ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.53 by dl, Mon Apr 5 15:52:26 2010 UTC vs.
Revision 1.63 by dl, Fri Aug 13 16:21:23 2010 UTC

# Line 21 | Line 21 | import java.util.concurrent.CountDownLat
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25   * monitoring operations.
26   *
27   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 30 | import java.util.concurrent.CountDownLat
30   * execute subtasks created by other active tasks (eventually blocking
31   * waiting for work if none exist). This enables efficient processing
32   * when most tasks spawn other subtasks (as do most {@code
33 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34 < * execution of some plain {@code Runnable}- or {@code Callable}-
35 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37   * <p>A {@code ForkJoinPool} is constructed with a given target
38   * parallelism level; by default, equal to the number of available
39 < * processors. Unless configured otherwise via {@link
40 < * #setMaintainsParallelism}, the pool attempts to maintain this
41 < * number of active (or available) threads by dynamically adding,
42 < * suspending, or resuming internal worker threads, even if some tasks
43 < * are stalled waiting to join others. However, no such adjustments
44 < * are performed in the face of blocked IO or other unmanaged
45 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 65 | Line 51 | import java.util.concurrent.CountDownLat
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89   * used for all parallel task execution in a program or subsystem.
90   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 109 | import java.util.concurrent.CountDownLat
109   * {@code IllegalArgumentException}.
110   *
111   * <p>This implementation rejects submitted tasks (that is, by throwing
112 < * {@link RejectedExecutionException}) only when the pool is shut down.
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhausted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 116 | Line 137 | public class ForkJoinPool extends Abstra
137       * of tasks profit from cache affinities, but others are harmed by
138       * cache pollution effects.)
139       *
140 +     * Beyond work-stealing support and essential bookkeeping, the
141 +     * main responsibility of this framework is to take actions when
142 +     * one worker is waiting to join a task stolen (or always held by)
143 +     * another.  Becauae we are multiplexing many tasks on to a pool
144 +     * of workers, we can't just let them block (as in Thread.join).
145 +     * We also cannot just reassign the joiner's run-time stack with
146 +     * another and replace it later, which would be a form of
147 +     * "continuation", that even if possible is not necessarily a good
148 +     * idea. Given that the creation costs of most threads on most
149 +     * systems mainly surrounds setting up runtime stacks, thread
150 +     * creation and switching is usually not much more expensive than
151 +     * stack creation and switching, and is more flexible). Instead we
152 +     * combine two tactics:
153 +     *
154 +     *   Helping: Arranging for the joiner to execute some task that it
155 +     *      would be running if the steal had not occurred.  Method
156 +     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 +     *      links to try to find such a task.
158 +     *
159 +     *   Compensating: Unless there are already enough live threads,
160 +     *      method helpMaintainParallelism() may create or or
161 +     *      re-activate a spare thread to compensate for blocked
162 +     *      joiners until they unblock.
163 +     *
164 +     * Because the determining existence of conservatively safe
165 +     * helping targets, the availability of already-created spares,
166 +     * and the apparent need to create new spares are all racy and
167 +     * require heuristic guidance, we rely on multiple retries of
168 +     * each. Further, because it is impossible to keep exactly the
169 +     * target (parallelism) number of threads running at any given
170 +     * time, we allow compensation during joins to fail, and enlist
171 +     * all other threads to help out whenever they are not otherwise
172 +     * occupied (i.e., mainly in method preStep).
173 +     *
174 +     * The ManagedBlocker extension API can't use helping so relies
175 +     * only on compensation in method awaitBlocker.
176 +     *
177       * The main throughput advantages of work-stealing stem from
178       * decentralized control -- workers mostly steal tasks from each
179       * other. We do not want to negate this by creating bottlenecks
180 <     * implementing the management responsibilities of this class. So
181 <     * we use a collection of techniques that avoid, reduce, or cope
182 <     * well with contention. These entail several instances of
183 <     * bit-packing into CASable fields to maintain only the minimally
184 <     * required atomicity. To enable such packing, we restrict maximum
185 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
186 <     * bit field), which is far in excess of normal operating range.
187 <     * Even though updates to some of these bookkeeping fields do
188 <     * sometimes contend with each other, they don't normally
189 <     * cache-contend with updates to others enough to warrant memory
190 <     * padding or isolation. So they are all held as fields of
191 <     * ForkJoinPool objects.  The main capabilities are as follows:
180 >     * implementing other management responsibilities. So we use a
181 >     * collection of techniques that avoid, reduce, or cope well with
182 >     * contention. These entail several instances of bit-packing into
183 >     * CASable fields to maintain only the minimally required
184 >     * atomicity. To enable such packing, we restrict maximum
185 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186 >     * unbalanced increments and decrements) to fit into a 16 bit
187 >     * field, which is far in excess of normal operating range.  Even
188 >     * though updates to some of these bookkeeping fields do sometimes
189 >     * contend with each other, they don't normally cache-contend with
190 >     * updates to others enough to warrant memory padding or
191 >     * isolation. So they are all held as fields of ForkJoinPool
192 >     * objects.  The main capabilities are as follows:
193       *
194       * 1. Creating and removing workers. Workers are recorded in the
195       * "workers" array. This is an array as opposed to some other data
# Line 140 | Line 199 | public class ForkJoinPool extends Abstra
199       * (workerLock) but the array is otherwise concurrently readable,
200       * and accessed directly by workers. To simplify index-based
201       * operations, the array size is always a power of two, and all
202 <     * readers must tolerate null slots. Currently, all but the first
203 <     * worker thread creation is on-demand, triggered by task
204 <     * submissions, replacement of terminated workers, and/or
205 <     * compensation for blocked workers. However, all other support
206 <     * code is set up to work with other policies.
202 >     * readers must tolerate null slots. Currently, all worker thread
203 >     * creation is on-demand, triggered by task submissions,
204 >     * replacement of terminated workers, and/or compensation for
205 >     * blocked workers. However, all other support code is set up to
206 >     * work with other policies.
207 >     *
208 >     * To ensure that we do not hold on to worker references that
209 >     * would prevent GC, ALL accesses to workers are via indices into
210 >     * the workers array (which is one source of some of the unusual
211 >     * code constructions here). In essence, the workers array serves
212 >     * as a WeakReference mechanism. Thus for example the event queue
213 >     * stores worker indices, not worker references. Access to the
214 >     * workers in associated methods (for example releaseEventWaiters)
215 >     * must both index-check and null-check the IDs. All such accesses
216 >     * ignore bad IDs by returning out early from what they are doing,
217 >     * since this can only be associated with shutdown, in which case
218 >     * it is OK to give up. On termination, we just clobber these
219 >     * data structures without trying to use them.
220       *
221       * 2. Bookkeeping for dynamically adding and removing workers. We
222 <     * maintain a given level of parallelism (or, if
223 <     * maintainsParallelism is false, at least avoid starvation). When
152 <     * some workers are known to be blocked (on joins or via
222 >     * aim to approximately maintain the given level of parallelism.
223 >     * When some workers are known to be blocked (on joins or via
224       * ManagedBlocker), we may create or resume others to take their
225       * place until they unblock (see below). Implementing this
226       * requires counts of the number of "running" threads (i.e., those
227       * that are neither blocked nor artifically suspended) as well as
228       * the total number.  These two values are packed into one field,
229       * "workerCounts" because we need accurate snapshots when deciding
230 <     * to create, resume or suspend.  To support these decisions,
231 <     * updates must be prospective (not retrospective).  For example,
232 <     * the running count is decremented before blocking by a thread
233 <     * about to block, but incremented by the thread about to unblock
163 <     * it. (In a few cases, these prospective updates may need to be
164 <     * rolled back, for example when deciding to create a new worker
165 <     * but the thread factory fails or returns null. In these cases,
166 <     * we are no worse off wrt other decisions than we would be
167 <     * otherwise.)  Updates to the workerCounts field sometimes
168 <     * transiently encounter a fair amount of contention when join
169 <     * dependencies are such that many threads block or unblock at
170 <     * about the same time. We alleviate this by sometimes bundling
171 <     * updates (for example blocking one thread on join and resuming a
172 <     * spare cancel each other out), and in most other cases
173 <     * performing an alternative action (like releasing waiters and
174 <     * finding spares; see below) as a more productive form of
175 <     * backoff.
230 >     * to create, resume or suspend.  Note however that the
231 >     * correspondance of these counts to reality is not guaranteed. In
232 >     * particular updates for unblocked threads may lag until they
233 >     * actually wake up.
234       *
235       * 3. Maintaining global run state. The run state of the pool
236       * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
# Line 201 | Line 259 | public class ForkJoinPool extends Abstra
259       * workers that previously could not find a task to now find one:
260       * Submission of a new task to the pool, or another worker pushing
261       * a task onto a previously empty queue.  (We also use this
262 <     * mechanism for termination and reconfiguration actions that
263 <     * require wakeups of idle workers).  Each worker maintains its
264 <     * last known event count, and blocks when a scan for work did not
265 <     * find a task AND its lastEventCount matches the current
266 <     * eventCount. Waiting idle workers are recorded in a variant of
267 <     * Treiber stack headed by field eventWaiters which, when nonzero,
268 <     * encodes the thread index and count awaited for by the worker
269 <     * thread most recently calling eventSync. This thread in turn has
270 <     * a record (field nextEventWaiter) for the next waiting worker.
271 <     * In addition to allowing simpler decisions about need for
272 <     * wakeup, the event count bits in eventWaiters serve the role of
273 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
274 <     * in task diffusion, workers not otherwise occupied may invoke
275 <     * method releaseWaiters, that removes and signals (unparks)
276 <     * workers not waiting on current count. To minimize task
277 <     * production stalls associate with signalling, any worker pushing
278 <     * a task on an empty queue invokes the weaker method signalWork,
279 <     * that only releases idle workers until it detects interference
280 <     * by other threads trying to release, and lets them take
281 <     * over. The net effect is a tree-like diffusion of signals, where
282 <     * released threads and possibly others) help with unparks.  To
283 <     * further reduce contention effects a bit, failed CASes to
262 >     * mechanism for termination actions that require wakeups of idle
263 >     * workers).  Each worker maintains its last known event count,
264 >     * and blocks when a scan for work did not find a task AND its
265 >     * lastEventCount matches the current eventCount. Waiting idle
266 >     * workers are recorded in a variant of Treiber stack headed by
267 >     * field eventWaiters which, when nonzero, encodes the thread
268 >     * index and count awaited for by the worker thread most recently
269 >     * calling eventSync. This thread in turn has a record (field
270 >     * nextEventWaiter) for the next waiting worker.  In addition to
271 >     * allowing simpler decisions about need for wakeup, the event
272 >     * count bits in eventWaiters serve the role of tags to avoid ABA
273 >     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 >     * workers not otherwise occupied may invoke method
275 >     * releaseEventWaiters, that removes and signals (unparks) workers
276 >     * not waiting on current count. To reduce stalls, To minimize
277 >     * task production stalls associate with signalling, any worker
278 >     * pushing a task on an empty queue invokes the weaker method
279 >     * signalWork, that only releases idle workers until it detects
280 >     * interference by other threads trying to release, and lets them
281 >     * take over.  The net effect is a tree-like diffusion of signals,
282 >     * where released threads (and possibly others) help with unparks.
283 >     * To further reduce contention effects a bit, failed CASes to
284       * increment field eventCount are tolerated without retries.
285       * Conceptually they are merged into the same event, which is OK
286       * when their only purpose is to enable workers to scan for work.
# Line 230 | Line 288 | public class ForkJoinPool extends Abstra
288       * 5. Managing suspension of extra workers. When a worker is about
289       * to block waiting for a join (or via ManagedBlockers), we may
290       * create a new thread to maintain parallelism level, or at least
291 <     * avoid starvation (see below). Usually, extra threads are needed
292 <     * for only very short periods, yet join dependencies are such
293 <     * that we sometimes need them in bursts. Rather than create new
294 <     * threads each time this happens, we suspend no-longer-needed
295 <     * extra ones as "spares". For most purposes, we don't distinguish
296 <     * "extra" spare threads from normal "core" threads: On each call
297 <     * to preStep (the only point at which we can do this) a worker
291 >     * avoid starvation. Usually, extra threads are needed for only
292 >     * very short periods, yet join dependencies are such that we
293 >     * sometimes need them in bursts. Rather than create new threads
294 >     * each time this happens, we suspend no-longer-needed extra ones
295 >     * as "spares". For most purposes, we don't distinguish "extra"
296 >     * spare threads from normal "core" threads: On each call to
297 >     * preStep (the only point at which we can do this) a worker
298       * checks to see if there are now too many running workers, and if
299 <     * so, suspends itself.  Methods preJoin and doBlock look for
299 >     * so, suspends itself.  Method helpMaintainParallelism looks for
300       * suspended threads to resume before considering creating a new
301 <     * replacement. We don't need a special data structure to maintain
302 <     * spares; simply scanning the workers array looking for
303 <     * worker.isSuspended() is fine because the calling thread is
246 <     * otherwise not doing anything useful anyway; we are at least as
247 <     * happy if after locating a spare, the caller doesn't actually
248 <     * block because the join is ready before we try to adjust and
249 <     * compensate.  Note that this is intrinsically racy.  One thread
301 >     * replacement. The spares themselves are encoded on another
302 >     * variant of a Treiber Stack, headed at field "spareWaiters".
303 >     * Note that the use of spares is intrinsically racy.  One thread
304       * may become a spare at about the same time as another is
305       * needlessly being created. We counteract this and related slop
306       * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend. The only
308 <     * effective difference between "extra" and "core" threads is that
309 <     * we allow the "extra" ones to time out and die if they are not
310 <     * resumed within a keep-alive interval of a few seconds. This is
311 <     * implemented mainly within ForkJoinWorkerThread, but requires
312 <     * some coordination (isTrimmed() -- meaning killed while
313 <     * suspended) to correctly maintain pool counts.
307 >     * preStep) to see whether they they should re-suspend.  To avoid
308 >     * long-term build-up of spares, the oldest spare (see
309 >     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 >     * not signalled and calls tryTrimSpare, which uses two different
311 >     * thresholds: Always killing if the number of spares is greater
312 >     * that 25% of total, and killing others only at a slower rate
313 >     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314       *
315       * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads,
317 <     * in methods preJoin and doBlock. We always need to create one
318 <     * when the number of running threads becomes zero. But because
319 <     * blocked joins are typically dependent, we don't necessarily
320 <     * need or want one-to-one replacement. Using a one-to-one
321 <     * compensation rule often leads to enough useless overhead
322 <     * creating, suspending, resuming, and/or killing threads to
323 <     * signficantly degrade throughput.  We use a rule reflecting the
324 <     * idea that, the more spare threads you already have, the more
325 <     * evidence you need to create another one; where "evidence" is
326 <     * expressed as the current deficit -- target minus running
327 <     * threads. To reduce flickering and drift around target values,
328 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
329 <     * (where dc is deficit, sc is number of spare threads and pc is
330 <     * target parallelism.)  This effectively reduces churn at the
331 <     * price of systematically undershooting target parallelism when
332 <     * many threads are blocked.  However, biasing toward undeshooting
279 <     * partially compensates for the above mechanics to suspend extra
280 <     * threads, that normally lead to overshoot because we can only
281 <     * suspend workers in-between top-level actions. It also better
282 <     * copes with the fact that some of the methods in this class tend
283 <     * to never become compiled (but are interpreted), so some
284 <     * components of the entire set of controls might execute many
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossble
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the the
322 >     * presence of transients phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow some slack in
327 >     * creation thresholds, using rules that reflect the fact that the
328 >     * more threads we have running, the more likely that we are
329 >     * underestimating the number running threads. The rules also
330 >     * better cope with the fact that some of the methods in this
331 >     * class tend to never become compiled (but are interpreted), so
332 >     * some components of the entire set of controls might execute 100
333       * times faster than others. And similarly for cases where the
334       * apparent lack of work is just due to GC stalls and other
335       * transient system activity.
336       *
289     * 7. Maintaining other configuration parameters and monitoring
290     * statistics. Updates to fields controlling parallelism level,
291     * max size, etc can only meaningfully take effect for individual
292     * threads upon their next top-level actions; i.e., between
293     * stealing/running tasks/submission, which are separated by calls
294     * to preStep.  Memory ordering for these (assumed infrequent)
295     * reconfiguration calls is ensured by using reads and writes to
296     * volatile field workerCounts (that must be read in preStep anyway)
297     * as "fences" -- user-level reads are preceded by reads of
298     * workCounts, and writes are followed by no-op CAS to
299     * workerCounts. The values reported by other management and
300     * monitoring methods are either computed on demand, or are kept
301     * in fields that are only updated when threads are otherwise
302     * idle.
303     *
337       * Beware that there is a lot of representation-level coupling
338       * among classes ForkJoinPool, ForkJoinWorkerThread, and
339       * ForkJoinTask.  For example, direct access to "workers" array by
# Line 312 | Line 345 | public class ForkJoinPool extends Abstra
345       *
346       * Style notes: There are lots of inline assignments (of form
347       * "while ((local = field) != 0)") which are usually the simplest
348 <     * way to ensure read orderings. Also several occurrences of the
349 <     * unusual "do {} while(!cas...)" which is the simplest way to
350 <     * force an update of a CAS'ed variable. There are also a few
351 <     * other coding oddities that help some methods perform reasonably
352 <     * even when interpreted (not compiled).
348 >     * way to ensure the required read orderings (which are sometimes
349 >     * critical). Also several occurrences of the unusual "do {}
350 >     * while(!cas...)" which is the simplest way to force an update of
351 >     * a CAS'ed variable. There are also other coding oddities that
352 >     * help some methods perform reasonably even when interpreted (not
353 >     * compiled), at the expense of some messy constructions that
354 >     * reduce byte code counts.
355       *
356       * The order of declarations in this file is: (1) statics (2)
357       * fields (along with constants used when unpacking some of them)
# Line 345 | Line 380 | public class ForkJoinPool extends Abstra
380       * Default ForkJoinWorkerThreadFactory implementation; creates a
381       * new ForkJoinWorkerThread.
382       */
383 <    static class  DefaultForkJoinWorkerThreadFactory
383 >    static class DefaultForkJoinWorkerThreadFactory
384          implements ForkJoinWorkerThreadFactory {
385          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
386              return new ForkJoinWorkerThread(pool);
# Line 384 | Line 419 | public class ForkJoinPool extends Abstra
419          new AtomicInteger();
420  
421      /**
422 <     * Absolute bound for parallelism level. Twice this number must
423 <     * fit into a 16bit field to enable word-packing for some counts.
422 >     * Absolute bound for parallelism level. Twice this number plus
423 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
424 >     * word-packing for some counts and indices.
425       */
426 <    private static final int MAX_THREADS = 0x7fff;
426 >    private static final int MAX_WORKERS   = 0x7fff;
427  
428      /**
429       * Array holding all worker threads in the pool.  Array size must
# Line 413 | Line 449 | public class ForkJoinPool extends Abstra
449      /**
450       * Latch released upon termination.
451       */
452 <    private final CountDownLatch terminationLatch;
452 >    private final Phaser termination;
453  
454      /**
455       * Creation factory for worker threads.
# Line 427 | Line 463 | public class ForkJoinPool extends Abstra
463      private volatile long stealCount;
464  
465      /**
466 +     * The last nanoTime that a spare thread was trimmed
467 +     */
468 +    private volatile long trimTime;
469 +
470 +    /**
471 +     * The rate at which to trim unused spares
472 +     */
473 +    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 +        1000L * 1000L * 1000L; // 1 sec
475 +
476 +    /**
477       * Encoded record of top of treiber stack of threads waiting for
478       * events. The top 32 bits contain the count being waited for. The
479 <     * bottom word contains one plus the pool index of waiting worker
480 <     * thread.
479 >     * bottom 16 bits contains one plus the pool index of waiting
480 >     * worker thread. (Bits 16-31 are unused.)
481       */
482      private volatile long eventWaiters;
483  
484      private static final int  EVENT_COUNT_SHIFT = 32;
485 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
485 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
486  
487      /**
488       * A counter for events that may wake up worker threads:
489       *   - Submission of a new task to the pool
490       *   - A worker pushing a task on an empty queue
491 <     *   - termination and reconfiguration
491 >     *   - termination
492       */
493      private volatile int eventCount;
494  
495      /**
496 +     * Encoded record of top of treiber stack of spare threads waiting
497 +     * for resumption. The top 16 bits contain an arbitrary count to
498 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
499 +     * index of waiting worker thread.
500 +     */
501 +    private volatile int spareWaiters;
502 +
503 +    private static final int SPARE_COUNT_SHIFT = 16;
504 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
505 +
506 +    /**
507       * Lifecycle control. The low word contains the number of workers
508       * that are (probably) executing tasks. This value is atomically
509       * incremented before a worker gets a task to run, and decremented
# Line 474 | Line 532 | public class ForkJoinPool extends Abstra
532       * making decisions about creating and suspending spare
533       * threads. Updated only by CAS. Note that adding a new worker
534       * requires incrementing both counts, since workers start off in
535 <     * running state.  This field is also used for memory-fencing
478 <     * configuration parameters.
535 >     * running state.
536       */
537      private volatile int workerCounts;
538  
# Line 484 | Line 541 | public class ForkJoinPool extends Abstra
541      private static final int ONE_RUNNING        = 1;
542      private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
543  
487    /*
488     * Fields parallelism. maxPoolSize, locallyFifo,
489     * maintainsParallelism, and ueh are non-volatile, but external
490     * reads/writes use workerCount fences to ensure visability.
491     */
492
544      /**
545       * The target parallelism level.
546 +     * Accessed directly by ForkJoinWorkerThreads.
547       */
548 <    private int parallelism;
497 <
498 <    /**
499 <     * The maximum allowed pool size.
500 <     */
501 <    private int maxPoolSize;
548 >    final int parallelism;
549  
550      /**
551       * True if use local fifo, not default lifo, for local polling
552 <     * Replicated by ForkJoinWorkerThreads
506 <     */
507 <    private boolean locallyFifo;
508 <
509 <    /**
510 <     * Controls whether to add spares to maintain parallelism
552 >     * Read by, and replicated by ForkJoinWorkerThreads
553       */
554 <    private boolean maintainsParallelism;
554 >    final boolean locallyFifo;
555  
556      /**
557 <     * The uncaught exception handler used when any worker
558 <     * abruptly terminates
557 >     * The uncaught exception handler used when any worker abruptly
558 >     * terminates.
559       */
560 <    private Thread.UncaughtExceptionHandler ueh;
560 >    private final Thread.UncaughtExceptionHandler ueh;
561  
562      /**
563       * Pool number, just for assigning useful names to worker threads
564       */
565      private final int poolNumber;
566  
567 <    // utilities for updating fields
567 >
568 >    // Utilities for CASing fields. Note that several of these
569 >    // are manually inlined by callers
570  
571      /**
572 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 <     *
530 <     * @param delta the number to add
572 >     * Increments running count part of workerCounts
573       */
574 <    final void updateRunningCount(int delta) {
575 <        int wc;
574 >    final void incrementRunningCount() {
575 >        int c;
576          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 <                                               wc = workerCounts,
578 <                                               wc + delta));
577 >                                               c = workerCounts,
578 >                                               c + ONE_RUNNING));
579      }
580  
581      /**
582 <     * Write fence for user modifications of pool parameters
541 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
582 >     * Tries to decrement running count unless already zero
583       */
584 <    private void workerCountWriteFence() {
585 <        int wc;
586 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 <                                 wc = workerCounts, wc);
584 >    final boolean tryDecrementRunningCount() {
585 >        int wc = workerCounts;
586 >        if ((wc & RUNNING_COUNT_MASK) == 0)
587 >            return false;
588 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
589 >                                        wc, wc - ONE_RUNNING);
590      }
591  
592      /**
593 <     * Read fence for external reads of pool parameters
594 <     * (parallelism. maxPoolSize, etc).
593 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
594 >     * (rarely) necessary when other count updates lag.
595 >     *
596 >     * @param dr -- either zero or ONE_RUNNING
597 >     * @param dt == either zero or ONE_TOTAL
598       */
599 <    private void workerCountReadFence() {
600 <        int ignore = workerCounts;
599 >    private void decrementWorkerCounts(int dr, int dt) {
600 >        for (;;) {
601 >            int wc = workerCounts;
602 >            if (wc == 0 && (runState & TERMINATED) != 0)
603 >                return; // lagging termination on a backout
604 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
605 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
606 >                Thread.yield();
607 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
608 >                                         wc, wc - (dr + dt)))
609 >                return;
610 >        }
611 >    }
612 >
613 >    /**
614 >     * Increments event count
615 >     */
616 >    private void advanceEventCount() {
617 >        int c;
618 >        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619 >                                              c = eventCount, c+1));
620      }
621  
622      /**
# Line 602 | Line 667 | public class ForkJoinPool extends Abstra
667          lock.lock();
668          try {
669              ForkJoinWorkerThread[] ws = workers;
670 <            int len = ws.length;
671 <            if (k < 0 || k >= len || ws[k] != null) {
672 <                for (k = 0; k < len && ws[k] != null; ++k)
670 >            int n = ws.length;
671 >            if (k < 0 || k >= n || ws[k] != null) {
672 >                for (k = 0; k < n && ws[k] != null; ++k)
673                      ;
674 <                if (k == len)
675 <                    ws = Arrays.copyOf(ws, len << 1);
674 >                if (k == n)
675 >                    ws = Arrays.copyOf(ws, n << 1);
676              }
677              ws[k] = w;
678              workers = ws; // volatile array write ensures slot visibility
# Line 640 | Line 705 | public class ForkJoinPool extends Abstra
705       * Tries to create and add new worker. Assumes that worker counts
706       * are already updated to accommodate the worker, so adjusts on
707       * failure.
643     *
644     * @return new worker or null if creation failed
708       */
709 <    private ForkJoinWorkerThread addWorker() {
709 >    private void addWorker() {
710          ForkJoinWorkerThread w = null;
711          try {
712              w = factory.newThread(this);
713          } finally { // Adjust on either null or exceptional factory return
714              if (w == null) {
715 <                onWorkerCreationFailure();
716 <                return null;
715 >                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
716 >                tryTerminate(false); // in case of failure during shutdown
717              }
718          }
719 <        w.start(recordWorker(w), locallyFifo, ueh);
720 <        return w;
658 <    }
659 <
660 <    /**
661 <     * Adjusts counts upon failure to create worker
662 <     */
663 <    private void onWorkerCreationFailure() {
664 <        int c;
665 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666 <                                               c = workerCounts,
667 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 <        tryTerminate(false); // in case of failure during shutdown
669 <    }
670 <
671 <    /**
672 <     * Create enough total workers to establish target parallelism,
673 <     * giving up if terminating or addWorker fails
674 <     */
675 <    private void ensureEnoughTotalWorkers() {
676 <        int wc;
677 <        while (runState < TERMINATING &&
678 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
679 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681 <                 addWorker() == null))
682 <                break;
683 <        }
719 >        if (w != null)
720 >            w.start(recordWorker(w), ueh);
721      }
722  
723      /**
724       * Final callback from terminating worker.  Removes record of
725       * worker from array, and adjusts counts. If pool is shutting
726 <     * down, tries to complete terminatation, else possibly replaces
690 <     * the worker.
726 >     * down, tries to complete terminatation.
727       *
728       * @param w the worker
729       */
730      final void workerTerminated(ForkJoinWorkerThread w) {
695        if (w.active) { // force inactive
696            w.active = false;
697            do {} while (!tryDecrementActiveCount());
698        }
731          forgetWorker(w);
732 <
733 <        // decrement total count, and if was running, running count
734 <        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
735 <        int wc;
704 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 <                                               wc = workerCounts, wc - unit));
706 <
707 <        accumulateStealCount(w); // collect final count
708 <        if (!tryTerminate(false))
709 <            ensureEnoughTotalWorkers();
732 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
733 >        while (w.stealCount != 0) // collect final count
734 >            tryAccumulateStealCount(w);
735 >        tryTerminate(false);
736      }
737  
738      // Waiting for and signalling events
739  
740      /**
715     * Ensures eventCount on exit is different (mod 2^32) than on
716     * entry.  CAS failures are OK -- any change in count suffices.
717     */
718    private void advanceEventCount() {
719        int c;
720        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721    }
722
723    /**
741       * Releases workers blocked on a count not equal to current count.
742 <     */
743 <    final void releaseWaiters() {
744 <        long top;
745 <        int id;
746 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
747 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
748 <            ForkJoinWorkerThread[] ws = workers;
749 <            ForkJoinWorkerThread w;
750 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
751 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
752 <                                          top, w.nextWaiter))
742 >     * Normally called after precheck that eventWaiters isn't zero to
743 >     * avoid wasted array checks.
744 >     *
745 >     * @param signalling true if caller is a signalling worker so can
746 >     * exit upon (conservatively) detected contention by other threads
747 >     * who will continue to release
748 >     */
749 >    private void releaseEventWaiters(boolean signalling) {
750 >        ForkJoinWorkerThread[] ws = workers;
751 >        int n = ws.length;
752 >        long h; // head of stack
753 >        ForkJoinWorkerThread w; int id, ec;
754 >        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
755 >               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
756 >               id < n && (w = ws[id]) != null) {
757 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 >                                          h, h = w.nextWaiter))
759                  LockSupport.unpark(w);
760 +            if (signalling && (eventCount != ec || eventWaiters != h))
761 +                break;
762          }
763      }
764  
765      /**
766 <     * Advances eventCount and releases waiters until interference by
767 <     * other releasing threads is detected.
766 >     * Tries to advance eventCount and releases waiters. Called only
767 >     * from workers.
768       */
769      final void signalWork() {
770 <        int ec;
771 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
772 <        outer:for (;;) {
773 <            long top = eventWaiters;
749 <            ec = eventCount;
750 <            for (;;) {
751 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
752 <                int id = (int)(top & WAITER_INDEX_MASK);
753 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
754 <                    return;
755 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
756 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
757 <                                               top, top = w.nextWaiter))
758 <                    continue outer;      // possibly stale; reread
759 <                LockSupport.unpark(w);
760 <                if (top != eventWaiters) // let someone else take over
761 <                    return;
762 <            }
763 <        }
770 >        int c; // try to increment event count -- CAS failure OK
771 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
772 >        if (eventWaiters != 0L)
773 >            releaseEventWaiters(true);
774      }
775  
776      /**
777 <     * If worker is inactive, blocks until terminating or event count
778 <     * advances from last value held by worker; in any case helps
769 <     * release others.
777 >     * Blocks worker until terminating or event count
778 >     * advances from last value held by worker
779       *
780       * @param w the calling worker thread
781       */
782      private void eventSync(ForkJoinWorkerThread w) {
783 <        if (!w.active) {
784 <            int prev = w.lastEventCount;
785 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
786 <                            ((long)(w.poolIndex + 1)));
787 <            long top;
788 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
789 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
790 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
791 <                   eventCount == prev) {
792 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
793 <                                              w.nextWaiter = top, nextTop)) {
794 <                    accumulateStealCount(w); // transfer steals while idle
795 <                    Thread.interrupted();    // clear/ignore interrupt
796 <                    while (eventCount == prev)
797 <                        w.doPark();
798 <                    break;
783 >        int wec = w.lastEventCount;
784 >        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
785 >        long h;
786 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
787 >               ((h = eventWaiters) == 0L ||
788 >                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
789 >               eventCount == wec) {
790 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
791 >                                          w.nextWaiter = h, nh)) {
792 >                while (runState < TERMINATING && eventCount == wec) {
793 >                    if (!tryAccumulateStealCount(w))  // transfer while idle
794 >                        continue;
795 >                    Thread.interrupted();             // clear/ignore interrupt
796 >                    if (eventCount != wec)
797 >                        break;
798 >                    LockSupport.park(w);
799                  }
800 +                break;
801 +            }
802 +        }
803 +        w.lastEventCount = eventCount;
804 +    }
805 +
806 +    // Maintaining spares
807 +
808 +    /**
809 +     * Pushes worker onto the spare stack
810 +     */
811 +    final void pushSpare(ForkJoinWorkerThread w) {
812 +        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
813 +        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 +                                               w.nextSpare = spareWaiters,ns));
815 +    }
816 +
817 +    /**
818 +     * Tries (once) to resume a spare if running count is less than
819 +     * target parallelism. Fails on contention or stale workers.
820 +     */
821 +    private void tryResumeSpare() {
822 +        int sw, id;
823 +        ForkJoinWorkerThread w;
824 +        ForkJoinWorkerThread[] ws;
825 +        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
826 +            id < (ws = workers).length && (w = ws[id]) != null &&
827 +            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
828 +            eventWaiters == 0L &&
829 +            spareWaiters == sw &&
830 +            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
831 +                                     sw, w.nextSpare) &&
832 +            w.tryUnsuspend()) {
833 +            int c; // try increment; if contended, finish after unpark
834 +            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
835 +                                                   c = workerCounts,
836 +                                                   c + ONE_RUNNING);
837 +            LockSupport.unpark(w);
838 +            if (!inc) {
839 +                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
840 +                                                      c = workerCounts,
841 +                                                      c + ONE_RUNNING));
842              }
792            w.lastEventCount = eventCount;
843          }
844 <        releaseWaiters();
844 >    }
845 >
846 >    /**
847 >     * Callback from oldest spare occasionally waking up.  Tries
848 >     * (once) to shutdown a spare if more than 25% spare overage, or
849 >     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850 >     * least #parallelism running threads. Note that we don't need CAS
851 >     * or locks here because the method is called only from the oldest
852 >     * suspended spare occasionally waking (and even misfires are OK).
853 >     *
854 >     * @param now the wake up nanoTime of caller
855 >     */
856 >    final void tryTrimSpare(long now) {
857 >        long lastTrim = trimTime;
858 >        trimTime = now;
859 >        helpMaintainParallelism(); // first, help wake up any needed spares
860 >        int sw, id;
861 >        ForkJoinWorkerThread w;
862 >        ForkJoinWorkerThread[] ws;
863 >        int pc = parallelism;
864 >        int wc = workerCounts;
865 >        if ((wc & RUNNING_COUNT_MASK) >= pc &&
866 >            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867 >             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868 >            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 >            id < (ws = workers).length && (w = ws[id]) != null &&
870 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 >                                     sw, w.nextSpare))
872 >            w.shutdown(false);
873 >    }
874 >
875 >    /**
876 >     * Does at most one of:
877 >     *
878 >     * 1. Help wake up existing workers waiting for work via
879 >     *    releaseEventWaiters. (If any exist, then it probably doesn't
880 >     *    matter right now if under target parallelism level.)
881 >     *
882 >     * 2. If below parallelism level and a spare exists, try (once)
883 >     *    to resume it via tryResumeSpare.
884 >     *
885 >     * 3. If neither of the above, tries (once) to add a new
886 >     *    worker if either there are not enough total, or if all
887 >     *    existing workers are busy, there are either no running
888 >     *    workers or the deficit is at least twice the surplus.
889 >     */
890 >    private void helpMaintainParallelism() {
891 >        // uglified to work better when not compiled
892 >        int pc, wc, rc, tc, rs; long h;
893 >        if ((h = eventWaiters) != 0L) {
894 >            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895 >                releaseEventWaiters(false); // avoid useless call
896 >        }
897 >        else if ((pc = parallelism) >
898 >                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 >            if (spareWaiters != 0)
900 >                tryResumeSpare();
901 >            else if ((rs = runState) < TERMINATING &&
902 >                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 >                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 >                       (rc == 0 ||                       // must add
905 >                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 >                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 >                     workerCounts == wc &&
908 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 >                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 >                addWorker();
911 >        }
912      }
913  
914      /**
915       * Callback from workers invoked upon each top-level action (i.e.,
916       * stealing a task or taking a submission and running
917 <     * it). Performs one or both of the following:
917 >     * it). Performs one or more of the following:
918       *
919 <     * * If the worker cannot find work, updates its active status to
920 <     * inactive and updates activeCount unless there is contention, in
921 <     * which case it may try again (either in this or a subsequent
922 <     * call).  Additionally, awaits the next task event and/or helps
923 <     * wake up other releasable waiters.
924 <     *
925 <     * * If there are too many running threads, suspends this worker
926 <     * (first forcing inactivation if necessary).  If it is not
927 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
928 <     * -- killed while suspended within suspendAsSpare. Otherwise,
929 <     * upon resume it rechecks to make sure that it is still needed.
919 >     * 1. If the worker cannot find work (misses > 0), updates its
920 >     *    active status to inactive and updates activeCount unless
921 >     *    this is the first miss and there is contention, in which
922 >     *    case it may try again (either in this or a subsequent
923 >     *    call).
924 >     *
925 >     * 2. If there are at least 2 misses, awaits the next task event
926 >     *    via eventSync
927 >     *
928 >     * 3. If there are too many running threads, suspends this worker
929 >     *    (first forcing inactivation if necessary).  If it is not
930 >     *    needed, it may be killed while suspended via
931 >     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 >     *    sure that it is still needed.
933 >     *
934 >     * 4. Helps release and/or reactivate other workers via
935 >     *    helpMaintainParallelism
936       *
937       * @param w the worker
938 <     * @param worked false if the worker scanned for work but didn't
939 <     * find any (in which case it may block waiting for work).
938 >     * @param misses the number of scans by caller failing to find work
939 >     * (saturating at 2 just to avoid wraparound)
940       */
941 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
941 >    final void preStep(ForkJoinWorkerThread w, int misses) {
942          boolean active = w.active;
943 <        boolean inactivate = !worked & active;
943 >        int pc = parallelism;
944          for (;;) {
945 <            if (inactivate) {
946 <                int c = runState;
945 >            int wc = workerCounts;
946 >            int rc = wc & RUNNING_COUNT_MASK;
947 >            if (active && (misses > 0 || rc > pc)) {
948 >                int rs;                      // try inactivate
949                  if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 <                                             c, c - ONE_ACTIVE))
951 <                    inactivate = active = w.active = false;
950 >                                             rs = runState, rs - ONE_ACTIVE))
951 >                    active = w.active = false;
952 >                else if (misses > 1 || rc > pc ||
953 >                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 >                    continue;                // force inactivate
955              }
956 <            int wc = workerCounts;
957 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
958 <                if (!worked)
959 <                    eventSync(w);
960 <                return;
956 >            if (misses > 1) {
957 >                misses = 0;                  // don't re-sync
958 >                eventSync(w);                // continue loop to recheck rc
959 >            }
960 >            else if (rc > pc) {
961 >                if (workerCounts == wc &&   // try to suspend as spare
962 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 >                                             wc, wc - ONE_RUNNING) &&
964 >                    !w.suspendAsSpare())    // false if killed
965 >                    break;
966 >            }
967 >            else {
968 >                if (rc < pc || eventWaiters != 0L)
969 >                    helpMaintainParallelism();
970 >                break;
971              }
834            if (!(inactivate |= active) &&  // must inactivate to suspend
835                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836                                         wc, wc - ONE_RUNNING) &&
837                !w.suspendAsSpare())        // false if trimmed
838                return;
972          }
973      }
974  
975      /**
976 <     * Adjusts counts and creates or resumes compensating threads for
977 <     * a worker about to block on task joinMe, returning early if
978 <     * joinMe becomes ready. First tries resuming an existing spare
979 <     * (which usually also avoids any count adjustment), but must then
980 <     * decrement running count to determine whether a new thread is
981 <     * needed. See above for fuller explanation.
982 <     */
983 <    final void preJoin(ForkJoinTask<?> joinMe) {
984 <        boolean dec = false;       // true when running count decremented
985 <        for (;;) {
986 <            releaseWaiters();      // help other threads progress
987 <
988 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
861 <                    break;
862 <                }
863 <            }
976 >     * Helps and/or blocks awaiting join of the given task.
977 >     * Alternates between helpJoinTask() and helpMaintainParallelism()
978 >     * as many times as there is a deficit in running count (or longer
979 >     * if running count would become zero), then blocks if task still
980 >     * not done.
981 >     *
982 >     * @param joinMe the task to join
983 >     */
984 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
985 >        int threshold = parallelism;         // descend blocking thresholds
986 >        while (joinMe.status >= 0) {
987 >            boolean block; int wc;
988 >            worker.helpJoinTask(joinMe);
989              if (joinMe.status < 0)
990 <                return;
991 <
992 <            if (spare != null && spare.tryUnsuspend()) {
993 <                if (dec || joinMe.requestSignal() < 0) {
994 <                    int c;
995 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
996 <                                                           workerCountsOffset,
872 <                                                           c = workerCounts,
873 <                                                           c + ONE_RUNNING));
874 <                } // else no net count change
875 <                LockSupport.unpark(spare);
876 <                return;
877 <            }
878 <
879 <            int wc = workerCounts; // decrement running count
880 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 <                                                wc, wc -= ONE_RUNNING)) &&
883 <                joinMe.requestSignal() < 0) { // cannot block
884 <                int c;                        // back out
885 <                do {} while (!UNSAFE.compareAndSwapInt(this,
886 <                                                       workerCountsOffset,
887 <                                                       c = workerCounts,
888 <                                                       c + ONE_RUNNING));
889 <                return;
990 >                break;
991 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
992 >                if (threshold > 0)
993 >                    --threshold;
994 >                else
995 >                    advanceEventCount(); // force release
996 >                block = false;
997              }
998 <
999 <            if (dec) {
1000 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
1001 <                int pc = parallelism;
1002 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
1003 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
1004 <                                 !maintainsParallelism)) ||
1005 <                    tc >= maxPoolSize) // cannot add
1006 <                    return;
1007 <                if (spare == null &&
1008 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 <                    addWorker();
904 <                    return;
905 <                }
998 >            else
999 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1000 >                                                 wc, wc - ONE_RUNNING);
1001 >            helpMaintainParallelism();
1002 >            if (block) {
1003 >                int c;
1004 >                joinMe.internalAwaitDone();
1005 >                do {} while (!UNSAFE.compareAndSwapInt
1006 >                             (this, workerCountsOffset,
1007 >                              c = workerCounts, c + ONE_RUNNING));
1008 >                break;
1009              }
1010          }
1011      }
1012  
1013      /**
1014 <     * Same idea as preJoin but with too many differing details to
912 <     * integrate: There are no task-based signal counts, and only one
913 <     * way to do the actual blocking. So for simplicity it is directly
914 <     * incorporated into this method.
1014 >     * Same idea as awaitJoin, but no helping
1015       */
1016 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1016 >    final void awaitBlocker(ManagedBlocker blocker)
1017          throws InterruptedException {
1018 <        maintainPar &= maintainsParallelism; // override
1019 <        boolean dec = false;
1020 <        boolean done = false;
1021 <        for (;;) {
1022 <            releaseWaiters();
1023 <            if (done = blocker.isReleasable())
1024 <                break;
1025 <            ForkJoinWorkerThread spare = null;
1026 <            for (ForkJoinWorkerThread w : workers) {
927 <                if (w != null && w.isSuspended()) {
928 <                    spare = w;
929 <                    break;
930 <                }
1018 >        int threshold = parallelism;
1019 >        while (!blocker.isReleasable()) {
1020 >            boolean block; int wc;
1021 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1022 >                if (threshold > 0)
1023 >                    --threshold;
1024 >                else
1025 >                    advanceEventCount();
1026 >                block = false;
1027              }
1028 <            if (done = blocker.isReleasable())
1029 <                break;
1030 <            if (spare != null && spare.tryUnsuspend()) {
1031 <                if (dec) {
1028 >            else
1029 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1030 >                                                 wc, wc - ONE_RUNNING);
1031 >            helpMaintainParallelism();
1032 >            if (block) {
1033 >                try {
1034 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1035 >                } finally {
1036                      int c;
1037 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
1038 <                                                           workerCountsOffset,
1039 <                                                           c = workerCounts,
940 <                                                           c + ONE_RUNNING));
1037 >                    do {} while (!UNSAFE.compareAndSwapInt
1038 >                                 (this, workerCountsOffset,
1039 >                                  c = workerCounts, c + ONE_RUNNING));
1040                  }
942                LockSupport.unpark(spare);
1041                  break;
1042              }
945            int wc = workerCounts;
946            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948                                               wc, wc -= ONE_RUNNING);
949            if (dec) {
950                int tc = wc >>> TOTAL_COUNT_SHIFT;
951                int pc = parallelism;
952                int dc = pc - (wc & RUNNING_COUNT_MASK);
953                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954                                 !maintainPar)) ||
955                    tc >= maxPoolSize)
956                    break;
957                if (spare == null &&
958                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960                    addWorker();
961                    break;
962                }
963            }
964        }
965
966        try {
967            if (!done)
968                do {} while (!blocker.isReleasable() && !blocker.block());
969        } finally {
970            if (dec) {
971                int c;
972                do {} while (!UNSAFE.compareAndSwapInt(this,
973                                                       workerCountsOffset,
974                                                       c = workerCounts,
975                                                       c + ONE_RUNNING));
976            }
1043          }
1044      }
1045  
# Line 998 | Line 1064 | public class ForkJoinPool extends Abstra
1064          // Finish now if all threads terminated; else in some subsequent call
1065          if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1066              advanceRunLevel(TERMINATED);
1067 <            terminationLatch.countDown();
1067 >            termination.arrive();
1068          }
1069          return true;
1070      }
1071  
1072      /**
1073       * Actions on transition to TERMINATING
1074 +     *
1075 +     * Runs up to four passes through workers: (0) shutting down each
1076 +     * quietly (without waking up if parked) to quickly spread
1077 +     * notifications without unnecessary bouncing around event queues
1078 +     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1079 +     * races with interrupted workers
1080       */
1081      private void startTerminating() {
1082 <        // Clear out and cancel submissions, ignoring exceptions
1082 >        cancelSubmissions();
1083 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1084 >            advanceEventCount();
1085 >            eventWaiters = 0L; // clobber lists
1086 >            spareWaiters = 0;
1087 >            ForkJoinWorkerThread[] ws = workers;
1088 >            int n = ws.length;
1089 >            for (int i = 0; i < n; ++i) {
1090 >                ForkJoinWorkerThread w = ws[i];
1091 >                if (w != null) {
1092 >                    w.shutdown(true);
1093 >                    if (passes > 0 && !w.isTerminated()) {
1094 >                        w.cancelTasks();
1095 >                        LockSupport.unpark(w);
1096 >                        if (passes > 1) {
1097 >                            try {
1098 >                                w.interrupt();
1099 >                            } catch (SecurityException ignore) {
1100 >                            }
1101 >                        }
1102 >                    }
1103 >                }
1104 >            }
1105 >        }
1106 >    }
1107 >
1108 >    /**
1109 >     * Clear out and cancel submissions, ignoring exceptions
1110 >     */
1111 >    private void cancelSubmissions() {
1112          ForkJoinTask<?> task;
1113          while ((task = submissionQueue.poll()) != null) {
1114              try {
# Line 1015 | Line 1116 | public class ForkJoinPool extends Abstra
1116              } catch (Throwable ignore) {
1117              }
1118          }
1018        // Propagate run level
1019        for (ForkJoinWorkerThread w : workers) {
1020            if (w != null)
1021                w.shutdown();    // also resumes suspended workers
1022        }
1023        // Ensure no straggling local tasks
1024        for (ForkJoinWorkerThread w : workers) {
1025            if (w != null)
1026                w.cancelTasks();
1027        }
1028        // Wake up idle workers
1029        advanceEventCount();
1030        releaseWaiters();
1031        // Unstick pending joins
1032        for (ForkJoinWorkerThread w : workers) {
1033            if (w != null && !w.isTerminated()) {
1034                try {
1035                    w.interrupt();
1036                } catch (SecurityException ignore) {
1037                }
1038            }
1039        }
1119      }
1120  
1121      // misc support for ForkJoinWorkerThread
# Line 1049 | Line 1128 | public class ForkJoinPool extends Abstra
1128      }
1129  
1130      /**
1131 <     * Accumulates steal count from a worker, clearing
1132 <     * the worker's value
1131 >     * Tries to accumulates steal count from a worker, clearing
1132 >     * the worker's value.
1133 >     *
1134 >     * @return true if worker steal count now zero
1135       */
1136 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1136 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1137          int sc = w.stealCount;
1138 <        if (sc != 0) {
1139 <            long c;
1140 <            w.stealCount = 0;
1141 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1142 <                                                    c = stealCount, c + sc));
1138 >        long c = stealCount;
1139 >        // CAS even if zero, for fence effects
1140 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1141 >            if (sc != 0)
1142 >                w.stealCount = 0;
1143 >            return true;
1144          }
1145 +        return sc == 0;
1146      }
1147  
1148      /**
# Line 1067 | Line 1150 | public class ForkJoinPool extends Abstra
1150       * active thread.
1151       */
1152      final int idlePerActive() {
1153 +        int pc = parallelism; // use parallelism, not rc
1154          int ac = runState;    // no mask -- artifically boosts during shutdown
1071        int pc = parallelism; // use targeted parallelism, not rc
1155          // Use exact results for small values, saturate past 4
1156          return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1157      }
1158  
1076    /**
1077     * Returns the approximate (non-atomic) difference between running
1078     * and active counts.
1079     */
1080    final int inactiveCount() {
1081        return (workerCounts & RUNNING_COUNT_MASK) -
1082            (runState & ACTIVE_COUNT_MASK);
1083    }
1084
1159      // Public and protected methods
1160  
1161      // Constructors
1162  
1163      /**
1164       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1165 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1166 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1165 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1166 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1167 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1168       *
1169       * @throws SecurityException if a security manager exists and
1170       *         the caller is not permitted to modify threads
# Line 1098 | Line 1173 | public class ForkJoinPool extends Abstra
1173       */
1174      public ForkJoinPool() {
1175          this(Runtime.getRuntime().availableProcessors(),
1176 <             defaultForkJoinWorkerThreadFactory);
1176 >             defaultForkJoinWorkerThreadFactory, null, false);
1177      }
1178  
1179      /**
1180       * Creates a {@code ForkJoinPool} with the indicated parallelism
1181 <     * level and using the {@linkplain
1182 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1181 >     * level, the {@linkplain
1182 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1183 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1184       *
1185       * @param parallelism the parallelism level
1186       * @throws IllegalArgumentException if parallelism less than or
# Line 1115 | Line 1191 | public class ForkJoinPool extends Abstra
1191       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1192       */
1193      public ForkJoinPool(int parallelism) {
1194 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1119 <    }
1120 <
1121 <    /**
1122 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1123 <     * java.lang.Runtime#availableProcessors}, and using the given
1124 <     * thread factory.
1125 <     *
1126 <     * @param factory the factory for creating new threads
1127 <     * @throws NullPointerException if the factory is null
1128 <     * @throws SecurityException if a security manager exists and
1129 <     *         the caller is not permitted to modify threads
1130 <     *         because it does not hold {@link
1131 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1132 <     */
1133 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1134 <        this(Runtime.getRuntime().availableProcessors(), factory);
1194 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1195      }
1196  
1197      /**
1198 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1139 <     * thread factory.
1198 >     * Creates a {@code ForkJoinPool} with the given parameters.
1199       *
1200 <     * @param parallelism the parallelism level
1201 <     * @param factory the factory for creating new threads
1200 >     * @param parallelism the parallelism level. For default value,
1201 >     * use {@link java.lang.Runtime#availableProcessors}.
1202 >     * @param factory the factory for creating new threads. For default value,
1203 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1204 >     * @param handler the handler for internal worker threads that
1205 >     * terminate due to unrecoverable errors encountered while executing
1206 >     * tasks. For default value, use <code>null</code>.
1207 >     * @param asyncMode if true,
1208 >     * establishes local first-in-first-out scheduling mode for forked
1209 >     * tasks that are never joined. This mode may be more appropriate
1210 >     * than default locally stack-based mode in applications in which
1211 >     * worker threads only process event-style asynchronous tasks.
1212 >     * For default value, use <code>false</code>.
1213       * @throws IllegalArgumentException if parallelism less than or
1214       *         equal to zero, or greater than implementation limit
1215       * @throws NullPointerException if the factory is null
# Line 1148 | Line 1218 | public class ForkJoinPool extends Abstra
1218       *         because it does not hold {@link
1219       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1220       */
1221 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1221 >    public ForkJoinPool(int parallelism,
1222 >                        ForkJoinWorkerThreadFactory factory,
1223 >                        Thread.UncaughtExceptionHandler handler,
1224 >                        boolean asyncMode) {
1225          checkPermission();
1226          if (factory == null)
1227              throw new NullPointerException();
1228 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1228 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1229              throw new IllegalArgumentException();
1157        this.poolNumber = poolNumberGenerator.incrementAndGet();
1158        int arraySize = initialArraySizeFor(parallelism);
1230          this.parallelism = parallelism;
1231          this.factory = factory;
1232 <        this.maxPoolSize = MAX_THREADS;
1233 <        this.maintainsParallelism = true;
1232 >        this.ueh = handler;
1233 >        this.locallyFifo = asyncMode;
1234 >        int arraySize = initialArraySizeFor(parallelism);
1235          this.workers = new ForkJoinWorkerThread[arraySize];
1236          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1237          this.workerLock = new ReentrantLock();
1238 <        this.terminationLatch = new CountDownLatch(1);
1239 <        // Start first worker; remaining workers added upon first submission
1240 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
1169 <        addWorker();
1238 >        this.termination = new Phaser(1);
1239 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1240 >        this.trimTime = System.nanoTime();
1241      }
1242  
1243      /**
# Line 1174 | Line 1245 | public class ForkJoinPool extends Abstra
1245       * @param pc the initial parallelism level
1246       */
1247      private static int initialArraySizeFor(int pc) {
1248 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1249 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1248 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1249 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1250          size |= size >>> 1;
1251          size |= size >>> 2;
1252          size |= size >>> 4;
# Line 1195 | Line 1266 | public class ForkJoinPool extends Abstra
1266              throw new RejectedExecutionException();
1267          submissionQueue.offer(task);
1268          advanceEventCount();
1269 <        releaseWaiters();
1199 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1200 <            ensureEnoughTotalWorkers();
1269 >        helpMaintainParallelism();         // start or wake up workers
1270      }
1271  
1272      /**
# Line 1216 | Line 1285 | public class ForkJoinPool extends Abstra
1285  
1286      /**
1287       * Arranges for (asynchronous) execution of the given task.
1288 +     * If the caller is already engaged in a fork/join computation in
1289 +     * the current pool, this method is equivalent in effect to
1290 +     * {@link ForkJoinTask#fork}.
1291       *
1292       * @param task the task
1293       * @throws NullPointerException if the task is null
# Line 1243 | Line 1315 | public class ForkJoinPool extends Abstra
1315      }
1316  
1317      /**
1318 +     * Submits a ForkJoinTask for execution.
1319 +     * If the caller is already engaged in a fork/join computation in
1320 +     * the current pool, this method is equivalent in effect to
1321 +     * {@link ForkJoinTask#fork}.
1322 +     *
1323 +     * @param task the task to submit
1324 +     * @return the task
1325 +     * @throws NullPointerException if the task is null
1326 +     * @throws RejectedExecutionException if the task cannot be
1327 +     *         scheduled for execution
1328 +     */
1329 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1330 +        doSubmit(task);
1331 +        return task;
1332 +    }
1333 +
1334 +    /**
1335       * @throws NullPointerException if the task is null
1336       * @throws RejectedExecutionException if the task cannot be
1337       *         scheduled for execution
# Line 1280 | Line 1369 | public class ForkJoinPool extends Abstra
1369      }
1370  
1371      /**
1283     * Submits a ForkJoinTask for execution.
1284     *
1285     * @param task the task to submit
1286     * @return the task
1287     * @throws NullPointerException if the task is null
1288     * @throws RejectedExecutionException if the task cannot be
1289     *         scheduled for execution
1290     */
1291    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1292        doSubmit(task);
1293        return task;
1294    }
1295
1296    /**
1372       * @throws NullPointerException       {@inheritDoc}
1373       * @throws RejectedExecutionException {@inheritDoc}
1374       */
# Line 1305 | Line 1380 | public class ForkJoinPool extends Abstra
1380          invoke(new InvokeAll<T>(forkJoinTasks));
1381  
1382          @SuppressWarnings({"unchecked", "rawtypes"})
1383 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1383 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1384          return futures;
1385      }
1386  
# Line 1335 | Line 1410 | public class ForkJoinPool extends Abstra
1410       * @return the handler, or {@code null} if none
1411       */
1412      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338        workerCountReadFence();
1413          return ueh;
1414      }
1415  
1416      /**
1343     * Sets the handler for internal worker threads that terminate due
1344     * to unrecoverable errors encountered while executing tasks.
1345     * Unless set, the current default or ThreadGroup handler is used
1346     * as handler.
1347     *
1348     * @param h the new handler
1349     * @return the old handler, or {@code null} if none
1350     * @throws SecurityException if a security manager exists and
1351     *         the caller is not permitted to modify threads
1352     *         because it does not hold {@link
1353     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1354     */
1355    public Thread.UncaughtExceptionHandler
1356        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357        checkPermission();
1358        workerCountReadFence();
1359        Thread.UncaughtExceptionHandler old = ueh;
1360        if (h != old) {
1361            ueh = h;
1362            workerCountWriteFence();
1363            for (ForkJoinWorkerThread w : workers) {
1364                if (w != null)
1365                    w.setUncaughtExceptionHandler(h);
1366            }
1367        }
1368        return old;
1369    }
1370
1371    /**
1372     * Sets the target parallelism level of this pool.
1373     *
1374     * @param parallelism the target parallelism
1375     * @throws IllegalArgumentException if parallelism less than or
1376     * equal to zero or greater than maximum size bounds
1377     * @throws SecurityException if a security manager exists and
1378     *         the caller is not permitted to modify threads
1379     *         because it does not hold {@link
1380     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1381     */
1382    public void setParallelism(int parallelism) {
1383        checkPermission();
1384        if (parallelism <= 0 || parallelism > maxPoolSize)
1385            throw new IllegalArgumentException();
1386        workerCountReadFence();
1387        int pc = this.parallelism;
1388        if (pc != parallelism) {
1389            this.parallelism = parallelism;
1390            workerCountWriteFence();
1391            // Release spares. If too many, some will die after re-suspend
1392            for (ForkJoinWorkerThread w : workers) {
1393                if (w != null && w.tryUnsuspend()) {
1394                    updateRunningCount(1);
1395                    LockSupport.unpark(w);
1396                }
1397            }
1398            ensureEnoughTotalWorkers();
1399            advanceEventCount();
1400            releaseWaiters(); // force config recheck by existing workers
1401        }
1402    }
1403
1404    /**
1417       * Returns the targeted parallelism level of this pool.
1418       *
1419       * @return the targeted parallelism level of this pool
1420       */
1421      public int getParallelism() {
1410        //        workerCountReadFence(); // inlined below
1411        int ignore = workerCounts;
1422          return parallelism;
1423      }
1424  
# Line 1425 | Line 1435 | public class ForkJoinPool extends Abstra
1435      }
1436  
1437      /**
1428     * Returns the maximum number of threads allowed to exist in the
1429     * pool. Unless set using {@link #setMaximumPoolSize}, the
1430     * maximum is an implementation-defined value designed only to
1431     * prevent runaway growth.
1432     *
1433     * @return the maximum
1434     */
1435    public int getMaximumPoolSize() {
1436        workerCountReadFence();
1437        return maxPoolSize;
1438    }
1439
1440    /**
1441     * Sets the maximum number of threads allowed to exist in the
1442     * pool. The given value should normally be greater than or equal
1443     * to the {@link #getParallelism parallelism} level. Setting this
1444     * value has no effect on current pool size. It controls
1445     * construction of new threads.
1446     *
1447     * @throws IllegalArgumentException if negative or greater than
1448     * internal implementation limit
1449     */
1450    public void setMaximumPoolSize(int newMax) {
1451        if (newMax < 0 || newMax > MAX_THREADS)
1452            throw new IllegalArgumentException();
1453        maxPoolSize = newMax;
1454        workerCountWriteFence();
1455    }
1456
1457    /**
1458     * Returns {@code true} if this pool dynamically maintains its
1459     * target parallelism level. If false, new threads are added only
1460     * to avoid possible starvation.  This setting is by default true.
1461     *
1462     * @return {@code true} if maintains parallelism
1463     */
1464    public boolean getMaintainsParallelism() {
1465        workerCountReadFence();
1466        return maintainsParallelism;
1467    }
1468
1469    /**
1470     * Sets whether this pool dynamically maintains its target
1471     * parallelism level. If false, new threads are added only to
1472     * avoid possible starvation.
1473     *
1474     * @param enable {@code true} to maintain parallelism
1475     */
1476    public void setMaintainsParallelism(boolean enable) {
1477        maintainsParallelism = enable;
1478        workerCountWriteFence();
1479    }
1480
1481    /**
1482     * Establishes local first-in-first-out scheduling mode for forked
1483     * tasks that are never joined. This mode may be more appropriate
1484     * than default locally stack-based mode in applications in which
1485     * worker threads only process asynchronous tasks.  This method is
1486     * designed to be invoked only when the pool is quiescent, and
1487     * typically only before any tasks are submitted. The effects of
1488     * invocations at other times may be unpredictable.
1489     *
1490     * @param async if {@code true}, use locally FIFO scheduling
1491     * @return the previous mode
1492     * @see #getAsyncMode
1493     */
1494    public boolean setAsyncMode(boolean async) {
1495        workerCountReadFence();
1496        boolean oldMode = locallyFifo;
1497        if (oldMode != async) {
1498            locallyFifo = async;
1499            workerCountWriteFence();
1500            for (ForkJoinWorkerThread w : workers) {
1501                if (w != null)
1502                    w.setAsyncMode(async);
1503            }
1504        }
1505        return oldMode;
1506    }
1507
1508    /**
1438       * Returns {@code true} if this pool uses local first-in-first-out
1439       * scheduling mode for forked tasks that are never joined.
1440       *
1441       * @return {@code true} if this pool uses async mode
1513     * @see #setAsyncMode
1442       */
1443      public boolean getAsyncMode() {
1516        workerCountReadFence();
1444          return locallyFifo;
1445      }
1446  
# Line 1582 | Line 1509 | public class ForkJoinPool extends Abstra
1509       */
1510      public long getQueuedTaskCount() {
1511          long count = 0;
1512 <        for (ForkJoinWorkerThread w : workers) {
1512 >        ForkJoinWorkerThread[] ws = workers;
1513 >        int n = ws.length;
1514 >        for (int i = 0; i < n; ++i) {
1515 >            ForkJoinWorkerThread w = ws[i];
1516              if (w != null)
1517                  count += w.getQueueSize();
1518          }
# Line 1639 | Line 1569 | public class ForkJoinPool extends Abstra
1569       * @return the number of elements transferred
1570       */
1571      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1572 <        int n = submissionQueue.drainTo(c);
1573 <        for (ForkJoinWorkerThread w : workers) {
1572 >        int count = submissionQueue.drainTo(c);
1573 >        ForkJoinWorkerThread[] ws = workers;
1574 >        int n = ws.length;
1575 >        for (int i = 0; i < n; ++i) {
1576 >            ForkJoinWorkerThread w = ws[i];
1577              if (w != null)
1578 <                n += w.drainTasksTo(c);
1578 >                count += w.drainTasksTo(c);
1579          }
1580 <        return n;
1580 >        return count;
1581      }
1582  
1583      /**
# Line 1768 | Line 1701 | public class ForkJoinPool extends Abstra
1701       */
1702      public boolean awaitTermination(long timeout, TimeUnit unit)
1703          throws InterruptedException {
1704 <        return terminationLatch.await(timeout, unit);
1704 >        try {
1705 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1706 >        } catch(TimeoutException ex) {
1707 >            return false;
1708 >        }
1709      }
1710  
1711      /**
1712       * Interface for extending managed parallelism for tasks running
1713       * in {@link ForkJoinPool}s.
1714       *
1715 <     * <p>A {@code ManagedBlocker} provides two methods.
1716 <     * Method {@code isReleasable} must return {@code true} if
1717 <     * blocking is not necessary. Method {@code block} blocks the
1718 <     * current thread if necessary (perhaps internally invoking
1719 <     * {@code isReleasable} before actually blocking).
1715 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1716 >     * {@code isReleasable} must return {@code true} if blocking is
1717 >     * not necessary. Method {@code block} blocks the current thread
1718 >     * if necessary (perhaps internally invoking {@code isReleasable}
1719 >     * before actually blocking). The unusual methods in this API
1720 >     * accommodate synchronizers that may, but don't usually, block
1721 >     * for long periods. Similarly, they allow more efficient internal
1722 >     * handling of cases in which additional workers may be, but
1723 >     * usually are not, needed to ensure sufficient parallelism.
1724 >     * Toward this end, implementations of method {@code isReleasable}
1725 >     * must be amenable to repeated invocation.
1726       *
1727       * <p>For example, here is a ManagedBlocker based on a
1728       * ReentrantLock:
# Line 1797 | Line 1740 | public class ForkJoinPool extends Abstra
1740       *     return hasLock || (hasLock = lock.tryLock());
1741       *   }
1742       * }}</pre>
1743 +     *
1744 +     * <p>Here is a class that possibly blocks waiting for an
1745 +     * item on a given queue:
1746 +     *  <pre> {@code
1747 +     * class QueueTaker<E> implements ManagedBlocker {
1748 +     *   final BlockingQueue<E> queue;
1749 +     *   volatile E item = null;
1750 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1751 +     *   public boolean block() throws InterruptedException {
1752 +     *     if (item == null)
1753 +     *       item = queue.take
1754 +     *     return true;
1755 +     *   }
1756 +     *   public boolean isReleasable() {
1757 +     *     return item != null || (item = queue.poll) != null;
1758 +     *   }
1759 +     *   public E getItem() { // call after pool.managedBlock completes
1760 +     *     return item;
1761 +     *   }
1762 +     * }}</pre>
1763       */
1764      public static interface ManagedBlocker {
1765          /**
# Line 1820 | Line 1783 | public class ForkJoinPool extends Abstra
1783       * Blocks in accord with the given blocker.  If the current thread
1784       * is a {@link ForkJoinWorkerThread}, this method possibly
1785       * arranges for a spare thread to be activated if necessary to
1786 <     * ensure parallelism while the current thread is blocked.
1824 <     *
1825 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1826 <     * supports it ({@link #getMaintainsParallelism}), this method
1827 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1828 <     * it activates a thread only if necessary to avoid complete
1829 <     * starvation. This option may be preferable when blockages use
1830 <     * timeouts, or are almost always brief.
1786 >     * ensure sufficient parallelism while the current thread is blocked.
1787       *
1788       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1789       * behaviorally equivalent to
# Line 1841 | Line 1797 | public class ForkJoinPool extends Abstra
1797       * first be expanded to ensure parallelism, and later adjusted.
1798       *
1799       * @param blocker the blocker
1844     * @param maintainParallelism if {@code true} and supported by
1845     * this pool, attempt to maintain the pool's nominal parallelism;
1846     * otherwise activate a thread only if necessary to avoid
1847     * complete starvation.
1800       * @throws InterruptedException if blocker.block did so
1801       */
1802 <    public static void managedBlock(ManagedBlocker blocker,
1851 <                                    boolean maintainParallelism)
1802 >    public static void managedBlock(ManagedBlocker blocker)
1803          throws InterruptedException {
1804          Thread t = Thread.currentThread();
1805 <        if (t instanceof ForkJoinWorkerThread)
1806 <            ((ForkJoinWorkerThread) t).pool.
1807 <                doBlock(blocker, maintainParallelism);
1808 <        else
1809 <            awaitBlocker(blocker);
1810 <    }
1811 <
1861 <    /**
1862 <     * Performs Non-FJ blocking
1863 <     */
1864 <    private static void awaitBlocker(ManagedBlocker blocker)
1865 <        throws InterruptedException {
1866 <        do {} while (!blocker.isReleasable() && !blocker.block());
1805 >        if (t instanceof ForkJoinWorkerThread) {
1806 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1807 >            w.pool.awaitBlocker(blocker);
1808 >        }
1809 >        else {
1810 >            do {} while (!blocker.isReleasable() && !blocker.block());
1811 >        }
1812      }
1813  
1814      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1891 | Line 1836 | public class ForkJoinPool extends Abstra
1836          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1837      private static final long stealCountOffset =
1838          objectFieldOffset("stealCount",ForkJoinPool.class);
1839 <
1839 >    private static final long spareWaitersOffset =
1840 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1841  
1842      private static long objectFieldOffset(String field, Class<?> klazz) {
1843          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines