ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.63 by dl, Fri Aug 13 16:21:23 2010 UTC vs.
Revision 1.93 by dl, Wed Feb 23 12:48:43 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15 + import java.util.concurrent.AbstractExecutorService;
16 + import java.util.concurrent.Callable;
17 + import java.util.concurrent.ExecutorService;
18 + import java.util.concurrent.Future;
19 + import java.util.concurrent.RejectedExecutionException;
20 + import java.util.concurrent.RunnableFuture;
21 + import java.util.concurrent.TimeUnit;
22 + import java.util.concurrent.TimeoutException;
23 + import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.CountDownLatch;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 69 | Line 76 | import java.util.concurrent.CountDownLat
76   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77   *  </tr>
78   *  <tr>
79 < *    <td> <b>Arange async execution</td>
79 > *    <td> <b>Arrange async execution</td>
80   *    <td> {@link #execute(ForkJoinTask)}</td>
81   *    <td> {@link ForkJoinTask#fork}</td>
82   *  </tr>
# Line 124 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
138 <     * lastly to new submissions. These mechanics do not consider
139 <     * affinities, loads, cache localities, etc, so rarely provide the
140 <     * best possible performance on a given machine, but portably
141 <     * provide good throughput by averaging over these factors.
142 <     * (Further, even if we did try to use such information, we do not
143 <     * usually have a basis for exploiting it. For example, some sets
144 <     * of tasks profit from cache affinities, but others are harmed by
145 <     * cache pollution effects.)
146 <     *
147 <     * Beyond work-stealing support and essential bookkeeping, the
148 <     * main responsibility of this framework is to take actions when
149 <     * one worker is waiting to join a task stolen (or always held by)
150 <     * another.  Becauae we are multiplexing many tasks on to a pool
151 <     * of workers, we can't just let them block (as in Thread.join).
152 <     * We also cannot just reassign the joiner's run-time stack with
153 <     * another and replace it later, which would be a form of
154 <     * "continuation", that even if possible is not necessarily a good
155 <     * idea. Given that the creation costs of most threads on most
156 <     * systems mainly surrounds setting up runtime stacks, thread
157 <     * creation and switching is usually not much more expensive than
158 <     * stack creation and switching, and is more flexible). Instead we
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250       * combine two tactics:
251       *
252       *   Helping: Arranging for the joiner to execute some task that it
253       *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255       *      links to try to find such a task.
256       *
257       *   Compensating: Unless there are already enough live threads,
258 <     *      method helpMaintainParallelism() may create or or
259 <     *      re-activate a spare thread to compensate for blocked
260 <     *      joiners until they unblock.
163 <     *
164 <     * Because the determining existence of conservatively safe
165 <     * helping targets, the availability of already-created spares,
166 <     * and the apparent need to create new spares are all racy and
167 <     * require heuristic guidance, we rely on multiple retries of
168 <     * each. Further, because it is impossible to keep exactly the
169 <     * target (parallelism) number of threads running at any given
170 <     * time, we allow compensation during joins to fail, and enlist
171 <     * all other threads to help out whenever they are not otherwise
172 <     * occupied (i.e., mainly in method preStep).
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261       *
262       * The ManagedBlocker extension API can't use helping so relies
263       * only on compensation in method awaitBlocker.
264       *
265 <     * The main throughput advantages of work-stealing stem from
266 <     * decentralized control -- workers mostly steal tasks from each
267 <     * other. We do not want to negate this by creating bottlenecks
268 <     * implementing other management responsibilities. So we use a
269 <     * collection of techniques that avoid, reduce, or cope well with
270 <     * contention. These entail several instances of bit-packing into
271 <     * CASable fields to maintain only the minimally required
272 <     * atomicity. To enable such packing, we restrict maximum
273 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
274 <     * unbalanced increments and decrements) to fit into a 16 bit
275 <     * field, which is far in excess of normal operating range.  Even
276 <     * though updates to some of these bookkeeping fields do sometimes
277 <     * contend with each other, they don't normally cache-contend with
278 <     * updates to others enough to warrant memory padding or
279 <     * isolation. So they are all held as fields of ForkJoinPool
280 <     * objects.  The main capabilities are as follows:
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295       *
296 <     * 1. Creating and removing workers. Workers are recorded in the
195 <     * "workers" array. This is an array as opposed to some other data
196 <     * structure to support index-based random steals by workers.
197 <     * Updates to the array recording new workers and unrecording
198 <     * terminated ones are protected from each other by a lock
199 <     * (workerLock) but the array is otherwise concurrently readable,
200 <     * and accessed directly by workers. To simplify index-based
201 <     * operations, the array size is always a power of two, and all
202 <     * readers must tolerate null slots. Currently, all worker thread
203 <     * creation is on-demand, triggered by task submissions,
204 <     * replacement of terminated workers, and/or compensation for
205 <     * blocked workers. However, all other support code is set up to
206 <     * work with other policies.
207 <     *
208 <     * To ensure that we do not hold on to worker references that
209 <     * would prevent GC, ALL accesses to workers are via indices into
210 <     * the workers array (which is one source of some of the unusual
211 <     * code constructions here). In essence, the workers array serves
212 <     * as a WeakReference mechanism. Thus for example the event queue
213 <     * stores worker indices, not worker references. Access to the
214 <     * workers in associated methods (for example releaseEventWaiters)
215 <     * must both index-check and null-check the IDs. All such accesses
216 <     * ignore bad IDs by returning out early from what they are doing,
217 <     * since this can only be associated with shutdown, in which case
218 <     * it is OK to give up. On termination, we just clobber these
219 <     * data structures without trying to use them.
220 <     *
221 <     * 2. Bookkeeping for dynamically adding and removing workers. We
222 <     * aim to approximately maintain the given level of parallelism.
223 <     * When some workers are known to be blocked (on joins or via
224 <     * ManagedBlocker), we may create or resume others to take their
225 <     * place until they unblock (see below). Implementing this
226 <     * requires counts of the number of "running" threads (i.e., those
227 <     * that are neither blocked nor artifically suspended) as well as
228 <     * the total number.  These two values are packed into one field,
229 <     * "workerCounts" because we need accurate snapshots when deciding
230 <     * to create, resume or suspend.  Note however that the
231 <     * correspondance of these counts to reality is not guaranteed. In
232 <     * particular updates for unblocked threads may lag until they
233 <     * actually wake up.
234 <     *
235 <     * 3. Maintaining global run state. The run state of the pool
236 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237 <     * those in other Executor implementations, as well as a count of
238 <     * "active" workers -- those that are, or soon will be, or
239 <     * recently were executing tasks. The runLevel and active count
240 <     * are packed together in order to correctly trigger shutdown and
241 <     * termination. Without care, active counts can be subject to very
242 <     * high contention.  We substantially reduce this contention by
243 <     * relaxing update rules.  A worker must claim active status
244 <     * prospectively, by activating if it sees that a submitted or
245 <     * stealable task exists (it may find after activating that the
246 <     * task no longer exists). It stays active while processing this
247 <     * task (if it exists) and any other local subtasks it produces,
248 <     * until it cannot find any other tasks. It then tries
249 <     * inactivating (see method preStep), but upon update contention
250 <     * instead scans for more tasks, later retrying inactivation if it
251 <     * doesn't find any.
252 <     *
253 <     * 4. Managing idle workers waiting for tasks. We cannot let
254 <     * workers spin indefinitely scanning for tasks when none are
255 <     * available. On the other hand, we must quickly prod them into
256 <     * action when new tasks are submitted or generated.  We
257 <     * park/unpark these idle workers using an event-count scheme.
258 <     * Field eventCount is incremented upon events that may enable
259 <     * workers that previously could not find a task to now find one:
260 <     * Submission of a new task to the pool, or another worker pushing
261 <     * a task onto a previously empty queue.  (We also use this
262 <     * mechanism for termination actions that require wakeups of idle
263 <     * workers).  Each worker maintains its last known event count,
264 <     * and blocks when a scan for work did not find a task AND its
265 <     * lastEventCount matches the current eventCount. Waiting idle
266 <     * workers are recorded in a variant of Treiber stack headed by
267 <     * field eventWaiters which, when nonzero, encodes the thread
268 <     * index and count awaited for by the worker thread most recently
269 <     * calling eventSync. This thread in turn has a record (field
270 <     * nextEventWaiter) for the next waiting worker.  In addition to
271 <     * allowing simpler decisions about need for wakeup, the event
272 <     * count bits in eventWaiters serve the role of tags to avoid ABA
273 <     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 <     * workers not otherwise occupied may invoke method
275 <     * releaseEventWaiters, that removes and signals (unparks) workers
276 <     * not waiting on current count. To reduce stalls, To minimize
277 <     * task production stalls associate with signalling, any worker
278 <     * pushing a task on an empty queue invokes the weaker method
279 <     * signalWork, that only releases idle workers until it detects
280 <     * interference by other threads trying to release, and lets them
281 <     * take over.  The net effect is a tree-like diffusion of signals,
282 <     * where released threads (and possibly others) help with unparks.
283 <     * To further reduce contention effects a bit, failed CASes to
284 <     * increment field eventCount are tolerated without retries.
285 <     * Conceptually they are merged into the same event, which is OK
286 <     * when their only purpose is to enable workers to scan for work.
287 <     *
288 <     * 5. Managing suspension of extra workers. When a worker is about
289 <     * to block waiting for a join (or via ManagedBlockers), we may
290 <     * create a new thread to maintain parallelism level, or at least
291 <     * avoid starvation. Usually, extra threads are needed for only
292 <     * very short periods, yet join dependencies are such that we
293 <     * sometimes need them in bursts. Rather than create new threads
294 <     * each time this happens, we suspend no-longer-needed extra ones
295 <     * as "spares". For most purposes, we don't distinguish "extra"
296 <     * spare threads from normal "core" threads: On each call to
297 <     * preStep (the only point at which we can do this) a worker
298 <     * checks to see if there are now too many running workers, and if
299 <     * so, suspends itself.  Method helpMaintainParallelism looks for
300 <     * suspended threads to resume before considering creating a new
301 <     * replacement. The spares themselves are encoded on another
302 <     * variant of a Treiber Stack, headed at field "spareWaiters".
303 <     * Note that the use of spares is intrinsically racy.  One thread
304 <     * may become a spare at about the same time as another is
305 <     * needlessly being created. We counteract this and related slop
306 <     * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend.  To avoid
308 <     * long-term build-up of spares, the oldest spare (see
309 <     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 <     * not signalled and calls tryTrimSpare, which uses two different
311 <     * thresholds: Always killing if the number of spares is greater
312 <     * that 25% of total, and killing others only at a slower rate
313 <     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314 <     *
315 <     * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads
317 <     * in method helpMaintainParallelism. We would like to keep
318 <     * exactly #parallelism threads running, which is an impossble
319 <     * task. We always need to create one when the number of running
320 <     * threads would become zero and all workers are busy. Beyond
321 <     * this, we must rely on heuristics that work well in the the
322 <     * presence of transients phenomena such as GC stalls, dynamic
323 <     * compilation, and wake-up lags. These transients are extremely
324 <     * common -- we are normally trying to fully saturate the CPUs on
325 <     * a machine, so almost any activity other than running tasks
326 <     * impedes accuracy. Our main defense is to allow some slack in
327 <     * creation thresholds, using rules that reflect the fact that the
328 <     * more threads we have running, the more likely that we are
329 <     * underestimating the number running threads. The rules also
330 <     * better cope with the fact that some of the methods in this
331 <     * class tend to never become compiled (but are interpreted), so
332 <     * some components of the entire set of controls might execute 100
333 <     * times faster than others. And similarly for cases where the
334 <     * apparent lack of work is just due to GC stalls and other
335 <     * transient system activity.
336 <     *
337 <     * Beware that there is a lot of representation-level coupling
296 >     * Style notes: There is a lot of representation-level coupling
297       * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 <     * ForkJoinTask.  For example, direct access to "workers" array by
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301       * workers, and direct access to ForkJoinTask.status by both
302       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303       * trying to reduce this, since any associated future changes in
304       * representations will need to be accompanied by algorithmic
305 <     * changes anyway.
306 <     *
307 <     * Style notes: There are lots of inline assignments (of form
308 <     * "while ((local = field) != 0)") which are usually the simplest
309 <     * way to ensure the required read orderings (which are sometimes
310 <     * critical). Also several occurrences of the unusual "do {}
311 <     * while(!cas...)" which is the simplest way to force an update of
312 <     * a CAS'ed variable. There are also other coding oddities that
313 <     * help some methods perform reasonably even when interpreted (not
314 <     * compiled), at the expense of some messy constructions that
315 <     * reduce byte code counts.
316 <     *
317 <     * The order of declarations in this file is: (1) statics (2)
318 <     * fields (along with constants used when unpacking some of them)
319 <     * (3) internal control methods (4) callbacks and other support
320 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
321 <     * methods (plus a few little helpers).
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
333      /**
# Line 392 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
396 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
403 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 415 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
419 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * Absolute bound for parallelism level. Twice this number plus
390 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
391 <     * word-packing for some counts and indices.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    private static final int MAX_WORKERS   = 0x7fff;
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * Array holding all worker threads in the pool.  Array size must
399 <     * be a power of two.  Updates and replacements are protected by
400 <     * workerLock, but the array is always kept in a consistent enough
401 <     * state to be randomly accessed without locking by workers
402 <     * performing work-stealing, as well as other traversal-based
403 <     * methods in this class. All readers must tolerate that some
404 <     * array slots may be null.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    volatile ForkJoinWorkerThread[] workers;
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Queue for external submissions.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415  
416      /**
417 <     * Lock protecting updates to workers array.
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421       */
422 <    private final ReentrantLock workerLock;
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * Latch released upon termination.
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private final Phaser termination;
427 >    private ForkJoinTask<?>[] submissionQueue;
428  
429      /**
430 <     * Creation factory for worker threads.
430 >     * Lock protecting submissions array for addSubmission
431       */
432 <    private final ForkJoinWorkerThreadFactory factory;
432 >    private final ReentrantLock submissionLock;
433  
434      /**
435 <     * Sum of per-thread steal counts, updated only when threads are
436 <     * idle or terminating.
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437       */
438 <    private volatile long stealCount;
438 >    private final Condition termination;
439  
440      /**
441 <     * The last nanoTime that a spare thread was trimmed
441 >     * Creation factory for worker threads.
442       */
443 <    private volatile long trimTime;
443 >    private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * The rate at which to trim unused spares
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 <        1000L * 1000L * 1000L; // 1 sec
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Encoded record of top of treiber stack of threads waiting for
478 <     * events. The top 32 bits contain the count being waited for. The
479 <     * bottom 16 bits contains one plus the pool index of waiting
480 <     * worker thread. (Bits 16-31 are unused.)
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private volatile long eventWaiters;
483 <
484 <    private static final int  EVENT_COUNT_SHIFT = 32;
485 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * A counter for events that may wake up worker threads:
458 <     *   - Submission of a new task to the pool
490 <     *   - A worker pushing a task on an empty queue
491 <     *   - termination
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private volatile int eventCount;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Encoded record of top of treiber stack of spare threads waiting
464 <     * for resumption. The top 16 bits contain an arbitrary count to
465 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
466 <     * index of waiting worker thread.
467 <     */
468 <    private volatile int spareWaiters;
469 <
470 <    private static final int SPARE_COUNT_SHIFT = 16;
471 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.  Note: AC_SHIFT is
482 >     * redundantly declared in ForkJoinWorkerThread in order to
483 >     * integrate a surplus-threads check.
484 >     */
485 >    volatile long ctl;
486 >
487 >    // bit positions/shifts for fields
488 >    private static final int  AC_SHIFT   = 48;
489 >    private static final int  TC_SHIFT   = 32;
490 >    private static final int  ST_SHIFT   = 31;
491 >    private static final int  EC_SHIFT   = 16;
492 >
493 >    // bounds
494 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
495 >    private static final int  SMASK      = 0xffff;  // mask short bits
496 >    private static final int  SHORT_SIGN = 1 << 15;
497 >    private static final int  INT_SIGN   = 1 << 31;
498 >
499 >    // masks
500 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
501 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
502 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
503 >
504 >    // units for incrementing and decrementing
505 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
506 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
507 >
508 >    // masks and units for dealing with u = (int)(ctl >>> 32)
509 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
510 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
511 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
512 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
513 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
514 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
515 >
516 >    // masks and units for dealing with e = (int)ctl
517 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
518 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
519  
520      /**
521 <     * Lifecycle control. The low word contains the number of workers
508 <     * that are (probably) executing tasks. This value is atomically
509 <     * incremented before a worker gets a task to run, and decremented
510 <     * when worker has no tasks and cannot find any.  Bits 16-18
511 <     * contain runLevel value. When all are zero, the pool is
512 <     * running. Level transitions are monotonic (running -> shutdown
513 <     * -> terminating -> terminated) so each transition adds a bit.
514 <     * These are bundled together to ensure consistent read for
515 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
516 <     * and active threads is zero).
521 >     * The target parallelism level.
522       */
523 <    private volatile int runState;
519 <
520 <    // Note: The order among run level values matters.
521 <    private static final int RUNLEVEL_SHIFT     = 16;
522 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
523 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
524 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
525 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
526 <    private static final int ONE_ACTIVE         = 1; // active update delta
523 >    final int parallelism;
524  
525      /**
526 <     * Holds number of total (i.e., created and not yet terminated)
527 <     * and running (i.e., not blocked on joins or other managed sync)
531 <     * threads, packed together to ensure consistent snapshot when
532 <     * making decisions about creating and suspending spare
533 <     * threads. Updated only by CAS. Note that adding a new worker
534 <     * requires incrementing both counts, since workers start off in
535 <     * running state.
526 >     * Index (mod submission queue length) of next element to take
527 >     * from submission queue.
528       */
529 <    private volatile int workerCounts;
529 >    volatile int queueBase;
530  
531 <    private static final int TOTAL_COUNT_SHIFT  = 16;
532 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
533 <    private static final int ONE_RUNNING        = 1;
534 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
531 >    /**
532 >     * Index (mod submission queue length) of next element to add
533 >     * in submission queue.
534 >     */
535 >    int queueTop;
536  
537      /**
538 <     * The target parallelism level.
546 <     * Accessed directly by ForkJoinWorkerThreads.
538 >     * True when shutdown() has been called.
539       */
540 <    final int parallelism;
540 >    volatile boolean shutdown;
541  
542      /**
543       * True if use local fifo, not default lifo, for local polling
# Line 554 | Line 546 | public class ForkJoinPool extends Abstra
546      final boolean locallyFifo;
547  
548      /**
549 <     * The uncaught exception handler used when any worker abruptly
550 <     * terminates.
549 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 >     * When non-zero, suppresses automatic shutdown when active
551 >     * counts become zero.
552       */
553 <    private final Thread.UncaughtExceptionHandler ueh;
553 >    volatile int quiescerCount;
554  
555      /**
556 <     * Pool number, just for assigning useful names to worker threads
556 >     * The number of threads blocked in join.
557       */
558 <    private final int poolNumber;
558 >    volatile int blockedCount;
559  
560 +    /**
561 +     * Counter for worker Thread names (unrelated to their poolIndex)
562 +     */
563 +    private volatile int nextWorkerNumber;
564  
565 <    // Utilities for CASing fields. Note that several of these
566 <    // are manually inlined by callers
565 >    /**
566 >     * The index for the next created worker. Accessed under scanGuard.
567 >     */
568 >    private int nextWorkerIndex;
569  
570      /**
571 <     * Increments running count part of workerCounts
571 >     * SeqLock and index masking for for updates to workers array.
572 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 >     * SG_UNIT. Staleness of read-only operations can be checked by
574 >     * comparing scanGuard to value before the reads. The low 16 bits
575 >     * (i.e, anding with SMASK) hold (the smallest power of two
576 >     * covering all worker indices, minus one, and is used to avoid
577 >     * dealing with large numbers of null slots when the workers array
578 >     * is overallocated.
579       */
580 <    final void incrementRunningCount() {
581 <        int c;
582 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 <                                               c = workerCounts,
578 <                                               c + ONE_RUNNING));
579 <    }
580 >    volatile int scanGuard;
581 >
582 >    private static final int SG_UNIT = 1 << 16;
583  
584      /**
585 <     * Tries to decrement running count unless already zero
585 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
586 >     * task when the pool is quiescent to instead try to shrink the
587 >     * number of workers.  The exact value does not matter too
588 >     * much. It must be short enough to release resources during
589 >     * sustained periods of idleness, but not so short that threads
590 >     * are continually re-created.
591       */
592 <    final boolean tryDecrementRunningCount() {
593 <        int wc = workerCounts;
586 <        if ((wc & RUNNING_COUNT_MASK) == 0)
587 <            return false;
588 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
589 <                                        wc, wc - ONE_RUNNING);
590 <    }
592 >    private static final long SHRINK_RATE =
593 >        4L * 1000L * 1000L * 1000L; // 4 seconds
594  
595      /**
596 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
597 <     * (rarely) necessary when other count updates lag.
596 >     * Top-level loop for worker threads: On each step: if the
597 >     * previous step swept through all queues and found no tasks, or
598 >     * there are excess threads, then possibly blocks. Otherwise,
599 >     * scans for and, if found, executes a task. Returns when pool
600 >     * and/or worker terminate.
601       *
602 <     * @param dr -- either zero or ONE_RUNNING
597 <     * @param dt == either zero or ONE_TOTAL
602 >     * @param w the worker
603       */
604 <    private void decrementWorkerCounts(int dr, int dt) {
605 <        for (;;) {
606 <            int wc = workerCounts;
607 <            if (wc == 0 && (runState & TERMINATED) != 0)
608 <                return; // lagging termination on a backout
609 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
610 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
611 <                Thread.yield();
612 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
608 <                                         wc, wc - (dr + dt)))
609 <                return;
604 >    final void work(ForkJoinWorkerThread w) {
605 >        boolean swept = false;                // true on empty scans
606 >        long c;
607 >        while (!w.terminate && (int)(c = ctl) >= 0) {
608 >            int a;                            // active count
609 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 >                swept = scan(w, a);
611 >            else if (tryAwaitWork(w, c))
612 >                swept = false;
613          }
614      }
615  
616 +    // Signalling
617 +
618      /**
619 <     * Increments event count
619 >     * Wakes up or creates a worker.
620       */
621 <    private void advanceEventCount() {
622 <        int c;
623 <        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
624 <                                              c = eventCount, c+1));
621 >    final void signalWork() {
622 >        /*
623 >         * The while condition is true if: (there is are too few total
624 >         * workers OR there is at least one waiter) AND (there are too
625 >         * few active workers OR the pool is terminating).  The value
626 >         * of e distinguishes the remaining cases: zero (no waiters)
627 >         * for create, negative if terminating (in which case do
628 >         * nothing), else release a waiter. The secondary checks for
629 >         * release (non-null array etc) can fail if the pool begins
630 >         * terminating after the test, and don't impose any added cost
631 >         * because JVMs must perform null and bounds checks anyway.
632 >         */
633 >        long c; int e, u;
634 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636 >            if (e > 0) {                         // release a waiting worker
637 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 >                if ((ws = workers) == null ||
639 >                    (i = ~e & SMASK) >= ws.length ||
640 >                    (w = ws[i]) == null)
641 >                    break;
642 >                long nc = (((long)(w.nextWait & E_MASK)) |
643 >                           ((long)(u + UAC_UNIT) << 32));
644 >                if (w.eventCount == e &&
645 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
647 >                    if (w.parked)
648 >                        UNSAFE.unpark(w);
649 >                    break;
650 >                }
651 >            }
652 >            else if (UNSAFE.compareAndSwapLong
653 >                     (this, ctlOffset, c,
654 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 >                addWorker();
657 >                break;
658 >            }
659 >        }
660      }
661  
662      /**
663 <     * Tries incrementing active count; fails on contention.
664 <     * Called by workers before executing tasks.
663 >     * Variant of signalWork to help release waiters on rescans.
664 >     * Tries once to release a waiter if active count < 0.
665       *
666 <     * @return true on success
666 >     * @return false if failed due to contention, else true
667       */
668 <    final boolean tryIncrementActiveCount() {
669 <        int c;
670 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
671 <                                        c = runState, c + ONE_ACTIVE);
668 >    private boolean tryReleaseWaiter() {
669 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670 >        if ((e = (int)(c = ctl)) > 0 &&
671 >            (int)(c >> AC_SHIFT) < 0 &&
672 >            (ws = workers) != null &&
673 >            (i = ~e & SMASK) < ws.length &&
674 >            (w = ws[i]) != null) {
675 >            long nc = ((long)(w.nextWait & E_MASK) |
676 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 >            if (w.eventCount != e ||
678 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 >                return false;
680 >            w.eventCount = (e + EC_UNIT) & E_MASK;
681 >            if (w.parked)
682 >                UNSAFE.unpark(w);
683 >        }
684 >        return true;
685      }
686  
687 +    // Scanning for tasks
688 +
689      /**
690 <     * Tries decrementing active count; fails on contention.
691 <     * Called when workers cannot find tasks to run.
690 >     * Scans for and, if found, executes one task. Scans start at a
691 >     * random index of workers array, and randomly select the first
692 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693 >     * circular sweeps, which is necessary to check quiescence. and
694 >     * taking a submission only if no stealable tasks were found.  The
695 >     * steal code inside the loop is a specialized form of
696 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697 >     * helpJoinTask and signal propagation. The code for submission
698 >     * queues is almost identical. On each steal, the worker completes
699 >     * not only the task, but also all local tasks that this task may
700 >     * have generated. On detecting staleness or contention when
701 >     * trying to take a task, this method returns without finishing
702 >     * sweep, which allows global state rechecks before retry.
703 >     *
704 >     * @param w the worker
705 >     * @param a the number of active workers
706 >     * @return true if swept all queues without finding a task
707       */
708 <    final boolean tryDecrementActiveCount() {
709 <        int c;
710 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
711 <                                        c = runState, c - ONE_ACTIVE);
708 >    private boolean scan(ForkJoinWorkerThread w, int a) {
709 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
710 >        int m = parallelism == 1 - a? 0 : g & SMASK;
711 >        ForkJoinWorkerThread[] ws = workers;
712 >        if (ws == null || ws.length <= m)         // staleness check
713 >            return false;
714 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716 >            ForkJoinWorkerThread v = ws[k & m];
717 >            if (v != null && (b = v.queueBase) != v.queueTop &&
718 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719 >                long u = (i << ASHIFT) + ABASE;
720 >                if ((t = q[i]) != null && v.queueBase == b &&
721 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 >                    int d = (v.queueBase = b + 1) - v.queueTop;
723 >                    v.stealHint = w.poolIndex;
724 >                    if (d != 0)
725 >                        signalWork();             // propagate if nonempty
726 >                    w.execTask(t);
727 >                }
728 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729 >                return false;                     // store next seed
730 >            }
731 >            else if (j < 0) {                     // xorshift
732 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733 >            }
734 >            else
735 >                ++k;
736 >        }
737 >        if (scanGuard != g)                       // staleness check
738 >            return false;
739 >        else {                                    // try to take submission
740 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 >            if ((b = queueBase) != queueTop &&
742 >                (q = submissionQueue) != null &&
743 >                (i = (q.length - 1) & b) >= 0) {
744 >                long u = (i << ASHIFT) + ABASE;
745 >                if ((t = q[i]) != null && queueBase == b &&
746 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 >                    queueBase = b + 1;
748 >                    w.execTask(t);
749 >                }
750 >                return false;
751 >            }
752 >            return true;                         // all queues empty
753 >        }
754      }
755  
756      /**
757 <     * Advances to at least the given level. Returns true if not
758 <     * already in at least the given level.
759 <     */
760 <    private boolean advanceRunLevel(int level) {
761 <        for (;;) {
762 <            int s = runState;
763 <            if ((s & level) != 0)
764 <                return false;
765 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
757 >     * Tries to enqueue worker w in wait queue and await change in
758 >     * worker's eventCount.  If the pool is quiescent, possibly
759 >     * terminates worker upon exit.  Otherwise, before blocking,
760 >     * rescans queues to avoid missed signals.  Upon finding work,
761 >     * releases at least one worker (which may be the current
762 >     * worker). Rescans restart upon detected staleness or failure to
763 >     * release due to contention.
764 >     *
765 >     * @param w the calling worker
766 >     * @param c the ctl value on entry
767 >     * @return true if waited or another thread was released upon enq
768 >     */
769 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
770 >        int v = w.eventCount;
771 >        w.nextWait = (int)c;                      // w's successor record
772 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
773 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
774 >            long d = ctl; // return true if lost to a deq, to force scan
775 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
776 >        }
777 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
778 >            long s = stealCount;
779 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
780 >                sc = w.stealCount = 0;
781 >            else if (w.eventCount != v)
782 >                return true;                      // update next time
783 >        }
784 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
785 >            blockedCount == 0 && quiescerCount == 0)
786 >            idleAwaitWork(w, nc, c, v);           // quiescent
787 >        for (boolean rescanned = false;;) {
788 >            if (w.eventCount != v)
789                  return true;
790 +            if (!rescanned) {
791 +                int g = scanGuard, m = g & SMASK;
792 +                ForkJoinWorkerThread[] ws = workers;
793 +                if (ws != null && m < ws.length) {
794 +                    rescanned = true;
795 +                    for (int i = 0; i <= m; ++i) {
796 +                        ForkJoinWorkerThread u = ws[i];
797 +                        if (u != null) {
798 +                            if (u.queueBase != u.queueTop &&
799 +                                !tryReleaseWaiter())
800 +                                rescanned = false; // contended
801 +                            if (w.eventCount != v)
802 +                                return true;
803 +                        }
804 +                    }
805 +                }
806 +                if (scanGuard != g ||              // stale
807 +                    (queueBase != queueTop && !tryReleaseWaiter()))
808 +                    rescanned = false;
809 +                if (!rescanned)
810 +                    Thread.yield();                // reduce contention
811 +                else
812 +                    Thread.interrupted();          // clear before park
813 +            }
814 +            else {
815 +                w.parked = true;                   // must recheck
816 +                if (w.eventCount != v) {
817 +                    w.parked = false;
818 +                    return true;
819 +                }
820 +                LockSupport.park(this);
821 +                rescanned = w.parked = false;
822 +            }
823          }
824      }
825  
658    // workers array maintenance
659
826      /**
827 <     * Records and returns a workers array index for new worker.
828 <     */
829 <    private int recordWorker(ForkJoinWorkerThread w) {
830 <        // Try using slot totalCount-1. If not available, scan and/or resize
831 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
832 <        final ReentrantLock lock = this.workerLock;
833 <        lock.lock();
834 <        try {
835 <            ForkJoinWorkerThread[] ws = workers;
836 <            int n = ws.length;
837 <            if (k < 0 || k >= n || ws[k] != null) {
838 <                for (k = 0; k < n && ws[k] != null; ++k)
839 <                    ;
840 <                if (k == n)
841 <                    ws = Arrays.copyOf(ws, n << 1);
827 >     * If inactivating worker w has caused pool to become
828 >     * quiescent, check for pool termination, and wait for event
829 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
830 >     * this case because quiescence reflects consensus about lack
831 >     * of work). On timeout, if ctl has not changed, terminate the
832 >     * worker. Upon its termination (see deregisterWorker), it may
833 >     * wake up another worker to possibly repeat this process.
834 >     *
835 >     * @param w the calling worker
836 >     * @param currentCtl the ctl value after enqueuing w
837 >     * @param prevCtl the ctl value if w terminated
838 >     * @param v the eventCount w awaits change
839 >     */
840 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
841 >                               long prevCtl, int v) {
842 >        if (w.eventCount == v) {
843 >            if (shutdown)
844 >                tryTerminate(false);
845 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
846 >            while (ctl == currentCtl) {
847 >                long startTime = System.nanoTime();
848 >                w.parked = true;
849 >                if (w.eventCount == v)             // must recheck
850 >                    LockSupport.parkNanos(this, SHRINK_RATE);
851 >                w.parked = false;
852 >                if (w.eventCount != v)
853 >                    break;
854 >                else if (System.nanoTime() - startTime < SHRINK_RATE)
855 >                    Thread.interrupted();          // spurious wakeup
856 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
857 >                                                   currentCtl, prevCtl)) {
858 >                    w.terminate = true;            // restore previous
859 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
860 >                    break;
861 >                }
862              }
677            ws[k] = w;
678            workers = ws; // volatile array write ensures slot visibility
679        } finally {
680            lock.unlock();
863          }
682        return k;
864      }
865  
866 +    // Submissions
867 +
868      /**
869 <     * Nulls out record of worker in workers array
869 >     * Enqueues the given task in the submissionQueue.  Same idea as
870 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
871 >     *
872 >     * @param t the task
873       */
874 <    private void forgetWorker(ForkJoinWorkerThread w) {
875 <        int idx = w.poolIndex;
690 <        // Locking helps method recordWorker avoid unecessary expansion
691 <        final ReentrantLock lock = this.workerLock;
874 >    private void addSubmission(ForkJoinTask<?> t) {
875 >        final ReentrantLock lock = this.submissionLock;
876          lock.lock();
877          try {
878 <            ForkJoinWorkerThread[] ws = workers;
879 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
880 <                ws[idx] = null;
878 >            ForkJoinTask<?>[] q; int s, m;
879 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
880 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
881 >                UNSAFE.putOrderedObject(q, u, t);
882 >                queueTop = s + 1;
883 >                if (s - queueBase == m)
884 >                    growSubmissionQueue();
885 >            }
886          } finally {
887              lock.unlock();
888          }
889 +        signalWork();
890      }
891  
892 <    // adding and removing workers
892 >    //  (pollSubmission is defined below with exported methods)
893  
894      /**
895 <     * Tries to create and add new worker. Assumes that worker counts
896 <     * are already updated to accommodate the worker, so adjusts on
707 <     * failure.
895 >     * Creates or doubles submissionQueue array.
896 >     * Basically identical to ForkJoinWorkerThread version
897       */
898 <    private void addWorker() {
899 <        ForkJoinWorkerThread w = null;
900 <        try {
901 <            w = factory.newThread(this);
902 <        } finally { // Adjust on either null or exceptional factory return
903 <            if (w == null) {
904 <                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
905 <                tryTerminate(false); // in case of failure during shutdown
898 >    private void growSubmissionQueue() {
899 >        ForkJoinTask<?>[] oldQ = submissionQueue;
900 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
901 >        if (size > MAXIMUM_QUEUE_CAPACITY)
902 >            throw new RejectedExecutionException("Queue capacity exceeded");
903 >        if (size < INITIAL_QUEUE_CAPACITY)
904 >            size = INITIAL_QUEUE_CAPACITY;
905 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
906 >        int mask = size - 1;
907 >        int top = queueTop;
908 >        int oldMask;
909 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
910 >            for (int b = queueBase; b != top; ++b) {
911 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
912 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
913 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
914 >                    UNSAFE.putObjectVolatile
915 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
916              }
917          }
719        if (w != null)
720            w.start(recordWorker(w), ueh);
918      }
919  
920 +    // Blocking support
921 +
922      /**
923 <     * Final callback from terminating worker.  Removes record of
924 <     * worker from array, and adjusts counts. If pool is shutting
925 <     * down, tries to complete terminatation.
926 <     *
927 <     * @param w the worker
928 <     */
929 <    final void workerTerminated(ForkJoinWorkerThread w) {
930 <        forgetWorker(w);
931 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
932 <        while (w.stealCount != 0) // collect final count
933 <            tryAccumulateStealCount(w);
934 <        tryTerminate(false);
923 >     * Tries to increment blockedCount, decrement active count
924 >     * (sometimes implicitly) and possibly release or create a
925 >     * compensating worker in preparation for blocking. Fails
926 >     * on contention or termination.
927 >     *
928 >     * @return true if the caller can block, else should recheck and retry
929 >     */
930 >    private boolean tryPreBlock() {
931 >        int b = blockedCount;
932 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
933 >            int pc = parallelism;
934 >            do {
935 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
936 >                int e, ac, tc, rc, i;
937 >                long c = ctl;
938 >                int u = (int)(c >>> 32);
939 >                if ((e = (int)c) < 0) {
940 >                                                 // skip -- terminating
941 >                }
942 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
943 >                         (ws = workers) != null &&
944 >                         (i = ~e & SMASK) < ws.length &&
945 >                         (w = ws[i]) != null) {
946 >                    long nc = ((long)(w.nextWait & E_MASK) |
947 >                               (c & (AC_MASK|TC_MASK)));
948 >                    if (w.eventCount == e &&
949 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
950 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
951 >                        if (w.parked)
952 >                            UNSAFE.unpark(w);
953 >                        return true;             // release an idle worker
954 >                    }
955 >                }
956 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
957 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
958 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
959 >                        return true;             // no compensation needed
960 >                }
961 >                else if (tc + pc < MAX_ID) {
962 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
963 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        addWorker();
965 >                        return true;            // create a replacement
966 >                    }
967 >                }
968 >                // try to back out on any failure and let caller retry
969 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
970 >                                               b = blockedCount, b - 1));
971 >        }
972 >        return false;
973      }
974  
738    // Waiting for and signalling events
739
975      /**
976 <     * Releases workers blocked on a count not equal to current count.
742 <     * Normally called after precheck that eventWaiters isn't zero to
743 <     * avoid wasted array checks.
744 <     *
745 <     * @param signalling true if caller is a signalling worker so can
746 <     * exit upon (conservatively) detected contention by other threads
747 <     * who will continue to release
976 >     * Decrements blockedCount and increments active count
977       */
978 <    private void releaseEventWaiters(boolean signalling) {
979 <        ForkJoinWorkerThread[] ws = workers;
980 <        int n = ws.length;
981 <        long h; // head of stack
982 <        ForkJoinWorkerThread w; int id, ec;
983 <        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
984 <               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
756 <               id < n && (w = ws[id]) != null) {
757 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 <                                          h, h = w.nextWaiter))
759 <                LockSupport.unpark(w);
760 <            if (signalling && (eventCount != ec || eventWaiters != h))
761 <                break;
762 <        }
978 >    private void postBlock() {
979 >        long c;
980 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
981 >                                                c = ctl, c + AC_UNIT));
982 >        int b;
983 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                              b = blockedCount, b - 1));
985      }
986  
987      /**
988 <     * Tries to advance eventCount and releases waiters. Called only
989 <     * from workers.
988 >     * Possibly blocks waiting for the given task to complete, or
989 >     * cancels the task if terminating.  Fails to wait if contended.
990 >     *
991 >     * @param joinMe the task
992       */
993 <    final void signalWork() {
994 <        int c; // try to increment event count -- CAS failure OK
995 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
996 <        if (eventWaiters != 0L)
997 <            releaseEventWaiters(true);
993 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
994 >        int s;
995 >        Thread.interrupted(); // clear interrupts before checking termination
996 >        if (joinMe.status >= 0) {
997 >            if (tryPreBlock()) {
998 >                joinMe.tryAwaitDone(0L);
999 >                postBlock();
1000 >            }
1001 >            if ((ctl & STOP_BIT) != 0L)
1002 >                joinMe.cancelIgnoringExceptions();
1003 >        }
1004      }
1005  
1006      /**
1007 <     * Blocks worker until terminating or event count
1008 <     * advances from last value held by worker
1009 <     *
1010 <     * @param w the calling worker thread
1011 <     */
1012 <    private void eventSync(ForkJoinWorkerThread w) {
1013 <        int wec = w.lastEventCount;
1014 <        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
1015 <        long h;
1016 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1017 <               ((h = eventWaiters) == 0L ||
1018 <                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
1019 <               eventCount == wec) {
1020 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1021 <                                          w.nextWaiter = h, nh)) {
1022 <                while (runState < TERMINATING && eventCount == wec) {
1023 <                    if (!tryAccumulateStealCount(w))  // transfer while idle
1024 <                        continue;
1025 <                    Thread.interrupted();             // clear/ignore interrupt
1026 <                    if (eventCount != wec)
1007 >     * Possibly blocks the given worker waiting for joinMe to
1008 >     * complete or timeout
1009 >     *
1010 >     * @param joinMe the task
1011 >     * @param millis the wait time for underlying Object.wait
1012 >     */
1013 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1014 >        while (joinMe.status >= 0) {
1015 >            Thread.interrupted();
1016 >            if ((ctl & STOP_BIT) != 0L) {
1017 >                joinMe.cancelIgnoringExceptions();
1018 >                break;
1019 >            }
1020 >            if (tryPreBlock()) {
1021 >                long last = System.nanoTime();
1022 >                while (joinMe.status >= 0) {
1023 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1024 >                    if (millis <= 0)
1025 >                        break;
1026 >                    joinMe.tryAwaitDone(millis);
1027 >                    if (joinMe.status < 0)
1028                          break;
1029 <                    LockSupport.park(w);
1029 >                    if ((ctl & STOP_BIT) != 0L) {
1030 >                        joinMe.cancelIgnoringExceptions();
1031 >                        break;
1032 >                    }
1033 >                    long now = System.nanoTime();
1034 >                    nanos -= now - last;
1035 >                    last = now;
1036                  }
1037 +                postBlock();
1038                  break;
1039              }
1040          }
803        w.lastEventCount = eventCount;
804    }
805
806    // Maintaining spares
807
808    /**
809     * Pushes worker onto the spare stack
810     */
811    final void pushSpare(ForkJoinWorkerThread w) {
812        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
813        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814                                               w.nextSpare = spareWaiters,ns));
1041      }
1042  
1043      /**
1044 <     * Tries (once) to resume a spare if running count is less than
819 <     * target parallelism. Fails on contention or stale workers.
1044 >     * If necessary, compensates for blocker, and blocks
1045       */
1046 <    private void tryResumeSpare() {
1047 <        int sw, id;
1048 <        ForkJoinWorkerThread w;
1049 <        ForkJoinWorkerThread[] ws;
1050 <        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
1051 <            id < (ws = workers).length && (w = ws[id]) != null &&
1052 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
1053 <            eventWaiters == 0L &&
1054 <            spareWaiters == sw &&
1055 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
831 <                                     sw, w.nextSpare) &&
832 <            w.tryUnsuspend()) {
833 <            int c; // try increment; if contended, finish after unpark
834 <            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
835 <                                                   c = workerCounts,
836 <                                                   c + ONE_RUNNING);
837 <            LockSupport.unpark(w);
838 <            if (!inc) {
839 <                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
840 <                                                      c = workerCounts,
841 <                                                      c + ONE_RUNNING));
1046 >    private void awaitBlocker(ManagedBlocker blocker)
1047 >        throws InterruptedException {
1048 >        while (!blocker.isReleasable()) {
1049 >            if (tryPreBlock()) {
1050 >                try {
1051 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1052 >                } finally {
1053 >                    postBlock();
1054 >                }
1055 >                break;
1056              }
1057          }
1058      }
1059  
1060 <    /**
847 <     * Callback from oldest spare occasionally waking up.  Tries
848 <     * (once) to shutdown a spare if more than 25% spare overage, or
849 <     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850 <     * least #parallelism running threads. Note that we don't need CAS
851 <     * or locks here because the method is called only from the oldest
852 <     * suspended spare occasionally waking (and even misfires are OK).
853 <     *
854 <     * @param now the wake up nanoTime of caller
855 <     */
856 <    final void tryTrimSpare(long now) {
857 <        long lastTrim = trimTime;
858 <        trimTime = now;
859 <        helpMaintainParallelism(); // first, help wake up any needed spares
860 <        int sw, id;
861 <        ForkJoinWorkerThread w;
862 <        ForkJoinWorkerThread[] ws;
863 <        int pc = parallelism;
864 <        int wc = workerCounts;
865 <        if ((wc & RUNNING_COUNT_MASK) >= pc &&
866 <            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867 <             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868 <            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 <            id < (ws = workers).length && (w = ws[id]) != null &&
870 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 <                                     sw, w.nextSpare))
872 <            w.shutdown(false);
873 <    }
1060 >    // Creating, registering and deregistring workers
1061  
1062      /**
1063 <     * Does at most one of:
1064 <     *
1065 <     * 1. Help wake up existing workers waiting for work via
1066 <     *    releaseEventWaiters. (If any exist, then it probably doesn't
1067 <     *    matter right now if under target parallelism level.)
1068 <     *
1069 <     * 2. If below parallelism level and a spare exists, try (once)
1070 <     *    to resume it via tryResumeSpare.
1071 <     *
1072 <     * 3. If neither of the above, tries (once) to add a new
1073 <     *    worker if either there are not enough total, or if all
1074 <     *    existing workers are busy, there are either no running
1075 <     *    workers or the deficit is at least twice the surplus.
1076 <     */
1077 <    private void helpMaintainParallelism() {
1078 <        // uglified to work better when not compiled
1079 <        int pc, wc, rc, tc, rs; long h;
1080 <        if ((h = eventWaiters) != 0L) {
1081 <            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1082 <                releaseEventWaiters(false); // avoid useless call
1083 <        }
1084 <        else if ((pc = parallelism) >
898 <                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 <            if (spareWaiters != 0)
900 <                tryResumeSpare();
901 <            else if ((rs = runState) < TERMINATING &&
902 <                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 <                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 <                       (rc == 0 ||                       // must add
905 <                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 <                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 <                     workerCounts == wc &&
908 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 <                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 <                addWorker();
1063 >     * Tries to create and start a worker; minimally rolls back counts
1064 >     * on failure.
1065 >     */
1066 >    private void addWorker() {
1067 >        Throwable ex = null;
1068 >        ForkJoinWorkerThread t = null;
1069 >        try {
1070 >            t = factory.newThread(this);
1071 >        } catch (Throwable e) {
1072 >            ex = e;
1073 >        }
1074 >        if (t == null) {  // null or exceptional factory return
1075 >            long c;       // adjust counts
1076 >            do {} while (!UNSAFE.compareAndSwapLong
1077 >                         (this, ctlOffset, c = ctl,
1078 >                          (((c - AC_UNIT) & AC_MASK) |
1079 >                           ((c - TC_UNIT) & TC_MASK) |
1080 >                           (c & ~(AC_MASK|TC_MASK)))));
1081 >            // Propagate exception if originating from an external caller
1082 >            if (!tryTerminate(false) && ex != null &&
1083 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1084 >                UNSAFE.throwException(ex);
1085          }
1086 +        else
1087 +            t.start();
1088      }
1089  
1090      /**
1091 <     * Callback from workers invoked upon each top-level action (i.e.,
1092 <     * stealing a task or taking a submission and running
917 <     * it). Performs one or more of the following:
918 <     *
919 <     * 1. If the worker cannot find work (misses > 0), updates its
920 <     *    active status to inactive and updates activeCount unless
921 <     *    this is the first miss and there is contention, in which
922 <     *    case it may try again (either in this or a subsequent
923 <     *    call).
924 <     *
925 <     * 2. If there are at least 2 misses, awaits the next task event
926 <     *    via eventSync
927 <     *
928 <     * 3. If there are too many running threads, suspends this worker
929 <     *    (first forcing inactivation if necessary).  If it is not
930 <     *    needed, it may be killed while suspended via
931 <     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 <     *    sure that it is still needed.
933 <     *
934 <     * 4. Helps release and/or reactivate other workers via
935 <     *    helpMaintainParallelism
936 <     *
937 <     * @param w the worker
938 <     * @param misses the number of scans by caller failing to find work
939 <     * (saturating at 2 just to avoid wraparound)
1091 >     * Callback from ForkJoinWorkerThread constructor to assign a
1092 >     * public name
1093       */
1094 <    final void preStep(ForkJoinWorkerThread w, int misses) {
1095 <        boolean active = w.active;
1096 <        int pc = parallelism;
1097 <        for (;;) {
1098 <            int wc = workerCounts;
946 <            int rc = wc & RUNNING_COUNT_MASK;
947 <            if (active && (misses > 0 || rc > pc)) {
948 <                int rs;                      // try inactivate
949 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 <                                             rs = runState, rs - ONE_ACTIVE))
951 <                    active = w.active = false;
952 <                else if (misses > 1 || rc > pc ||
953 <                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 <                    continue;                // force inactivate
955 <            }
956 <            if (misses > 1) {
957 <                misses = 0;                  // don't re-sync
958 <                eventSync(w);                // continue loop to recheck rc
959 <            }
960 <            else if (rc > pc) {
961 <                if (workerCounts == wc &&   // try to suspend as spare
962 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 <                                             wc, wc - ONE_RUNNING) &&
964 <                    !w.suspendAsSpare())    // false if killed
965 <                    break;
966 <            }
967 <            else {
968 <                if (rc < pc || eventWaiters != 0L)
969 <                    helpMaintainParallelism();
970 <                break;
971 <            }
1094 >    final String nextWorkerName() {
1095 >        for (int n;;) {
1096 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1097 >                                         n = nextWorkerNumber, ++n))
1098 >                return workerNamePrefix + n;
1099          }
1100      }
1101  
1102      /**
1103 <     * Helps and/or blocks awaiting join of the given task.
1104 <     * Alternates between helpJoinTask() and helpMaintainParallelism()
978 <     * as many times as there is a deficit in running count (or longer
979 <     * if running count would become zero), then blocks if task still
980 <     * not done.
1103 >     * Callback from ForkJoinWorkerThread constructor to
1104 >     * determine its poolIndex and record in workers array.
1105       *
1106 <     * @param joinMe the task to join
1106 >     * @param w the worker
1107 >     * @return the worker's pool index
1108       */
1109 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1110 <        int threshold = parallelism;         // descend blocking thresholds
1111 <        while (joinMe.status >= 0) {
1112 <            boolean block; int wc;
1113 <            worker.helpJoinTask(joinMe);
1114 <            if (joinMe.status < 0)
1115 <                break;
1116 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1117 <                if (threshold > 0)
1118 <                    --threshold;
1119 <                else
1120 <                    advanceEventCount(); // force release
1121 <                block = false;
1109 >    final int registerWorker(ForkJoinWorkerThread w) {
1110 >        /*
1111 >         * In the typical case, a new worker acquires the lock, uses
1112 >         * next available index and returns quickly.  Since we should
1113 >         * not block callers (ultimately from signalWork or
1114 >         * tryPreBlock) waiting for the lock needed to do this, we
1115 >         * instead help release other workers while waiting for the
1116 >         * lock.
1117 >         */
1118 >        for (int g;;) {
1119 >            ForkJoinWorkerThread[] ws;
1120 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1121 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1122 >                                         g, g | SG_UNIT)) {
1123 >                int k = nextWorkerIndex;
1124 >                try {
1125 >                    if ((ws = workers) != null) { // ignore on shutdown
1126 >                        int n = ws.length;
1127 >                        if (k < 0 || k >= n || ws[k] != null) {
1128 >                            for (k = 0; k < n && ws[k] != null; ++k)
1129 >                                ;
1130 >                            if (k == n)
1131 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1132 >                        }
1133 >                        ws[k] = w;
1134 >                        nextWorkerIndex = k + 1;
1135 >                        int m = g & SMASK;
1136 >                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1137 >                    }
1138 >                } finally {
1139 >                    scanGuard = g;
1140 >                }
1141 >                return k;
1142              }
1143 <            else
1144 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1145 <                                                 wc, wc - ONE_RUNNING);
1146 <            helpMaintainParallelism();
1147 <            if (block) {
1148 <                int c;
1149 <                joinMe.internalAwaitDone();
1005 <                do {} while (!UNSAFE.compareAndSwapInt
1006 <                             (this, workerCountsOffset,
1007 <                              c = workerCounts, c + ONE_RUNNING));
1008 <                break;
1143 >            else if ((ws = workers) != null) { // help release others
1144 >                for (ForkJoinWorkerThread u : ws) {
1145 >                    if (u != null && u.queueBase != u.queueTop) {
1146 >                        if (tryReleaseWaiter())
1147 >                            break;
1148 >                    }
1149 >                }
1150              }
1151          }
1152      }
1153  
1154      /**
1155 <     * Same idea as awaitJoin, but no helping
1155 >     * Final callback from terminating worker.  Removes record of
1156 >     * worker from array, and adjusts counts. If pool is shutting
1157 >     * down, tries to complete termination.
1158 >     *
1159 >     * @param w the worker
1160       */
1161 <    final void awaitBlocker(ManagedBlocker blocker)
1162 <        throws InterruptedException {
1163 <        int threshold = parallelism;
1164 <        while (!blocker.isReleasable()) {
1165 <            boolean block; int wc;
1166 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1167 <                if (threshold > 0)
1168 <                    --threshold;
1169 <                else
1170 <                    advanceEventCount();
1171 <                block = false;
1161 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1162 >        int idx = w.poolIndex;
1163 >        int sc = w.stealCount;
1164 >        int steps = 0;
1165 >        // Remove from array, adjust worker counts and collect steal count.
1166 >        // We can intermix failed removes or adjusts with steal updates
1167 >        do {
1168 >            long s, c;
1169 >            int g;
1170 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1171 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1172 >                                         g, g |= SG_UNIT)) {
1173 >                ForkJoinWorkerThread[] ws = workers;
1174 >                if (ws != null && idx >= 0 &&
1175 >                    idx < ws.length && ws[idx] == w)
1176 >                    ws[idx] = null;    // verify
1177 >                nextWorkerIndex = idx;
1178 >                scanGuard = g + SG_UNIT;
1179 >                steps = 1;
1180              }
1181 +            if (steps == 1 &&
1182 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1183 +                                          (((c - AC_UNIT) & AC_MASK) |
1184 +                                           ((c - TC_UNIT) & TC_MASK) |
1185 +                                           (c & ~(AC_MASK|TC_MASK)))))
1186 +                steps = 2;
1187 +            if (sc != 0 &&
1188 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1189 +                                          s = stealCount, s + sc))
1190 +                sc = 0;
1191 +        } while (steps != 2 || sc != 0);
1192 +        if (!tryTerminate(false)) {
1193 +            if (ex != null)   // possibly replace if died abnormally
1194 +                signalWork();
1195              else
1196 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1030 <                                                 wc, wc - ONE_RUNNING);
1031 <            helpMaintainParallelism();
1032 <            if (block) {
1033 <                try {
1034 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1035 <                } finally {
1036 <                    int c;
1037 <                    do {} while (!UNSAFE.compareAndSwapInt
1038 <                                 (this, workerCountsOffset,
1039 <                                  c = workerCounts, c + ONE_RUNNING));
1040 <                }
1041 <                break;
1042 <            }
1196 >                tryReleaseWaiter();
1197          }
1198      }
1199  
1200 +    // Shutdown and termination
1201 +
1202      /**
1203       * Possibly initiates and/or completes termination.
1204       *
# Line 1051 | Line 1207 | public class ForkJoinPool extends Abstra
1207       * @return true if now terminating or terminated
1208       */
1209      private boolean tryTerminate(boolean now) {
1210 <        if (now)
1211 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1212 <        else if (runState < SHUTDOWN ||
1213 <                 !submissionQueue.isEmpty() ||
1214 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1215 <            return false;
1216 <
1217 <        if (advanceRunLevel(TERMINATING))
1218 <            startTerminating();
1219 <
1220 <        // Finish now if all threads terminated; else in some subsequent call
1221 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1222 <            advanceRunLevel(TERMINATED);
1223 <            termination.arrive();
1210 >        long c;
1211 >        while (((c = ctl) & STOP_BIT) == 0) {
1212 >            if (!now) {
1213 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1214 >                    return false;
1215 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1216 >                    queueTop - queueBase > 0) {
1217 >                    if (ctl == c) // staleness check
1218 >                        return false;
1219 >                    continue;
1220 >                }
1221 >            }
1222 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1223 >                startTerminating();
1224 >        }
1225 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1226 >            submissionLock.lock();
1227 >            termination.signalAll();
1228 >            submissionLock.unlock();
1229          }
1230          return true;
1231      }
1232  
1233      /**
1234 <     * Actions on transition to TERMINATING
1235 <     *
1236 <     * Runs up to four passes through workers: (0) shutting down each
1237 <     * quietly (without waking up if parked) to quickly spread
1238 <     * notifications without unnecessary bouncing around event queues
1239 <     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1079 <     * races with interrupted workers
1234 >     * Runs up to three passes through workers: (0) Setting
1235 >     * termination status for each worker, followed by wakeups up
1236 >     * queued workers (1) helping cancel tasks (2) interrupting
1237 >     * lagging threads (likely in external tasks, but possibly also
1238 >     * blocked in joins).  Each pass repeats previous steps because of
1239 >     * potential lagging thread creation.
1240       */
1241      private void startTerminating() {
1242          cancelSubmissions();
1243 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1084 <            advanceEventCount();
1085 <            eventWaiters = 0L; // clobber lists
1086 <            spareWaiters = 0;
1243 >        for (int pass = 0; pass < 3; ++pass) {
1244              ForkJoinWorkerThread[] ws = workers;
1245 <            int n = ws.length;
1246 <            for (int i = 0; i < n; ++i) {
1247 <                ForkJoinWorkerThread w = ws[i];
1248 <                if (w != null) {
1249 <                    w.shutdown(true);
1250 <                    if (passes > 0 && !w.isTerminated()) {
1251 <                        w.cancelTasks();
1252 <                        LockSupport.unpark(w);
1253 <                        if (passes > 1) {
1254 <                            try {
1255 <                                w.interrupt();
1099 <                            } catch (SecurityException ignore) {
1245 >            if (ws != null) {
1246 >                for (ForkJoinWorkerThread w : ws) {
1247 >                    if (w != null) {
1248 >                        w.terminate = true;
1249 >                        if (pass > 0) {
1250 >                            w.cancelTasks();
1251 >                            if (pass > 1 && !w.isInterrupted()) {
1252 >                                try {
1253 >                                    w.interrupt();
1254 >                                } catch (SecurityException ignore) {
1255 >                                }
1256                              }
1257                          }
1258                      }
1259                  }
1260 +                terminateWaiters();
1261              }
1262          }
1263      }
1264  
1265      /**
1266 <     * Clear out and cancel submissions, ignoring exceptions
1266 >     * Polls and cancels all submissions. Called only during termination.
1267       */
1268      private void cancelSubmissions() {
1269 <        ForkJoinTask<?> task;
1270 <        while ((task = submissionQueue.poll()) != null) {
1271 <            try {
1272 <                task.cancel(false);
1273 <            } catch (Throwable ignore) {
1269 >        while (queueBase != queueTop) {
1270 >            ForkJoinTask<?> task = pollSubmission();
1271 >            if (task != null) {
1272 >                try {
1273 >                    task.cancel(false);
1274 >                } catch (Throwable ignore) {
1275 >                }
1276 >            }
1277 >        }
1278 >    }
1279 >
1280 >    /**
1281 >     * Tries to set the termination status of waiting workers, and
1282 >     * then wake them up (after which they will terminate).
1283 >     */
1284 >    private void terminateWaiters() {
1285 >        ForkJoinWorkerThread[] ws = workers;
1286 >        if (ws != null) {
1287 >            ForkJoinWorkerThread w; long c; int i, e;
1288 >            int n = ws.length;
1289 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1290 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1291 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1292 >                                              (long)(w.nextWait & E_MASK) |
1293 >                                              ((c + AC_UNIT) & AC_MASK) |
1294 >                                              (c & (TC_MASK|STOP_BIT)))) {
1295 >                    w.terminate = true;
1296 >                    w.eventCount = e + EC_UNIT;
1297 >                    if (w.parked)
1298 >                        UNSAFE.unpark(w);
1299 >                }
1300              }
1301          }
1302      }
1303  
1304 <    // misc support for ForkJoinWorkerThread
1304 >    // misc ForkJoinWorkerThread support
1305  
1306      /**
1307 <     * Returns pool number
1307 >     * Increment or decrement quiescerCount. Needed only to prevent
1308 >     * triggering shutdown if a worker is transiently inactive while
1309 >     * checking quiescence.
1310 >     *
1311 >     * @param delta 1 for increment, -1 for decrement
1312       */
1313 <    final int getPoolNumber() {
1314 <        return poolNumber;
1313 >    final void addQuiescerCount(int delta) {
1314 >        int c;
1315 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1316 >                                              c = quiescerCount, c + delta));
1317      }
1318  
1319      /**
1320 <     * Tries to accumulates steal count from a worker, clearing
1321 <     * the worker's value.
1320 >     * Directly increment or decrement active count without
1321 >     * queuing. This method is used to transiently assert inactivation
1322 >     * while checking quiescence.
1323       *
1324 <     * @return true if worker steal count now zero
1324 >     * @param delta 1 for increment, -1 for decrement
1325       */
1326 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1327 <        int sc = w.stealCount;
1328 <        long c = stealCount;
1329 <        // CAS even if zero, for fence effects
1330 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1331 <            if (sc != 0)
1142 <                w.stealCount = 0;
1143 <            return true;
1144 <        }
1145 <        return sc == 0;
1326 >    final void addActiveCount(int delta) {
1327 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1328 >        long c;
1329 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1330 >                                                ((c + d) & AC_MASK) |
1331 >                                                (c & ~AC_MASK)));
1332      }
1333  
1334      /**
# Line 1150 | Line 1336 | public class ForkJoinPool extends Abstra
1336       * active thread.
1337       */
1338      final int idlePerActive() {
1339 <        int pc = parallelism; // use parallelism, not rc
1340 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1341 <        // Use exact results for small values, saturate past 4
1342 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1339 >        // Approximate at powers of two for small values, saturate past 4
1340 >        int p = parallelism;
1341 >        int a = p + (int)(ctl >> AC_SHIFT);
1342 >        return (a > (p >>>= 1) ? 0 :
1343 >                a > (p >>>= 1) ? 1 :
1344 >                a > (p >>>= 1) ? 2 :
1345 >                a > (p >>>= 1) ? 4 :
1346 >                8);
1347      }
1348  
1349 <    // Public and protected methods
1349 >    // Exported methods
1350  
1351      // Constructors
1352  
# Line 1203 | Line 1393 | public class ForkJoinPool extends Abstra
1393       * use {@link #defaultForkJoinWorkerThreadFactory}.
1394       * @param handler the handler for internal worker threads that
1395       * terminate due to unrecoverable errors encountered while executing
1396 <     * tasks. For default value, use <code>null</code>.
1396 >     * tasks. For default value, use {@code null}.
1397       * @param asyncMode if true,
1398       * establishes local first-in-first-out scheduling mode for forked
1399       * tasks that are never joined. This mode may be more appropriate
1400       * than default locally stack-based mode in applications in which
1401       * worker threads only process event-style asynchronous tasks.
1402 <     * For default value, use <code>false</code>.
1402 >     * For default value, use {@code false}.
1403       * @throws IllegalArgumentException if parallelism less than or
1404       *         equal to zero, or greater than implementation limit
1405       * @throws NullPointerException if the factory is null
# Line 1225 | Line 1415 | public class ForkJoinPool extends Abstra
1415          checkPermission();
1416          if (factory == null)
1417              throw new NullPointerException();
1418 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1418 >        if (parallelism <= 0 || parallelism > MAX_ID)
1419              throw new IllegalArgumentException();
1420          this.parallelism = parallelism;
1421          this.factory = factory;
1422          this.ueh = handler;
1423          this.locallyFifo = asyncMode;
1424 <        int arraySize = initialArraySizeFor(parallelism);
1425 <        this.workers = new ForkJoinWorkerThread[arraySize];
1426 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1427 <        this.workerLock = new ReentrantLock();
1428 <        this.termination = new Phaser(1);
1429 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1430 <        this.trimTime = System.nanoTime();
1431 <    }
1432 <
1433 <    /**
1434 <     * Returns initial power of two size for workers array.
1435 <     * @param pc the initial parallelism level
1436 <     */
1437 <    private static int initialArraySizeFor(int pc) {
1438 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1439 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1440 <        size |= size >>> 1;
1251 <        size |= size >>> 2;
1252 <        size |= size >>> 4;
1253 <        size |= size >>> 8;
1254 <        return size + 1;
1424 >        long np = (long)(-parallelism); // offset ctl counts
1425 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1426 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1427 >        // initialize workers array with room for 2*parallelism if possible
1428 >        int n = parallelism << 1;
1429 >        if (n >= MAX_ID)
1430 >            n = MAX_ID;
1431 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1432 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1433 >        }
1434 >        workers = new ForkJoinWorkerThread[n + 1];
1435 >        this.submissionLock = new ReentrantLock();
1436 >        this.termination = submissionLock.newCondition();
1437 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1438 >        sb.append(poolNumberGenerator.incrementAndGet());
1439 >        sb.append("-worker-");
1440 >        this.workerNamePrefix = sb.toString();
1441      }
1442  
1443      // Execution methods
1444  
1445      /**
1260     * Common code for execute, invoke and submit
1261     */
1262    private <T> void doSubmit(ForkJoinTask<T> task) {
1263        if (task == null)
1264            throw new NullPointerException();
1265        if (runState >= SHUTDOWN)
1266            throw new RejectedExecutionException();
1267        submissionQueue.offer(task);
1268        advanceEventCount();
1269        helpMaintainParallelism();         // start or wake up workers
1270    }
1271
1272    /**
1446       * Performs the given task, returning its result upon completion.
1447 +     * If the computation encounters an unchecked Exception or Error,
1448 +     * it is rethrown as the outcome of this invocation.  Rethrown
1449 +     * exceptions behave in the same way as regular exceptions, but,
1450 +     * when possible, contain stack traces (as displayed for example
1451 +     * using {@code ex.printStackTrace()}) of both the current thread
1452 +     * as well as the thread actually encountering the exception;
1453 +     * minimally only the latter.
1454       *
1455       * @param task the task
1456       * @return the task's result
# Line 1279 | Line 1459 | public class ForkJoinPool extends Abstra
1459       *         scheduled for execution
1460       */
1461      public <T> T invoke(ForkJoinTask<T> task) {
1462 <        doSubmit(task);
1463 <        return task.join();
1462 >        Thread t = Thread.currentThread();
1463 >        if (task == null)
1464 >            throw new NullPointerException();
1465 >        if (shutdown)
1466 >            throw new RejectedExecutionException();
1467 >        if ((t instanceof ForkJoinWorkerThread) &&
1468 >            ((ForkJoinWorkerThread)t).pool == this)
1469 >            return task.invoke();  // bypass submit if in same pool
1470 >        else {
1471 >            addSubmission(task);
1472 >            return task.join();
1473 >        }
1474 >    }
1475 >
1476 >    /**
1477 >     * Unless terminating, forks task if within an ongoing FJ
1478 >     * computation in the current pool, else submits as external task.
1479 >     */
1480 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1481 >        ForkJoinWorkerThread w;
1482 >        Thread t = Thread.currentThread();
1483 >        if (shutdown)
1484 >            throw new RejectedExecutionException();
1485 >        if ((t instanceof ForkJoinWorkerThread) &&
1486 >            (w = (ForkJoinWorkerThread)t).pool == this)
1487 >            w.pushTask(task);
1488 >        else
1489 >            addSubmission(task);
1490      }
1491  
1492      /**
1493       * Arranges for (asynchronous) execution of the given task.
1288     * If the caller is already engaged in a fork/join computation in
1289     * the current pool, this method is equivalent in effect to
1290     * {@link ForkJoinTask#fork}.
1494       *
1495       * @param task the task
1496       * @throws NullPointerException if the task is null
# Line 1295 | Line 1498 | public class ForkJoinPool extends Abstra
1498       *         scheduled for execution
1499       */
1500      public void execute(ForkJoinTask<?> task) {
1501 <        doSubmit(task);
1501 >        if (task == null)
1502 >            throw new NullPointerException();
1503 >        forkOrSubmit(task);
1504      }
1505  
1506      // AbstractExecutorService methods
# Line 1306 | Line 1511 | public class ForkJoinPool extends Abstra
1511       *         scheduled for execution
1512       */
1513      public void execute(Runnable task) {
1514 +        if (task == null)
1515 +            throw new NullPointerException();
1516          ForkJoinTask<?> job;
1517          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1518              job = (ForkJoinTask<?>) task;
1519          else
1520              job = ForkJoinTask.adapt(task, null);
1521 <        doSubmit(job);
1521 >        forkOrSubmit(job);
1522      }
1523  
1524      /**
1525       * Submits a ForkJoinTask for execution.
1319     * If the caller is already engaged in a fork/join computation in
1320     * the current pool, this method is equivalent in effect to
1321     * {@link ForkJoinTask#fork}.
1526       *
1527       * @param task the task to submit
1528       * @return the task
# Line 1327 | Line 1531 | public class ForkJoinPool extends Abstra
1531       *         scheduled for execution
1532       */
1533      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1534 <        doSubmit(task);
1534 >        if (task == null)
1535 >            throw new NullPointerException();
1536 >        forkOrSubmit(task);
1537          return task;
1538      }
1539  
# Line 1337 | Line 1543 | public class ForkJoinPool extends Abstra
1543       *         scheduled for execution
1544       */
1545      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1546 +        if (task == null)
1547 +            throw new NullPointerException();
1548          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1549 <        doSubmit(job);
1549 >        forkOrSubmit(job);
1550          return job;
1551      }
1552  
# Line 1348 | Line 1556 | public class ForkJoinPool extends Abstra
1556       *         scheduled for execution
1557       */
1558      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1559 +        if (task == null)
1560 +            throw new NullPointerException();
1561          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1562 <        doSubmit(job);
1562 >        forkOrSubmit(job);
1563          return job;
1564      }
1565  
# Line 1359 | Line 1569 | public class ForkJoinPool extends Abstra
1569       *         scheduled for execution
1570       */
1571      public ForkJoinTask<?> submit(Runnable task) {
1572 +        if (task == null)
1573 +            throw new NullPointerException();
1574          ForkJoinTask<?> job;
1575          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1576              job = (ForkJoinTask<?>) task;
1577          else
1578              job = ForkJoinTask.adapt(task, null);
1579 <        doSubmit(job);
1579 >        forkOrSubmit(job);
1580          return job;
1581      }
1582  
# Line 1424 | Line 1636 | public class ForkJoinPool extends Abstra
1636  
1637      /**
1638       * Returns the number of worker threads that have started but not
1639 <     * yet terminated.  This result returned by this method may differ
1639 >     * yet terminated.  The result returned by this method may differ
1640       * from {@link #getParallelism} when threads are created to
1641       * maintain parallelism when others are cooperatively blocked.
1642       *
1643       * @return the number of worker threads
1644       */
1645      public int getPoolSize() {
1646 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1646 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1647      }
1648  
1649      /**
# Line 1453 | Line 1665 | public class ForkJoinPool extends Abstra
1665       * @return the number of worker threads
1666       */
1667      public int getRunningThreadCount() {
1668 <        return workerCounts & RUNNING_COUNT_MASK;
1668 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1669 >        return r <= 0? 0 : r; // suppress momentarily negative values
1670      }
1671  
1672      /**
# Line 1464 | Line 1677 | public class ForkJoinPool extends Abstra
1677       * @return the number of active threads
1678       */
1679      public int getActiveThreadCount() {
1680 <        return runState & ACTIVE_COUNT_MASK;
1680 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1681 >        return r <= 0? 0 : r; // suppress momentarily negative values
1682      }
1683  
1684      /**
# Line 1479 | Line 1693 | public class ForkJoinPool extends Abstra
1693       * @return {@code true} if all threads are currently idle
1694       */
1695      public boolean isQuiescent() {
1696 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1696 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1697      }
1698  
1699      /**
# Line 1509 | Line 1723 | public class ForkJoinPool extends Abstra
1723       */
1724      public long getQueuedTaskCount() {
1725          long count = 0;
1726 <        ForkJoinWorkerThread[] ws = workers;
1727 <        int n = ws.length;
1728 <        for (int i = 0; i < n; ++i) {
1729 <            ForkJoinWorkerThread w = ws[i];
1730 <            if (w != null)
1731 <                count += w.getQueueSize();
1726 >        ForkJoinWorkerThread[] ws;
1727 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1728 >            (ws = workers) != null) {
1729 >            for (ForkJoinWorkerThread w : ws)
1730 >                if (w != null)
1731 >                    count -= w.queueBase - w.queueTop; // must read base first
1732          }
1733          return count;
1734      }
1735  
1736      /**
1737       * Returns an estimate of the number of tasks submitted to this
1738 <     * pool that have not yet begun executing.  This method takes time
1739 <     * proportional to the number of submissions.
1738 >     * pool that have not yet begun executing.  This meThod may take
1739 >     * time proportional to the number of submissions.
1740       *
1741       * @return the number of queued submissions
1742       */
1743      public int getQueuedSubmissionCount() {
1744 <        return submissionQueue.size();
1744 >        return -queueBase + queueTop;
1745      }
1746  
1747      /**
# Line 1537 | Line 1751 | public class ForkJoinPool extends Abstra
1751       * @return {@code true} if there are any queued submissions
1752       */
1753      public boolean hasQueuedSubmissions() {
1754 <        return !submissionQueue.isEmpty();
1754 >        return queueBase != queueTop;
1755      }
1756  
1757      /**
# Line 1548 | Line 1762 | public class ForkJoinPool extends Abstra
1762       * @return the next submission, or {@code null} if none
1763       */
1764      protected ForkJoinTask<?> pollSubmission() {
1765 <        return submissionQueue.poll();
1765 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1766 >        while ((b = queueBase) != queueTop &&
1767 >               (q = submissionQueue) != null &&
1768 >               (i = (q.length - 1) & b) >= 0) {
1769 >            long u = (i << ASHIFT) + ABASE;
1770 >            if ((t = q[i]) != null &&
1771 >                queueBase == b &&
1772 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1773 >                queueBase = b + 1;
1774 >                return t;
1775 >            }
1776 >        }
1777 >        return null;
1778      }
1779  
1780      /**
# Line 1569 | Line 1795 | public class ForkJoinPool extends Abstra
1795       * @return the number of elements transferred
1796       */
1797      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1798 <        int count = submissionQueue.drainTo(c);
1799 <        ForkJoinWorkerThread[] ws = workers;
1800 <        int n = ws.length;
1801 <        for (int i = 0; i < n; ++i) {
1802 <            ForkJoinWorkerThread w = ws[i];
1803 <            if (w != null)
1804 <                count += w.drainTasksTo(c);
1798 >        int count = 0;
1799 >        while (queueBase != queueTop) {
1800 >            ForkJoinTask<?> t = pollSubmission();
1801 >            if (t != null) {
1802 >                c.add(t);
1803 >                ++count;
1804 >            }
1805 >        }
1806 >        ForkJoinWorkerThread[] ws;
1807 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1808 >            (ws = workers) != null) {
1809 >            for (ForkJoinWorkerThread w : ws)
1810 >                if (w != null)
1811 >                    count += w.drainTasksTo(c);
1812          }
1813          return count;
1814      }
# Line 1591 | Line 1824 | public class ForkJoinPool extends Abstra
1824          long st = getStealCount();
1825          long qt = getQueuedTaskCount();
1826          long qs = getQueuedSubmissionCount();
1594        int wc = workerCounts;
1595        int tc = wc >>> TOTAL_COUNT_SHIFT;
1596        int rc = wc & RUNNING_COUNT_MASK;
1827          int pc = parallelism;
1828 <        int rs = runState;
1829 <        int ac = rs & ACTIVE_COUNT_MASK;
1828 >        long c = ctl;
1829 >        int tc = pc + (short)(c >>> TC_SHIFT);
1830 >        int rc = pc + (int)(c >> AC_SHIFT);
1831 >        if (rc < 0) // ignore transient negative
1832 >            rc = 0;
1833 >        int ac = rc + blockedCount;
1834 >        String level;
1835 >        if ((c & STOP_BIT) != 0)
1836 >            level = (tc == 0)? "Terminated" : "Terminating";
1837 >        else
1838 >            level = shutdown? "Shutting down" : "Running";
1839          return super.toString() +
1840 <            "[" + runLevelToString(rs) +
1840 >            "[" + level +
1841              ", parallelism = " + pc +
1842              ", size = " + tc +
1843              ", active = " + ac +
# Line 1609 | Line 1848 | public class ForkJoinPool extends Abstra
1848              "]";
1849      }
1850  
1612    private static String runLevelToString(int s) {
1613        return ((s & TERMINATED) != 0 ? "Terminated" :
1614                ((s & TERMINATING) != 0 ? "Terminating" :
1615                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1616                  "Running")));
1617    }
1618
1851      /**
1852       * Initiates an orderly shutdown in which previously submitted
1853       * tasks are executed, but no new tasks will be accepted.
# Line 1630 | Line 1862 | public class ForkJoinPool extends Abstra
1862       */
1863      public void shutdown() {
1864          checkPermission();
1865 <        advanceRunLevel(SHUTDOWN);
1865 >        shutdown = true;
1866          tryTerminate(false);
1867      }
1868  
# Line 1652 | Line 1884 | public class ForkJoinPool extends Abstra
1884       */
1885      public List<Runnable> shutdownNow() {
1886          checkPermission();
1887 +        shutdown = true;
1888          tryTerminate(true);
1889          return Collections.emptyList();
1890      }
# Line 1662 | Line 1895 | public class ForkJoinPool extends Abstra
1895       * @return {@code true} if all tasks have completed following shut down
1896       */
1897      public boolean isTerminated() {
1898 <        return runState >= TERMINATED;
1898 >        long c = ctl;
1899 >        return ((c & STOP_BIT) != 0L &&
1900 >                (short)(c >>> TC_SHIFT) == -parallelism);
1901      }
1902  
1903      /**
# Line 1670 | Line 1905 | public class ForkJoinPool extends Abstra
1905       * commenced but not yet completed.  This method may be useful for
1906       * debugging. A return of {@code true} reported a sufficient
1907       * period after shutdown may indicate that submitted tasks have
1908 <     * ignored or suppressed interruption, causing this executor not
1909 <     * to properly terminate.
1908 >     * ignored or suppressed interruption, or are waiting for IO,
1909 >     * causing this executor not to properly terminate. (See the
1910 >     * advisory notes for class {@link ForkJoinTask} stating that
1911 >     * tasks should not normally entail blocking operations.  But if
1912 >     * they do, they must abort them on interrupt.)
1913       *
1914       * @return {@code true} if terminating but not yet terminated
1915       */
1916      public boolean isTerminating() {
1917 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1917 >        long c = ctl;
1918 >        return ((c & STOP_BIT) != 0L &&
1919 >                (short)(c >>> TC_SHIFT) != -parallelism);
1920 >    }
1921 >
1922 >    /**
1923 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1924 >     */
1925 >    final boolean isAtLeastTerminating() {
1926 >        return (ctl & STOP_BIT) != 0L;
1927      }
1928  
1929      /**
# Line 1685 | Line 1932 | public class ForkJoinPool extends Abstra
1932       * @return {@code true} if this pool has been shut down
1933       */
1934      public boolean isShutdown() {
1935 <        return runState >= SHUTDOWN;
1935 >        return shutdown;
1936      }
1937  
1938      /**
# Line 1701 | Line 1948 | public class ForkJoinPool extends Abstra
1948       */
1949      public boolean awaitTermination(long timeout, TimeUnit unit)
1950          throws InterruptedException {
1951 +        long nanos = unit.toNanos(timeout);
1952 +        final ReentrantLock lock = this.submissionLock;
1953 +        lock.lock();
1954          try {
1955 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1956 <        } catch(TimeoutException ex) {
1957 <            return false;
1955 >            for (;;) {
1956 >                if (isTerminated())
1957 >                    return true;
1958 >                if (nanos <= 0)
1959 >                    return false;
1960 >                nanos = termination.awaitNanos(nanos);
1961 >            }
1962 >        } finally {
1963 >            lock.unlock();
1964          }
1965      }
1966  
# Line 1716 | Line 1972 | public class ForkJoinPool extends Abstra
1972       * {@code isReleasable} must return {@code true} if blocking is
1973       * not necessary. Method {@code block} blocks the current thread
1974       * if necessary (perhaps internally invoking {@code isReleasable}
1975 <     * before actually blocking). The unusual methods in this API
1976 <     * accommodate synchronizers that may, but don't usually, block
1977 <     * for long periods. Similarly, they allow more efficient internal
1978 <     * handling of cases in which additional workers may be, but
1979 <     * usually are not, needed to ensure sufficient parallelism.
1980 <     * Toward this end, implementations of method {@code isReleasable}
1981 <     * must be amenable to repeated invocation.
1975 >     * before actually blocking). These actions are performed by any
1976 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1977 >     * unusual methods in this API accommodate synchronizers that may,
1978 >     * but don't usually, block for long periods. Similarly, they
1979 >     * allow more efficient internal handling of cases in which
1980 >     * additional workers may be, but usually are not, needed to
1981 >     * ensure sufficient parallelism.  Toward this end,
1982 >     * implementations of method {@code isReleasable} must be amenable
1983 >     * to repeated invocation.
1984       *
1985       * <p>For example, here is a ManagedBlocker based on a
1986       * ReentrantLock:
# Line 1750 | Line 2008 | public class ForkJoinPool extends Abstra
2008       *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2009       *   public boolean block() throws InterruptedException {
2010       *     if (item == null)
2011 <     *       item = queue.take
2011 >     *       item = queue.take();
2012       *     return true;
2013       *   }
2014       *   public boolean isReleasable() {
2015 <     *     return item != null || (item = queue.poll) != null;
2015 >     *     return item != null || (item = queue.poll()) != null;
2016       *   }
2017       *   public E getItem() { // call after pool.managedBlock completes
2018       *     return item;
# Line 1824 | Line 2082 | public class ForkJoinPool extends Abstra
2082      }
2083  
2084      // Unsafe mechanics
2085 <
2086 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2087 <    private static final long workerCountsOffset =
2088 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2089 <    private static final long runStateOffset =
2090 <        objectFieldOffset("runState", ForkJoinPool.class);
2091 <    private static final long eventCountOffset =
2092 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2093 <    private static final long eventWaitersOffset =
2094 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2095 <    private static final long stealCountOffset =
2096 <        objectFieldOffset("stealCount",ForkJoinPool.class);
2097 <    private static final long spareWaitersOffset =
2098 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
2099 <
2100 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2085 >    private static final sun.misc.Unsafe UNSAFE;
2086 >    private static final long ctlOffset;
2087 >    private static final long stealCountOffset;
2088 >    private static final long blockedCountOffset;
2089 >    private static final long quiescerCountOffset;
2090 >    private static final long scanGuardOffset;
2091 >    private static final long nextWorkerNumberOffset;
2092 >    private static final long ABASE;
2093 >    private static final int ASHIFT;
2094 >
2095 >    static {
2096 >        poolNumberGenerator = new AtomicInteger();
2097 >        workerSeedGenerator = new Random();
2098 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2099 >        defaultForkJoinWorkerThreadFactory =
2100 >            new DefaultForkJoinWorkerThreadFactory();
2101 >        int s;
2102          try {
2103 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2104 <        } catch (NoSuchFieldException e) {
2105 <            // Convert Exception to corresponding Error
2106 <            NoSuchFieldError error = new NoSuchFieldError(field);
2107 <            error.initCause(e);
2108 <            throw error;
2109 <        }
2103 >            UNSAFE = getUnsafe();
2104 >            Class k = ForkJoinPool.class;
2105 >            ctlOffset = UNSAFE.objectFieldOffset
2106 >                (k.getDeclaredField("ctl"));
2107 >            stealCountOffset = UNSAFE.objectFieldOffset
2108 >                (k.getDeclaredField("stealCount"));
2109 >            blockedCountOffset = UNSAFE.objectFieldOffset
2110 >                (k.getDeclaredField("blockedCount"));
2111 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2112 >                (k.getDeclaredField("quiescerCount"));
2113 >            scanGuardOffset = UNSAFE.objectFieldOffset
2114 >                (k.getDeclaredField("scanGuard"));
2115 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2116 >                (k.getDeclaredField("nextWorkerNumber"));
2117 >            Class a = ForkJoinTask[].class;
2118 >            ABASE = UNSAFE.arrayBaseOffset(a);
2119 >            s = UNSAFE.arrayIndexScale(a);
2120 >        } catch (Exception e) {
2121 >            throw new Error(e);
2122 >        }
2123 >        if ((s & (s-1)) != 0)
2124 >            throw new Error("data type scale not a power of two");
2125 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2126      }
2127  
2128      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines