ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.56 by dl, Thu May 27 16:46:48 2010 UTC vs.
Revision 1.61 by dl, Wed Aug 11 18:45:12 2010 UTC

# Line 21 | Line 21 | import java.util.concurrent.CountDownLat
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25   * monitoring operations.
26   *
27   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 30 | import java.util.concurrent.CountDownLat
30   * execute subtasks created by other active tasks (eventually blocking
31   * waiting for work if none exist). This enables efficient processing
32   * when most tasks spawn other subtasks (as do most {@code
33 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34 < * execution of some plain {@code Runnable}- or {@code Callable}-
35 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37   * <p>A {@code ForkJoinPool} is constructed with a given target
38   * parallelism level; by default, equal to the number of available
39 < * processors. Unless configured otherwise via {@link
40 < * #setMaintainsParallelism}, the pool attempts to maintain this
41 < * number of active (or available) threads by dynamically adding,
42 < * suspending, or resuming internal worker threads, even if some tasks
43 < * are stalled waiting to join others. However, no such adjustments
44 < * are performed in the face of blocked IO or other unmanaged
45 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 65 | Line 51 | import java.util.concurrent.CountDownLat
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89   * used for all parallel task execution in a program or subsystem.
90   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 109 | import java.util.concurrent.CountDownLat
109   * {@code IllegalArgumentException}.
110   *
111   * <p>This implementation rejects submitted tasks (that is, by throwing
112 < * {@link RejectedExecutionException}) only when the pool is shut down.
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhuasted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 116 | Line 137 | public class ForkJoinPool extends Abstra
137       * of tasks profit from cache affinities, but others are harmed by
138       * cache pollution effects.)
139       *
140 +     * Beyond work-stealing support and essential bookkeeping, the
141 +     * main responsibility of this framework is to take actions when
142 +     * one worker is waiting to join a task stolen (or always held by)
143 +     * another.  Becauae we are multiplexing many tasks on to a pool
144 +     * of workers, we can't just let them block (as in Thread.join).
145 +     * We also cannot just reassign the joiner's run-time stack with
146 +     * another and replace it later, which would be a form of
147 +     * "continuation", that even if possible is not necessarily a good
148 +     * idea. Given that the creation costs of most threads on most
149 +     * systems mainly surrounds setting up runtime stacks, thread
150 +     * creation and switching is usually not much more expensive than
151 +     * stack creation and switching, and is more flexible). Instead we
152 +     * combine two tactics:
153 +     *
154 +     *   Helping: Arranging for the joiner to execute some task that it
155 +     *      would be running if the steal had not occurred.  Method
156 +     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 +     *      links to try to find such a task.
158 +     *
159 +     *   Compensating: Unless there are already enough live threads,
160 +     *      method helpMaintainParallelism() may create or or
161 +     *      re-activate a spare thread to compensate for blocked
162 +     *      joiners until they unblock.
163 +     *
164 +     * Because the determining existence of conservatively safe
165 +     * helping targets, the availability of already-created spares,
166 +     * and the apparent need to create new spares are all racy and
167 +     * require heuristic guidance, we rely on multiple retries of
168 +     * each. Further, because it is impossible to keep exactly the
169 +     * target (parallelism) number of threads running at any given
170 +     * time, we allow compensation during joins to fail, and enlist
171 +     * all other threads to help out whenever they are not otherwise
172 +     * occupied (i.e., mainly in method preStep).
173 +     *
174 +     * The ManagedBlocker extension API can't use helping so relies
175 +     * only on compensation in method awaitBlocker.
176 +     *
177       * The main throughput advantages of work-stealing stem from
178       * decentralized control -- workers mostly steal tasks from each
179       * other. We do not want to negate this by creating bottlenecks
180 <     * implementing the management responsibilities of this class. So
181 <     * we use a collection of techniques that avoid, reduce, or cope
182 <     * well with contention. These entail several instances of
183 <     * bit-packing into CASable fields to maintain only the minimally
184 <     * required atomicity. To enable such packing, we restrict maximum
185 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
186 <     * bit field), which is far in excess of normal operating range.
187 <     * Even though updates to some of these bookkeeping fields do
188 <     * sometimes contend with each other, they don't normally
189 <     * cache-contend with updates to others enough to warrant memory
190 <     * padding or isolation. So they are all held as fields of
191 <     * ForkJoinPool objects.  The main capabilities are as follows:
180 >     * implementing other management responsibilities. So we use a
181 >     * collection of techniques that avoid, reduce, or cope well with
182 >     * contention. These entail several instances of bit-packing into
183 >     * CASable fields to maintain only the minimally required
184 >     * atomicity. To enable such packing, we restrict maximum
185 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186 >     * unbalanced increments and decrements) to fit into a 16 bit
187 >     * field, which is far in excess of normal operating range.  Even
188 >     * though updates to some of these bookkeeping fields do sometimes
189 >     * contend with each other, they don't normally cache-contend with
190 >     * updates to others enough to warrant memory padding or
191 >     * isolation. So they are all held as fields of ForkJoinPool
192 >     * objects.  The main capabilities are as follows:
193       *
194       * 1. Creating and removing workers. Workers are recorded in the
195       * "workers" array. This is an array as opposed to some other data
# Line 146 | Line 205 | public class ForkJoinPool extends Abstra
205       * blocked workers. However, all other support code is set up to
206       * work with other policies.
207       *
208 +     * To ensure that we do not hold on to worker references that
209 +     * would prevent GC, ALL accesses to workers are via indices into
210 +     * the workers array (which is one source of some of the unusual
211 +     * code constructions here). In essence, the workers array serves
212 +     * as a WeakReference mechanism. Thus for example the event queue
213 +     * stores worker indices, not worker references. Access to the
214 +     * workers in associated methods (for example releaseEventWaiters)
215 +     * must both index-check and null-check the IDs. All such accesses
216 +     * ignore bad IDs by returning out early from what they are doing,
217 +     * since this can only be associated with shutdown, in which case
218 +     * it is OK to give up. On termination, we just clobber these
219 +     * data structures without trying to use them.
220 +     *
221       * 2. Bookkeeping for dynamically adding and removing workers. We
222 <     * maintain a given level of parallelism (or, if
223 <     * maintainsParallelism is false, at least avoid starvation). When
152 <     * some workers are known to be blocked (on joins or via
222 >     * aim to approximately maintain the given level of parallelism.
223 >     * When some workers are known to be blocked (on joins or via
224       * ManagedBlocker), we may create or resume others to take their
225       * place until they unblock (see below). Implementing this
226       * requires counts of the number of "running" threads (i.e., those
227       * that are neither blocked nor artifically suspended) as well as
228       * the total number.  These two values are packed into one field,
229       * "workerCounts" because we need accurate snapshots when deciding
230 <     * to create, resume or suspend.  To support these decisions,
231 <     * updates to spare counts must be prospective (not
232 <     * retrospective).  For example, the running count is decremented
233 <     * before blocking by a thread about to block as a spare, but
163 <     * incremented by the thread about to unblock it. Updates upon
164 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
165 <     * cannot usually be prospective, so the running count is in
166 <     * general an upper bound of the number of productively running
167 <     * threads Updates to the workerCounts field sometimes transiently
168 <     * encounter a fair amount of contention when join dependencies
169 <     * are such that many threads block or unblock at about the same
170 <     * time. We alleviate this by sometimes bundling updates (for
171 <     * example blocking one thread on join and resuming a spare cancel
172 <     * each other out), and in most other cases performing an
173 <     * alternative action like releasing waiters or locating spares.
230 >     * to create, resume or suspend.  Note however that the
231 >     * correspondance of these counts to reality is not guaranteed. In
232 >     * particular updates for unblocked threads may lag until they
233 >     * actually wake up.
234       *
235       * 3. Maintaining global run state. The run state of the pool
236       * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
# Line 199 | Line 259 | public class ForkJoinPool extends Abstra
259       * workers that previously could not find a task to now find one:
260       * Submission of a new task to the pool, or another worker pushing
261       * a task onto a previously empty queue.  (We also use this
262 <     * mechanism for termination and reconfiguration actions that
263 <     * require wakeups of idle workers).  Each worker maintains its
264 <     * last known event count, and blocks when a scan for work did not
265 <     * find a task AND its lastEventCount matches the current
266 <     * eventCount. Waiting idle workers are recorded in a variant of
267 <     * Treiber stack headed by field eventWaiters which, when nonzero,
268 <     * encodes the thread index and count awaited for by the worker
269 <     * thread most recently calling eventSync. This thread in turn has
270 <     * a record (field nextEventWaiter) for the next waiting worker.
271 <     * In addition to allowing simpler decisions about need for
272 <     * wakeup, the event count bits in eventWaiters serve the role of
273 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
274 <     * in task diffusion, workers not otherwise occupied may invoke
275 <     * method releaseWaiters, that removes and signals (unparks)
276 <     * workers not waiting on current count. To minimize task
277 <     * production stalls associate with signalling, any worker pushing
278 <     * a task on an empty queue invokes the weaker method signalWork,
279 <     * that only releases idle workers until it detects interference
280 <     * by other threads trying to release, and lets them take
281 <     * over. The net effect is a tree-like diffusion of signals, where
282 <     * released threads (and possibly others) help with unparks.  To
283 <     * further reduce contention effects a bit, failed CASes to
262 >     * mechanism for termination actions that require wakeups of idle
263 >     * workers).  Each worker maintains its last known event count,
264 >     * and blocks when a scan for work did not find a task AND its
265 >     * lastEventCount matches the current eventCount. Waiting idle
266 >     * workers are recorded in a variant of Treiber stack headed by
267 >     * field eventWaiters which, when nonzero, encodes the thread
268 >     * index and count awaited for by the worker thread most recently
269 >     * calling eventSync. This thread in turn has a record (field
270 >     * nextEventWaiter) for the next waiting worker.  In addition to
271 >     * allowing simpler decisions about need for wakeup, the event
272 >     * count bits in eventWaiters serve the role of tags to avoid ABA
273 >     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 >     * workers not otherwise occupied may invoke method
275 >     * releaseEventWaiters, that removes and signals (unparks) workers
276 >     * not waiting on current count. To reduce stalls, To minimize
277 >     * task production stalls associate with signalling, any worker
278 >     * pushing a task on an empty queue invokes the weaker method
279 >     * signalWork, that only releases idle workers until it detects
280 >     * interference by other threads trying to release, and lets them
281 >     * take over.  The net effect is a tree-like diffusion of signals,
282 >     * where released threads (and possibly others) help with unparks.
283 >     * To further reduce contention effects a bit, failed CASes to
284       * increment field eventCount are tolerated without retries.
285       * Conceptually they are merged into the same event, which is OK
286       * when their only purpose is to enable workers to scan for work.
# Line 228 | Line 288 | public class ForkJoinPool extends Abstra
288       * 5. Managing suspension of extra workers. When a worker is about
289       * to block waiting for a join (or via ManagedBlockers), we may
290       * create a new thread to maintain parallelism level, or at least
291 <     * avoid starvation (see below). Usually, extra threads are needed
292 <     * for only very short periods, yet join dependencies are such
293 <     * that we sometimes need them in bursts. Rather than create new
294 <     * threads each time this happens, we suspend no-longer-needed
295 <     * extra ones as "spares". For most purposes, we don't distinguish
296 <     * "extra" spare threads from normal "core" threads: On each call
297 <     * to preStep (the only point at which we can do this) a worker
291 >     * avoid starvation. Usually, extra threads are needed for only
292 >     * very short periods, yet join dependencies are such that we
293 >     * sometimes need them in bursts. Rather than create new threads
294 >     * each time this happens, we suspend no-longer-needed extra ones
295 >     * as "spares". For most purposes, we don't distinguish "extra"
296 >     * spare threads from normal "core" threads: On each call to
297 >     * preStep (the only point at which we can do this) a worker
298       * checks to see if there are now too many running workers, and if
299 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
300 <     * for suspended threads to resume before considering creating a
301 <     * new replacement. We don't need a special data structure to
302 <     * maintain spares; simply scanning the workers array looking for
303 <     * worker.isSuspended() is fine because the calling thread is
244 <     * otherwise not doing anything useful anyway; we are at least as
245 <     * happy if after locating a spare, the caller doesn't actually
246 <     * block because the join is ready before we try to adjust and
247 <     * compensate.  Note that this is intrinsically racy.  One thread
299 >     * so, suspends itself.  Method helpMaintainParallelism looks for
300 >     * suspended threads to resume before considering creating a new
301 >     * replacement. The spares themselves are encoded on another
302 >     * variant of a Treiber Stack, headed at field "spareWaiters".
303 >     * Note that the use of spares is intrinsically racy.  One thread
304       * may become a spare at about the same time as another is
305       * needlessly being created. We counteract this and related slop
306       * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend. The only
308 <     * effective difference between "extra" and "core" threads is that
309 <     * we allow the "extra" ones to time out and die if they are not
310 <     * resumed within a keep-alive interval of a few seconds. This is
311 <     * implemented mainly within ForkJoinWorkerThread, but requires
312 <     * some coordination (isTrimmed() -- meaning killed while
313 <     * suspended) to correctly maintain pool counts.
307 >     * preStep) to see whether they they should re-suspend.  To avoid
308 >     * long-term build-up of spares, the oldest spare (see
309 >     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 >     * not signalled and calls tryTrimSpare, which uses two different
311 >     * thresholds: Always killing if the number of spares is greater
312 >     * that 25% of total, and killing others only at a slower rate
313 >     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314       *
315       * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads,
317 <     * in methods awaitJoin and awaitBlocker. We always
318 <     * need to create one when the number of running threads becomes
319 <     * zero. But because blocked joins are typically dependent, we
320 <     * don't necessarily need or want one-to-one replacement. Using a
321 <     * one-to-one compensation rule often leads to enough useless
322 <     * overhead creating, suspending, resuming, and/or killing threads
323 <     * to signficantly degrade throughput.  We use a rule reflecting
324 <     * the idea that, the more spare threads you already have, the
325 <     * more evidence you need to create another one. The "evidence"
326 <     * here takes two forms: (1) Using a creation threshold expressed
327 <     * in terms of the current deficit -- target minus running
328 <     * threads. To reduce flickering and drift around target values,
329 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
330 <     * (where dc is deficit, sc is number of spare threads and pc is
331 <     * target parallelism.)  (2) Using a form of adaptive
332 <     * spionning. requiring a number of threshold checks proportional
333 <     * to the number of spare threads.  This effectively reduces churn
334 <     * at the price of systematically undershooting target parallelism
279 <     * when many threads are blocked.  However, biasing toward
280 <     * undeshooting partially compensates for the above mechanics to
281 <     * suspend extra threads, that normally lead to overshoot because
282 <     * we can only suspend workers in-between top-level actions. It
283 <     * also better copes with the fact that some of the methods in
284 <     * this class tend to never become compiled (but are interpreted),
285 <     * so some components of the entire set of controls might execute
286 <     * many times faster than others. And similarly for cases where
287 <     * the apparent lack of work is just due to GC stalls and other
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossble
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the the
322 >     * presence of transients phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow some slack in
327 >     * creation thresholds, using rules that reflect the fact that the
328 >     * more threads we have running, the more likely that we are
329 >     * underestimating the number running threads. The rules also
330 >     * better cope with the fact that some of the methods in this
331 >     * class tend to never become compiled (but are interpreted), so
332 >     * some components of the entire set of controls might execute 100
333 >     * times faster than others. And similarly for cases where the
334 >     * apparent lack of work is just due to GC stalls and other
335       * transient system activity.
336       *
290     * 7. Maintaining other configuration parameters and monitoring
291     * statistics. Updates to fields controlling parallelism level,
292     * max size, etc can only meaningfully take effect for individual
293     * threads upon their next top-level actions; i.e., between
294     * stealing/running tasks/submission, which are separated by calls
295     * to preStep.  Memory ordering for these (assumed infrequent)
296     * reconfiguration calls is ensured by using reads and writes to
297     * volatile field workerCounts (that must be read in preStep anyway)
298     * as "fences" -- user-level reads are preceded by reads of
299     * workCounts, and writes are followed by no-op CAS to
300     * workerCounts. The values reported by other management and
301     * monitoring methods are either computed on demand, or are kept
302     * in fields that are only updated when threads are otherwise
303     * idle.
304     *
337       * Beware that there is a lot of representation-level coupling
338       * among classes ForkJoinPool, ForkJoinWorkerThread, and
339       * ForkJoinTask.  For example, direct access to "workers" array by
# Line 313 | Line 345 | public class ForkJoinPool extends Abstra
345       *
346       * Style notes: There are lots of inline assignments (of form
347       * "while ((local = field) != 0)") which are usually the simplest
348 <     * way to ensure read orderings. Also several occurrences of the
349 <     * unusual "do {} while(!cas...)" which is the simplest way to
350 <     * force an update of a CAS'ed variable. There are also a few
351 <     * other coding oddities that help some methods perform reasonably
352 <     * even when interpreted (not compiled).
348 >     * way to ensure the required read orderings (which are sometimes
349 >     * critical). Also several occurrences of the unusual "do {}
350 >     * while(!cas...)" which is the simplest way to force an update of
351 >     * a CAS'ed variable. There are also other coding oddities that
352 >     * help some methods perform reasonably even when interpreted (not
353 >     * compiled), at the expense of some messy constructions that
354 >     * reduce byte code counts.
355       *
356       * The order of declarations in this file is: (1) statics (2)
357       * fields (along with constants used when unpacking some of them)
# Line 346 | Line 380 | public class ForkJoinPool extends Abstra
380       * Default ForkJoinWorkerThreadFactory implementation; creates a
381       * new ForkJoinWorkerThread.
382       */
383 <    static class  DefaultForkJoinWorkerThreadFactory
383 >    static class DefaultForkJoinWorkerThreadFactory
384          implements ForkJoinWorkerThreadFactory {
385          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
386              return new ForkJoinWorkerThread(pool);
# Line 385 | Line 419 | public class ForkJoinPool extends Abstra
419          new AtomicInteger();
420  
421      /**
422 <     * Absolute bound for parallelism level. Twice this number must
423 <     * fit into a 16bit field to enable word-packing for some counts.
422 >     * Absolute bound for parallelism level. Twice this number plus
423 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
424 >     * word-packing for some counts and indices.
425       */
426 <    private static final int MAX_THREADS = 0x7fff;
426 >    private static final int MAX_WORKERS   = 0x7fff;
427  
428      /**
429       * Array holding all worker threads in the pool.  Array size must
# Line 414 | Line 449 | public class ForkJoinPool extends Abstra
449      /**
450       * Latch released upon termination.
451       */
452 <    private final CountDownLatch terminationLatch;
452 >    private final Phaser termination;
453  
454      /**
455       * Creation factory for worker threads.
# Line 428 | Line 463 | public class ForkJoinPool extends Abstra
463      private volatile long stealCount;
464  
465      /**
466 +     * The last nanoTime that a spare thread was trimmed
467 +     */
468 +    private volatile long trimTime;
469 +
470 +    /**
471 +     * The rate at which to trim unused spares
472 +     */
473 +    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 +        1000L * 1000L * 1000L; // 1 sec
475 +
476 +    /**
477       * Encoded record of top of treiber stack of threads waiting for
478       * events. The top 32 bits contain the count being waited for. The
479 <     * bottom word contains one plus the pool index of waiting worker
480 <     * thread.
479 >     * bottom 16 bits contains one plus the pool index of waiting
480 >     * worker thread. (Bits 16-31 are unused.)
481       */
482      private volatile long eventWaiters;
483  
484      private static final int  EVENT_COUNT_SHIFT = 32;
485 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
485 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
486  
487      /**
488       * A counter for events that may wake up worker threads:
489       *   - Submission of a new task to the pool
490       *   - A worker pushing a task on an empty queue
491 <     *   - termination and reconfiguration
491 >     *   - termination
492       */
493      private volatile int eventCount;
494  
495      /**
496 +     * Encoded record of top of treiber stack of spare threads waiting
497 +     * for resumption. The top 16 bits contain an arbitrary count to
498 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
499 +     * index of waiting worker thread.
500 +     */
501 +    private volatile int spareWaiters;
502 +
503 +    private static final int SPARE_COUNT_SHIFT = 16;
504 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
505 +
506 +    /**
507       * Lifecycle control. The low word contains the number of workers
508       * that are (probably) executing tasks. This value is atomically
509       * incremented before a worker gets a task to run, and decremented
# Line 475 | Line 532 | public class ForkJoinPool extends Abstra
532       * making decisions about creating and suspending spare
533       * threads. Updated only by CAS. Note that adding a new worker
534       * requires incrementing both counts, since workers start off in
535 <     * running state.  This field is also used for memory-fencing
479 <     * configuration parameters.
535 >     * running state.
536       */
537      private volatile int workerCounts;
538  
# Line 485 | Line 541 | public class ForkJoinPool extends Abstra
541      private static final int ONE_RUNNING        = 1;
542      private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
543  
488    /*
489     * Fields parallelism. maxPoolSize, and maintainsParallelism are
490     * non-volatile, but external reads/writes use workerCount fences
491     * to ensure visability.
492     */
493
544      /**
545       * The target parallelism level.
546 +     * Accessed directly by ForkJoinWorkerThreads.
547       */
548 <    private int parallelism;
498 <
499 <    /**
500 <     * The maximum allowed pool size.
501 <     */
502 <    private int maxPoolSize;
548 >    final int parallelism;
549  
550      /**
551       * True if use local fifo, not default lifo, for local polling
552 <     * Replicated by ForkJoinWorkerThreads
552 >     * Read by, and replicated by ForkJoinWorkerThreads
553       */
554 <    private volatile boolean locallyFifo;
554 >    final boolean locallyFifo;
555  
556      /**
557 <     * Controls whether to add spares to maintain parallelism
557 >     * The uncaught exception handler used when any worker abruptly
558 >     * terminates.
559       */
560 <    private boolean maintainsParallelism;
514 <
515 <    /**
516 <     * The uncaught exception handler used when any worker
517 <     * abruptly terminates
518 <     */
519 <    private volatile Thread.UncaughtExceptionHandler ueh;
560 >    private final Thread.UncaughtExceptionHandler ueh;
561  
562      /**
563       * Pool number, just for assigning useful names to worker threads
564       */
565      private final int poolNumber;
566  
567 <    // utilities for updating fields
567 >
568 >    // Utilities for CASing fields. Note that several of these
569 >    // are manually inlined by callers
570  
571      /**
572 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
572 >     * Increments running count part of workerCounts
573       */
574 <    final void updateRunningCount(int delta) {
575 <        int wc;
574 >    final void incrementRunningCount() {
575 >        int c;
576          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 <                                               wc = workerCounts,
578 <                                               wc + delta));
577 >                                               c = workerCounts,
578 >                                               c + ONE_RUNNING));
579      }
580  
581      /**
582 <     * Decrements running count unless already zero
582 >     * Tries to decrement running count unless already zero
583       */
584      final boolean tryDecrementRunningCount() {
585          int wc = workerCounts;
# Line 547 | Line 590 | public class ForkJoinPool extends Abstra
590      }
591  
592      /**
593 <     * Write fence for user modifications of pool parameters
594 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
593 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
594 >     * (rarely) necessary when other count updates lag.
595 >     *
596 >     * @param dr -- either zero or ONE_RUNNING
597 >     * @param dt == either zero or ONE_TOTAL
598       */
599 <    private void workerCountWriteFence() {
600 <        int wc;
601 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
602 <                                 wc = workerCounts, wc);
599 >    private void decrementWorkerCounts(int dr, int dt) {
600 >        for (;;) {
601 >            int wc = workerCounts;
602 >            if (wc == 0 && (runState & TERMINATED) != 0)
603 >                return; // lagging termination on a backout
604 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
605 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
606 >                Thread.yield();
607 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
608 >                                         wc, wc - (dr + dt)))
609 >                return;
610 >        }
611      }
612  
613      /**
614 <     * Read fence for external reads of pool parameters
561 <     * (parallelism. maxPoolSize, etc).
614 >     * Increments event count
615       */
616 <    private void workerCountReadFence() {
617 <        int ignore = workerCounts;
616 >    private void advanceEventCount() {
617 >        int c;
618 >        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619 >                                              c = eventCount, c+1));
620      }
621  
622      /**
# Line 612 | Line 667 | public class ForkJoinPool extends Abstra
667          lock.lock();
668          try {
669              ForkJoinWorkerThread[] ws = workers;
670 <            int nws = ws.length;
671 <            if (k < 0 || k >= nws || ws[k] != null) {
672 <                for (k = 0; k < nws && ws[k] != null; ++k)
670 >            int n = ws.length;
671 >            if (k < 0 || k >= n || ws[k] != null) {
672 >                for (k = 0; k < n && ws[k] != null; ++k)
673                      ;
674 <                if (k == nws)
675 <                    ws = Arrays.copyOf(ws, nws << 1);
674 >                if (k == n)
675 >                    ws = Arrays.copyOf(ws, n << 1);
676              }
677              ws[k] = w;
678              workers = ws; // volatile array write ensures slot visibility
# Line 650 | Line 705 | public class ForkJoinPool extends Abstra
705       * Tries to create and add new worker. Assumes that worker counts
706       * are already updated to accommodate the worker, so adjusts on
707       * failure.
653     *
654     * @return new worker or null if creation failed
708       */
709 <    private ForkJoinWorkerThread addWorker() {
709 >    private void addWorker() {
710          ForkJoinWorkerThread w = null;
711          try {
712              w = factory.newThread(this);
713          } finally { // Adjust on either null or exceptional factory return
714              if (w == null) {
715 <                onWorkerCreationFailure();
716 <                return null;
715 >                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
716 >                tryTerminate(false); // in case of failure during shutdown
717              }
718          }
719 <        w.start(recordWorker(w), locallyFifo, ueh);
720 <        return w;
668 <    }
669 <
670 <    /**
671 <     * Adjusts counts upon failure to create worker
672 <     */
673 <    private void onWorkerCreationFailure() {
674 <        for (;;) {
675 <            int wc = workerCounts;
676 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
677 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
678 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
679 <                break;
680 <        }
681 <        tryTerminate(false); // in case of failure during shutdown
682 <    }
683 <
684 <    /**
685 <     * Create enough total workers to establish target parallelism,
686 <     * giving up if terminating or addWorker fails
687 <     */
688 <    private void ensureEnoughTotalWorkers() {
689 <        int wc;
690 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
691 <               runState < TERMINATING) {
692 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
693 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
694 <                 addWorker() == null))
695 <                break;
696 <        }
719 >        if (w != null)
720 >            w.start(recordWorker(w), ueh);
721      }
722  
723      /**
724       * Final callback from terminating worker.  Removes record of
725       * worker from array, and adjusts counts. If pool is shutting
726 <     * down, tries to complete terminatation, else possibly replaces
703 <     * the worker.
726 >     * down, tries to complete terminatation.
727       *
728       * @param w the worker
729       */
730      final void workerTerminated(ForkJoinWorkerThread w) {
708        if (w.active) { // force inactive
709            w.active = false;
710            do {} while (!tryDecrementActiveCount());
711        }
731          forgetWorker(w);
732 <
733 <        // Decrement total count, and if was running, running count
734 <        // Spin (waiting for other updates) if either would be negative
735 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
717 <        int unit = ONE_TOTAL + nr;
718 <        for (;;) {
719 <            int wc = workerCounts;
720 <            int rc = wc & RUNNING_COUNT_MASK;
721 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
722 <                Thread.yield(); // back off if waiting for other updates
723 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
724 <                                              wc, wc - unit))
725 <                break;
726 <        }
727 <
728 <        accumulateStealCount(w); // collect final count
729 <        if (!tryTerminate(false))
730 <            ensureEnoughTotalWorkers();
732 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
733 >        while (w.stealCount != 0) // collect final count
734 >            tryAccumulateStealCount(w);
735 >        tryTerminate(false);
736      }
737  
738      // Waiting for and signalling events
739  
740      /**
736     * Ensures eventCount on exit is different (mod 2^32) than on
737     * entry.  CAS failures are OK -- any change in count suffices.
738     */
739    private void advanceEventCount() {
740        int c;
741        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
742    }
743
744    /**
741       * Releases workers blocked on a count not equal to current count.
742 +     * Normally called after precheck that eventWaiters isn't zero to
743 +     * avoid wasted array checks.
744 +     *
745 +     * @param signalling true if caller is a signalling worker so can
746 +     * exit upon (conservatively) detected contention by other threads
747 +     * who will continue to release
748       */
749 <    final void releaseWaiters() {
750 <        long top;
751 <        int id;
752 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
753 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
754 <            ForkJoinWorkerThread[] ws = workers;
755 <            ForkJoinWorkerThread w;
756 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
757 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 <                                          top, w.nextWaiter))
749 >    private void releaseEventWaiters(boolean signalling) {
750 >        ForkJoinWorkerThread[] ws = workers;
751 >        int n = ws.length;
752 >        long h; // head of stack
753 >        ForkJoinWorkerThread w; int id, ec;
754 >        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
755 >               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
756 >               id < n && (w = ws[id]) != null) {
757 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 >                                          h, h = w.nextWaiter))
759                  LockSupport.unpark(w);
760 +            if (signalling && (eventCount != ec || eventWaiters != h))
761 +                break;
762          }
763      }
764  
765      /**
766 <     * Advances eventCount and releases waiters until interference by
767 <     * other releasing threads is detected.
766 >     * Tries to advance eventCount and releases waiters. Called only
767 >     * from workers.
768       */
769      final void signalWork() {
770 <        int ec;
771 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
772 <        outer:for (;;) {
773 <            long top = eventWaiters;
770 <            ec = eventCount;
771 <            for (;;) {
772 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
773 <                int id = (int)(top & WAITER_INDEX_MASK);
774 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
775 <                    return;
776 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
777 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
778 <                                               top, top = w.nextWaiter))
779 <                    continue outer;      // possibly stale; reread
780 <                LockSupport.unpark(w);
781 <                if (top != eventWaiters) // let someone else take over
782 <                    return;
783 <            }
784 <        }
770 >        int c; // try to increment event count -- CAS failure OK
771 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
772 >        if (eventWaiters != 0L)
773 >            releaseEventWaiters(true);
774      }
775  
776      /**
777 <     * If worker is inactive, blocks until terminating or event count
778 <     * advances from last value held by worker; in any case helps
790 <     * release others.
777 >     * Blocks worker until terminating or event count
778 >     * advances from last value held by worker
779       *
780       * @param w the calling worker thread
781       */
782      private void eventSync(ForkJoinWorkerThread w) {
783 <        if (!w.active) {
784 <            int prev = w.lastEventCount;
785 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
786 <                            ((long)(w.poolIndex + 1)));
787 <            long top;
788 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
789 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
790 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
791 <                   eventCount == prev) {
792 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
793 <                                              w.nextWaiter = top, nextTop)) {
794 <                    accumulateStealCount(w); // transfer steals while idle
795 <                    Thread.interrupted();    // clear/ignore interrupt
796 <                    while (eventCount == prev)
797 <                        w.doPark();
798 <                    break;
783 >        int wec = w.lastEventCount;
784 >        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
785 >        long h;
786 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
787 >               ((h = eventWaiters) == 0L ||
788 >                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
789 >               eventCount == wec) {
790 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
791 >                                          w.nextWaiter = h, nh)) {
792 >                while (runState < TERMINATING && eventCount == wec) {
793 >                    if (!tryAccumulateStealCount(w))  // transfer while idle
794 >                        continue;
795 >                    Thread.interrupted();             // clear/ignore interrupt
796 >                    if (eventCount != wec)
797 >                        break;
798 >                    LockSupport.park(w);
799                  }
800 +                break;
801              }
813            w.lastEventCount = eventCount;
802          }
803 <        releaseWaiters();
803 >        w.lastEventCount = eventCount;
804      }
805  
806 +    // Maintaining spares
807 +
808      /**
809 <     * Callback from workers invoked upon each top-level action (i.e.,
820 <     * stealing a task or taking a submission and running
821 <     * it). Performs one or both of the following:
822 <     *
823 <     * * If the worker cannot find work, updates its active status to
824 <     * inactive and updates activeCount unless there is contention, in
825 <     * which case it may try again (either in this or a subsequent
826 <     * call).  Additionally, awaits the next task event and/or helps
827 <     * wake up other releasable waiters.
828 <     *
829 <     * * If there are too many running threads, suspends this worker
830 <     * (first forcing inactivation if necessary).  If it is not
831 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
832 <     * -- killed while suspended within suspendAsSpare. Otherwise,
833 <     * upon resume it rechecks to make sure that it is still needed.
834 <     *
835 <     * @param w the worker
836 <     * @param worked false if the worker scanned for work but didn't
837 <     * find any (in which case it may block waiting for work).
809 >     * Pushes worker onto the spare stack
810       */
811 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
812 <        boolean active = w.active;
813 <        boolean inactivate = !worked & active;
814 <        for (;;) {
815 <            if (inactivate) {
816 <                int c = runState;
817 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
818 <                                             c, c - ONE_ACTIVE))
819 <                    inactivate = active = w.active = false;
820 <            }
821 <            int wc = workerCounts;
822 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
823 <                if (!worked)
824 <                    eventSync(w);
825 <                return;
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815 >    }
816 >
817 >    /**
818 >     * Tries (once) to resume a spare if running count is less than
819 >     * target parallelism. Fails on contention or stale workers.
820 >     */
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823 >        ForkJoinWorkerThread w;
824 >        ForkJoinWorkerThread[] ws;
825 >        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
826 >            id < (ws = workers).length && (w = ws[id]) != null &&
827 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
828 >            eventWaiters == 0L &&
829 >            spareWaiters == sw &&
830 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
831 >                                     sw, w.nextSpare) &&
832 >            w.tryUnsuspend()) {
833 >            int c; // try increment; if contended, finish after unpark
834 >            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
835 >                                                   c = workerCounts,
836 >                                                   c + ONE_RUNNING);
837 >            LockSupport.unpark(w);
838 >            if (!inc) {
839 >                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
840 >                                                      c = workerCounts,
841 >                                                      c + ONE_RUNNING));
842              }
855            if (!(inactivate |= active) &&  // must inactivate to suspend
856                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
857                                         wc, wc - ONE_RUNNING) &&
858                !w.suspendAsSpare())        // false if trimmed
859                return;
843          }
844      }
845  
846      /**
847 <     * Adjusts counts and creates or resumes compensating threads for
848 <     * a worker blocking on task joinMe.  First tries resuming an
849 <     * existing spare (which usually also avoids any count
850 <     * adjustment), but must then decrement running count to determine
851 <     * whether a new thread is needed. See above for fuller
852 <     * explanation. This code is sprawled out non-modularly mainly
853 <     * because adaptive spinning works best if the entire method is
854 <     * either interpreted or compiled vs having only some pieces of it
855 <     * compiled.
856 <     *
857 <     * @param joinMe the task to join
858 <     * @return task status on exit (to simplify usage by callers)
859 <     */
860 <    final int awaitJoin(ForkJoinTask<?> joinMe) {
847 >     * Callback from oldest spare occasionally waking up.  Tries
848 >     * (once) to shutdown a spare if more than 25% spare overage, or
849 >     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850 >     * least #parallelism running threads. Note that we don't need CAS
851 >     * or locks here because the method is called only from the oldest
852 >     * suspended spare occasionally waking (and even misfires are OK).
853 >     *
854 >     * @param now the wake up nanoTime of caller
855 >     */
856 >    final void tryTrimSpare(long now) {
857 >        long lastTrim = trimTime;
858 >        trimTime = now;
859 >        helpMaintainParallelism(); // first, help wake up any needed spares
860 >        int sw, id;
861 >        ForkJoinWorkerThread w;
862 >        ForkJoinWorkerThread[] ws;
863          int pc = parallelism;
864 <        boolean adj = false;        // true when running count adjusted
865 <        int scans = 0;
866 <
867 <        while (joinMe.status >= 0) {
868 <            ForkJoinWorkerThread spare = null;
869 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
870 <                ForkJoinWorkerThread[] ws = workers;
871 <                int nws = ws.length;
872 <                for (int i = 0; i < nws; ++i) {
873 <                    ForkJoinWorkerThread w = ws[i];
889 <                    if (w != null && w.isSuspended()) {
890 <                        spare = w;
891 <                        break;
892 <                    }
893 <                }
894 <                if (joinMe.status < 0)
895 <                    break;
896 <            }
897 <            int wc = workerCounts;
898 <            int rc = wc & RUNNING_COUNT_MASK;
899 <            int dc = pc - rc;
900 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
901 <                if (adj) {
902 <                    int c;
903 <                    do {} while (!UNSAFE.compareAndSwapInt
904 <                                 (this, workerCountsOffset,
905 <                                  c = workerCounts, c + ONE_RUNNING));
906 <                }
907 <                adj = true;
908 <                LockSupport.unpark(spare);
909 <            }
910 <            else if (adj) {
911 <                if (dc <= 0)
912 <                    break;
913 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
914 <                if (scans > tc) {
915 <                    int ts = (tc - pc) * pc;
916 <                    if (rc != 0 &&  (dc * dc < ts || !maintainsParallelism))
917 <                        break;
918 <                    if (scans > ts && tc < maxPoolSize &&
919 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
920 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
921 <                        addWorker();
922 <                        break;
923 <                    }
924 <                }
925 <            }
926 <            else if (rc != 0)
927 <                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
928 <                                                wc, wc - ONE_RUNNING);
929 <            if ((scans++ & 1) == 0)
930 <                releaseWaiters();   // help others progress
931 <            else
932 <                Thread.yield();     // avoid starving productive threads
933 <        }
864 >        int wc = workerCounts;
865 >        if ((wc & RUNNING_COUNT_MASK) >= pc &&
866 >            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867 >             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868 >            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 >            id < (ws = workers).length && (w = ws[id]) != null &&
870 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 >                                     sw, w.nextSpare))
872 >            w.shutdown(false);
873 >    }
874  
875 <        if (adj) {
876 <            joinMe.internalAwaitDone();
877 <            int c;
878 <            do {} while (!UNSAFE.compareAndSwapInt
879 <                         (this, workerCountsOffset,
880 <                          c = workerCounts, c + ONE_RUNNING));
875 >    /**
876 >     * Does at most one of:
877 >     *
878 >     * 1. Help wake up existing workers waiting for work via
879 >     *    releaseEventWaiters. (If any exist, then it probably doesn't
880 >     *    matter right now if under target parallelism level.)
881 >     *
882 >     * 2. If below parallelism level and a spare exists, try (once)
883 >     *    to resume it via tryResumeSpare.
884 >     *
885 >     * 3. If neither of the above, tries (once) to add a new
886 >     *    worker if either there are not enough total, or if all
887 >     *    existing workers are busy, there are either no running
888 >     *    workers or the deficit is at least twice the surplus.
889 >     */
890 >    private void helpMaintainParallelism() {
891 >        // uglified to work better when not compiled
892 >        int pc, wc, rc, tc, rs; long h;
893 >        if ((h = eventWaiters) != 0L) {
894 >            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895 >                releaseEventWaiters(false); // avoid useless call
896 >        }
897 >        else if ((pc = parallelism) >
898 >                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 >            if (spareWaiters != 0)
900 >                tryResumeSpare();
901 >            else if ((rs = runState) < TERMINATING &&
902 >                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 >                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 >                       (rc == 0 ||                       // must add
905 >                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 >                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 >                     workerCounts == wc &&
908 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 >                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 >                addWorker();
911          }
942        return joinMe.status;
912      }
913  
914      /**
915 <     * Same idea as awaitJoin
915 >     * Callback from workers invoked upon each top-level action (i.e.,
916 >     * stealing a task or taking a submission and running
917 >     * it). Performs one or more of the following:
918 >     *
919 >     * 1. If the worker cannot find work (misses > 0), updates its
920 >     *    active status to inactive and updates activeCount unless
921 >     *    this is the first miss and there is contention, in which
922 >     *    case it may try again (either in this or a subsequent
923 >     *    call).
924 >     *
925 >     * 2. If there are at least 2 misses, awaits the next task event
926 >     *    via eventSync
927 >     *
928 >     * 3. If there are too many running threads, suspends this worker
929 >     *    (first forcing inactivation if necessary).  If it is not
930 >     *    needed, it may be killed while suspended via
931 >     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 >     *    sure that it is still needed.
933 >     *
934 >     * 4. Helps release and/or reactivate other workers via
935 >     *    helpMaintainParallelism
936 >     *
937 >     * @param w the worker
938 >     * @param misses the number of scans by caller failing to find work
939 >     * (saturating at 2 just to avoid wraparound)
940       */
941 <    final void awaitBlocker(ManagedBlocker blocker, boolean maintainPar)
942 <        throws InterruptedException {
950 <        maintainPar &= maintainsParallelism;
941 >    final void preStep(ForkJoinWorkerThread w, int misses) {
942 >        boolean active = w.active;
943          int pc = parallelism;
952        boolean adj = false;        // true when running count adjusted
953        int scans = 0;
954        boolean done;
955
944          for (;;) {
957            if (done = blocker.isReleasable())
958                break;
959            ForkJoinWorkerThread spare = null;
960            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
961                ForkJoinWorkerThread[] ws = workers;
962                int nws = ws.length;
963                for (int i = 0; i < nws; ++i) {
964                    ForkJoinWorkerThread w = ws[i];
965                    if (w != null && w.isSuspended()) {
966                        spare = w;
967                        break;
968                    }
969                }
970                if (done = blocker.isReleasable())
971                    break;
972            }
945              int wc = workerCounts;
946              int rc = wc & RUNNING_COUNT_MASK;
947 <            int dc = pc - rc;
948 <            if (dc > 0 && spare != null && spare.tryUnsuspend()) {
949 <                if (adj) {
950 <                    int c;
951 <                    do {} while (!UNSAFE.compareAndSwapInt
952 <                                 (this, workerCountsOffset,
953 <                                  c = workerCounts, c + ONE_RUNNING));
954 <                }
983 <                adj = true;
984 <                LockSupport.unpark(spare);
947 >            if (active && (misses > 0 || rc > pc)) {
948 >                int rs;                      // try inactivate
949 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 >                                             rs = runState, rs - ONE_ACTIVE))
951 >                    active = w.active = false;
952 >                else if (misses > 1 || rc > pc ||
953 >                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 >                    continue;                // force inactivate
955              }
956 <            else if (adj) {
957 <                if (dc <= 0)
956 >            if (misses > 1) {
957 >                misses = 0;                  // don't re-sync
958 >                eventSync(w);                // continue loop to recheck rc
959 >            }
960 >            else if (rc > pc) {
961 >                if (workerCounts == wc &&   // try to suspend as spare
962 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 >                                             wc, wc - ONE_RUNNING) &&
964 >                    !w.suspendAsSpare())    // false if killed
965                      break;
989                int tc = wc >>> TOTAL_COUNT_SHIFT;
990                if (scans > tc) {
991                    int ts = (tc - pc) * pc;
992                    if (rc != 0 &&  (dc * dc < ts || !maintainPar))
993                        break;
994                    if (scans > ts && tc < maxPoolSize &&
995                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
996                                                 wc+(ONE_RUNNING|ONE_TOTAL))){
997                        addWorker();
998                        break;
999                    }
1000                }
966              }
967 <            else if (rc != 0)
968 <                adj = UNSAFE.compareAndSwapInt (this, workerCountsOffset,
969 <                                                wc, wc - ONE_RUNNING);
970 <            if ((++scans & 1) == 0)
971 <                releaseWaiters();   // help others progress
1007 <            else
1008 <                Thread.yield();     // avoid starving productive threads
967 >            else {
968 >                if (rc < pc || eventWaiters != 0L)
969 >                    helpMaintainParallelism();
970 >                break;
971 >            }
972          }
973 +    }
974  
975 <        try {
976 <            if (!done)
977 <                do {} while (!blocker.isReleasable() && !blocker.block());
978 <        } finally {
979 <            if (adj) {
975 >    /**
976 >     * Helps and/or blocks awaiting join of the given task.
977 >     * Alternates between helpJoinTask() and helpMaintainParallelism()
978 >     * as many times as there is a deficit in running count (or longer
979 >     * if running count would become zero), then blocks if task still
980 >     * not done.
981 >     *
982 >     * @param joinMe the task to join
983 >     */
984 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
985 >        int threshold = parallelism;         // descend blocking thresholds
986 >        while (joinMe.status >= 0) {
987 >            boolean block; int wc;
988 >            worker.helpJoinTask(joinMe);
989 >            if (joinMe.status < 0)
990 >                break;
991 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
992 >                if (threshold > 0)
993 >                    --threshold;
994 >                else
995 >                    advanceEventCount(); // force release
996 >                block = false;
997 >            }
998 >            else
999 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1000 >                                                 wc, wc - ONE_RUNNING);
1001 >            helpMaintainParallelism();
1002 >            if (block) {
1003                  int c;
1004 +                joinMe.internalAwaitDone();
1005                  do {} while (!UNSAFE.compareAndSwapInt
1006                               (this, workerCountsOffset,
1007                                c = workerCounts, c + ONE_RUNNING));
1008 +                break;
1009              }
1010          }
1011      }
1012  
1013      /**
1014 <     * Unless there are not enough other running threads, adjusts
1026 <     * counts and blocks a worker performing helpJoin that cannot find
1027 <     * any work.
1028 <     *
1029 <     * @return true if joinMe now done
1014 >     * Same idea as awaitJoin, but no helping
1015       */
1016 <    final boolean tryAwaitBusyJoin(ForkJoinTask<?> joinMe) {
1017 <        int pc = parallelism;
1018 <        outer:for (;;) {
1019 <            releaseWaiters();
1020 <            if ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1021 <                ForkJoinWorkerThread[] ws = workers;
1022 <                int nws = ws.length;
1023 <                for (int i = 0; i < nws; ++i) {
1024 <                    ForkJoinWorkerThread w = ws[i];
1025 <                    if (w != null && w.isSuspended()) {
1026 <                        if (joinMe.status < 0)
1042 <                            return true;
1043 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
1044 <                            break;
1045 <                        if (w.tryUnsuspend()) {
1046 <                            LockSupport.unpark(w);
1047 <                            break outer;
1048 <                        }
1049 <                        continue outer;
1050 <                    }
1051 <                }
1016 >    final void awaitBlocker(ManagedBlocker blocker)
1017 >        throws InterruptedException {
1018 >        int threshold = parallelism;
1019 >        while (!blocker.isReleasable()) {
1020 >            boolean block; int wc;
1021 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1022 >                if (threshold > 0)
1023 >                    --threshold;
1024 >                else
1025 >                    advanceEventCount();
1026 >                block = false;
1027              }
1028 <            if (joinMe.status < 0)
1029 <                return true;
1030 <            int wc = workerCounts;
1031 <            if ((wc & RUNNING_COUNT_MASK) <= 2 ||
1032 <                (wc >>> TOTAL_COUNT_SHIFT) < pc)
1033 <                return false;  // keep this thread alive
1034 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1035 <                                         wc, wc - ONE_RUNNING))
1028 >            else
1029 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1030 >                                                 wc, wc - ONE_RUNNING);
1031 >            helpMaintainParallelism();
1032 >            if (block) {
1033 >                try {
1034 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1035 >                } finally {
1036 >                    int c;
1037 >                    do {} while (!UNSAFE.compareAndSwapInt
1038 >                                 (this, workerCountsOffset,
1039 >                                  c = workerCounts, c + ONE_RUNNING));
1040 >                }
1041                  break;
1042 +            }
1043          }
1063
1064        joinMe.internalAwaitDone();
1065        int c;
1066        do {} while (!UNSAFE.compareAndSwapInt
1067                     (this, workerCountsOffset,
1068                      c = workerCounts, c + ONE_RUNNING));
1069        return true;
1044      }
1045  
1046      /**
# Line 1090 | Line 1064 | public class ForkJoinPool extends Abstra
1064          // Finish now if all threads terminated; else in some subsequent call
1065          if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1066              advanceRunLevel(TERMINATED);
1067 <            terminationLatch.countDown();
1067 >            termination.arrive();
1068          }
1069          return true;
1070      }
1071  
1072      /**
1073       * Actions on transition to TERMINATING
1074 +     *
1075 +     * Runs up to four passes through workers: (0) shutting down each
1076 +     * quietly (without waking up if parked) to quickly spread
1077 +     * notifications without unnecessary bouncing around event queues
1078 +     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1079 +     * races with interrupted workers
1080       */
1081      private void startTerminating() {
1082 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1083 <            cancelSubmissions();
1104 <            shutdownWorkers();
1105 <            cancelWorkerTasks();
1082 >        cancelSubmissions();
1083 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1084              advanceEventCount();
1085 <            releaseWaiters();
1086 <            interruptWorkers();
1085 >            eventWaiters = 0L; // clobber lists
1086 >            spareWaiters = 0;
1087 >            ForkJoinWorkerThread[] ws = workers;
1088 >            int n = ws.length;
1089 >            for (int i = 0; i < n; ++i) {
1090 >                ForkJoinWorkerThread w = ws[i];
1091 >                if (w != null) {
1092 >                    w.shutdown(true);
1093 >                    if (passes > 0 && !w.isTerminated()) {
1094 >                        w.cancelTasks();
1095 >                        LockSupport.unpark(w);
1096 >                        if (passes > 1) {
1097 >                            try {
1098 >                                w.interrupt();
1099 >                            } catch (SecurityException ignore) {
1100 >                            }
1101 >                        }
1102 >                    }
1103 >                }
1104 >            }
1105          }
1106      }
1107  
# Line 1122 | Line 1118 | public class ForkJoinPool extends Abstra
1118          }
1119      }
1120  
1125    /**
1126     * Sets all worker run states to at least shutdown,
1127     * also resuming suspended workers
1128     */
1129    private void shutdownWorkers() {
1130        ForkJoinWorkerThread[] ws = workers;
1131        int nws = ws.length;
1132        for (int i = 0; i < nws; ++i) {
1133            ForkJoinWorkerThread w = ws[i];
1134            if (w != null)
1135                w.shutdown();
1136        }
1137    }
1138
1139    /**
1140     * Clears out and cancels all locally queued tasks
1141     */
1142    private void cancelWorkerTasks() {
1143        ForkJoinWorkerThread[] ws = workers;
1144        int nws = ws.length;
1145        for (int i = 0; i < nws; ++i) {
1146            ForkJoinWorkerThread w = ws[i];
1147            if (w != null)
1148                w.cancelTasks();
1149        }
1150    }
1151
1152    /**
1153     * Unsticks all workers blocked on joins etc
1154     */
1155    private void interruptWorkers() {
1156        ForkJoinWorkerThread[] ws = workers;
1157        int nws = ws.length;
1158        for (int i = 0; i < nws; ++i) {
1159            ForkJoinWorkerThread w = ws[i];
1160            if (w != null && !w.isTerminated()) {
1161                try {
1162                    w.interrupt();
1163                } catch (SecurityException ignore) {
1164                }
1165            }
1166        }
1167    }
1168
1121      // misc support for ForkJoinWorkerThread
1122  
1123      /**
# Line 1176 | Line 1128 | public class ForkJoinPool extends Abstra
1128      }
1129  
1130      /**
1131 <     * Accumulates steal count from a worker, clearing
1132 <     * the worker's value
1131 >     * Tries to accumulates steal count from a worker, clearing
1132 >     * the worker's value.
1133 >     *
1134 >     * @return true if worker steal count now zero
1135       */
1136 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1136 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1137          int sc = w.stealCount;
1138 <        if (sc != 0) {
1139 <            long c;
1140 <            w.stealCount = 0;
1141 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1142 <                                                    c = stealCount, c + sc));
1138 >        long c = stealCount;
1139 >        // CAS even if zero, for fence effects
1140 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1141 >            if (sc != 0)
1142 >                w.stealCount = 0;
1143 >            return true;
1144          }
1145 +        return sc == 0;
1146      }
1147  
1148      /**
# Line 1194 | Line 1150 | public class ForkJoinPool extends Abstra
1150       * active thread.
1151       */
1152      final int idlePerActive() {
1153 +        int pc = parallelism; // use parallelism, not rc
1154          int ac = runState;    // no mask -- artifically boosts during shutdown
1198        int pc = parallelism; // use targeted parallelism, not rc
1155          // Use exact results for small values, saturate past 4
1156          return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1157      }
# Line 1206 | Line 1162 | public class ForkJoinPool extends Abstra
1162  
1163      /**
1164       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1165 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1166 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1165 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1166 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1167 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1168       *
1169       * @throws SecurityException if a security manager exists and
1170       *         the caller is not permitted to modify threads
# Line 1216 | Line 1173 | public class ForkJoinPool extends Abstra
1173       */
1174      public ForkJoinPool() {
1175          this(Runtime.getRuntime().availableProcessors(),
1176 <             defaultForkJoinWorkerThreadFactory);
1176 >             defaultForkJoinWorkerThreadFactory, null, false);
1177      }
1178  
1179      /**
1180       * Creates a {@code ForkJoinPool} with the indicated parallelism
1181 <     * level and using the {@linkplain
1182 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1181 >     * level, the {@linkplain
1182 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1183 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1184       *
1185       * @param parallelism the parallelism level
1186       * @throws IllegalArgumentException if parallelism less than or
# Line 1233 | Line 1191 | public class ForkJoinPool extends Abstra
1191       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1192       */
1193      public ForkJoinPool(int parallelism) {
1194 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1237 <    }
1238 <
1239 <    /**
1240 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1241 <     * java.lang.Runtime#availableProcessors}, and using the given
1242 <     * thread factory.
1243 <     *
1244 <     * @param factory the factory for creating new threads
1245 <     * @throws NullPointerException if the factory is null
1246 <     * @throws SecurityException if a security manager exists and
1247 <     *         the caller is not permitted to modify threads
1248 <     *         because it does not hold {@link
1249 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1250 <     */
1251 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1252 <        this(Runtime.getRuntime().availableProcessors(), factory);
1194 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1195      }
1196  
1197      /**
1198 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1257 <     * thread factory.
1198 >     * Creates a {@code ForkJoinPool} with the given parameters.
1199       *
1200 <     * @param parallelism the parallelism level
1201 <     * @param factory the factory for creating new threads
1200 >     * @param parallelism the parallelism level. For default value,
1201 >     * use {@link java.lang.Runtime#availableProcessors}.
1202 >     * @param factory the factory for creating new threads. For default value,
1203 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1204 >     * @param handler the handler for internal worker threads that
1205 >     * terminate due to unrecoverable errors encountered while executing
1206 >     * tasks. For default value, use <code>null</code>.
1207 >     * @param asyncMode if true,
1208 >     * establishes local first-in-first-out scheduling mode for forked
1209 >     * tasks that are never joined. This mode may be more appropriate
1210 >     * than default locally stack-based mode in applications in which
1211 >     * worker threads only process event-style asynchronous tasks.
1212 >     * For default value, use <code>false</code>.
1213       * @throws IllegalArgumentException if parallelism less than or
1214       *         equal to zero, or greater than implementation limit
1215       * @throws NullPointerException if the factory is null
# Line 1266 | Line 1218 | public class ForkJoinPool extends Abstra
1218       *         because it does not hold {@link
1219       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1220       */
1221 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1221 >    public ForkJoinPool(int parallelism,
1222 >                        ForkJoinWorkerThreadFactory factory,
1223 >                        Thread.UncaughtExceptionHandler handler,
1224 >                        boolean asyncMode) {
1225          checkPermission();
1226          if (factory == null)
1227              throw new NullPointerException();
1228 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1228 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1229              throw new IllegalArgumentException();
1275        this.poolNumber = poolNumberGenerator.incrementAndGet();
1276        int arraySize = initialArraySizeFor(parallelism);
1230          this.parallelism = parallelism;
1231          this.factory = factory;
1232 <        this.maxPoolSize = MAX_THREADS;
1233 <        this.maintainsParallelism = true;
1232 >        this.ueh = handler;
1233 >        this.locallyFifo = asyncMode;
1234 >        int arraySize = initialArraySizeFor(parallelism);
1235          this.workers = new ForkJoinWorkerThread[arraySize];
1236          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1237          this.workerLock = new ReentrantLock();
1238 <        this.terminationLatch = new CountDownLatch(1);
1238 >        this.termination = new Phaser(1);
1239 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1240 >        this.trimTime = System.nanoTime();
1241      }
1242  
1243      /**
# Line 1289 | Line 1245 | public class ForkJoinPool extends Abstra
1245       * @param pc the initial parallelism level
1246       */
1247      private static int initialArraySizeFor(int pc) {
1248 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1249 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1248 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1249 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1250          size |= size >>> 1;
1251          size |= size >>> 2;
1252          size |= size >>> 4;
# Line 1310 | Line 1266 | public class ForkJoinPool extends Abstra
1266              throw new RejectedExecutionException();
1267          submissionQueue.offer(task);
1268          advanceEventCount();
1269 <        releaseWaiters();
1314 <        ensureEnoughTotalWorkers();
1269 >        helpMaintainParallelism();         // start or wake up workers
1270      }
1271  
1272      /**
1273       * Performs the given task, returning its result upon completion.
1274 +     * If the caller is already engaged in a fork/join computation in
1275 +     * the current pool, this method is equivalent in effect to
1276 +     * {@link ForkJoinTask#invoke}.
1277       *
1278       * @param task the task
1279       * @return the task's result
# Line 1330 | Line 1288 | public class ForkJoinPool extends Abstra
1288  
1289      /**
1290       * Arranges for (asynchronous) execution of the given task.
1291 +     * If the caller is already engaged in a fork/join computation in
1292 +     * the current pool, this method is equivalent in effect to
1293 +     * {@link ForkJoinTask#fork}.
1294       *
1295       * @param task the task
1296       * @throws NullPointerException if the task is null
# Line 1357 | Line 1318 | public class ForkJoinPool extends Abstra
1318      }
1319  
1320      /**
1321 +     * Submits a ForkJoinTask for execution.
1322 +     * If the caller is already engaged in a fork/join computation in
1323 +     * the current pool, this method is equivalent in effect to
1324 +     * {@link ForkJoinTask#fork}.
1325 +     *
1326 +     * @param task the task to submit
1327 +     * @return the task
1328 +     * @throws NullPointerException if the task is null
1329 +     * @throws RejectedExecutionException if the task cannot be
1330 +     *         scheduled for execution
1331 +     */
1332 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1333 +        doSubmit(task);
1334 +        return task;
1335 +    }
1336 +
1337 +    /**
1338       * @throws NullPointerException if the task is null
1339       * @throws RejectedExecutionException if the task cannot be
1340       *         scheduled for execution
# Line 1394 | Line 1372 | public class ForkJoinPool extends Abstra
1372      }
1373  
1374      /**
1397     * Submits a ForkJoinTask for execution.
1398     *
1399     * @param task the task to submit
1400     * @return the task
1401     * @throws NullPointerException if the task is null
1402     * @throws RejectedExecutionException if the task cannot be
1403     *         scheduled for execution
1404     */
1405    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1406        doSubmit(task);
1407        return task;
1408    }
1409
1410    /**
1375       * @throws NullPointerException       {@inheritDoc}
1376       * @throws RejectedExecutionException {@inheritDoc}
1377       */
# Line 1449 | Line 1413 | public class ForkJoinPool extends Abstra
1413       * @return the handler, or {@code null} if none
1414       */
1415      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1452        workerCountReadFence();
1416          return ueh;
1417      }
1418  
1419      /**
1457     * Sets the handler for internal worker threads that terminate due
1458     * to unrecoverable errors encountered while executing tasks.
1459     * Unless set, the current default or ThreadGroup handler is used
1460     * as handler.
1461     *
1462     * @param h the new handler
1463     * @return the old handler, or {@code null} if none
1464     * @throws SecurityException if a security manager exists and
1465     *         the caller is not permitted to modify threads
1466     *         because it does not hold {@link
1467     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1468     */
1469    public Thread.UncaughtExceptionHandler
1470        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1471        checkPermission();
1472        Thread.UncaughtExceptionHandler old = ueh;
1473        if (h != old) {
1474            ueh = h;
1475            ForkJoinWorkerThread[] ws = workers;
1476            int nws = ws.length;
1477            for (int i = 0; i < nws; ++i) {
1478                ForkJoinWorkerThread w = ws[i];
1479                if (w != null)
1480                    w.setUncaughtExceptionHandler(h);
1481            }
1482        }
1483        return old;
1484    }
1485
1486    /**
1487     * Sets the target parallelism level of this pool.
1488     *
1489     * @param parallelism the target parallelism
1490     * @throws IllegalArgumentException if parallelism less than or
1491     * equal to zero or greater than maximum size bounds
1492     * @throws SecurityException if a security manager exists and
1493     *         the caller is not permitted to modify threads
1494     *         because it does not hold {@link
1495     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1496     */
1497    public void setParallelism(int parallelism) {
1498        checkPermission();
1499        if (parallelism <= 0 || parallelism > maxPoolSize)
1500            throw new IllegalArgumentException();
1501        workerCountReadFence();
1502        int pc = this.parallelism;
1503        if (pc != parallelism) {
1504            this.parallelism = parallelism;
1505            workerCountWriteFence();
1506            // Release spares. If too many, some will die after re-suspend
1507            ForkJoinWorkerThread[] ws = workers;
1508            int nws = ws.length;
1509            for (int i = 0; i < nws; ++i) {
1510                ForkJoinWorkerThread w = ws[i];
1511                if (w != null && w.tryUnsuspend()) {
1512                    int c;
1513                    do {} while (!UNSAFE.compareAndSwapInt
1514                                 (this, workerCountsOffset,
1515                                  c = workerCounts, c + ONE_RUNNING));
1516                    LockSupport.unpark(w);
1517                }
1518            }
1519            ensureEnoughTotalWorkers();
1520            advanceEventCount();
1521            releaseWaiters(); // force config recheck by existing workers
1522        }
1523    }
1524
1525    /**
1420       * Returns the targeted parallelism level of this pool.
1421       *
1422       * @return the targeted parallelism level of this pool
1423       */
1424      public int getParallelism() {
1531        //        workerCountReadFence(); // inlined below
1532        int ignore = workerCounts;
1425          return parallelism;
1426      }
1427  
# Line 1546 | Line 1438 | public class ForkJoinPool extends Abstra
1438      }
1439  
1440      /**
1549     * Returns the maximum number of threads allowed to exist in the
1550     * pool. Unless set using {@link #setMaximumPoolSize}, the
1551     * maximum is an implementation-defined value designed only to
1552     * prevent runaway growth.
1553     *
1554     * @return the maximum
1555     */
1556    public int getMaximumPoolSize() {
1557        workerCountReadFence();
1558        return maxPoolSize;
1559    }
1560
1561    /**
1562     * Sets the maximum number of threads allowed to exist in the
1563     * pool. The given value should normally be greater than or equal
1564     * to the {@link #getParallelism parallelism} level. Setting this
1565     * value has no effect on current pool size. It controls
1566     * construction of new threads. The use of this method may cause
1567     * tasks that intrinsically require extra threads for dependent
1568     * computations to indefinitely stall. If you are instead trying
1569     * to minimize internal thread creation, consider setting {@link
1570     * #setMaintainsParallelism} as false.
1571     *
1572     * @throws IllegalArgumentException if negative or greater than
1573     * internal implementation limit
1574     */
1575    public void setMaximumPoolSize(int newMax) {
1576        if (newMax < 0 || newMax > MAX_THREADS)
1577            throw new IllegalArgumentException();
1578        maxPoolSize = newMax;
1579        workerCountWriteFence();
1580    }
1581
1582    /**
1583     * Returns {@code true} if this pool dynamically maintains its
1584     * target parallelism level. If false, new threads are added only
1585     * to avoid possible starvation.  This setting is by default true.
1586     *
1587     * @return {@code true} if maintains parallelism
1588     */
1589    public boolean getMaintainsParallelism() {
1590        workerCountReadFence();
1591        return maintainsParallelism;
1592    }
1593
1594    /**
1595     * Sets whether this pool dynamically maintains its target
1596     * parallelism level. If false, new threads are added only to
1597     * avoid possible starvation.
1598     *
1599     * @param enable {@code true} to maintain parallelism
1600     */
1601    public void setMaintainsParallelism(boolean enable) {
1602        maintainsParallelism = enable;
1603        workerCountWriteFence();
1604    }
1605
1606    /**
1607     * Establishes local first-in-first-out scheduling mode for forked
1608     * tasks that are never joined. This mode may be more appropriate
1609     * than default locally stack-based mode in applications in which
1610     * worker threads only process asynchronous tasks.  This method is
1611     * designed to be invoked only when the pool is quiescent, and
1612     * typically only before any tasks are submitted. The effects of
1613     * invocations at other times may be unpredictable.
1614     *
1615     * @param async if {@code true}, use locally FIFO scheduling
1616     * @return the previous mode
1617     * @see #getAsyncMode
1618     */
1619    public boolean setAsyncMode(boolean async) {
1620        workerCountReadFence();
1621        boolean oldMode = locallyFifo;
1622        if (oldMode != async) {
1623            locallyFifo = async;
1624            workerCountWriteFence();
1625            ForkJoinWorkerThread[] ws = workers;
1626            int nws = ws.length;
1627            for (int i = 0; i < nws; ++i) {
1628                ForkJoinWorkerThread w = ws[i];
1629                if (w != null)
1630                    w.setAsyncMode(async);
1631            }
1632        }
1633        return oldMode;
1634    }
1635
1636    /**
1441       * Returns {@code true} if this pool uses local first-in-first-out
1442       * scheduling mode for forked tasks that are never joined.
1443       *
1444       * @return {@code true} if this pool uses async mode
1641     * @see #setAsyncMode
1445       */
1446      public boolean getAsyncMode() {
1644        workerCountReadFence();
1447          return locallyFifo;
1448      }
1449  
# Line 1711 | Line 1513 | public class ForkJoinPool extends Abstra
1513      public long getQueuedTaskCount() {
1514          long count = 0;
1515          ForkJoinWorkerThread[] ws = workers;
1516 <        int nws = ws.length;
1517 <        for (int i = 0; i < nws; ++i) {
1516 >        int n = ws.length;
1517 >        for (int i = 0; i < n; ++i) {
1518              ForkJoinWorkerThread w = ws[i];
1519              if (w != null)
1520                  count += w.getQueueSize();
# Line 1770 | Line 1572 | public class ForkJoinPool extends Abstra
1572       * @return the number of elements transferred
1573       */
1574      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1575 <        int n = submissionQueue.drainTo(c);
1575 >        int count = submissionQueue.drainTo(c);
1576          ForkJoinWorkerThread[] ws = workers;
1577 <        int nws = ws.length;
1578 <        for (int i = 0; i < nws; ++i) {
1577 >        int n = ws.length;
1578 >        for (int i = 0; i < n; ++i) {
1579              ForkJoinWorkerThread w = ws[i];
1580              if (w != null)
1581 <                n += w.drainTasksTo(c);
1581 >                count += w.drainTasksTo(c);
1582          }
1583 <        return n;
1583 >        return count;
1584      }
1585  
1586      /**
# Line 1902 | Line 1704 | public class ForkJoinPool extends Abstra
1704       */
1705      public boolean awaitTermination(long timeout, TimeUnit unit)
1706          throws InterruptedException {
1707 <        return terminationLatch.await(timeout, unit);
1707 >        try {
1708 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1709 >        } catch(TimeoutException ex) {
1710 >            return false;
1711 >        }
1712      }
1713  
1714      /**
1715       * Interface for extending managed parallelism for tasks running
1716       * in {@link ForkJoinPool}s.
1717       *
1718 <     * <p>A {@code ManagedBlocker} provides two methods.
1719 <     * Method {@code isReleasable} must return {@code true} if
1720 <     * blocking is not necessary. Method {@code block} blocks the
1721 <     * current thread if necessary (perhaps internally invoking
1722 <     * {@code isReleasable} before actually blocking).
1718 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1719 >     * {@code isReleasable} must return {@code true} if blocking is
1720 >     * not necessary. Method {@code block} blocks the current thread
1721 >     * if necessary (perhaps internally invoking {@code isReleasable}
1722 >     * before actually blocking). The unusual methods in this API
1723 >     * accommodate synchronizers that may, but don't usually, block
1724 >     * for long periods. Similarly, they allow more efficient internal
1725 >     * handling of cases in which additional workers may be, but
1726 >     * usually are not, needed to ensure sufficient parallelism.
1727 >     * Toward this end, implementations of method {@code isReleasable}
1728 >     * must be amenable to repeated invocation.
1729       *
1730       * <p>For example, here is a ManagedBlocker based on a
1731       * ReentrantLock:
# Line 1931 | Line 1743 | public class ForkJoinPool extends Abstra
1743       *     return hasLock || (hasLock = lock.tryLock());
1744       *   }
1745       * }}</pre>
1746 +     *
1747 +     * <p>Here is a class that possibly blocks waiting for an
1748 +     * item on a given queue:
1749 +     *  <pre> {@code
1750 +     * class QueueTaker<E> implements ManagedBlocker {
1751 +     *   final BlockingQueue<E> queue;
1752 +     *   volatile E item = null;
1753 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1754 +     *   public boolean block() throws InterruptedException {
1755 +     *     if (item == null)
1756 +     *       item = queue.take
1757 +     *     return true;
1758 +     *   }
1759 +     *   public boolean isReleasable() {
1760 +     *     return item != null || (item = queue.poll) != null;
1761 +     *   }
1762 +     *   public E getItem() { // call after pool.managedBlock completes
1763 +     *     return item;
1764 +     *   }
1765 +     * }}</pre>
1766       */
1767      public static interface ManagedBlocker {
1768          /**
# Line 1954 | Line 1786 | public class ForkJoinPool extends Abstra
1786       * Blocks in accord with the given blocker.  If the current thread
1787       * is a {@link ForkJoinWorkerThread}, this method possibly
1788       * arranges for a spare thread to be activated if necessary to
1789 <     * ensure parallelism while the current thread is blocked.
1958 <     *
1959 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1960 <     * supports it ({@link #getMaintainsParallelism}), this method
1961 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1962 <     * it activates a thread only if necessary to avoid complete
1963 <     * starvation. This option may be preferable when blockages use
1964 <     * timeouts, or are almost always brief.
1789 >     * ensure sufficient parallelism while the current thread is blocked.
1790       *
1791       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1792       * behaviorally equivalent to
# Line 1975 | Line 1800 | public class ForkJoinPool extends Abstra
1800       * first be expanded to ensure parallelism, and later adjusted.
1801       *
1802       * @param blocker the blocker
1978     * @param maintainParallelism if {@code true} and supported by
1979     * this pool, attempt to maintain the pool's nominal parallelism;
1980     * otherwise activate a thread only if necessary to avoid
1981     * complete starvation.
1803       * @throws InterruptedException if blocker.block did so
1804       */
1805 <    public static void managedBlock(ManagedBlocker blocker,
1985 <                                    boolean maintainParallelism)
1805 >    public static void managedBlock(ManagedBlocker blocker)
1806          throws InterruptedException {
1807          Thread t = Thread.currentThread();
1808 <        if (t instanceof ForkJoinWorkerThread)
1809 <            ((ForkJoinWorkerThread) t).pool.
1810 <                awaitBlocker(blocker, maintainParallelism);
1811 <        else
1812 <            awaitBlocker(blocker);
1813 <    }
1814 <
1995 <    /**
1996 <     * Performs Non-FJ blocking
1997 <     */
1998 <    private static void awaitBlocker(ManagedBlocker blocker)
1999 <        throws InterruptedException {
2000 <        do {} while (!blocker.isReleasable() && !blocker.block());
1808 >        if (t instanceof ForkJoinWorkerThread) {
1809 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1810 >            w.pool.awaitBlocker(blocker);
1811 >        }
1812 >        else {
1813 >            do {} while (!blocker.isReleasable() && !blocker.block());
1814 >        }
1815      }
1816  
1817      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2025 | Line 1839 | public class ForkJoinPool extends Abstra
1839          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1840      private static final long stealCountOffset =
1841          objectFieldOffset("stealCount",ForkJoinPool.class);
1842 <
1842 >    private static final long spareWaitersOffset =
1843 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1844  
1845      private static long objectFieldOffset(String field, Class<?> klazz) {
1846          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines