ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.58 by dl, Fri Jul 23 13:07:43 2010 UTC vs.
Revision 1.72 by jsr166, Tue Sep 7 06:19:05 2010 UTC

# Line 7 | Line 7
7   package jsr166y;
8  
9   import java.util.concurrent.*;
10
10   import java.util.ArrayList;
11   import java.util.Arrays;
12   import java.util.Collection;
# Line 52 | Line 51 | import java.util.concurrent.CountDownLat
51   * convenient form for informal monitoring.
52   *
53   * <p> As is the case with other ExecutorServices, there are three
54 < * main task execution methods summarized in the follwoing
54 > * main task execution methods summarized in the following
55   * table. These are designed to be used by clients not already engaged
56   * in fork/join computations in the current pool.  The main forms of
57   * these methods accept instances of {@code ForkJoinTask}, but
# Line 60 | Line 59 | import java.util.concurrent.CountDownLat
59   * Runnable}- or {@code Callable}- based activities as well.  However,
60   * tasks that are already executing in a pool should normally
61   * <em>NOT</em> use these pool execution methods, but instead use the
62 < * within-computation forms listed in the table.
62 > * within-computation forms listed in the table.
63   *
64   * <table BORDER CELLPADDING=3 CELLSPACING=1>
65   *  <tr>
# Line 69 | Line 68 | import java.util.concurrent.CountDownLat
68   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
69   *  </tr>
70   *  <tr>
71 < *    <td> <b>Arange async execution</td>
71 > *    <td> <b>Arrange async execution</td>
72   *    <td> {@link #execute(ForkJoinTask)}</td>
73   *    <td> {@link ForkJoinTask#fork}</td>
74   *  </tr>
# Line 84 | Line 83 | import java.util.concurrent.CountDownLat
83   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
84   *  </tr>
85   * </table>
86 < *
86 > *
87   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
88   * used for all parallel task execution in a program or subsystem.
89   * Otherwise, use would not usually outweigh the construction and
# Line 110 | Line 109 | import java.util.concurrent.CountDownLat
109   *
110   * <p>This implementation rejects submitted tasks (that is, by throwing
111   * {@link RejectedExecutionException}) only when the pool is shut down
112 < * or internal resources have been exhuasted.
112 > * or internal resources have been exhausted.
113   *
114   * @since 1.7
115   * @author Doug Lea
# Line 138 | Line 137 | public class ForkJoinPool extends Abstra
137       * cache pollution effects.)
138       *
139       * Beyond work-stealing support and essential bookkeeping, the
140 <     * main responsibility of this framework is to arrange tactics for
141 <     * when one worker is waiting to join a task stolen (or always
142 <     * held by) another.  Becauae we are multiplexing many tasks on to
143 <     * a pool of workers, we can't just let them block (as in
144 <     * Thread.join).  We also cannot just reassign the joiner's
145 <     * run-time stack with another and replace it later, which would
146 <     * be a form of "continuation", that even if possible is not
147 <     * necessarily a good idea. Given that the creation costs of most
148 <     * threads on most systems mainly surrounds setting up runtime
149 <     * stacks, thread creation and switching is usually not much more
150 <     * expensive than stack creation and switching, and is more
151 <     * flexible). Instead we combine two tactics:
140 >     * main responsibility of this framework is to take actions when
141 >     * one worker is waiting to join a task stolen (or always held by)
142 >     * another.  Because we are multiplexing many tasks on to a pool
143 >     * of workers, we can't just let them block (as in Thread.join).
144 >     * We also cannot just reassign the joiner's run-time stack with
145 >     * another and replace it later, which would be a form of
146 >     * "continuation", that even if possible is not necessarily a good
147 >     * idea. Given that the creation costs of most threads on most
148 >     * systems mainly surrounds setting up runtime stacks, thread
149 >     * creation and switching is usually not much more expensive than
150 >     * stack creation and switching, and is more flexible). Instead we
151 >     * combine two tactics:
152       *
153 <     *   1. Arranging for the joiner to execute some task that it
153 >     *   Helping: Arranging for the joiner to execute some task that it
154       *      would be running if the steal had not occurred.  Method
155       *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
156       *      links to try to find such a task.
157       *
158 <     *   2. Unless there are already enough live threads, creating or
159 <     *      or re-activating a spare thread to compensate for the
160 <     *      (blocked) joiner until it unblocks.  Spares then suspend
161 <     *      at their next opportunity or eventually die if unused for
162 <     *      too long.  See below and the internal documentation
163 <     *      for tryAwaitJoin for more details about compensation
164 <     *      rules.
165 <     *
166 <     * Because the determining existence of conservatively safe
167 <     * helping targets, the availability of already-created spares,
168 <     * and the apparent need to create new spares are all racy and
169 <     * require heuristic guidance, joins (in
170 <     * ForkJoinWorkerThread.joinTask) interleave these options until
171 <     * successful.  Creating a new spare always succeeds, but also
172 <     * increases application footprint, so we try to avoid it, within
173 <     * reason.
158 >     *   Compensating: Unless there are already enough live threads,
159 >     *      method helpMaintainParallelism() may create or
160 >     *      re-activate a spare thread to compensate for blocked
161 >     *      joiners until they unblock.
162 >     *
163 >     * It is impossible to keep exactly the target (parallelism)
164 >     * number of threads running at any given time.  Determining
165 >     * existence of conservatively safe helping targets, the
166 >     * availability of already-created spares, and the apparent need
167 >     * to create new spares are all racy and require heuristic
168 >     * guidance, so we rely on multiple retries of each.  Compensation
169 >     * occurs in slow-motion. It is triggered only upon timeouts of
170 >     * Object.wait used for joins. This reduces poor decisions that
171 >     * would otherwise be made when threads are waiting for others
172 >     * that are stalled because of unrelated activities such as
173 >     * garbage collection.
174       *
175 <     * The ManagedBlocker extension API can't use option (1) so uses a
176 <     * special version of (2) in method awaitBlocker.
175 >     * The ManagedBlocker extension API can't use helping so relies
176 >     * only on compensation in method awaitBlocker.
177       *
178       * The main throughput advantages of work-stealing stem from
179       * decentralized control -- workers mostly steal tasks from each
# Line 207 | Line 206 | public class ForkJoinPool extends Abstra
206       * blocked workers. However, all other support code is set up to
207       * work with other policies.
208       *
209 +     * To ensure that we do not hold on to worker references that
210 +     * would prevent GC, ALL accesses to workers are via indices into
211 +     * the workers array (which is one source of some of the unusual
212 +     * code constructions here). In essence, the workers array serves
213 +     * as a WeakReference mechanism. Thus for example the event queue
214 +     * stores worker indices, not worker references. Access to the
215 +     * workers in associated methods (for example releaseEventWaiters)
216 +     * must both index-check and null-check the IDs. All such accesses
217 +     * ignore bad IDs by returning out early from what they are doing,
218 +     * since this can only be associated with shutdown, in which case
219 +     * it is OK to give up. On termination, we just clobber these
220 +     * data structures without trying to use them.
221 +     *
222       * 2. Bookkeeping for dynamically adding and removing workers. We
223       * aim to approximately maintain the given level of parallelism.
224       * When some workers are known to be blocked (on joins or via
225       * ManagedBlocker), we may create or resume others to take their
226       * place until they unblock (see below). Implementing this
227       * requires counts of the number of "running" threads (i.e., those
228 <     * that are neither blocked nor artifically suspended) as well as
228 >     * that are neither blocked nor artificially suspended) as well as
229       * the total number.  These two values are packed into one field,
230       * "workerCounts" because we need accurate snapshots when deciding
231       * to create, resume or suspend.  Note however that the
232 <     * correspondance of these counts to reality is not guaranteed. In
232 >     * correspondence of these counts to reality is not guaranteed. In
233       * particular updates for unblocked threads may lag until they
234       * actually wake up.
235       *
# Line 248 | Line 260 | public class ForkJoinPool extends Abstra
260       * workers that previously could not find a task to now find one:
261       * Submission of a new task to the pool, or another worker pushing
262       * a task onto a previously empty queue.  (We also use this
263 <     * mechanism for termination and reconfiguration actions that
263 >     * mechanism for configuration and termination actions that
264       * require wakeups of idle workers).  Each worker maintains its
265       * last known event count, and blocks when a scan for work did not
266       * find a task AND its lastEventCount matches the current
# Line 259 | Line 271 | public class ForkJoinPool extends Abstra
271       * a record (field nextEventWaiter) for the next waiting worker.
272       * In addition to allowing simpler decisions about need for
273       * wakeup, the event count bits in eventWaiters serve the role of
274 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
275 <     * in task diffusion, workers not otherwise occupied may invoke
276 <     * method releaseWaiters, that removes and signals (unparks)
277 <     * workers not waiting on current count. To minimize task
278 <     * production stalls associate with signalling, any worker pushing
279 <     * a task on an empty queue invokes the weaker method signalWork,
268 <     * that only releases idle workers until it detects interference
269 <     * by other threads trying to release, and lets them take
270 <     * over. The net effect is a tree-like diffusion of signals, where
271 <     * released threads (and possibly others) help with unparks.  To
272 <     * further reduce contention effects a bit, failed CASes to
273 <     * increment field eventCount are tolerated without retries.
274 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
275 >     * released threads also try to release at most two others.  The
276 >     * net effect is a tree-like diffusion of signals, where released
277 >     * threads (and possibly others) help with unparks.  To further
278 >     * reduce contention effects a bit, failed CASes to increment
279 >     * field eventCount are tolerated without retries in signalWork.
280       * Conceptually they are merged into the same event, which is OK
281       * when their only purpose is to enable workers to scan for work.
282       *
283 <     * 5. Managing suspension of extra workers. When a worker is about
284 <     * to block waiting for a join (or via ManagedBlockers), we may
285 <     * create a new thread to maintain parallelism level, or at least
286 <     * avoid starvation. Usually, extra threads are needed for only
287 <     * very short periods, yet join dependencies are such that we
288 <     * sometimes need them in bursts. Rather than create new threads
289 <     * each time this happens, we suspend no-longer-needed extra ones
290 <     * as "spares". For most purposes, we don't distinguish "extra"
291 <     * spare threads from normal "core" threads: On each call to
292 <     * preStep (the only point at which we can do this) a worker
293 <     * checks to see if there are now too many running workers, and if
294 <     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
295 <     * look for suspended threads to resume before considering
296 <     * creating a new replacement. We don't need a special data
297 <     * structure to maintain spares; simply scanning the workers array
298 <     * looking for worker.isSuspended() is fine because the calling
299 <     * thread is otherwise not doing anything useful anyway; we are at
300 <     * least as happy if after locating a spare, the caller doesn't
301 <     * actually block because the join is ready before we try to
302 <     * adjust and compensate.  Note that this is intrinsically racy.
303 <     * One thread may become a spare at about the same time as another
304 <     * is needlessly being created. We counteract this and related
305 <     * slop in part by requiring resumed spares to immediately recheck
306 <     * (in preStep) to see whether they they should re-suspend. The
307 <     * only effective difference between "extra" and "core" threads is
308 <     * that we allow the "extra" ones to time out and die if they are
309 <     * not resumed within a keep-alive interval of a few seconds. This
310 <     * is implemented mainly within ForkJoinWorkerThread, but requires
311 <     * some coordination (isTrimmed() -- meaning killed while
312 <     * suspended) to correctly maintain pool counts.
313 <     *
314 <     * 6. Deciding when to create new workers. The main dynamic
315 <     * control in this class is deciding when to create extra threads,
316 <     * in methods awaitJoin and awaitBlocker. We always need to create
317 <     * one when the number of running threads would become zero and
318 <     * all workers are busy. However, this is not easy to detect
319 <     * reliably in the presence of transients so we use retries and
320 <     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
321 <     * effectively reduce churn at the price of systematically
322 <     * undershooting target parallelism when many threads are blocked.
323 <     * However, biasing toward undeshooting partially compensates for
324 <     * the above mechanics to suspend extra threads, that normally
325 <     * lead to overshoot because we can only suspend workers
326 <     * in-between top-level actions. It also better copes with the
327 <     * fact that some of the methods in this class tend to never
328 <     * become compiled (but are interpreted), so some components of
329 <     * the entire set of controls might execute many times faster than
330 <     * others. And similarly for cases where the apparent lack of work
331 <     * is just due to GC stalls and other transient system activity.
283 >     * 5. Managing suspension of extra workers. When a worker notices
284 >     * (usually upon timeout of a wait()) that there are too few
285 >     * running threads, we may create a new thread to maintain
286 >     * parallelism level, or at least avoid starvation. Usually, extra
287 >     * threads are needed for only very short periods, yet join
288 >     * dependencies are such that we sometimes need them in
289 >     * bursts. Rather than create new threads each time this happens,
290 >     * we suspend no-longer-needed extra ones as "spares". For most
291 >     * purposes, we don't distinguish "extra" spare threads from
292 >     * normal "core" threads: On each call to preStep (the only point
293 >     * at which we can do this) a worker checks to see if there are
294 >     * now too many running workers, and if so, suspends itself.
295 >     * Method helpMaintainParallelism looks for suspended threads to
296 >     * resume before considering creating a new replacement. The
297 >     * spares themselves are encoded on another variant of a Treiber
298 >     * Stack, headed at field "spareWaiters".  Note that the use of
299 >     * spares is intrinsically racy.  One thread may become a spare at
300 >     * about the same time as another is needlessly being created. We
301 >     * counteract this and related slop in part by requiring resumed
302 >     * spares to immediately recheck (in preStep) to see whether they
303 >     * should re-suspend.
304 >     *
305 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
306 >     * shed unused workers: The oldest (first) event queue waiter uses
307 >     * a timed rather than hard wait. When this wait times out without
308 >     * a normal wakeup, it tries to shutdown any one (for convenience
309 >     * the newest) other spare or event waiter via
310 >     * tryShutdownUnusedWorker. This eventually reduces the number of
311 >     * worker threads to a minimum of one after a long enough period
312 >     * without use.
313 >     *
314 >     * 7. Deciding when to create new workers. The main dynamic
315 >     * control in this class is deciding when to create extra threads
316 >     * in method helpMaintainParallelism. We would like to keep
317 >     * exactly #parallelism threads running, which is an impossible
318 >     * task. We always need to create one when the number of running
319 >     * threads would become zero and all workers are busy. Beyond
320 >     * this, we must rely on heuristics that work well in the
321 >     * presence of transient phenomena such as GC stalls, dynamic
322 >     * compilation, and wake-up lags. These transients are extremely
323 >     * common -- we are normally trying to fully saturate the CPUs on
324 >     * a machine, so almost any activity other than running tasks
325 >     * impedes accuracy. Our main defense is to allow parallelism to
326 >     * lapse for a while during joins, and use a timeout to see if,
327 >     * after the resulting settling, there is still a need for
328 >     * additional workers.  This also better copes with the fact that
329 >     * some of the methods in this class tend to never become compiled
330 >     * (but are interpreted), so some components of the entire set of
331 >     * controls might execute 100 times faster than others. And
332 >     * similarly for cases where the apparent lack of work is just due
333 >     * to GC stalls and other transient system activity.
334       *
335       * Beware that there is a lot of representation-level coupling
336       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 335 | Line 343 | public class ForkJoinPool extends Abstra
343       *
344       * Style notes: There are lots of inline assignments (of form
345       * "while ((local = field) != 0)") which are usually the simplest
346 <     * way to ensure read orderings. Also several occurrences of the
347 <     * unusual "do {} while(!cas...)" which is the simplest way to
348 <     * force an update of a CAS'ed variable. There are also other
349 <     * coding oddities that help some methods perform reasonably even
350 <     * when interpreted (not compiled), at the expense of messiness.
346 >     * way to ensure the required read orderings (which are sometimes
347 >     * critical). Also several occurrences of the unusual "do {}
348 >     * while (!cas...)" which is the simplest way to force an update of
349 >     * a CAS'ed variable. There are also other coding oddities that
350 >     * help some methods perform reasonably even when interpreted (not
351 >     * compiled), at the expense of some messy constructions that
352 >     * reduce byte code counts.
353       *
354       * The order of declarations in this file is: (1) statics (2)
355       * fields (along with constants used when unpacking some of them)
# Line 407 | Line 417 | public class ForkJoinPool extends Abstra
417          new AtomicInteger();
418  
419      /**
420 <     * Absolute bound for parallelism level. Twice this number must
421 <     * fit into a 16bit field to enable word-packing for some counts.
420 >     * The time to block in a join (see awaitJoin) before checking if
421 >     * a new worker should be (re)started to maintain parallelism
422 >     * level. The value should be short enough to maintain global
423 >     * responsiveness and progress but long enough to avoid
424 >     * counterproductive firings during GC stalls or unrelated system
425 >     * activity, and to not bog down systems with continual re-firings
426 >     * on GCs or legitimately long waits.
427 >     */
428 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
429 >
430 >    /**
431 >     * The wakeup interval (in nanoseconds) for the oldest worker
432 >     * waiting for an event invokes tryShutdownUnusedWorker to shrink
433 >     * the number of workers.  The exact value does not matter too
434 >     * much, but should be long enough to slowly release resources
435 >     * during long periods without use without disrupting normal use.
436 >     */
437 >    private static final long SHRINK_RATE_NANOS =
438 >        30L * 1000L * 1000L * 1000L; // 2 per minute
439 >
440 >    /**
441 >     * Absolute bound for parallelism level. Twice this number plus
442 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
443 >     * word-packing for some counts and indices.
444       */
445 <    private static final int MAX_THREADS = 0x7fff;
445 >    private static final int MAX_WORKERS   = 0x7fff;
446  
447      /**
448       * Array holding all worker threads in the pool.  Array size must
# Line 450 | Line 482 | public class ForkJoinPool extends Abstra
482      private volatile long stealCount;
483  
484      /**
485 <     * Encoded record of top of treiber stack of threads waiting for
485 >     * Encoded record of top of Treiber stack of threads waiting for
486       * events. The top 32 bits contain the count being waited for. The
487 <     * bottom word contains one plus the pool index of waiting worker
488 <     * thread.
487 >     * bottom 16 bits contains one plus the pool index of waiting
488 >     * worker thread. (Bits 16-31 are unused.)
489       */
490      private volatile long eventWaiters;
491  
492      private static final int  EVENT_COUNT_SHIFT = 32;
493 <    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
493 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
494  
495      /**
496       * A counter for events that may wake up worker threads:
497       *   - Submission of a new task to the pool
498       *   - A worker pushing a task on an empty queue
499 <     *   - termination and reconfiguration
499 >     *   - termination
500       */
501      private volatile int eventCount;
502  
503      /**
504 +     * Encoded record of top of Treiber stack of spare threads waiting
505 +     * for resumption. The top 16 bits contain an arbitrary count to
506 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
507 +     * index of waiting worker thread.
508 +     */
509 +    private volatile int spareWaiters;
510 +
511 +    private static final int SPARE_COUNT_SHIFT = 16;
512 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
513 +
514 +    /**
515       * Lifecycle control. The low word contains the number of workers
516       * that are (probably) executing tasks. This value is atomically
517       * incremented before a worker gets a task to run, and decremented
# Line 479 | Line 522 | public class ForkJoinPool extends Abstra
522       * These are bundled together to ensure consistent read for
523       * termination checks (i.e., that runLevel is at least SHUTDOWN
524       * and active threads is zero).
525 +     *
526 +     * Notes: Most direct CASes are dependent on these bitfield
527 +     * positions.  Also, this field is non-private to enable direct
528 +     * performance-sensitive CASes in ForkJoinWorkerThread.
529       */
530 <    private volatile int runState;
530 >    volatile int runState;
531  
532      // Note: The order among run level values matters.
533      private static final int RUNLEVEL_SHIFT     = 16;
# Line 488 | Line 535 | public class ForkJoinPool extends Abstra
535      private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
536      private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537      private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491    private static final int ONE_ACTIVE         = 1; // active update delta
538  
539      /**
540       * Holds number of total (i.e., created and not yet terminated)
# Line 497 | Line 543 | public class ForkJoinPool extends Abstra
543       * making decisions about creating and suspending spare
544       * threads. Updated only by CAS. Note that adding a new worker
545       * requires incrementing both counts, since workers start off in
546 <     * running state.  This field is also used for memory-fencing
501 <     * configuration parameters.
546 >     * running state.
547       */
548      private volatile int workerCounts;
549  
# Line 530 | Line 575 | public class ForkJoinPool extends Abstra
575       */
576      private final int poolNumber;
577  
578 <    // Utilities for CASing fields. Note that several of these
579 <    // are manually inlined by callers
578 >    // Utilities for CASing fields. Note that most of these
579 >    // are usually manually inlined by callers
580  
581      /**
582 <     * Increments running count.  Also used by ForkJoinTask.
582 >     * Increments running count part of workerCounts
583       */
584      final void incrementRunningCount() {
585          int c;
586          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 <                                               c = workerCounts,
587 >                                               c = workerCounts,
588                                                 c + ONE_RUNNING));
589      }
590  
# Line 555 | Line 600 | public class ForkJoinPool extends Abstra
600      }
601  
602      /**
603 <     * Tries to increment running count
604 <     */
560 <    final boolean tryIncrementRunningCount() {
561 <        int wc;
562 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
563 <                                        wc = workerCounts, wc + ONE_RUNNING);
564 <    }
565 <
566 <    /**
567 <     * Tries incrementing active count; fails on contention.
568 <     * Called by workers before executing tasks.
603 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
604 >     * (rarely) necessary when other count updates lag.
605       *
606 <     * @return true on success
606 >     * @param dr -- either zero or ONE_RUNNING
607 >     * @param dt == either zero or ONE_TOTAL
608       */
609 <    final boolean tryIncrementActiveCount() {
610 <        int c;
611 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
612 <                                        c = runState, c + ONE_ACTIVE);
609 >    private void decrementWorkerCounts(int dr, int dt) {
610 >        for (;;) {
611 >            int wc = workerCounts;
612 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
613 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
614 >                if ((runState & TERMINATED) != 0)
615 >                    return; // lagging termination on a backout
616 >                Thread.yield();
617 >            }
618 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619 >                                         wc, wc - (dr + dt)))
620 >                return;
621 >        }
622      }
623  
624      /**
# Line 582 | Line 628 | public class ForkJoinPool extends Abstra
628      final boolean tryDecrementActiveCount() {
629          int c;
630          return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 <                                        c = runState, c - ONE_ACTIVE);
631 >                                        c = runState, c - 1);
632      }
633  
634      /**
# Line 611 | Line 657 | public class ForkJoinPool extends Abstra
657          lock.lock();
658          try {
659              ForkJoinWorkerThread[] ws = workers;
660 <            int nws = ws.length;
661 <            if (k < 0 || k >= nws || ws[k] != null) {
662 <                for (k = 0; k < nws && ws[k] != null; ++k)
660 >            int n = ws.length;
661 >            if (k < 0 || k >= n || ws[k] != null) {
662 >                for (k = 0; k < n && ws[k] != null; ++k)
663                      ;
664 <                if (k == nws)
665 <                    ws = Arrays.copyOf(ws, nws << 1);
664 >                if (k == n)
665 >                    ws = Arrays.copyOf(ws, n << 1);
666              }
667              ws[k] = w;
668              workers = ws; // volatile array write ensures slot visibility
# Line 627 | Line 673 | public class ForkJoinPool extends Abstra
673      }
674  
675      /**
676 <     * Nulls out record of worker in workers array
676 >     * Nulls out record of worker in workers array.
677       */
678      private void forgetWorker(ForkJoinWorkerThread w) {
679          int idx = w.poolIndex;
680 <        // Locking helps method recordWorker avoid unecessary expansion
680 >        // Locking helps method recordWorker avoid unnecessary expansion
681          final ReentrantLock lock = this.workerLock;
682          lock.lock();
683          try {
# Line 643 | Line 689 | public class ForkJoinPool extends Abstra
689          }
690      }
691  
646    // adding and removing workers
647
692      /**
693 <     * Tries to create and add new worker. Assumes that worker counts
694 <     * are already updated to accommodate the worker, so adjusts on
695 <     * failure.
693 >     * Final callback from terminating worker.  Removes record of
694 >     * worker from array, and adjusts counts. If pool is shutting
695 >     * down, tries to complete termination.
696       *
697 <     * @return new worker or null if creation failed
697 >     * @param w the worker
698       */
699 <    private ForkJoinWorkerThread addWorker() {
700 <        ForkJoinWorkerThread w = null;
701 <        try {
702 <            w = factory.newThread(this);
703 <        } finally { // Adjust on either null or exceptional factory return
704 <            if (w == null) {
661 <                onWorkerCreationFailure();
662 <                return null;
663 <            }
664 <        }
665 <        w.start(recordWorker(w), ueh);
666 <        return w;
699 >    final void workerTerminated(ForkJoinWorkerThread w) {
700 >        forgetWorker(w);
701 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 >        while (w.stealCount != 0) // collect final count
703 >            tryAccumulateStealCount(w);
704 >        tryTerminate(false);
705      }
706  
707 +    // Waiting for and signalling events
708 +
709      /**
710 <     * Adjusts counts upon failure to create worker
710 >     * Releases workers blocked on a count not equal to current count.
711 >     * Normally called after precheck that eventWaiters isn't zero to
712 >     * avoid wasted array checks. Gives up upon a change in count or
713 >     * upon releasing two workers, letting others take over.
714       */
715 <    private void onWorkerCreationFailure() {
716 <        for (;;) {
717 <            int wc = workerCounts;
718 <            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
719 <                Thread.yield(); // wait for other counts to settle
720 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
721 <                                              wc - (ONE_RUNNING|ONE_TOTAL)))
715 >    private void releaseEventWaiters() {
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        int n = ws.length;
718 >        long h = eventWaiters;
719 >        int ec = eventCount;
720 >        boolean releasedOne = false;
721 >        ForkJoinWorkerThread w; int id;
722 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
723 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
724 >               id < n && (w = ws[id]) != null) {
725 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
726 >                                          h,  w.nextWaiter)) {
727 >                LockSupport.unpark(w);
728 >                if (releasedOne) // exit on second release
729 >                    break;
730 >                releasedOne = true;
731 >            }
732 >            if (eventCount != ec)
733                  break;
734 +            h = eventWaiters;
735          }
681        tryTerminate(false); // in case of failure during shutdown
736      }
737  
738      /**
739 <     * Creates and/or resumes enough workers to establish target
740 <     * parallelism, giving up if terminating or addWorker fails
687 <     *
688 <     * TODO: recast this to support lazier creation and automated
689 <     * parallelism maintenance
739 >     * Tries to advance eventCount and releases waiters. Called only
740 >     * from workers.
741       */
742 <    private void ensureEnoughWorkers() {
743 <        for (;;) {
744 <            int pc = parallelism;
745 <            int wc = workerCounts;
746 <            int rc = wc & RUNNING_COUNT_MASK;
696 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
697 <            if (tc < pc) {
698 <                if (runState == TERMINATING ||
699 <                    (UNSAFE.compareAndSwapInt
700 <                     (this, workerCountsOffset,
701 <                      wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
702 <                     addWorker() == null))
703 <                    break;
704 <            }
705 <            else if (tc > pc && rc < pc &&
706 <                     tc > (runState & ACTIVE_COUNT_MASK)) {
707 <                ForkJoinWorkerThread spare = null;
708 <                ForkJoinWorkerThread[] ws = workers;
709 <                int nws = ws.length;
710 <                for (int i = 0; i < nws; ++i) {
711 <                    ForkJoinWorkerThread w = ws[i];
712 <                    if (w != null && w.isSuspended()) {
713 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc ||
714 <                            runState == TERMINATING)
715 <                            return;
716 <                        if (w.tryResumeSpare())
717 <                            incrementRunningCount();
718 <                        break;
719 <                    }
720 <                }
721 <            }
722 <            else
723 <                break;
724 <        }
742 >    final void signalWork() {
743 >        int c; // try to increment event count -- CAS failure OK
744 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
745 >        if (eventWaiters != 0L)
746 >            releaseEventWaiters();
747      }
748  
749      /**
750 <     * Final callback from terminating worker.  Removes record of
751 <     * worker from array, and adjusts counts. If pool is shutting
730 <     * down, tries to complete terminatation, else possibly replaces
731 <     * the worker.
750 >     * Adds the given worker to event queue and blocks until
751 >     * terminating or event count advances from the given value
752       *
753 <     * @param w the worker
753 >     * @param w the calling worker thread
754 >     * @param ec the count
755       */
756 <    final void workerTerminated(ForkJoinWorkerThread w) {
757 <        if (w.active) { // force inactive
758 <            w.active = false;
759 <            do {} while (!tryDecrementActiveCount());
760 <        }
761 <        forgetWorker(w);
762 <
763 <        // Decrement total count, and if was running, running count
764 <        // Spin (waiting for other updates) if either would be negative
765 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
745 <        int unit = ONE_TOTAL + nr;
746 <        for (;;) {
747 <            int wc = workerCounts;
748 <            int rc = wc & RUNNING_COUNT_MASK;
749 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
750 <                Thread.yield(); // back off if waiting for other updates
751 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
752 <                                              wc, wc - unit))
756 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
757 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
758 >        long h;
759 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
760 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
761 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
762 >               eventCount == ec) {
763 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
764 >                                          w.nextWaiter = h, nh)) {
765 >                awaitEvent(w, ec);
766                  break;
767 +            }
768          }
755
756        accumulateStealCount(w); // collect final count
757        if (!tryTerminate(false))
758            ensureEnoughWorkers();
769      }
770  
761    // Waiting for and signalling events
762
771      /**
772 <     * Releases workers blocked on a count not equal to current count.
773 <     * @return true if any released
772 >     * Blocks the given worker (that has already been entered as an
773 >     * event waiter) until terminating or event count advances from
774 >     * the given value. The oldest (first) waiter uses a timed wait to
775 >     * occasionally one-by-one shrink the number of workers (to a
776 >     * minimum of one) if the pool has not been used for extended
777 >     * periods.
778 >     *
779 >     * @param w the calling worker thread
780 >     * @param ec the count
781       */
782 <    private void releaseWaiters() {
783 <        long top;
784 <        while ((top = eventWaiters) != 0L) {
785 <            ForkJoinWorkerThread[] ws = workers;
786 <            int n = ws.length;
787 <            for (;;) {
788 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
789 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
790 <                    return;
791 <                ForkJoinWorkerThread w;
792 <                if (i < n && (w = ws[i]) != null &&
793 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
794 <                                              top, w.nextWaiter)) {
795 <                    LockSupport.unpark(w);
796 <                    top = eventWaiters;
782 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
783 >        while (eventCount == ec) {
784 >            if (tryAccumulateStealCount(w)) { // transfer while idle
785 >                boolean untimed = (w.nextWaiter != 0L ||
786 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
787 >                long startTime = untimed? 0 : System.nanoTime();
788 >                Thread.interrupted();         // clear/ignore interrupt
789 >                if (eventCount != ec || w.runState != 0 ||
790 >                    runState >= TERMINATING)  // recheck after clear
791 >                    break;
792 >                if (untimed)
793 >                    LockSupport.park(w);
794 >                else {
795 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
796 >                    if (eventCount != ec || w.runState != 0 ||
797 >                        runState >= TERMINATING)
798 >                        break;
799 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800 >                        tryShutdownUnusedWorker(ec);
801                  }
783                else
784                    break;      // possibly stale; reread
802              }
803          }
804      }
805  
806 +    // Maintaining parallelism
807 +
808      /**
809 <     * Ensures eventCount on exit is different (mod 2^32) than on
791 <     * entry and wakes up all waiters
809 >     * Pushes worker onto the spare stack
810       */
811 <    private void signalEvent() {
812 <        int c;
813 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
814 <                                               c = eventCount, c+1));
797 <        releaseWaiters();
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815      }
816  
817      /**
818 <     * Advances eventCount and releases waiters until interference by
819 <     * other releasing threads is detected.
818 >     * Tries (once) to resume a spare if the number of running
819 >     * threads is less than target.
820       */
821 <    final void signalWork() {
822 <        int c;
823 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
824 <        long top;
825 <        while ((top = eventWaiters) != 0L) {
826 <            int ec = eventCount;
827 <            ForkJoinWorkerThread[] ws = workers;
828 <            int n = ws.length;
829 <            for (;;) {
830 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
831 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
832 <                    return;
833 <                ForkJoinWorkerThread w;
834 <                if (i < n && (w = ws[i]) != null &&
835 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
836 <                                              top, top = w.nextWaiter)) {
837 <                    LockSupport.unpark(w);
838 <                    if (top != eventWaiters) // let someone else take over
839 <                        return;
840 <                }
824 <                else
825 <                    break;      // possibly stale; reread
826 <            }
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823 >        ForkJoinWorkerThread[] ws = workers;
824 >        int n = ws.length;
825 >        ForkJoinWorkerThread w;
826 >        if ((sw = spareWaiters) != 0 &&
827 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
828 >            id < n && (w = ws[id]) != null &&
829 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
830 >            spareWaiters == sw &&
831 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
832 >                                     sw, w.nextSpare)) {
833 >            int c; // increment running count before resume
834 >            do {} while (!UNSAFE.compareAndSwapInt
835 >                         (this, workerCountsOffset,
836 >                          c = workerCounts, c + ONE_RUNNING));
837 >            if (w.tryUnsuspend())
838 >                LockSupport.unpark(w);
839 >            else   // back out if w was shutdown
840 >                decrementWorkerCounts(ONE_RUNNING, 0);
841          }
842      }
843  
844      /**
845 <     * If worker is inactive, blocks until terminating or event count
846 <     * advances from last value held by worker; in any case helps
847 <     * release others.
848 <     *
849 <     * @param w the calling worker thread
836 <     * @param retries the number of scans by caller failing to find work
837 <     * @return false if now too many threads running
845 >     * Tries to increase the number of running workers if below target
846 >     * parallelism: If a spare exists tries to resume it via
847 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
848 >     * existing workers are busy, adds a new worker. In all cases also
849 >     * helps wake up releasable workers waiting for work.
850       */
851 <    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
852 <        int wec = w.lastEventCount;
853 <        if (retries > 1) { // can only block after 2nd miss
854 <            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
855 <                            ((long)(w.poolIndex + 1)));
856 <            long top;
857 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
858 <                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
859 <                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
860 <                   eventCount == wec) {
861 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
862 <                                              w.nextWaiter = top, nextTop)) {
863 <                    accumulateStealCount(w); // transfer steals while idle
864 <                    Thread.interrupted();    // clear/ignore interrupt
865 <                    while (eventCount == wec)
866 <                        w.doPark();
851 >    private void helpMaintainParallelism() {
852 >        int pc = parallelism;
853 >        int wc, rs, tc;
854 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
855 >               (rs = runState) < TERMINATING) {
856 >            if (spareWaiters != 0)
857 >                tryResumeSpare();
858 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
859 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
860 >                break;   // enough total
861 >            else if (runState == rs && workerCounts == wc &&
862 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
863 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
864 >                ForkJoinWorkerThread w = null;
865 >                try {
866 >                    w = factory.newThread(this);
867 >                } finally { // adjust on null or exceptional factory return
868 >                    if (w == null) {
869 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
870 >                        tryTerminate(false); // handle failure during shutdown
871 >                    }
872 >                }
873 >                if (w == null)
874                      break;
875 +                w.start(recordWorker(w), ueh);
876 +                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877 +                    int c; // advance event count
878 +                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879 +                                             c = eventCount, c+1);
880 +                    break; // add at most one unless total below target
881                  }
882              }
858            wec = eventCount;
883          }
884 <        releaseWaiters();
885 <        int wc = workerCounts;
886 <        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
887 <            w.lastEventCount = wec;
888 <            return true;
884 >        if (eventWaiters != 0L)
885 >            releaseEventWaiters();
886 >    }
887 >
888 >    /**
889 >     * Callback from the oldest waiter in awaitEvent waking up after a
890 >     * period of non-use. If all workers are idle, tries (once) to
891 >     * shutdown an event waiter or a spare, if one exists. Note that
892 >     * we don't need CAS or locks here because the method is called
893 >     * only from one thread occasionally waking (and even misfires are
894 >     * OK). Note that until the shutdown worker fully terminates,
895 >     * workerCounts will overestimate total count, which is tolerable.
896 >     *
897 >     * @param ec the event count waited on by caller (to abort
898 >     * attempt if count has since changed).
899 >     */
900 >    private void tryShutdownUnusedWorker(int ec) {
901 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
902 >            ForkJoinWorkerThread[] ws = workers;
903 >            int n = ws.length;
904 >            ForkJoinWorkerThread w = null;
905 >            boolean shutdown = false;
906 >            int sw;
907 >            long h;
908 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
909 >                int id = (sw & SPARE_ID_MASK) - 1;
910 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
911 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912 >                                             sw, w.nextSpare))
913 >                    shutdown = true;
914 >            }
915 >            else if ((h = eventWaiters) != 0L) {
916 >                long nh;
917 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921 >                    shutdown = true;
922 >            }
923 >            if (w != null && shutdown) {
924 >                w.shutdown();
925 >                LockSupport.unpark(w);
926 >            }
927          }
928 <        if (wec != w.lastEventCount) // back up if may re-wait
867 <            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
868 <        return false;
928 >        releaseEventWaiters(); // in case of interference
929      }
930  
931      /**
932       * Callback from workers invoked upon each top-level action (i.e.,
933 <     * stealing a task or taking a submission and running
934 <     * it). Performs one or both of the following:
933 >     * stealing a task or taking a submission and running it).
934 >     * Performs one or more of the following:
935       *
936 <     * * If the worker cannot find work, updates its active status to
937 <     * inactive and updates activeCount unless there is contention, in
938 <     * which case it may try again (either in this or a subsequent
939 <     * call).  Additionally, awaits the next task event and/or helps
940 <     * wake up other releasable waiters.
941 <     *
942 <     * * If there are too many running threads, suspends this worker
943 <     * (first forcing inactivation if necessary).  If it is not
944 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
945 <     * -- killed while suspended within suspendAsSpare. Otherwise,
946 <     * upon resume it rechecks to make sure that it is still needed.
936 >     * 1. If the worker is active and either did not run a task
937 >     *    or there are too many workers, try to set its active status
938 >     *    to inactive and update activeCount. On contention, we may
939 >     *    try again in this or a subsequent call.
940 >     *
941 >     * 2. If not enough total workers, help create some.
942 >     *
943 >     * 3. If there are too many running workers, suspend this worker
944 >     *    (first forcing inactive if necessary).  If it is not needed,
945 >     *    it may be shutdown while suspended (via
946 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947 >     *    rechecks running thread count and need for event sync.
948 >     *
949 >     * 4. If worker did not run a task, await the next task event via
950 >     *    eventSync if necessary (first forcing inactivation), upon
951 >     *    which the worker may be shutdown via
952 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
953 >     *    existing event waiters that are now releasable,
954       *
955       * @param w the worker
956 <     * @param retries the number of scans by caller failing to find work
890 <     * find any (in which case it may block waiting for work).
956 >     * @param ran true if worker ran a task since last call to this method
957       */
958 <    final void preStep(ForkJoinWorkerThread w, int retries) {
958 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
959 >        int wec = w.lastEventCount;
960          boolean active = w.active;
961 <        boolean inactivate = active && retries != 0;
962 <        for (;;) {
963 <            int rs, wc;
964 <            if (inactivate &&
965 <                UNSAFE.compareAndSwapInt(this, runStateOffset,
966 <                                         rs = runState, rs - ONE_ACTIVE))
961 >        boolean inactivate = false;
962 >        int pc = parallelism;
963 >        int rs;
964 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967                  inactivate = active = w.active = false;
968 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
969 <                if (active || eventSync(w, retries))
968 >            int wc = workerCounts;
969 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
970 >                if (!(inactivate |= active) && // must inactivate to suspend
971 >                    workerCounts == wc &&      // try to suspend as spare
972 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973 >                                             wc, wc - ONE_RUNNING))
974 >                    w.suspendAsSpare();
975 >            }
976 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977 >                helpMaintainParallelism();     // not enough workers
978 >            else if (!ran) {
979 >                long h = eventWaiters;
980 >                int ec = eventCount;
981 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982 >                    releaseEventWaiters();     // release others before waiting
983 >                else if (ec != wec) {
984 >                    w.lastEventCount = ec;     // no need to wait
985                      break;
986 +                }
987 +                else if (!(inactivate |= active))
988 +                    eventSync(w, wec);         // must inactivate before sync
989              }
990 <            else if (!(inactivate |= active) &&  // must inactivate to suspend
906 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
907 <                                         wc, wc - ONE_RUNNING) &&
908 <                !w.suspendAsSpare())             // false if trimmed
990 >            else
991                  break;
992          }
993      }
994  
995      /**
996 <     * Awaits join of the given task if enough threads, or can resume
997 <     * or create a spare. Fails (in which case the given task might
916 <     * not be done) upon contention or lack of decision about
917 <     * blocking. Returns void because caller must check
918 <     * task status on return anyway.
919 <     *
920 <     * We allow blocking if:
921 <     *
922 <     * 1. There would still be at least as many running threads as
923 <     *    parallelism level if this thread blocks.
924 <     *
925 <     * 2. A spare is resumed to replace this worker. We tolerate
926 <     *    slop in the decision to replace if a spare is found without
927 <     *    first decrementing run count.  This may release too many,
928 <     *    but if so, the superfluous ones will re-suspend via
929 <     *    preStep().
930 <     *
931 <     * 3. After #spares repeated checks, there are no fewer than #spare
932 <     *    threads not running. We allow this slack to avoid hysteresis
933 <     *    and as a hedge against lag/uncertainty of running count
934 <     *    estimates when signalling or unblocking stalls.
935 <     *
936 <     * 4. All existing workers are busy (as rechecked via repeated
937 <     *    retries by caller) and a new spare is created.
938 <     *
939 <     * If none of the above hold, we try to escape out by
940 <     * re-incrementing count and returning to caller, which can retry
941 <     * later.
996 >     * Helps and/or blocks awaiting join of the given task.
997 >     * See above for explanation.
998       *
999       * @param joinMe the task to join
1000 <     * @param retries if negative, then serve only as a precheck
945 <     *   that the thread can be replaced by a spare. Otherwise,
946 <     *   the number of repeated calls to this method returning busy
947 <     * @return true if the call must be retried because there
948 <     *   none of the blocking checks hold
1000 >     * @param worker the current worker thread
1001       */
1002 <    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
1003 <        if (joinMe.status < 0) // precheck to prime loop
1004 <            return false;
1005 <        int pc = parallelism;
1006 <        boolean running = true; // false when running count decremented
1007 <        outer:for (;;) {
1008 <            int wc = workerCounts;
1009 <            int rc = wc & RUNNING_COUNT_MASK;
1010 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1011 <            if (running) { // replace with spare or decrement count
1012 <                if (rc <= pc && tc > pc &&
1013 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1014 <                    ForkJoinWorkerThread[] ws = workers;
1015 <                    int nws = ws.length;
1016 <                    for (int i = 0; i < nws; ++i) { // search for spare
1017 <                        ForkJoinWorkerThread w = ws[i];
1018 <                        if (w != null) {
1019 <                            if (joinMe.status < 0)
1020 <                                return false;
1021 <                            if (w.isSuspended()) {
1022 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1023 <                                    w.tryResumeSpare()) {
1024 <                                    running = false;
1025 <                                    break outer;
1026 <                                }
1027 <                                continue outer; // rescan
1028 <                            }
977 <                        }
978 <                    }
979 <                }
980 <                if (retries < 0 || // < 0 means replacement check only
981 <                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
982 <                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
983 <                                              wc, wc - ONE_RUNNING))
984 <                    return false; // done or inconsistent or contended
985 <                running = false;
986 <                if (rc > pc)
987 <                    break;
988 <            }
989 <            else { // allow blocking if enough threads
990 <                if (rc >= pc || joinMe.status < 0)
991 <                    break;
992 <                int sc = tc - pc + 1; // = spare threads, plus the one to add
993 <                if (retries > sc) {
994 <                    if (rc > 0 && rc >= pc - sc) // allow slack
995 <                        break;
996 <                    if (tc < MAX_THREADS &&
997 <                        tc == (runState & ACTIVE_COUNT_MASK) &&
998 <                        workerCounts == wc &&
999 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1000 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1001 <                        addWorker();
1002 <                        break;
1003 <                    }
1004 <                }
1005 <                if (workerCounts == wc &&        // back out to allow rescan
1006 <                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1007 <                                              wc, wc + ONE_RUNNING)) {
1008 <                    releaseWaiters();            // help others progress
1009 <                    return true;                 // let caller retry
1010 <                }
1002 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1003 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1004 >        while (joinMe.status >= 0) {
1005 >            int wc;
1006 >            worker.helpJoinTask(joinMe);
1007 >            if (joinMe.status < 0)
1008 >                break;
1009 >            else if (retries > 0)
1010 >                --retries;
1011 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1012 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1013 >                                              wc, wc - ONE_RUNNING)) {
1014 >                int stat, c; long h;
1015 >                while ((stat = joinMe.status) >= 0 &&
1016 >                       (h = eventWaiters) != 0L && // help release others
1017 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018 >                    releaseEventWaiters();
1019 >                if (stat >= 0 &&
1020 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021 >                     (stat =
1022 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023 >                    helpMaintainParallelism(); // timeout or no running workers
1024 >                do {} while (!UNSAFE.compareAndSwapInt
1025 >                             (this, workerCountsOffset,
1026 >                              c = workerCounts, c + ONE_RUNNING));
1027 >                if (stat < 0)
1028 >                    break;   // else restart
1029              }
1030          }
1013        // arrive here if can block
1014        joinMe.internalAwaitDone();
1015        int c;                      // to inline incrementRunningCount
1016        do {} while (!UNSAFE.compareAndSwapInt
1017                     (this, workerCountsOffset,
1018                      c = workerCounts, c + ONE_RUNNING));
1019        return false;
1031      }
1032  
1033      /**
1034 <     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1024 <     * but self-contained because there are no caller retries.
1025 <     * TODO: Rework to use simpler API.
1034 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1035       */
1036      final void awaitBlocker(ManagedBlocker blocker)
1037          throws InterruptedException {
1038 <        boolean done;
1030 <        if (done = blocker.isReleasable())
1031 <            return;
1032 <        int pc = parallelism;
1033 <        int retries = 0;
1034 <        boolean running = true; // false when running count decremented
1035 <        outer:for (;;) {
1038 >        while (!blocker.isReleasable()) {
1039              int wc = workerCounts;
1040 <            int rc = wc & RUNNING_COUNT_MASK;
1041 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1042 <            if (running) {
1043 <                if (rc <= pc && tc > pc &&
1044 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1045 <                    ForkJoinWorkerThread[] ws = workers;
1046 <                    int nws = ws.length;
1047 <                    for (int i = 0; i < nws; ++i) {
1048 <                        ForkJoinWorkerThread w = ws[i];
1049 <                        if (w != null) {
1050 <                            if (done = blocker.isReleasable())
1051 <                                return;
1052 <                            if (w.isSuspended()) {
1053 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1051 <                                    w.tryResumeSpare()) {
1052 <                                    running = false;
1053 <                                    break outer;
1054 <                                }
1055 <                                continue outer; // rescan
1056 <                            }
1057 <                        }
1058 <                    }
1059 <                }
1060 <                if (done = blocker.isReleasable())
1061 <                    return;
1062 <                if (rc == 0 || workerCounts != wc ||
1063 <                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1064 <                                              wc, wc - ONE_RUNNING))
1065 <                    continue;
1066 <                running = false;
1067 <                if (rc > pc)
1068 <                    break;
1069 <            }
1070 <            else {
1071 <                if (rc >= pc || (done = blocker.isReleasable()))
1072 <                    break;
1073 <                int sc = tc - pc + 1;
1074 <                if (retries++ > sc) {
1075 <                    if (rc > 0 && rc >= pc - sc)
1076 <                        break;
1077 <                    if (tc < MAX_THREADS &&
1078 <                        tc == (runState & ACTIVE_COUNT_MASK) &&
1079 <                        workerCounts == wc &&
1080 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1081 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1082 <                        addWorker();
1083 <                        break;
1040 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1041 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1042 >                                         wc, wc - ONE_RUNNING)) {
1043 >                try {
1044 >                    while (!blocker.isReleasable()) {
1045 >                        long h = eventWaiters;
1046 >                        if (h != 0L &&
1047 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1048 >                            releaseEventWaiters();
1049 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1050 >                                 runState < TERMINATING)
1051 >                            helpMaintainParallelism();
1052 >                        else if (blocker.block())
1053 >                            break;
1054                      }
1055 +                } finally {
1056 +                    int c;
1057 +                    do {} while (!UNSAFE.compareAndSwapInt
1058 +                                 (this, workerCountsOffset,
1059 +                                  c = workerCounts, c + ONE_RUNNING));
1060                  }
1061 <                Thread.yield();
1087 <            }
1088 <        }
1089 <        
1090 <        try {
1091 <            if (!done)
1092 <                do {} while (!blocker.isReleasable() && !blocker.block());
1093 <        } finally {
1094 <            if (!running) {
1095 <                int c;
1096 <                do {} while (!UNSAFE.compareAndSwapInt
1097 <                             (this, workerCountsOffset,
1098 <                              c = workerCounts, c + ONE_RUNNING));
1061 >                break;
1062              }
1063          }
1064 <    }  
1064 >    }
1065  
1066      /**
1067       * Possibly initiates and/or completes termination.
# Line 1128 | Line 1091 | public class ForkJoinPool extends Abstra
1091  
1092      /**
1093       * Actions on transition to TERMINATING
1094 +     *
1095 +     * Runs up to four passes through workers: (0) shutting down each
1096 +     * (without waking up if parked) to quickly spread notifications
1097 +     * without unnecessary bouncing around event queues etc (1) wake
1098 +     * up and help cancel tasks (2) interrupt (3) mop up races with
1099 +     * interrupted workers
1100       */
1101      private void startTerminating() {
1102 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1103 <            cancelSubmissions();
1104 <            shutdownWorkers();
1105 <            cancelWorkerTasks();
1106 <            signalEvent();
1107 <            interruptWorkers();
1102 >        cancelSubmissions();
1103 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1104 >            int c; // advance event count
1105 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1106 >                                     c = eventCount, c+1);
1107 >            eventWaiters = 0L; // clobber lists
1108 >            spareWaiters = 0;
1109 >            for (ForkJoinWorkerThread w : workers) {
1110 >                if (w != null) {
1111 >                    w.shutdown();
1112 >                    if (passes > 0 && !w.isTerminated()) {
1113 >                        w.cancelTasks();
1114 >                        LockSupport.unpark(w);
1115 >                        if (passes > 1) {
1116 >                            try {
1117 >                                w.interrupt();
1118 >                            } catch (SecurityException ignore) {
1119 >                            }
1120 >                        }
1121 >                    }
1122 >                }
1123 >            }
1124          }
1125      }
1126  
1127      /**
1128 <     * Clear out and cancel submissions, ignoring exceptions
1128 >     * Clears out and cancels submissions, ignoring exceptions.
1129       */
1130      private void cancelSubmissions() {
1131          ForkJoinTask<?> task;
# Line 1152 | Line 1137 | public class ForkJoinPool extends Abstra
1137          }
1138      }
1139  
1155    /**
1156     * Sets all worker run states to at least shutdown,
1157     * also resuming suspended workers
1158     */
1159    private void shutdownWorkers() {
1160        ForkJoinWorkerThread[] ws = workers;
1161        int nws = ws.length;
1162        for (int i = 0; i < nws; ++i) {
1163            ForkJoinWorkerThread w = ws[i];
1164            if (w != null)
1165                w.shutdown();
1166        }
1167    }
1168
1169    /**
1170     * Clears out and cancels all locally queued tasks
1171     */
1172    private void cancelWorkerTasks() {
1173        ForkJoinWorkerThread[] ws = workers;
1174        int nws = ws.length;
1175        for (int i = 0; i < nws; ++i) {
1176            ForkJoinWorkerThread w = ws[i];
1177            if (w != null)
1178                w.cancelTasks();
1179        }
1180    }
1181
1182    /**
1183     * Unsticks all workers blocked on joins etc
1184     */
1185    private void interruptWorkers() {
1186        ForkJoinWorkerThread[] ws = workers;
1187        int nws = ws.length;
1188        for (int i = 0; i < nws; ++i) {
1189            ForkJoinWorkerThread w = ws[i];
1190            if (w != null && !w.isTerminated()) {
1191                try {
1192                    w.interrupt();
1193                } catch (SecurityException ignore) {
1194                }
1195            }
1196        }
1197    }
1198
1140      // misc support for ForkJoinWorkerThread
1141  
1142      /**
1143 <     * Returns pool number
1143 >     * Returns pool number.
1144       */
1145      final int getPoolNumber() {
1146          return poolNumber;
1147      }
1148  
1149      /**
1150 <     * Accumulates steal count from a worker, clearing
1151 <     * the worker's value
1150 >     * Tries to accumulate steal count from a worker, clearing
1151 >     * the worker's value if successful.
1152 >     *
1153 >     * @return true if worker steal count now zero
1154       */
1155 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1155 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1156          int sc = w.stealCount;
1157 <        if (sc != 0) {
1158 <            long c;
1159 <            w.stealCount = 0;
1160 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1161 <                                                    c = stealCount, c + sc));
1157 >        long c = stealCount;
1158 >        // CAS even if zero, for fence effects
1159 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1160 >            if (sc != 0)
1161 >                w.stealCount = 0;
1162 >            return true;
1163          }
1164 +        return sc == 0;
1165      }
1166  
1167      /**
# Line 1225 | Line 1170 | public class ForkJoinPool extends Abstra
1170       */
1171      final int idlePerActive() {
1172          int pc = parallelism; // use parallelism, not rc
1173 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1173 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1174          // Use exact results for small values, saturate past 4
1175 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1175 >        return ((pc <= ac) ? 0 :
1176 >                (pc >>> 1 <= ac) ? 1 :
1177 >                (pc >>> 2 <= ac) ? 3 :
1178 >                pc >>> 3);
1179      }
1180  
1181      // Public and protected methods
# Line 1275 | Line 1223 | public class ForkJoinPool extends Abstra
1223       * use {@link java.lang.Runtime#availableProcessors}.
1224       * @param factory the factory for creating new threads. For default value,
1225       * use {@link #defaultForkJoinWorkerThreadFactory}.
1226 <     * @param handler the handler for internal worker threads that
1227 <     * terminate due to unrecoverable errors encountered while executing
1226 >     * @param handler the handler for internal worker threads that
1227 >     * terminate due to unrecoverable errors encountered while executing
1228       * tasks. For default value, use <code>null</code>.
1229 <     * @param asyncMode if true,
1229 >     * @param asyncMode if true,
1230       * establishes local first-in-first-out scheduling mode for forked
1231       * tasks that are never joined. This mode may be more appropriate
1232       * than default locally stack-based mode in applications in which
# Line 1292 | Line 1240 | public class ForkJoinPool extends Abstra
1240       *         because it does not hold {@link
1241       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1242       */
1243 <    public ForkJoinPool(int parallelism,
1243 >    public ForkJoinPool(int parallelism,
1244                          ForkJoinWorkerThreadFactory factory,
1245                          Thread.UncaughtExceptionHandler handler,
1246                          boolean asyncMode) {
1247          checkPermission();
1248          if (factory == null)
1249              throw new NullPointerException();
1250 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1250 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1251              throw new IllegalArgumentException();
1252          this.parallelism = parallelism;
1253          this.factory = factory;
# Line 1318 | Line 1266 | public class ForkJoinPool extends Abstra
1266       * @param pc the initial parallelism level
1267       */
1268      private static int initialArraySizeFor(int pc) {
1269 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1270 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1269 >        // If possible, initially allocate enough space for one spare
1270 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1271 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1272          size |= size >>> 1;
1273          size |= size >>> 2;
1274          size |= size >>> 4;
# Line 1338 | Line 1287 | public class ForkJoinPool extends Abstra
1287          if (runState >= SHUTDOWN)
1288              throw new RejectedExecutionException();
1289          submissionQueue.offer(task);
1290 <        signalEvent();
1291 <        ensureEnoughWorkers();
1290 >        int c; // try to increment event count -- CAS failure OK
1291 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1292 >        helpMaintainParallelism(); // create, start, or resume some workers
1293      }
1294  
1295      /**
1296       * Performs the given task, returning its result upon completion.
1347     * If the caller is already engaged in a fork/join computation in
1348     * the current pool, this method is equivalent in effect to
1349     * {@link ForkJoinTask#invoke}.
1297       *
1298       * @param task the task
1299       * @return the task's result
# Line 1361 | Line 1308 | public class ForkJoinPool extends Abstra
1308  
1309      /**
1310       * Arranges for (asynchronous) execution of the given task.
1364     * If the caller is already engaged in a fork/join computation in
1365     * the current pool, this method is equivalent in effect to
1366     * {@link ForkJoinTask#fork}.
1311       *
1312       * @param task the task
1313       * @throws NullPointerException if the task is null
# Line 1392 | Line 1336 | public class ForkJoinPool extends Abstra
1336  
1337      /**
1338       * Submits a ForkJoinTask for execution.
1395     * If the caller is already engaged in a fork/join computation in
1396     * the current pool, this method is equivalent in effect to
1397     * {@link ForkJoinTask#fork}.
1339       *
1340       * @param task the task to submit
1341       * @return the task
# Line 1585 | Line 1526 | public class ForkJoinPool extends Abstra
1526       */
1527      public long getQueuedTaskCount() {
1528          long count = 0;
1529 <        ForkJoinWorkerThread[] ws = workers;
1589 <        int nws = ws.length;
1590 <        for (int i = 0; i < nws; ++i) {
1591 <            ForkJoinWorkerThread w = ws[i];
1529 >        for (ForkJoinWorkerThread w : workers)
1530              if (w != null)
1531                  count += w.getQueueSize();
1594        }
1532          return count;
1533      }
1534  
# Line 1645 | Line 1582 | public class ForkJoinPool extends Abstra
1582       * @return the number of elements transferred
1583       */
1584      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1585 <        int n = submissionQueue.drainTo(c);
1586 <        ForkJoinWorkerThread[] ws = workers;
1650 <        int nws = ws.length;
1651 <        for (int i = 0; i < nws; ++i) {
1652 <            ForkJoinWorkerThread w = ws[i];
1653 <            if (w != null)
1654 <                n += w.drainTasksTo(c);
1655 <        }
1656 <        return n;
1657 <    }
1658 <
1659 <    /**
1660 <     * Returns count of total parks by existing workers.
1661 <     * Used during development only since not meaningful to users.
1662 <     */
1663 <    private int collectParkCount() {
1664 <        int count = 0;
1665 <        ForkJoinWorkerThread[] ws = workers;
1666 <        int nws = ws.length;
1667 <        for (int i = 0; i < nws; ++i) {
1668 <            ForkJoinWorkerThread w = ws[i];
1585 >        int count = submissionQueue.drainTo(c);
1586 >        for (ForkJoinWorkerThread w : workers)
1587              if (w != null)
1588 <                count += w.parkCount;
1671 <        }
1588 >                count += w.drainTasksTo(c);
1589          return count;
1590      }
1591  
# Line 1689 | Line 1606 | public class ForkJoinPool extends Abstra
1606          int pc = parallelism;
1607          int rs = runState;
1608          int ac = rs & ACTIVE_COUNT_MASK;
1692        //        int pk = collectParkCount();
1609          return super.toString() +
1610              "[" + runLevelToString(rs) +
1611              ", parallelism = " + pc +
# Line 1699 | Line 1615 | public class ForkJoinPool extends Abstra
1615              ", steals = " + st +
1616              ", tasks = " + qt +
1617              ", submissions = " + qs +
1702            //            ", parks = " + pk +
1618              "]";
1619      }
1620  
# Line 1797 | Line 1712 | public class ForkJoinPool extends Abstra
1712          throws InterruptedException {
1713          try {
1714              return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1715 <        } catch(TimeoutException ex) {
1715 >        } catch (TimeoutException ex) {
1716              return false;
1717          }
1718      }
# Line 1806 | Line 1721 | public class ForkJoinPool extends Abstra
1721       * Interface for extending managed parallelism for tasks running
1722       * in {@link ForkJoinPool}s.
1723       *
1724 <     * <p>A {@code ManagedBlocker} provides two methods.
1725 <     * Method {@code isReleasable} must return {@code true} if
1726 <     * blocking is not necessary. Method {@code block} blocks the
1727 <     * current thread if necessary (perhaps internally invoking
1728 <     * {@code isReleasable} before actually blocking).
1724 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1725 >     * {@code isReleasable} must return {@code true} if blocking is
1726 >     * not necessary. Method {@code block} blocks the current thread
1727 >     * if necessary (perhaps internally invoking {@code isReleasable}
1728 >     * before actually blocking). The unusual methods in this API
1729 >     * accommodate synchronizers that may, but don't usually, block
1730 >     * for long periods. Similarly, they allow more efficient internal
1731 >     * handling of cases in which additional workers may be, but
1732 >     * usually are not, needed to ensure sufficient parallelism.
1733 >     * Toward this end, implementations of method {@code isReleasable}
1734 >     * must be amenable to repeated invocation.
1735       *
1736       * <p>For example, here is a ManagedBlocker based on a
1737       * ReentrantLock:
# Line 1828 | Line 1749 | public class ForkJoinPool extends Abstra
1749       *     return hasLock || (hasLock = lock.tryLock());
1750       *   }
1751       * }}</pre>
1752 +     *
1753 +     * <p>Here is a class that possibly blocks waiting for an
1754 +     * item on a given queue:
1755 +     *  <pre> {@code
1756 +     * class QueueTaker<E> implements ManagedBlocker {
1757 +     *   final BlockingQueue<E> queue;
1758 +     *   volatile E item = null;
1759 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1760 +     *   public boolean block() throws InterruptedException {
1761 +     *     if (item == null)
1762 +     *       item = queue.take();
1763 +     *     return true;
1764 +     *   }
1765 +     *   public boolean isReleasable() {
1766 +     *     return item != null || (item = queue.poll()) != null;
1767 +     *   }
1768 +     *   public E getItem() { // call after pool.managedBlock completes
1769 +     *     return item;
1770 +     *   }
1771 +     * }}</pre>
1772       */
1773      public static interface ManagedBlocker {
1774          /**
# Line 1870 | Line 1811 | public class ForkJoinPool extends Abstra
1811      public static void managedBlock(ManagedBlocker blocker)
1812          throws InterruptedException {
1813          Thread t = Thread.currentThread();
1814 <        if (t instanceof ForkJoinWorkerThread)
1815 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1814 >        if (t instanceof ForkJoinWorkerThread) {
1815 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1816 >            w.pool.awaitBlocker(blocker);
1817 >        }
1818          else {
1819              do {} while (!blocker.isReleasable() && !blocker.block());
1820          }
# Line 1902 | Line 1845 | public class ForkJoinPool extends Abstra
1845          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1846      private static final long stealCountOffset =
1847          objectFieldOffset("stealCount",ForkJoinPool.class);
1848 +    private static final long spareWaitersOffset =
1849 +        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1850  
1851      private static long objectFieldOffset(String field, Class<?> klazz) {
1852          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines