(task, LIFO_QUEUE);
2062 >            }
2063 >            while (s >= 0 && (s = task.status) >= 0) {
2064 >                if ((!joiner.isEmpty() ||           // try helping
2065 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2066 >                    (s = task.status) >= 0) {
2067 >                    helpSignal(task, joiner.poolIndex);
2068 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2069 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2070 >                            synchronized (task) {
2071 >                                if (task.status >= 0) {
2072 >                                    try {                // see ForkJoinTask
2073 >                                        task.wait();     //  for explanation
2074 >                                    } catch (InterruptedException ie) {
2075 >                                    }
2076 >                                }
2077 >                                else
2078 >                                    task.notifyAll();
2079 >                            }
2080 >                        }
2081 >                        long c;                          // re-activate
2082 >                        do {} while (!U.compareAndSwapLong
2083 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2084 >                    }
2085 >                }
2086 >            }
2087 >            joiner.currentJoin = prevJoin;
2088          }
2089 <        return true;
2089 >        return s;
2090      }
2091  
2092      /**
2093 <     * Actions on transition to TERMINATING
2093 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2094 >     * to help join only while there is continuous progress. (Caller
2095 >     * will then enter a timed wait.)
2096 >     *
2097 >     * @param joiner the joining worker
2098 >     * @param task the task
2099       */
2100 <    private void startTerminating() {
2101 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
2102 <            cancelSubmissions();
2103 <            shutdownWorkers();
2104 <            cancelWorkerTasks();
2105 <            signalEvent();
2106 <            interruptWorkers();
2100 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2101 >        int s;
2102 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2103 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2104 >            joiner.currentJoin = task;
2105 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2106 >                         joiner.tryRemoveAndExec(task));
2107 >            if (s >= 0 && (s = task.status) >= 0) {
2108 >                helpSignal(task, joiner.poolIndex);
2109 >                if ((s = task.status) >= 0 &&
2110 >                    (task instanceof CountedCompleter))
2111 >                    s = helpComplete(task, LIFO_QUEUE);
2112 >            }
2113 >            if (s >= 0 && joiner.isEmpty()) {
2114 >                do {} while (task.status >= 0 &&
2115 >                             tryHelpStealer(joiner, task) > 0);
2116 >            }
2117 >            joiner.currentJoin = prevJoin;
2118          }
2119      }
2120  
2121      /**
2122 <     * Clear out and cancel submissions, ignoring exceptions
2122 >     * Returns a (probably) non-empty steal queue, if one is found
2123 >     * during a random, then cyclic scan, else null.  This method must
2124 >     * be retried by caller if, by the time it tries to use the queue,
2125 >     * it is empty.
2126 >     * @param r a (random) seed for scanning
2127       */
2128 <    private void cancelSubmissions() {
2129 <        ForkJoinTask<?> task;
2130 <        while ((task = submissionQueue.poll()) != null) {
2131 <            try {
2132 <                task.cancel(false);
2133 <            } catch (Throwable ignore) {
2128 >    private WorkQueue findNonEmptyStealQueue(int r) {
2129 >        for (WorkQueue[] ws;;) {
2130 >            int ps = plock, m, n;
2131 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2132 >                return null;
2133 >            for (int j = (m + 1) << 2; ;) {
2134 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2135 >                if (q != null && (n = q.base - q.top) < 0) {
2136 >                    if (n < -1)
2137 >                        signalWork(q);
2138 >                    return q;
2139 >                }
2140 >                else if (--j < 0) {
2141 >                    if (plock == ps)
2142 >                        return null;
2143 >                    break;
2144 >                }
2145              }
2146          }
2147      }
2148  
2149      /**
2150 <     * Sets all worker run states to at least shutdown,
2151 <     * also resuming suspended workers
2152 <     */
2153 <    private void shutdownWorkers() {
2154 <        ForkJoinWorkerThread[] ws = workers;
2155 <        int nws = ws.length;
2156 <        for (int i = 0; i < nws; ++i) {
2157 <            ForkJoinWorkerThread w = ws[i];
2158 <            if (w != null)
2159 <                w.shutdown();
2150 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2151 >     * active count ctl maintenance, but rather than blocking
2152 >     * when tasks cannot be found, we rescan until all others cannot
2153 >     * find tasks either.
2154 >     */
2155 >    final void helpQuiescePool(WorkQueue w) {
2156 >        for (boolean active = true;;) {
2157 >            ForkJoinTask<?> localTask; // exhaust local queue
2158 >            while ((localTask = w.nextLocalTask()) != null)
2159 >                localTask.doExec();
2160 >            // Similar to loop in scan(), but ignoring submissions
2161 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2162 >            if (q != null) {
2163 >                ForkJoinTask<?> t; int b;
2164 >                if (!active) {      // re-establish active count
2165 >                    long c;
2166 >                    active = true;
2167 >                    do {} while (!U.compareAndSwapLong
2168 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2169 >                }
2170 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2171 >                    w.runSubtask(t);
2172 >            }
2173 >            else {
2174 >                long c;
2175 >                if (active) {       // decrement active count without queuing
2176 >                    active = false;
2177 >                    do {} while (!U.compareAndSwapLong
2178 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2179 >                }
2180 >                else
2181 >                    c = ctl;        // re-increment on exit
2182 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2183 >                    do {} while (!U.compareAndSwapLong
2184 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2185 >                    break;
2186 >                }
2187 >            }
2188          }
2189      }
2190  
2191      /**
2192 <     * Clears out and cancels all locally queued tasks
2192 >     * Gets and removes a local or stolen task for the given worker.
2193 >     *
2194 >     * @return a task, if available
2195       */
2196 <    private void cancelWorkerTasks() {
2197 <        ForkJoinWorkerThread[] ws = workers;
2198 <        int nws = ws.length;
2199 <        for (int i = 0; i < nws; ++i) {
2200 <            ForkJoinWorkerThread w = ws[i];
2201 <            if (w != null)
2202 <                w.cancelTasks();
2196 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2197 >        for (ForkJoinTask<?> t;;) {
2198 >            WorkQueue q; int b;
2199 >            if ((t = w.nextLocalTask()) != null)
2200 >                return t;
2201 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2202 >                return null;
2203 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2204 >                return t;
2205          }
2206      }
2207  
2208      /**
2209 <     * Unsticks all workers blocked on joins etc
2209 >     * Returns a cheap heuristic guide for task partitioning when
2210 >     * programmers, frameworks, tools, or languages have little or no
2211 >     * idea about task granularity.  In essence by offering this
2212 >     * method, we ask users only about tradeoffs in overhead vs
2213 >     * expected throughput and its variance, rather than how finely to
2214 >     * partition tasks.
2215 >     *
2216 >     * In a steady state strict (tree-structured) computation, each
2217 >     * thread makes available for stealing enough tasks for other
2218 >     * threads to remain active. Inductively, if all threads play by
2219 >     * the same rules, each thread should make available only a
2220 >     * constant number of tasks.
2221 >     *
2222 >     * The minimum useful constant is just 1. But using a value of 1
2223 >     * would require immediate replenishment upon each steal to
2224 >     * maintain enough tasks, which is infeasible.  Further,
2225 >     * partitionings/granularities of offered tasks should minimize
2226 >     * steal rates, which in general means that threads nearer the top
2227 >     * of computation tree should generate more than those nearer the
2228 >     * bottom. In perfect steady state, each thread is at
2229 >     * approximately the same level of computation tree. However,
2230 >     * producing extra tasks amortizes the uncertainty of progress and
2231 >     * diffusion assumptions.
2232 >     *
2233 >     * So, users will want to use values larger, but not much larger
2234 >     * than 1 to both smooth over transient shortages and hedge
2235 >     * against uneven progress; as traded off against the cost of
2236 >     * extra task overhead. We leave the user to pick a threshold
2237 >     * value to compare with the results of this call to guide
2238 >     * decisions, but recommend values such as 3.
2239 >     *
2240 >     * When all threads are active, it is on average OK to estimate
2241 >     * surplus strictly locally. In steady-state, if one thread is
2242 >     * maintaining say 2 surplus tasks, then so are others. So we can
2243 >     * just use estimated queue length.  However, this strategy alone
2244 >     * leads to serious mis-estimates in some non-steady-state
2245 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2246 >     * many of these by further considering the number of "idle"
2247 >     * threads, that are known to have zero queued tasks, so
2248 >     * compensate by a factor of (#idle/#active) threads.
2249 >     *
2250 >     * Note: The approximation of #busy workers as #active workers is
2251 >     * not very good under current signalling scheme, and should be
2252 >     * improved.
2253 >     */
2254 >    static int getSurplusQueuedTaskCount() {
2255 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2256 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2257 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2258 >            int n = (q = wt.workQueue).top - q.base;
2259 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2260 >            return n - (a > (p >>>= 1) ? 0 :
2261 >                        a > (p >>>= 1) ? 1 :
2262 >                        a > (p >>>= 1) ? 2 :
2263 >                        a > (p >>>= 1) ? 4 :
2264 >                        8);
2265 >        }
2266 >        return 0;
2267 >    }
2268 >
2269 >    //  Termination
2270 >
2271 >    /**
2272 >     * Possibly initiates and/or completes termination.  The caller
2273 >     * triggering termination runs three passes through workQueues:
2274 >     * (0) Setting termination status, followed by wakeups of queued
2275 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2276 >     * threads (likely in external tasks, but possibly also blocked in
2277 >     * joins).  Each pass repeats previous steps because of potential
2278 >     * lagging thread creation.
2279 >     *
2280 >     * @param now if true, unconditionally terminate, else only
2281 >     * if no work and no active workers
2282 >     * @param enable if true, enable shutdown when next possible
2283 >     * @return true if now terminating or terminated
2284       */
2285 <    private void interruptWorkers() {
2286 <        ForkJoinWorkerThread[] ws = workers;
2287 <        int nws = ws.length;
2288 <        for (int i = 0; i < nws; ++i) {
2289 <            ForkJoinWorkerThread w = ws[i];
2290 <            if (w != null && !w.isTerminated()) {
2291 <                try {
2292 <                    w.interrupt();
2293 <                } catch (SecurityException ignore) {
2285 >    private boolean tryTerminate(boolean now, boolean enable) {
2286 >        if (this == commonPool)                     // cannot shut down
2287 >            return false;
2288 >        for (long c;;) {
2289 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2290 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2291 >                    synchronized (this) {
2292 >                        notifyAll();                // signal when 0 workers
2293 >                    }
2294 >                }
2295 >                return true;
2296 >            }
2297 >            if (plock >= 0) {                       // not yet enabled
2298 >                int ps;
2299 >                if (!enable)
2300 >                    return false;
2301 >                if (((ps = plock) & PL_LOCK) != 0 ||
2302 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2303 >                    ps = acquirePlock();
2304 >                int nps = SHUTDOWN;
2305 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2306 >                    releasePlock(nps);
2307 >            }
2308 >            if (!now) {                             // check if idle & no tasks
2309 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2310 >                    hasQueuedSubmissions())
2311 >                    return false;
2312 >                // Check for unqueued inactive workers. One pass suffices.
2313 >                WorkQueue[] ws = workQueues; WorkQueue w;
2314 >                if (ws != null) {
2315 >                    for (int i = 1; i < ws.length; i += 2) {
2316 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2317 >                            return false;
2318 >                    }
2319 >                }
2320 >            }
2321 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2322 >                for (int pass = 0; pass < 3; ++pass) {
2323 >                    WorkQueue[] ws = workQueues;
2324 >                    if (ws != null) {
2325 >                        WorkQueue w;
2326 >                        int n = ws.length;
2327 >                        for (int i = 0; i < n; ++i) {
2328 >                            if ((w = ws[i]) != null) {
2329 >                                w.qlock = -1;
2330 >                                if (pass > 0) {
2331 >                                    w.cancelAll();
2332 >                                    if (pass > 1)
2333 >                                        w.interruptOwner();
2334 >                                }
2335 >                            }
2336 >                        }
2337 >                        // Wake up workers parked on event queue
2338 >                        int i, e; long cc; Thread p;
2339 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2340 >                               (i = e & SMASK) < n &&
2341 >                               (w = ws[i]) != null) {
2342 >                            long nc = ((long)(w.nextWait & E_MASK) |
2343 >                                       ((cc + AC_UNIT) & AC_MASK) |
2344 >                                       (cc & (TC_MASK|STOP_BIT)));
2345 >                            if (w.eventCount == (e | INT_SIGN) &&
2346 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2347 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2348 >                                w.qlock = -1;
2349 >                                if ((p = w.parker) != null)
2350 >                                    U.unpark(p);
2351 >                            }
2352 >                        }
2353 >                    }
2354                  }
2355              }
2356          }
2357      }
2358  
2359 <    // misc support for ForkJoinWorkerThread
2359 >    // external operations on common pool
2360  
2361      /**
2362 <     * Returns pool number
2362 >     * Returns common pool queue for a thread that has submitted at
2363 >     * least one task.
2364       */
2365 <    final int getPoolNumber() {
2366 <        return poolNumber;
2365 >    static WorkQueue commonSubmitterQueue() {
2366 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2367 >        return ((z = submitters.get()) != null &&
2368 >                (p = commonPool) != null &&
2369 >                (ws = p.workQueues) != null &&
2370 >                (m = ws.length - 1) >= 0) ?
2371 >            ws[m & z.seed & SQMASK] : null;
2372      }
2373  
2374      /**
2375 <     * Accumulates steal count from a worker, clearing
2376 <     * the worker's value
2375 >     * Tries to pop the given task from submitter's queue in common pool.
2376 >     */
2377 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2378 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2379 >        ForkJoinTask<?>[] a;  int m, s;
2380 >        if (t != null &&
2381 >            (z = submitters.get()) != null &&
2382 >            (p = commonPool) != null &&
2383 >            (ws = p.workQueues) != null &&
2384 >            (m = ws.length - 1) >= 0 &&
2385 >            (q = ws[m & z.seed & SQMASK]) != null &&
2386 >            (s = q.top) != q.base &&
2387 >            (a = q.array) != null) {
2388 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2389 >            if (U.getObject(a, j) == t &&
2390 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 >                if (q.array == a && q.top == s && // recheck
2392 >                    U.compareAndSwapObject(a, j, t, null)) {
2393 >                    q.top = s - 1;
2394 >                    q.qlock = 0;
2395 >                    return true;
2396 >                }
2397 >                q.qlock = 0;
2398 >            }
2399 >        }
2400 >        return false;
2401 >    }
2402 >
2403 >    /**
2404 >     * Tries to pop and run local tasks within the same computation
2405 >     * as the given root. On failure, tries to help complete from
2406 >     * other queues via helpComplete.
2407       */
2408 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2409 <        int sc = w.stealCount;
2410 <        if (sc != 0) {
2411 <            long c;
2412 <            w.stealCount = 0;
2413 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2414 <                                                    c = stealCount, c + sc));
2408 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2409 >        ForkJoinTask<?>[] a; int m;
2410 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2411 >            root != null && root.status >= 0) {
2412 >            for (;;) {
2413 >                int s, u; Object o; CountedCompleter<?> task = null;
2414 >                if ((s = q.top) - q.base > 0) {
2415 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2416 >                    if ((o = U.getObject(a, j)) != null &&
2417 >                        (o instanceof CountedCompleter)) {
2418 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2419 >                        do {
2420 >                            if (r == root) {
2421 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2422 >                                    if (q.array == a && q.top == s &&
2423 >                                        U.compareAndSwapObject(a, j, t, null)) {
2424 >                                        q.top = s - 1;
2425 >                                        task = t;
2426 >                                    }
2427 >                                    q.qlock = 0;
2428 >                                }
2429 >                                break;
2430 >                            }
2431 >                        } while ((r = r.completer) != null);
2432 >                    }
2433 >                }
2434 >                if (task != null)
2435 >                    task.doExec();
2436 >                if (root.status < 0 ||
2437 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2438 >                    break;
2439 >                if (task == null) {
2440 >                    helpSignal(root, q.poolIndex);
2441 >                    if (root.status >= 0)
2442 >                        helpComplete(root, SHARED_QUEUE);
2443 >                    break;
2444 >                }
2445 >            }
2446          }
2447      }
2448  
2449      /**
2450 <     * Returns the approximate (non-atomic) number of idle threads per
2451 <     * active thread.
2450 >     * Tries to help execute or signal availability of the given task
2451 >     * from submitter's queue in common pool.
2452       */
2453 <    final int idlePerActive() {
2454 <        int pc = parallelism; // use targeted parallelism, not rc
2455 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2456 <        // Use exact results for small values, saturate past 4
2457 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2453 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2454 >        // Some hard-to-avoid overlap with tryExternalUnpush
2455 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2456 >        ForkJoinTask<?>[] a;  int m, s, n;
2457 >        if (t != null &&
2458 >            (z = submitters.get()) != null &&
2459 >            (p = commonPool) != null &&
2460 >            (ws = p.workQueues) != null &&
2461 >            (m = ws.length - 1) >= 0 &&
2462 >            (q = ws[m & z.seed & SQMASK]) != null &&
2463 >            (a = q.array) != null) {
2464 >            int am = a.length - 1;
2465 >            if ((s = q.top) != q.base) {
2466 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2467 >                if (U.getObject(a, j) == t &&
2468 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2469 >                    if (q.array == a && q.top == s &&
2470 >                        U.compareAndSwapObject(a, j, t, null)) {
2471 >                        q.top = s - 1;
2472 >                        q.qlock = 0;
2473 >                        t.doExec();
2474 >                    }
2475 >                    else
2476 >                        q.qlock = 0;
2477 >                }
2478 >            }
2479 >            if (t.status >= 0) {
2480 >                if (t instanceof CountedCompleter)
2481 >                    p.externalHelpComplete(q, t);
2482 >                else
2483 >                    p.helpSignal(t, q.poolIndex);
2484 >            }
2485 >        }
2486      }
2487  
2488 <    // Public and protected methods
2488 >    /**
2489 >     * Restricted version of helpQuiescePool for external callers
2490 >     */
2491 >    static void externalHelpQuiescePool() {
2492 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2493 >        if ((p = commonPool) != null &&
2494 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2495 >            (b = q.base) - q.top < 0 &&
2496 >            (t = q.pollAt(b)) != null)
2497 >            t.doExec();
2498 >    }
2499 >
2500 >    // Exported methods
2501  
2502      // Constructors
2503  
# Line 1154 | Line 2542 | public class ForkJoinPool extends Abstra
2542       * use {@link java.lang.Runtime#availableProcessors}.
2543       * @param factory the factory for creating new threads. For default value,
2544       * use {@link #defaultForkJoinWorkerThreadFactory}.
2545 <     * @param handler the handler for internal worker threads that
2546 <     * terminate due to unrecoverable errors encountered while executing
2547 <     * tasks. For default value, use <code>null</code>.
2548 <     * @param asyncMode if true,
2545 >     * @param handler the handler for internal worker threads that
2546 >     * terminate due to unrecoverable errors encountered while executing
2547 >     * tasks. For default value, use {@code null}.
2548 >     * @param asyncMode if true,
2549       * establishes local first-in-first-out scheduling mode for forked
2550       * tasks that are never joined. This mode may be more appropriate
2551       * than default locally stack-based mode in applications in which
2552       * worker threads only process event-style asynchronous tasks.
2553 <     * For default value, use <code>false</code>.
2553 >     * For default value, use {@code false}.
2554       * @throws IllegalArgumentException if parallelism less than or
2555       *         equal to zero, or greater than implementation limit
2556       * @throws NullPointerException if the factory is null
# Line 1171 | Line 2559 | public class ForkJoinPool extends Abstra
2559       *         because it does not hold {@link
2560       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2561       */
2562 <    public ForkJoinPool(int parallelism,
2562 >    public ForkJoinPool(int parallelism,
2563                          ForkJoinWorkerThreadFactory factory,
2564                          Thread.UncaughtExceptionHandler handler,
2565                          boolean asyncMode) {
2566          checkPermission();
2567          if (factory == null)
2568              throw new NullPointerException();
2569 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2569 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2570              throw new IllegalArgumentException();
1183        this.parallelism = parallelism;
2571          this.factory = factory;
2572          this.ueh = handler;
2573 <        this.locallyFifo = asyncMode;
2574 <        int arraySize = initialArraySizeFor(parallelism);
2575 <        this.workers = new ForkJoinWorkerThread[arraySize];
2576 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2577 <        this.workerLock = new ReentrantLock();
2578 <        this.termination = new Phaser(1);
2579 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2573 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2574 >        long np = (long)(-parallelism); // offset ctl counts
2575 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2576 >        int pn = nextPoolId();
2577 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2578 >        sb.append(Integer.toString(pn));
2579 >        sb.append("-worker-");
2580 >        this.workerNamePrefix = sb.toString();
2581      }
2582  
2583      /**
2584 <     * Returns initial power of two size for workers array.
2585 <     * @param pc the initial parallelism level
2586 <     */
2587 <    private static int initialArraySizeFor(int pc) {
2588 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2589 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2590 <        size |= size >>> 1;
2591 <        size |= size >>> 2;
2592 <        size |= size >>> 4;
2593 <        size |= size >>> 8;
2594 <        return size + 1;
2584 >     * Constructor for common pool, suitable only for static initialization.
2585 >     * Basically the same as above, but uses smallest possible initial footprint.
2586 >     */
2587 >    ForkJoinPool(int parallelism, long ctl,
2588 >                 ForkJoinWorkerThreadFactory factory,
2589 >                 Thread.UncaughtExceptionHandler handler) {
2590 >        this.config = parallelism;
2591 >        this.ctl = ctl;
2592 >        this.factory = factory;
2593 >        this.ueh = handler;
2594 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2595      }
2596  
1209    // Execution methods
1210
2597      /**
2598 <     * Common code for execute, invoke and submit
2598 >     * Returns the common pool instance.
2599 >     *
2600 >     * @return the common pool instance
2601       */
2602 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2603 <        if (task == null)
2604 <            throw new NullPointerException();
1217 <        if (runState >= SHUTDOWN)
1218 <            throw new RejectedExecutionException();
1219 <        // Convert submissions to current pool into forks
1220 <        Thread t = Thread.currentThread();
1221 <        ForkJoinWorkerThread w;
1222 <        if ((t instanceof ForkJoinWorkerThread) &&
1223 <            (w = (ForkJoinWorkerThread) t).pool == this)
1224 <            w.pushTask(task);
1225 <        else {
1226 <            submissionQueue.offer(task);
1227 <            signalEvent();
1228 <            ensureEnoughTotalWorkers();
1229 <        }
2602 >    public static ForkJoinPool commonPool() {
2603 >        // assert commonPool != null : "static init error";
2604 >        return commonPool;
2605      }
2606  
2607 +    // Execution methods
2608 +
2609      /**
2610       * Performs the given task, returning its result upon completion.
2611 <     * If the caller is already engaged in a fork/join computation in
2612 <     * the current pool, this method is equivalent in effect to
2613 <     * {@link ForkJoinTask#invoke}.
2611 >     * If the computation encounters an unchecked Exception or Error,
2612 >     * it is rethrown as the outcome of this invocation.  Rethrown
2613 >     * exceptions behave in the same way as regular exceptions, but,
2614 >     * when possible, contain stack traces (as displayed for example
2615 >     * using {@code ex.printStackTrace()}) of both the current thread
2616 >     * as well as the thread actually encountering the exception;
2617 >     * minimally only the latter.
2618       *
2619       * @param task the task
2620       * @return the task's result
# Line 1242 | Line 2623 | public class ForkJoinPool extends Abstra
2623       *         scheduled for execution
2624       */
2625      public <T> T invoke(ForkJoinTask<T> task) {
2626 <        doSubmit(task);
2626 >        if (task == null)
2627 >            throw new NullPointerException();
2628 >        externalPush(task);
2629          return task.join();
2630      }
2631  
2632      /**
2633       * Arranges for (asynchronous) execution of the given task.
1251     * If the caller is already engaged in a fork/join computation in
1252     * the current pool, this method is equivalent in effect to
1253     * {@link ForkJoinTask#fork}.
2634       *
2635       * @param task the task
2636       * @throws NullPointerException if the task is null
# Line 1258 | Line 2638 | public class ForkJoinPool extends Abstra
2638       *         scheduled for execution
2639       */
2640      public void execute(ForkJoinTask<?> task) {
2641 <        doSubmit(task);
2641 >        if (task == null)
2642 >            throw new NullPointerException();
2643 >        externalPush(task);
2644      }
2645  
2646      // AbstractExecutorService methods
# Line 1269 | Line 2651 | public class ForkJoinPool extends Abstra
2651       *         scheduled for execution
2652       */
2653      public void execute(Runnable task) {
2654 +        if (task == null)
2655 +            throw new NullPointerException();
2656          ForkJoinTask<?> job;
2657          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2658              job = (ForkJoinTask<?>) task;
2659          else
2660 <            job = ForkJoinTask.adapt(task, null);
2661 <        doSubmit(job);
2660 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2661 >        externalPush(job);
2662      }
2663  
2664      /**
2665       * Submits a ForkJoinTask for execution.
1282     * If the caller is already engaged in a fork/join computation in
1283     * the current pool, this method is equivalent in effect to
1284     * {@link ForkJoinTask#fork}.
2666       *
2667       * @param task the task to submit
2668       * @return the task
# Line 1290 | Line 2671 | public class ForkJoinPool extends Abstra
2671       *         scheduled for execution
2672       */
2673      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2674 <        doSubmit(task);
2674 >        if (task == null)
2675 >            throw new NullPointerException();
2676 >        externalPush(task);
2677          return task;
2678      }
2679  
# Line 1300 | Line 2683 | public class ForkJoinPool extends Abstra
2683       *         scheduled for execution
2684       */
2685      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2686 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2687 <        doSubmit(job);
2686 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2687 >        externalPush(job);
2688          return job;
2689      }
2690  
# Line 1311 | Line 2694 | public class ForkJoinPool extends Abstra
2694       *         scheduled for execution
2695       */
2696      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2697 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2698 <        doSubmit(job);
2697 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2698 >        externalPush(job);
2699          return job;
2700      }
2701  
# Line 1322 | Line 2705 | public class ForkJoinPool extends Abstra
2705       *         scheduled for execution
2706       */
2707      public ForkJoinTask<?> submit(Runnable task) {
2708 +        if (task == null)
2709 +            throw new NullPointerException();
2710          ForkJoinTask<?> job;
2711          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2712              job = (ForkJoinTask<?>) task;
2713          else
2714 <            job = ForkJoinTask.adapt(task, null);
2715 <        doSubmit(job);
2714 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2715 >        externalPush(job);
2716          return job;
2717      }
2718  
# Line 1336 | Line 2721 | public class ForkJoinPool extends Abstra
2721       * @throws RejectedExecutionException {@inheritDoc}
2722       */
2723      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2724 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2725 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2726 <        for (Callable<T> task : tasks)
2727 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2728 <        invoke(new InvokeAll<T>(forkJoinTasks));
2729 <
2724 >        // In previous versions of this class, this method constructed
2725 >        // a task to run ForkJoinTask.invokeAll, but now external
2726 >        // invocation of multiple tasks is at least as efficient.
2727 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2728 >        // Workaround needed because method wasn't declared with
2729 >        // wildcards in return type but should have been.
2730          @SuppressWarnings({"unchecked", "rawtypes"})
2731 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1347 <        return futures;
1348 <    }
2731 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2732  
2733 <    static final class InvokeAll<T> extends RecursiveAction {
2734 <        final ArrayList<ForkJoinTask<T>> tasks;
2735 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2736 <        public void compute() {
2737 <            try { invokeAll(tasks); }
2738 <            catch (Exception ignore) {}
2733 >        boolean done = false;
2734 >        try {
2735 >            for (Callable<T> t : tasks) {
2736 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2737 >                externalPush(f);
2738 >                fs.add(f);
2739 >            }
2740 >            for (ForkJoinTask<T> f : fs)
2741 >                f.quietlyJoin();
2742 >            done = true;
2743 >            return futures;
2744 >        } finally {
2745 >            if (!done)
2746 >                for (ForkJoinTask<T> f : fs)
2747 >                    f.cancel(false);
2748          }
1357        private static final long serialVersionUID = -7914297376763021607L;
2749      }
2750  
2751      /**
# Line 1382 | Line 2773 | public class ForkJoinPool extends Abstra
2773       * @return the targeted parallelism level of this pool
2774       */
2775      public int getParallelism() {
2776 <        return parallelism;
2776 >        return config & SMASK;
2777 >    }
2778 >
2779 >    /**
2780 >     * Returns the targeted parallelism level of the common pool.
2781 >     *
2782 >     * @return the targeted parallelism level of the common pool
2783 >     */
2784 >    public static int getCommonPoolParallelism() {
2785 >        return commonPoolParallelism;
2786      }
2787  
2788      /**
2789       * Returns the number of worker threads that have started but not
2790 <     * yet terminated.  This result returned by this method may differ
2790 >     * yet terminated.  The result returned by this method may differ
2791       * from {@link #getParallelism} when threads are created to
2792       * maintain parallelism when others are cooperatively blocked.
2793       *
2794       * @return the number of worker threads
2795       */
2796      public int getPoolSize() {
2797 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2797 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2798      }
2799  
2800      /**
# Line 1404 | Line 2804 | public class ForkJoinPool extends Abstra
2804       * @return {@code true} if this pool uses async mode
2805       */
2806      public boolean getAsyncMode() {
2807 <        return locallyFifo;
2807 >        return (config >>> 16) == FIFO_QUEUE;
2808      }
2809  
2810      /**
# Line 1416 | Line 2816 | public class ForkJoinPool extends Abstra
2816       * @return the number of worker threads
2817       */
2818      public int getRunningThreadCount() {
2819 <        return workerCounts & RUNNING_COUNT_MASK;
2819 >        int rc = 0;
2820 >        WorkQueue[] ws; WorkQueue w;
2821 >        if ((ws = workQueues) != null) {
2822 >            for (int i = 1; i < ws.length; i += 2) {
2823 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2824 >                    ++rc;
2825 >            }
2826 >        }
2827 >        return rc;
2828      }
2829  
2830      /**
# Line 1427 | Line 2835 | public class ForkJoinPool extends Abstra
2835       * @return the number of active threads
2836       */
2837      public int getActiveThreadCount() {
2838 <        return runState & ACTIVE_COUNT_MASK;
2838 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2839 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2840      }
2841  
2842      /**
# Line 1442 | Line 2851 | public class ForkJoinPool extends Abstra
2851       * @return {@code true} if all threads are currently idle
2852       */
2853      public boolean isQuiescent() {
2854 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2854 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2855      }
2856  
2857      /**
# Line 1457 | Line 2866 | public class ForkJoinPool extends Abstra
2866       * @return the number of steals
2867       */
2868      public long getStealCount() {
2869 <        return stealCount;
2869 >        long count = stealCount;
2870 >        WorkQueue[] ws; WorkQueue w;
2871 >        if ((ws = workQueues) != null) {
2872 >            for (int i = 1; i < ws.length; i += 2) {
2873 >                if ((w = ws[i]) != null)
2874 >                    count += w.nsteals;
2875 >            }
2876 >        }
2877 >        return count;
2878      }
2879  
2880      /**
# Line 1472 | Line 2889 | public class ForkJoinPool extends Abstra
2889       */
2890      public long getQueuedTaskCount() {
2891          long count = 0;
2892 <        ForkJoinWorkerThread[] ws = workers;
2893 <        int nws = ws.length;
2894 <        for (int i = 0; i < nws; ++i) {
2895 <            ForkJoinWorkerThread w = ws[i];
2896 <            if (w != null)
2897 <                count += w.getQueueSize();
2892 >        WorkQueue[] ws; WorkQueue w;
2893 >        if ((ws = workQueues) != null) {
2894 >            for (int i = 1; i < ws.length; i += 2) {
2895 >                if ((w = ws[i]) != null)
2896 >                    count += w.queueSize();
2897 >            }
2898          }
2899          return count;
2900      }
2901  
2902      /**
2903       * Returns an estimate of the number of tasks submitted to this
2904 <     * pool that have not yet begun executing.  This method takes time
2905 <     * proportional to the number of submissions.
2904 >     * pool that have not yet begun executing.  This method may take
2905 >     * time proportional to the number of submissions.
2906       *
2907       * @return the number of queued submissions
2908       */
2909      public int getQueuedSubmissionCount() {
2910 <        return submissionQueue.size();
2910 >        int count = 0;
2911 >        WorkQueue[] ws; WorkQueue w;
2912 >        if ((ws = workQueues) != null) {
2913 >            for (int i = 0; i < ws.length; i += 2) {
2914 >                if ((w = ws[i]) != null)
2915 >                    count += w.queueSize();
2916 >            }
2917 >        }
2918 >        return count;
2919      }
2920  
2921      /**
# Line 1500 | Line 2925 | public class ForkJoinPool extends Abstra
2925       * @return {@code true} if there are any queued submissions
2926       */
2927      public boolean hasQueuedSubmissions() {
2928 <        return !submissionQueue.isEmpty();
2928 >        WorkQueue[] ws; WorkQueue w;
2929 >        if ((ws = workQueues) != null) {
2930 >            for (int i = 0; i < ws.length; i += 2) {
2931 >                if ((w = ws[i]) != null && !w.isEmpty())
2932 >                    return true;
2933 >            }
2934 >        }
2935 >        return false;
2936      }
2937  
2938      /**
# Line 1511 | Line 2943 | public class ForkJoinPool extends Abstra
2943       * @return the next submission, or {@code null} if none
2944       */
2945      protected ForkJoinTask<?> pollSubmission() {
2946 <        return submissionQueue.poll();
2946 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2947 >        if ((ws = workQueues) != null) {
2948 >            for (int i = 0; i < ws.length; i += 2) {
2949 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2950 >                    return t;
2951 >            }
2952 >        }
2953 >        return null;
2954      }
2955  
2956      /**
# Line 1532 | Line 2971 | public class ForkJoinPool extends Abstra
2971       * @return the number of elements transferred
2972       */
2973      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1535        int n = submissionQueue.drainTo(c);
1536        ForkJoinWorkerThread[] ws = workers;
1537        int nws = ws.length;
1538        for (int i = 0; i < nws; ++i) {
1539            ForkJoinWorkerThread w = ws[i];
1540            if (w != null)
1541                n += w.drainTasksTo(c);
1542        }
1543        return n;
1544    }
1545
1546    /**
1547     * Returns count of total parks by existing workers.
1548     * Used during development only since not meaningful to users.
1549     */
1550    private int collectParkCount() {
2974          int count = 0;
2975 <        ForkJoinWorkerThread[] ws = workers;
2976 <        int nws = ws.length;
2977 <        for (int i = 0; i < nws; ++i) {
2978 <            ForkJoinWorkerThread w = ws[i];
2979 <            if (w != null)
2980 <                count += w.parkCount;
2975 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2976 >        if ((ws = workQueues) != null) {
2977 >            for (int i = 0; i < ws.length; ++i) {
2978 >                if ((w = ws[i]) != null) {
2979 >                    while ((t = w.poll()) != null) {
2980 >                        c.add(t);
2981 >                        ++count;
2982 >                    }
2983 >                }
2984 >            }
2985          }
2986          return count;
2987      }
# Line 1567 | Line 2994 | public class ForkJoinPool extends Abstra
2994       * @return a string identifying this pool, as well as its state
2995       */
2996      public String toString() {
2997 <        long st = getStealCount();
2998 <        long qt = getQueuedTaskCount();
2999 <        long qs = getQueuedSubmissionCount();
3000 <        int wc = workerCounts;
3001 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
3002 <        int rc = wc & RUNNING_COUNT_MASK;
3003 <        int pc = parallelism;
3004 <        int rs = runState;
3005 <        int ac = rs & ACTIVE_COUNT_MASK;
3006 <        //        int pk = collectParkCount();
2997 >        // Use a single pass through workQueues to collect counts
2998 >        long qt = 0L, qs = 0L; int rc = 0;
2999 >        long st = stealCount;
3000 >        long c = ctl;
3001 >        WorkQueue[] ws; WorkQueue w;
3002 >        if ((ws = workQueues) != null) {
3003 >            for (int i = 0; i < ws.length; ++i) {
3004 >                if ((w = ws[i]) != null) {
3005 >                    int size = w.queueSize();
3006 >                    if ((i & 1) == 0)
3007 >                        qs += size;
3008 >                    else {
3009 >                        qt += size;
3010 >                        st += w.nsteals;
3011 >                        if (w.isApparentlyUnblocked())
3012 >                            ++rc;
3013 >                    }
3014 >                }
3015 >            }
3016 >        }
3017 >        int pc = (config & SMASK);
3018 >        int tc = pc + (short)(c >>> TC_SHIFT);
3019 >        int ac = pc + (int)(c >> AC_SHIFT);
3020 >        if (ac < 0) // ignore transient negative
3021 >            ac = 0;
3022 >        String level;
3023 >        if ((c & STOP_BIT) != 0)
3024 >            level = (tc == 0) ? "Terminated" : "Terminating";
3025 >        else
3026 >            level = plock < 0 ? "Shutting down" : "Running";
3027          return super.toString() +
3028 <            "[" + runLevelToString(rs) +
3028 >            "[" + level +
3029              ", parallelism = " + pc +
3030              ", size = " + tc +
3031              ", active = " + ac +
# Line 1586 | Line 3033 | public class ForkJoinPool extends Abstra
3033              ", steals = " + st +
3034              ", tasks = " + qt +
3035              ", submissions = " + qs +
1589            //            ", parks = " + pk +
3036              "]";
3037      }
3038  
1593    private static String runLevelToString(int s) {
1594        return ((s & TERMINATED) != 0 ? "Terminated" :
1595                ((s & TERMINATING) != 0 ? "Terminating" :
1596                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1597                  "Running")));
1598    }
1599
3039      /**
3040 <     * Initiates an orderly shutdown in which previously submitted
3041 <     * tasks are executed, but no new tasks will be accepted.
3042 <     * Invocation has no additional effect if already shut down.
3043 <     * Tasks that are in the process of being submitted concurrently
3044 <     * during the course of this method may or may not be rejected.
3040 >     * Possibly initiates an orderly shutdown in which previously
3041 >     * submitted tasks are executed, but no new tasks will be
3042 >     * accepted. Invocation has no effect on execution state if this
3043 >     * is the {@link #commonPool}, and no additional effect if
3044 >     * already shut down.  Tasks that are in the process of being
3045 >     * submitted concurrently during the course of this method may or
3046 >     * may not be rejected.
3047       *
3048       * @throws SecurityException if a security manager exists and
3049       *         the caller is not permitted to modify threads
# Line 1611 | Line 3052 | public class ForkJoinPool extends Abstra
3052       */
3053      public void shutdown() {
3054          checkPermission();
3055 <        advanceRunLevel(SHUTDOWN);
1615 <        tryTerminate(false);
3055 >        tryTerminate(false, true);
3056      }
3057  
3058      /**
3059 <     * Attempts to cancel and/or stop all tasks, and reject all
3060 <     * subsequently submitted tasks.  Tasks that are in the process of
3061 <     * being submitted or executed concurrently during the course of
3062 <     * this method may or may not be rejected. This method cancels
3063 <     * both existing and unexecuted tasks, in order to permit
3064 <     * termination in the presence of task dependencies. So the method
3065 <     * always returns an empty list (unlike the case for some other
3066 <     * Executors).
3059 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3060 >     * all subsequently submitted tasks.  Invocation has no effect on
3061 >     * execution state if this is the {@link #commonPool}, and no
3062 >     * additional effect if already shut down. Otherwise, tasks that
3063 >     * are in the process of being submitted or executed concurrently
3064 >     * during the course of this method may or may not be
3065 >     * rejected. This method cancels both existing and unexecuted
3066 >     * tasks, in order to permit termination in the presence of task
3067 >     * dependencies. So the method always returns an empty list
3068 >     * (unlike the case for some other Executors).
3069       *
3070       * @return an empty list
3071       * @throws SecurityException if a security manager exists and
# Line 1633 | Line 3075 | public class ForkJoinPool extends Abstra
3075       */
3076      public List<Runnable> shutdownNow() {
3077          checkPermission();
3078 <        tryTerminate(true);
3078 >        tryTerminate(true, true);
3079          return Collections.emptyList();
3080      }
3081  
# Line 1643 | Line 3085 | public class ForkJoinPool extends Abstra
3085       * @return {@code true} if all tasks have completed following shut down
3086       */
3087      public boolean isTerminated() {
3088 <        return runState >= TERMINATED;
3088 >        long c = ctl;
3089 >        return ((c & STOP_BIT) != 0L &&
3090 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3091      }
3092  
3093      /**
# Line 1651 | Line 3095 | public class ForkJoinPool extends Abstra
3095       * commenced but not yet completed.  This method may be useful for
3096       * debugging. A return of {@code true} reported a sufficient
3097       * period after shutdown may indicate that submitted tasks have
3098 <     * ignored or suppressed interruption, causing this executor not
3099 <     * to properly terminate.
3098 >     * ignored or suppressed interruption, or are waiting for I/O,
3099 >     * causing this executor not to properly terminate. (See the
3100 >     * advisory notes for class {@link ForkJoinTask} stating that
3101 >     * tasks should not normally entail blocking operations.  But if
3102 >     * they do, they must abort them on interrupt.)
3103       *
3104       * @return {@code true} if terminating but not yet terminated
3105       */
3106      public boolean isTerminating() {
3107 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
3107 >        long c = ctl;
3108 >        return ((c & STOP_BIT) != 0L &&
3109 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3110      }
3111  
3112      /**
# Line 1666 | Line 3115 | public class ForkJoinPool extends Abstra
3115       * @return {@code true} if this pool has been shut down
3116       */
3117      public boolean isShutdown() {
3118 <        return runState >= SHUTDOWN;
3118 >        return plock < 0;
3119      }
3120  
3121      /**
3122 <     * Blocks until all tasks have completed execution after a shutdown
3123 <     * request, or the timeout occurs, or the current thread is
3124 <     * interrupted, whichever happens first.
3122 >     * Blocks until all tasks have completed execution after a
3123 >     * shutdown request, or the timeout occurs, or the current thread
3124 >     * is interrupted, whichever happens first. Note that the {@link
3125 >     * #commonPool()} never terminates until program shutdown so
3126 >     * this method will always time out.
3127       *
3128       * @param timeout the maximum time to wait
3129       * @param unit the time unit of the timeout argument
# Line 1682 | Line 3133 | public class ForkJoinPool extends Abstra
3133       */
3134      public boolean awaitTermination(long timeout, TimeUnit unit)
3135          throws InterruptedException {
3136 <        try {
3137 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3138 <        } catch(TimeoutException ex) {
3139 <            return false;
3136 >        long nanos = unit.toNanos(timeout);
3137 >        if (isTerminated())
3138 >            return true;
3139 >        long startTime = System.nanoTime();
3140 >        boolean terminated = false;
3141 >        synchronized (this) {
3142 >            for (long waitTime = nanos, millis = 0L;;) {
3143 >                if (terminated = isTerminated() ||
3144 >                    waitTime <= 0L ||
3145 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3146 >                    break;
3147 >                wait(millis);
3148 >                waitTime = nanos - (System.nanoTime() - startTime);
3149 >            }
3150          }
3151 +        return terminated;
3152      }
3153  
3154      /**
3155       * Interface for extending managed parallelism for tasks running
3156       * in {@link ForkJoinPool}s.
3157       *
3158 <     * <p>A {@code ManagedBlocker} provides two methods.
3159 <     * Method {@code isReleasable} must return {@code true} if
3160 <     * blocking is not necessary. Method {@code block} blocks the
3161 <     * current thread if necessary (perhaps internally invoking
3162 <     * {@code isReleasable} before actually blocking).
3158 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3159 >     * {@code isReleasable} must return {@code true} if blocking is
3160 >     * not necessary. Method {@code block} blocks the current thread
3161 >     * if necessary (perhaps internally invoking {@code isReleasable}
3162 >     * before actually blocking). These actions are performed by any
3163 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3164 >     * unusual methods in this API accommodate synchronizers that may,
3165 >     * but don't usually, block for long periods. Similarly, they
3166 >     * allow more efficient internal handling of cases in which
3167 >     * additional workers may be, but usually are not, needed to
3168 >     * ensure sufficient parallelism.  Toward this end,
3169 >     * implementations of method {@code isReleasable} must be amenable
3170 >     * to repeated invocation.
3171       *
3172       * <p>For example, here is a ManagedBlocker based on a
3173       * ReentrantLock:
# Line 1715 | Line 3185 | public class ForkJoinPool extends Abstra
3185       *     return hasLock || (hasLock = lock.tryLock());
3186       *   }
3187       * }}</pre>
3188 +     *
3189 +     * <p>Here is a class that possibly blocks waiting for an
3190 +     * item on a given queue:
3191 +     *  <pre> {@code
3192 +     * class QueueTaker<E> implements ManagedBlocker {
3193 +     *   final BlockingQueue<E> queue;
3194 +     *   volatile E item = null;
3195 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3196 +     *   public boolean block() throws InterruptedException {
3197 +     *     if (item == null)
3198 +     *       item = queue.take();
3199 +     *     return true;
3200 +     *   }
3201 +     *   public boolean isReleasable() {
3202 +     *     return item != null || (item = queue.poll()) != null;
3203 +     *   }
3204 +     *   public E getItem() { // call after pool.managedBlock completes
3205 +     *     return item;
3206 +     *   }
3207 +     * }}</pre>
3208       */
3209      public static interface ManagedBlocker {
3210          /**
# Line 1757 | Line 3247 | public class ForkJoinPool extends Abstra
3247      public static void managedBlock(ManagedBlocker blocker)
3248          throws InterruptedException {
3249          Thread t = Thread.currentThread();
3250 <        if (t instanceof ForkJoinWorkerThread)
3251 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
3250 >        if (t instanceof ForkJoinWorkerThread) {
3251 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3252 >            while (!blocker.isReleasable()) { // variant of helpSignal
3253 >                WorkQueue[] ws; WorkQueue q; int m, u;
3254 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3255 >                    for (int i = 0; i <= m; ++i) {
3256 >                        if (blocker.isReleasable())
3257 >                            return;
3258 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3259 >                            p.signalWork(q);
3260 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3261 >                                (u >> UAC_SHIFT) >= 0)
3262 >                                break;
3263 >                        }
3264 >                    }
3265 >                }
3266 >                if (p.tryCompensate()) {
3267 >                    try {
3268 >                        do {} while (!blocker.isReleasable() &&
3269 >                                     !blocker.block());
3270 >                    } finally {
3271 >                        p.incrementActiveCount();
3272 >                    }
3273 >                    break;
3274 >                }
3275 >            }
3276 >        }
3277          else {
3278 <            do {} while (!blocker.isReleasable() && !blocker.block());
3278 >            do {} while (!blocker.isReleasable() &&
3279 >                         !blocker.block());
3280          }
3281      }
3282  
# Line 1769 | Line 3285 | public class ForkJoinPool extends Abstra
3285      // implement RunnableFuture.
3286  
3287      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3288 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3288 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3289      }
3290  
3291      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3292 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3292 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3293      }
3294  
3295      // Unsafe mechanics
3296 +    private static final sun.misc.Unsafe U;
3297 +    private static final long CTL;
3298 +    private static final long PARKBLOCKER;
3299 +    private static final int ABASE;
3300 +    private static final int ASHIFT;
3301 +    private static final long STEALCOUNT;
3302 +    private static final long PLOCK;
3303 +    private static final long INDEXSEED;
3304 +    private static final long QLOCK;
3305  
3306 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3307 <    private static final long workerCountsOffset =
1783 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
1784 <    private static final long runStateOffset =
1785 <        objectFieldOffset("runState", ForkJoinPool.class);
1786 <    private static final long eventCountOffset =
1787 <        objectFieldOffset("eventCount", ForkJoinPool.class);
1788 <    private static final long eventWaitersOffset =
1789 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1790 <    private static final long stealCountOffset =
1791 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1792 <
1793 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3306 >    static {
3307 >        int s; // initialize field offsets for CAS etc
3308          try {
3309 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3310 <        } catch (NoSuchFieldException e) {
3311 <            // Convert Exception to corresponding Error
3312 <            NoSuchFieldError error = new NoSuchFieldError(field);
3313 <            error.initCause(e);
3314 <            throw error;
3315 <        }
3309 >            U = getUnsafe();
3310 >            Class<?> k = ForkJoinPool.class;
3311 >            CTL = U.objectFieldOffset
3312 >                (k.getDeclaredField("ctl"));
3313 >            STEALCOUNT = U.objectFieldOffset
3314 >                (k.getDeclaredField("stealCount"));
3315 >            PLOCK = U.objectFieldOffset
3316 >                (k.getDeclaredField("plock"));
3317 >            INDEXSEED = U.objectFieldOffset
3318 >                (k.getDeclaredField("indexSeed"));
3319 >            Class<?> tk = Thread.class;
3320 >            PARKBLOCKER = U.objectFieldOffset
3321 >                (tk.getDeclaredField("parkBlocker"));
3322 >            Class<?> wk = WorkQueue.class;
3323 >            QLOCK = U.objectFieldOffset
3324 >                (wk.getDeclaredField("qlock"));
3325 >            Class<?> ak = ForkJoinTask[].class;
3326 >            ABASE = U.arrayBaseOffset(ak);
3327 >            s = U.arrayIndexScale(ak);
3328 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3329 >        } catch (Exception e) {
3330 >            throw new Error(e);
3331 >        }
3332 >        if ((s & (s-1)) != 0)
3333 >            throw new Error("data type scale not a power of two");
3334 >
3335 >        submitters = new ThreadLocal<Submitter>();
3336 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3337 >            new DefaultForkJoinWorkerThreadFactory();
3338 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3339 >
3340 >        /*
3341 >         * Establish common pool parameters.  For extra caution,
3342 >         * computations to set up common pool state are here; the
3343 >         * constructor just assigns these values to fields.
3344 >         */
3345 >
3346 >        int par = 0;
3347 >        Thread.UncaughtExceptionHandler handler = null;
3348 >        try {  // TBD: limit or report ignored exceptions?
3349 >            String pp = System.getProperty
3350 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3351 >            String hp = System.getProperty
3352 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3353 >            String fp = System.getProperty
3354 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3355 >            if (fp != null)
3356 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3357 >                       getSystemClassLoader().loadClass(fp).newInstance());
3358 >            if (hp != null)
3359 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3360 >                           getSystemClassLoader().loadClass(hp).newInstance());
3361 >            if (pp != null)
3362 >                par = Integer.parseInt(pp);
3363 >        } catch (Exception ignore) {
3364 >        }
3365 >
3366 >        if (par <= 0)
3367 >            par = Runtime.getRuntime().availableProcessors();
3368 >        if (par > MAX_CAP)
3369 >            par = MAX_CAP;
3370 >        commonPoolParallelism = par;
3371 >        long np = (long)(-par); // precompute initial ctl value
3372 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3373 >
3374 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3375      }
3376  
3377      /**
# Line 1828 | Line 3401 | public class ForkJoinPool extends Abstra
3401              }
3402          }
3403      }
3404 +
3405   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines