ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.61 by dl, Wed Aug 11 18:45:12 2010 UTC vs.
Revision 1.150 by jsr166, Wed Nov 21 22:15:41 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. The pool attempts to maintain enough active (or
50 < * available) threads by dynamically adding, suspending, or resuming
51 < * internal worker threads, even if some tasks are stalled waiting to
52 < * join others. However, no such adjustments are guaranteed in the
53 < * face of blocked IO or other unmanaged synchronization. The nested
54 < * {@link ManagedBlocker} interface enables extension of the kinds of
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 51 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 69 | Line 81 | import java.util.concurrent.CountDownLat
81   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82   *  </tr>
83   *  <tr>
84 < *    <td> <b>Arange async execution</td>
84 > *    <td> <b>Arrange async execution</td>
85   *    <td> {@link #execute(ForkJoinTask)}</td>
86   *    <td> {@link ForkJoinTask#fork}</td>
87   *  </tr>
# Line 85 | Line 97 | import java.util.concurrent.CountDownLat
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
98 < * <pre>
99 < * static final ForkJoinPool mainPool = new ForkJoinPool();
100 < * ...
101 < * public void sort(long[] array) {
102 < *   mainPool.invoke(new SortTask(array, 0, array.length));
103 < * }
104 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 110 | Line 115 | import java.util.concurrent.CountDownLat
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117   * {@link RejectedExecutionException}) only when the pool is shut down
118 < * or internal resources have been exhuasted.
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 120 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
136 <     * lastly to new submissions. These mechanics do not consider
137 <     * affinities, loads, cache localities, etc, so rarely provide the
138 <     * best possible performance on a given machine, but portably
139 <     * provide good throughput by averaging over these factors.
140 <     * (Further, even if we did try to use such information, we do not
141 <     * usually have a basis for exploiting it. For example, some sets
142 <     * of tasks profit from cache affinities, but others are harmed by
143 <     * cache pollution effects.)
144 <     *
145 <     * Beyond work-stealing support and essential bookkeeping, the
146 <     * main responsibility of this framework is to take actions when
147 <     * one worker is waiting to join a task stolen (or always held by)
148 <     * another.  Becauae we are multiplexing many tasks on to a pool
149 <     * of workers, we can't just let them block (as in Thread.join).
150 <     * We also cannot just reassign the joiner's run-time stack with
151 <     * another and replace it later, which would be a form of
152 <     * "continuation", that even if possible is not necessarily a good
153 <     * idea. Given that the creation costs of most threads on most
154 <     * systems mainly surrounds setting up runtime stacks, thread
155 <     * creation and switching is usually not much more expensive than
156 <     * stack creation and switching, and is more flexible). Instead we
157 <     * combine two tactics:
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218 >     *
219 >     * The main throughput advantages of work-stealing stem from
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362       *
363       *   Helping: Arranging for the joiner to execute some task that it
364 <     *      would be running if the steal had not occurred.  Method
156 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 <     *      links to try to find such a task.
364 >     *      would be running if the steal had not occurred.
365       *
366       *   Compensating: Unless there are already enough live threads,
367 <     *      method helpMaintainParallelism() may create or or
368 <     *      re-activate a spare thread to compensate for blocked
369 <     *      joiners until they unblock.
370 <     *
371 <     * Because the determining existence of conservatively safe
372 <     * helping targets, the availability of already-created spares,
373 <     * and the apparent need to create new spares are all racy and
374 <     * require heuristic guidance, we rely on multiple retries of
375 <     * each. Further, because it is impossible to keep exactly the
376 <     * target (parallelism) number of threads running at any given
170 <     * time, we allow compensation during joins to fail, and enlist
171 <     * all other threads to help out whenever they are not otherwise
172 <     * occupied (i.e., mainly in method preStep).
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
380       *
381 <     * The main throughput advantages of work-stealing stem from
382 <     * decentralized control -- workers mostly steal tasks from each
383 <     * other. We do not want to negate this by creating bottlenecks
384 <     * implementing other management responsibilities. So we use a
385 <     * collection of techniques that avoid, reduce, or cope well with
386 <     * contention. These entail several instances of bit-packing into
387 <     * CASable fields to maintain only the minimally required
388 <     * atomicity. To enable such packing, we restrict maximum
389 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
390 <     * unbalanced increments and decrements) to fit into a 16 bit
391 <     * field, which is far in excess of normal operating range.  Even
392 <     * though updates to some of these bookkeeping fields do sometimes
393 <     * contend with each other, they don't normally cache-contend with
394 <     * updates to others enough to warrant memory padding or
395 <     * isolation. So they are all held as fields of ForkJoinPool
396 <     * objects.  The main capabilities are as follows:
397 <     *
398 <     * 1. Creating and removing workers. Workers are recorded in the
399 <     * "workers" array. This is an array as opposed to some other data
400 <     * structure to support index-based random steals by workers.
401 <     * Updates to the array recording new workers and unrecording
402 <     * terminated ones are protected from each other by a lock
403 <     * (workerLock) but the array is otherwise concurrently readable,
404 <     * and accessed directly by workers. To simplify index-based
405 <     * operations, the array size is always a power of two, and all
406 <     * readers must tolerate null slots. Currently, all worker thread
407 <     * creation is on-demand, triggered by task submissions,
408 <     * replacement of terminated workers, and/or compensation for
409 <     * blocked workers. However, all other support code is set up to
410 <     * work with other policies.
411 <     *
412 <     * To ensure that we do not hold on to worker references that
413 <     * would prevent GC, ALL accesses to workers are via indices into
414 <     * the workers array (which is one source of some of the unusual
415 <     * code constructions here). In essence, the workers array serves
416 <     * as a WeakReference mechanism. Thus for example the event queue
417 <     * stores worker indices, not worker references. Access to the
418 <     * workers in associated methods (for example releaseEventWaiters)
419 <     * must both index-check and null-check the IDs. All such accesses
420 <     * ignore bad IDs by returning out early from what they are doing,
421 <     * since this can only be associated with shutdown, in which case
422 <     * it is OK to give up. On termination, we just clobber these
423 <     * data structures without trying to use them.
424 <     *
425 <     * 2. Bookkeeping for dynamically adding and removing workers. We
426 <     * aim to approximately maintain the given level of parallelism.
427 <     * When some workers are known to be blocked (on joins or via
428 <     * ManagedBlocker), we may create or resume others to take their
429 <     * place until they unblock (see below). Implementing this
430 <     * requires counts of the number of "running" threads (i.e., those
431 <     * that are neither blocked nor artifically suspended) as well as
432 <     * the total number.  These two values are packed into one field,
433 <     * "workerCounts" because we need accurate snapshots when deciding
434 <     * to create, resume or suspend.  Note however that the
435 <     * correspondance of these counts to reality is not guaranteed. In
436 <     * particular updates for unblocked threads may lag until they
437 <     * actually wake up.
438 <     *
439 <     * 3. Maintaining global run state. The run state of the pool
440 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
441 <     * those in other Executor implementations, as well as a count of
442 <     * "active" workers -- those that are, or soon will be, or
443 <     * recently were executing tasks. The runLevel and active count
444 <     * are packed together in order to correctly trigger shutdown and
445 <     * termination. Without care, active counts can be subject to very
446 <     * high contention.  We substantially reduce this contention by
447 <     * relaxing update rules.  A worker must claim active status
448 <     * prospectively, by activating if it sees that a submitted or
449 <     * stealable task exists (it may find after activating that the
450 <     * task no longer exists). It stays active while processing this
451 <     * task (if it exists) and any other local subtasks it produces,
452 <     * until it cannot find any other tasks. It then tries
453 <     * inactivating (see method preStep), but upon update contention
454 <     * instead scans for more tasks, later retrying inactivation if it
455 <     * doesn't find any.
456 <     *
457 <     * 4. Managing idle workers waiting for tasks. We cannot let
458 <     * workers spin indefinitely scanning for tasks when none are
459 <     * available. On the other hand, we must quickly prod them into
460 <     * action when new tasks are submitted or generated.  We
461 <     * park/unpark these idle workers using an event-count scheme.
462 <     * Field eventCount is incremented upon events that may enable
463 <     * workers that previously could not find a task to now find one:
464 <     * Submission of a new task to the pool, or another worker pushing
465 <     * a task onto a previously empty queue.  (We also use this
466 <     * mechanism for termination actions that require wakeups of idle
263 <     * workers).  Each worker maintains its last known event count,
264 <     * and blocks when a scan for work did not find a task AND its
265 <     * lastEventCount matches the current eventCount. Waiting idle
266 <     * workers are recorded in a variant of Treiber stack headed by
267 <     * field eventWaiters which, when nonzero, encodes the thread
268 <     * index and count awaited for by the worker thread most recently
269 <     * calling eventSync. This thread in turn has a record (field
270 <     * nextEventWaiter) for the next waiting worker.  In addition to
271 <     * allowing simpler decisions about need for wakeup, the event
272 <     * count bits in eventWaiters serve the role of tags to avoid ABA
273 <     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 <     * workers not otherwise occupied may invoke method
275 <     * releaseEventWaiters, that removes and signals (unparks) workers
276 <     * not waiting on current count. To reduce stalls, To minimize
277 <     * task production stalls associate with signalling, any worker
278 <     * pushing a task on an empty queue invokes the weaker method
279 <     * signalWork, that only releases idle workers until it detects
280 <     * interference by other threads trying to release, and lets them
281 <     * take over.  The net effect is a tree-like diffusion of signals,
282 <     * where released threads (and possibly others) help with unparks.
283 <     * To further reduce contention effects a bit, failed CASes to
284 <     * increment field eventCount are tolerated without retries.
285 <     * Conceptually they are merged into the same event, which is OK
286 <     * when their only purpose is to enable workers to scan for work.
287 <     *
288 <     * 5. Managing suspension of extra workers. When a worker is about
289 <     * to block waiting for a join (or via ManagedBlockers), we may
290 <     * create a new thread to maintain parallelism level, or at least
291 <     * avoid starvation. Usually, extra threads are needed for only
292 <     * very short periods, yet join dependencies are such that we
293 <     * sometimes need them in bursts. Rather than create new threads
294 <     * each time this happens, we suspend no-longer-needed extra ones
295 <     * as "spares". For most purposes, we don't distinguish "extra"
296 <     * spare threads from normal "core" threads: On each call to
297 <     * preStep (the only point at which we can do this) a worker
298 <     * checks to see if there are now too many running workers, and if
299 <     * so, suspends itself.  Method helpMaintainParallelism looks for
300 <     * suspended threads to resume before considering creating a new
301 <     * replacement. The spares themselves are encoded on another
302 <     * variant of a Treiber Stack, headed at field "spareWaiters".
303 <     * Note that the use of spares is intrinsically racy.  One thread
304 <     * may become a spare at about the same time as another is
305 <     * needlessly being created. We counteract this and related slop
306 <     * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend.  To avoid
308 <     * long-term build-up of spares, the oldest spare (see
309 <     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 <     * not signalled and calls tryTrimSpare, which uses two different
311 <     * thresholds: Always killing if the number of spares is greater
312 <     * that 25% of total, and killing others only at a slower rate
313 <     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314 <     *
315 <     * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads
317 <     * in method helpMaintainParallelism. We would like to keep
318 <     * exactly #parallelism threads running, which is an impossble
319 <     * task. We always need to create one when the number of running
320 <     * threads would become zero and all workers are busy. Beyond
321 <     * this, we must rely on heuristics that work well in the the
322 <     * presence of transients phenomena such as GC stalls, dynamic
323 <     * compilation, and wake-up lags. These transients are extremely
324 <     * common -- we are normally trying to fully saturate the CPUs on
325 <     * a machine, so almost any activity other than running tasks
326 <     * impedes accuracy. Our main defense is to allow some slack in
327 <     * creation thresholds, using rules that reflect the fact that the
328 <     * more threads we have running, the more likely that we are
329 <     * underestimating the number running threads. The rules also
330 <     * better cope with the fact that some of the methods in this
331 <     * class tend to never become compiled (but are interpreted), so
332 <     * some components of the entire set of controls might execute 100
333 <     * times faster than others. And similarly for cases where the
334 <     * apparent lack of work is just due to GC stalls and other
335 <     * transient system activity.
336 <     *
337 <     * Beware that there is a lot of representation-level coupling
338 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
339 <     * ForkJoinTask.  For example, direct access to "workers" array by
340 <     * workers, and direct access to ForkJoinTask.status by both
341 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static commonPool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467       * trying to reduce this, since any associated future changes in
468       * representations will need to be accompanied by algorithmic
469 <     * changes anyway.
470 <     *
471 <     * Style notes: There are lots of inline assignments (of form
472 <     * "while ((local = field) != 0)") which are usually the simplest
473 <     * way to ensure the required read orderings (which are sometimes
474 <     * critical). Also several occurrences of the unusual "do {}
475 <     * while(!cas...)" which is the simplest way to force an update of
476 <     * a CAS'ed variable. There are also other coding oddities that
477 <     * help some methods perform reasonably even when interpreted (not
478 <     * compiled), at the expense of some messy constructions that
479 <     * reduce byte code counts.
480 <     *
481 <     * The order of declarations in this file is: (1) statics (2)
482 <     * fields (along with constants used when unpacking some of them)
483 <     * (3) internal control methods (4) callbacks and other support
484 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
485 <     * methods (plus a few little helpers).
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494 >     */
495 >
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501       */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509  
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 380 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
539 <     * overridden in ForkJoinPool constructors.
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555 >    }
556 >
557 >    /**
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562 >     */
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570 >
571 >    /**
572 >     * Queues supporting work-stealing as well as external task
573 >     * submission. See above for main rationale and algorithms.
574 >     * Implementation relies heavily on "Unsafe" intrinsics
575 >     * and selective use of "volatile":
576 >     *
577 >     * Field "base" is the index (mod array.length) of the least valid
578 >     * queue slot, which is always the next position to steal (poll)
579 >     * from if nonempty. Reads and writes require volatile orderings
580 >     * but not CAS, because updates are only performed after slot
581 >     * CASes.
582 >     *
583 >     * Field "top" is the index (mod array.length) of the next queue
584 >     * slot to push to or pop from. It is written only by owner thread
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596 >     *
597 >     * The array slots are read and written using the emulation of
598 >     * volatiles/atomics provided by Unsafe. Insertions must in
599 >     * general use putOrderedObject as a form of releasing store to
600 >     * ensure that all writes to the task object are ordered before
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605 >     *
606 >     * In addition to basic queuing support, this class contains
607 >     * fields described elsewhere to control execution. It turns out
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610 >     *
611 >     * Performance on most platforms is very sensitive to placement of
612 >     * instances of both WorkQueues and their arrays -- we absolutely
613 >     * do not want multiple WorkQueue instances or multiple queue
614 >     * arrays sharing cache lines. (It would be best for queue objects
615 >     * and their arrays to share, but there is nothing available to
616 >     * help arrange that).  Unfortunately, because they are recorded
617 >     * in a common array, WorkQueue instances are often moved to be
618 >     * adjacent by garbage collectors. To reduce impact, we use field
619 >     * padding that works OK on common platforms; this effectively
620 >     * trades off slightly slower average field access for the sake of
621 >     * avoiding really bad worst-case access. (Until better JVM
622 >     * support is in place, this padding is dependent on transient
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628 <    public static final ForkJoinWorkerThreadFactory
629 <        defaultForkJoinWorkerThreadFactory =
630 <        new DefaultForkJoinWorkerThreadFactory();
628 >    static final class WorkQueue {
629 >        /**
630 >         * Capacity of work-stealing queue array upon initialization.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637 >         */
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640 <    /**
641 <     * Permission required for callers of methods that may start or
642 <     * kill threads.
643 <     */
644 <    private static final RuntimePermission modifyThreadPermission =
645 <        new RuntimePermission("modifyThread");
640 >        /**
641 >         * Maximum size for queue arrays. Must be a power of two less
642 >         * than or equal to 1 << (31 - width of array entry) to ensure
643 >         * lack of wraparound of index calculations, but defined to a
644 >         * value a bit less than this to help users trap runaway
645 >         * programs before saturating systems.
646 >         */
647 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <    /**
650 <     * If there is a security manager, makes sure caller has
651 <     * permission to modify threads.
652 <     */
653 <    private static void checkPermission() {
654 <        SecurityManager security = System.getSecurityManager();
655 <        if (security != null)
656 <            security.checkPermission(modifyThreadPermission);
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652 >        int seed;                  // for random scanning; initialize nonzero
653 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 >        int nextWait;              // encoded record of next event waiter
655 >        int hint;                  // steal or signal hint (index)
656 >        int poolIndex;             // index of this queue in pool (or 0)
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 >        volatile int base;         // index of next slot for poll
661 >        int top;                   // index of next slot for push
662 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 >        final ForkJoinPool pool;   // the containing pool (may be null)
664 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 >        volatile Thread parker;    // == owner during call to park; else null
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 >
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675 >            this.owner = owner;
676 >            this.mode = mode;
677 >            this.seed = seed;
678 >            // Place indices in the center of array (that is not yet allocated)
679 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 >        }
681 >
682 >        /**
683 >         * Returns the approximate number of tasks in the queue.
684 >         */
685 >        final int queueSize() {
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 >        }
705 >
706 >        /**
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709 >         *
710 >         * @param task the task. Caller must ensure non-null.
711 >         * @throw RejectedExecutionException if array cannot be resized
712 >         */
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715 >            int s = top, m, n;
716 >            if ((a = array) != null) {    // ignore if queue removed
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719 >                if ((n = (top = s + 1) - base) <= 2) {
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722 >                }
723 >                else if (n >= m)
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752 >            }
753 >            return a;
754 >        }
755 >
756 >        /**
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759 >         */
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770 >                    }
771 >                }
772 >            }
773 >            return null;
774 >        }
775 >
776 >        /**
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 >         */
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787 >                    U.compareAndSwapObject(a, j, t, null)) {
788 >                    base = b + 1;
789 >                    return t;
790 >                }
791 >            }
792 >            return null;
793 >        }
794 >
795 >        /**
796 >         * Takes next task, if one exists, in FIFO order.
797 >         */
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807 >                        return t;
808 >                    }
809 >                }
810 >                else if (base == b) {
811 >                    if (b + 1 == top)
812 >                        break;
813 >                    Thread.yield(); // wait for lagging update (very rare)
814 >                }
815 >            }
816 >            return null;
817 >        }
818 >
819 >        /**
820 >         * Takes next task, if one exists, in order specified by mode.
821 >         */
822 >        final ForkJoinTask<?> nextLocalTask() {
823 >            return mode == 0 ? pop() : poll();
824 >        }
825 >
826 >        /**
827 >         * Returns next task, if one exists, in order specified by mode.
828 >         */
829 >        final ForkJoinTask<?> peek() {
830 >            ForkJoinTask<?>[] a = array; int m;
831 >            if (a == null || (m = a.length - 1) < 0)
832 >                return null;
833 >            int i = mode == 0 ? top - 1 : base;
834 >            int j = ((i & m) << ASHIFT) + ABASE;
835 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 >        }
837 >
838 >        /**
839 >         * Pops the given task only if it is at the current top.
840 >         * (A shared version is available only via FJP.tryExternalUnpush)
841 >         */
842 >        final boolean tryUnpush(ForkJoinTask<?> t) {
843 >            ForkJoinTask<?>[] a; int s;
844 >            if ((a = array) != null && (s = top) != base &&
845 >                U.compareAndSwapObject
846 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 >                top = s;
848 >                return true;
849 >            }
850 >            return false;
851 >        }
852 >
853 >        /**
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855 >         */
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893 >                }
894 >            }
895 >        }
896 >
897 >        /**
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908 >         * or consistency check failure so caller can retry.
909 >         *
910 >         * @return false if no progress can be made, else true;
911 >         */
912 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 >            boolean stat = true, removed = false, empty = true;
914 >            ForkJoinTask<?>[] a; int m, s, b, n;
915 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 >                (n = (s = top) - (b = base)) > 0) {
917 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 >                    int j = ((--s & m) << ASHIFT) + ABASE;
919 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 >                    if (t == null)                    // inconsistent length
921 >                        break;
922 >                    else if (t == task) {
923 >                        if (s + 1 == top) {           // pop
924 >                            if (!U.compareAndSwapObject(a, j, task, null))
925 >                                break;
926 >                            top = s;
927 >                            removed = true;
928 >                        }
929 >                        else if (base == b)           // replace with proxy
930 >                            removed = U.compareAndSwapObject(a, j, task,
931 >                                                             new EmptyTask());
932 >                        break;
933 >                    }
934 >                    else if (t.status >= 0)
935 >                        empty = false;
936 >                    else if (s + 1 == top) {          // pop and throw away
937 >                        if (U.compareAndSwapObject(a, j, t, null))
938 >                            top = s;
939 >                        break;
940 >                    }
941 >                    if (--n == 0) {
942 >                        if (!empty && base == b)
943 >                            stat = false;
944 >                        break;
945 >                    }
946 >                }
947 >            }
948 >            if (removed)
949 >                task.doExec();
950 >            return stat;
951 >        }
952 >
953 >        /**
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956 >         */
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977 >                }
978 >            }
979 >            return false;
980 >        }
981 >
982 >        /**
983 >         * Executes a top-level task and any local tasks remaining
984 >         * after execution.
985 >         */
986 >        final void runTask(ForkJoinTask<?> t) {
987 >            if (t != null) {
988 >                (currentSteal = t).doExec();
989 >                currentSteal = null;
990 >                if (base - top < 0) {       // process remaining local tasks
991 >                    if (mode == 0)
992 >                        popAndExecAll();
993 >                    else
994 >                        pollAndExecAll();
995 >                }
996 >                ++nsteals;
997 >                hint = -1;
998 >            }
999 >        }
1000 >
1001 >        /**
1002 >         * Executes a non-top-level (stolen) task.
1003 >         */
1004 >        final void runSubtask(ForkJoinTask<?> t) {
1005 >            if (t != null) {
1006 >                ForkJoinTask<?> ps = currentSteal;
1007 >                (currentSteal = t).doExec();
1008 >                currentSteal = ps;
1009 >            }
1010 >        }
1011 >
1012 >        /**
1013 >         * Returns true if owned and not known to be blocked.
1014 >         */
1015 >        final boolean isApparentlyUnblocked() {
1016 >            Thread wt; Thread.State s;
1017 >            return (eventCount >= 0 &&
1018 >                    (wt = owner) != null &&
1019 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1020 >                    s != Thread.State.WAITING &&
1021 >                    s != Thread.State.TIMED_WAITING);
1022 >        }
1023 >
1024 >        /**
1025 >         * If this owned and is not already interrupted, try to
1026 >         * interrupt and/or unpark, ignoring exceptions.
1027 >         */
1028 >        final void interruptOwner() {
1029 >            Thread wt, p;
1030 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1031 >                try {
1032 >                    wt.interrupt();
1033 >                } catch (SecurityException ignore) {
1034 >                }
1035 >            }
1036 >            if ((p = parker) != null)
1037 >                U.unpark(p);
1038 >        }
1039 >
1040 >        // Unsafe mechanics
1041 >        private static final sun.misc.Unsafe U;
1042 >        private static final long QLOCK;
1043 >        private static final int ABASE;
1044 >        private static final int ASHIFT;
1045 >        static {
1046 >            int s;
1047 >            try {
1048 >                U = getUnsafe();
1049 >                Class<?> k = WorkQueue.class;
1050 >                Class<?> ak = ForkJoinTask[].class;
1051 >                QLOCK = U.objectFieldOffset
1052 >                    (k.getDeclaredField("qlock"));
1053 >                ABASE = U.arrayBaseOffset(ak);
1054 >                s = U.arrayIndexScale(ak);
1055 >            } catch (Exception e) {
1056 >                throw new Error(e);
1057 >            }
1058 >            if ((s & (s-1)) != 0)
1059 >                throw new Error("data type scale not a power of two");
1060 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1061 >        }
1062      }
1063  
1064 <    /**
416 <     * Generator for assigning sequence numbers as pool names.
417 <     */
418 <    private static final AtomicInteger poolNumberGenerator =
419 <        new AtomicInteger();
1064 >    // static fields (initialized in static initializer below)
1065  
1066      /**
1067 <     * Absolute bound for parallelism level. Twice this number plus
1068 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
424 <     * word-packing for some counts and indices.
1067 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1068 >     * overridden in ForkJoinPool constructors.
1069       */
1070 <    private static final int MAX_WORKERS   = 0x7fff;
1070 >    public static final ForkJoinWorkerThreadFactory
1071 >        defaultForkJoinWorkerThreadFactory;
1072  
1073      /**
1074 <     * Array holding all worker threads in the pool.  Array size must
1075 <     * be a power of two.  Updates and replacements are protected by
1076 <     * workerLock, but the array is always kept in a consistent enough
1077 <     * state to be randomly accessed without locking by workers
1078 <     * performing work-stealing, as well as other traversal-based
434 <     * methods in this class. All readers must tolerate that some
435 <     * array slots may be null.
1074 >     * Per-thread submission bookkeeping. Shared across all pools
1075 >     * to reduce ThreadLocal pollution and because random motion
1076 >     * to avoid contention in one pool is likely to hold for others.
1077 >     * Lazily initialized on first submission (but null-checked
1078 >     * in other contexts to avoid unnecessary initialization).
1079       */
1080 <    volatile ForkJoinWorkerThread[] workers;
1080 >    static final ThreadLocal<Submitter> submitters;
1081  
1082      /**
1083 <     * Queue for external submissions.
1083 >     * Permission required for callers of methods that may start or
1084 >     * kill threads.
1085       */
1086 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1086 >    private static final RuntimePermission modifyThreadPermission;
1087  
1088      /**
1089 <     * Lock protecting updates to workers array.
1089 >     * Common (static) pool. Non-null for public use unless a static
1090 >     * construction exception, but internal usages null-check on use
1091 >     * to paranoically avoid potential initialization circularities
1092 >     * as well as to simplify generated code.
1093       */
1094 <    private final ReentrantLock workerLock;
1094 >    static final ForkJoinPool commonPool;
1095  
1096      /**
1097 <     * Latch released upon termination.
1097 >     * Common pool parallelism. Must equal commonPool.parallelism.
1098       */
1099 <    private final Phaser termination;
1099 >    static final int commonPoolParallelism;
1100  
1101      /**
1102 <     * Creation factory for worker threads.
1102 >     * Sequence number for creating workerNamePrefix.
1103       */
1104 <    private final ForkJoinWorkerThreadFactory factory;
1104 >    private static int poolNumberSequence;
1105  
1106      /**
1107 <     * Sum of per-thread steal counts, updated only when threads are
1108 <     * idle or terminating.
1107 >     * Return the next sequence number. We don't expect this to
1108 >     * ever contend so use simple builtin sync.
1109       */
1110 <    private volatile long stealCount;
1110 >    private static final synchronized int nextPoolId() {
1111 >        return ++poolNumberSequence;
1112 >    }
1113  
1114 <    /**
466 <     * The last nanoTime that a spare thread was trimmed
467 <     */
468 <    private volatile long trimTime;
1114 >    // static constants
1115  
1116      /**
1117 <     * The rate at which to trim unused spares
1117 >     * Initial timeout value (in nanoseconds) for the thread
1118 >     * triggering quiescence to park waiting for new work. On timeout,
1119 >     * the thread will instead try to shrink the number of
1120 >     * workers. The value should be large enough to avoid overly
1121 >     * aggressive shrinkage during most transient stalls (long GCs
1122 >     * etc).
1123       */
1124 <    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 <        1000L * 1000L * 1000L; // 1 sec
1124 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1125  
1126      /**
1127 <     * Encoded record of top of treiber stack of threads waiting for
478 <     * events. The top 32 bits contain the count being waited for. The
479 <     * bottom 16 bits contains one plus the pool index of waiting
480 <     * worker thread. (Bits 16-31 are unused.)
1127 >     * Timeout value when there are more threads than parallelism level
1128       */
1129 <    private volatile long eventWaiters;
483 <
484 <    private static final int  EVENT_COUNT_SHIFT = 32;
485 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
1129 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1130  
1131      /**
1132 <     * A counter for events that may wake up worker threads:
1133 <     *   - Submission of a new task to the pool
1134 <     *   - A worker pushing a task on an empty queue
1135 <     *   - termination
1132 >     * The maximum stolen->joining link depth allowed in method
1133 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1134 >     * chains are unbounded, but we use a fixed constant to avoid
1135 >     * (otherwise unchecked) cycles and to bound staleness of
1136 >     * traversal parameters at the expense of sometimes blocking when
1137 >     * we could be helping.
1138       */
1139 <    private volatile int eventCount;
1139 >    private static final int MAX_HELP = 64;
1140  
1141      /**
1142 <     * Encoded record of top of treiber stack of spare threads waiting
1143 <     * for resumption. The top 16 bits contain an arbitrary count to
498 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
499 <     * index of waiting worker thread.
1142 >     * Increment for seed generators. See class ThreadLocal for
1143 >     * explanation.
1144       */
1145 <    private volatile int spareWaiters;
502 <
503 <    private static final int SPARE_COUNT_SHIFT = 16;
504 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
1145 >    private static final int SEED_INCREMENT = 0x61c88647;
1146  
1147      /**
1148 <     * Lifecycle control. The low word contains the number of workers
1149 <     * that are (probably) executing tasks. This value is atomically
1150 <     * incremented before a worker gets a task to run, and decremented
1151 <     * when worker has no tasks and cannot find any.  Bits 16-18
1152 <     * contain runLevel value. When all are zero, the pool is
1153 <     * running. Level transitions are monotonic (running -> shutdown
1154 <     * -> terminating -> terminated) so each transition adds a bit.
1155 <     * These are bundled together to ensure consistent read for
1156 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
1157 <     * and active threads is zero).
1148 >     * Bits and masks for control variables
1149 >     *
1150 >     * Field ctl is a long packed with:
1151 >     * AC: Number of active running workers minus target parallelism (16 bits)
1152 >     * TC: Number of total workers minus target parallelism (16 bits)
1153 >     * ST: true if pool is terminating (1 bit)
1154 >     * EC: the wait count of top waiting thread (15 bits)
1155 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1156 >     *
1157 >     * When convenient, we can extract the upper 32 bits of counts and
1158 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1159 >     * (int)ctl.  The ec field is never accessed alone, but always
1160 >     * together with id and st. The offsets of counts by the target
1161 >     * parallelism and the positionings of fields makes it possible to
1162 >     * perform the most common checks via sign tests of fields: When
1163 >     * ac is negative, there are not enough active workers, when tc is
1164 >     * negative, there are not enough total workers, and when e is
1165 >     * negative, the pool is terminating.  To deal with these possibly
1166 >     * negative fields, we use casts in and out of "short" and/or
1167 >     * signed shifts to maintain signedness.
1168 >     *
1169 >     * When a thread is queued (inactivated), its eventCount field is
1170 >     * set negative, which is the only way to tell if a worker is
1171 >     * prevented from executing tasks, even though it must continue to
1172 >     * scan for them to avoid queuing races. Note however that
1173 >     * eventCount updates lag releases so usage requires care.
1174 >     *
1175 >     * Field plock is an int packed with:
1176 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1177 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1178 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1179 >     *
1180 >     * The sequence number enables simple consistency checks:
1181 >     * Staleness of read-only operations on the workQueues array can
1182 >     * be checked by comparing plock before vs after the reads.
1183       */
518    private volatile int runState;
1184  
1185 <    // Note: The order among run level values matters.
1186 <    private static final int RUNLEVEL_SHIFT     = 16;
1187 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
1188 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
1189 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
525 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
526 <    private static final int ONE_ACTIVE         = 1; // active update delta
1185 >    // bit positions/shifts for fields
1186 >    private static final int  AC_SHIFT   = 48;
1187 >    private static final int  TC_SHIFT   = 32;
1188 >    private static final int  ST_SHIFT   = 31;
1189 >    private static final int  EC_SHIFT   = 16;
1190  
1191 <    /**
1192 <     * Holds number of total (i.e., created and not yet terminated)
1193 <     * and running (i.e., not blocked on joins or other managed sync)
1194 <     * threads, packed together to ensure consistent snapshot when
1195 <     * making decisions about creating and suspending spare
1196 <     * threads. Updated only by CAS. Note that adding a new worker
1197 <     * requires incrementing both counts, since workers start off in
535 <     * running state.
536 <     */
537 <    private volatile int workerCounts;
1191 >    // bounds
1192 >    private static final int  SMASK      = 0xffff;  // short bits
1193 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1194 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1195 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1196 >    private static final int  SHORT_SIGN = 1 << 15;
1197 >    private static final int  INT_SIGN   = 1 << 31;
1198  
1199 <    private static final int TOTAL_COUNT_SHIFT  = 16;
1200 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
1201 <    private static final int ONE_RUNNING        = 1;
1202 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1199 >    // masks
1200 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1201 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1202 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1203  
1204 <    /**
1205 <     * The target parallelism level.
1206 <     * Accessed directly by ForkJoinWorkerThreads.
547 <     */
548 <    final int parallelism;
1204 >    // units for incrementing and decrementing
1205 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1206 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1207  
1208 <    /**
1209 <     * True if use local fifo, not default lifo, for local polling
1210 <     * Read by, and replicated by ForkJoinWorkerThreads
1211 <     */
1212 <    final boolean locallyFifo;
1208 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1209 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1210 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1211 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1212 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1213 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1214 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1215  
1216 <    /**
1217 <     * The uncaught exception handler used when any worker abruptly
1218 <     * terminates.
559 <     */
560 <    private final Thread.UncaughtExceptionHandler ueh;
1216 >    // masks and units for dealing with e = (int)ctl
1217 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1218 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1219  
1220 <    /**
1221 <     * Pool number, just for assigning useful names to worker threads
1222 <     */
1223 <    private final int poolNumber;
1220 >    // plock bits
1221 >    private static final int SHUTDOWN    = 1 << 31;
1222 >    private static final int PL_LOCK     = 2;
1223 >    private static final int PL_SIGNAL   = 1;
1224 >    private static final int PL_SPINS    = 1 << 8;
1225  
1226 +    // access mode for WorkQueue
1227 +    static final int LIFO_QUEUE          =  0;
1228 +    static final int FIFO_QUEUE          =  1;
1229 +    static final int SHARED_QUEUE        = -1;
1230  
1231 <    // Utilities for CASing fields. Note that several of these
1232 <    // are manually inlined by callers
1231 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1232 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1233 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1234  
1235 <    /**
572 <     * Increments running count part of workerCounts
573 <     */
574 <    final void incrementRunningCount() {
575 <        int c;
576 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 <                                               c = workerCounts,
578 <                                               c + ONE_RUNNING));
579 <    }
1235 >    // Instance fields
1236  
1237 <    /**
1238 <     * Tries to decrement running count unless already zero
1239 <     */
1240 <    final boolean tryDecrementRunningCount() {
1241 <        int wc = workerCounts;
1242 <        if ((wc & RUNNING_COUNT_MASK) == 0)
1243 <            return false;
1244 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1245 <                                        wc, wc - ONE_RUNNING);
1246 <    }
1237 >    /*
1238 >     * Field layout of this class tends to matter more than one would
1239 >     * like. Runtime layout order is only loosely related to
1240 >     * declaration order and may differ across JVMs, but the following
1241 >     * empirically works OK on current JVMs.
1242 >     */
1243 >
1244 >    // Heuristic padding to ameliorate unfortunate memory placements
1245 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1246 >
1247 >    volatile long stealCount;                  // collects worker counts
1248 >    volatile long ctl;                         // main pool control
1249 >    volatile int plock;                        // shutdown status and seqLock
1250 >    volatile int indexSeed;                    // worker/submitter index seed
1251 >    final int config;                          // mode and parallelism level
1252 >    WorkQueue[] workQueues;                    // main registry
1253 >    final ForkJoinWorkerThreadFactory factory;
1254 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1255 >    final String workerNamePrefix;             // to create worker name string
1256  
1257 <    /**
1258 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
1259 <     * (rarely) necessary when other count updates lag.
1260 <     *
1261 <     * @param dr -- either zero or ONE_RUNNING
1262 <     * @param dt == either zero or ONE_TOTAL
1257 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1258 >    volatile Object pad18, pad19, pad1a, pad1b;
1259 >
1260 >    /*
1261 >     * Acquires the plock lock to protect worker array and related
1262 >     * updates. This method is called only if an initial CAS on plock
1263 >     * fails. This acts as a spinLock for normal cases, but falls back
1264 >     * to builtin monitor to block when (rarely) needed. This would be
1265 >     * a terrible idea for a highly contended lock, but works fine as
1266 >     * a more conservative alternative to a pure spinlock.  See
1267 >     * internal ConcurrentHashMap documentation for further
1268 >     * explanation of nearly the same construction.
1269       */
1270 <    private void decrementWorkerCounts(int dr, int dt) {
1270 >    private int acquirePlock() {
1271 >        int spins = PL_SPINS, r = 0, ps, nps;
1272          for (;;) {
1273 <            int wc = workerCounts;
1274 <            if (wc == 0 && (runState & TERMINATED) != 0)
1275 <                return; // lagging termination on a backout
1276 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
1277 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
1278 <                Thread.yield();
1279 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1280 <                                         wc, wc - (dr + dt)))
1281 <                return;
1273 >            if (((ps = plock) & PL_LOCK) == 0 &&
1274 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1275 >                return nps;
1276 >            else if (r == 0) { // randomize spins if possible
1277 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1278 >                if ((t instanceof ForkJoinWorkerThread) &&
1279 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1280 >                    r = w.seed;
1281 >                else if ((z = submitters.get()) != null)
1282 >                    r = z.seed;
1283 >                else
1284 >                    r = 1;
1285 >            }
1286 >            else if (spins >= 0) {
1287 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1288 >                if (r >= 0)
1289 >                    --spins;
1290 >            }
1291 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1292 >                synchronized (this) {
1293 >                    if ((plock & PL_SIGNAL) != 0) {
1294 >                        try {
1295 >                            wait();
1296 >                        } catch (InterruptedException ie) {
1297 >                            try {
1298 >                                Thread.currentThread().interrupt();
1299 >                            } catch (SecurityException ignore) {
1300 >                            }
1301 >                        }
1302 >                    }
1303 >                    else
1304 >                        notifyAll();
1305 >                }
1306 >            }
1307          }
1308      }
1309  
1310      /**
1311 <     * Increments event count
1311 >     * Unlocks and signals any thread waiting for plock. Called only
1312 >     * when CAS of seq value for unlock fails.
1313       */
1314 <    private void advanceEventCount() {
1315 <        int c;
1316 <        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619 <                                              c = eventCount, c+1));
1314 >    private void releasePlock(int ps) {
1315 >        plock = ps;
1316 >        synchronized (this) { notifyAll(); }
1317      }
1318  
1319      /**
1320 <     * Tries incrementing active count; fails on contention.
1321 <     * Called by workers before executing tasks.
1322 <     *
1323 <     * @return true on success
1324 <     */
1325 <    final boolean tryIncrementActiveCount() {
1326 <        int c;
1327 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1328 <                                        c = runState, c + ONE_ACTIVE);
1329 <    }
1330 <
1331 <    /**
1332 <     * Tries decrementing active count; fails on contention.
1333 <     * Called when workers cannot find tasks to run.
1334 <     */
1335 <    final boolean tryDecrementActiveCount() {
1336 <        int c;
1337 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1338 <                                        c = runState, c - ONE_ACTIVE);
1320 >     * Performs secondary initialization, called when plock is zero.
1321 >     * Creates workQueue array and sets plock to a valid value.  The
1322 >     * lock body must be exception-free (so no try/finally) so we
1323 >     * optimistically allocate new array outside the lock and throw
1324 >     * away if (very rarely) not needed. (A similar tactic is used in
1325 >     * fullExternalPush.)  Because the plock seq value can eventually
1326 >     * wrap around zero, this method harmlessly fails to reinitialize
1327 >     * if workQueues exists, while still advancing plock.
1328 >     *
1329 >     * Additonally tries to create the first worker.
1330 >     */
1331 >    private void initWorkers() {
1332 >        WorkQueue[] ws, nws; int ps;
1333 >        int p = config & SMASK;        // find power of two table size
1334 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1335 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1336 >        n = (n + 1) << 1;
1337 >        if ((ws = workQueues) == null || ws.length == 0)
1338 >            nws = new WorkQueue[n];
1339 >        else
1340 >            nws = null;
1341 >        if (((ps = plock) & PL_LOCK) != 0 ||
1342 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1343 >            ps = acquirePlock();
1344 >        if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1345 >            workQueues = nws;
1346 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1347 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1348 >            releasePlock(nps);
1349 >        tryAddWorker();
1350      }
1351  
1352      /**
1353 <     * Advances to at least the given level. Returns true if not
1354 <     * already in at least the given level.
1353 >     * Tries to create and start one worker. Adjusts counts etc on
1354 >     * failure.
1355       */
1356 <    private boolean advanceRunLevel(int level) {
1357 <        for (;;) {
1358 <            int s = runState;
1359 <            if ((s & level) != 0)
1360 <                return false;
1361 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1362 <                return true;
1356 >    private void tryAddWorker() {
1357 >        long c; int u;
1358 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1359 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1360 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1361 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1362 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1363 >                ForkJoinWorkerThreadFactory fac;
1364 >                Throwable ex = null;
1365 >                ForkJoinWorkerThread wt = null;
1366 >                try {
1367 >                    if ((fac = factory) != null &&
1368 >                        (wt = fac.newThread(this)) != null) {
1369 >                        wt.start();
1370 >                        break;
1371 >                    }
1372 >                } catch (Throwable e) {
1373 >                    ex = e;
1374 >                }
1375 >                deregisterWorker(wt, ex);
1376 >                break;
1377 >            }
1378          }
1379      }
1380  
1381 <    // workers array maintenance
1381 >    //  Registering and deregistering workers
1382  
1383      /**
1384 <     * Records and returns a workers array index for new worker.
1385 <     */
1386 <    private int recordWorker(ForkJoinWorkerThread w) {
1387 <        // Try using slot totalCount-1. If not available, scan and/or resize
1388 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1389 <        final ReentrantLock lock = this.workerLock;
1390 <        lock.lock();
1384 >     * Callback from ForkJoinWorkerThread to establish and record its
1385 >     * WorkQueue. To avoid scanning bias due to packing entries in
1386 >     * front of the workQueues array, we treat the array as a simple
1387 >     * power-of-two hash table using per-thread seed as hash,
1388 >     * expanding as needed.
1389 >     *
1390 >     * @param wt the worker thread
1391 >     * @return the worker's queue
1392 >     */
1393 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1394 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1395 >        wt.setDaemon(true);
1396 >        if ((handler = ueh) != null)
1397 >            wt.setUncaughtExceptionHandler(handler);
1398 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1399 >                                          s += SEED_INCREMENT) ||
1400 >                     s == 0); // skip 0
1401 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1402 >        if (((ps = plock) & PL_LOCK) != 0 ||
1403 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404 >            ps = acquirePlock();
1405 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406          try {
1407 <            ForkJoinWorkerThread[] ws = workers;
1408 <            int n = ws.length;
1409 <            if (k < 0 || k >= n || ws[k] != null) {
1410 <                for (k = 0; k < n && ws[k] != null; ++k)
1411 <                    ;
1412 <                if (k == n)
1413 <                    ws = Arrays.copyOf(ws, n << 1);
1407 >            if ((ws = workQueues) != null) {    // skip if shutting down
1408 >                int n = ws.length, m = n - 1;
1409 >                int r = (s << 1) | 1;           // use odd-numbered indices
1410 >                if (ws[r &= m] != null) {       // collision
1411 >                    int probes = 0;             // step by approx half size
1412 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1413 >                    while (ws[r = (r + step) & m] != null) {
1414 >                        if (++probes >= n) {
1415 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1416 >                            m = n - 1;
1417 >                            probes = 0;
1418 >                        }
1419 >                    }
1420 >                }
1421 >                w.eventCount = w.poolIndex = r; // volatile write orders
1422 >                ws[r] = w;
1423              }
677            ws[k] = w;
678            workers = ws; // volatile array write ensures slot visibility
1424          } finally {
1425 <            lock.unlock();
1425 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1426 >                releasePlock(nps);
1427          }
1428 <        return k;
1428 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1429 >        return w;
1430      }
1431  
1432      /**
1433 <     * Nulls out record of worker in workers array
1434 <     */
1435 <    private void forgetWorker(ForkJoinWorkerThread w) {
1436 <        int idx = w.poolIndex;
1437 <        // Locking helps method recordWorker avoid unecessary expansion
1438 <        final ReentrantLock lock = this.workerLock;
1439 <        lock.lock();
1440 <        try {
1441 <            ForkJoinWorkerThread[] ws = workers;
1442 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1443 <                ws[idx] = null;
1444 <        } finally {
1445 <            lock.unlock();
1433 >     * Final callback from terminating worker, as well as upon failure
1434 >     * to construct or start a worker.  Removes record of worker from
1435 >     * array, and adjusts counts. If pool is shutting down, tries to
1436 >     * complete termination.
1437 >     *
1438 >     * @param wt the worker thread or null if construction failed
1439 >     * @param ex the exception causing failure, or null if none
1440 >     */
1441 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1442 >        WorkQueue w = null;
1443 >        if (wt != null && (w = wt.workQueue) != null) {
1444 >            int ps;
1445 >            w.qlock = -1;                // ensure set
1446 >            long ns = w.nsteals, sc;     // collect steal count
1447 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1448 >                                               sc = stealCount, sc + ns));
1449 >            if (((ps = plock) & PL_LOCK) != 0 ||
1450 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1451 >                ps = acquirePlock();
1452 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1453 >            try {
1454 >                int idx = w.poolIndex;
1455 >                WorkQueue[] ws = workQueues;
1456 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1457 >                    ws[idx] = null;
1458 >            } finally {
1459 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1460 >                    releasePlock(nps);
1461 >            }
1462          }
700    }
1463  
1464 <    // adding and removing workers
1464 >        long c;                             // adjust ctl counts
1465 >        do {} while (!U.compareAndSwapLong
1466 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1467 >                                           ((c - TC_UNIT) & TC_MASK) |
1468 >                                           (c & ~(AC_MASK|TC_MASK)))));
1469 >
1470 >        if (!tryTerminate(false, false) && w != null) {
1471 >            w.cancelAll();                  // cancel remaining tasks
1472 >            if (w.array != null)            // suppress signal if never ran
1473 >                tryAddWorker();             // create replacement
1474 >            if (ex == null)                 // help clean refs on way out
1475 >                ForkJoinTask.helpExpungeStaleExceptions();
1476 >        }
1477 >
1478 >        if (ex != null)                     // rethrow
1479 >            ForkJoinTask.rethrow(ex);
1480 >    }
1481 >
1482 >    // Submissions
1483 >
1484 >    /**
1485 >     * Unless shutting down, adds the given task to a submission queue
1486 >     * at submitter's current queue index (modulo submission
1487 >     * range). Only the most common path is directly handled in this
1488 >     * method. All others are relayed to fullExternalPush.
1489 >     *
1490 >     * @param task the task. Caller must ensure non-null.
1491 >     */
1492 >    final void externalPush(ForkJoinTask<?> task) {
1493 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1494 >        if ((z = submitters.get()) != null && plock > 0 &&
1495 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1496 >            (q = ws[m & z.seed & SQMASK]) != null &&
1497 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1498 >            int b = q.base, s = q.top, n, an;
1499 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1500 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1501 >                U.putOrderedObject(a, j, task);
1502 >                q.top = s + 1;                     // push on to deque
1503 >                q.qlock = 0;
1504 >                if (n <= 2)
1505 >                    signalWork(q);
1506 >                return;
1507 >            }
1508 >            q.qlock = 0;
1509 >        }
1510 >        fullExternalPush(task);
1511 >    }
1512  
1513      /**
1514 <     * Tries to create and add new worker. Assumes that worker counts
1515 <     * are already updated to accommodate the worker, so adjusts on
1516 <     * failure.
1517 <     */
1518 <    private void addWorker() {
1519 <        ForkJoinWorkerThread w = null;
1520 <        try {
1521 <            w = factory.newThread(this);
1522 <        } finally { // Adjust on either null or exceptional factory return
1523 <            if (w == null) {
1524 <                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
1525 <                tryTerminate(false); // in case of failure during shutdown
1514 >     * Full version of externalPush. This method is called, among
1515 >     * other times, upon the first submission of the first task to the
1516 >     * pool, so must perform secondary initialization (via
1517 >     * initWorkers). It also detects first submission by an external
1518 >     * thread by looking up its ThreadLocal, and creates a new shared
1519 >     * queue if the one at index if empty or contended. The plock lock
1520 >     * body must be exception-free (so no try/finally) so we
1521 >     * optimistically allocate new queues outside the lock and throw
1522 >     * them away if (very rarely) not needed.
1523 >     */
1524 >    private void fullExternalPush(ForkJoinTask<?> task) {
1525 >        int r = 0; // random index seed
1526 >        for (Submitter z = submitters.get();;) {
1527 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1528 >            if (z == null) {
1529 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1530 >                                        r += SEED_INCREMENT) && r != 0)
1531 >                    submitters.set(z = new Submitter(r));
1532 >            }
1533 >            else if (r == 0) {               // move to a different index
1534 >                r = z.seed;
1535 >                r ^= r << 13;                // same xorshift as WorkQueues
1536 >                r ^= r >>> 17;
1537 >                z.seed = r ^ (r << 5);
1538 >            }
1539 >            else if ((ps = plock) < 0)
1540 >                throw new RejectedExecutionException();
1541 >            else if (ps == 0 || (ws = workQueues) == null ||
1542 >                     (m = ws.length - 1) < 0)
1543 >                initWorkers();
1544 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1545 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1546 >                    ForkJoinTask<?>[] a = q.array;
1547 >                    int s = q.top;
1548 >                    boolean submitted = false;
1549 >                    try {                      // locked version of push
1550 >                        if ((a != null && a.length > s + 1 - q.base) ||
1551 >                            (a = q.growArray()) != null) {   // must presize
1552 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1553 >                            U.putOrderedObject(a, j, task);
1554 >                            q.top = s + 1;
1555 >                            submitted = true;
1556 >                        }
1557 >                    } finally {
1558 >                        q.qlock = 0;  // unlock
1559 >                    }
1560 >                    if (submitted) {
1561 >                        signalWork(q);
1562 >                        return;
1563 >                    }
1564 >                }
1565 >                r = 0; // move on failure
1566              }
1567 +            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1568 +                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1569 +                if (((ps = plock) & PL_LOCK) != 0 ||
1570 +                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1571 +                    ps = acquirePlock();
1572 +                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1573 +                    ws[k] = q;
1574 +                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1575 +                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1576 +                    releasePlock(nps);
1577 +            }
1578 +            else
1579 +                r = 0; // try elsewhere while lock held
1580          }
719        if (w != null)
720            w.start(recordWorker(w), ueh);
1581      }
1582  
1583 +    // Maintaining ctl counts
1584 +
1585      /**
1586 <     * Final callback from terminating worker.  Removes record of
725 <     * worker from array, and adjusts counts. If pool is shutting
726 <     * down, tries to complete terminatation.
727 <     *
728 <     * @param w the worker
1586 >     * Increments active count; mainly called upon return from blocking.
1587       */
1588 <    final void workerTerminated(ForkJoinWorkerThread w) {
1589 <        forgetWorker(w);
1590 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
733 <        while (w.stealCount != 0) // collect final count
734 <            tryAccumulateStealCount(w);
735 <        tryTerminate(false);
1588 >    final void incrementActiveCount() {
1589 >        long c;
1590 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1591      }
1592  
738    // Waiting for and signalling events
739
1593      /**
1594 <     * Releases workers blocked on a count not equal to current count.
742 <     * Normally called after precheck that eventWaiters isn't zero to
743 <     * avoid wasted array checks.
1594 >     * Tries to create or activate a worker if too few are active.
1595       *
1596 <     * @param signalling true if caller is a signalling worker so can
746 <     * exit upon (conservatively) detected contention by other threads
747 <     * who will continue to release
1596 >     * @param q the (non-null) queue holding tasks to be signalled
1597       */
1598 <    private void releaseEventWaiters(boolean signalling) {
1599 <        ForkJoinWorkerThread[] ws = workers;
1600 <        int n = ws.length;
1601 <        long h; // head of stack
1602 <        ForkJoinWorkerThread w; int id, ec;
1603 <        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
1604 <               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
1605 <               id < n && (w = ws[id]) != null) {
1606 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1607 <                                          h, h = w.nextWaiter))
1608 <                LockSupport.unpark(w);
1609 <            if (signalling && (eventCount != ec || eventWaiters != h))
1598 >    final void signalWork(WorkQueue q) {
1599 >        int hint = q.poolIndex;
1600 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1601 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1602 >            if ((e = (int)c) > 0) {
1603 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1604 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1605 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1606 >                               ((long)(u + UAC_UNIT) << 32));
1607 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1608 >                        w.hint = hint;
1609 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1610 >                        if ((p = w.parker) != null)
1611 >                            U.unpark(p);
1612 >                        break;
1613 >                    }
1614 >                    if (q.top - q.base <= 0)
1615 >                        break;
1616 >                }
1617 >                else
1618 >                    break;
1619 >            }
1620 >            else {
1621 >                if ((short)u < 0)
1622 >                    tryAddWorker();
1623                  break;
1624 +            }
1625          }
1626      }
1627  
1628 +    // Scanning for tasks
1629 +
1630      /**
1631 <     * Tries to advance eventCount and releases waiters. Called only
767 <     * from workers.
1631 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1632       */
1633 <    final void signalWork() {
1634 <        int c; // try to increment event count -- CAS failure OK
1635 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1636 <        if (eventWaiters != 0L)
1637 <            releaseEventWaiters(true);
1633 >    final void runWorker(WorkQueue w) {
1634 >        w.growArray(); // allocate queue
1635 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1636 >    }
1637 >
1638 >    /**
1639 >     * Scans for and, if found, returns one task, else possibly
1640 >     * inactivates the worker. This method operates on single reads of
1641 >     * volatile state and is designed to be re-invoked continuously,
1642 >     * in part because it returns upon detecting inconsistencies,
1643 >     * contention, or state changes that indicate possible success on
1644 >     * re-invocation.
1645 >     *
1646 >     * The scan searches for tasks across queues (starting at a random
1647 >     * index, and relying on registerWorker to irregularly scatter
1648 >     * them within array to avoid bias), checking each at least twice.
1649 >     * The scan terminates upon either finding a non-empty queue, or
1650 >     * completing the sweep. If the worker is not inactivated, it
1651 >     * takes and returns a task from this queue. Otherwise, if not
1652 >     * activated, it signals workers (that may include itself) and
1653 >     * returns so caller can retry. Also returns for true if the
1654 >     * worker array may have changed during an empty scan.  On failure
1655 >     * to find a task, we take one of the following actions, after
1656 >     * which the caller will retry calling this method unless
1657 >     * terminated.
1658 >     *
1659 >     * * If pool is terminating, terminate the worker.
1660 >     *
1661 >     * * If not already enqueued, try to inactivate and enqueue the
1662 >     * worker on wait queue. Or, if inactivating has caused the pool
1663 >     * to be quiescent, relay to idleAwaitWork to check for
1664 >     * termination and possibly shrink pool.
1665 >     *
1666 >     * * If already enqueued and none of the above apply, possibly
1667 >     * (with 1/2 probability) park awaiting signal, else lingering to
1668 >     * help scan and signal.
1669 >     *
1670 >     * @param w the worker (via its WorkQueue)
1671 >     * @return a task or null if none found
1672 >     */
1673 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1674 >        WorkQueue[] ws; int m;
1675 >        int ps = plock;                          // read plock before ws
1676 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1677 >            int ec = w.eventCount;               // ec is negative if inactive
1678 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1679 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1680 >            do {
1681 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1682 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1683 >                    (a = q.array) != null) {     // probably nonempty
1684 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1685 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1686 >                        U.getObjectVolatile(a, i);
1687 >                    if (q.base == b && ec >= 0 && t != null &&
1688 >                        U.compareAndSwapObject(a, i, t, null)) {
1689 >                        if ((q.base = b + 1) - q.top < 0)
1690 >                            signalWork(q);
1691 >                        return t;                // taken
1692 >                    }
1693 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1694 >                        w.hint = (r + j) & m;    // help signal below
1695 >                        break;                   // cannot take
1696 >                    }
1697 >                }
1698 >            } while (--j >= 0);
1699 >
1700 >            long c, sc; int e, ns, h;
1701 >            if ((h = w.hint) < 0) {
1702 >                if ((ns = w.nsteals) != 0) {
1703 >                    if (U.compareAndSwapLong(this, STEALCOUNT,
1704 >                                             sc = stealCount, sc + ns))
1705 >                        w.nsteals = 0;           // collect steals
1706 >                }
1707 >                else if (plock != ps)            // consistency check
1708 >                    ;                            // skip
1709 >                else if ((e = (int)(c = ctl)) < 0)
1710 >                    w.qlock = -1;                // pool is terminating
1711 >                else if (ec >= 0) {              // try to enqueue/inactivate
1712 >                    long nc = ((long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1713 >                    w.nextWait = e;              // link and mark inactive
1714 >                    w.eventCount = ec | INT_SIGN;
1715 >                    if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1716 >                        w.eventCount = ec;       // unmark on CAS failure
1717 >                    else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1718 >                        idleAwaitWork(w, nc, c);
1719 >                }
1720 >                else if (w.eventCount < 0) {     // block
1721 >                    Thread wt = Thread.currentThread();
1722 >                    Thread.interrupted();        // clear status
1723 >                    U.putObject(wt, PARKBLOCKER, this);
1724 >                    w.parker = wt;               // emulate LockSupport.park
1725 >                    if (w.eventCount < 0)        // recheck
1726 >                        U.park(false, 0L);
1727 >                    w.parker = null;
1728 >                    U.putObject(wt, PARKBLOCKER, null);
1729 >                }
1730 >            }
1731 >            if (h >= 0 || (h = w.hint) >= 0) {   // signal others before retry
1732 >                w.hint = -1;                     // reset
1733 >                helpSignal(null, h, true);
1734 >            }
1735 >        }
1736 >        return null;
1737      }
1738  
1739      /**
1740 <     * Blocks worker until terminating or event count
1741 <     * advances from last value held by worker
1742 <     *
1743 <     * @param w the calling worker thread
1744 <     */
1745 <    private void eventSync(ForkJoinWorkerThread w) {
1746 <        int wec = w.lastEventCount;
1747 <        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
1748 <        long h;
1749 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1750 <               ((h = eventWaiters) == 0L ||
1751 <                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
1752 <               eventCount == wec) {
1753 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1754 <                                          w.nextWaiter = h, nh)) {
1755 <                while (runState < TERMINATING && eventCount == wec) {
1756 <                    if (!tryAccumulateStealCount(w))  // transfer while idle
1757 <                        continue;
1758 <                    Thread.interrupted();             // clear/ignore interrupt
1759 <                    if (eventCount != wec)
1760 <                        break;
1761 <                    LockSupport.park(w);
1740 >     * If inactivating worker w has caused the pool to become
1741 >     * quiescent, checks for pool termination, and, so long as this is
1742 >     * not the only worker, waits for event for up to a given
1743 >     * duration.  On timeout, if ctl has not changed, terminates the
1744 >     * worker, which will in turn wake up another worker to possibly
1745 >     * repeat this process.
1746 >     *
1747 >     * @param w the calling worker
1748 >     * @param currentCtl the ctl value triggering possible quiescence
1749 >     * @param prevCtl the ctl value to restore if thread is terminated
1750 >     */
1751 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1752 >        if (w != null && w.eventCount < 0 &&
1753 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1754 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1755 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1756 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1757 >            Thread wt = Thread.currentThread();
1758 >            while (ctl == currentCtl) {
1759 >                Thread.interrupted();  // timed variant of version in scan()
1760 >                U.putObject(wt, PARKBLOCKER, this);
1761 >                w.parker = wt;
1762 >                if (ctl == currentCtl)
1763 >                    U.park(false, parkTime);
1764 >                w.parker = null;
1765 >                U.putObject(wt, PARKBLOCKER, null);
1766 >                if (ctl != currentCtl)
1767 >                    break;
1768 >                if (deadline - System.nanoTime() <= 0L &&
1769 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1770 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1771 >                    w.qlock = -1;   // shrink
1772 >                    break;
1773                  }
800                break;
1774              }
1775          }
803        w.lastEventCount = eventCount;
1776      }
1777  
1778 <    // Maintaining spares
1778 >    /**
1779 >     * Scans through queues looking for work (optionally, while
1780 >     * joining a task); if any present, signals. May return early if
1781 >     * more signalling is detectably unneeded.
1782 >     *
1783 >     * @param task if non-null, return early if done
1784 >     * @param origin an index to start scan
1785 >     * @param once if only the origin should be checked
1786 >     */
1787 >    private void helpSignal(ForkJoinTask<?> task, int origin, boolean once) {
1788 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1789 >        if ((u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1790 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1791 >            outer: for (int k = origin, j = once ? 0 : m; j >= 0; --j) {
1792 >                WorkQueue q = ws[k++ & m];
1793 >                for (int n = m;;) { // limit to at most m signals
1794 >                    if (task != null && task.status < 0)
1795 >                        break outer;
1796 >                    if (q == null ||
1797 >                        ((s = (task == null ? -1 : 0) - q.base + q.top) <= n &&
1798 >                         (n = s) <= 0))
1799 >                        break;
1800 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1801 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1802 >                        (w = ws[i]) == null)
1803 >                        break outer;
1804 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1805 >                               ((long)(u + UAC_UNIT) << 32));
1806 >                    if (w.eventCount == (e | INT_SIGN) &&
1807 >                        U.compareAndSwapLong(this, CTL, c, nc)) {
1808 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1809 >                        if ((p = w.parker) != null)
1810 >                            U.unpark(p);
1811 >                        if (--n <= 0)
1812 >                            break;
1813 >                    }
1814 >                }
1815 >            }
1816 >        }
1817 >    }
1818  
1819      /**
1820 <     * Pushes worker onto the spare stack
1821 <     */
1822 <    final void pushSpare(ForkJoinWorkerThread w) {
1823 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
1824 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1825 <                                               w.nextSpare = spareWaiters,ns));
1826 <    }
1827 <
1828 <    /**
1829 <     * Tries (once) to resume a spare if running count is less than
1830 <     * target parallelism. Fails on contention or stale workers.
1831 <     */
1832 <    private void tryResumeSpare() {
1833 <        int sw, id;
1834 <        ForkJoinWorkerThread w;
1835 <        ForkJoinWorkerThread[] ws;
1836 <        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
1837 <            id < (ws = workers).length && (w = ws[id]) != null &&
1838 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
1839 <            eventWaiters == 0L &&
1840 <            spareWaiters == sw &&
1841 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1842 <                                     sw, w.nextSpare) &&
1843 <            w.tryUnsuspend()) {
1844 <            int c; // try increment; if contended, finish after unpark
1845 <            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1846 <                                                   c = workerCounts,
1847 <                                                   c + ONE_RUNNING);
1848 <            LockSupport.unpark(w);
1849 <            if (!inc) {
1850 <                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1851 <                                                      c = workerCounts,
1852 <                                                      c + ONE_RUNNING));
1820 >     * Tries to locate and execute tasks for a stealer of the given
1821 >     * task, or in turn one of its stealers, Traces currentSteal ->
1822 >     * currentJoin links looking for a thread working on a descendant
1823 >     * of the given task and with a non-empty queue to steal back and
1824 >     * execute tasks from. The first call to this method upon a
1825 >     * waiting join will often entail scanning/search, (which is OK
1826 >     * because the joiner has nothing better to do), but this method
1827 >     * leaves hints in workers to speed up subsequent calls. The
1828 >     * implementation is very branchy to cope with potential
1829 >     * inconsistencies or loops encountering chains that are stale,
1830 >     * unknown, or so long that they are likely cyclic.
1831 >     *
1832 >     * @param joiner the joining worker
1833 >     * @param task the task to join
1834 >     * @return 0 if no progress can be made, negative if task
1835 >     * known complete, else positive
1836 >     */
1837 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1838 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1839 >        if (joiner != null && task != null) {       // hoist null checks
1840 >            restart: for (;;) {
1841 >                ForkJoinTask<?> subtask = task;     // current target
1842 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1843 >                    WorkQueue[] ws; int m, s, h;
1844 >                    if ((s = task.status) < 0) {
1845 >                        stat = s;
1846 >                        break restart;
1847 >                    }
1848 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1849 >                        break restart;              // shutting down
1850 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1851 >                        v.currentSteal != subtask) {
1852 >                        for (int origin = h;;) {    // find stealer
1853 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1854 >                                (subtask.status < 0 || j.currentJoin != subtask))
1855 >                                continue restart;   // occasional staleness check
1856 >                            if ((v = ws[h]) != null &&
1857 >                                v.currentSteal == subtask) {
1858 >                                j.hint = h;        // save hint
1859 >                                break;
1860 >                            }
1861 >                            if (h == origin)
1862 >                                break restart;      // cannot find stealer
1863 >                        }
1864 >                    }
1865 >                    for (;;) { // help stealer or descend to its stealer
1866 >                        ForkJoinTask[] a;  int b;
1867 >                        if (subtask.status < 0)     // surround probes with
1868 >                            continue restart;       //   consistency checks
1869 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1870 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1871 >                            ForkJoinTask<?> t =
1872 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1873 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1874 >                                v.currentSteal != subtask)
1875 >                                continue restart;   // stale
1876 >                            stat = 1;               // apparent progress
1877 >                            if (t != null && v.base == b &&
1878 >                                U.compareAndSwapObject(a, i, t, null)) {
1879 >                                v.base = b + 1;     // help stealer
1880 >                                joiner.runSubtask(t);
1881 >                            }
1882 >                            else if (v.base == b && ++steps == MAX_HELP)
1883 >                                break restart;      // v apparently stalled
1884 >                        }
1885 >                        else {                      // empty -- try to descend
1886 >                            ForkJoinTask<?> next = v.currentJoin;
1887 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1888 >                                v.currentSteal != subtask)
1889 >                                continue restart;   // stale
1890 >                            else if (next == null || ++steps == MAX_HELP)
1891 >                                break restart;      // dead-end or maybe cyclic
1892 >                            else {
1893 >                                subtask = next;
1894 >                                j = v;
1895 >                                break;
1896 >                            }
1897 >                        }
1898 >                    }
1899 >                }
1900              }
1901          }
1902 +        return stat;
1903      }
1904  
1905      /**
1906 <     * Callback from oldest spare occasionally waking up.  Tries
1907 <     * (once) to shutdown a spare if more than 25% spare overage, or
1908 <     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
1909 <     * least #parallelism running threads. Note that we don't need CAS
1910 <     * or locks here because the method is called only from the oldest
1911 <     * suspended spare occasionally waking (and even misfires are OK).
1912 <     *
1913 <     * @param now the wake up nanoTime of caller
1914 <     */
1915 <    final void tryTrimSpare(long now) {
1916 <        long lastTrim = trimTime;
1917 <        trimTime = now;
1918 <        helpMaintainParallelism(); // first, help wake up any needed spares
1919 <        int sw, id;
1920 <        ForkJoinWorkerThread w;
1921 <        ForkJoinWorkerThread[] ws;
1922 <        int pc = parallelism;
1923 <        int wc = workerCounts;
1924 <        if ((wc & RUNNING_COUNT_MASK) >= pc &&
1925 <            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
1926 <             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
1927 <            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 <            id < (ws = workers).length && (w = ws[id]) != null &&
870 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 <                                     sw, w.nextSpare))
872 <            w.shutdown(false);
873 <    }
874 <
875 <    /**
876 <     * Does at most one of:
877 <     *
878 <     * 1. Help wake up existing workers waiting for work via
879 <     *    releaseEventWaiters. (If any exist, then it probably doesn't
880 <     *    matter right now if under target parallelism level.)
881 <     *
882 <     * 2. If below parallelism level and a spare exists, try (once)
883 <     *    to resume it via tryResumeSpare.
884 <     *
885 <     * 3. If neither of the above, tries (once) to add a new
886 <     *    worker if either there are not enough total, or if all
887 <     *    existing workers are busy, there are either no running
888 <     *    workers or the deficit is at least twice the surplus.
889 <     */
890 <    private void helpMaintainParallelism() {
891 <        // uglified to work better when not compiled
892 <        int pc, wc, rc, tc, rs; long h;
893 <        if ((h = eventWaiters) != 0L) {
894 <            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895 <                releaseEventWaiters(false); // avoid useless call
896 <        }
897 <        else if ((pc = parallelism) >
898 <                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 <            if (spareWaiters != 0)
900 <                tryResumeSpare();
901 <            else if ((rs = runState) < TERMINATING &&
902 <                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 <                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 <                       (rc == 0 ||                       // must add
905 <                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 <                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 <                     workerCounts == wc &&
908 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 <                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 <                addWorker();
911 <        }
912 <    }
913 <
914 <    /**
915 <     * Callback from workers invoked upon each top-level action (i.e.,
916 <     * stealing a task or taking a submission and running
917 <     * it). Performs one or more of the following:
918 <     *
919 <     * 1. If the worker cannot find work (misses > 0), updates its
920 <     *    active status to inactive and updates activeCount unless
921 <     *    this is the first miss and there is contention, in which
922 <     *    case it may try again (either in this or a subsequent
923 <     *    call).
924 <     *
925 <     * 2. If there are at least 2 misses, awaits the next task event
926 <     *    via eventSync
927 <     *
928 <     * 3. If there are too many running threads, suspends this worker
929 <     *    (first forcing inactivation if necessary).  If it is not
930 <     *    needed, it may be killed while suspended via
931 <     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 <     *    sure that it is still needed.
933 <     *
934 <     * 4. Helps release and/or reactivate other workers via
935 <     *    helpMaintainParallelism
936 <     *
937 <     * @param w the worker
938 <     * @param misses the number of scans by caller failing to find work
939 <     * (saturating at 2 just to avoid wraparound)
940 <     */
941 <    final void preStep(ForkJoinWorkerThread w, int misses) {
942 <        boolean active = w.active;
943 <        int pc = parallelism;
944 <        for (;;) {
945 <            int wc = workerCounts;
946 <            int rc = wc & RUNNING_COUNT_MASK;
947 <            if (active && (misses > 0 || rc > pc)) {
948 <                int rs;                      // try inactivate
949 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 <                                             rs = runState, rs - ONE_ACTIVE))
951 <                    active = w.active = false;
952 <                else if (misses > 1 || rc > pc ||
953 <                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 <                    continue;                // force inactivate
955 <            }
956 <            if (misses > 1) {
957 <                misses = 0;                  // don't re-sync
958 <                eventSync(w);                // continue loop to recheck rc
959 <            }
960 <            else if (rc > pc) {
961 <                if (workerCounts == wc &&   // try to suspend as spare
962 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 <                                             wc, wc - ONE_RUNNING) &&
964 <                    !w.suspendAsSpare())    // false if killed
1906 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1907 >     * and run tasks within the target's computation.
1908 >     *
1909 >     * @param task the task to join
1910 >     * @param mode if shared, exit upon completing any task
1911 >     * if all workers are active
1912 >     *
1913 >     */
1914 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1915 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1916 >        if (task != null && (ws = workQueues) != null &&
1917 >            (m = ws.length - 1) >= 0) {
1918 >            for (int j = 1, origin = j;;) {
1919 >                if ((s = task.status) < 0)
1920 >                    return s;
1921 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1922 >                    origin = j;
1923 >                    if (mode == SHARED_QUEUE &&
1924 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1925 >                        break;
1926 >                }
1927 >                else if ((j = (j + 2) & m) == origin)
1928                      break;
1929              }
967            else {
968                if (rc < pc || eventWaiters != 0L)
969                    helpMaintainParallelism();
970                break;
971            }
1930          }
1931 +        return 0;
1932      }
1933  
1934      /**
1935 <     * Helps and/or blocks awaiting join of the given task.
1936 <     * Alternates between helpJoinTask() and helpMaintainParallelism()
1937 <     * as many times as there is a deficit in running count (or longer
1938 <     * if running count would become zero), then blocks if task still
1939 <     * not done.
1940 <     *
1941 <     * @param joinMe the task to join
1942 <     */
1943 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1944 <        int threshold = parallelism;         // descend blocking thresholds
1945 <        while (joinMe.status >= 0) {
1946 <            boolean block; int wc;
1947 <            worker.helpJoinTask(joinMe);
1948 <            if (joinMe.status < 0)
1949 <                break;
1950 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1951 <                if (threshold > 0)
1952 <                    --threshold;
1953 <                else
1954 <                    advanceEventCount(); // force release
996 <                block = false;
1935 >     * Tries to decrement active count (sometimes implicitly) and
1936 >     * possibly release or create a compensating worker in preparation
1937 >     * for blocking. Fails on contention or termination. Otherwise,
1938 >     * adds a new thread if no idle workers are available and pool
1939 >     * may become starved.
1940 >     */
1941 >    final boolean tryCompensate() {
1942 >        int pc = config & SMASK, e, i, tc; long c;
1943 >        WorkQueue[] ws; WorkQueue w; Thread p;
1944 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1945 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1946 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1947 >                long nc = ((long)(w.nextWait & E_MASK) |
1948 >                           (c & (AC_MASK|TC_MASK)));
1949 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1950 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1951 >                    if ((p = w.parker) != null)
1952 >                        U.unpark(p);
1953 >                    return true;   // replace with idle worker
1954 >                }
1955              }
1956 <            else
1957 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1958 <                                                 wc, wc - ONE_RUNNING);
1959 <            helpMaintainParallelism();
1960 <            if (block) {
1961 <                int c;
1962 <                joinMe.internalAwaitDone();
1963 <                do {} while (!UNSAFE.compareAndSwapInt
1964 <                             (this, workerCountsOffset,
1965 <                              c = workerCounts, c + ONE_RUNNING));
1966 <                break;
1956 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1957 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1958 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1959 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1960 >                    return true;   // no compensation
1961 >            }
1962 >            else if (tc + pc < MAX_CAP) {
1963 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1964 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1965 >                    ForkJoinWorkerThreadFactory fac;
1966 >                    Throwable ex = null;
1967 >                    ForkJoinWorkerThread wt = null;
1968 >                    try {
1969 >                        if ((fac = factory) != null &&
1970 >                            (wt = fac.newThread(this)) != null) {
1971 >                            wt.start();
1972 >                            return true;
1973 >                        }
1974 >                    } catch (Throwable rex) {
1975 >                        ex = rex;
1976 >                    }
1977 >                    deregisterWorker(wt, ex); // clean up and return false
1978 >                }
1979              }
1980          }
1981 +        return false;
1982      }
1983  
1984      /**
1985 <     * Same idea as awaitJoin, but no helping
1985 >     * Helps and/or blocks until the given task is done.
1986 >     *
1987 >     * @param joiner the joining worker
1988 >     * @param task the task
1989 >     * @return task status on exit
1990       */
1991 <    final void awaitBlocker(ManagedBlocker blocker)
1992 <        throws InterruptedException {
1993 <        int threshold = parallelism;
1994 <        while (!blocker.isReleasable()) {
1995 <            boolean block; int wc;
1996 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1997 <                if (threshold > 0)
1998 <                    --threshold;
1999 <                else
2000 <                    advanceEventCount();
2001 <                block = false;
1991 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1992 >        int s = 0;
1993 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1994 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1995 >            joiner.currentJoin = task;
1996 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1997 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1998 >            if (s >= 0 && (s = task.status) >= 0) {
1999 >                helpSignal(task, joiner.poolIndex, false);
2000 >                if ((s = task.status) >= 0 &&
2001 >                    (task instanceof CountedCompleter))
2002 >                    s = helpComplete(task, LIFO_QUEUE);
2003              }
2004 <            else
2005 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
2006 <                                                 wc, wc - ONE_RUNNING);
2007 <            helpMaintainParallelism();
2008 <            if (block) {
2009 <                try {
2010 <                    do {} while (!blocker.isReleasable() && !blocker.block());
2011 <                } finally {
2012 <                    int c;
2013 <                    do {} while (!UNSAFE.compareAndSwapInt
2014 <                                 (this, workerCountsOffset,
2015 <                                  c = workerCounts, c + ONE_RUNNING));
2004 >            while (s >= 0 && (s = task.status) >= 0) {
2005 >                if ((!joiner.isEmpty() ||           // try helping
2006 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2007 >                    (s = task.status) >= 0) {
2008 >                    helpSignal(task, joiner.poolIndex, false);
2009 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2010 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2011 >                            synchronized (task) {
2012 >                                if (task.status >= 0) {
2013 >                                    try {                // see ForkJoinTask
2014 >                                        task.wait();     //  for explanation
2015 >                                    } catch (InterruptedException ie) {
2016 >                                    }
2017 >                                }
2018 >                                else
2019 >                                    task.notifyAll();
2020 >                            }
2021 >                        }
2022 >                        long c;                          // re-activate
2023 >                        do {} while (!U.compareAndSwapLong
2024 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2025 >                    }
2026                  }
1041                break;
2027              }
2028 +            joiner.currentJoin = prevJoin;
2029          }
2030 +        return s;
2031      }
2032  
2033      /**
2034 <     * Possibly initiates and/or completes termination.
2034 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2035 >     * to help join only while there is continuous progress. (Caller
2036 >     * will then enter a timed wait.)
2037       *
2038 <     * @param now if true, unconditionally terminate, else only
2039 <     * if shutdown and empty queue and no active workers
1051 <     * @return true if now terminating or terminated
2038 >     * @param joiner the joining worker
2039 >     * @param task the task
2040       */
2041 <    private boolean tryTerminate(boolean now) {
2042 <        if (now)
2043 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
2044 <        else if (runState < SHUTDOWN ||
2045 <                 !submissionQueue.isEmpty() ||
2046 <                 (runState & ACTIVE_COUNT_MASK) != 0)
2047 <            return false;
2041 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2042 >        int s;
2043 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2044 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2045 >            joiner.currentJoin = task;
2046 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2047 >                         joiner.tryRemoveAndExec(task));
2048 >            if (s >= 0 && (s = task.status) >= 0) {
2049 >                helpSignal(task, joiner.poolIndex, false);
2050 >                if ((s = task.status) >= 0 &&
2051 >                    (task instanceof CountedCompleter))
2052 >                    s = helpComplete(task, LIFO_QUEUE);
2053 >            }
2054 >            if (s >= 0 && joiner.isEmpty()) {
2055 >                do {} while (task.status >= 0 &&
2056 >                             tryHelpStealer(joiner, task) > 0);
2057 >            }
2058 >            joiner.currentJoin = prevJoin;
2059 >        }
2060 >    }
2061  
2062 <        if (advanceRunLevel(TERMINATING))
2063 <            startTerminating();
2062 >    /**
2063 >     * Returns a (probably) non-empty steal queue, if one is found
2064 >     * during a random, then cyclic scan, else null.  This method must
2065 >     * be retried by caller if, by the time it tries to use the queue,
2066 >     * it is empty.
2067 >     * @param r a (random) seed for scanning
2068 >     */
2069 >    private WorkQueue findNonEmptyStealQueue(int r) {
2070 >        for (WorkQueue[] ws;;) {
2071 >            int ps = plock, m, n;
2072 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2073 >                return null;
2074 >            for (int j = (m + 1) << 2; ;) {
2075 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2076 >                if (q != null && (n = q.base - q.top) < 0) {
2077 >                    if (n < -1)
2078 >                        signalWork(q);
2079 >                    return q;
2080 >                }
2081 >                else if (--j < 0) {
2082 >                    if (plock == ps)
2083 >                        return null;
2084 >                    break;
2085 >                }
2086 >            }
2087 >        }
2088 >    }
2089  
2090 <        // Finish now if all threads terminated; else in some subsequent call
2091 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
2092 <            advanceRunLevel(TERMINATED);
2093 <            termination.arrive();
2094 <        }
2095 <        return true;
2090 >    /**
2091 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2092 >     * active count ctl maintenance, but rather than blocking
2093 >     * when tasks cannot be found, we rescan until all others cannot
2094 >     * find tasks either.
2095 >     */
2096 >    final void helpQuiescePool(WorkQueue w) {
2097 >        for (boolean active = true;;) {
2098 >            ForkJoinTask<?> localTask; // exhaust local queue
2099 >            while ((localTask = w.nextLocalTask()) != null)
2100 >                localTask.doExec();
2101 >            // Similar to loop in scan(), but ignoring submissions
2102 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2103 >            if (q != null) {
2104 >                ForkJoinTask<?> t; int b;
2105 >                if (!active) {      // re-establish active count
2106 >                    long c;
2107 >                    active = true;
2108 >                    do {} while (!U.compareAndSwapLong
2109 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2110 >                }
2111 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2112 >                    w.runSubtask(t);
2113 >            }
2114 >            else {
2115 >                long c;
2116 >                if (active) {       // decrement active count without queuing
2117 >                    active = false;
2118 >                    do {} while (!U.compareAndSwapLong
2119 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2120 >                }
2121 >                else
2122 >                    c = ctl;        // re-increment on exit
2123 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2124 >                    do {} while (!U.compareAndSwapLong
2125 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2126 >                    break;
2127 >                }
2128 >            }
2129 >        }
2130      }
2131  
2132      /**
2133 <     * Actions on transition to TERMINATING
2134 <     *
2135 <     * Runs up to four passes through workers: (0) shutting down each
2136 <     * quietly (without waking up if parked) to quickly spread
2137 <     * notifications without unnecessary bouncing around event queues
2138 <     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
2139 <     * races with interrupted workers
2140 <     */
2141 <    private void startTerminating() {
2142 <        cancelSubmissions();
2143 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
2144 <            advanceEventCount();
2145 <            eventWaiters = 0L; // clobber lists
2146 <            spareWaiters = 0;
2147 <            ForkJoinWorkerThread[] ws = workers;
2148 <            int n = ws.length;
2149 <            for (int i = 0; i < n; ++i) {
2150 <                ForkJoinWorkerThread w = ws[i];
2151 <                if (w != null) {
2152 <                    w.shutdown(true);
2153 <                    if (passes > 0 && !w.isTerminated()) {
2154 <                        w.cancelTasks();
2155 <                        LockSupport.unpark(w);
2156 <                        if (passes > 1) {
2157 <                            try {
2158 <                                w.interrupt();
2159 <                            } catch (SecurityException ignore) {
2133 >     * Gets and removes a local or stolen task for the given worker.
2134 >     *
2135 >     * @return a task, if available
2136 >     */
2137 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2138 >        for (ForkJoinTask<?> t;;) {
2139 >            WorkQueue q; int b;
2140 >            if ((t = w.nextLocalTask()) != null)
2141 >                return t;
2142 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2143 >                return null;
2144 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2145 >                return t;
2146 >        }
2147 >    }
2148 >
2149 >    /**
2150 >     * Returns a cheap heuristic guide for task partitioning when
2151 >     * programmers, frameworks, tools, or languages have little or no
2152 >     * idea about task granularity.  In essence by offering this
2153 >     * method, we ask users only about tradeoffs in overhead vs
2154 >     * expected throughput and its variance, rather than how finely to
2155 >     * partition tasks.
2156 >     *
2157 >     * In a steady state strict (tree-structured) computation, each
2158 >     * thread makes available for stealing enough tasks for other
2159 >     * threads to remain active. Inductively, if all threads play by
2160 >     * the same rules, each thread should make available only a
2161 >     * constant number of tasks.
2162 >     *
2163 >     * The minimum useful constant is just 1. But using a value of 1
2164 >     * would require immediate replenishment upon each steal to
2165 >     * maintain enough tasks, which is infeasible.  Further,
2166 >     * partitionings/granularities of offered tasks should minimize
2167 >     * steal rates, which in general means that threads nearer the top
2168 >     * of computation tree should generate more than those nearer the
2169 >     * bottom. In perfect steady state, each thread is at
2170 >     * approximately the same level of computation tree. However,
2171 >     * producing extra tasks amortizes the uncertainty of progress and
2172 >     * diffusion assumptions.
2173 >     *
2174 >     * So, users will want to use values larger, but not much larger
2175 >     * than 1 to both smooth over transient shortages and hedge
2176 >     * against uneven progress; as traded off against the cost of
2177 >     * extra task overhead. We leave the user to pick a threshold
2178 >     * value to compare with the results of this call to guide
2179 >     * decisions, but recommend values such as 3.
2180 >     *
2181 >     * When all threads are active, it is on average OK to estimate
2182 >     * surplus strictly locally. In steady-state, if one thread is
2183 >     * maintaining say 2 surplus tasks, then so are others. So we can
2184 >     * just use estimated queue length.  However, this strategy alone
2185 >     * leads to serious mis-estimates in some non-steady-state
2186 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2187 >     * many of these by further considering the number of "idle"
2188 >     * threads, that are known to have zero queued tasks, so
2189 >     * compensate by a factor of (#idle/#active) threads.
2190 >     *
2191 >     * Note: The approximation of #busy workers as #active workers is
2192 >     * not very good under current signalling scheme, and should be
2193 >     * improved.
2194 >     */
2195 >    static int getSurplusQueuedTaskCount() {
2196 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2197 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2198 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2199 >            int n = (q = wt.workQueue).top - q.base;
2200 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2201 >            return n - (a > (p >>>= 1) ? 0 :
2202 >                        a > (p >>>= 1) ? 1 :
2203 >                        a > (p >>>= 1) ? 2 :
2204 >                        a > (p >>>= 1) ? 4 :
2205 >                        8);
2206 >        }
2207 >        return 0;
2208 >    }
2209 >
2210 >    //  Termination
2211 >
2212 >    /**
2213 >     * Possibly initiates and/or completes termination.  The caller
2214 >     * triggering termination runs three passes through workQueues:
2215 >     * (0) Setting termination status, followed by wakeups of queued
2216 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2217 >     * threads (likely in external tasks, but possibly also blocked in
2218 >     * joins).  Each pass repeats previous steps because of potential
2219 >     * lagging thread creation.
2220 >     *
2221 >     * @param now if true, unconditionally terminate, else only
2222 >     * if no work and no active workers
2223 >     * @param enable if true, enable shutdown when next possible
2224 >     * @return true if now terminating or terminated
2225 >     */
2226 >    private boolean tryTerminate(boolean now, boolean enable) {
2227 >        if (this == commonPool)                     // cannot shut down
2228 >            return false;
2229 >        for (long c;;) {
2230 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2231 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2232 >                    synchronized (this) {
2233 >                        notifyAll();                // signal when 0 workers
2234 >                    }
2235 >                }
2236 >                return true;
2237 >            }
2238 >            if (plock >= 0) {                       // not yet enabled
2239 >                int ps;
2240 >                if (!enable)
2241 >                    return false;
2242 >                if (((ps = plock) & PL_LOCK) != 0 ||
2243 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2244 >                    ps = acquirePlock();
2245 >                int nps = SHUTDOWN;
2246 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2247 >                    releasePlock(nps);
2248 >            }
2249 >            if (!now) {                             // check if idle & no tasks
2250 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2251 >                    hasQueuedSubmissions())
2252 >                    return false;
2253 >                // Check for unqueued inactive workers. One pass suffices.
2254 >                WorkQueue[] ws = workQueues; WorkQueue w;
2255 >                if (ws != null) {
2256 >                    for (int i = 1; i < ws.length; i += 2) {
2257 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2258 >                            return false;
2259 >                    }
2260 >                }
2261 >            }
2262 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2263 >                for (int pass = 0; pass < 3; ++pass) {
2264 >                    WorkQueue[] ws = workQueues;
2265 >                    if (ws != null) {
2266 >                        WorkQueue w;
2267 >                        int n = ws.length;
2268 >                        for (int i = 0; i < n; ++i) {
2269 >                            if ((w = ws[i]) != null) {
2270 >                                w.qlock = -1;
2271 >                                if (pass > 0) {
2272 >                                    w.cancelAll();
2273 >                                    if (pass > 1)
2274 >                                        w.interruptOwner();
2275 >                                }
2276 >                            }
2277 >                        }
2278 >                        // Wake up workers parked on event queue
2279 >                        int i, e; long cc; Thread p;
2280 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2281 >                               (i = e & SMASK) < n &&
2282 >                               (w = ws[i]) != null) {
2283 >                            long nc = ((long)(w.nextWait & E_MASK) |
2284 >                                       ((cc + AC_UNIT) & AC_MASK) |
2285 >                                       (cc & (TC_MASK|STOP_BIT)));
2286 >                            if (w.eventCount == (e | INT_SIGN) &&
2287 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2288 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2289 >                                w.qlock = -1;
2290 >                                if ((p = w.parker) != null)
2291 >                                    U.unpark(p);
2292                              }
2293                          }
2294                      }
# Line 1105 | Line 2297 | public class ForkJoinPool extends Abstra
2297          }
2298      }
2299  
2300 +    // external operations on common pool
2301 +
2302      /**
2303 <     * Clear out and cancel submissions, ignoring exceptions
2303 >     * Returns common pool queue for a thread that has submitted at
2304 >     * least one task.
2305       */
2306 <    private void cancelSubmissions() {
2307 <        ForkJoinTask<?> task;
2308 <        while ((task = submissionQueue.poll()) != null) {
2309 <            try {
2310 <                task.cancel(false);
2311 <            } catch (Throwable ignore) {
2306 >    static WorkQueue commonSubmitterQueue() {
2307 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2308 >        return ((z = submitters.get()) != null &&
2309 >                (p = commonPool) != null &&
2310 >                (ws = p.workQueues) != null &&
2311 >                (m = ws.length - 1) >= 0) ?
2312 >            ws[m & z.seed & SQMASK] : null;
2313 >    }
2314 >
2315 >    /**
2316 >     * Tries to pop the given task from submitter's queue in common pool.
2317 >     */
2318 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2319 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2320 >        ForkJoinTask<?>[] a;  int m, s;
2321 >        if (t != null &&
2322 >            (z = submitters.get()) != null &&
2323 >            (p = commonPool) != null &&
2324 >            (ws = p.workQueues) != null &&
2325 >            (m = ws.length - 1) >= 0 &&
2326 >            (q = ws[m & z.seed & SQMASK]) != null &&
2327 >            (s = q.top) != q.base &&
2328 >            (a = q.array) != null) {
2329 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2330 >            if (U.getObject(a, j) == t &&
2331 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2332 >                if (q.array == a && q.top == s && // recheck
2333 >                    U.compareAndSwapObject(a, j, t, null)) {
2334 >                    q.top = s - 1;
2335 >                    q.qlock = 0;
2336 >                    return true;
2337 >                }
2338 >                q.qlock = 0;
2339              }
2340          }
2341 +        return false;
2342      }
2343  
1121    // misc support for ForkJoinWorkerThread
1122
2344      /**
2345 <     * Returns pool number
2346 <     */
2347 <    final int getPoolNumber() {
2348 <        return poolNumber;
2345 >     * Tries to pop and run local tasks within the same computation
2346 >     * as the given root. On failure, tries to help complete from
2347 >     * other queues via helpComplete.
2348 >     */
2349 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2350 >        ForkJoinTask<?>[] a; int m;
2351 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2352 >            root != null && root.status >= 0) {
2353 >            for (;;) {
2354 >                int s, u; Object o; CountedCompleter<?> task = null;
2355 >                if ((s = q.top) - q.base > 0) {
2356 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2357 >                    if ((o = U.getObject(a, j)) != null &&
2358 >                        (o instanceof CountedCompleter)) {
2359 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2360 >                        do {
2361 >                            if (r == root) {
2362 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2363 >                                    if (q.array == a && q.top == s &&
2364 >                                        U.compareAndSwapObject(a, j, t, null)) {
2365 >                                        q.top = s - 1;
2366 >                                        task = t;
2367 >                                    }
2368 >                                    q.qlock = 0;
2369 >                                }
2370 >                                break;
2371 >                            }
2372 >                        } while ((r = r.completer) != null);
2373 >                    }
2374 >                }
2375 >                if (task != null)
2376 >                    task.doExec();
2377 >                if (root.status < 0 ||
2378 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2379 >                    break;
2380 >                if (task == null) {
2381 >                    helpSignal(root, q.poolIndex, false);
2382 >                    if (root.status >= 0)
2383 >                        helpComplete(root, SHARED_QUEUE);
2384 >                    break;
2385 >                }
2386 >            }
2387 >        }
2388      }
2389  
2390      /**
2391 <     * Tries to accumulates steal count from a worker, clearing
2392 <     * the worker's value.
1133 <     *
1134 <     * @return true if worker steal count now zero
2391 >     * Tries to help execute or signal availability of the given task
2392 >     * from submitter's queue in common pool.
2393       */
2394 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
2395 <        int sc = w.stealCount;
2396 <        long c = stealCount;
2397 <        // CAS even if zero, for fence effects
2398 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
2399 <            if (sc != 0)
2400 <                w.stealCount = 0;
2401 <            return true;
2394 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2395 >        // Some hard-to-avoid overlap with tryExternalUnpush
2396 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2397 >        ForkJoinTask<?>[] a;  int m, s, n;
2398 >        if (t != null &&
2399 >            (z = submitters.get()) != null &&
2400 >            (p = commonPool) != null &&
2401 >            (ws = p.workQueues) != null &&
2402 >            (m = ws.length - 1) >= 0 &&
2403 >            (q = ws[m & z.seed & SQMASK]) != null &&
2404 >            (a = q.array) != null) {
2405 >            int am = a.length - 1;
2406 >            if ((s = q.top) != q.base) {
2407 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2408 >                if (U.getObject(a, j) == t &&
2409 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2410 >                    if (q.array == a && q.top == s &&
2411 >                        U.compareAndSwapObject(a, j, t, null)) {
2412 >                        q.top = s - 1;
2413 >                        q.qlock = 0;
2414 >                        t.doExec();
2415 >                    }
2416 >                    else
2417 >                        q.qlock = 0;
2418 >                }
2419 >            }
2420 >            if (t.status >= 0) {
2421 >                if (t instanceof CountedCompleter)
2422 >                    p.externalHelpComplete(q, t);
2423 >                else
2424 >                    p.helpSignal(t, q.poolIndex, false);
2425 >            }
2426          }
1145        return sc == 0;
2427      }
2428  
2429      /**
2430 <     * Returns the approximate (non-atomic) number of idle threads per
1150 <     * active thread.
2430 >     * Restricted version of helpQuiescePool for external callers
2431       */
2432 <    final int idlePerActive() {
2433 <        int pc = parallelism; // use parallelism, not rc
2434 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2435 <        // Use exact results for small values, saturate past 4
2436 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2432 >    static void externalHelpQuiescePool() {
2433 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2434 >        if ((p = commonPool) != null &&
2435 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2436 >            (b = q.base) - q.top < 0 &&
2437 >            (t = q.pollAt(b)) != null)
2438 >            t.doExec();
2439      }
2440  
2441 <    // Public and protected methods
2441 >    // Exported methods
2442  
2443      // Constructors
2444  
# Line 1203 | Line 2485 | public class ForkJoinPool extends Abstra
2485       * use {@link #defaultForkJoinWorkerThreadFactory}.
2486       * @param handler the handler for internal worker threads that
2487       * terminate due to unrecoverable errors encountered while executing
2488 <     * tasks. For default value, use <code>null</code>.
2488 >     * tasks. For default value, use {@code null}.
2489       * @param asyncMode if true,
2490       * establishes local first-in-first-out scheduling mode for forked
2491       * tasks that are never joined. This mode may be more appropriate
2492       * than default locally stack-based mode in applications in which
2493       * worker threads only process event-style asynchronous tasks.
2494 <     * For default value, use <code>false</code>.
2494 >     * For default value, use {@code false}.
2495       * @throws IllegalArgumentException if parallelism less than or
2496       *         equal to zero, or greater than implementation limit
2497       * @throws NullPointerException if the factory is null
# Line 1225 | Line 2507 | public class ForkJoinPool extends Abstra
2507          checkPermission();
2508          if (factory == null)
2509              throw new NullPointerException();
2510 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
2510 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2511              throw new IllegalArgumentException();
1230        this.parallelism = parallelism;
2512          this.factory = factory;
2513          this.ueh = handler;
2514 <        this.locallyFifo = asyncMode;
2515 <        int arraySize = initialArraySizeFor(parallelism);
2516 <        this.workers = new ForkJoinWorkerThread[arraySize];
2517 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2518 <        this.workerLock = new ReentrantLock();
2519 <        this.termination = new Phaser(1);
2520 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2521 <        this.trimTime = System.nanoTime();
2514 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2515 >        long np = (long)(-parallelism); // offset ctl counts
2516 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2517 >        int pn = nextPoolId();
2518 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2519 >        sb.append(Integer.toString(pn));
2520 >        sb.append("-worker-");
2521 >        this.workerNamePrefix = sb.toString();
2522      }
2523  
2524      /**
2525 <     * Returns initial power of two size for workers array.
2526 <     * @param pc the initial parallelism level
2527 <     */
2528 <    private static int initialArraySizeFor(int pc) {
2529 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
2530 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
2531 <        size |= size >>> 1;
2532 <        size |= size >>> 2;
2533 <        size |= size >>> 4;
2534 <        size |= size >>> 8;
2535 <        return size + 1;
2525 >     * Constructor for common pool, suitable only for static initialization.
2526 >     * Basically the same as above, but uses smallest possible initial footprint.
2527 >     */
2528 >    ForkJoinPool(int parallelism, long ctl,
2529 >                 ForkJoinWorkerThreadFactory factory,
2530 >                 Thread.UncaughtExceptionHandler handler) {
2531 >        this.config = parallelism;
2532 >        this.ctl = ctl;
2533 >        this.factory = factory;
2534 >        this.ueh = handler;
2535 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2536      }
2537  
1257    // Execution methods
1258
2538      /**
2539 <     * Common code for execute, invoke and submit
2539 >     * Returns the common pool instance.
2540 >     *
2541 >     * @return the common pool instance
2542       */
2543 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2544 <        if (task == null)
2545 <            throw new NullPointerException();
1265 <        if (runState >= SHUTDOWN)
1266 <            throw new RejectedExecutionException();
1267 <        submissionQueue.offer(task);
1268 <        advanceEventCount();
1269 <        helpMaintainParallelism();         // start or wake up workers
2543 >    public static ForkJoinPool commonPool() {
2544 >        // assert commonPool != null : "static init error";
2545 >        return commonPool;
2546      }
2547  
2548 +    // Execution methods
2549 +
2550      /**
2551       * Performs the given task, returning its result upon completion.
2552 <     * If the caller is already engaged in a fork/join computation in
2553 <     * the current pool, this method is equivalent in effect to
2554 <     * {@link ForkJoinTask#invoke}.
2552 >     * If the computation encounters an unchecked Exception or Error,
2553 >     * it is rethrown as the outcome of this invocation.  Rethrown
2554 >     * exceptions behave in the same way as regular exceptions, but,
2555 >     * when possible, contain stack traces (as displayed for example
2556 >     * using {@code ex.printStackTrace()}) of both the current thread
2557 >     * as well as the thread actually encountering the exception;
2558 >     * minimally only the latter.
2559       *
2560       * @param task the task
2561       * @return the task's result
# Line 1282 | Line 2564 | public class ForkJoinPool extends Abstra
2564       *         scheduled for execution
2565       */
2566      public <T> T invoke(ForkJoinTask<T> task) {
2567 <        doSubmit(task);
2567 >        if (task == null)
2568 >            throw new NullPointerException();
2569 >        externalPush(task);
2570          return task.join();
2571      }
2572  
2573      /**
2574       * Arranges for (asynchronous) execution of the given task.
1291     * If the caller is already engaged in a fork/join computation in
1292     * the current pool, this method is equivalent in effect to
1293     * {@link ForkJoinTask#fork}.
2575       *
2576       * @param task the task
2577       * @throws NullPointerException if the task is null
# Line 1298 | Line 2579 | public class ForkJoinPool extends Abstra
2579       *         scheduled for execution
2580       */
2581      public void execute(ForkJoinTask<?> task) {
2582 <        doSubmit(task);
2582 >        if (task == null)
2583 >            throw new NullPointerException();
2584 >        externalPush(task);
2585      }
2586  
2587      // AbstractExecutorService methods
# Line 1309 | Line 2592 | public class ForkJoinPool extends Abstra
2592       *         scheduled for execution
2593       */
2594      public void execute(Runnable task) {
2595 +        if (task == null)
2596 +            throw new NullPointerException();
2597          ForkJoinTask<?> job;
2598          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2599              job = (ForkJoinTask<?>) task;
2600          else
2601 <            job = ForkJoinTask.adapt(task, null);
2602 <        doSubmit(job);
2601 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2602 >        externalPush(job);
2603      }
2604  
2605      /**
2606       * Submits a ForkJoinTask for execution.
1322     * If the caller is already engaged in a fork/join computation in
1323     * the current pool, this method is equivalent in effect to
1324     * {@link ForkJoinTask#fork}.
2607       *
2608       * @param task the task to submit
2609       * @return the task
# Line 1330 | Line 2612 | public class ForkJoinPool extends Abstra
2612       *         scheduled for execution
2613       */
2614      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2615 <        doSubmit(task);
2615 >        if (task == null)
2616 >            throw new NullPointerException();
2617 >        externalPush(task);
2618          return task;
2619      }
2620  
# Line 1340 | Line 2624 | public class ForkJoinPool extends Abstra
2624       *         scheduled for execution
2625       */
2626      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2627 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2628 <        doSubmit(job);
2627 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2628 >        externalPush(job);
2629          return job;
2630      }
2631  
# Line 1351 | Line 2635 | public class ForkJoinPool extends Abstra
2635       *         scheduled for execution
2636       */
2637      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2638 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2639 <        doSubmit(job);
2638 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2639 >        externalPush(job);
2640          return job;
2641      }
2642  
# Line 1362 | Line 2646 | public class ForkJoinPool extends Abstra
2646       *         scheduled for execution
2647       */
2648      public ForkJoinTask<?> submit(Runnable task) {
2649 +        if (task == null)
2650 +            throw new NullPointerException();
2651          ForkJoinTask<?> job;
2652          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2653              job = (ForkJoinTask<?>) task;
2654          else
2655 <            job = ForkJoinTask.adapt(task, null);
2656 <        doSubmit(job);
2655 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2656 >        externalPush(job);
2657          return job;
2658      }
2659  
# Line 1376 | Line 2662 | public class ForkJoinPool extends Abstra
2662       * @throws RejectedExecutionException {@inheritDoc}
2663       */
2664      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2665 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2666 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2667 <        for (Callable<T> task : tasks)
2668 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2669 <        invoke(new InvokeAll<T>(forkJoinTasks));
2670 <
2665 >        // In previous versions of this class, this method constructed
2666 >        // a task to run ForkJoinTask.invokeAll, but now external
2667 >        // invocation of multiple tasks is at least as efficient.
2668 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2669 >        // Workaround needed because method wasn't declared with
2670 >        // wildcards in return type but should have been.
2671          @SuppressWarnings({"unchecked", "rawtypes"})
2672 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1387 <        return futures;
1388 <    }
2672 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2673  
2674 <    static final class InvokeAll<T> extends RecursiveAction {
2675 <        final ArrayList<ForkJoinTask<T>> tasks;
2676 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2677 <        public void compute() {
2678 <            try { invokeAll(tasks); }
2679 <            catch (Exception ignore) {}
2674 >        boolean done = false;
2675 >        try {
2676 >            for (Callable<T> t : tasks) {
2677 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2678 >                externalPush(f);
2679 >                fs.add(f);
2680 >            }
2681 >            for (ForkJoinTask<T> f : fs)
2682 >                f.quietlyJoin();
2683 >            done = true;
2684 >            return futures;
2685 >        } finally {
2686 >            if (!done)
2687 >                for (ForkJoinTask<T> f : fs)
2688 >                    f.cancel(false);
2689          }
1397        private static final long serialVersionUID = -7914297376763021607L;
2690      }
2691  
2692      /**
# Line 1422 | Line 2714 | public class ForkJoinPool extends Abstra
2714       * @return the targeted parallelism level of this pool
2715       */
2716      public int getParallelism() {
2717 <        return parallelism;
2717 >        return config & SMASK;
2718 >    }
2719 >
2720 >    /**
2721 >     * Returns the targeted parallelism level of the common pool.
2722 >     *
2723 >     * @return the targeted parallelism level of the common pool
2724 >     */
2725 >    public static int getCommonPoolParallelism() {
2726 >        return commonPoolParallelism;
2727      }
2728  
2729      /**
2730       * Returns the number of worker threads that have started but not
2731 <     * yet terminated.  This result returned by this method may differ
2731 >     * yet terminated.  The result returned by this method may differ
2732       * from {@link #getParallelism} when threads are created to
2733       * maintain parallelism when others are cooperatively blocked.
2734       *
2735       * @return the number of worker threads
2736       */
2737      public int getPoolSize() {
2738 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2738 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2739      }
2740  
2741      /**
# Line 1444 | Line 2745 | public class ForkJoinPool extends Abstra
2745       * @return {@code true} if this pool uses async mode
2746       */
2747      public boolean getAsyncMode() {
2748 <        return locallyFifo;
2748 >        return (config >>> 16) == FIFO_QUEUE;
2749      }
2750  
2751      /**
# Line 1456 | Line 2757 | public class ForkJoinPool extends Abstra
2757       * @return the number of worker threads
2758       */
2759      public int getRunningThreadCount() {
2760 <        return workerCounts & RUNNING_COUNT_MASK;
2760 >        int rc = 0;
2761 >        WorkQueue[] ws; WorkQueue w;
2762 >        if ((ws = workQueues) != null) {
2763 >            for (int i = 1; i < ws.length; i += 2) {
2764 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2765 >                    ++rc;
2766 >            }
2767 >        }
2768 >        return rc;
2769      }
2770  
2771      /**
# Line 1467 | Line 2776 | public class ForkJoinPool extends Abstra
2776       * @return the number of active threads
2777       */
2778      public int getActiveThreadCount() {
2779 <        return runState & ACTIVE_COUNT_MASK;
2779 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2780 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2781      }
2782  
2783      /**
# Line 1482 | Line 2792 | public class ForkJoinPool extends Abstra
2792       * @return {@code true} if all threads are currently idle
2793       */
2794      public boolean isQuiescent() {
2795 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2795 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2796      }
2797  
2798      /**
# Line 1497 | Line 2807 | public class ForkJoinPool extends Abstra
2807       * @return the number of steals
2808       */
2809      public long getStealCount() {
2810 <        return stealCount;
2810 >        long count = stealCount;
2811 >        WorkQueue[] ws; WorkQueue w;
2812 >        if ((ws = workQueues) != null) {
2813 >            for (int i = 1; i < ws.length; i += 2) {
2814 >                if ((w = ws[i]) != null)
2815 >                    count += w.nsteals;
2816 >            }
2817 >        }
2818 >        return count;
2819      }
2820  
2821      /**
# Line 1512 | Line 2830 | public class ForkJoinPool extends Abstra
2830       */
2831      public long getQueuedTaskCount() {
2832          long count = 0;
2833 <        ForkJoinWorkerThread[] ws = workers;
2834 <        int n = ws.length;
2835 <        for (int i = 0; i < n; ++i) {
2836 <            ForkJoinWorkerThread w = ws[i];
2837 <            if (w != null)
2838 <                count += w.getQueueSize();
2833 >        WorkQueue[] ws; WorkQueue w;
2834 >        if ((ws = workQueues) != null) {
2835 >            for (int i = 1; i < ws.length; i += 2) {
2836 >                if ((w = ws[i]) != null)
2837 >                    count += w.queueSize();
2838 >            }
2839          }
2840          return count;
2841      }
2842  
2843      /**
2844       * Returns an estimate of the number of tasks submitted to this
2845 <     * pool that have not yet begun executing.  This method takes time
2846 <     * proportional to the number of submissions.
2845 >     * pool that have not yet begun executing.  This method may take
2846 >     * time proportional to the number of submissions.
2847       *
2848       * @return the number of queued submissions
2849       */
2850      public int getQueuedSubmissionCount() {
2851 <        return submissionQueue.size();
2851 >        int count = 0;
2852 >        WorkQueue[] ws; WorkQueue w;
2853 >        if ((ws = workQueues) != null) {
2854 >            for (int i = 0; i < ws.length; i += 2) {
2855 >                if ((w = ws[i]) != null)
2856 >                    count += w.queueSize();
2857 >            }
2858 >        }
2859 >        return count;
2860      }
2861  
2862      /**
# Line 1540 | Line 2866 | public class ForkJoinPool extends Abstra
2866       * @return {@code true} if there are any queued submissions
2867       */
2868      public boolean hasQueuedSubmissions() {
2869 <        return !submissionQueue.isEmpty();
2869 >        WorkQueue[] ws; WorkQueue w;
2870 >        if ((ws = workQueues) != null) {
2871 >            for (int i = 0; i < ws.length; i += 2) {
2872 >                if ((w = ws[i]) != null && !w.isEmpty())
2873 >                    return true;
2874 >            }
2875 >        }
2876 >        return false;
2877      }
2878  
2879      /**
# Line 1551 | Line 2884 | public class ForkJoinPool extends Abstra
2884       * @return the next submission, or {@code null} if none
2885       */
2886      protected ForkJoinTask<?> pollSubmission() {
2887 <        return submissionQueue.poll();
2887 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2888 >        if ((ws = workQueues) != null) {
2889 >            for (int i = 0; i < ws.length; i += 2) {
2890 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2891 >                    return t;
2892 >            }
2893 >        }
2894 >        return null;
2895      }
2896  
2897      /**
# Line 1572 | Line 2912 | public class ForkJoinPool extends Abstra
2912       * @return the number of elements transferred
2913       */
2914      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2915 <        int count = submissionQueue.drainTo(c);
2916 <        ForkJoinWorkerThread[] ws = workers;
2917 <        int n = ws.length;
2918 <        for (int i = 0; i < n; ++i) {
2919 <            ForkJoinWorkerThread w = ws[i];
2920 <            if (w != null)
2921 <                count += w.drainTasksTo(c);
2915 >        int count = 0;
2916 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2917 >        if ((ws = workQueues) != null) {
2918 >            for (int i = 0; i < ws.length; ++i) {
2919 >                if ((w = ws[i]) != null) {
2920 >                    while ((t = w.poll()) != null) {
2921 >                        c.add(t);
2922 >                        ++count;
2923 >                    }
2924 >                }
2925 >            }
2926          }
2927          return count;
2928      }
# Line 1591 | Line 2935 | public class ForkJoinPool extends Abstra
2935       * @return a string identifying this pool, as well as its state
2936       */
2937      public String toString() {
2938 <        long st = getStealCount();
2939 <        long qt = getQueuedTaskCount();
2940 <        long qs = getQueuedSubmissionCount();
2941 <        int wc = workerCounts;
2942 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2943 <        int rc = wc & RUNNING_COUNT_MASK;
2944 <        int pc = parallelism;
2945 <        int rs = runState;
2946 <        int ac = rs & ACTIVE_COUNT_MASK;
2938 >        // Use a single pass through workQueues to collect counts
2939 >        long qt = 0L, qs = 0L; int rc = 0;
2940 >        long st = stealCount;
2941 >        long c = ctl;
2942 >        WorkQueue[] ws; WorkQueue w;
2943 >        if ((ws = workQueues) != null) {
2944 >            for (int i = 0; i < ws.length; ++i) {
2945 >                if ((w = ws[i]) != null) {
2946 >                    int size = w.queueSize();
2947 >                    if ((i & 1) == 0)
2948 >                        qs += size;
2949 >                    else {
2950 >                        qt += size;
2951 >                        st += w.nsteals;
2952 >                        if (w.isApparentlyUnblocked())
2953 >                            ++rc;
2954 >                    }
2955 >                }
2956 >            }
2957 >        }
2958 >        int pc = (config & SMASK);
2959 >        int tc = pc + (short)(c >>> TC_SHIFT);
2960 >        int ac = pc + (int)(c >> AC_SHIFT);
2961 >        if (ac < 0) // ignore transient negative
2962 >            ac = 0;
2963 >        String level;
2964 >        if ((c & STOP_BIT) != 0)
2965 >            level = (tc == 0) ? "Terminated" : "Terminating";
2966 >        else
2967 >            level = plock < 0 ? "Shutting down" : "Running";
2968          return super.toString() +
2969 <            "[" + runLevelToString(rs) +
2969 >            "[" + level +
2970              ", parallelism = " + pc +
2971              ", size = " + tc +
2972              ", active = " + ac +
# Line 1612 | Line 2977 | public class ForkJoinPool extends Abstra
2977              "]";
2978      }
2979  
1615    private static String runLevelToString(int s) {
1616        return ((s & TERMINATED) != 0 ? "Terminated" :
1617                ((s & TERMINATING) != 0 ? "Terminating" :
1618                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1619                  "Running")));
1620    }
1621
2980      /**
2981 <     * Initiates an orderly shutdown in which previously submitted
2982 <     * tasks are executed, but no new tasks will be accepted.
2983 <     * Invocation has no additional effect if already shut down.
2984 <     * Tasks that are in the process of being submitted concurrently
2985 <     * during the course of this method may or may not be rejected.
2981 >     * Possibly initiates an orderly shutdown in which previously
2982 >     * submitted tasks are executed, but no new tasks will be
2983 >     * accepted. Invocation has no effect on execution state if this
2984 >     * is the {@link #commonPool}, and no additional effect if
2985 >     * already shut down.  Tasks that are in the process of being
2986 >     * submitted concurrently during the course of this method may or
2987 >     * may not be rejected.
2988       *
2989       * @throws SecurityException if a security manager exists and
2990       *         the caller is not permitted to modify threads
# Line 1633 | Line 2993 | public class ForkJoinPool extends Abstra
2993       */
2994      public void shutdown() {
2995          checkPermission();
2996 <        advanceRunLevel(SHUTDOWN);
1637 <        tryTerminate(false);
2996 >        tryTerminate(false, true);
2997      }
2998  
2999      /**
3000 <     * Attempts to cancel and/or stop all tasks, and reject all
3001 <     * subsequently submitted tasks.  Tasks that are in the process of
3002 <     * being submitted or executed concurrently during the course of
3003 <     * this method may or may not be rejected. This method cancels
3004 <     * both existing and unexecuted tasks, in order to permit
3005 <     * termination in the presence of task dependencies. So the method
3006 <     * always returns an empty list (unlike the case for some other
3007 <     * Executors).
3000 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3001 >     * all subsequently submitted tasks.  Invocation has no effect on
3002 >     * execution state if this is the {@link #commonPool}, and no
3003 >     * additional effect if already shut down. Otherwise, tasks that
3004 >     * are in the process of being submitted or executed concurrently
3005 >     * during the course of this method may or may not be
3006 >     * rejected. This method cancels both existing and unexecuted
3007 >     * tasks, in order to permit termination in the presence of task
3008 >     * dependencies. So the method always returns an empty list
3009 >     * (unlike the case for some other Executors).
3010       *
3011       * @return an empty list
3012       * @throws SecurityException if a security manager exists and
# Line 1655 | Line 3016 | public class ForkJoinPool extends Abstra
3016       */
3017      public List<Runnable> shutdownNow() {
3018          checkPermission();
3019 <        tryTerminate(true);
3019 >        tryTerminate(true, true);
3020          return Collections.emptyList();
3021      }
3022  
# Line 1665 | Line 3026 | public class ForkJoinPool extends Abstra
3026       * @return {@code true} if all tasks have completed following shut down
3027       */
3028      public boolean isTerminated() {
3029 <        return runState >= TERMINATED;
3029 >        long c = ctl;
3030 >        return ((c & STOP_BIT) != 0L &&
3031 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3032      }
3033  
3034      /**
# Line 1673 | Line 3036 | public class ForkJoinPool extends Abstra
3036       * commenced but not yet completed.  This method may be useful for
3037       * debugging. A return of {@code true} reported a sufficient
3038       * period after shutdown may indicate that submitted tasks have
3039 <     * ignored or suppressed interruption, causing this executor not
3040 <     * to properly terminate.
3039 >     * ignored or suppressed interruption, or are waiting for IO,
3040 >     * causing this executor not to properly terminate. (See the
3041 >     * advisory notes for class {@link ForkJoinTask} stating that
3042 >     * tasks should not normally entail blocking operations.  But if
3043 >     * they do, they must abort them on interrupt.)
3044       *
3045       * @return {@code true} if terminating but not yet terminated
3046       */
3047      public boolean isTerminating() {
3048 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
3048 >        long c = ctl;
3049 >        return ((c & STOP_BIT) != 0L &&
3050 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3051      }
3052  
3053      /**
# Line 1688 | Line 3056 | public class ForkJoinPool extends Abstra
3056       * @return {@code true} if this pool has been shut down
3057       */
3058      public boolean isShutdown() {
3059 <        return runState >= SHUTDOWN;
3059 >        return plock < 0;
3060      }
3061  
3062      /**
3063 <     * Blocks until all tasks have completed execution after a shutdown
3064 <     * request, or the timeout occurs, or the current thread is
3065 <     * interrupted, whichever happens first.
3063 >     * Blocks until all tasks have completed execution after a
3064 >     * shutdown request, or the timeout occurs, or the current thread
3065 >     * is interrupted, whichever happens first. Note that the {@link
3066 >     * #commonPool()} never terminates until program shutdown so
3067 >     * this method will always time out.
3068       *
3069       * @param timeout the maximum time to wait
3070       * @param unit the time unit of the timeout argument
# Line 1704 | Line 3074 | public class ForkJoinPool extends Abstra
3074       */
3075      public boolean awaitTermination(long timeout, TimeUnit unit)
3076          throws InterruptedException {
3077 <        try {
3078 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3079 <        } catch(TimeoutException ex) {
3080 <            return false;
3077 >        long nanos = unit.toNanos(timeout);
3078 >        if (isTerminated())
3079 >            return true;
3080 >        long startTime = System.nanoTime();
3081 >        boolean terminated = false;
3082 >        synchronized (this) {
3083 >            for (long waitTime = nanos, millis = 0L;;) {
3084 >                if (terminated = isTerminated() ||
3085 >                    waitTime <= 0L ||
3086 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3087 >                    break;
3088 >                wait(millis);
3089 >                waitTime = nanos - (System.nanoTime() - startTime);
3090 >            }
3091          }
3092 +        return terminated;
3093      }
3094  
3095      /**
# Line 1719 | Line 3100 | public class ForkJoinPool extends Abstra
3100       * {@code isReleasable} must return {@code true} if blocking is
3101       * not necessary. Method {@code block} blocks the current thread
3102       * if necessary (perhaps internally invoking {@code isReleasable}
3103 <     * before actually blocking). The unusual methods in this API
3104 <     * accommodate synchronizers that may, but don't usually, block
3105 <     * for long periods. Similarly, they allow more efficient internal
3106 <     * handling of cases in which additional workers may be, but
3107 <     * usually are not, needed to ensure sufficient parallelism.
3108 <     * Toward this end, implementations of method {@code isReleasable}
3109 <     * must be amenable to repeated invocation.
3103 >     * before actually blocking). These actions are performed by any
3104 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3105 >     * unusual methods in this API accommodate synchronizers that may,
3106 >     * but don't usually, block for long periods. Similarly, they
3107 >     * allow more efficient internal handling of cases in which
3108 >     * additional workers may be, but usually are not, needed to
3109 >     * ensure sufficient parallelism.  Toward this end,
3110 >     * implementations of method {@code isReleasable} must be amenable
3111 >     * to repeated invocation.
3112       *
3113       * <p>For example, here is a ManagedBlocker based on a
3114       * ReentrantLock:
# Line 1753 | Line 3136 | public class ForkJoinPool extends Abstra
3136       *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3137       *   public boolean block() throws InterruptedException {
3138       *     if (item == null)
3139 <     *       item = queue.take
3139 >     *       item = queue.take();
3140       *     return true;
3141       *   }
3142       *   public boolean isReleasable() {
3143 <     *     return item != null || (item = queue.poll) != null;
3143 >     *     return item != null || (item = queue.poll()) != null;
3144       *   }
3145       *   public E getItem() { // call after pool.managedBlock completes
3146       *     return item;
# Line 1806 | Line 3189 | public class ForkJoinPool extends Abstra
3189          throws InterruptedException {
3190          Thread t = Thread.currentThread();
3191          if (t instanceof ForkJoinWorkerThread) {
3192 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3193 <            w.pool.awaitBlocker(blocker);
3192 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3193 >            while (!blocker.isReleasable()) { // variant of helpSignal
3194 >                WorkQueue[] ws; WorkQueue q; int m, u;
3195 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3196 >                    for (int i = 0; i <= m; ++i) {
3197 >                        if (blocker.isReleasable())
3198 >                            return;
3199 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3200 >                            p.signalWork(q);
3201 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3202 >                                (u >> UAC_SHIFT) >= 0)
3203 >                                break;
3204 >                        }
3205 >                    }
3206 >                }
3207 >                if (p.tryCompensate()) {
3208 >                    try {
3209 >                        do {} while (!blocker.isReleasable() &&
3210 >                                     !blocker.block());
3211 >                    } finally {
3212 >                        p.incrementActiveCount();
3213 >                    }
3214 >                    break;
3215 >                }
3216 >            }
3217          }
3218          else {
3219 <            do {} while (!blocker.isReleasable() && !blocker.block());
3219 >            do {} while (!blocker.isReleasable() &&
3220 >                         !blocker.block());
3221          }
3222      }
3223  
# Line 1819 | Line 3226 | public class ForkJoinPool extends Abstra
3226      // implement RunnableFuture.
3227  
3228      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3229 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3229 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3230      }
3231  
3232      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3233 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3233 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3234      }
3235  
3236      // Unsafe mechanics
3237 +    private static final sun.misc.Unsafe U;
3238 +    private static final long CTL;
3239 +    private static final long PARKBLOCKER;
3240 +    private static final int ABASE;
3241 +    private static final int ASHIFT;
3242 +    private static final long STEALCOUNT;
3243 +    private static final long PLOCK;
3244 +    private static final long INDEXSEED;
3245 +    private static final long QLOCK;
3246  
3247 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3248 <    private static final long workerCountsOffset =
1833 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
1834 <    private static final long runStateOffset =
1835 <        objectFieldOffset("runState", ForkJoinPool.class);
1836 <    private static final long eventCountOffset =
1837 <        objectFieldOffset("eventCount", ForkJoinPool.class);
1838 <    private static final long eventWaitersOffset =
1839 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1840 <    private static final long stealCountOffset =
1841 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1842 <    private static final long spareWaitersOffset =
1843 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1844 <
1845 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3247 >    static {
3248 >        int s; // initialize field offsets for CAS etc
3249          try {
3250 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3251 <        } catch (NoSuchFieldException e) {
3252 <            // Convert Exception to corresponding Error
3253 <            NoSuchFieldError error = new NoSuchFieldError(field);
3254 <            error.initCause(e);
3255 <            throw error;
3256 <        }
3250 >            U = getUnsafe();
3251 >            Class<?> k = ForkJoinPool.class;
3252 >            CTL = U.objectFieldOffset
3253 >                (k.getDeclaredField("ctl"));
3254 >            STEALCOUNT = U.objectFieldOffset
3255 >                (k.getDeclaredField("stealCount"));
3256 >            PLOCK = U.objectFieldOffset
3257 >                (k.getDeclaredField("plock"));
3258 >            INDEXSEED = U.objectFieldOffset
3259 >                (k.getDeclaredField("indexSeed"));
3260 >            Class<?> tk = Thread.class;
3261 >            PARKBLOCKER = U.objectFieldOffset
3262 >                (tk.getDeclaredField("parkBlocker"));
3263 >            Class<?> wk = WorkQueue.class;
3264 >            QLOCK = U.objectFieldOffset
3265 >                (wk.getDeclaredField("qlock"));
3266 >            Class<?> ak = ForkJoinTask[].class;
3267 >            ABASE = U.arrayBaseOffset(ak);
3268 >            s = U.arrayIndexScale(ak);
3269 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3270 >        } catch (Exception e) {
3271 >            throw new Error(e);
3272 >        }
3273 >        if ((s & (s-1)) != 0)
3274 >            throw new Error("data type scale not a power of two");
3275 >
3276 >        submitters = new ThreadLocal<Submitter>();
3277 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3278 >            new DefaultForkJoinWorkerThreadFactory();
3279 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3280 >
3281 >        /*
3282 >         * Establish common pool parameters.  For extra caution,
3283 >         * computations to set up common pool state are here; the
3284 >         * constructor just assigns these values to fields.
3285 >         */
3286 >
3287 >        int par = 0;
3288 >        Thread.UncaughtExceptionHandler handler = null;
3289 >        try {  // TBD: limit or report ignored exceptions?
3290 >            String pp = System.getProperty
3291 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3292 >            String hp = System.getProperty
3293 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3294 >            String fp = System.getProperty
3295 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3296 >            if (fp != null)
3297 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3298 >                       getSystemClassLoader().loadClass(fp).newInstance());
3299 >            if (hp != null)
3300 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3301 >                           getSystemClassLoader().loadClass(hp).newInstance());
3302 >            if (pp != null)
3303 >                par = Integer.parseInt(pp);
3304 >        } catch (Exception ignore) {
3305 >        }
3306 >
3307 >        if (par <= 0)
3308 >            par = Runtime.getRuntime().availableProcessors();
3309 >        if (par > MAX_CAP)
3310 >            par = MAX_CAP;
3311 >        commonPoolParallelism = par;
3312 >        long np = (long)(-par); // precompute initial ctl value
3313 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3314 >
3315 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3316      }
3317  
3318      /**
# Line 1880 | Line 3342 | public class ForkJoinPool extends Abstra
3342              }
3343          }
3344      }
3345 +
3346   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines