ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.65 by dl, Wed Aug 18 14:05:27 2010 UTC vs.
Revision 1.118 by jsr166, Sat Jan 28 04:34:54 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.CountDownLatch;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.ReentrantLock;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 33 | import java.util.concurrent.CountDownLat
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45   * <p>A {@code ForkJoinPool} is constructed with a given target
46   * parallelism level; by default, equal to the number of available
# Line 52 | Line 60 | import java.util.concurrent.CountDownLat
60   * convenient form for informal monitoring.
61   *
62   * <p> As is the case with other ExecutorServices, there are three
63 < * main task execution methods summarized in the following
64 < * table. These are designed to be used by clients not already engaged
65 < * in fork/join computations in the current pool.  The main forms of
66 < * these methods accept instances of {@code ForkJoinTask}, but
67 < * overloaded forms also allow mixed execution of plain {@code
63 > * main task execution methods summarized in the following table.
64 > * These are designed to be used primarily by clients not already
65 > * engaged in fork/join computations in the current pool.  The main
66 > * forms of these methods accept instances of {@code ForkJoinTask},
67 > * but overloaded forms also allow mixed execution of plain {@code
68   * Runnable}- or {@code Callable}- based activities as well.  However,
69 < * tasks that are already executing in a pool should normally
70 < * <em>NOT</em> use these pool execution methods, but instead use the
71 < * within-computation forms listed in the table.
69 > * tasks that are already executing in a pool should normally instead
70 > * use the within-computation forms listed in the table unless using
71 > * async event-style tasks that are not usually joined, in which case
72 > * there is little difference among choice of methods.
73   *
74   * <table BORDER CELLPADDING=3 CELLSPACING=1>
75   *  <tr>
# Line 69 | Line 78 | import java.util.concurrent.CountDownLat
78   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
79   *  </tr>
80   *  <tr>
81 < *    <td> <b>Arange async execution</td>
81 > *    <td> <b>Arrange async execution</td>
82   *    <td> {@link #execute(ForkJoinTask)}</td>
83   *    <td> {@link ForkJoinTask#fork}</td>
84   *  </tr>
# Line 95 | Line 104 | import java.util.concurrent.CountDownLat
104   * daemon} mode, there is typically no need to explicitly {@link
105   * #shutdown} such a pool upon program exit.
106   *
107 < * <pre>
107 > *  <pre> {@code
108   * static final ForkJoinPool mainPool = new ForkJoinPool();
109   * ...
110   * public void sort(long[] array) {
111   *   mainPool.invoke(new SortTask(array, 0, array.length));
112 < * }
104 < * </pre>
112 > * }}</pre>
113   *
114   * <p><b>Implementation notes</b>: This implementation restricts the
115   * maximum number of running threads to 32767. Attempts to create
# Line 120 | Line 128 | public class ForkJoinPool extends Abstra
128      /*
129       * Implementation Overview
130       *
131 <     * This class provides the central bookkeeping and control for a
132 <     * set of worker threads: Submissions from non-FJ threads enter
133 <     * into a submission queue. Workers take these tasks and typically
134 <     * split them into subtasks that may be stolen by other workers.
135 <     * The main work-stealing mechanics implemented in class
136 <     * ForkJoinWorkerThread give first priority to processing tasks
137 <     * from their own queues (LIFO or FIFO, depending on mode), then
138 <     * to randomized FIFO steals of tasks in other worker queues, and
139 <     * lastly to new submissions. These mechanics do not consider
140 <     * affinities, loads, cache localities, etc, so rarely provide the
141 <     * best possible performance on a given machine, but portably
142 <     * provide good throughput by averaging over these factors.
143 <     * (Further, even if we did try to use such information, we do not
144 <     * usually have a basis for exploiting it. For example, some sets
145 <     * of tasks profit from cache affinities, but others are harmed by
146 <     * cache pollution effects.)
147 <     *
148 <     * Beyond work-stealing support and essential bookkeeping, the
149 <     * main responsibility of this framework is to take actions when
150 <     * one worker is waiting to join a task stolen (or always held by)
151 <     * another.  Becauae we are multiplexing many tasks on to a pool
152 <     * of workers, we can't just let them block (as in Thread.join).
153 <     * We also cannot just reassign the joiner's run-time stack with
154 <     * another and replace it later, which would be a form of
155 <     * "continuation", that even if possible is not necessarily a good
156 <     * idea. Given that the creation costs of most threads on most
157 <     * systems mainly surrounds setting up runtime stacks, thread
158 <     * creation and switching is usually not much more expensive than
159 <     * stack creation and switching, and is more flexible). Instead we
160 <     * combine two tactics:
131 >     * This class and its nested classes provide the main
132 >     * functionality and control for a set of worker threads:
133 >     * Submissions from non-FJ threads enter into submission queues.
134 >     * Workers take these tasks and typically split them into subtasks
135 >     * that may be stolen by other workers.  Preference rules give
136 >     * first priority to processing tasks from their own queues (LIFO
137 >     * or FIFO, depending on mode), then to randomized FIFO steals of
138 >     * tasks in other queues.
139 >     *
140 >     * WorkQueues
141 >     * ==========
142 >     *
143 >     * Most operations occur within work-stealing queues (in nested
144 >     * class WorkQueue).  These are special forms of Deques that
145 >     * support only three of the four possible end-operations -- push,
146 >     * pop, and poll (aka steal), under the further constraints that
147 >     * push and pop are called only from the owning thread (or, as
148 >     * extended here, under a lock), while poll may be called from
149 >     * other threads.  (If you are unfamiliar with them, you probably
150 >     * want to read Herlihy and Shavit's book "The Art of
151 >     * Multiprocessor programming", chapter 16 describing these in
152 >     * more detail before proceeding.)  The main work-stealing queue
153 >     * design is roughly similar to those in the papers "Dynamic
154 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155 >     * (http://research.sun.com/scalable/pubs/index.html) and
156 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 >     * The main differences ultimately stem from GC requirements that
159 >     * we null out taken slots as soon as we can, to maintain as small
160 >     * a footprint as possible even in programs generating huge
161 >     * numbers of tasks. To accomplish this, we shift the CAS
162 >     * arbitrating pop vs poll (steal) from being on the indices
163 >     * ("base" and "top") to the slots themselves.  So, both a
164 >     * successful pop and poll mainly entail a CAS of a slot from
165 >     * non-null to null.  Because we rely on CASes of references, we
166 >     * do not need tag bits on base or top.  They are simple ints as
167 >     * used in any circular array-based queue (see for example
168 >     * ArrayDeque).  Updates to the indices must still be ordered in a
169 >     * way that guarantees that top == base means the queue is empty,
170 >     * but otherwise may err on the side of possibly making the queue
171 >     * appear nonempty when a push, pop, or poll have not fully
172 >     * committed. Note that this means that the poll operation,
173 >     * considered individually, is not wait-free. One thief cannot
174 >     * successfully continue until another in-progress one (or, if
175 >     * previously empty, a push) completes.  However, in the
176 >     * aggregate, we ensure at least probabilistic non-blockingness.
177 >     * If an attempted steal fails, a thief always chooses a different
178 >     * random victim target to try next. So, in order for one thief to
179 >     * progress, it suffices for any in-progress poll or new push on
180 >     * any empty queue to complete.
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we loosely associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they never
203 >     * take tasks, and they are multiplexed on to a finite number of
204 >     * shared work queues. However, classes are set up so that future
205 >     * extensions could allow submitters to optionally help perform
206 >     * tasks as well. Pool submissions from internal workers are also
207 >     * allowed, but use randomized rather than thread-hashed queue
208 >     * indices to avoid imbalance.  Insertion of tasks in shared mode
209 >     * requires a lock (mainly to protect in the case of resizing) but
210 >     * we use only a simple spinlock (using bits in field runState),
211 >     * because submitters encountering a busy queue try or create
212 >     * others so never block.
213 >     *
214 >     * Management
215 >     * ==========
216 >     *
217 >     * The main throughput advantages of work-stealing stem from
218 >     * decentralized control -- workers mostly take tasks from
219 >     * themselves or each other. We cannot negate this in the
220 >     * implementation of other management responsibilities. The main
221 >     * tactic for avoiding bottlenecks is packing nearly all
222 >     * essentially atomic control state into two volatile variables
223 >     * that are by far most often read (not written) as status and
224 >     * consistency checks.
225 >     *
226 >     * Field "ctl" contains 64 bits holding all the information needed
227 >     * to atomically decide to add, inactivate, enqueue (on an event
228 >     * queue), dequeue, and/or re-activate workers.  To enable this
229 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
230 >     * far in excess of normal operating range) to allow ids, counts,
231 >     * and their negations (used for thresholding) to fit into 16bit
232 >     * fields.
233 >     *
234 >     * Field "runState" contains 32 bits needed to register and
235 >     * deregister WorkQueues, as well as to enable shutdown. It is
236 >     * only modified under a lock (normally briefly held, but
237 >     * occasionally protecting allocations and resizings) but even
238 >     * when locked remains available to check consistency.
239 >     *
240 >     * Recording WorkQueues.  WorkQueues are recorded in the
241 >     * "workQueues" array that is created upon pool construction and
242 >     * expanded if necessary.  Updates to the array while recording
243 >     * new workers and unrecording terminated ones are protected from
244 >     * each other by a lock but the array is otherwise concurrently
245 >     * readable, and accessed directly.  To simplify index-based
246 >     * operations, the array size is always a power of two, and all
247 >     * readers must tolerate null slots. Shared (submission) queues
248 >     * are at even indices, worker queues at odd indices. Grouping
249 >     * them together in this way simplifies and speeds up task
250 >     * scanning. To avoid flailing during start-up, the array is
251 >     * presized to hold twice #parallelism workers (which is unlikely
252 >     * to need further resizing during execution). But to avoid
253 >     * dealing with so many null slots, variable runState includes a
254 >     * mask for the nearest power of two that contains all current
255 >     * workers.  All worker thread creation is on-demand, triggered by
256 >     * task submissions, replacement of terminated workers, and/or
257 >     * compensation for blocked workers. However, all other support
258 >     * code is set up to work with other policies.  To ensure that we
259 >     * do not hold on to worker references that would prevent GC, ALL
260 >     * accesses to workQueues are via indices into the workQueues
261 >     * array (which is one source of some of the messy code
262 >     * constructions here). In essence, the workQueues array serves as
263 >     * a weak reference mechanism. Thus for example the wait queue
264 >     * field of ctl stores indices, not references.  Access to the
265 >     * workQueues in associated methods (for example signalWork) must
266 >     * both index-check and null-check the IDs. All such accesses
267 >     * ignore bad IDs by returning out early from what they are doing,
268 >     * since this can only be associated with termination, in which
269 >     * case it is OK to give up.
270 >     *
271 >     * All uses of the workQueues array check that it is non-null
272 >     * (even if previously non-null). This allows nulling during
273 >     * termination, which is currently not necessary, but remains an
274 >     * option for resource-revocation-based shutdown schemes. It also
275 >     * helps reduce JIT issuance of uncommon-trap code, which tends to
276 >     * unnecessarily complicate control flow in some methods.
277 >     *
278 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
279 >     * let workers spin indefinitely scanning for tasks when none can
280 >     * be found immediately, and we cannot start/resume workers unless
281 >     * there appear to be tasks available.  On the other hand, we must
282 >     * quickly prod them into action when new tasks are submitted or
283 >     * generated. In many usages, ramp-up time to activate workers is
284 >     * the main limiting factor in overall performance (this is
285 >     * compounded at program start-up by JIT compilation and
286 >     * allocation). So we try to streamline this as much as possible.
287 >     * We park/unpark workers after placing in an event wait queue
288 >     * when they cannot find work. This "queue" is actually a simple
289 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
290 >     * counter value (that reflects the number of times a worker has
291 >     * been inactivated) to avoid ABA effects (we need only as many
292 >     * version numbers as worker threads). Successors are held in
293 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
294 >     * races, mainly that a task-producing thread can miss seeing (and
295 >     * signalling) another thread that gave up looking for work but
296 >     * has not yet entered the wait queue. We solve this by requiring
297 >     * a full sweep of all workers (via repeated calls to method
298 >     * scan()) both before and after a newly waiting worker is added
299 >     * to the wait queue. During a rescan, the worker might release
300 >     * some other queued worker rather than itself, which has the same
301 >     * net effect. Because enqueued workers may actually be rescanning
302 >     * rather than waiting, we set and clear the "parker" field of
303 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
304 >     * requires a secondary recheck to avoid missed signals.)  Note
305 >     * the unusual conventions about Thread.interrupts surrounding
306 >     * parking and other blocking: Because interrupts are used solely
307 >     * to alert threads to check termination, which is checked anyway
308 >     * upon blocking, we clear status (using Thread.interrupted)
309 >     * before any call to park, so that park does not immediately
310 >     * return due to status being set via some other unrelated call to
311 >     * interrupt in user code.
312 >     *
313 >     * Signalling.  We create or wake up workers only when there
314 >     * appears to be at least one task they might be able to find and
315 >     * execute.  When a submission is added or another worker adds a
316 >     * task to a queue that previously had fewer than two tasks, they
317 >     * signal waiting workers (or trigger creation of new ones if
318 >     * fewer than the given parallelism level -- see signalWork).
319 >     * These primary signals are buttressed by signals during rescans;
320 >     * together these cover the signals needed in cases when more
321 >     * tasks are pushed but untaken, and improve performance compared
322 >     * to having one thread wake up all workers.
323 >     *
324 >     * Trimming workers. To release resources after periods of lack of
325 >     * use, a worker starting to wait when the pool is quiescent will
326 >     * time out and terminate if the pool has remained quiescent for
327 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
328 >     * terminating all workers after long periods of non-use.
329 >     *
330 >     * Shutdown and Termination. A call to shutdownNow atomically sets
331 >     * a runState bit and then (non-atomically) sets each worker's
332 >     * runState status, cancels all unprocessed tasks, and wakes up
333 >     * all waiting workers.  Detecting whether termination should
334 >     * commence after a non-abrupt shutdown() call requires more work
335 >     * and bookkeeping. We need consensus about quiescence (i.e., that
336 >     * there is no more work). The active count provides a primary
337 >     * indication but non-abrupt shutdown still requires a rechecking
338 >     * scan for any workers that are inactive but not queued.
339 >     *
340 >     * Joining Tasks
341 >     * =============
342 >     *
343 >     * Any of several actions may be taken when one worker is waiting
344 >     * to join a task stolen (or always held) by another.  Because we
345 >     * are multiplexing many tasks on to a pool of workers, we can't
346 >     * just let them block (as in Thread.join).  We also cannot just
347 >     * reassign the joiner's run-time stack with another and replace
348 >     * it later, which would be a form of "continuation", that even if
349 >     * possible is not necessarily a good idea since we sometimes need
350 >     * both an unblocked task and its continuation to progress.
351 >     * Instead we combine two tactics:
352       *
353       *   Helping: Arranging for the joiner to execute some task that it
354 <     *      would be running if the steal had not occurred.  Method
156 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 <     *      links to try to find such a task.
354 >     *      would be running if the steal had not occurred.
355       *
356       *   Compensating: Unless there are already enough live threads,
357 <     *      method helpMaintainParallelism() may create or or
358 <     *      re-activate a spare thread to compensate for blocked
359 <     *      joiners until they unblock.
360 <     *
361 <     * Because the determining existence of conservatively safe
362 <     * helping targets, the availability of already-created spares,
363 <     * and the apparent need to create new spares are all racy and
364 <     * require heuristic guidance, we rely on multiple retries of
365 <     * each. Further, because it is impossible to keep exactly the
366 <     * target (parallelism) number of threads running at any given
170 <     * time, we allow compensation during joins to fail, and enlist
171 <     * all other threads to help out whenever they are not otherwise
172 <     * occupied (i.e., mainly in method preStep).
357 >     *      method tryCompensate() may create or re-activate a spare
358 >     *      thread to compensate for blocked joiners until they unblock.
359 >     *
360 >     * A third form (implemented in tryRemoveAndExec and
361 >     * tryPollForAndExec) amounts to helping a hypothetical
362 >     * compensator: If we can readily tell that a possible action of a
363 >     * compensator is to steal and execute the task being joined, the
364 >     * joining thread can do so directly, without the need for a
365 >     * compensation thread (although at the expense of larger run-time
366 >     * stacks, but the tradeoff is typically worthwhile).
367       *
368       * The ManagedBlocker extension API can't use helping so relies
369       * only on compensation in method awaitBlocker.
370       *
371 <     * The main throughput advantages of work-stealing stem from
372 <     * decentralized control -- workers mostly steal tasks from each
373 <     * other. We do not want to negate this by creating bottlenecks
374 <     * implementing other management responsibilities. So we use a
375 <     * collection of techniques that avoid, reduce, or cope well with
376 <     * contention. These entail several instances of bit-packing into
377 <     * CASable fields to maintain only the minimally required
378 <     * atomicity. To enable such packing, we restrict maximum
379 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
380 <     * unbalanced increments and decrements) to fit into a 16 bit
381 <     * field, which is far in excess of normal operating range.  Even
382 <     * though updates to some of these bookkeeping fields do sometimes
383 <     * contend with each other, they don't normally cache-contend with
384 <     * updates to others enough to warrant memory padding or
385 <     * isolation. So they are all held as fields of ForkJoinPool
386 <     * objects.  The main capabilities are as follows:
387 <     *
388 <     * 1. Creating and removing workers. Workers are recorded in the
389 <     * "workers" array. This is an array as opposed to some other data
390 <     * structure to support index-based random steals by workers.
391 <     * Updates to the array recording new workers and unrecording
392 <     * terminated ones are protected from each other by a lock
393 <     * (workerLock) but the array is otherwise concurrently readable,
394 <     * and accessed directly by workers. To simplify index-based
395 <     * operations, the array size is always a power of two, and all
396 <     * readers must tolerate null slots. Currently, all worker thread
397 <     * creation is on-demand, triggered by task submissions,
398 <     * replacement of terminated workers, and/or compensation for
399 <     * blocked workers. However, all other support code is set up to
400 <     * work with other policies.
401 <     *
402 <     * To ensure that we do not hold on to worker references that
403 <     * would prevent GC, ALL accesses to workers are via indices into
404 <     * the workers array (which is one source of some of the unusual
405 <     * code constructions here). In essence, the workers array serves
406 <     * as a WeakReference mechanism. Thus for example the event queue
407 <     * stores worker indices, not worker references. Access to the
408 <     * workers in associated methods (for example releaseEventWaiters)
409 <     * must both index-check and null-check the IDs. All such accesses
410 <     * ignore bad IDs by returning out early from what they are doing,
411 <     * since this can only be associated with shutdown, in which case
412 <     * it is OK to give up. On termination, we just clobber these
413 <     * data structures without trying to use them.
220 <     *
221 <     * 2. Bookkeeping for dynamically adding and removing workers. We
222 <     * aim to approximately maintain the given level of parallelism.
223 <     * When some workers are known to be blocked (on joins or via
224 <     * ManagedBlocker), we may create or resume others to take their
225 <     * place until they unblock (see below). Implementing this
226 <     * requires counts of the number of "running" threads (i.e., those
227 <     * that are neither blocked nor artifically suspended) as well as
228 <     * the total number.  These two values are packed into one field,
229 <     * "workerCounts" because we need accurate snapshots when deciding
230 <     * to create, resume or suspend.  Note however that the
231 <     * correspondance of these counts to reality is not guaranteed. In
232 <     * particular updates for unblocked threads may lag until they
233 <     * actually wake up.
234 <     *
235 <     * 3. Maintaining global run state. The run state of the pool
236 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237 <     * those in other Executor implementations, as well as a count of
238 <     * "active" workers -- those that are, or soon will be, or
239 <     * recently were executing tasks. The runLevel and active count
240 <     * are packed together in order to correctly trigger shutdown and
241 <     * termination. Without care, active counts can be subject to very
242 <     * high contention.  We substantially reduce this contention by
243 <     * relaxing update rules.  A worker must claim active status
244 <     * prospectively, by activating if it sees that a submitted or
245 <     * stealable task exists (it may find after activating that the
246 <     * task no longer exists). It stays active while processing this
247 <     * task (if it exists) and any other local subtasks it produces,
248 <     * until it cannot find any other tasks. It then tries
249 <     * inactivating (see method preStep), but upon update contention
250 <     * instead scans for more tasks, later retrying inactivation if it
251 <     * doesn't find any.
252 <     *
253 <     * 4. Managing idle workers waiting for tasks. We cannot let
254 <     * workers spin indefinitely scanning for tasks when none are
255 <     * available. On the other hand, we must quickly prod them into
256 <     * action when new tasks are submitted or generated.  We
257 <     * park/unpark these idle workers using an event-count scheme.
258 <     * Field eventCount is incremented upon events that may enable
259 <     * workers that previously could not find a task to now find one:
260 <     * Submission of a new task to the pool, or another worker pushing
261 <     * a task onto a previously empty queue.  (We also use this
262 <     * mechanism for configuration and termination actions that
263 <     * require wakeups of idle workers).  Each worker maintains its
264 <     * last known event count, and blocks when a scan for work did not
265 <     * find a task AND its lastEventCount matches the current
266 <     * eventCount. Waiting idle workers are recorded in a variant of
267 <     * Treiber stack headed by field eventWaiters which, when nonzero,
268 <     * encodes the thread index and count awaited for by the worker
269 <     * thread most recently calling eventSync. This thread in turn has
270 <     * a record (field nextEventWaiter) for the next waiting worker.
271 <     * In addition to allowing simpler decisions about need for
272 <     * wakeup, the event count bits in eventWaiters serve the role of
273 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
274 <     * released threads also try to release others (but give up upon
275 <     * contention to reduce useless flailing).  The net effect is a
276 <     * tree-like diffusion of signals, where released threads (and
277 <     * possibly others) help with unparks.  To further reduce
278 <     * contention effects a bit, failed CASes to increment field
279 <     * eventCount are tolerated without retries in signalWork.
280 <     * Conceptually they are merged into the same event, which is OK
281 <     * when their only purpose is to enable workers to scan for work.
282 <     *
283 <     * 5. Managing suspension of extra workers. When a worker is about
284 <     * to block waiting for a join (or via ManagedBlockers), we may
285 <     * create a new thread to maintain parallelism level, or at least
286 <     * avoid starvation. Usually, extra threads are needed for only
287 <     * very short periods, yet join dependencies are such that we
288 <     * sometimes need them in bursts. Rather than create new threads
289 <     * each time this happens, we suspend no-longer-needed extra ones
290 <     * as "spares". For most purposes, we don't distinguish "extra"
291 <     * spare threads from normal "core" threads: On each call to
292 <     * preStep (the only point at which we can do this) a worker
293 <     * checks to see if there are now too many running workers, and if
294 <     * so, suspends itself.  Method helpMaintainParallelism looks for
295 <     * suspended threads to resume before considering creating a new
296 <     * replacement. The spares themselves are encoded on another
297 <     * variant of a Treiber Stack, headed at field "spareWaiters".
298 <     * Note that the use of spares is intrinsically racy.  One thread
299 <     * may become a spare at about the same time as another is
300 <     * needlessly being created. We counteract this and related slop
301 <     * in part by requiring resumed spares to immediately recheck (in
302 <     * preStep) to see whether they they should re-suspend.
303 <     *
304 <     * 6. Killing off unneeded workers. The Spare and Event queues use
305 <     * similar mechanisms to shed unused workers: The oldest (first)
306 <     * waiter uses a timed rather than hard wait. When this wait times
307 <     * out without a normal wakeup, it tries to shutdown any one (for
308 <     * convenience the newest) other waiter via tryShutdownSpare or
309 <     * tryShutdownWaiter, respectively. The wakeup rates for spares
310 <     * are much shorter than for waiters. Together, they will
311 <     * eventually reduce the number of worker threads to a minimum of
312 <     * one after a long enough period without use.
313 <     *
314 <     * 7. Deciding when to create new workers. The main dynamic
315 <     * control in this class is deciding when to create extra threads
316 <     * in method helpMaintainParallelism. We would like to keep
317 <     * exactly #parallelism threads running, which is an impossble
318 <     * task. We always need to create one when the number of running
319 <     * threads would become zero and all workers are busy. Beyond
320 <     * this, we must rely on heuristics that work well in the the
321 <     * presence of transients phenomena such as GC stalls, dynamic
322 <     * compilation, and wake-up lags. These transients are extremely
323 <     * common -- we are normally trying to fully saturate the CPUs on
324 <     * a machine, so almost any activity other than running tasks
325 <     * impedes accuracy. Our main defense is to allow some slack in
326 <     * creation thresholds, using rules that reflect the fact that the
327 <     * more threads we have running, the more likely that we are
328 <     * underestimating the number running threads. (We also include
329 <     * some heuristic use of Thread.yield when all workers appear to
330 <     * be busy, to improve likelihood of counts settling.) The rules
331 <     * also better cope with the fact that some of the methods in this
332 <     * class tend to never become compiled (but are interpreted), so
333 <     * some components of the entire set of controls might execute 100
334 <     * times faster than others. And similarly for cases where the
335 <     * apparent lack of work is just due to GC stalls and other
336 <     * transient system activity.
371 >     * The algorithm in tryHelpStealer entails a form of "linear"
372 >     * helping: Each worker records (in field currentSteal) the most
373 >     * recent task it stole from some other worker. Plus, it records
374 >     * (in field currentJoin) the task it is currently actively
375 >     * joining. Method tryHelpStealer uses these markers to try to
376 >     * find a worker to help (i.e., steal back a task from and execute
377 >     * it) that could hasten completion of the actively joined task.
378 >     * In essence, the joiner executes a task that would be on its own
379 >     * local deque had the to-be-joined task not been stolen. This may
380 >     * be seen as a conservative variant of the approach in Wagner &
381 >     * Calder "Leapfrogging: a portable technique for implementing
382 >     * efficient futures" SIGPLAN Notices, 1993
383 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
384 >     * that: (1) We only maintain dependency links across workers upon
385 >     * steals, rather than use per-task bookkeeping.  This sometimes
386 >     * requires a linear scan of workers array to locate stealers, but
387 >     * often doesn't because stealers leave hints (that may become
388 >     * stale/wrong) of where to locate them.  A stealHint is only a
389 >     * hint because a worker might have had multiple steals and the
390 >     * hint records only one of them (usually the most current).
391 >     * Hinting isolates cost to when it is needed, rather than adding
392 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
393 >     * and potentially cyclic mutual steals.  (3) It is intentionally
394 >     * racy: field currentJoin is updated only while actively joining,
395 >     * which means that we miss links in the chain during long-lived
396 >     * tasks, GC stalls etc (which is OK since blocking in such cases
397 >     * is usually a good idea).  (4) We bound the number of attempts
398 >     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
399 >     * the worker and if necessary replacing it with another.
400 >     *
401 >     * It is impossible to keep exactly the target parallelism number
402 >     * of threads running at any given time.  Determining the
403 >     * existence of conservatively safe helping targets, the
404 >     * availability of already-created spares, and the apparent need
405 >     * to create new spares are all racy, so we rely on multiple
406 >     * retries of each.  Currently, in keeping with on-demand
407 >     * signalling policy, we compensate only if blocking would leave
408 >     * less than one active (non-waiting, non-blocked) worker.
409 >     * Additionally, to avoid some false alarms due to GC, lagging
410 >     * counters, system activity, etc, compensated blocking for joins
411 >     * is only attempted after rechecks stabilize in
412 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
413 >     * Thread.yield, for good citizenship.)
414       *
415 <     * Beware that there is a lot of representation-level coupling
415 >     * Style notes: There is a lot of representation-level coupling
416       * among classes ForkJoinPool, ForkJoinWorkerThread, and
417 <     * ForkJoinTask.  For example, direct access to "workers" array by
418 <     * workers, and direct access to ForkJoinTask.status by both
419 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
420 <     * trying to reduce this, since any associated future changes in
421 <     * representations will need to be accompanied by algorithmic
422 <     * changes anyway.
423 <     *
424 <     * Style notes: There are lots of inline assignments (of form
425 <     * "while ((local = field) != 0)") which are usually the simplest
426 <     * way to ensure the required read orderings (which are sometimes
427 <     * critical). Also several occurrences of the unusual "do {}
428 <     * while(!cas...)" which is the simplest way to force an update of
429 <     * a CAS'ed variable. There are also other coding oddities that
430 <     * help some methods perform reasonably even when interpreted (not
431 <     * compiled), at the expense of some messy constructions that
432 <     * reduce byte code counts.
433 <     *
434 <     * The order of declarations in this file is: (1) statics (2)
435 <     * fields (along with constants used when unpacking some of them)
436 <     * (3) internal control methods (4) callbacks and other support
437 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
438 <     * methods (plus a few little helpers).
417 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
418 >     * managed by ForkJoinPool, so are directly accessed.  There is
419 >     * little point trying to reduce this, since any associated future
420 >     * changes in representations will need to be accompanied by
421 >     * algorithmic changes anyway. All together, these low-level
422 >     * implementation choices produce as much as a factor of 4
423 >     * performance improvement compared to naive implementations, and
424 >     * enable the processing of billions of tasks per second, at the
425 >     * expense of some ugliness.
426 >     *
427 >     * Methods signalWork() and scan() are the main bottlenecks, so are
428 >     * especially heavily micro-optimized/mangled.  There are lots of
429 >     * inline assignments (of form "while ((local = field) != 0)")
430 >     * which are usually the simplest way to ensure the required read
431 >     * orderings (which are sometimes critical). This leads to a
432 >     * "C"-like style of listing declarations of these locals at the
433 >     * heads of methods or blocks.  There are several occurrences of
434 >     * the unusual "do {} while (!cas...)"  which is the simplest way
435 >     * to force an update of a CAS'ed variable. There are also other
436 >     * coding oddities that help some methods perform reasonably even
437 >     * when interpreted (not compiled).
438 >     *
439 >     * The order of declarations in this file is:
440 >     * (1) statics
441 >     * (2) fields (along with constants used when unpacking some of
442 >     *     them), listed in an order that tends to reduce contention
443 >     *     among them a bit under most JVMs;
444 >     * (3) nested classes
445 >     * (4) internal control methods
446 >     * (5) callbacks and other support for ForkJoinTask methods
447 >     * (6) exported methods (plus a few little helpers)
448 >     * (7) static block initializing all statics in a minimally
449 >     *     dependent order.
450       */
451  
452      /**
# Line 393 | Line 481 | public class ForkJoinPool extends Abstra
481       * overridden in ForkJoinPool constructors.
482       */
483      public static final ForkJoinWorkerThreadFactory
484 <        defaultForkJoinWorkerThreadFactory =
397 <        new DefaultForkJoinWorkerThreadFactory();
484 >        defaultForkJoinWorkerThreadFactory;
485  
486      /**
487       * Permission required for callers of methods that may start or
488       * kill threads.
489       */
490 <    private static final RuntimePermission modifyThreadPermission =
404 <        new RuntimePermission("modifyThread");
490 >    private static final RuntimePermission modifyThreadPermission;
491  
492      /**
493       * If there is a security manager, makes sure caller has
# Line 416 | Line 502 | public class ForkJoinPool extends Abstra
502      /**
503       * Generator for assigning sequence numbers as pool names.
504       */
505 <    private static final AtomicInteger poolNumberGenerator =
420 <        new AtomicInteger();
421 <
422 <    /**
423 <     * The wakeup interval (in nanoseconds) for the oldest worker
424 <     * worker waiting for an event invokes tryShutdownWaiter to shrink
425 <     * the number of workers.  The exact value does not matter too
426 <     * much, but should be long enough to slowly release resources
427 <     * during long periods without use without disrupting normal use.
428 <     */
429 <    private static final long SHRINK_RATE_NANOS =
430 <        60L * 1000L * 1000L * 1000L; // one minute
505 >    private static final AtomicInteger poolNumberGenerator;
506  
507      /**
508 <     * Absolute bound for parallelism level. Twice this number plus
509 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
510 <     * word-packing for some counts and indices.
508 >     * Bits and masks for control variables
509 >     *
510 >     * Field ctl is a long packed with:
511 >     * AC: Number of active running workers minus target parallelism (16 bits)
512 >     * TC: Number of total workers minus target parallelism (16 bits)
513 >     * ST: true if pool is terminating (1 bit)
514 >     * EC: the wait count of top waiting thread (15 bits)
515 >     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
516 >     *
517 >     * When convenient, we can extract the upper 32 bits of counts and
518 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
519 >     * (int)ctl.  The ec field is never accessed alone, but always
520 >     * together with id and st. The offsets of counts by the target
521 >     * parallelism and the positionings of fields makes it possible to
522 >     * perform the most common checks via sign tests of fields: When
523 >     * ac is negative, there are not enough active workers, when tc is
524 >     * negative, there are not enough total workers, when id is
525 >     * negative, there is at least one waiting worker, and when e is
526 >     * negative, the pool is terminating.  To deal with these possibly
527 >     * negative fields, we use casts in and out of "short" and/or
528 >     * signed shifts to maintain signedness.
529 >     *
530 >     * When a thread is queued (inactivated), its eventCount field is
531 >     * negative, which is the only way to tell if a worker is
532 >     * prevented from executing tasks, even though it must continue to
533 >     * scan for them to avoid queuing races.
534 >     *
535 >     * Field runState is an int packed with:
536 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
537 >     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
538 >     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
539 >     *
540 >     * The combination of mask and sequence number enables simple
541 >     * consistency checks: Staleness of read-only operations on the
542 >     * workers and queues arrays can be checked by comparing runState
543 >     * before vs after the reads. The low 16 bits (i.e, anding with
544 >     * SMASK) hold the smallest power of two covering all worker
545 >     * indices, minus one.  The mask for queues (vs workers) is twice
546 >     * this value plus 1.
547 >     */
548 >
549 >    // bit positions/shifts for fields
550 >    private static final int  AC_SHIFT   = 48;
551 >    private static final int  TC_SHIFT   = 32;
552 >    private static final int  ST_SHIFT   = 31;
553 >    private static final int  EC_SHIFT   = 16;
554 >
555 >    // bounds
556 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
557 >    private static final int  SMASK      = 0xffff;  // mask short bits
558 >    private static final int  SHORT_SIGN = 1 << 15;
559 >    private static final int  INT_SIGN   = 1 << 31;
560 >
561 >    // masks
562 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
563 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
564 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
565 >
566 >    // units for incrementing and decrementing
567 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
568 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
569 >
570 >    // masks and units for dealing with u = (int)(ctl >>> 32)
571 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
572 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
573 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
574 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
575 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
576 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
577 >
578 >    // masks and units for dealing with e = (int)ctl
579 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
580 >    private static final int E_SEQ       = 1 << EC_SHIFT;
581 >
582 >    // runState bits
583 >    private static final int SHUTDOWN    = 1 << 31;
584 >    private static final int RS_SEQ      = 1 << 16;
585 >    private static final int RS_SEQ_MASK = 0x7fff0000;
586 >
587 >    // access mode for WorkQueue
588 >    static final int LIFO_QUEUE          =  0;
589 >    static final int FIFO_QUEUE          =  1;
590 >    static final int SHARED_QUEUE        = -1;
591 >
592 >    /**
593 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
594 >     * task when the pool is quiescent to instead try to shrink the
595 >     * number of workers.  The exact value does not matter too
596 >     * much. It must be short enough to release resources during
597 >     * sustained periods of idleness, but not so short that threads
598 >     * are continually re-created.
599 >     */
600 >    private static final long SHRINK_RATE =
601 >        4L * 1000L * 1000L * 1000L; // 4 seconds
602 >
603 >    /**
604 >     * The timeout value for attempted shrinkage, includes
605 >     * some slop to cope with system timer imprecision.
606 >     */
607 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
608 >
609 >    /**
610 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
611 >     * Depths for legitimate chains are unbounded, but we use a fixed
612 >     * constant to avoid (otherwise unchecked) cycles and to bound
613 >     * staleness of traversal parameters at the expense of sometimes
614 >     * blocking when we could be helping.
615       */
616 <    private static final int MAX_WORKERS   = 0x7fff;
616 >    private static final int MAX_HELP_DEPTH = 16;
617  
618 <    /**
619 <     * Array holding all worker threads in the pool.  Array size must
620 <     * be a power of two.  Updates and replacements are protected by
621 <     * workerLock, but the array is always kept in a consistent enough
622 <     * state to be randomly accessed without locking by workers
623 <     * performing work-stealing, as well as other traversal-based
624 <     * methods in this class. All readers must tolerate that some
625 <     * array slots may be null.
618 >    /*
619 >     * Field layout order in this class tends to matter more than one
620 >     * would like. Runtime layout order is only loosely related to
621 >     * declaration order and may differ across JVMs, but the following
622 >     * empirically works OK on current JVMs.
623 >     */
624 >
625 >    volatile long ctl;                       // main pool control
626 >    final int parallelism;                   // parallelism level
627 >    final int localMode;                     // per-worker scheduling mode
628 >    int nextPoolIndex;                       // hint used in registerWorker
629 >    volatile int runState;                   // shutdown status, seq, and mask
630 >    WorkQueue[] workQueues;                  // main registry
631 >    final ReentrantLock lock;                // for registration
632 >    final Condition termination;             // for awaitTermination
633 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
634 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
635 >    final AtomicLong stealCount;             // collect counts when terminated
636 >    final AtomicInteger nextWorkerNumber;    // to create worker name string
637 >    final String workerNamePrefix;           // Prefix for assigning worker names
638 >
639 >    /**
640 >     * Queues supporting work-stealing as well as external task
641 >     * submission. See above for main rationale and algorithms.
642 >     * Implementation relies heavily on "Unsafe" intrinsics
643 >     * and selective use of "volatile":
644 >     *
645 >     * Field "base" is the index (mod array.length) of the least valid
646 >     * queue slot, which is always the next position to steal (poll)
647 >     * from if nonempty. Reads and writes require volatile orderings
648 >     * but not CAS, because updates are only performed after slot
649 >     * CASes.
650 >     *
651 >     * Field "top" is the index (mod array.length) of the next queue
652 >     * slot to push to or pop from. It is written only by owner thread
653 >     * for push, or under lock for trySharedPush, and accessed by
654 >     * other threads only after reading (volatile) base.  Both top and
655 >     * base are allowed to wrap around on overflow, but (top - base)
656 >     * (or more commonly -(base - top) to force volatile read of base
657 >     * before top) still estimates size.
658 >     *
659 >     * The array slots are read and written using the emulation of
660 >     * volatiles/atomics provided by Unsafe. Insertions must in
661 >     * general use putOrderedObject as a form of releasing store to
662 >     * ensure that all writes to the task object are ordered before
663 >     * its publication in the queue. (Although we can avoid one case
664 >     * of this when locked in trySharedPush.) All removals entail a
665 >     * CAS to null.  The array is always a power of two. To ensure
666 >     * safety of Unsafe array operations, all accesses perform
667 >     * explicit null checks and implicit bounds checks via
668 >     * power-of-two masking.
669 >     *
670 >     * In addition to basic queuing support, this class contains
671 >     * fields described elsewhere to control execution. It turns out
672 >     * to work better memory-layout-wise to include them in this
673 >     * class rather than a separate class.
674 >     *
675 >     * Performance on most platforms is very sensitive to placement of
676 >     * instances of both WorkQueues and their arrays -- we absolutely
677 >     * do not want multiple WorkQueue instances or multiple queue
678 >     * arrays sharing cache lines. (It would be best for queue objects
679 >     * and their arrays to share, but there is nothing available to
680 >     * help arrange that).  Unfortunately, because they are recorded
681 >     * in a common array, WorkQueue instances are often moved to be
682 >     * adjacent by garbage collectors. To reduce impact, we use field
683 >     * padding that works OK on common platforms; this effectively
684 >     * trades off slightly slower average field access for the sake of
685 >     * avoiding really bad worst-case access. (Until better JVM
686 >     * support is in place, this padding is dependent on transient
687 >     * properties of JVM field layout rules.)  We also take care in
688 >     * allocating and sizing and resizing the array. Non-shared queue
689 >     * arrays are initialized (via method growArray) by workers before
690 >     * use. Others are allocated on first use.
691       */
692 <    volatile ForkJoinWorkerThread[] workers;
692 >    static final class WorkQueue {
693 >        /**
694 >         * Capacity of work-stealing queue array upon initialization.
695 >         * Must be a power of two; at least 4, but set larger to
696 >         * reduce cacheline sharing among queues.
697 >         */
698 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
699  
700 <    /**
701 <     * Queue for external submissions.
702 <     */
703 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
700 >        /**
701 >         * Maximum size for queue arrays. Must be a power of two less
702 >         * than or equal to 1 << (31 - width of array entry) to ensure
703 >         * lack of wraparound of index calculations, but defined to a
704 >         * value a bit less than this to help users trap runaway
705 >         * programs before saturating systems.
706 >         */
707 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
708  
709 <    /**
710 <     * Lock protecting updates to workers array.
711 <     */
712 <    private final ReentrantLock workerLock;
709 >        volatile long totalSteals; // cumulative number of steals
710 >        int seed;                  // for random scanning; initialize nonzero
711 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
712 >        int nextWait;              // encoded record of next event waiter
713 >        int rescans;               // remaining scans until block
714 >        int nsteals;               // top-level task executions since last idle
715 >        final int mode;            // lifo, fifo, or shared
716 >        int poolIndex;             // index of this queue in pool (or 0)
717 >        int stealHint;             // index of most recent known stealer
718 >        volatile int runState;     // 1: locked, -1: terminate; else 0
719 >        volatile int base;         // index of next slot for poll
720 >        int top;                   // index of next slot for push
721 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
722 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
723 >        volatile Thread parker;    // == owner during call to park; else null
724 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
725 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
726 >        // Heuristic padding to ameliorate unfortunate memory placements
727 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
728 >
729 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
730 >            this.owner = owner;
731 >            this.mode = mode;
732 >            // Place indices in the center of array (that is not yet allocated)
733 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
734 >        }
735  
736 <    /**
737 <     * Latch released upon termination.
738 <     */
739 <    private final Phaser termination;
736 >        /**
737 >         * Returns number of tasks in the queue.
738 >         */
739 >        final int queueSize() {
740 >            int n = base - top; // non-owner callers must read base first
741 >            return (n >= 0) ? 0 : -n;
742 >        }
743  
744 <    /**
745 <     * Creation factory for worker threads.
746 <     */
747 <    private final ForkJoinWorkerThreadFactory factory;
744 >        /**
745 >         * Pushes a task. Call only by owner in unshared queues.
746 >         *
747 >         * @param task the task. Caller must ensure non-null.
748 >         * @param p if non-null, pool to signal if necessary
749 >         * @throw RejectedExecutionException if array cannot be resized
750 >         */
751 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
752 >            ForkJoinTask<?>[] a;
753 >            int s = top, m, n;
754 >            if ((a = array) != null) {    // ignore if queue removed
755 >                U.putOrderedObject
756 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
757 >                if ((n = (top = s + 1) - base) <= 2) {
758 >                    if (p != null)
759 >                        p.signalWork();
760 >                }
761 >                else if (n >= m)
762 >                    growArray(true);
763 >            }
764 >        }
765  
766 <    /**
767 <     * Sum of per-thread steal counts, updated only when threads are
768 <     * idle or terminating.
769 <     */
770 <    private volatile long stealCount;
766 >        /**
767 >         * Pushes a task if lock is free and array is either big
768 >         * enough or can be resized to be big enough.
769 >         *
770 >         * @param task the task. Caller must ensure non-null.
771 >         * @return true if submitted
772 >         */
773 >        final boolean trySharedPush(ForkJoinTask<?> task) {
774 >            boolean submitted = false;
775 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
776 >                ForkJoinTask<?>[] a = array;
777 >                int s = top, n = s - base;
778 >                try {
779 >                    if ((a != null && n < a.length - 1) ||
780 >                        (a = growArray(false)) != null) { // must presize
781 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
782 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
783 >                        top = s + 1;
784 >                        submitted = true;
785 >                    }
786 >                } finally {
787 >                    runState = 0;                         // unlock
788 >                }
789 >            }
790 >            return submitted;
791 >        }
792  
793 <    /**
794 <     * Encoded record of top of treiber stack of threads waiting for
795 <     * events. The top 32 bits contain the count being waited for. The
796 <     * bottom 16 bits contains one plus the pool index of waiting
797 <     * worker thread. (Bits 16-31 are unused.)
798 <     */
799 <    private volatile long eventWaiters;
793 >        /**
794 >         * Takes next task, if one exists, in FIFO order.
795 >         */
796 >        final ForkJoinTask<?> poll() {
797 >            ForkJoinTask<?>[] a; int b, i;
798 >            while ((b = base) - top < 0 && (a = array) != null &&
799 >                   (i = (a.length - 1) & b) >= 0) {
800 >                int j = (i << ASHIFT) + ABASE;
801 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802 >                if (t != null && base == b &&
803 >                    U.compareAndSwapObject(a, j, t, null)) {
804 >                    base = b + 1;
805 >                    return t;
806 >                }
807 >            }
808 >            return null;
809 >        }
810  
811 <    private static final int  EVENT_COUNT_SHIFT = 32;
812 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
811 >        /**
812 >         * Takes next task, if one exists, in LIFO order.
813 >         * Call only by owner in unshared queues.
814 >         */
815 >        final ForkJoinTask<?> pop() {
816 >            ForkJoinTask<?> t; int m;
817 >            ForkJoinTask<?>[] a = array;
818 >            if (a != null && (m = a.length - 1) >= 0) {
819 >                for (int s; (s = top - 1) - base >= 0;) {
820 >                    int j = ((m & s) << ASHIFT) + ABASE;
821 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
822 >                        break;
823 >                    if (U.compareAndSwapObject(a, j, t, null)) {
824 >                        top = s;
825 >                        return t;
826 >                    }
827 >                }
828 >            }
829 >            return null;
830 >        }
831  
832 <    /**
833 <     * A counter for events that may wake up worker threads:
834 <     *   - Submission of a new task to the pool
835 <     *   - A worker pushing a task on an empty queue
836 <     *   - termination
837 <     */
493 <    private volatile int eventCount;
832 >        /**
833 >         * Takes next task, if one exists, in order specified by mode.
834 >         */
835 >        final ForkJoinTask<?> nextLocalTask() {
836 >            return mode == 0 ? pop() : poll();
837 >        }
838  
839 <    /**
840 <     * Encoded record of top of treiber stack of spare threads waiting
841 <     * for resumption. The top 16 bits contain an arbitrary count to
842 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
843 <     * index of waiting worker thread.
844 <     */
845 <    private volatile int spareWaiters;
839 >        /**
840 >         * Returns next task, if one exists, in order specified by mode.
841 >         */
842 >        final ForkJoinTask<?> peek() {
843 >            ForkJoinTask<?>[] a = array; int m;
844 >            if (a == null || (m = a.length - 1) < 0)
845 >                return null;
846 >            int i = mode == 0 ? top - 1 : base;
847 >            int j = ((i & m) << ASHIFT) + ABASE;
848 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
849 >        }
850  
851 <    private static final int SPARE_COUNT_SHIFT = 16;
852 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
851 >        /**
852 >         * Returns task at index b if b is current base of queue.
853 >         */
854 >        final ForkJoinTask<?> pollAt(int b) {
855 >            ForkJoinTask<?>[] a; int i;
856 >            ForkJoinTask<?> task = null;
857 >            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
858 >                int j = (i << ASHIFT) + ABASE;
859 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
860 >                if (t != null && base == b &&
861 >                    U.compareAndSwapObject(a, j, t, null)) {
862 >                    base = b + 1;
863 >                    task = t;
864 >                }
865 >            }
866 >            return task;
867 >        }
868  
869 <    /**
870 <     * Lifecycle control. The low word contains the number of workers
871 <     * that are (probably) executing tasks. This value is atomically
872 <     * incremented before a worker gets a task to run, and decremented
873 <     * when worker has no tasks and cannot find any.  Bits 16-18
874 <     * contain runLevel value. When all are zero, the pool is
875 <     * running. Level transitions are monotonic (running -> shutdown
876 <     * -> terminating -> terminated) so each transition adds a bit.
877 <     * These are bundled together to ensure consistent read for
878 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
879 <     * and active threads is zero).
880 <     *
881 <     * Notes: Most direct CASes are dependent on these bitfield
519 <     * positions.  Also, this field is non-private to enable direct
520 <     * performance-sensitive CASes in ForkJoinWorkerThread.
521 <     */
522 <    volatile int runState;
869 >        /**
870 >         * Pops the given task only if it is at the current top.
871 >         */
872 >        final boolean tryUnpush(ForkJoinTask<?> t) {
873 >            ForkJoinTask<?>[] a; int s;
874 >            if ((a = array) != null && (s = top) != base &&
875 >                U.compareAndSwapObject
876 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
877 >                top = s;
878 >                return true;
879 >            }
880 >            return false;
881 >        }
882  
883 <    // Note: The order among run level values matters.
884 <    private static final int RUNLEVEL_SHIFT     = 16;
885 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
886 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
887 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
888 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
883 >        /**
884 >         * Polls the given task only if it is at the current base.
885 >         */
886 >        final boolean pollFor(ForkJoinTask<?> task) {
887 >            ForkJoinTask<?>[] a; int b, i;
888 >            if ((b = base) - top < 0 && (a = array) != null &&
889 >                (i = (a.length - 1) & b) >= 0) {
890 >                int j = (i << ASHIFT) + ABASE;
891 >                if (U.getObjectVolatile(a, j) == task && base == b &&
892 >                    U.compareAndSwapObject(a, j, task, null)) {
893 >                    base = b + 1;
894 >                    return true;
895 >                }
896 >            }
897 >            return false;
898 >        }
899  
900 <    /**
901 <     * Holds number of total (i.e., created and not yet terminated)
902 <     * and running (i.e., not blocked on joins or other managed sync)
903 <     * threads, packed together to ensure consistent snapshot when
904 <     * making decisions about creating and suspending spare
905 <     * threads. Updated only by CAS. Note that adding a new worker
906 <     * requires incrementing both counts, since workers start off in
907 <     * running state.
908 <     */
909 <    private volatile int workerCounts;
900 >        /**
901 >         * If present, removes from queue and executes the given task, or
902 >         * any other cancelled task. Returns (true) immediately on any CAS
903 >         * or consistency check failure so caller can retry.
904 >         *
905 >         * @return false if no progress can be made
906 >         */
907 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
908 >            boolean removed = false, empty = true, progress = true;
909 >            ForkJoinTask<?>[] a; int m, s, b, n;
910 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
911 >                (n = (s = top) - (b = base)) > 0) {
912 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
913 >                    int j = ((--s & m) << ASHIFT) + ABASE;
914 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
915 >                    if (t == null)                    // inconsistent length
916 >                        break;
917 >                    else if (t == task) {
918 >                        if (s + 1 == top) {           // pop
919 >                            if (!U.compareAndSwapObject(a, j, task, null))
920 >                                break;
921 >                            top = s;
922 >                            removed = true;
923 >                        }
924 >                        else if (base == b)           // replace with proxy
925 >                            removed = U.compareAndSwapObject(a, j, task,
926 >                                                             new EmptyTask());
927 >                        break;
928 >                    }
929 >                    else if (t.status >= 0)
930 >                        empty = false;
931 >                    else if (s + 1 == top) {          // pop and throw away
932 >                        if (U.compareAndSwapObject(a, j, t, null))
933 >                            top = s;
934 >                        break;
935 >                    }
936 >                    if (--n == 0) {
937 >                        if (!empty && base == b)
938 >                            progress = false;
939 >                        break;
940 >                    }
941 >                }
942 >            }
943 >            if (removed)
944 >                task.doExec();
945 >            return progress;
946 >        }
947  
948 <    private static final int TOTAL_COUNT_SHIFT  = 16;
949 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
950 <    private static final int ONE_RUNNING        = 1;
951 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
948 >        /**
949 >         * Initializes or doubles the capacity of array. Call either
950 >         * by owner or with lock held -- it is OK for base, but not
951 >         * top, to move while resizings are in progress.
952 >         *
953 >         * @param rejectOnFailure if true, throw exception if capacity
954 >         * exceeded (relayed ultimately to user); else return null.
955 >         */
956 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
957 >            ForkJoinTask<?>[] oldA = array;
958 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
959 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
960 >                int oldMask, t, b;
961 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
962 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
963 >                    (t = top) - (b = base) > 0) {
964 >                    int mask = size - 1;
965 >                    do {
966 >                        ForkJoinTask<?> x;
967 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
968 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
969 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
970 >                        if (x != null &&
971 >                            U.compareAndSwapObject(oldA, oldj, x, null))
972 >                            U.putObjectVolatile(a, j, x);
973 >                    } while (++b != t);
974 >                }
975 >                return a;
976 >            }
977 >            else if (!rejectOnFailure)
978 >                return null;
979 >            else
980 >                throw new RejectedExecutionException("Queue capacity exceeded");
981 >        }
982  
983 <    /**
984 <     * The target parallelism level.
985 <     * Accessed directly by ForkJoinWorkerThreads.
986 <     */
987 <    final int parallelism;
983 >        /**
984 >         * Removes and cancels all known tasks, ignoring any exceptions.
985 >         */
986 >        final void cancelAll() {
987 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
988 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
989 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
990 >                ForkJoinTask.cancelIgnoringExceptions(t);
991 >        }
992  
993 <    /**
554 <     * True if use local fifo, not default lifo, for local polling
555 <     * Read by, and replicated by ForkJoinWorkerThreads
556 <     */
557 <    final boolean locallyFifo;
993 >        // Execution methods
994  
995 <    /**
996 <     * The uncaught exception handler used when any worker abruptly
997 <     * terminates.
998 <     */
999 <    private final Thread.UncaughtExceptionHandler ueh;
995 >        /**
996 >         * Removes and runs tasks until empty, using local mode
997 >         * ordering.
998 >         */
999 >        final void runLocalTasks() {
1000 >            if (base - top < 0) {
1001 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1002 >                    t.doExec();
1003 >            }
1004 >        }
1005  
1006 <    /**
1007 <     * Pool number, just for assigning useful names to worker threads
1008 <     */
1009 <    private final int poolNumber;
1006 >        /**
1007 >         * Executes a top-level task and any local tasks remaining
1008 >         * after execution.
1009 >         *
1010 >         * @return true unless terminating
1011 >         */
1012 >        final boolean runTask(ForkJoinTask<?> t) {
1013 >            boolean alive = true;
1014 >            if (t != null) {
1015 >                currentSteal = t;
1016 >                t.doExec();
1017 >                runLocalTasks();
1018 >                ++nsteals;
1019 >                currentSteal = null;
1020 >            }
1021 >            else if (runState < 0)            // terminating
1022 >                alive = false;
1023 >            return alive;
1024 >        }
1025  
1026 +        /**
1027 +         * Executes a non-top-level (stolen) task.
1028 +         */
1029 +        final void runSubtask(ForkJoinTask<?> t) {
1030 +            if (t != null) {
1031 +                ForkJoinTask<?> ps = currentSteal;
1032 +                currentSteal = t;
1033 +                t.doExec();
1034 +                currentSteal = ps;
1035 +            }
1036 +        }
1037  
1038 <    // Utilities for CASing fields. Note that most of these
1039 <    // are usually manually inlined by callers
1038 >        /**
1039 >         * Computes next value for random probes.  Scans don't require
1040 >         * a very high quality generator, but also not a crummy one.
1041 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
1042 >         * This is manually inlined in several usages in ForkJoinPool
1043 >         * to avoid writes inside busy scan loops.
1044 >         */
1045 >        final int nextSeed() {
1046 >            int r = seed;
1047 >            r ^= r << 13;
1048 >            r ^= r >>> 17;
1049 >            r ^= r << 5;
1050 >            return seed = r;
1051 >        }
1052  
1053 <    /**
1054 <     * Increments running count part of workerCounts
1055 <     */
1056 <    final void incrementRunningCount() {
1057 <        int c;
1058 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1059 <                                               c = workerCounts,
1060 <                                               c + ONE_RUNNING));
1053 >        // Unsafe mechanics
1054 >        private static final sun.misc.Unsafe U;
1055 >        private static final long RUNSTATE;
1056 >        private static final int ABASE;
1057 >        private static final int ASHIFT;
1058 >        static {
1059 >            int s;
1060 >            try {
1061 >                U = getUnsafe();
1062 >                Class<?> k = WorkQueue.class;
1063 >                Class<?> ak = ForkJoinTask[].class;
1064 >                RUNSTATE = U.objectFieldOffset
1065 >                    (k.getDeclaredField("runState"));
1066 >                ABASE = U.arrayBaseOffset(ak);
1067 >                s = U.arrayIndexScale(ak);
1068 >            } catch (Exception e) {
1069 >                throw new Error(e);
1070 >            }
1071 >            if ((s & (s-1)) != 0)
1072 >                throw new Error("data type scale not a power of two");
1073 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1074 >        }
1075      }
1076  
1077      /**
1078 <     * Tries to decrement running count unless already zero
1078 >     * Class for artificial tasks that are used to replace the target
1079 >     * of local joins if they are removed from an interior queue slot
1080 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1081 >     * actually do anything beyond having a unique identity.
1082       */
1083 <    final boolean tryDecrementRunningCount() {
1084 <        int wc = workerCounts;
1085 <        if ((wc & RUNNING_COUNT_MASK) == 0)
1086 <            return false;
1087 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
592 <                                        wc, wc - ONE_RUNNING);
1083 >    static final class EmptyTask extends ForkJoinTask<Void> {
1084 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1085 >        public Void getRawResult() { return null; }
1086 >        public void setRawResult(Void x) {}
1087 >        public boolean exec() { return true; }
1088      }
1089  
1090      /**
1091 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
1092 <     * (rarely) necessary when other count updates lag.
1093 <     *
1094 <     * @param dr -- either zero or ONE_RUNNING
1095 <     * @param dt == either zero or ONE_TOTAL
1091 >     * Per-thread records for (typically non-FJ) threads that submit
1092 >     * to pools. Cureently holds only psuedo-random seed / index that
1093 >     * is used to choose submission queues in method doSubmit. In the
1094 >     * future, this may incorporate a means to implement different
1095 >     * task rejection and resubmission policies.
1096       */
1097 <    private void decrementWorkerCounts(int dr, int dt) {
1098 <        for (;;) {
1099 <            int wc = workerCounts;
1100 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
1101 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
1102 <                if ((runState & TERMINATED) != 0)
1103 <                    return; // lagging termination on a backout
1104 <                Thread.yield();
1105 <            }
611 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
612 <                                         wc, wc - (dr + dt)))
613 <                return;
1097 >    static final class Submitter {
1098 >        int seed; // seed for random submission queue selection
1099 >
1100 >        // Heuristic padding to ameliorate unfortunate memory placements
1101 >        int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1102 >
1103 >        Submitter() {
1104 >            // Use identityHashCode, forced negative, for seed
1105 >            seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1106          }
615    }
1107  
1108 <    /**
1109 <     * Increments event count
1110 <     */
1111 <    private void advanceEventCount() {
1112 <        int c;
1113 <        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
1114 <                                              c = eventCount, c+1));
1108 >        /**
1109 >         * Computes next value for random probes.  Like method
1110 >         * WorkQueue.nextSeed, this is manually inlined in several
1111 >         * usages to avoid writes inside busy loops.
1112 >         */
1113 >        final int nextSeed() {
1114 >            int r = seed;
1115 >            r ^= r << 13;
1116 >            r ^= r >>> 17;
1117 >            return seed = r ^= r << 5;
1118 >        }
1119      }
1120  
1121 <    /**
1122 <     * Tries incrementing active count; fails on contention.
1123 <     * Called by workers before executing tasks.
629 <     *
630 <     * @return true on success
631 <     */
632 <    final boolean tryIncrementActiveCount() {
633 <        int c;
634 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
635 <                                        c = runState, c + 1);
1121 >    /** ThreadLocal class for Submitters */
1122 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1123 >        public Submitter initialValue() { return new Submitter(); }
1124      }
1125  
1126      /**
1127 <     * Tries decrementing active count; fails on contention.
1128 <     * Called when workers cannot find tasks to run.
1127 >     * Per-thread submission bookeeping. Shared across all pools
1128 >     * to reduce ThreadLocal pollution and because random motion
1129 >     * to avoid contention in one pool is likely to hold for others.
1130       */
1131 <    final boolean tryDecrementActiveCount() {
643 <        int c;
644 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
645 <                                        c = runState, c - 1);
646 <    }
1131 >    static final ThreadSubmitter submitters = new ThreadSubmitter();
1132  
1133      /**
1134 <     * Advances to at least the given level. Returns true if not
650 <     * already in at least the given level.
1134 >     * Top-level runloop for workers
1135       */
1136 <    private boolean advanceRunLevel(int level) {
1137 <        for (;;) {
1138 <            int s = runState;
1139 <            if ((s & level) != 0)
1140 <                return false;
1141 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1142 <                return true;
1143 <        }
1136 >    final void runWorker(ForkJoinWorkerThread wt) {
1137 >        // Initialize queue array and seed in this thread
1138 >        WorkQueue w = wt.workQueue;
1139 >        w.growArray(false);
1140 >        // Same initial hash as Submitters
1141 >        w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1142 >
1143 >        do {} while (w.runTask(scan(w)));
1144      }
1145  
1146 <    // workers array maintenance
1146 >    // Creating, registering and deregistering workers
1147  
1148      /**
1149 <     * Records and returns a workers array index for new worker.
1149 >     * Tries to create and start a worker
1150       */
1151 <    private int recordWorker(ForkJoinWorkerThread w) {
1152 <        // Try using slot totalCount-1. If not available, scan and/or resize
1153 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
670 <        final ReentrantLock lock = this.workerLock;
671 <        lock.lock();
1151 >    private void addWorker() {
1152 >        Throwable ex = null;
1153 >        ForkJoinWorkerThread w = null;
1154          try {
1155 <            ForkJoinWorkerThread[] ws = workers;
1156 <            int n = ws.length;
1157 <            if (k < 0 || k >= n || ws[k] != null) {
676 <                for (k = 0; k < n && ws[k] != null; ++k)
677 <                    ;
678 <                if (k == n)
679 <                    ws = Arrays.copyOf(ws, n << 1);
1155 >            if ((w = factory.newThread(this)) != null) {
1156 >                w.start();
1157 >                return;
1158              }
1159 <            ws[k] = w;
1160 <            workers = ws; // volatile array write ensures slot visibility
683 <        } finally {
684 <            lock.unlock();
1159 >        } catch (Throwable e) {
1160 >            ex = e;
1161          }
1162 <        return k;
1162 >        deregisterWorker(w, ex);
1163      }
1164  
1165      /**
1166 <     * Nulls out record of worker in workers array
1166 >     * Callback from ForkJoinWorkerThread constructor to assign a
1167 >     * public name. This must be separate from registerWorker because
1168 >     * it is called during the "super" constructor call in
1169 >     * ForkJoinWorkerThread.
1170       */
1171 <    private void forgetWorker(ForkJoinWorkerThread w) {
1172 <        int idx = w.poolIndex;
1173 <        // Locking helps method recordWorker avoid unecessary expansion
1174 <        final ReentrantLock lock = this.workerLock;
1171 >    final String nextWorkerName() {
1172 >        return workerNamePrefix.concat
1173 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1174 >    }
1175 >
1176 >    /**
1177 >     * Callback from ForkJoinWorkerThread constructor to establish and
1178 >     * record its WorkQueue.
1179 >     *
1180 >     * @param wt the worker thread
1181 >     */
1182 >    final void registerWorker(ForkJoinWorkerThread wt) {
1183 >        WorkQueue w = wt.workQueue;
1184 >        ReentrantLock lock = this.lock;
1185          lock.lock();
1186          try {
1187 <            ForkJoinWorkerThread[] ws = workers;
1188 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1189 <                ws[idx] = null;
1187 >            int k = nextPoolIndex;
1188 >            WorkQueue[] ws = workQueues;
1189 >            if (ws != null) {                       // ignore on shutdown
1190 >                int n = ws.length;
1191 >                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1192 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1193 >                        ;                           // workers are at odd indices
1194 >                    if (k >= n)                     // resize
1195 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1196 >                }
1197 >                w.poolIndex = k;
1198 >                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1199 >                ws[k] = w;                          // record worker
1200 >                nextPoolIndex = k + 2;
1201 >                int rs = runState;
1202 >                int m = rs & SMASK;                 // recalculate runState mask
1203 >                if (k > m)
1204 >                    m = (m << 1) + 1;
1205 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1206 >            }
1207          } finally {
1208              lock.unlock();
1209          }
1210      }
1211  
706    // adding and removing workers
707
1212      /**
1213 <     * Tries to create and add new worker. Assumes that worker counts
1214 <     * are already updated to accommodate the worker, so adjusts on
1215 <     * failure.
1213 >     * Final callback from terminating worker, as well as failure to
1214 >     * construct or start a worker in addWorker.  Removes record of
1215 >     * worker from array, and adjusts counts. If pool is shutting
1216 >     * down, tries to complete termination.
1217       *
1218 <     * @return the worker, or null on failure
1218 >     * @param wt the worker thread or null if addWorker failed
1219 >     * @param ex the exception causing failure, or null if none
1220       */
1221 <    private ForkJoinWorkerThread addWorker() {
1222 <        ForkJoinWorkerThread w = null;
1223 <        try {
1224 <            w = factory.newThread(this);
1225 <        } finally { // Adjust on either null or exceptional factory return
1226 <            if (w == null) {
1227 <                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
1228 <                tryTerminate(false); // in case of failure during shutdown
1221 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1222 >        WorkQueue w = null;
1223 >        if (wt != null && (w = wt.workQueue) != null) {
1224 >            w.runState = -1;                // ensure runState is set
1225 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1226 >            int idx = w.poolIndex;
1227 >            ReentrantLock lock = this.lock;
1228 >            lock.lock();
1229 >            try {                           // remove record from array
1230 >                WorkQueue[] ws = workQueues;
1231 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1232 >                    ws[nextPoolIndex = idx] = null;
1233 >            } finally {
1234 >                lock.unlock();
1235              }
1236          }
1237 <        if (w != null) {
1238 <            w.start(recordWorker(w), ueh);
1239 <            advanceEventCount();
1237 >
1238 >        long c;                             // adjust ctl counts
1239 >        do {} while (!U.compareAndSwapLong
1240 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1241 >                                           ((c - TC_UNIT) & TC_MASK) |
1242 >                                           (c & ~(AC_MASK|TC_MASK)))));
1243 >
1244 >        if (!tryTerminate(false) && w != null) {
1245 >            w.cancelAll();                  // cancel remaining tasks
1246 >            if (w.array != null)            // suppress signal if never ran
1247 >                signalWork();               // wake up or create replacement
1248          }
1249 <        return w;
1249 >
1250 >        if (ex != null)                     // rethrow
1251 >            U.throwException(ex);
1252      }
1253  
1254      /**
1255 <     * Final callback from terminating worker.  Removes record of
734 <     * worker from array, and adjusts counts. If pool is shutting
735 <     * down, tries to complete terminatation.
1255 >     * Tries to add and register a new queue at the given index.
1256       *
1257 <     * @param w the worker
1257 >     * @param idx the workQueues array index to register the queue
1258 >     * @return the queue, or null if could not add because could
1259 >     * not acquire lock or idx is unusable
1260       */
1261 <    final void workerTerminated(ForkJoinWorkerThread w) {
1262 <        forgetWorker(w);
1263 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
1264 <        while (w.stealCount != 0) // collect final count
1265 <            tryAccumulateStealCount(w);
1266 <        tryTerminate(false);
1261 >    private WorkQueue tryAddSharedQueue(int idx) {
1262 >        WorkQueue q = null;
1263 >        ReentrantLock lock = this.lock;
1264 >        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1265 >            // create queue outside of lock but only if apparently free
1266 >            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1267 >            if (lock.tryLock()) {
1268 >                try {
1269 >                    WorkQueue[] ws = workQueues;
1270 >                    if (ws != null && idx < ws.length) {
1271 >                        if ((q = ws[idx]) == null) {
1272 >                            int rs;         // update runState seq
1273 >                            ws[idx] = q = nq;
1274 >                            runState = (((rs = runState) & SHUTDOWN) |
1275 >                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1276 >                        }
1277 >                    }
1278 >                } finally {
1279 >                    lock.unlock();
1280 >                }
1281 >            }
1282 >        }
1283 >        return q;
1284      }
1285  
1286 <    // Waiting for and signalling events
1286 >    // Maintaining ctl counts
1287  
1288      /**
1289 <     * Releases workers blocked on a count not equal to current count.
1290 <     * Normally called after precheck that eventWaiters isn't zero to
1291 <     * avoid wasted array checks. Gives up upon a change in count or
1292 <     * contention, letting other workers take over.
1293 <     */
755 <    private void releaseEventWaiters() {
756 <        ForkJoinWorkerThread[] ws = workers;
757 <        int n = ws.length;
758 <        long h = eventWaiters;
759 <        int ec = eventCount;
760 <        ForkJoinWorkerThread w; int id;
761 <        while ((int)(h >>> EVENT_COUNT_SHIFT) != ec &&
762 <               (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
763 <               id < n && (w = ws[id]) != null &&
764 <               UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 <                                         h,  h = w.nextWaiter)) {
766 <            LockSupport.unpark(w);
767 <            if (eventWaiters != h || eventCount != ec)
768 <                break;
769 <        }
1289 >     * Increments active count; mainly called upon return from blocking.
1290 >     */
1291 >    final void incrementActiveCount() {
1292 >        long c;
1293 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1294      }
1295  
1296      /**
1297 <     * Tries to advance eventCount and releases waiters. Called only
774 <     * from workers.
1297 >     * Activates or creates a worker.
1298       */
1299      final void signalWork() {
1300 <        int c; // try to increment event count -- CAS failure OK
1301 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1302 <        if (eventWaiters != 0L)
1303 <            releaseEventWaiters();
1304 <    }
1305 <
1306 <    /**
1307 <     * Adds the given worker to event queue and blocks until
1308 <     * terminating or event count advances from the workers
1309 <     * lastEventCount value
1310 <     *
1311 <     * @param w the calling worker thread
1312 <     */
1313 <    private void eventSync(ForkJoinWorkerThread w) {
1314 <        int ec = w.lastEventCount;
1315 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
1316 <        long h;
1317 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1318 <               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
1319 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
1320 <               eventCount == ec) {
1321 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
799 <                                          w.nextWaiter = h, nh)) {
800 <                awaitEvent(w, ec);
801 <                break;
1300 >        /*
1301 >         * The while condition is true if: (there is are too few total
1302 >         * workers OR there is at least one waiter) AND (there are too
1303 >         * few active workers OR the pool is terminating).  The value
1304 >         * of e distinguishes the remaining cases: zero (no waiters)
1305 >         * for create, negative if terminating (in which case do
1306 >         * nothing), else release a waiter. The secondary checks for
1307 >         * release (non-null array etc) can fail if the pool begins
1308 >         * terminating after the test, and don't impose any added cost
1309 >         * because JVMs must perform null and bounds checks anyway.
1310 >         */
1311 >        long c; int e, u;
1312 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1313 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1314 >            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1315 >            if (e == 0) {                    // add a new worker
1316 >                if (U.compareAndSwapLong
1317 >                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1318 >                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1319 >                    addWorker();
1320 >                    break;
1321 >                }
1322              }
1323 <        }
1324 <    }
1325 <
1326 <    /**
1327 <     * Blocks the given worker (that has already been entered as an
1328 <     * event waiter) until terminating or event count advances from
1329 <     * the given value. The oldest (first) waiter uses a timed wait to
1330 <     * occasionally one-by-one shrink the number of workers (to a
1331 <     * minumum of one) if the pool has not been used for extended
1332 <     * periods.
813 <     *
814 <     * @param w the calling worker thread
815 <     * @param ec the count
816 <     */
817 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
818 <        while (eventCount == ec) {
819 <            if (tryAccumulateStealCount(w)) { // transfer while idle
820 <                boolean untimed = (w.nextWaiter != 0L ||
821 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
822 <                long startTime = untimed? 0 : System.nanoTime();
823 <                Thread.interrupted();         // clear/ignore interrupt
824 <                if (eventCount != ec || !w.isRunning() ||
825 <                    runState >= TERMINATING)  // recheck after clear
1323 >            else if (e > 0 && ws != null &&
1324 >                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1325 >                     (w = ws[i]) != null &&
1326 >                     w.eventCount == (e | INT_SIGN)) {
1327 >                if (U.compareAndSwapLong
1328 >                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1329 >                                    ((long)(u + UAC_UNIT) << 32)))) {
1330 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1331 >                    if ((p = w.parker) != null)
1332 >                        U.unpark(p);         // release a waiting worker
1333                      break;
827                if (untimed)
828                    LockSupport.park(w);
829                else {
830                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
831                    if (eventCount != ec || !w.isRunning() ||
832                        runState >= TERMINATING)
833                        break;
834                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
835                        tryShutdownWaiter(ec);
1334                  }
1335              }
1336 +            else
1337 +                break;
1338          }
1339      }
1340  
1341      /**
1342 <     * Callback from the oldest waiter in awaitEvent waking up after a
1343 <     * period of non-use. Tries (once) to shutdown an event waiter (or
1344 <     * a spare, if one exists). Note that we don't need CAS or locks
1345 <     * here because the method is called only from one thread
1346 <     * occasionally waking (and even misfires are OK). Note that
1347 <     * until the shutdown worker fully terminates, workerCounts
1348 <     * will overestimate total count, which is tolerable.
1349 <     *
1350 <     * @param ec the event count waited on by caller (to abort
1351 <     * attempt if count has since changed).
1352 <     */
1353 <    private void tryShutdownWaiter(int ec) {
1354 <        if (spareWaiters != 0) { // prefer killing spares
1355 <            tryShutdownSpare();
1356 <            return;
1357 <        }
1358 <        ForkJoinWorkerThread[] ws = workers;
1359 <        int n = ws.length;
1360 <        long h = eventWaiters;
1361 <        ForkJoinWorkerThread w; int id; long nh;
1362 <        if (runState == 0 &&
1363 <            submissionQueue.isEmpty() &&
1364 <            eventCount == ec &&
1365 <            (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
1366 <            id < n && (w = ws[id]) != null &&
1367 <            (nh = w.nextWaiter) != 0L && // keep at least one worker
1368 <            UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh)) {
1369 <            w.shutdown();
1370 <            LockSupport.unpark(w);
1342 >     * Tries to decrement active count (sometimes implicitly) and
1343 >     * possibly release or create a compensating worker in preparation
1344 >     * for blocking. Fails on contention or termination.
1345 >     *
1346 >     * @return true if the caller can block, else should recheck and retry
1347 >     */
1348 >    final boolean tryCompensate() {
1349 >        WorkQueue[] ws; WorkQueue w; Thread p;
1350 >        int pc = parallelism, e, u, ac, tc, i;
1351 >        long c = ctl;
1352 >
1353 >        if ((e = (int)c) >= 0) {
1354 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1355 >                e != 0 && (ws = workQueues) != null &&
1356 >                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1357 >                (w = ws[i]) != null) {
1358 >                if (w.eventCount == (e | INT_SIGN) &&
1359 >                    U.compareAndSwapLong
1360 >                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1361 >                                    (c & (AC_MASK|TC_MASK))))) {
1362 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1363 >                    if ((p = w.parker) != null)
1364 >                        U.unpark(p);
1365 >                    return true;             // release an idle worker
1366 >                }
1367 >            }
1368 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1369 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1370 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1371 >                    return true;             // no compensation needed
1372 >            }
1373 >            else if (tc + pc < MAX_ID) {
1374 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1375 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1376 >                    addWorker();
1377 >                    return true;             // create replacement
1378 >                }
1379 >            }
1380          }
1381 <        releaseEventWaiters();
1381 >        return false;
1382      }
1383  
1384 <    // Maintaining spares
876 <
877 <    /**
878 <     * Pushes worker onto the spare stack
879 <     */
880 <    final void pushSpare(ForkJoinWorkerThread w) {
881 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
882 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
883 <                                               w.nextSpare = spareWaiters,ns));
884 <    }
1384 >    // Submissions
1385  
1386      /**
1387 <     * Callback from oldest spare occasionally waking up.  Tries
1388 <     * (once) to shutdown a spare. Same idea as tryShutdownWaiter.
1387 >     * Unless shutting down, adds the given task to a submission queue
1388 >     * at submitter's current queue index. If no queue exists at the
1389 >     * index, one is created unless pool lock is busy.  If the queue
1390 >     * and/or lock are busy, another index is randomly chosen.
1391       */
1392 <    final void tryShutdownSpare() {
1393 <        int sw, id;
1394 <        ForkJoinWorkerThread w;
1395 <        ForkJoinWorkerThread[] ws;
1396 <        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
1397 <            id < (ws = workers).length && (w = ws[id]) != null &&
1398 <            (workerCounts & RUNNING_COUNT_MASK) >= parallelism &&
1399 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1400 <                                     sw, w.nextSpare)) {
1401 <            w.shutdown();
1402 <            LockSupport.unpark(w);
1403 <            advanceEventCount();
1392 >    private void doSubmit(ForkJoinTask<?> task) {
1393 >        if (task == null)
1394 >            throw new NullPointerException();
1395 >        Submitter s = submitters.get();
1396 >        for (int r = s.seed;;) {
1397 >            WorkQueue q; int k;
1398 >            int rs = runState, m = rs & SMASK;
1399 >            WorkQueue[] ws = workQueues;
1400 >            if (rs < 0 || ws == null)   // shutting down
1401 >                throw new RejectedExecutionException();
1402 >            if (ws.length > m &&        // k must be at index
1403 >                ((q = ws[k = (r << 1) & m]) != null ||
1404 >                 (q = tryAddSharedQueue(k)) != null) &&
1405 >                q.trySharedPush(task)) {
1406 >                signalWork();
1407 >                return;
1408 >            }
1409 >            r ^= r << 13;               // xorshift seed to new position
1410 >            r ^= r >>> 17;
1411 >            if (((s.seed = r ^= r << 5) & m) == 0)
1412 >                Thread.yield();         // occasionally yield if busy
1413 >        }
1414 >    }
1415 >
1416 >
1417 >    // Scanning for tasks
1418 >
1419 >    /**
1420 >     * Scans for and, if found, returns one task, else possibly
1421 >     * inactivates the worker. This method operates on single reads of
1422 >     * volatile state and is designed to be re-invoked continuously in
1423 >     * part because it returns upon detecting inconsistencies,
1424 >     * contention, or state changes that indicate possible success on
1425 >     * re-invocation.
1426 >     *
1427 >     * The scan searches for tasks across queues, randomly selecting
1428 >     * the first #queues probes, favoring steals 2:1 over submissions
1429 >     * (by exploiting even/odd indexing), and then performing a
1430 >     * circular sweep of all queues.  The scan terminates upon either
1431 >     * finding a non-empty queue, or completing a full sweep. If the
1432 >     * worker is not inactivated, it takes and returns a task from
1433 >     * this queue.  On failure to find a task, we take one of the
1434 >     * following actions, after which the caller will retry calling
1435 >     * this method unless terminated.
1436 >     *
1437 >     * * If not a complete sweep, try to release a waiting worker.  If
1438 >     * the scan terminated because the worker is inactivated, then the
1439 >     * released worker will often be the calling worker, and it can
1440 >     * succeed obtaining a task on the next call. Or maybe it is
1441 >     * another worker, but with same net effect. Releasing in other
1442 >     * cases as well ensures that we have enough workers running.
1443 >     *
1444 >     * * If the caller has run a task since the last empty scan,
1445 >     * return (to allow rescan) if other workers are not also yet
1446 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1447 >     * ensure eventual inactivation, and occasional calls to
1448 >     * Thread.yield to help avoid interference with more useful
1449 >     * activities on the system.
1450 >     *
1451 >     * * If pool is terminating, terminate the worker.
1452 >     *
1453 >     * * If not already enqueued, try to inactivate and enqueue the
1454 >     * worker on wait queue.
1455 >     *
1456 >     * * If already enqueued and none of the above apply, either park
1457 >     * awaiting signal, or if this is the most recent waiter and pool
1458 >     * is quiescent, relay to idleAwaitWork to check for termination
1459 >     * and possibly shrink pool.
1460 >     *
1461 >     * @param w the worker (via its WorkQueue)
1462 >     * @return a task or null of none found
1463 >     */
1464 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1465 >        boolean swept = false;                 // true after full empty scan
1466 >        WorkQueue[] ws;                        // volatile read order matters
1467 >        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1468 >        int rs = runState, m = rs & SMASK;
1469 >        if ((ws = workQueues) != null && ws.length > m) {
1470 >            ForkJoinTask<?> task = null;
1471 >            for (int k = 0, j = -2 - m; ; ++j) {
1472 >                WorkQueue q; int b;
1473 >                if (j < 0) {                   // random probes while j negative
1474 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1475 >                }                              // worker (not submit) for odd j
1476 >                else                           // cyclic scan when j >= 0
1477 >                    k += (m >>> 1) | 1;        // step by half to reduce bias
1478 >
1479 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1480 >                    if (ec >= 0)
1481 >                        task = q.pollAt(b);    // steal
1482 >                    break;
1483 >                }
1484 >                else if (j > m) {
1485 >                    if (rs == runState)        // staleness check
1486 >                        swept = true;
1487 >                    break;
1488 >                }
1489 >            }
1490 >            w.seed = r;                        // save seed for next scan
1491 >            if (task != null)
1492 >                return task;
1493 >        }
1494 >
1495 >        // Decode ctl on empty scan
1496 >        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497 >        if (!swept) {                          // try to release a waiter
1498 >            WorkQueue v; Thread p;
1499 >            if (e > 0 && a < 0 && ws != null &&
1500 >                (v = ws[((~e << 1) | 1) & m]) != null &&
1501 >                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502 >                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503 >                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504 >                v.eventCount = (e + E_SEQ) & E_MASK;
1505 >                if ((p = v.parker) != null)
1506 >                    U.unpark(p);
1507 >            }
1508          }
1509 +        else if ((nr = w.rescans) > 0) {       // continue rescanning
1510 +            int ac = a + parallelism;
1511 +            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512 +                w.eventCount == ec)
1513 +                Thread.yield();                // 1 bit randomness for yield call
1514 +        }
1515 +        else if (e < 0)                        // pool is terminating
1516 +            w.runState = -1;
1517 +        else if (ec >= 0) {                    // try to enqueue
1518 +            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519 +            w.nextWait = e;
1520 +            w.eventCount = ec | INT_SIGN;      // mark as inactive
1521 +            if (!U.compareAndSwapLong(this, CTL, c, nc))
1522 +                w.eventCount = ec;             // back out on CAS failure
1523 +            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1524 +                if (a <= 0)                    // ... unless too many active
1525 +                    w.rescans = a + parallelism;
1526 +                w.nsteals = 0;
1527 +                w.totalSteals += ns;
1528 +            }
1529 +        }
1530 +        else{                                  // already queued
1531 +            if (parallelism == -a)
1532 +                idleAwaitWork(w);              // quiescent
1533 +            if (w.eventCount == ec) {
1534 +                Thread.interrupted();          // clear status
1535 +                ForkJoinWorkerThread wt = w.owner;
1536 +                U.putObject(wt, PARKBLOCKER, this);
1537 +                w.parker = wt;                 // emulate LockSupport.park
1538 +                if (w.eventCount == ec)        // recheck
1539 +                    U.park(false, 0L);         // block
1540 +                w.parker = null;
1541 +                U.putObject(wt, PARKBLOCKER, null);
1542 +            }
1543 +        }
1544 +        return null;
1545      }
1546  
1547      /**
1548 <     * Tries (once) to resume a spare if worker counts match
1549 <     * the given count.
1550 <     *
1551 <     * @param wc workerCounts value on invocation of this method
1552 <     */
1553 <    private void tryResumeSpare(int wc) {
1554 <        ForkJoinWorkerThread[] ws = workers;
1555 <        int n = ws.length;
1556 <        int sw, id, rs;  ForkJoinWorkerThread w;
1557 <        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
1558 <            id < n && (w = ws[id]) != null &&
1559 <            (rs = runState) < TERMINATING &&
1560 <            eventWaiters == 0L && workerCounts == wc) {
1561 <            // In case all workers busy, heuristically back off to let settle
1562 <            Thread.yield();
1563 <            if (eventWaiters == 0L && runState == rs && // recheck
1564 <                workerCounts == wc && spareWaiters == sw &&
1565 <                UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1566 <                                         sw, w.nextSpare)) {
1567 <                int c;              // increment running count before resume
1568 <                do {} while(!UNSAFE.compareAndSwapInt
1569 <                            (this, workerCountsOffset,
1570 <                             c = workerCounts, c + ONE_RUNNING));
1571 <                if (w.tryUnsuspend())
1572 <                    LockSupport.unpark(w);
1573 <                else               // back out if w was shutdown
1574 <                    decrementWorkerCounts(ONE_RUNNING, 0);
1548 >     * If inactivating worker w has caused pool to become quiescent,
1549 >     * checks for pool termination, and, so long as this is not the
1550 >     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1551 >     * On timeout, if ctl has not changed, terminates the worker,
1552 >     * which will in turn wake up another worker to possibly repeat
1553 >     * this process.
1554 >     *
1555 >     * @param w the calling worker
1556 >     */
1557 >    private void idleAwaitWork(WorkQueue w) {
1558 >        long c; int nw, ec;
1559 >        if (!tryTerminate(false) &&
1560 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1561 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1562 >            (nw = w.nextWait) != 0) {
1563 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1564 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1565 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566 >            ForkJoinWorkerThread wt = w.owner;
1567 >            while (ctl == c) {
1568 >                long startTime = System.nanoTime();
1569 >                Thread.interrupted();  // timed variant of version in scan()
1570 >                U.putObject(wt, PARKBLOCKER, this);
1571 >                w.parker = wt;
1572 >                if (ctl == c)
1573 >                    U.park(false, SHRINK_RATE);
1574 >                w.parker = null;
1575 >                U.putObject(wt, PARKBLOCKER, null);
1576 >                if (ctl != c)
1577 >                    break;
1578 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1579 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1580 >                    w.runState = -1;          // shrink
1581 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1582 >                    break;
1583 >                }
1584              }
1585          }
1586      }
1587  
937    // adding workers on demand
938
1588      /**
1589 <     * Adds one or more workers if needed to establish target parallelism.
1590 <     * Retries upon contention.
1591 <     */
1592 <    private void addWorkerIfBelowTarget() {
1593 <        int pc = parallelism;
1594 <        int wc;
1595 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < pc &&
1596 <               runState < TERMINATING) {
1597 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1598 <                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
1599 <                if (addWorker() == null)
1600 <                    break;
1589 >     * Tries to locate and execute tasks for a stealer of the given
1590 >     * task, or in turn one of its stealers, Traces currentSteal ->
1591 >     * currentJoin links looking for a thread working on a descendant
1592 >     * of the given task and with a non-empty queue to steal back and
1593 >     * execute tasks from. The first call to this method upon a
1594 >     * waiting join will often entail scanning/search, (which is OK
1595 >     * because the joiner has nothing better to do), but this method
1596 >     * leaves hints in workers to speed up subsequent calls. The
1597 >     * implementation is very branchy to cope with potential
1598 >     * inconsistencies or loops encountering chains that are stale,
1599 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1600 >     * of these cases are dealt with by just retrying by caller.
1601 >     *
1602 >     * @param joiner the joining worker
1603 >     * @param task the task to join
1604 >     * @return true if found or ran a task (and so is immediately retryable)
1605 >     */
1606 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1607 >        ForkJoinTask<?> subtask;    // current target
1608 >        boolean progress = false;
1609 >        int depth = 0;              // current chain depth
1610 >        int m = runState & SMASK;
1611 >        WorkQueue[] ws = workQueues;
1612 >
1613 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1614 >            outer:for (WorkQueue j = joiner;;) {
1615 >                // Try to find the stealer of subtask, by first using hint
1616 >                WorkQueue stealer = null;
1617 >                WorkQueue v = ws[j.stealHint & m];
1618 >                if (v != null && v.currentSteal == subtask)
1619 >                    stealer = v;
1620 >                else {
1621 >                    for (int i = 1; i <= m; i += 2) {
1622 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1623 >                            stealer = v;
1624 >                            j.stealHint = i; // save hint
1625 >                            break;
1626 >                        }
1627 >                    }
1628 >                    if (stealer == null)
1629 >                        break;
1630 >                }
1631 >
1632 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1633 >                    ForkJoinTask<?> t; int b;
1634 >                    if (task.status < 0)
1635 >                        break outer;
1636 >                    if ((b = q.base) - q.top < 0) {
1637 >                        progress = true;
1638 >                        if (subtask.status < 0)
1639 >                            break outer;               // stale
1640 >                        if ((t = q.pollAt(b)) != null) {
1641 >                            stealer.stealHint = joiner.poolIndex;
1642 >                            joiner.runSubtask(t);
1643 >                        }
1644 >                    }
1645 >                    else { // empty - try to descend to find stealer's stealer
1646 >                        ForkJoinTask<?> next = stealer.currentJoin;
1647 >                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648 >                            next == null || next == subtask)
1649 >                            break outer;  // max depth, stale, dead-end, cyclic
1650 >                        subtask = next;
1651 >                        j = stealer;
1652 >                        break;
1653 >                    }
1654 >                }
1655              }
1656          }
1657 +        return progress;
1658      }
1659  
1660      /**
1661 <     * Tries (once) to add a new worker if all existing workers are
958 <     * busy, and there are either no running workers or the deficit is
959 <     * at least twice the surplus.
1661 >     * If task is at base of some steal queue, steals and executes it.
1662       *
1663 <     * @param wc workerCounts value on invocation of this method
1663 >     * @param joiner the joining worker
1664 >     * @param task the task
1665       */
1666 <    private void tryAddWorkerIfBusy(int wc) {
1667 <        int tc, rc, rs;
1668 <        int pc = parallelism;
1669 <        if ((tc = wc >>> TOTAL_COUNT_SHIFT) < MAX_WORKERS &&
1670 <            ((rc = wc & RUNNING_COUNT_MASK) == 0 ||
1671 <             rc < pc - ((tc - pc) << 1)) &&
1672 <            (rs = runState) < TERMINATING &&
1673 <            (rs & ACTIVE_COUNT_MASK) == tc) {
1674 <            // Since all workers busy, heuristically back off to let settle
1675 <            Thread.yield();
1676 <            if (eventWaiters == 0L && spareWaiters == 0 && // recheck
974 <                runState == rs && workerCounts == wc &&
975 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
976 <                                         wc + (ONE_RUNNING|ONE_TOTAL)))
977 <                addWorker();
1666 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1667 >        WorkQueue[] ws;
1668 >        int m = runState & SMASK;
1669 >        if ((ws = workQueues) != null && ws.length > m) {
1670 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1671 >                WorkQueue q = ws[j];
1672 >                if (q != null && q.pollFor(task)) {
1673 >                    joiner.runSubtask(task);
1674 >                    break;
1675 >                }
1676 >            }
1677          }
1678      }
1679  
1680      /**
1681 <     * Does at most one of:
1682 <     *
1683 <     * 1. Help wake up existing workers waiting for work via
1684 <     *    releaseEventWaiters. (If any exist, then it doesn't
1685 <     *    matter right now if under target parallelism level.)
1686 <     *
1687 <     * 2. If a spare exists, try (once) to resume it via tryResumeSpare.
1688 <     *
1689 <     * 3. If there are not enough total workers, add some
1690 <     *    via addWorkerIfBelowTarget;
1691 <     *
1692 <     * 4. Try (once) to add a new worker if all existing workers
1693 <     *     are busy, via tryAddWorkerIfBusy
1694 <     */
1695 <    private void helpMaintainParallelism() {
1696 <        long h; int pc, wc;
1697 <        if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0) {
1698 <            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1699 <                releaseEventWaiters(); // avoid useless call
1700 <        }
1701 <        else if ((pc = parallelism) >
1702 <                 ((wc = workerCounts) & RUNNING_COUNT_MASK)) {
1703 <            if (spareWaiters != 0)
1704 <                tryResumeSpare(wc);
1705 <            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1007 <                addWorkerIfBelowTarget();
1008 <            else
1009 <                tryAddWorkerIfBusy(wc);
1681 >     * Returns a non-empty steal queue, if one is found during a random,
1682 >     * then cyclic scan, else null.  This method must be retried by
1683 >     * caller if, by the time it tries to use the queue, it is empty.
1684 >     */
1685 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1686 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1687 >        for (WorkQueue[] ws;;) {
1688 >            int m = runState & SMASK;
1689 >            if ((ws = workQueues) == null)
1690 >                return null;
1691 >            if (ws.length > m) {
1692 >                WorkQueue q;
1693 >                for (int n = m << 2, k = r, j = -n;;) {
1694 >                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1695 >                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1696 >                        w.seed = r;
1697 >                        return q;
1698 >                    }
1699 >                    else if (j > n)
1700 >                        return null;
1701 >                    else
1702 >                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703 >
1704 >                }
1705 >            }
1706          }
1707      }
1708  
1709      /**
1710 <     * Callback from workers invoked upon each top-level action (i.e.,
1711 <     * stealing a task or taking a submission and running it).
1712 <     * Performs one or more of the following:
1713 <     *
1714 <     * 1. If the worker is active, try to set its active status to
1715 <     *    inactive and update activeCount. On contention, we may try
1716 <     *    again on this or subsequent call.
1717 <     *
1718 <     * 2. Release any existing event waiters that are now relesable
1719 <     *
1720 <     * 3. If there are too many running threads, suspend this worker
1721 <     *    (first forcing inactive if necessary).  If it is not
1722 <     *    needed, it may be killed while suspended via
1723 <     *    tryShutdownSpare. Otherwise, upon resume it rechecks to make
1724 <     *    sure that it is still needed.
1725 <     *
1726 <     * 4. If more than 1 miss, await the next task event via
1727 <     *    eventSync (first forcing inactivation if necessary), upon
1728 <     *    which worker may also be killed, via tryShutdownWaiter.
1729 <     *
1730 <     * 5. Help reactivate other workers via helpMaintainParallelism
1731 <     *
1732 <     * @param w the worker
1733 <     * @param misses the number of scans by caller failing to find work
1734 <     * (saturating at 2 to avoid wraparound)
1735 <     */
1736 <    final void preStep(ForkJoinWorkerThread w, int misses) {
1737 <        boolean active = w.active;
1738 <        int pc = parallelism;
1739 <        for (;;) {
1740 <            int rs, wc, rc, ec; long h;
1741 <            if (active && UNSAFE.compareAndSwapInt(this, runStateOffset,
1742 <                                                   rs = runState, rs - 1))
1047 <                active = w.active = false;
1048 <            if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0 &&
1049 <                (int)(h >>> EVENT_COUNT_SHIFT) != eventCount) {
1050 <                releaseEventWaiters();
1051 <                if (misses > 1)
1052 <                    continue;                  // clear before sync below
1053 <            }
1054 <            if ((rc = ((wc = workerCounts) & RUNNING_COUNT_MASK)) > pc) {
1055 <                if (!active &&                 // must inactivate to suspend
1056 <                    workerCounts == wc &&      // try to suspend as spare
1057 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1058 <                                             wc, wc - ONE_RUNNING)) {
1059 <                    w.suspendAsSpare();
1060 <                    if (!w.isRunning())
1061 <                        break;                 // was killed while spare
1062 <                }
1063 <                continue;
1064 <            }
1065 <            if (misses > 0) {
1066 <                if ((ec = eventCount) == w.lastEventCount && misses > 1) {
1067 <                    if (!active) {             // must inactivate to sync
1068 <                        eventSync(w);
1069 <                        if (w.isRunning())
1070 <                            misses = 1;        // don't re-sync
1071 <                        else
1072 <                            break;             // was killed while waiting
1073 <                    }
1074 <                    continue;
1710 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1711 >     * active count ctl maintenance, but rather than blocking
1712 >     * when tasks cannot be found, we rescan until all others cannot
1713 >     * find tasks either.
1714 >     */
1715 >    final void helpQuiescePool(WorkQueue w) {
1716 >        for (boolean active = true;;) {
1717 >            w.runLocalTasks();      // exhaust local queue
1718 >            WorkQueue q = findNonEmptyStealQueue(w);
1719 >            if (q != null) {
1720 >                ForkJoinTask<?> t;
1721 >                if (!active) {      // re-establish active count
1722 >                    long c;
1723 >                    active = true;
1724 >                    do {} while (!U.compareAndSwapLong
1725 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1726 >                }
1727 >                if ((t = q.poll()) != null)
1728 >                    w.runSubtask(t);
1729 >            }
1730 >            else {
1731 >                long c;
1732 >                if (active) {       // decrement active count without queuing
1733 >                    active = false;
1734 >                    do {} while (!U.compareAndSwapLong
1735 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1736 >                }
1737 >                else
1738 >                    c = ctl;        // re-increment on exit
1739 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1740 >                    do {} while (!U.compareAndSwapLong
1741 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1742 >                    break;
1743                  }
1076                w.lastEventCount = ec;
1744              }
1078            if (rc < pc)
1079                helpMaintainParallelism();
1080            break;
1745          }
1746      }
1747  
1748      /**
1749 <     * Helps and/or blocks awaiting join of the given task.
1086 <     * Alternates between helpJoinTask() and helpMaintainParallelism()
1087 <     * as many times as there is a deficit in running count (or longer
1088 <     * if running count would become zero), then blocks if task still
1089 <     * not done.
1749 >     * Gets and removes a local or stolen task for the given worker.
1750       *
1751 <     * @param joinMe the task to join
1751 >     * @return a task, if available
1752       */
1753 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1754 <        int threshold = parallelism;         // descend blocking thresholds
1755 <        while (joinMe.status >= 0) {
1756 <            boolean block; int wc;
1757 <            worker.helpJoinTask(joinMe);
1758 <            if (joinMe.status < 0)
1759 <                break;
1760 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1761 <                if (threshold > 0)
1102 <                    --threshold;
1103 <                else
1104 <                    advanceEventCount(); // force release
1105 <                block = false;
1106 <            }
1107 <            else
1108 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1109 <                                                 wc, wc - ONE_RUNNING);
1110 <            helpMaintainParallelism();
1111 <            if (block) {
1112 <                int c;
1113 <                joinMe.internalAwaitDone();
1114 <                do {} while (!UNSAFE.compareAndSwapInt
1115 <                             (this, workerCountsOffset,
1116 <                              c = workerCounts, c + ONE_RUNNING));
1117 <                break;
1118 <            }
1753 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1754 >        for (ForkJoinTask<?> t;;) {
1755 >            WorkQueue q;
1756 >            if ((t = w.nextLocalTask()) != null)
1757 >                return t;
1758 >            if ((q = findNonEmptyStealQueue(w)) == null)
1759 >                return null;
1760 >            if ((t = q.poll()) != null)
1761 >                return t;
1762          }
1763      }
1764  
1765      /**
1766 <     * Same idea as awaitJoin, but no helping
1766 >     * Returns the approximate (non-atomic) number of idle threads per
1767 >     * active thread to offset steal queue size for method
1768 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1769       */
1770 <    final void awaitBlocker(ManagedBlocker blocker)
1771 <        throws InterruptedException {
1772 <        int threshold = parallelism;
1773 <        while (!blocker.isReleasable()) {
1774 <            boolean block; int wc;
1775 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1776 <                if (threshold > 0)
1777 <                    --threshold;
1778 <                else
1779 <                    advanceEventCount();
1780 <                block = false;
1781 <            }
1782 <            else
1783 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1784 <                                                 wc, wc - ONE_RUNNING);
1785 <            helpMaintainParallelism();
1786 <            if (block) {
1787 <                try {
1788 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1789 <                } finally {
1790 <                    int c;
1791 <                    do {} while (!UNSAFE.compareAndSwapInt
1147 <                                 (this, workerCountsOffset,
1148 <                                  c = workerCounts, c + ONE_RUNNING));
1149 <                }
1150 <                break;
1151 <            }
1770 >    final int idlePerActive() {
1771 >        // Approximate at powers of two for small values, saturate past 4
1772 >        int p = parallelism;
1773 >        int a = p + (int)(ctl >> AC_SHIFT);
1774 >        return (a > (p >>>= 1) ? 0 :
1775 >                a > (p >>>= 1) ? 1 :
1776 >                a > (p >>>= 1) ? 2 :
1777 >                a > (p >>>= 1) ? 4 :
1778 >                8);
1779 >    }
1780 >
1781 >    // Termination
1782 >
1783 >    /**
1784 >     * Sets SHUTDOWN bit of runState under lock
1785 >     */
1786 >    private void enableShutdown() {
1787 >        ReentrantLock lock = this.lock;
1788 >        if (runState >= 0) {
1789 >            lock.lock();                       // don't need try/finally
1790 >            runState |= SHUTDOWN;
1791 >            lock.unlock();
1792          }
1793      }
1794  
1795      /**
1796 <     * Possibly initiates and/or completes termination.
1796 >     * Possibly initiates and/or completes termination.  Upon
1797 >     * termination, cancels all queued tasks and then
1798       *
1799       * @param now if true, unconditionally terminate, else only
1800 <     * if shutdown and empty queue and no active workers
1800 >     * if no work and no active workers
1801       * @return true if now terminating or terminated
1802       */
1803      private boolean tryTerminate(boolean now) {
1804 <        if (now)
1805 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1806 <        else if (runState < SHUTDOWN ||
1807 <                 !submissionQueue.isEmpty() ||
1808 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1809 <            return false;
1810 <
1811 <        if (advanceRunLevel(TERMINATING))
1812 <            startTerminating();
1813 <
1814 <        // Finish now if all threads terminated; else in some subsequent call
1815 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1816 <            advanceRunLevel(TERMINATED);
1817 <            termination.arrive();
1804 >        for (long c;;) {
1805 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1806 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1807 >                    ReentrantLock lock = this.lock; // signal when no workers
1808 >                    lock.lock();                    // don't need try/finally
1809 >                    termination.signalAll();        // signal when 0 workers
1810 >                    lock.unlock();
1811 >                }
1812 >                return true;
1813 >            }
1814 >            if (!now) {
1815 >                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1816 >                    hasQueuedSubmissions())
1817 >                    return false;
1818 >                // Check for unqueued inactive workers. One pass suffices.
1819 >                WorkQueue[] ws = workQueues; WorkQueue w;
1820 >                if (ws != null) {
1821 >                    int n = ws.length;
1822 >                    for (int i = 1; i < n; i += 2) {
1823 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
1824 >                            return false;
1825 >                    }
1826 >                }
1827 >            }
1828 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1829 >                startTerminating();
1830          }
1178        return true;
1831      }
1832  
1833      /**
1834 <     * Actions on transition to TERMINATING
1835 <     *
1836 <     * Runs up to four passes through workers: (0) shutting down each
1837 <     * (without waking up if parked) to quickly spread notifications
1838 <     * without unnecessary bouncing around event queues etc (1) wake
1839 <     * up and help cancel tasks (2) interrupt (3) mop up races with
1188 <     * interrupted workers
1834 >     * Initiates termination: Runs three passes through workQueues:
1835 >     * (0) Setting termination status, followed by wakeups of queued
1836 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837 >     * threads (likely in external tasks, but possibly also blocked in
1838 >     * joins).  Each pass repeats previous steps because of potential
1839 >     * lagging thread creation.
1840       */
1841      private void startTerminating() {
1842 <        cancelSubmissions();
1843 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1844 <            advanceEventCount();
1845 <            eventWaiters = 0L; // clobber lists
1846 <            spareWaiters = 0;
1847 <            ForkJoinWorkerThread[] ws = workers;
1848 <            int n = ws.length;
1849 <            for (int i = 0; i < n; ++i) {
1850 <                ForkJoinWorkerThread w = ws[i];
1851 <                if (w != null) {
1852 <                    w.shutdown();
1853 <                    if (passes > 0 && !w.isTerminated()) {
1854 <                        w.cancelTasks();
1855 <                        LockSupport.unpark(w);
1856 <                        if (passes > 1) {
1857 <                            try {
1207 <                                w.interrupt();
1208 <                            } catch (SecurityException ignore) {
1842 >        for (int pass = 0; pass < 3; ++pass) {
1843 >            WorkQueue[] ws = workQueues;
1844 >            if (ws != null) {
1845 >                WorkQueue w; Thread wt;
1846 >                int n = ws.length;
1847 >                for (int j = 0; j < n; ++j) {
1848 >                    if ((w = ws[j]) != null) {
1849 >                        w.runState = -1;
1850 >                        if (pass > 0) {
1851 >                            w.cancelAll();
1852 >                            if (pass > 1 && (wt = w.owner) != null &&
1853 >                                !wt.isInterrupted()) {
1854 >                                try {
1855 >                                    wt.interrupt();
1856 >                                } catch (SecurityException ignore) {
1857 >                                }
1858                              }
1859                          }
1860                      }
1861                  }
1862 +                // Wake up workers parked on event queue
1863 +                int i, e; long c; Thread p;
1864 +                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1865 +                       (w = ws[i]) != null &&
1866 +                       w.eventCount == (e | INT_SIGN)) {
1867 +                    long nc = ((long)(w.nextWait & E_MASK) |
1868 +                               ((c + AC_UNIT) & AC_MASK) |
1869 +                               (c & (TC_MASK|STOP_BIT)));
1870 +                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1871 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1872 +                        if ((p = w.parker) != null)
1873 +                            U.unpark(p);
1874 +                    }
1875 +                }
1876              }
1877          }
1878      }
1879  
1880 <    /**
1218 <     * Clear out and cancel submissions, ignoring exceptions
1219 <     */
1220 <    private void cancelSubmissions() {
1221 <        ForkJoinTask<?> task;
1222 <        while ((task = submissionQueue.poll()) != null) {
1223 <            try {
1224 <                task.cancel(false);
1225 <            } catch (Throwable ignore) {
1226 <            }
1227 <        }
1228 <    }
1229 <
1230 <    // misc support for ForkJoinWorkerThread
1231 <
1232 <    /**
1233 <     * Returns pool number
1234 <     */
1235 <    final int getPoolNumber() {
1236 <        return poolNumber;
1237 <    }
1238 <
1239 <    /**
1240 <     * Tries to accumulates steal count from a worker, clearing
1241 <     * the worker's value.
1242 <     *
1243 <     * @return true if worker steal count now zero
1244 <     */
1245 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1246 <        int sc = w.stealCount;
1247 <        long c = stealCount;
1248 <        // CAS even if zero, for fence effects
1249 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1250 <            if (sc != 0)
1251 <                w.stealCount = 0;
1252 <            return true;
1253 <        }
1254 <        return sc == 0;
1255 <    }
1256 <
1257 <    /**
1258 <     * Returns the approximate (non-atomic) number of idle threads per
1259 <     * active thread.
1260 <     */
1261 <    final int idlePerActive() {
1262 <        int pc = parallelism; // use parallelism, not rc
1263 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1264 <        // Use exact results for small values, saturate past 4
1265 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1266 <    }
1267 <
1268 <    // Public and protected methods
1880 >    // Exported methods
1881  
1882      // Constructors
1883  
# Line 1312 | Line 1924 | public class ForkJoinPool extends Abstra
1924       * use {@link #defaultForkJoinWorkerThreadFactory}.
1925       * @param handler the handler for internal worker threads that
1926       * terminate due to unrecoverable errors encountered while executing
1927 <     * tasks. For default value, use <code>null</code>.
1927 >     * tasks. For default value, use {@code null}.
1928       * @param asyncMode if true,
1929       * establishes local first-in-first-out scheduling mode for forked
1930       * tasks that are never joined. This mode may be more appropriate
1931       * than default locally stack-based mode in applications in which
1932       * worker threads only process event-style asynchronous tasks.
1933 <     * For default value, use <code>false</code>.
1933 >     * For default value, use {@code false}.
1934       * @throws IllegalArgumentException if parallelism less than or
1935       *         equal to zero, or greater than implementation limit
1936       * @throws NullPointerException if the factory is null
# Line 1334 | Line 1946 | public class ForkJoinPool extends Abstra
1946          checkPermission();
1947          if (factory == null)
1948              throw new NullPointerException();
1949 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1949 >        if (parallelism <= 0 || parallelism > MAX_ID)
1950              throw new IllegalArgumentException();
1951          this.parallelism = parallelism;
1952          this.factory = factory;
1953          this.ueh = handler;
1954 <        this.locallyFifo = asyncMode;
1955 <        int arraySize = initialArraySizeFor(parallelism);
1956 <        this.workers = new ForkJoinWorkerThread[arraySize];
1957 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1958 <        this.workerLock = new ReentrantLock();
1959 <        this.termination = new Phaser(1);
1960 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1961 <    }
1962 <
1963 <    /**
1964 <     * Returns initial power of two size for workers array.
1965 <     * @param pc the initial parallelism level
1966 <     */
1967 <    private static int initialArraySizeFor(int pc) {
1968 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1969 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1970 <        size |= size >>> 1;
1971 <        size |= size >>> 2;
1972 <        size |= size >>> 4;
1973 <        size |= size >>> 8;
1974 <        return size + 1;
1954 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955 >        this.nextPoolIndex = 1;
1956 >        long np = (long)(-parallelism); // offset ctl counts
1957 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1958 >        // initialize workQueues array with room for 2*parallelism if possible
1959 >        int n = parallelism << 1;
1960 >        if (n >= MAX_ID)
1961 >            n = MAX_ID;
1962 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964 >        }
1965 >        this.workQueues = new WorkQueue[(n + 1) << 1];
1966 >        ReentrantLock lck = this.lock = new ReentrantLock();
1967 >        this.termination = lck.newCondition();
1968 >        this.stealCount = new AtomicLong();
1969 >        this.nextWorkerNumber = new AtomicInteger();
1970 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1971 >        sb.append(poolNumberGenerator.incrementAndGet());
1972 >        sb.append("-worker-");
1973 >        this.workerNamePrefix = sb.toString();
1974 >        // Create initial submission queue
1975 >        WorkQueue sq = tryAddSharedQueue(0);
1976 >        if (sq != null)
1977 >            sq.growArray(false);
1978      }
1979  
1980      // Execution methods
1981  
1982      /**
1368     * Common code for execute, invoke and submit
1369     */
1370    private <T> void doSubmit(ForkJoinTask<T> task) {
1371        if (task == null)
1372            throw new NullPointerException();
1373        if (runState >= SHUTDOWN)
1374            throw new RejectedExecutionException();
1375        submissionQueue.offer(task);
1376        advanceEventCount();
1377        if (eventWaiters != 0L)
1378            releaseEventWaiters();
1379        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1380            addWorkerIfBelowTarget();
1381    }
1382
1383    /**
1983       * Performs the given task, returning its result upon completion.
1984 +     * If the computation encounters an unchecked Exception or Error,
1985 +     * it is rethrown as the outcome of this invocation.  Rethrown
1986 +     * exceptions behave in the same way as regular exceptions, but,
1987 +     * when possible, contain stack traces (as displayed for example
1988 +     * using {@code ex.printStackTrace()}) of both the current thread
1989 +     * as well as the thread actually encountering the exception;
1990 +     * minimally only the latter.
1991       *
1992       * @param task the task
1993       * @return the task's result
# Line 1414 | Line 2020 | public class ForkJoinPool extends Abstra
2020       *         scheduled for execution
2021       */
2022      public void execute(Runnable task) {
2023 +        if (task == null)
2024 +            throw new NullPointerException();
2025          ForkJoinTask<?> job;
2026          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2027              job = (ForkJoinTask<?>) task;
# Line 1442 | Line 2050 | public class ForkJoinPool extends Abstra
2050       *         scheduled for execution
2051       */
2052      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2053 +        if (task == null)
2054 +            throw new NullPointerException();
2055          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056          doSubmit(job);
2057          return job;
# Line 1453 | Line 2063 | public class ForkJoinPool extends Abstra
2063       *         scheduled for execution
2064       */
2065      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2066 +        if (task == null)
2067 +            throw new NullPointerException();
2068          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069          doSubmit(job);
2070          return job;
# Line 1464 | Line 2076 | public class ForkJoinPool extends Abstra
2076       *         scheduled for execution
2077       */
2078      public ForkJoinTask<?> submit(Runnable task) {
2079 +        if (task == null)
2080 +            throw new NullPointerException();
2081          ForkJoinTask<?> job;
2082          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2083              job = (ForkJoinTask<?>) task;
# Line 1529 | Line 2143 | public class ForkJoinPool extends Abstra
2143  
2144      /**
2145       * Returns the number of worker threads that have started but not
2146 <     * yet terminated.  This result returned by this method may differ
2146 >     * yet terminated.  The result returned by this method may differ
2147       * from {@link #getParallelism} when threads are created to
2148       * maintain parallelism when others are cooperatively blocked.
2149       *
2150       * @return the number of worker threads
2151       */
2152      public int getPoolSize() {
2153 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2153 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2154      }
2155  
2156      /**
# Line 1546 | Line 2160 | public class ForkJoinPool extends Abstra
2160       * @return {@code true} if this pool uses async mode
2161       */
2162      public boolean getAsyncMode() {
2163 <        return locallyFifo;
2163 >        return localMode != 0;
2164      }
2165  
2166      /**
# Line 1558 | Line 2172 | public class ForkJoinPool extends Abstra
2172       * @return the number of worker threads
2173       */
2174      public int getRunningThreadCount() {
2175 <        return workerCounts & RUNNING_COUNT_MASK;
2175 >        int rc = 0;
2176 >        WorkQueue[] ws; WorkQueue w;
2177 >        if ((ws = workQueues) != null) {
2178 >            int n = ws.length;
2179 >            for (int i = 1; i < n; i += 2) {
2180 >                Thread.State s; ForkJoinWorkerThread wt;
2181 >                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182 >                    w.eventCount >= 0 &&
2183 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
2184 >                    s != Thread.State.WAITING &&
2185 >                    s != Thread.State.TIMED_WAITING)
2186 >                    ++rc;
2187 >            }
2188 >        }
2189 >        return rc;
2190      }
2191  
2192      /**
# Line 1569 | Line 2197 | public class ForkJoinPool extends Abstra
2197       * @return the number of active threads
2198       */
2199      public int getActiveThreadCount() {
2200 <        return runState & ACTIVE_COUNT_MASK;
2200 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2201 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2202      }
2203  
2204      /**
# Line 1584 | Line 2213 | public class ForkJoinPool extends Abstra
2213       * @return {@code true} if all threads are currently idle
2214       */
2215      public boolean isQuiescent() {
2216 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2216 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2217      }
2218  
2219      /**
# Line 1599 | Line 2228 | public class ForkJoinPool extends Abstra
2228       * @return the number of steals
2229       */
2230      public long getStealCount() {
2231 <        return stealCount;
2231 >        long count = stealCount.get();
2232 >        WorkQueue[] ws; WorkQueue w;
2233 >        if ((ws = workQueues) != null) {
2234 >            int n = ws.length;
2235 >            for (int i = 1; i < n; i += 2) {
2236 >                if ((w = ws[i]) != null)
2237 >                    count += w.totalSteals;
2238 >            }
2239 >        }
2240 >        return count;
2241      }
2242  
2243      /**
# Line 1614 | Line 2252 | public class ForkJoinPool extends Abstra
2252       */
2253      public long getQueuedTaskCount() {
2254          long count = 0;
2255 <        ForkJoinWorkerThread[] ws = workers;
2256 <        int n = ws.length;
2257 <        for (int i = 0; i < n; ++i) {
2258 <            ForkJoinWorkerThread w = ws[i];
2259 <            if (w != null)
2260 <                count += w.getQueueSize();
2255 >        WorkQueue[] ws; WorkQueue w;
2256 >        if ((ws = workQueues) != null) {
2257 >            int n = ws.length;
2258 >            for (int i = 1; i < n; i += 2) {
2259 >                if ((w = ws[i]) != null)
2260 >                    count += w.queueSize();
2261 >            }
2262          }
2263          return count;
2264      }
2265  
2266      /**
2267       * Returns an estimate of the number of tasks submitted to this
2268 <     * pool that have not yet begun executing.  This method takes time
2269 <     * proportional to the number of submissions.
2268 >     * pool that have not yet begun executing.  This method may take
2269 >     * time proportional to the number of submissions.
2270       *
2271       * @return the number of queued submissions
2272       */
2273      public int getQueuedSubmissionCount() {
2274 <        return submissionQueue.size();
2274 >        int count = 0;
2275 >        WorkQueue[] ws; WorkQueue w;
2276 >        if ((ws = workQueues) != null) {
2277 >            int n = ws.length;
2278 >            for (int i = 0; i < n; i += 2) {
2279 >                if ((w = ws[i]) != null)
2280 >                    count += w.queueSize();
2281 >            }
2282 >        }
2283 >        return count;
2284      }
2285  
2286      /**
# Line 1642 | Line 2290 | public class ForkJoinPool extends Abstra
2290       * @return {@code true} if there are any queued submissions
2291       */
2292      public boolean hasQueuedSubmissions() {
2293 <        return !submissionQueue.isEmpty();
2293 >        WorkQueue[] ws; WorkQueue w;
2294 >        if ((ws = workQueues) != null) {
2295 >            int n = ws.length;
2296 >            for (int i = 0; i < n; i += 2) {
2297 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2298 >                    return true;
2299 >            }
2300 >        }
2301 >        return false;
2302      }
2303  
2304      /**
# Line 1653 | Line 2309 | public class ForkJoinPool extends Abstra
2309       * @return the next submission, or {@code null} if none
2310       */
2311      protected ForkJoinTask<?> pollSubmission() {
2312 <        return submissionQueue.poll();
2312 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2313 >        if ((ws = workQueues) != null) {
2314 >            int n = ws.length;
2315 >            for (int i = 0; i < n; i += 2) {
2316 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2317 >                    return t;
2318 >            }
2319 >        }
2320 >        return null;
2321      }
2322  
2323      /**
# Line 1674 | Line 2338 | public class ForkJoinPool extends Abstra
2338       * @return the number of elements transferred
2339       */
2340      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2341 <        int count = submissionQueue.drainTo(c);
2342 <        ForkJoinWorkerThread[] ws = workers;
2343 <        int n = ws.length;
2344 <        for (int i = 0; i < n; ++i) {
2345 <            ForkJoinWorkerThread w = ws[i];
2346 <            if (w != null)
2347 <                count += w.drainTasksTo(c);
2341 >        int count = 0;
2342 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2343 >        if ((ws = workQueues) != null) {
2344 >            int n = ws.length;
2345 >            for (int i = 0; i < n; ++i) {
2346 >                if ((w = ws[i]) != null) {
2347 >                    while ((t = w.poll()) != null) {
2348 >                        c.add(t);
2349 >                        ++count;
2350 >                    }
2351 >                }
2352 >            }
2353          }
2354          return count;
2355      }
# Line 1696 | Line 2365 | public class ForkJoinPool extends Abstra
2365          long st = getStealCount();
2366          long qt = getQueuedTaskCount();
2367          long qs = getQueuedSubmissionCount();
2368 <        int wc = workerCounts;
1700 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
1701 <        int rc = wc & RUNNING_COUNT_MASK;
2368 >        int rc = getRunningThreadCount();
2369          int pc = parallelism;
2370 <        int rs = runState;
2371 <        int ac = rs & ACTIVE_COUNT_MASK;
2370 >        long c = ctl;
2371 >        int tc = pc + (short)(c >>> TC_SHIFT);
2372 >        int ac = pc + (int)(c >> AC_SHIFT);
2373 >        if (ac < 0) // ignore transient negative
2374 >            ac = 0;
2375 >        String level;
2376 >        if ((c & STOP_BIT) != 0)
2377 >            level = (tc == 0) ? "Terminated" : "Terminating";
2378 >        else
2379 >            level = runState < 0 ? "Shutting down" : "Running";
2380          return super.toString() +
2381 <            "[" + runLevelToString(rs) +
2381 >            "[" + level +
2382              ", parallelism = " + pc +
2383              ", size = " + tc +
2384              ", active = " + ac +
# Line 1714 | Line 2389 | public class ForkJoinPool extends Abstra
2389              "]";
2390      }
2391  
1717    private static String runLevelToString(int s) {
1718        return ((s & TERMINATED) != 0 ? "Terminated" :
1719                ((s & TERMINATING) != 0 ? "Terminating" :
1720                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1721                  "Running")));
1722    }
1723
2392      /**
2393       * Initiates an orderly shutdown in which previously submitted
2394       * tasks are executed, but no new tasks will be accepted.
# Line 1735 | Line 2403 | public class ForkJoinPool extends Abstra
2403       */
2404      public void shutdown() {
2405          checkPermission();
2406 <        advanceRunLevel(SHUTDOWN);
2406 >        enableShutdown();
2407          tryTerminate(false);
2408      }
2409  
# Line 1757 | Line 2425 | public class ForkJoinPool extends Abstra
2425       */
2426      public List<Runnable> shutdownNow() {
2427          checkPermission();
2428 +        enableShutdown();
2429          tryTerminate(true);
2430          return Collections.emptyList();
2431      }
# Line 1767 | Line 2436 | public class ForkJoinPool extends Abstra
2436       * @return {@code true} if all tasks have completed following shut down
2437       */
2438      public boolean isTerminated() {
2439 <        return runState >= TERMINATED;
2439 >        long c = ctl;
2440 >        return ((c & STOP_BIT) != 0L &&
2441 >                (short)(c >>> TC_SHIFT) == -parallelism);
2442      }
2443  
2444      /**
# Line 1775 | Line 2446 | public class ForkJoinPool extends Abstra
2446       * commenced but not yet completed.  This method may be useful for
2447       * debugging. A return of {@code true} reported a sufficient
2448       * period after shutdown may indicate that submitted tasks have
2449 <     * ignored or suppressed interruption, causing this executor not
2450 <     * to properly terminate.
2449 >     * ignored or suppressed interruption, or are waiting for IO,
2450 >     * causing this executor not to properly terminate. (See the
2451 >     * advisory notes for class {@link ForkJoinTask} stating that
2452 >     * tasks should not normally entail blocking operations.  But if
2453 >     * they do, they must abort them on interrupt.)
2454       *
2455       * @return {@code true} if terminating but not yet terminated
2456       */
2457      public boolean isTerminating() {
2458 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2458 >        long c = ctl;
2459 >        return ((c & STOP_BIT) != 0L &&
2460 >                (short)(c >>> TC_SHIFT) != -parallelism);
2461      }
2462  
2463      /**
# Line 1790 | Line 2466 | public class ForkJoinPool extends Abstra
2466       * @return {@code true} if this pool has been shut down
2467       */
2468      public boolean isShutdown() {
2469 <        return runState >= SHUTDOWN;
2469 >        return runState < 0;
2470      }
2471  
2472      /**
# Line 1806 | Line 2482 | public class ForkJoinPool extends Abstra
2482       */
2483      public boolean awaitTermination(long timeout, TimeUnit unit)
2484          throws InterruptedException {
2485 +        long nanos = unit.toNanos(timeout);
2486 +        final ReentrantLock lock = this.lock;
2487 +        lock.lock();
2488          try {
2489 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
2490 <        } catch(TimeoutException ex) {
2491 <            return false;
2489 >            for (;;) {
2490 >                if (isTerminated())
2491 >                    return true;
2492 >                if (nanos <= 0)
2493 >                    return false;
2494 >                nanos = termination.awaitNanos(nanos);
2495 >            }
2496 >        } finally {
2497 >            lock.unlock();
2498          }
2499      }
2500  
# Line 1821 | Line 2506 | public class ForkJoinPool extends Abstra
2506       * {@code isReleasable} must return {@code true} if blocking is
2507       * not necessary. Method {@code block} blocks the current thread
2508       * if necessary (perhaps internally invoking {@code isReleasable}
2509 <     * before actually blocking). The unusual methods in this API
2510 <     * accommodate synchronizers that may, but don't usually, block
2511 <     * for long periods. Similarly, they allow more efficient internal
2512 <     * handling of cases in which additional workers may be, but
2513 <     * usually are not, needed to ensure sufficient parallelism.
2514 <     * Toward this end, implementations of method {@code isReleasable}
2515 <     * must be amenable to repeated invocation.
2509 >     * before actually blocking). These actions are performed by any
2510 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2511 >     * unusual methods in this API accommodate synchronizers that may,
2512 >     * but don't usually, block for long periods. Similarly, they
2513 >     * allow more efficient internal handling of cases in which
2514 >     * additional workers may be, but usually are not, needed to
2515 >     * ensure sufficient parallelism.  Toward this end,
2516 >     * implementations of method {@code isReleasable} must be amenable
2517 >     * to repeated invocation.
2518       *
2519       * <p>For example, here is a ManagedBlocker based on a
2520       * ReentrantLock:
# Line 1907 | Line 2594 | public class ForkJoinPool extends Abstra
2594      public static void managedBlock(ManagedBlocker blocker)
2595          throws InterruptedException {
2596          Thread t = Thread.currentThread();
2597 <        if (t instanceof ForkJoinWorkerThread) {
2598 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2599 <            w.pool.awaitBlocker(blocker);
2600 <        }
2601 <        else {
2602 <            do {} while (!blocker.isReleasable() && !blocker.block());
2597 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2598 >                          ((ForkJoinWorkerThread)t).pool : null);
2599 >        while (!blocker.isReleasable()) {
2600 >            if (p == null || p.tryCompensate()) {
2601 >                try {
2602 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2603 >                } finally {
2604 >                    if (p != null)
2605 >                        p.incrementActiveCount();
2606 >                }
2607 >                break;
2608 >            }
2609          }
2610      }
2611  
# Line 1929 | Line 2622 | public class ForkJoinPool extends Abstra
2622      }
2623  
2624      // Unsafe mechanics
2625 <
2626 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2627 <    private static final long workerCountsOffset =
2628 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2629 <    private static final long runStateOffset =
2630 <        objectFieldOffset("runState", ForkJoinPool.class);
2631 <    private static final long eventCountOffset =
2632 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2633 <    private static final long eventWaitersOffset =
2634 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2635 <    private static final long stealCountOffset =
1943 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1944 <    private static final long spareWaitersOffset =
1945 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1946 <
1947 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2625 >    private static final sun.misc.Unsafe U;
2626 >    private static final long CTL;
2627 >    private static final long RUNSTATE;
2628 >    private static final long PARKBLOCKER;
2629 >
2630 >    static {
2631 >        poolNumberGenerator = new AtomicInteger();
2632 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2633 >        defaultForkJoinWorkerThreadFactory =
2634 >            new DefaultForkJoinWorkerThreadFactory();
2635 >        int s;
2636          try {
2637 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2638 <        } catch (NoSuchFieldException e) {
2639 <            // Convert Exception to corresponding Error
2640 <            NoSuchFieldError error = new NoSuchFieldError(field);
2641 <            error.initCause(e);
2642 <            throw error;
2637 >            U = getUnsafe();
2638 >            Class<?> k = ForkJoinPool.class;
2639 >            Class<?> tk = Thread.class;
2640 >            CTL = U.objectFieldOffset
2641 >                (k.getDeclaredField("ctl"));
2642 >            RUNSTATE = U.objectFieldOffset
2643 >                (k.getDeclaredField("runState"));
2644 >            PARKBLOCKER = U.objectFieldOffset
2645 >                (tk.getDeclaredField("parkBlocker"));
2646 >        } catch (Exception e) {
2647 >            throw new Error(e);
2648          }
2649      }
2650  
# Line 1982 | Line 2675 | public class ForkJoinPool extends Abstra
2675              }
2676          }
2677      }
2678 +
2679   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines