ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.69 by jsr166, Wed Sep 1 20:12:39 2010 UTC vs.
Revision 1.121 by jsr166, Tue Jan 31 01:33:21 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.CountDownLatch;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 33 | import java.util.concurrent.CountDownLat
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45   * <p>A {@code ForkJoinPool} is constructed with a given target
46   * parallelism level; by default, equal to the number of available
# Line 52 | Line 60 | import java.util.concurrent.CountDownLat
60   * convenient form for informal monitoring.
61   *
62   * <p> As is the case with other ExecutorServices, there are three
63 < * main task execution methods summarized in the following
64 < * table. These are designed to be used by clients not already engaged
65 < * in fork/join computations in the current pool.  The main forms of
66 < * these methods accept instances of {@code ForkJoinTask}, but
67 < * overloaded forms also allow mixed execution of plain {@code
63 > * main task execution methods summarized in the following table.
64 > * These are designed to be used primarily by clients not already
65 > * engaged in fork/join computations in the current pool.  The main
66 > * forms of these methods accept instances of {@code ForkJoinTask},
67 > * but overloaded forms also allow mixed execution of plain {@code
68   * Runnable}- or {@code Callable}- based activities as well.  However,
69 < * tasks that are already executing in a pool should normally
70 < * <em>NOT</em> use these pool execution methods, but instead use the
71 < * within-computation forms listed in the table.
69 > * tasks that are already executing in a pool should normally instead
70 > * use the within-computation forms listed in the table unless using
71 > * async event-style tasks that are not usually joined, in which case
72 > * there is little difference among choice of methods.
73   *
74   * <table BORDER CELLPADDING=3 CELLSPACING=1>
75   *  <tr>
# Line 95 | Line 104 | import java.util.concurrent.CountDownLat
104   * daemon} mode, there is typically no need to explicitly {@link
105   * #shutdown} such a pool upon program exit.
106   *
107 < * <pre>
107 > *  <pre> {@code
108   * static final ForkJoinPool mainPool = new ForkJoinPool();
109   * ...
110   * public void sort(long[] array) {
111   *   mainPool.invoke(new SortTask(array, 0, array.length));
112 < * }
104 < * </pre>
112 > * }}</pre>
113   *
114   * <p><b>Implementation notes</b>: This implementation restricts the
115   * maximum number of running threads to 32767. Attempts to create
# Line 120 | Line 128 | public class ForkJoinPool extends Abstra
128      /*
129       * Implementation Overview
130       *
131 <     * This class provides the central bookkeeping and control for a
132 <     * set of worker threads: Submissions from non-FJ threads enter
133 <     * into a submission queue. Workers take these tasks and typically
134 <     * split them into subtasks that may be stolen by other workers.
135 <     * The main work-stealing mechanics implemented in class
136 <     * ForkJoinWorkerThread give first priority to processing tasks
137 <     * from their own queues (LIFO or FIFO, depending on mode), then
138 <     * to randomized FIFO steals of tasks in other worker queues, and
139 <     * lastly to new submissions. These mechanics do not consider
140 <     * affinities, loads, cache localities, etc, so rarely provide the
141 <     * best possible performance on a given machine, but portably
142 <     * provide good throughput by averaging over these factors.
143 <     * (Further, even if we did try to use such information, we do not
144 <     * usually have a basis for exploiting it. For example, some sets
145 <     * of tasks profit from cache affinities, but others are harmed by
146 <     * cache pollution effects.)
147 <     *
148 <     * Beyond work-stealing support and essential bookkeeping, the
149 <     * main responsibility of this framework is to take actions when
150 <     * one worker is waiting to join a task stolen (or always held by)
151 <     * another.  Because we are multiplexing many tasks on to a pool
152 <     * of workers, we can't just let them block (as in Thread.join).
153 <     * We also cannot just reassign the joiner's run-time stack with
154 <     * another and replace it later, which would be a form of
155 <     * "continuation", that even if possible is not necessarily a good
156 <     * idea. Given that the creation costs of most threads on most
157 <     * systems mainly surrounds setting up runtime stacks, thread
158 <     * creation and switching is usually not much more expensive than
159 <     * stack creation and switching, and is more flexible). Instead we
160 <     * combine two tactics:
131 >     * This class and its nested classes provide the main
132 >     * functionality and control for a set of worker threads:
133 >     * Submissions from non-FJ threads enter into submission queues.
134 >     * Workers take these tasks and typically split them into subtasks
135 >     * that may be stolen by other workers.  Preference rules give
136 >     * first priority to processing tasks from their own queues (LIFO
137 >     * or FIFO, depending on mode), then to randomized FIFO steals of
138 >     * tasks in other queues.
139 >     *
140 >     * WorkQueues
141 >     * ==========
142 >     *
143 >     * Most operations occur within work-stealing queues (in nested
144 >     * class WorkQueue).  These are special forms of Deques that
145 >     * support only three of the four possible end-operations -- push,
146 >     * pop, and poll (aka steal), under the further constraints that
147 >     * push and pop are called only from the owning thread (or, as
148 >     * extended here, under a lock), while poll may be called from
149 >     * other threads.  (If you are unfamiliar with them, you probably
150 >     * want to read Herlihy and Shavit's book "The Art of
151 >     * Multiprocessor programming", chapter 16 describing these in
152 >     * more detail before proceeding.)  The main work-stealing queue
153 >     * design is roughly similar to those in the papers "Dynamic
154 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155 >     * (http://research.sun.com/scalable/pubs/index.html) and
156 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 >     * The main differences ultimately stem from GC requirements that
159 >     * we null out taken slots as soon as we can, to maintain as small
160 >     * a footprint as possible even in programs generating huge
161 >     * numbers of tasks. To accomplish this, we shift the CAS
162 >     * arbitrating pop vs poll (steal) from being on the indices
163 >     * ("base" and "top") to the slots themselves.  So, both a
164 >     * successful pop and poll mainly entail a CAS of a slot from
165 >     * non-null to null.  Because we rely on CASes of references, we
166 >     * do not need tag bits on base or top.  They are simple ints as
167 >     * used in any circular array-based queue (see for example
168 >     * ArrayDeque).  Updates to the indices must still be ordered in a
169 >     * way that guarantees that top == base means the queue is empty,
170 >     * but otherwise may err on the side of possibly making the queue
171 >     * appear nonempty when a push, pop, or poll have not fully
172 >     * committed. Note that this means that the poll operation,
173 >     * considered individually, is not wait-free. One thief cannot
174 >     * successfully continue until another in-progress one (or, if
175 >     * previously empty, a push) completes.  However, in the
176 >     * aggregate, we ensure at least probabilistic non-blockingness.
177 >     * If an attempted steal fails, a thief always chooses a different
178 >     * random victim target to try next. So, in order for one thief to
179 >     * progress, it suffices for any in-progress poll or new push on
180 >     * any empty queue to complete.
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we loosely associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they never
203 >     * take tasks, and they are multiplexed on to a finite number of
204 >     * shared work queues. However, classes are set up so that future
205 >     * extensions could allow submitters to optionally help perform
206 >     * tasks as well. Insertion of tasks in shared mode requires a
207 >     * lock (mainly to protect in the case of resizing) but we use
208 >     * only a simple spinlock (using bits in field runState), because
209 >     * submitters encountering a busy queue move on to try or create
210 >     * other queues, so never block.
211 >     *
212 >     * Management
213 >     * ==========
214 >     *
215 >     * The main throughput advantages of work-stealing stem from
216 >     * decentralized control -- workers mostly take tasks from
217 >     * themselves or each other. We cannot negate this in the
218 >     * implementation of other management responsibilities. The main
219 >     * tactic for avoiding bottlenecks is packing nearly all
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency. An
237 >     * auxiliary field "growHints", also only modified under lock,
238 >     * contains a candidate index for the next WorkQueue and
239 >     * a mask for submission queue indices.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247 >     * operations, the array size is always a power of two, and all
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning. To avoid flailing during start-up, the array is
252 >     * presized to hold twice #parallelism workers (which is unlikely
253 >     * to need further resizing during execution). But to avoid
254 >     * dealing with so many null slots, variable runState includes a
255 >     * mask for the nearest power of two that contains all currently
256 >     * used indices.
257 >     *
258 >     * All worker thread creation is on-demand, triggered by task
259 >     * submissions, replacement of terminated workers, and/or
260 >     * compensation for blocked workers. However, all other support
261 >     * code is set up to work with other policies.  To ensure that we
262 >     * do not hold on to worker references that would prevent GC, ALL
263 >     * accesses to workQueues are via indices into the workQueues
264 >     * array (which is one source of some of the messy code
265 >     * constructions here). In essence, the workQueues array serves as
266 >     * a weak reference mechanism. Thus for example the wait queue
267 >     * field of ctl stores indices, not references.  Access to the
268 >     * workQueues in associated methods (for example signalWork) must
269 >     * both index-check and null-check the IDs. All such accesses
270 >     * ignore bad IDs by returning out early from what they are doing,
271 >     * since this can only be associated with termination, in which
272 >     * case it is OK to give up.  All uses of the workQueues array
273 >     * also check that it is non-null (even if previously
274 >     * non-null). This allows nulling during termination, which is
275 >     * currently not necessary, but remains an option for
276 >     * resource-revocation-based shutdown schemes. It also helps
277 >     * reduce JIT issuance of uncommon-trap code, which tends to
278 >     * unnecessarily complicate control flow in some methods.
279 >     *
280 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
281 >     * let workers spin indefinitely scanning for tasks when none can
282 >     * be found immediately, and we cannot start/resume workers unless
283 >     * there appear to be tasks available.  On the other hand, we must
284 >     * quickly prod them into action when new tasks are submitted or
285 >     * generated. In many usages, ramp-up time to activate workers is
286 >     * the main limiting factor in overall performance (this is
287 >     * compounded at program start-up by JIT compilation and
288 >     * allocation). So we try to streamline this as much as possible.
289 >     * We park/unpark workers after placing in an event wait queue
290 >     * when they cannot find work. This "queue" is actually a simple
291 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
292 >     * counter value (that reflects the number of times a worker has
293 >     * been inactivated) to avoid ABA effects (we need only as many
294 >     * version numbers as worker threads). Successors are held in
295 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
296 >     * races, mainly that a task-producing thread can miss seeing (and
297 >     * signalling) another thread that gave up looking for work but
298 >     * has not yet entered the wait queue. We solve this by requiring
299 >     * a full sweep of all workers (via repeated calls to method
300 >     * scan()) both before and after a newly waiting worker is added
301 >     * to the wait queue. During a rescan, the worker might release
302 >     * some other queued worker rather than itself, which has the same
303 >     * net effect. Because enqueued workers may actually be rescanning
304 >     * rather than waiting, we set and clear the "parker" field of
305 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
306 >     * requires a secondary recheck to avoid missed signals.)  Note
307 >     * the unusual conventions about Thread.interrupts surrounding
308 >     * parking and other blocking: Because interrupts are used solely
309 >     * to alert threads to check termination, which is checked anyway
310 >     * upon blocking, we clear status (using Thread.interrupted)
311 >     * before any call to park, so that park does not immediately
312 >     * return due to status being set via some other unrelated call to
313 >     * interrupt in user code.
314 >     *
315 >     * Signalling.  We create or wake up workers only when there
316 >     * appears to be at least one task they might be able to find and
317 >     * execute.  When a submission is added or another worker adds a
318 >     * task to a queue that previously had fewer than two tasks, they
319 >     * signal waiting workers (or trigger creation of new ones if
320 >     * fewer than the given parallelism level -- see signalWork).
321 >     * These primary signals are buttressed by signals during rescans;
322 >     * together these cover the signals needed in cases when more
323 >     * tasks are pushed but untaken, and improve performance compared
324 >     * to having one thread wake up all workers.
325 >     *
326 >     * Trimming workers. To release resources after periods of lack of
327 >     * use, a worker starting to wait when the pool is quiescent will
328 >     * time out and terminate if the pool has remained quiescent for
329 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
330 >     * terminating all workers after long periods of non-use.
331 >     *
332 >     * Shutdown and Termination. A call to shutdownNow atomically sets
333 >     * a runState bit and then (non-atomically) sets each worker's
334 >     * runState status, cancels all unprocessed tasks, and wakes up
335 >     * all waiting workers.  Detecting whether termination should
336 >     * commence after a non-abrupt shutdown() call requires more work
337 >     * and bookkeeping. We need consensus about quiescence (i.e., that
338 >     * there is no more work). The active count provides a primary
339 >     * indication but non-abrupt shutdown still requires a rechecking
340 >     * scan for any workers that are inactive but not queued.
341 >     *
342 >     * Joining Tasks
343 >     * =============
344 >     *
345 >     * Any of several actions may be taken when one worker is waiting
346 >     * to join a task stolen (or always held) by another.  Because we
347 >     * are multiplexing many tasks on to a pool of workers, we can't
348 >     * just let them block (as in Thread.join).  We also cannot just
349 >     * reassign the joiner's run-time stack with another and replace
350 >     * it later, which would be a form of "continuation", that even if
351 >     * possible is not necessarily a good idea since we sometimes need
352 >     * both an unblocked task and its continuation to progress.
353 >     * Instead we combine two tactics:
354       *
355       *   Helping: Arranging for the joiner to execute some task that it
356 <     *      would be running if the steal had not occurred.  Method
156 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 <     *      links to try to find such a task.
356 >     *      would be running if the steal had not occurred.
357       *
358       *   Compensating: Unless there are already enough live threads,
359 <     *      method helpMaintainParallelism() may create or
360 <     *      re-activate a spare thread to compensate for blocked
162 <     *      joiners until they unblock.
359 >     *      method tryCompensate() may create or re-activate a spare
360 >     *      thread to compensate for blocked joiners until they unblock.
361       *
362 <     * It is impossible to keep exactly the target (parallelism)
363 <     * number of threads running at any given time.  Determining
364 <     * existence of conservatively safe helping targets, the
365 <     * availability of already-created spares, and the apparent need
366 <     * to create new spares are all racy and require heuristic
367 <     * guidance, so we rely on multiple retries of each.  Compensation
368 <     * occurs in slow-motion. It is triggered only upon timeouts of
171 <     * Object.wait used for joins. This reduces poor decisions that
172 <     * would otherwise be made when threads are waiting for others
173 <     * that are stalled because of unrelated activities such as
174 <     * garbage collection.
362 >     * A third form (implemented in tryRemoveAndExec and
363 >     * tryPollForAndExec) amounts to helping a hypothetical
364 >     * compensator: If we can readily tell that a possible action of a
365 >     * compensator is to steal and execute the task being joined, the
366 >     * joining thread can do so directly, without the need for a
367 >     * compensation thread (although at the expense of larger run-time
368 >     * stacks, but the tradeoff is typically worthwhile).
369       *
370       * The ManagedBlocker extension API can't use helping so relies
371       * only on compensation in method awaitBlocker.
372       *
373 <     * The main throughput advantages of work-stealing stem from
374 <     * decentralized control -- workers mostly steal tasks from each
375 <     * other. We do not want to negate this by creating bottlenecks
376 <     * implementing other management responsibilities. So we use a
377 <     * collection of techniques that avoid, reduce, or cope well with
378 <     * contention. These entail several instances of bit-packing into
379 <     * CASable fields to maintain only the minimally required
380 <     * atomicity. To enable such packing, we restrict maximum
381 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
382 <     * unbalanced increments and decrements) to fit into a 16 bit
383 <     * field, which is far in excess of normal operating range.  Even
384 <     * though updates to some of these bookkeeping fields do sometimes
385 <     * contend with each other, they don't normally cache-contend with
386 <     * updates to others enough to warrant memory padding or
387 <     * isolation. So they are all held as fields of ForkJoinPool
388 <     * objects.  The main capabilities are as follows:
389 <     *
390 <     * 1. Creating and removing workers. Workers are recorded in the
391 <     * "workers" array. This is an array as opposed to some other data
392 <     * structure to support index-based random steals by workers.
393 <     * Updates to the array recording new workers and unrecording
394 <     * terminated ones are protected from each other by a lock
395 <     * (workerLock) but the array is otherwise concurrently readable,
396 <     * and accessed directly by workers. To simplify index-based
397 <     * operations, the array size is always a power of two, and all
398 <     * readers must tolerate null slots. Currently, all worker thread
399 <     * creation is on-demand, triggered by task submissions,
400 <     * replacement of terminated workers, and/or compensation for
401 <     * blocked workers. However, all other support code is set up to
402 <     * work with other policies.
403 <     *
404 <     * To ensure that we do not hold on to worker references that
405 <     * would prevent GC, ALL accesses to workers are via indices into
406 <     * the workers array (which is one source of some of the unusual
407 <     * code constructions here). In essence, the workers array serves
408 <     * as a WeakReference mechanism. Thus for example the event queue
409 <     * stores worker indices, not worker references. Access to the
410 <     * workers in associated methods (for example releaseEventWaiters)
411 <     * must both index-check and null-check the IDs. All such accesses
412 <     * ignore bad IDs by returning out early from what they are doing,
413 <     * since this can only be associated with shutdown, in which case
414 <     * it is OK to give up. On termination, we just clobber these
415 <     * data structures without trying to use them.
222 <     *
223 <     * 2. Bookkeeping for dynamically adding and removing workers. We
224 <     * aim to approximately maintain the given level of parallelism.
225 <     * When some workers are known to be blocked (on joins or via
226 <     * ManagedBlocker), we may create or resume others to take their
227 <     * place until they unblock (see below). Implementing this
228 <     * requires counts of the number of "running" threads (i.e., those
229 <     * that are neither blocked nor artificially suspended) as well as
230 <     * the total number.  These two values are packed into one field,
231 <     * "workerCounts" because we need accurate snapshots when deciding
232 <     * to create, resume or suspend.  Note however that the
233 <     * correspondence of these counts to reality is not guaranteed. In
234 <     * particular updates for unblocked threads may lag until they
235 <     * actually wake up.
236 <     *
237 <     * 3. Maintaining global run state. The run state of the pool
238 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
239 <     * those in other Executor implementations, as well as a count of
240 <     * "active" workers -- those that are, or soon will be, or
241 <     * recently were executing tasks. The runLevel and active count
242 <     * are packed together in order to correctly trigger shutdown and
243 <     * termination. Without care, active counts can be subject to very
244 <     * high contention.  We substantially reduce this contention by
245 <     * relaxing update rules.  A worker must claim active status
246 <     * prospectively, by activating if it sees that a submitted or
247 <     * stealable task exists (it may find after activating that the
248 <     * task no longer exists). It stays active while processing this
249 <     * task (if it exists) and any other local subtasks it produces,
250 <     * until it cannot find any other tasks. It then tries
251 <     * inactivating (see method preStep), but upon update contention
252 <     * instead scans for more tasks, later retrying inactivation if it
253 <     * doesn't find any.
254 <     *
255 <     * 4. Managing idle workers waiting for tasks. We cannot let
256 <     * workers spin indefinitely scanning for tasks when none are
257 <     * available. On the other hand, we must quickly prod them into
258 <     * action when new tasks are submitted or generated.  We
259 <     * park/unpark these idle workers using an event-count scheme.
260 <     * Field eventCount is incremented upon events that may enable
261 <     * workers that previously could not find a task to now find one:
262 <     * Submission of a new task to the pool, or another worker pushing
263 <     * a task onto a previously empty queue.  (We also use this
264 <     * mechanism for configuration and termination actions that
265 <     * require wakeups of idle workers).  Each worker maintains its
266 <     * last known event count, and blocks when a scan for work did not
267 <     * find a task AND its lastEventCount matches the current
268 <     * eventCount. Waiting idle workers are recorded in a variant of
269 <     * Treiber stack headed by field eventWaiters which, when nonzero,
270 <     * encodes the thread index and count awaited for by the worker
271 <     * thread most recently calling eventSync. This thread in turn has
272 <     * a record (field nextEventWaiter) for the next waiting worker.
273 <     * In addition to allowing simpler decisions about need for
274 <     * wakeup, the event count bits in eventWaiters serve the role of
275 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
276 <     * released threads also try to release at most two others.  The
277 <     * net effect is a tree-like diffusion of signals, where released
278 <     * threads (and possibly others) help with unparks.  To further
279 <     * reduce contention effects a bit, failed CASes to increment
280 <     * field eventCount are tolerated without retries in signalWork.
281 <     * Conceptually they are merged into the same event, which is OK
282 <     * when their only purpose is to enable workers to scan for work.
283 <     *
284 <     * 5. Managing suspension of extra workers. When a worker notices
285 <     * (usually upon timeout of a wait()) that there are too few
286 <     * running threads, we may create a new thread to maintain
287 <     * parallelism level, or at least avoid starvation. Usually, extra
288 <     * threads are needed for only very short periods, yet join
289 <     * dependencies are such that we sometimes need them in
290 <     * bursts. Rather than create new threads each time this happens,
291 <     * we suspend no-longer-needed extra ones as "spares". For most
292 <     * purposes, we don't distinguish "extra" spare threads from
293 <     * normal "core" threads: On each call to preStep (the only point
294 <     * at which we can do this) a worker checks to see if there are
295 <     * now too many running workers, and if so, suspends itself.
296 <     * Method helpMaintainParallelism looks for suspended threads to
297 <     * resume before considering creating a new replacement. The
298 <     * spares themselves are encoded on another variant of a Treiber
299 <     * Stack, headed at field "spareWaiters".  Note that the use of
300 <     * spares is intrinsically racy.  One thread may become a spare at
301 <     * about the same time as another is needlessly being created. We
302 <     * counteract this and related slop in part by requiring resumed
303 <     * spares to immediately recheck (in preStep) to see whether they
304 <     * they should re-suspend.
305 <     *
306 <     * 6. Killing off unneeded workers. A timeout mechanism is used to
307 <     * shed unused workers: The oldest (first) event queue waiter uses
308 <     * a timed rather than hard wait. When this wait times out without
309 <     * a normal wakeup, it tries to shutdown any one (for convenience
310 <     * the newest) other spare or event waiter via
311 <     * tryShutdownUnusedWorker. This eventually reduces the number of
312 <     * worker threads to a minimum of one after a long enough period
313 <     * without use.
314 <     *
315 <     * 7. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads
317 <     * in method helpMaintainParallelism. We would like to keep
318 <     * exactly #parallelism threads running, which is an impossible
319 <     * task. We always need to create one when the number of running
320 <     * threads would become zero and all workers are busy. Beyond
321 <     * this, we must rely on heuristics that work well in the
322 <     * presence of transient phenomena such as GC stalls, dynamic
323 <     * compilation, and wake-up lags. These transients are extremely
324 <     * common -- we are normally trying to fully saturate the CPUs on
325 <     * a machine, so almost any activity other than running tasks
326 <     * impedes accuracy. Our main defense is to allow parallelism to
327 <     * lapse for a while during joins, and use a timeout to see if,
328 <     * after the resulting settling, there is still a need for
329 <     * additional workers.  This also better copes with the fact that
330 <     * some of the methods in this class tend to never become compiled
331 <     * (but are interpreted), so some components of the entire set of
332 <     * controls might execute 100 times faster than others. And
333 <     * similarly for cases where the apparent lack of work is just due
334 <     * to GC stalls and other transient system activity.
373 >     * The algorithm in tryHelpStealer entails a form of "linear"
374 >     * helping: Each worker records (in field currentSteal) the most
375 >     * recent task it stole from some other worker. Plus, it records
376 >     * (in field currentJoin) the task it is currently actively
377 >     * joining. Method tryHelpStealer uses these markers to try to
378 >     * find a worker to help (i.e., steal back a task from and execute
379 >     * it) that could hasten completion of the actively joined task.
380 >     * In essence, the joiner executes a task that would be on its own
381 >     * local deque had the to-be-joined task not been stolen. This may
382 >     * be seen as a conservative variant of the approach in Wagner &
383 >     * Calder "Leapfrogging: a portable technique for implementing
384 >     * efficient futures" SIGPLAN Notices, 1993
385 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
386 >     * that: (1) We only maintain dependency links across workers upon
387 >     * steals, rather than use per-task bookkeeping.  This sometimes
388 >     * requires a linear scan of workQueues array to locate stealers, but
389 >     * often doesn't because stealers leave hints (that may become
390 >     * stale/wrong) of where to locate them.  A stealHint is only a
391 >     * hint because a worker might have had multiple steals and the
392 >     * hint records only one of them (usually the most current).
393 >     * Hinting isolates cost to when it is needed, rather than adding
394 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
395 >     * and potentially cyclic mutual steals.  (3) It is intentionally
396 >     * racy: field currentJoin is updated only while actively joining,
397 >     * which means that we miss links in the chain during long-lived
398 >     * tasks, GC stalls etc (which is OK since blocking in such cases
399 >     * is usually a good idea).  (4) We bound the number of attempts
400 >     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
401 >     * the worker and if necessary replacing it with another.
402 >     *
403 >     * It is impossible to keep exactly the target parallelism number
404 >     * of threads running at any given time.  Determining the
405 >     * existence of conservatively safe helping targets, the
406 >     * availability of already-created spares, and the apparent need
407 >     * to create new spares are all racy, so we rely on multiple
408 >     * retries of each.  Currently, in keeping with on-demand
409 >     * signalling policy, we compensate only if blocking would leave
410 >     * less than one active (non-waiting, non-blocked) worker.
411 >     * Additionally, to avoid some false alarms due to GC, lagging
412 >     * counters, system activity, etc, compensated blocking for joins
413 >     * is only attempted after rechecks stabilize in
414 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
415 >     * Thread.yield, for good citizenship.)
416       *
417 <     * Beware that there is a lot of representation-level coupling
417 >     * Style notes: There is a lot of representation-level coupling
418       * among classes ForkJoinPool, ForkJoinWorkerThread, and
419 <     * ForkJoinTask.  For example, direct access to "workers" array by
420 <     * workers, and direct access to ForkJoinTask.status by both
421 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
422 <     * trying to reduce this, since any associated future changes in
423 <     * representations will need to be accompanied by algorithmic
424 <     * changes anyway.
425 <     *
426 <     * Style notes: There are lots of inline assignments (of form
427 <     * "while ((local = field) != 0)") which are usually the simplest
428 <     * way to ensure the required read orderings (which are sometimes
429 <     * critical). Also several occurrences of the unusual "do {}
430 <     * while (!cas...)" which is the simplest way to force an update of
431 <     * a CAS'ed variable. There are also other coding oddities that
432 <     * help some methods perform reasonably even when interpreted (not
433 <     * compiled), at the expense of some messy constructions that
434 <     * reduce byte code counts.
435 <     *
436 <     * The order of declarations in this file is: (1) statics (2)
437 <     * fields (along with constants used when unpacking some of them)
438 <     * (3) internal control methods (4) callbacks and other support
439 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
440 <     * methods (plus a few little helpers).
419 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
420 >     * managed by ForkJoinPool, so are directly accessed.  There is
421 >     * little point trying to reduce this, since any associated future
422 >     * changes in representations will need to be accompanied by
423 >     * algorithmic changes anyway. Several methods intrinsically
424 >     * sprawl because they must accumulate sets of consistent reads of
425 >     * volatiles held in local variables.  Methods signalWork() and
426 >     * scan() are the main bottlenecks, so are especially heavily
427 >     * micro-optimized/mangled.  There are lots of inline assignments
428 >     * (of form "while ((local = field) != 0)") which are usually the
429 >     * simplest way to ensure the required read orderings (which are
430 >     * sometimes critical). This leads to a "C"-like style of listing
431 >     * declarations of these locals at the heads of methods or blocks.
432 >     * There are several occurrences of the unusual "do {} while
433 >     * (!cas...)"  which is the simplest way to force an update of a
434 >     * CAS'ed variable. There are also other coding oddities that help
435 >     * some methods perform reasonably even when interpreted (not
436 >     * compiled).
437 >     *
438 >     * The order of declarations in this file is:
439 >     * (1) Static utility functions
440 >     * (2) Nested (static) classes
441 >     * (3) Static fields
442 >     * (4) Fields, along with constants used when unpacking some of them
443 >     * (5) Internal control methods
444 >     * (6) Callbacks and other support for ForkJoinTask methods
445 >     * (7) Exported methods
446 >     * (8) Static block initializing statics in minimally dependent order
447 >     */
448 >
449 >    // Static utilities
450 >
451 >    /**
452 >     * Computes an initial hash code (also serving as a non-zero
453 >     * random seed) for a thread id. This method is expected to
454 >     * provide higher-quality hash codes than using method hashCode().
455 >     */
456 >    static final int hashId(long id) {
457 >        int h = (int)id ^ (int)(id >>> 32); // Use MurmurHash of thread id
458 >        h ^= h >>> 16; h *= 0x85ebca6b;
459 >        h ^= h >>> 13; h *= 0xc2b2ae35;
460 >        h ^= h >>> 16;
461 >        return (h == 0) ? 1 : h; // ensure nonzero
462 >    }
463 >
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467       */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475  
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 387 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
504 >     * A simple non-reentrant lock used for exclusion when managing
505 >     * queues and workers. We use a custom lock so that we can readily
506 >     * probe lock state in constructions that check among alternative
507 >     * actions. The lock is normally only very briefly held, and
508 >     * sometimes treated as a spinlock, but other usages block to
509 >     * reduce overall contention in those cases where locked code
510 >     * bodies perform allocation/resizing.
511 >     */
512 >    static final class Mutex extends AbstractQueuedSynchronizer {
513 >        public final boolean tryAcquire(int ignore) {
514 >            return compareAndSetState(0, 1);
515 >        }
516 >        public final boolean tryRelease(int ignore) {
517 >            setState(0);
518 >            return true;
519 >        }
520 >        public final void lock() { acquire(0); }
521 >        public final void unlock() { release(0); }
522 >        public final boolean isHeldExclusively() { return getState() == 1; }
523 >        public final Condition newCondition() { return new ConditionObject(); }
524 >    }
525 >
526 >    /**
527 >     * Class for artificial tasks that are used to replace the target
528 >     * of local joins if they are removed from an interior queue slot
529 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
530 >     * actually do anything beyond having a unique identity.
531 >     */
532 >    static final class EmptyTask extends ForkJoinTask<Void> {
533 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
534 >        public final Void getRawResult() { return null; }
535 >        public final void setRawResult(Void x) {}
536 >        public final boolean exec() { return true; }
537 >    }
538 >
539 >    /**
540 >     * Queues supporting work-stealing as well as external task
541 >     * submission. See above for main rationale and algorithms.
542 >     * Implementation relies heavily on "Unsafe" intrinsics
543 >     * and selective use of "volatile":
544 >     *
545 >     * Field "base" is the index (mod array.length) of the least valid
546 >     * queue slot, which is always the next position to steal (poll)
547 >     * from if nonempty. Reads and writes require volatile orderings
548 >     * but not CAS, because updates are only performed after slot
549 >     * CASes.
550 >     *
551 >     * Field "top" is the index (mod array.length) of the next queue
552 >     * slot to push to or pop from. It is written only by owner thread
553 >     * for push, or under lock for trySharedPush, and accessed by
554 >     * other threads only after reading (volatile) base.  Both top and
555 >     * base are allowed to wrap around on overflow, but (top - base)
556 >     * (or more commonly -(base - top) to force volatile read of base
557 >     * before top) still estimates size.
558 >     *
559 >     * The array slots are read and written using the emulation of
560 >     * volatiles/atomics provided by Unsafe. Insertions must in
561 >     * general use putOrderedObject as a form of releasing store to
562 >     * ensure that all writes to the task object are ordered before
563 >     * its publication in the queue. (Although we can avoid one case
564 >     * of this when locked in trySharedPush.) All removals entail a
565 >     * CAS to null.  The array is always a power of two. To ensure
566 >     * safety of Unsafe array operations, all accesses perform
567 >     * explicit null checks and implicit bounds checks via
568 >     * power-of-two masking.
569 >     *
570 >     * In addition to basic queuing support, this class contains
571 >     * fields described elsewhere to control execution. It turns out
572 >     * to work better memory-layout-wise to include them in this
573 >     * class rather than a separate class.
574 >     *
575 >     * Performance on most platforms is very sensitive to placement of
576 >     * instances of both WorkQueues and their arrays -- we absolutely
577 >     * do not want multiple WorkQueue instances or multiple queue
578 >     * arrays sharing cache lines. (It would be best for queue objects
579 >     * and their arrays to share, but there is nothing available to
580 >     * help arrange that).  Unfortunately, because they are recorded
581 >     * in a common array, WorkQueue instances are often moved to be
582 >     * adjacent by garbage collectors. To reduce impact, we use field
583 >     * padding that works OK on common platforms; this effectively
584 >     * trades off slightly slower average field access for the sake of
585 >     * avoiding really bad worst-case access. (Until better JVM
586 >     * support is in place, this padding is dependent on transient
587 >     * properties of JVM field layout rules.)  We also take care in
588 >     * allocating, sizing and resizing the array. Non-shared queue
589 >     * arrays are initialized (via method growArray) by workers before
590 >     * use. Others are allocated on first use.
591       */
592 <    public static final ForkJoinWorkerThreadFactory
593 <        defaultForkJoinWorkerThreadFactory =
594 <        new DefaultForkJoinWorkerThreadFactory();
592 >    static final class WorkQueue {
593 >        /**
594 >         * Capacity of work-stealing queue array upon initialization.
595 >         * Must be a power of two; at least 4, but set larger to
596 >         * reduce cacheline sharing among queues.
597 >         */
598 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
599  
600 <    /**
601 <     * Permission required for callers of methods that may start or
602 <     * kill threads.
603 <     */
604 <    private static final RuntimePermission modifyThreadPermission =
605 <        new RuntimePermission("modifyThread");
600 >        /**
601 >         * Maximum size for queue arrays. Must be a power of two less
602 >         * than or equal to 1 << (31 - width of array entry) to ensure
603 >         * lack of wraparound of index calculations, but defined to a
604 >         * value a bit less than this to help users trap runaway
605 >         * programs before saturating systems.
606 >         */
607 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
608  
609 <    /**
610 <     * If there is a security manager, makes sure caller has
611 <     * permission to modify threads.
612 <     */
613 <    private static void checkPermission() {
614 <        SecurityManager security = System.getSecurityManager();
615 <        if (security != null)
616 <            security.checkPermission(modifyThreadPermission);
617 <    }
609 >        volatile long totalSteals; // cumulative number of steals
610 >        int seed;                  // for random scanning; initialize nonzero
611 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
612 >        int nextWait;              // encoded record of next event waiter
613 >        int rescans;               // remaining scans until block
614 >        int nsteals;               // top-level task executions since last idle
615 >        final int mode;            // lifo, fifo, or shared
616 >        int poolIndex;             // index of this queue in pool (or 0)
617 >        int stealHint;             // index of most recent known stealer
618 >        volatile int runState;     // 1: locked, -1: terminate; else 0
619 >        volatile int base;         // index of next slot for poll
620 >        int top;                   // index of next slot for push
621 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
622 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
623 >        volatile Thread parker;    // == owner during call to park; else null
624 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
625 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
626 >        // Heuristic padding to ameliorate unfortunate memory placements
627 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
628 >
629 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
630 >            this.owner = owner;
631 >            this.mode = mode;
632 >            // Place indices in the center of array (that is not yet allocated)
633 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
634 >        }
635  
636 <    /**
637 <     * Generator for assigning sequence numbers as pool names.
638 <     */
639 <    private static final AtomicInteger poolNumberGenerator =
640 <        new AtomicInteger();
636 >        /**
637 >         * Returns number of tasks in the queue.
638 >         */
639 >        final int queueSize() {
640 >            int n = base - top; // non-owner callers must read base first
641 >            return (n >= 0) ? 0 : -n;
642 >        }
643  
644 <    /**
645 <     * The time to block in a join (see awaitJoin) before checking if
646 <     * a new worker should be (re)started to maintain parallelism
647 <     * level. The value should be short enough to maintain global
648 <     * responsiveness and progress but long enough to avoid
649 <     * counterproductive firings during GC stalls or unrelated system
650 <     * activity, and to not bog down systems with continual re-firings
651 <     * on GCs or legitimately long waits.
652 <     */
653 <    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @param p if non-null, pool to signal if necessary
649 >         * @throw RejectedExecutionException if array cannot be resized
650 >         */
651 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
652 >            ForkJoinTask<?>[] a;
653 >            int s = top, m, n;
654 >            if ((a = array) != null) {    // ignore if queue removed
655 >                U.putOrderedObject
656 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
657 >                if ((n = (top = s + 1) - base) <= 2) {
658 >                    if (p != null)
659 >                        p.signalWork();
660 >                }
661 >                else if (n >= m)
662 >                    growArray(true);
663 >            }
664 >        }
665  
666 <    /**
667 <     * The wakeup interval (in nanoseconds) for the oldest worker
668 <     * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
669 <     * the number of workers.  The exact value does not matter too
670 <     * much, but should be long enough to slowly release resources
671 <     * during long periods without use without disrupting normal use.
672 <     */
673 <    private static final long SHRINK_RATE_NANOS =
674 <        30L * 1000L * 1000L * 1000L; // 2 per minute
666 >        /**
667 >         * Pushes a task if lock is free and array is either big
668 >         * enough or can be resized to be big enough.
669 >         *
670 >         * @param task the task. Caller must ensure non-null.
671 >         * @return true if submitted
672 >         */
673 >        final boolean trySharedPush(ForkJoinTask<?> task) {
674 >            boolean submitted = false;
675 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
676 >                ForkJoinTask<?>[] a = array;
677 >                int s = top;
678 >                try {
679 >                    if ((a != null && a.length > s + 1 - base) ||
680 >                        (a = growArray(false)) != null) { // must presize
681 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
682 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
683 >                        top = s + 1;
684 >                        submitted = true;
685 >                    }
686 >                } finally {
687 >                    runState = 0;                         // unlock
688 >                }
689 >            }
690 >            return submitted;
691 >        }
692  
693 <    /**
694 <     * Absolute bound for parallelism level. Twice this number plus
695 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
696 <     * word-packing for some counts and indices.
697 <     */
698 <    private static final int MAX_WORKERS   = 0x7fff;
693 >        /**
694 >         * Takes next task, if one exists, in FIFO order.
695 >         */
696 >        final ForkJoinTask<?> poll() {
697 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
698 >            while ((b = base) - top < 0 && (a = array) != null) {
699 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
700 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
701 >                    base == b &&
702 >                    U.compareAndSwapObject(a, j, t, null)) {
703 >                    base = b + 1;
704 >                    return t;
705 >                }
706 >            }
707 >            return null;
708 >        }
709  
710 <    /**
711 <     * Array holding all worker threads in the pool.  Array size must
712 <     * be a power of two.  Updates and replacements are protected by
713 <     * workerLock, but the array is always kept in a consistent enough
714 <     * state to be randomly accessed without locking by workers
715 <     * performing work-stealing, as well as other traversal-based
716 <     * methods in this class. All readers must tolerate that some
717 <     * array slots may be null.
718 <     */
719 <    volatile ForkJoinWorkerThread[] workers;
710 >        /**
711 >         * Takes next task, if one exists, in LIFO order.  Call only
712 >         * by owner in unshared queues. (We do not have a shared
713 >         * version of this method because it is never needed.)
714 >         */
715 >        final ForkJoinTask<?> pop() {
716 >            ForkJoinTask<?> t; int m;
717 >            ForkJoinTask<?>[] a = array;
718 >            if (a != null && (m = a.length - 1) >= 0) {
719 >                for (int s; (s = top - 1) - base >= 0;) {
720 >                    int j = ((m & s) << ASHIFT) + ABASE;
721 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
722 >                        break;
723 >                    if (U.compareAndSwapObject(a, j, t, null)) {
724 >                        top = s;
725 >                        return t;
726 >                    }
727 >                }
728 >            }
729 >            return null;
730 >        }
731  
732 <    /**
733 <     * Queue for external submissions.
734 <     */
735 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
732 >        /**
733 >         * Takes next task, if one exists, in order specified by mode.
734 >         */
735 >        final ForkJoinTask<?> nextLocalTask() {
736 >            return mode == 0 ? pop() : poll();
737 >        }
738  
739 <    /**
740 <     * Lock protecting updates to workers array.
741 <     */
742 <    private final ReentrantLock workerLock;
739 >        /**
740 >         * Returns next task, if one exists, in order specified by mode.
741 >         */
742 >        final ForkJoinTask<?> peek() {
743 >            ForkJoinTask<?>[] a = array; int m;
744 >            if (a == null || (m = a.length - 1) < 0)
745 >                return null;
746 >            int i = mode == 0 ? top - 1 : base;
747 >            int j = ((i & m) << ASHIFT) + ABASE;
748 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
749 >        }
750  
751 <    /**
752 <     * Latch released upon termination.
753 <     */
754 <    private final Phaser termination;
751 >        /**
752 >         * Returns task at index b if b is current base of queue.
753 >         */
754 >        final ForkJoinTask<?> pollAt(int b) {
755 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
756 >            if ((a = array) != null) {
757 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
758 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
759 >                    base == b &&
760 >                    U.compareAndSwapObject(a, j, t, null)) {
761 >                    base = b + 1;
762 >                    return t;
763 >                }
764 >            }
765 >            return null;
766 >        }
767  
768 <    /**
769 <     * Creation factory for worker threads.
770 <     */
771 <    private final ForkJoinWorkerThreadFactory factory;
768 >        /**
769 >         * Pops the given task only if it is at the current top.
770 >         */
771 >        final boolean tryUnpush(ForkJoinTask<?> t) {
772 >            ForkJoinTask<?>[] a; int s;
773 >            if ((a = array) != null && (s = top) != base &&
774 >                U.compareAndSwapObject
775 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
776 >                top = s;
777 >                return true;
778 >            }
779 >            return false;
780 >        }
781  
782 <    /**
783 <     * Sum of per-thread steal counts, updated only when threads are
784 <     * idle or terminating.
785 <     */
786 <    private volatile long stealCount;
782 >        /**
783 >         * Polls the given task only if it is at the current base.
784 >         */
785 >        final boolean pollFor(ForkJoinTask<?> task) {
786 >            ForkJoinTask<?>[] a; int b;
787 >            if ((b = base) - top < 0 && (a = array) != null) {
788 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
789 >                if (U.getObjectVolatile(a, j) == task && base == b &&
790 >                    U.compareAndSwapObject(a, j, task, null)) {
791 >                    base = b + 1;
792 >                    return true;
793 >                }
794 >            }
795 >            return false;
796 >        }
797  
798 <    /**
799 <     * Encoded record of top of Treiber stack of threads waiting for
800 <     * events. The top 32 bits contain the count being waited for. The
801 <     * bottom 16 bits contains one plus the pool index of waiting
802 <     * worker thread. (Bits 16-31 are unused.)
803 <     */
804 <    private volatile long eventWaiters;
798 >        /**
799 >         * If present, removes from queue and executes the given task, or
800 >         * any other cancelled task. Returns (true) immediately on any CAS
801 >         * or consistency check failure so caller can retry.
802 >         *
803 >         * @return false if no progress can be made
804 >         */
805 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
806 >            boolean removed = false, empty = true, progress = true;
807 >            ForkJoinTask<?>[] a; int m, s, b, n;
808 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
809 >                (n = (s = top) - (b = base)) > 0) {
810 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
811 >                    int j = ((--s & m) << ASHIFT) + ABASE;
812 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813 >                    if (t == null)                    // inconsistent length
814 >                        break;
815 >                    else if (t == task) {
816 >                        if (s + 1 == top) {           // pop
817 >                            if (!U.compareAndSwapObject(a, j, task, null))
818 >                                break;
819 >                            top = s;
820 >                            removed = true;
821 >                        }
822 >                        else if (base == b)           // replace with proxy
823 >                            removed = U.compareAndSwapObject(a, j, task,
824 >                                                             new EmptyTask());
825 >                        break;
826 >                    }
827 >                    else if (t.status >= 0)
828 >                        empty = false;
829 >                    else if (s + 1 == top) {          // pop and throw away
830 >                        if (U.compareAndSwapObject(a, j, t, null))
831 >                            top = s;
832 >                        break;
833 >                    }
834 >                    if (--n == 0) {
835 >                        if (!empty && base == b)
836 >                            progress = false;
837 >                        break;
838 >                    }
839 >                }
840 >            }
841 >            if (removed)
842 >                task.doExec();
843 >            return progress;
844 >        }
845  
846 <    private static final int  EVENT_COUNT_SHIFT = 32;
847 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
846 >        /**
847 >         * Initializes or doubles the capacity of array. Call either
848 >         * by owner or with lock held -- it is OK for base, but not
849 >         * top, to move while resizings are in progress.
850 >         *
851 >         * @param rejectOnFailure if true, throw exception if capacity
852 >         * exceeded (relayed ultimately to user); else return null.
853 >         */
854 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
855 >            ForkJoinTask<?>[] oldA = array;
856 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
857 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
858 >                int oldMask, t, b;
859 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
860 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
861 >                    (t = top) - (b = base) > 0) {
862 >                    int mask = size - 1;
863 >                    do {
864 >                        ForkJoinTask<?> x;
865 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
866 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
867 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
868 >                        if (x != null &&
869 >                            U.compareAndSwapObject(oldA, oldj, x, null))
870 >                            U.putObjectVolatile(a, j, x);
871 >                    } while (++b != t);
872 >                }
873 >                return a;
874 >            }
875 >            else if (!rejectOnFailure)
876 >                return null;
877 >            else
878 >                throw new RejectedExecutionException("Queue capacity exceeded");
879 >        }
880  
881 <    /**
882 <     * A counter for events that may wake up worker threads:
883 <     *   - Submission of a new task to the pool
884 <     *   - A worker pushing a task on an empty queue
885 <     *   - termination
886 <     */
887 <    private volatile int eventCount;
881 >        /**
882 >         * Removes and cancels all known tasks, ignoring any exceptions.
883 >         */
884 >        final void cancelAll() {
885 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
886 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
887 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
888 >                ForkJoinTask.cancelIgnoringExceptions(t);
889 >        }
890  
891 <    /**
892 <     * Encoded record of top of Treiber stack of spare threads waiting
893 <     * for resumption. The top 16 bits contain an arbitrary count to
894 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
895 <     * index of waiting worker thread.
896 <     */
897 <    private volatile int spareWaiters;
891 >        /**
892 >         * Computes next value for random probes.  Scans don't require
893 >         * a very high quality generator, but also not a crummy one.
894 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
895 >         * This is manually inlined in several usages in ForkJoinPool
896 >         * to avoid writes inside busy scan loops.
897 >         */
898 >        final int nextSeed() {
899 >            int r = seed;
900 >            r ^= r << 13;
901 >            r ^= r >>> 17;
902 >            return seed = r ^= r << 5;
903 >        }
904  
905 <    private static final int SPARE_COUNT_SHIFT = 16;
513 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
905 >        // Execution methods
906  
907 <    /**
908 <     * Lifecycle control. The low word contains the number of workers
909 <     * that are (probably) executing tasks. This value is atomically
910 <     * incremented before a worker gets a task to run, and decremented
911 <     * when worker has no tasks and cannot find any.  Bits 16-18
912 <     * contain runLevel value. When all are zero, the pool is
913 <     * running. Level transitions are monotonic (running -> shutdown
914 <     * -> terminating -> terminated) so each transition adds a bit.
915 <     * These are bundled together to ensure consistent read for
916 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
525 <     * and active threads is zero).
526 <     *
527 <     * Notes: Most direct CASes are dependent on these bitfield
528 <     * positions.  Also, this field is non-private to enable direct
529 <     * performance-sensitive CASes in ForkJoinWorkerThread.
530 <     */
531 <    volatile int runState;
907 >        /**
908 >         * Removes and runs tasks until empty, using local mode
909 >         * ordering.
910 >         */
911 >        final void runLocalTasks() {
912 >            if (base - top < 0) {
913 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
914 >                    t.doExec();
915 >            }
916 >        }
917  
918 <    // Note: The order among run level values matters.
919 <    private static final int RUNLEVEL_SHIFT     = 16;
920 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
921 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
922 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
923 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
918 >        /**
919 >         * Executes a top-level task and any local tasks remaining
920 >         * after execution.
921 >         *
922 >         * @return true unless terminating
923 >         */
924 >        final boolean runTask(ForkJoinTask<?> t) {
925 >            boolean alive = true;
926 >            if (t != null) {
927 >                currentSteal = t;
928 >                t.doExec();
929 >                runLocalTasks();
930 >                ++nsteals;
931 >                currentSteal = null;
932 >            }
933 >            else if (runState < 0)            // terminating
934 >                alive = false;
935 >            return alive;
936 >        }
937  
938 <    /**
939 <     * Holds number of total (i.e., created and not yet terminated)
940 <     * and running (i.e., not blocked on joins or other managed sync)
941 <     * threads, packed together to ensure consistent snapshot when
942 <     * making decisions about creating and suspending spare
943 <     * threads. Updated only by CAS. Note that adding a new worker
944 <     * requires incrementing both counts, since workers start off in
945 <     * running state.
946 <     */
947 <    private volatile int workerCounts;
938 >        /**
939 >         * Executes a non-top-level (stolen) task.
940 >         */
941 >        final void runSubtask(ForkJoinTask<?> t) {
942 >            if (t != null) {
943 >                ForkJoinTask<?> ps = currentSteal;
944 >                currentSteal = t;
945 >                t.doExec();
946 >                currentSteal = ps;
947 >            }
948 >        }
949  
950 <    private static final int TOTAL_COUNT_SHIFT  = 16;
951 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
952 <    private static final int ONE_RUNNING        = 1;
953 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
950 >        /**
951 >         * Returns true if owned and not known to be blocked.
952 >         */
953 >        final boolean isApparentlyUnblocked() {
954 >            Thread wt; Thread.State s;
955 >            return (eventCount >= 0 &&
956 >                    (wt = owner) != null &&
957 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
958 >                    s != Thread.State.WAITING &&
959 >                    s != Thread.State.TIMED_WAITING);
960 >        }
961  
962 <    /**
963 <     * The target parallelism level.
964 <     * Accessed directly by ForkJoinWorkerThreads.
965 <     */
966 <    final int parallelism;
962 >        /**
963 >         * If this owned and is not already interrupted, try to
964 >         * interrupt and/or unpark, ignoring exceptions.
965 >         */
966 >        final void interruptOwner() {
967 >            Thread wt, p;
968 >            if ((wt = owner) != null && !wt.isInterrupted()) {
969 >                try {
970 >                    wt.interrupt();
971 >                } catch (SecurityException ignore) {
972 >                }
973 >            }
974 >            if ((p = parker) != null)
975 >                U.unpark(p);
976 >        }
977  
978 <    /**
979 <     * True if use local fifo, not default lifo, for local polling
980 <     * Read by, and replicated by ForkJoinWorkerThreads
981 <     */
982 <    final boolean locallyFifo;
978 >        // Unsafe mechanics
979 >        private static final sun.misc.Unsafe U;
980 >        private static final long RUNSTATE;
981 >        private static final int ABASE;
982 >        private static final int ASHIFT;
983 >        static {
984 >            int s;
985 >            try {
986 >                U = getUnsafe();
987 >                Class<?> k = WorkQueue.class;
988 >                Class<?> ak = ForkJoinTask[].class;
989 >                RUNSTATE = U.objectFieldOffset
990 >                    (k.getDeclaredField("runState"));
991 >                ABASE = U.arrayBaseOffset(ak);
992 >                s = U.arrayIndexScale(ak);
993 >            } catch (Exception e) {
994 >                throw new Error(e);
995 >            }
996 >            if ((s & (s-1)) != 0)
997 >                throw new Error("data type scale not a power of two");
998 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
999 >        }
1000 >    }
1001  
1002      /**
1003 <     * The uncaught exception handler used when any worker abruptly
1004 <     * terminates.
1003 >     * Per-thread records for threads that submit to pools. Currently
1004 >     * holds only pseudo-random seed / index that is used to choose
1005 >     * submission queues in method doSubmit. In the future, this may
1006 >     * also incorporate a means to implement different task rejection
1007 >     * and resubmission policies.
1008       */
1009 <    private final Thread.UncaughtExceptionHandler ueh;
1009 >    static final class Submitter {
1010 >        int seed;
1011 >        Submitter() { seed = hashId(Thread.currentThread().getId()); }
1012 >    }
1013  
1014 <    /**
1015 <     * Pool number, just for assigning useful names to worker threads
1016 <     */
1017 <    private final int poolNumber;
1014 >    /** ThreadLocal class for Submitters */
1015 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1016 >        public Submitter initialValue() { return new Submitter(); }
1017 >    }
1018  
1019 <    // Utilities for CASing fields. Note that most of these
580 <    // are usually manually inlined by callers
1019 >    // static fields (initialized in static initializer below)
1020  
1021      /**
1022 <     * Increments running count part of workerCounts
1022 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1023 >     * overridden in ForkJoinPool constructors.
1024       */
1025 <    final void incrementRunningCount() {
1026 <        int c;
587 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
588 <                                               c = workerCounts,
589 <                                               c + ONE_RUNNING));
590 <    }
1025 >    public static final ForkJoinWorkerThreadFactory
1026 >        defaultForkJoinWorkerThreadFactory;
1027  
1028      /**
1029 <     * Tries to decrement running count unless already zero
1029 >     * Generator for assigning sequence numbers as pool names.
1030       */
1031 <    final boolean tryDecrementRunningCount() {
596 <        int wc = workerCounts;
597 <        if ((wc & RUNNING_COUNT_MASK) == 0)
598 <            return false;
599 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
600 <                                        wc, wc - ONE_RUNNING);
601 <    }
1031 >    private static final AtomicInteger poolNumberGenerator;
1032  
1033      /**
1034 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
1035 <     * (rarely) necessary when other count updates lag.
606 <     *
607 <     * @param dr -- either zero or ONE_RUNNING
608 <     * @param dt == either zero or ONE_TOTAL
1034 >     * Permission required for callers of methods that may start or
1035 >     * kill threads.
1036       */
1037 <    private void decrementWorkerCounts(int dr, int dt) {
611 <        for (;;) {
612 <            int wc = workerCounts;
613 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
614 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
615 <                if ((runState & TERMINATED) != 0)
616 <                    return; // lagging termination on a backout
617 <                Thread.yield();
618 <            }
619 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
620 <                                         wc, wc - (dr + dt)))
621 <                return;
622 <        }
623 <    }
1037 >    private static final RuntimePermission modifyThreadPermission;
1038  
1039      /**
1040 <     * Tries decrementing active count; fails on contention.
1041 <     * Called when workers cannot find tasks to run.
1042 <     */
1043 <    final boolean tryDecrementActiveCount() {
1044 <        int c;
1045 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1046 <                                        c = runState, c - 1);
1047 <    }
1040 >     * Per-thread submission bookeeping. Shared across all pools
1041 >     * to reduce ThreadLocal pollution and because random motion
1042 >     * to avoid contention in one pool is likely to hold for others.
1043 >     */
1044 >    private static final ThreadSubmitter submitters;
1045 >
1046 >    // static constants
1047 >
1048 >    /**
1049 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
1050 >     * task when the pool is quiescent to instead try to shrink the
1051 >     * number of workers.  The exact value does not matter too
1052 >     * much. It must be short enough to release resources during
1053 >     * sustained periods of idleness, but not so short that threads
1054 >     * are continually re-created.
1055 >     */
1056 >    private static final long SHRINK_RATE =
1057 >        4L * 1000L * 1000L * 1000L; // 4 seconds
1058 >
1059 >    /**
1060 >     * The timeout value for attempted shrinkage, includes
1061 >     * some slop to cope with system timer imprecision.
1062 >     */
1063 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1064 >
1065 >    /**
1066 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
1067 >     * Depths for legitimate chains are unbounded, but we use a fixed
1068 >     * constant to avoid (otherwise unchecked) cycles and to bound
1069 >     * staleness of traversal parameters at the expense of sometimes
1070 >     * blocking when we could be helping.
1071 >     */
1072 >    private static final int MAX_HELP_DEPTH = 16;
1073 >
1074 >    /**
1075 >     * Bits and masks for control variables
1076 >     *
1077 >     * Field ctl is a long packed with:
1078 >     * AC: Number of active running workers minus target parallelism (16 bits)
1079 >     * TC: Number of total workers minus target parallelism (16 bits)
1080 >     * ST: true if pool is terminating (1 bit)
1081 >     * EC: the wait count of top waiting thread (15 bits)
1082 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1083 >     *
1084 >     * When convenient, we can extract the upper 32 bits of counts and
1085 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1086 >     * (int)ctl.  The ec field is never accessed alone, but always
1087 >     * together with id and st. The offsets of counts by the target
1088 >     * parallelism and the positionings of fields makes it possible to
1089 >     * perform the most common checks via sign tests of fields: When
1090 >     * ac is negative, there are not enough active workers, when tc is
1091 >     * negative, there are not enough total workers, and when e is
1092 >     * negative, the pool is terminating.  To deal with these possibly
1093 >     * negative fields, we use casts in and out of "short" and/or
1094 >     * signed shifts to maintain signedness.
1095 >     *
1096 >     * When a thread is queued (inactivated), its eventCount field is
1097 >     * set negative, which is the only way to tell if a worker is
1098 >     * prevented from executing tasks, even though it must continue to
1099 >     * scan for them to avoid queuing races. Note however that
1100 >     * eventCount updates lag releases so usage requires care.
1101 >     *
1102 >     * Field runState is an int packed with:
1103 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1104 >     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
1105 >     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
1106 >     *
1107 >     * The combination of mask and sequence number enables simple
1108 >     * consistency checks: Staleness of read-only operations on the
1109 >     * workQueues array can be checked by comparing runState before vs
1110 >     * after the reads. The low 16 bits (i.e, anding with SMASK) hold
1111 >     * the smallest power of two covering all indices, minus
1112 >     * one.
1113 >     */
1114 >
1115 >    // bit positions/shifts for fields
1116 >    private static final int  AC_SHIFT   = 48;
1117 >    private static final int  TC_SHIFT   = 32;
1118 >    private static final int  ST_SHIFT   = 31;
1119 >    private static final int  EC_SHIFT   = 16;
1120 >
1121 >    // bounds
1122 >    private static final int  POOL_MAX   = 0x7fff;  // max #workers - 1
1123 >    private static final int  SMASK      = 0xffff;  // short bits
1124 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1125 >    private static final int  SHORT_SIGN = 1 << 15;
1126 >    private static final int  INT_SIGN   = 1 << 31;
1127 >
1128 >    // masks
1129 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1130 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1131 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1132 >
1133 >    // units for incrementing and decrementing
1134 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1135 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1136 >
1137 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1138 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1139 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1140 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1141 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1142 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1143 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1144 >
1145 >    // masks and units for dealing with e = (int)ctl
1146 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1147 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1148 >
1149 >    // runState bits
1150 >    private static final int SHUTDOWN    = 1 << 31;
1151 >    private static final int RS_SEQ      = 1 << 16;
1152 >    private static final int RS_SEQ_MASK = 0x7fff0000;
1153 >
1154 >    // access mode for WorkQueue
1155 >    static final int LIFO_QUEUE          =  0;
1156 >    static final int FIFO_QUEUE          =  1;
1157 >    static final int SHARED_QUEUE        = -1;
1158  
1159 <    /**
1160 <     * Advances to at least the given level. Returns true if not
1161 <     * already in at least the given level.
1162 <     */
1163 <    private boolean advanceRunLevel(int level) {
1164 <        for (;;) {
1165 <            int s = runState;
1166 <            if ((s & level) != 0)
1167 <                return false;
1168 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1169 <                return true;
1159 >    // Instance fields
1160 >
1161 >    /*
1162 >     * Field layout order in this class tends to matter more than one
1163 >     * would like. Runtime layout order is only loosely related to
1164 >     * declaration order and may differ across JVMs, but the following
1165 >     * empirically works OK on current JVMs.
1166 >     */
1167 >
1168 >    volatile long ctl;                         // main pool control
1169 >    final int parallelism;                     // parallelism level
1170 >    final int localMode;                       // per-worker scheduling mode
1171 >    int growHints;                             // for expanding indices/ranges
1172 >    volatile int runState;                     // shutdown status, seq, and mask
1173 >    WorkQueue[] workQueues;                    // main registry
1174 >    final Mutex lock;                          // for registration
1175 >    final Condition termination;               // for awaitTermination
1176 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1177 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1178 >    final AtomicLong stealCount;               // collect counts when terminated
1179 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1180 >    final String workerNamePrefix;             // to create worker name string
1181 >
1182 >    //  Creating, registering, deregistering and running workers
1183 >
1184 >    /**
1185 >     * Tries to create and start a worker
1186 >     */
1187 >    private void addWorker() {
1188 >        Throwable ex = null;
1189 >        ForkJoinWorkerThread wt = null;
1190 >        try {
1191 >            if ((wt = factory.newThread(this)) != null) {
1192 >                wt.start();
1193 >                return;
1194 >            }
1195 >        } catch (Throwable e) {
1196 >            ex = e;
1197          }
1198 +        deregisterWorker(wt, ex); // adjust counts etc on failure
1199      }
1200  
649    // workers array maintenance
650
1201      /**
1202 <     * Records and returns a workers array index for new worker.
1202 >     * Callback from ForkJoinWorkerThread constructor to assign a
1203 >     * public name. This must be separate from registerWorker because
1204 >     * it is called during the "super" constructor call in
1205 >     * ForkJoinWorkerThread.
1206       */
1207 <    private int recordWorker(ForkJoinWorkerThread w) {
1208 <        // Try using slot totalCount-1. If not available, scan and/or resize
1209 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
657 <        final ReentrantLock lock = this.workerLock;
658 <        lock.lock();
659 <        try {
660 <            ForkJoinWorkerThread[] ws = workers;
661 <            int n = ws.length;
662 <            if (k < 0 || k >= n || ws[k] != null) {
663 <                for (k = 0; k < n && ws[k] != null; ++k)
664 <                    ;
665 <                if (k == n)
666 <                    ws = Arrays.copyOf(ws, n << 1);
667 <            }
668 <            ws[k] = w;
669 <            workers = ws; // volatile array write ensures slot visibility
670 <        } finally {
671 <            lock.unlock();
672 <        }
673 <        return k;
1207 >    final String nextWorkerName() {
1208 >        return workerNamePrefix.concat
1209 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1210      }
1211  
1212      /**
1213 <     * Nulls out record of worker in workers array
1213 >     * Callback from ForkJoinWorkerThread constructor to establish and
1214 >     * record its WorkQueue.
1215 >     *
1216 >     * @param wt the worker thread
1217       */
1218 <    private void forgetWorker(ForkJoinWorkerThread w) {
1219 <        int idx = w.poolIndex;
1220 <        // Locking helps method recordWorker avoid unnecessary expansion
682 <        final ReentrantLock lock = this.workerLock;
1218 >    final void registerWorker(ForkJoinWorkerThread wt) {
1219 >        WorkQueue w = wt.workQueue;
1220 >        Mutex lock = this.lock;
1221          lock.lock();
1222          try {
1223 <            ForkJoinWorkerThread[] ws = workers;
1224 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1225 <                ws[idx] = null;
1223 >            int g = growHints, k = g & SMASK;
1224 >            WorkQueue[] ws = workQueues;
1225 >            if (ws != null) {                       // ignore on shutdown
1226 >                int n = ws.length;
1227 >                if ((k & 1) == 0 || k >= n || ws[k] != null) {
1228 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1229 >                        ;                           // workers are at odd indices
1230 >                    if (k >= n)                     // resize
1231 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1232 >                }
1233 >                w.eventCount = w.poolIndex = k;     // establish before recording
1234 >                ws[k] = w;
1235 >                growHints = (g & ~SMASK) | ((k + 2) & SMASK);
1236 >                int rs = runState;
1237 >                int m = rs & SMASK;                 // recalculate runState mask
1238 >                if (k > m)
1239 >                    m = (m << 1) + 1;
1240 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1241 >            }
1242          } finally {
1243              lock.unlock();
1244          }
1245      }
1246  
1247      /**
1248 <     * Final callback from terminating worker.  Removes record of
1248 >     * Final callback from terminating worker, as well as upon failure
1249 >     * to construct or start a worker in addWorker.  Removes record of
1250       * worker from array, and adjusts counts. If pool is shutting
1251       * down, tries to complete termination.
1252       *
1253 <     * @param w the worker
1253 >     * @param wt the worker thread or null if addWorker failed
1254 >     * @param ex the exception causing failure, or null if none
1255       */
1256 <    final void workerTerminated(ForkJoinWorkerThread w) {
1257 <        forgetWorker(w);
1258 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
1259 <        while (w.stealCount != 0) // collect final count
1260 <            tryAccumulateStealCount(w);
1261 <        tryTerminate(false);
1262 <    }
1263 <
1264 <    // Waiting for and signalling events
1265 <
1266 <    /**
1267 <     * Releases workers blocked on a count not equal to current count.
1268 <     * Normally called after precheck that eventWaiters isn't zero to
1269 <     * avoid wasted array checks. Gives up upon a change in count or
1270 <     * upon releasing two workers, letting others take over.
1271 <     */
716 <    private void releaseEventWaiters() {
717 <        ForkJoinWorkerThread[] ws = workers;
718 <        int n = ws.length;
719 <        long h = eventWaiters;
720 <        int ec = eventCount;
721 <        boolean releasedOne = false;
722 <        ForkJoinWorkerThread w; int id;
723 <        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
724 <               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
725 <               id < n && (w = ws[id]) != null) {
726 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
727 <                                          h,  w.nextWaiter)) {
728 <                LockSupport.unpark(w);
729 <                if (releasedOne) // exit on second release
730 <                    break;
731 <                releasedOne = true;
1256 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1257 >        WorkQueue w = null;
1258 >        if (wt != null && (w = wt.workQueue) != null) {
1259 >            w.runState = -1;                // ensure runState is set
1260 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1261 >            int idx = w.poolIndex;
1262 >            Mutex lock = this.lock;
1263 >            lock.lock();
1264 >            try {                           // remove record from array
1265 >                WorkQueue[] ws = workQueues;
1266 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) {
1267 >                    ws[idx] = null;
1268 >                    growHints = (growHints & ~SMASK) | idx;
1269 >                }
1270 >            } finally {
1271 >                lock.unlock();
1272              }
733            if (eventCount != ec)
734                break;
735            h = eventWaiters;
1273          }
1274 +
1275 +        long c;                             // adjust ctl counts
1276 +        do {} while (!U.compareAndSwapLong
1277 +                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1278 +                                           ((c - TC_UNIT) & TC_MASK) |
1279 +                                           (c & ~(AC_MASK|TC_MASK)))));
1280 +
1281 +        if (!tryTerminate(false, false) && w != null) {
1282 +            w.cancelAll();                  // cancel remaining tasks
1283 +            if (w.array != null)            // suppress signal if never ran
1284 +                signalWork();               // wake up or create replacement
1285 +            if (ex == null)                 // help clean refs on way out
1286 +                ForkJoinTask.helpExpungeStaleExceptions();
1287 +        }
1288 +
1289 +        if (ex != null)                     // rethrow
1290 +            U.throwException(ex);
1291      }
1292  
1293      /**
1294 <     * Tries to advance eventCount and releases waiters. Called only
741 <     * from workers.
1294 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1295       */
1296 <    final void signalWork() {
1297 <        int c; // try to increment event count -- CAS failure OK
1298 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1299 <        if (eventWaiters != 0L)
1300 <            releaseEventWaiters();
748 <    }
1296 >    final void runWorker(ForkJoinWorkerThread wt) {
1297 >        // Initialize queue array and seed in this thread
1298 >        WorkQueue w = wt.workQueue;
1299 >        w.growArray(false);
1300 >        w.seed = hashId(Thread.currentThread().getId());
1301  
1302 <    /**
751 <     * Adds the given worker to event queue and blocks until
752 <     * terminating or event count advances from the given value
753 <     *
754 <     * @param w the calling worker thread
755 <     * @param ec the count
756 <     */
757 <    private void eventSync(ForkJoinWorkerThread w, int ec) {
758 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
759 <        long h;
760 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
761 <               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
762 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
763 <               eventCount == ec) {
764 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 <                                          w.nextWaiter = h, nh)) {
766 <                awaitEvent(w, ec);
767 <                break;
768 <            }
769 <        }
1302 >        do {} while (w.runTask(scan(w)));
1303      }
1304  
1305 +    // Submissions
1306 +
1307      /**
1308 <     * Blocks the given worker (that has already been entered as an
1309 <     * event waiter) until terminating or event count advances from
1310 <     * the given value. The oldest (first) waiter uses a timed wait to
1311 <     * occasionally one-by-one shrink the number of workers (to a
1312 <     * minimum of one) if the pool has not been used for extended
1313 <     * periods.
1314 <     *
1315 <     * @param w the calling worker thread
1316 <     * @param ec the count
1317 <     */
1318 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
1319 <        while (eventCount == ec) {
1320 <            if (tryAccumulateStealCount(w)) { // transfer while idle
1321 <                boolean untimed = (w.nextWaiter != 0L ||
1322 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
1323 <                long startTime = untimed? 0 : System.nanoTime();
1324 <                Thread.interrupted();         // clear/ignore interrupt
1325 <                if (eventCount != ec || w.runState != 0 ||
1326 <                    runState >= TERMINATING)  // recheck after clear
1327 <                    break;
1328 <                if (untimed)
1329 <                    LockSupport.park(w);
1330 <                else {
1331 <                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
1332 <                    if (eventCount != ec || w.runState != 0 ||
1333 <                        runState >= TERMINATING)
1334 <                        break;
1335 <                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
1336 <                        tryShutdownUnusedWorker(ec);
1308 >     * Unless shutting down, adds the given task to a submission queue
1309 >     * at submitter's current queue index (modulo submission
1310 >     * range). If no queue exists at the index, one is created unless
1311 >     * pool lock is busy.  If the queue and/or lock are busy, another
1312 >     * index is randomly chosen. The mask in growHints controls the
1313 >     * effective index range of queues considered. The mask is
1314 >     * expanded, up to the current workerQueue mask, upon any detected
1315 >     * contention but otherwise remains small to avoid needlessly
1316 >     * creating queues when there is no contention.
1317 >     */
1318 >    private void doSubmit(ForkJoinTask<?> task) {
1319 >        if (task == null)
1320 >            throw new NullPointerException();
1321 >        Submitter s = submitters.get();
1322 >        for (int r = s.seed, m = growHints >>> 16;;) {
1323 >            WorkQueue[] ws; WorkQueue q; Mutex lk;
1324 >            int k = r & m & SQMASK;          // use only even indices
1325 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1326 >                throw new RejectedExecutionException(); // shutting down
1327 >            if ((q = ws[k]) == null && (lk = lock).tryAcquire(0)) {
1328 >                try {                        // try to create new queue
1329 >                    if (ws == workQueues && (q = ws[k]) == null) {
1330 >                        int rs;              // update runState seq
1331 >                        ws[k] = q = new WorkQueue(null, SHARED_QUEUE);
1332 >                        runState = (((rs = runState) & SHUTDOWN) |
1333 >                                    ((rs + RS_SEQ) & ~SHUTDOWN));
1334 >                    }
1335 >                } finally {
1336 >                    lk.unlock();
1337                  }
1338              }
1339 +            if (q != null) {
1340 +                if (q.trySharedPush(task)) {
1341 +                    signalWork();
1342 +                    return;
1343 +                }
1344 +                else if (m < parallelism - 1 && m < (runState & SMASK)) {
1345 +                    Mutex lock = this.lock;
1346 +                    lock.lock();             // block until lock free
1347 +                    int g = growHints;
1348 +                    if (g >>> 16 == m)       // expand range
1349 +                        growHints = (((m << 1) + 1) << 16) | (g & SMASK);
1350 +                    lock.unlock();           // no need for try/finally
1351 +                }
1352 +                else if ((r & m) == 0)
1353 +                    Thread.yield();          // occasionally yield if busy
1354 +            }
1355 +            if (m == (m = growHints >>> 16)) {
1356 +                r ^= r << 13;                // update seed unless new range
1357 +                r ^= r >>> 17;               // same xorshift as WorkQueues
1358 +                s.seed = r ^= r << 5;
1359 +            }
1360          }
1361      }
1362  
1363 <    // Maintaining parallelism
808 <
809 <    /**
810 <     * Pushes worker onto the spare stack
811 <     */
812 <    final void pushSpare(ForkJoinWorkerThread w) {
813 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
814 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
815 <                                               w.nextSpare = spareWaiters,ns));
816 <    }
1363 >    // Maintaining ctl counts
1364  
1365      /**
1366 <     * Tries (once) to resume a spare if the number of running
820 <     * threads is less than target.
1366 >     * Increments active count; mainly called upon return from blocking.
1367       */
1368 <    private void tryResumeSpare() {
1369 <        int sw, id;
1370 <        ForkJoinWorkerThread[] ws = workers;
825 <        int n = ws.length;
826 <        ForkJoinWorkerThread w;
827 <        if ((sw = spareWaiters) != 0 &&
828 <            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
829 <            id < n && (w = ws[id]) != null &&
830 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
831 <            spareWaiters == sw &&
832 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
833 <                                     sw, w.nextSpare)) {
834 <            int c; // increment running count before resume
835 <            do {} while (!UNSAFE.compareAndSwapInt
836 <                         (this, workerCountsOffset,
837 <                          c = workerCounts, c + ONE_RUNNING));
838 <            if (w.tryUnsuspend())
839 <                LockSupport.unpark(w);
840 <            else   // back out if w was shutdown
841 <                decrementWorkerCounts(ONE_RUNNING, 0);
842 <        }
1368 >    final void incrementActiveCount() {
1369 >        long c;
1370 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1371      }
1372  
1373      /**
1374 <     * Tries to increase the number of running workers if below target
847 <     * parallelism: If a spare exists tries to resume it via
848 <     * tryResumeSpare.  Otherwise, if not enough total workers or all
849 <     * existing workers are busy, adds a new worker. In all cases also
850 <     * helps wake up releasable workers waiting for work.
1374 >     * Tries to activate or create a worker if too few are active.
1375       */
1376 <    private void helpMaintainParallelism() {
1377 <        int pc = parallelism;
1378 <        int wc, rs, tc;
1379 <        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
1380 <               (rs = runState) < TERMINATING) {
1381 <            if (spareWaiters != 0)
1382 <                tryResumeSpare();
1383 <            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
1384 <                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
1385 <                break;   // enough total
1386 <            else if (runState == rs && workerCounts == wc &&
1387 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1388 <                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
1389 <                ForkJoinWorkerThread w = null;
866 <                try {
867 <                    w = factory.newThread(this);
868 <                } finally { // adjust on null or exceptional factory return
869 <                    if (w == null) {
870 <                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
871 <                        tryTerminate(false); // handle failure during shutdown
1376 >    final void signalWork() {
1377 >        long c; int u;
1378 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1379 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1380 >            if ((e = (int)c) > 0) {                     // at least one waiting
1381 >                if (ws != null && (i = e & SMASK) < ws.length &&
1382 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1383 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1384 >                               ((long)(u + UAC_UNIT) << 32));
1385 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1386 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1387 >                        if ((p = w.parker) != null)
1388 >                            U.unpark(p);                // activate and release
1389 >                        break;
1390                      }
1391                  }
1392 <                if (w == null)
1392 >                else
1393                      break;
1394 <                w.start(recordWorker(w), ueh);
1395 <                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
1396 <                    int c; // advance event count
1397 <                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
1398 <                                             c = eventCount, c+1);
1399 <                    break; // add at most one unless total below target
882 <                }
883 <            }
884 <        }
885 <        if (eventWaiters != 0L)
886 <            releaseEventWaiters();
887 <    }
888 <
889 <    /**
890 <     * Callback from the oldest waiter in awaitEvent waking up after a
891 <     * period of non-use. If all workers are idle, tries (once) to
892 <     * shutdown an event waiter or a spare, if one exists. Note that
893 <     * we don't need CAS or locks here because the method is called
894 <     * only from one thread occasionally waking (and even misfires are
895 <     * OK). Note that until the shutdown worker fully terminates,
896 <     * workerCounts will overestimate total count, which is tolerable.
897 <     *
898 <     * @param ec the event count waited on by caller (to abort
899 <     * attempt if count has since changed).
900 <     */
901 <    private void tryShutdownUnusedWorker(int ec) {
902 <        if (runState == 0 && eventCount == ec) { // only trigger if all idle
903 <            ForkJoinWorkerThread[] ws = workers;
904 <            int n = ws.length;
905 <            ForkJoinWorkerThread w = null;
906 <            boolean shutdown = false;
907 <            int sw;
908 <            long h;
909 <            if ((sw = spareWaiters) != 0) { // prefer killing spares
910 <                int id = (sw & SPARE_ID_MASK) - 1;
911 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
912 <                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
913 <                                             sw, w.nextSpare))
914 <                    shutdown = true;
915 <            }
916 <            else if ((h = eventWaiters) != 0L) {
917 <                long nh;
918 <                int id = ((int)(h & WAITER_ID_MASK)) - 1;
919 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
920 <                    (nh = w.nextWaiter) != 0L && // keep at least one worker
921 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
922 <                    shutdown = true;
923 <            }
924 <            if (w != null && shutdown) {
925 <                w.shutdown();
926 <                LockSupport.unpark(w);
927 <            }
928 <        }
929 <        releaseEventWaiters(); // in case of interference
930 <    }
931 <
932 <    /**
933 <     * Callback from workers invoked upon each top-level action (i.e.,
934 <     * stealing a task or taking a submission and running it).
935 <     * Performs one or more of the following:
936 <     *
937 <     * 1. If the worker is active and either did not run a task
938 <     *    or there are too many workers, try to set its active status
939 <     *    to inactive and update activeCount. On contention, we may
940 <     *    try again in this or a subsequent call.
941 <     *
942 <     * 2. If not enough total workers, help create some.
943 <     *
944 <     * 3. If there are too many running workers, suspend this worker
945 <     *    (first forcing inactive if necessary).  If it is not needed,
946 <     *    it may be shutdown while suspended (via
947 <     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
948 <     *    rechecks running thread count and need for event sync.
949 <     *
950 <     * 4. If worker did not run a task, await the next task event via
951 <     *    eventSync if necessary (first forcing inactivation), upon
952 <     *    which the worker may be shutdown via
953 <     *    tryShutdownUnusedWorker.  Otherwise, help release any
954 <     *    existing event waiters that are now releasable,
955 <     *
956 <     * @param w the worker
957 <     * @param ran true if worker ran a task since last call to this method
958 <     */
959 <    final void preStep(ForkJoinWorkerThread w, boolean ran) {
960 <        int wec = w.lastEventCount;
961 <        boolean active = w.active;
962 <        boolean inactivate = false;
963 <        int pc = parallelism;
964 <        int rs;
965 <        while (w.runState == 0 && (rs = runState) < TERMINATING) {
966 <            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
967 <                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
968 <                inactivate = active = w.active = false;
969 <            int wc = workerCounts;
970 <            if ((wc & RUNNING_COUNT_MASK) > pc) {
971 <                if (!(inactivate |= active) && // must inactivate to suspend
972 <                    workerCounts == wc &&      // try to suspend as spare
973 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
974 <                                             wc, wc - ONE_RUNNING))
975 <                    w.suspendAsSpare();
976 <            }
977 <            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
978 <                helpMaintainParallelism();     // not enough workers
979 <            else if (!ran) {
980 <                long h = eventWaiters;
981 <                int ec = eventCount;
982 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
983 <                    releaseEventWaiters();     // release others before waiting
984 <                else if (ec != wec) {
985 <                    w.lastEventCount = ec;     // no need to wait
1394 >            }
1395 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1396 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1397 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1398 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1399 >                    addWorker();
1400                      break;
1401                  }
988                else if (!(inactivate |= active))
989                    eventSync(w, wec);         // must inactivate before sync
1402              }
1403              else
1404                  break;
# Line 994 | Line 1406 | public class ForkJoinPool extends Abstra
1406      }
1407  
1408      /**
1409 <     * Helps and/or blocks awaiting join of the given task.
1410 <     * See above for explanation.
1411 <     *
1412 <     * @param joinMe the task to join
1413 <     * @param worker the current worker thread
1414 <     */
1415 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1416 <        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1417 <        while (joinMe.status >= 0) {
1418 <            int wc;
1419 <            worker.helpJoinTask(joinMe);
1420 <            if (joinMe.status < 0)
1421 <                break;
1422 <            else if (retries > 0)
1423 <                --retries;
1424 <            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1425 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1426 <                                              wc, wc - ONE_RUNNING)) {
1427 <                int stat, c; long h;
1428 <                while ((stat = joinMe.status) >= 0 &&
1429 <                       (h = eventWaiters) != 0L && // help release others
1430 <                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1431 <                    releaseEventWaiters();
1432 <                if (stat >= 0 &&
1433 <                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1434 <                     (stat =
1435 <                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1436 <                    helpMaintainParallelism(); // timeout or no running workers
1437 <                do {} while (!UNSAFE.compareAndSwapInt
1438 <                             (this, workerCountsOffset,
1439 <                              c = workerCounts, c + ONE_RUNNING));
1440 <                if (stat < 0)
1441 <                    break;   // else restart
1409 >     * Tries to decrement active count (sometimes implicitly) and
1410 >     * possibly release or create a compensating worker in preparation
1411 >     * for blocking. Fails on contention or termination.
1412 >     *
1413 >     * @return true if the caller can block, else should recheck and retry
1414 >     */
1415 >    final boolean tryCompensate() {
1416 >        WorkQueue w; Thread p;
1417 >        int pc = parallelism, e, u, ac, tc, i;
1418 >        long c = ctl;
1419 >        WorkQueue[] ws = workQueues;
1420 >        if ((e = (int)c) >= 0) {
1421 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1422 >                e != 0 && ws != null && (i = e & SMASK) < ws.length &&
1423 >                (w = ws[i]) != null) {
1424 >                long nc = (long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK));
1425 >                if (w.eventCount == (e | INT_SIGN) &&
1426 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1427 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1428 >                    if ((p = w.parker) != null)
1429 >                        U.unpark(p);
1430 >                    return true;             // release an idle worker
1431 >                }
1432 >            }
1433 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1434 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1435 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1436 >                    return true;             // no compensation needed
1437 >            }
1438 >            else if (tc + pc < POOL_MAX) {
1439 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1440 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1441 >                    addWorker();
1442 >                    return true;             // create replacement
1443 >                }
1444              }
1445          }
1446 +        return false;
1447      }
1448  
1449 +    // Scanning for tasks
1450 +
1451      /**
1452 <     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1453 <     */
1454 <    final void awaitBlocker(ManagedBlocker blocker)
1455 <        throws InterruptedException {
1456 <        while (!blocker.isReleasable()) {
1457 <            int wc = workerCounts;
1458 <            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1459 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1460 <                                         wc, wc - ONE_RUNNING)) {
1461 <                try {
1462 <                    while (!blocker.isReleasable()) {
1463 <                        long h = eventWaiters;
1464 <                        if (h != 0L &&
1465 <                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1466 <                            releaseEventWaiters();
1467 <                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1468 <                                 runState < TERMINATING)
1469 <                            helpMaintainParallelism();
1470 <                        else if (blocker.block())
1471 <                            break;
1452 >     * Scans for and, if found, returns one task, else possibly
1453 >     * inactivates the worker. This method operates on single reads of
1454 >     * volatile state and is designed to be re-invoked continuously in
1455 >     * part because it returns upon detecting inconsistencies,
1456 >     * contention, or state changes that indicate possible success on
1457 >     * re-invocation.
1458 >     *
1459 >     * The scan searches for tasks across queues, randomly selecting
1460 >     * the first #queues probes, favoring steals over submissions
1461 >     * (by exploiting even/odd indexing), and then performing a
1462 >     * circular sweep of all queues.  The scan terminates upon either
1463 >     * finding a non-empty queue, or completing a full sweep. If the
1464 >     * worker is not inactivated, it takes and returns a task from
1465 >     * this queue.  On failure to find a task, we take one of the
1466 >     * following actions, after which the caller will retry calling
1467 >     * this method unless terminated.
1468 >     *
1469 >     * * If pool is terminating, terminate the worker.
1470 >     *
1471 >     * * If not a complete sweep, try to release a waiting worker.  If
1472 >     * the scan terminated because the worker is inactivated, then the
1473 >     * released worker will often be the calling worker, and it can
1474 >     * succeed obtaining a task on the next call. Or maybe it is
1475 >     * another worker, but with same net effect. Releasing in other
1476 >     * cases as well ensures that we have enough workers running.
1477 >     *
1478 >     * * If the caller has run a task since the last empty scan,
1479 >     * return (to allow rescan) if other workers are not also yet
1480 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1481 >     * ensure eventual inactivation and blocking.
1482 >     *
1483 >     * * If not already enqueued, try to inactivate and enqueue the
1484 >     * worker on wait queue.
1485 >     *
1486 >     * * If already enqueued and none of the above apply, either park
1487 >     * awaiting signal, or if this is the most recent waiter and pool
1488 >     * is quiescent, relay to idleAwaitWork to check for termination
1489 >     * and possibly shrink pool.
1490 >     *
1491 >     * @param w the worker (via its WorkQueue)
1492 >     * @return a task or null of none found
1493 >     */
1494 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1495 >        boolean swept = false;               // true after full empty scan
1496 >        WorkQueue[] ws;                      // volatile read order matters
1497 >        int r = w.seed, ec = w.eventCount;   // ec is negative if inactive
1498 >        int rs = runState, m = rs & SMASK;
1499 >        if ((ws = workQueues) != null && ws.length > m) { // consistency check
1500 >            for (int k = 0, j = -1 - m; ; ++j) {
1501 >                WorkQueue q; int b;
1502 >                if (j < 0) {                 // random probes while j negative
1503 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1504 >                }                            // worker (not submit) for odd j
1505 >                else                         // cyclic scan when j >= 0
1506 >                    k += 7;                  // step 7 reduces array packing bias
1507 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1508 >                    ForkJoinTask<?> t = (ec >= 0) ? q.pollAt(b) : null;
1509 >                    w.seed = r;              // save seed for next scan
1510 >                    if (t != null)
1511 >                        return t;
1512 >                    break;
1513 >                }
1514 >                else if (j - m > m) {
1515 >                    if (rs == runState)      // staleness check
1516 >                        swept = true;
1517 >                    break;
1518 >                }
1519 >            }
1520 >
1521 >            // Decode ctl on empty scan
1522 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1523 >            if (e < 0)                       // pool is terminating
1524 >                w.runState = -1;
1525 >            else if (!swept) {               // try to release a waiter
1526 >                WorkQueue v; Thread p;
1527 >                if (e > 0 && a < 0 && (v = ws[e & m]) != null &&
1528 >                    v.eventCount == (e | INT_SIGN)) {
1529 >                    long nc = ((long)(v.nextWait & E_MASK) |
1530 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1531 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1532 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1533 >                        if ((p = v.parker) != null)
1534 >                            U.unpark(p);
1535                      }
1056                } finally {
1057                    int c;
1058                    do {} while (!UNSAFE.compareAndSwapInt
1059                                 (this, workerCountsOffset,
1060                                  c = workerCounts, c + ONE_RUNNING));
1536                  }
1537 <                break;
1537 >            }
1538 >            else if ((nr = w.rescans) > 0) { // continue rescanning
1539 >                int ac = a + parallelism;
1540 >                if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0 &&
1541 >                    w.eventCount == ec)
1542 >                    Thread.yield();          // occasionally yield
1543 >            }
1544 >            else if (ec >= 0) {              // try to enqueue
1545 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1546 >                w.nextWait = e;
1547 >                w.eventCount = ec | INT_SIGN;// mark as inactive
1548 >                if (!U.compareAndSwapLong(this, CTL, c, nc))
1549 >                    w.eventCount = ec;       // unmark on CAS failure
1550 >                else if ((ns = w.nsteals) != 0) {
1551 >                    w.nsteals = 0;           // set rescans if ran task
1552 >                    w.rescans = a + parallelism;
1553 >                    w.totalSteals += ns;
1554 >                }
1555 >            }
1556 >            else{                            // already queued
1557 >                if (parallelism == -a)
1558 >                    idleAwaitWork(w);        // quiescent
1559 >                if (w.eventCount == ec) {
1560 >                    Thread.interrupted();    // clear status
1561 >                    ForkJoinWorkerThread wt = w.owner;
1562 >                    U.putObject(wt, PARKBLOCKER, this);
1563 >                    w.parker = wt;           // emulate LockSupport.park
1564 >                    if (w.eventCount == ec)  // recheck
1565 >                        U.park(false, 0L);   // block
1566 >                    w.parker = null;
1567 >                    U.putObject(wt, PARKBLOCKER, null);
1568 >                }
1569              }
1570          }
1571 +        return null;
1572      }
1573  
1574      /**
1575 <     * Possibly initiates and/or completes termination.
1576 <     *
1577 <     * @param now if true, unconditionally terminate, else only
1578 <     * if shutdown and empty queue and no active workers
1579 <     * @return true if now terminating or terminated
1580 <     */
1581 <    private boolean tryTerminate(boolean now) {
1582 <        if (now)
1583 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1584 <        else if (runState < SHUTDOWN ||
1585 <                 !submissionQueue.isEmpty() ||
1586 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1587 <            return false;
1588 <
1589 <        if (advanceRunLevel(TERMINATING))
1590 <            startTerminating();
1591 <
1592 <        // Finish now if all threads terminated; else in some subsequent call
1593 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1594 <            advanceRunLevel(TERMINATED);
1595 <            termination.arrive();
1596 <        }
1597 <        return true;
1575 >     * If inactivating worker w has caused pool to become quiescent,
1576 >     * checks for pool termination, and, so long as this is not the
1577 >     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1578 >     * On timeout, if ctl has not changed, terminates the worker,
1579 >     * which will in turn wake up another worker to possibly repeat
1580 >     * this process.
1581 >     *
1582 >     * @param w the calling worker
1583 >     */
1584 >    private void idleAwaitWork(WorkQueue w) {
1585 >        long c; int nw, ec;
1586 >        if (!tryTerminate(false, false) &&
1587 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1588 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1589 >            (nw = w.nextWait) != 0) {
1590 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1591 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1592 >            ForkJoinWorkerThread wt = w.owner;
1593 >            while (ctl == c) {
1594 >                long startTime = System.nanoTime();
1595 >                Thread.interrupted();  // timed variant of version in scan()
1596 >                U.putObject(wt, PARKBLOCKER, this);
1597 >                w.parker = wt;
1598 >                if (ctl == c)
1599 >                    U.park(false, SHRINK_RATE);
1600 >                w.parker = null;
1601 >                U.putObject(wt, PARKBLOCKER, null);
1602 >                if (ctl != c)
1603 >                    break;
1604 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1605 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1606 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1607 >                    w.runState = -1;          // shrink
1608 >                    break;
1609 >                }
1610 >            }
1611 >        }
1612      }
1613  
1614      /**
1615 <     * Actions on transition to TERMINATING
1616 <     *
1617 <     * Runs up to four passes through workers: (0) shutting down each
1618 <     * (without waking up if parked) to quickly spread notifications
1619 <     * without unnecessary bouncing around event queues etc (1) wake
1620 <     * up and help cancel tasks (2) interrupt (3) mop up races with
1621 <     * interrupted workers
1622 <     */
1623 <    private void startTerminating() {
1624 <        cancelSubmissions();
1625 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1626 <            int c; // advance event count
1627 <            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1628 <                                     c = eventCount, c+1);
1629 <            eventWaiters = 0L; // clobber lists
1630 <            spareWaiters = 0;
1631 <            ForkJoinWorkerThread[] ws = workers;
1632 <            int n = ws.length;
1633 <            for (int i = 0; i < n; ++i) {
1634 <                ForkJoinWorkerThread w = ws[i];
1635 <                if (w != null) {
1636 <                    w.shutdown();
1637 <                    if (passes > 0 && !w.isTerminated()) {
1638 <                        w.cancelTasks();
1639 <                        LockSupport.unpark(w);
1640 <                        if (passes > 1) {
1641 <                            try {
1642 <                                w.interrupt();
1643 <                            } catch (SecurityException ignore) {
1644 <                            }
1615 >     * Tries to locate and execute tasks for a stealer of the given
1616 >     * task, or in turn one of its stealers, Traces currentSteal ->
1617 >     * currentJoin links looking for a thread working on a descendant
1618 >     * of the given task and with a non-empty queue to steal back and
1619 >     * execute tasks from. The first call to this method upon a
1620 >     * waiting join will often entail scanning/search, (which is OK
1621 >     * because the joiner has nothing better to do), but this method
1622 >     * leaves hints in workers to speed up subsequent calls. The
1623 >     * implementation is very branchy to cope with potential
1624 >     * inconsistencies or loops encountering chains that are stale,
1625 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1626 >     * of these cases are dealt with by just retrying by caller.
1627 >     *
1628 >     * @param joiner the joining worker
1629 >     * @param task the task to join
1630 >     * @return true if found or ran a task (and so is immediately retryable)
1631 >     */
1632 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1633 >        ForkJoinTask<?> subtask;    // current target
1634 >        boolean progress = false;
1635 >        int depth = 0;              // current chain depth
1636 >        int m = runState & SMASK;
1637 >        WorkQueue[] ws = workQueues;
1638 >
1639 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1640 >            outer:for (WorkQueue j = joiner;;) {
1641 >                // Try to find the stealer of subtask, by first using hint
1642 >                WorkQueue stealer = null;
1643 >                WorkQueue v = ws[j.stealHint & m];
1644 >                if (v != null && v.currentSteal == subtask)
1645 >                    stealer = v;
1646 >                else {
1647 >                    for (int i = 1; i <= m; i += 2) {
1648 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1649 >                            stealer = v;
1650 >                            j.stealHint = i; // save hint
1651 >                            break;
1652 >                        }
1653 >                    }
1654 >                    if (stealer == null)
1655 >                        break;
1656 >                }
1657 >
1658 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1659 >                    ForkJoinTask<?> t; int b;
1660 >                    if (task.status < 0)
1661 >                        break outer;
1662 >                    if ((b = q.base) - q.top < 0) {
1663 >                        progress = true;
1664 >                        if (subtask.status < 0)
1665 >                            break outer;               // stale
1666 >                        if ((t = q.pollAt(b)) != null) {
1667 >                            stealer.stealHint = joiner.poolIndex;
1668 >                            joiner.runSubtask(t);
1669                          }
1670                      }
1671 +                    else { // empty - try to descend to find stealer's stealer
1672 +                        ForkJoinTask<?> next = stealer.currentJoin;
1673 +                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1674 +                            next == null || next == subtask)
1675 +                            break outer;  // max depth, stale, dead-end, cyclic
1676 +                        subtask = next;
1677 +                        j = stealer;
1678 +                        break;
1679 +                    }
1680                  }
1681              }
1682          }
1683 +        return progress;
1684      }
1685  
1686      /**
1687 <     * Clear out and cancel submissions, ignoring exceptions
1687 >     * If task is at base of some steal queue, steals and executes it.
1688 >     *
1689 >     * @param joiner the joining worker
1690 >     * @param task the task
1691       */
1692 <    private void cancelSubmissions() {
1693 <        ForkJoinTask<?> task;
1694 <        while ((task = submissionQueue.poll()) != null) {
1695 <            try {
1696 <                task.cancel(false);
1697 <            } catch (Throwable ignore) {
1692 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1693 >        WorkQueue[] ws;
1694 >        int m = runState & SMASK;
1695 >        if ((ws = workQueues) != null && ws.length > m) {
1696 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1697 >                WorkQueue q = ws[j];
1698 >                if (q != null && q.pollFor(task)) {
1699 >                    joiner.runSubtask(task);
1700 >                    break;
1701 >                }
1702              }
1703          }
1704      }
1705  
1706 <    // misc support for ForkJoinWorkerThread
1706 >    /**
1707 >     * Returns a non-empty steal queue, if one is found during a random,
1708 >     * then cyclic scan, else null.  This method must be retried by
1709 >     * caller if, by the time it tries to use the queue, it is empty.
1710 >     */
1711 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1712 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1713 >        for (WorkQueue[] ws;;) {
1714 >            int m = runState & SMASK;
1715 >            if ((ws = workQueues) == null)
1716 >                return null;
1717 >            if (ws.length > m) {
1718 >                WorkQueue q;
1719 >                for (int k = 0, j = -1 - m;; ++j) {
1720 >                    if (j < 0) {
1721 >                        r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1722 >                    }
1723 >                    else
1724 >                        k += 7;
1725 >                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1726 >                        w.seed = r;
1727 >                        return q;
1728 >                    }
1729 >                    else if (j - m > m)
1730 >                        return null;
1731 >                }
1732 >            }
1733 >        }
1734 >    }
1735  
1736      /**
1737 <     * Returns pool number
1738 <     */
1739 <    final int getPoolNumber() {
1740 <        return poolNumber;
1737 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1738 >     * active count ctl maintenance, but rather than blocking
1739 >     * when tasks cannot be found, we rescan until all others cannot
1740 >     * find tasks either.
1741 >     */
1742 >    final void helpQuiescePool(WorkQueue w) {
1743 >        for (boolean active = true;;) {
1744 >            w.runLocalTasks();      // exhaust local queue
1745 >            WorkQueue q = findNonEmptyStealQueue(w);
1746 >            if (q != null) {
1747 >                ForkJoinTask<?> t;
1748 >                if (!active) {      // re-establish active count
1749 >                    long c;
1750 >                    active = true;
1751 >                    do {} while (!U.compareAndSwapLong
1752 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1753 >                }
1754 >                if ((t = q.poll()) != null)
1755 >                    w.runSubtask(t);
1756 >            }
1757 >            else {
1758 >                long c;
1759 >                if (active) {       // decrement active count without queuing
1760 >                    active = false;
1761 >                    do {} while (!U.compareAndSwapLong
1762 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1763 >                }
1764 >                else
1765 >                    c = ctl;        // re-increment on exit
1766 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1767 >                    do {} while (!U.compareAndSwapLong
1768 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1769 >                    break;
1770 >                }
1771 >            }
1772 >        }
1773      }
1774  
1775      /**
1776 <     * Tries to accumulates steal count from a worker, clearing
1155 <     * the worker's value.
1776 >     * Gets and removes a local or stolen task for the given worker.
1777       *
1778 <     * @return true if worker steal count now zero
1778 >     * @return a task, if available
1779       */
1780 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1781 <        int sc = w.stealCount;
1782 <        long c = stealCount;
1783 <        // CAS even if zero, for fence effects
1784 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1785 <            if (sc != 0)
1786 <                w.stealCount = 0;
1787 <            return true;
1780 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1781 >        for (ForkJoinTask<?> t;;) {
1782 >            WorkQueue q;
1783 >            if ((t = w.nextLocalTask()) != null)
1784 >                return t;
1785 >            if ((q = findNonEmptyStealQueue(w)) == null)
1786 >                return null;
1787 >            if ((t = q.poll()) != null)
1788 >                return t;
1789          }
1168        return sc == 0;
1790      }
1791  
1792      /**
1793       * Returns the approximate (non-atomic) number of idle threads per
1794 <     * active thread.
1794 >     * active thread to offset steal queue size for method
1795 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1796       */
1797      final int idlePerActive() {
1798 <        int pc = parallelism; // use parallelism, not rc
1799 <        int ac = runState;    // no mask -- artificially boosts during shutdown
1800 <        // Use exact results for small values, saturate past 4
1801 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1798 >        // Approximate at powers of two for small values, saturate past 4
1799 >        int p = parallelism;
1800 >        int a = p + (int)(ctl >> AC_SHIFT);
1801 >        return (a > (p >>>= 1) ? 0 :
1802 >                a > (p >>>= 1) ? 1 :
1803 >                a > (p >>>= 1) ? 2 :
1804 >                a > (p >>>= 1) ? 4 :
1805 >                8);
1806 >    }
1807 >
1808 >    //  Termination
1809 >
1810 >    /**
1811 >     * Possibly initiates and/or completes termination.  The caller
1812 >     * triggering termination runs three passes through workQueues:
1813 >     * (0) Setting termination status, followed by wakeups of queued
1814 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1815 >     * threads (likely in external tasks, but possibly also blocked in
1816 >     * joins).  Each pass repeats previous steps because of potential
1817 >     * lagging thread creation.
1818 >     *
1819 >     * @param now if true, unconditionally terminate, else only
1820 >     * if no work and no active workers
1821 >     * @param enable if true, enable shutdown when next possible
1822 >     * @return true if now terminating or terminated
1823 >     */
1824 >    private boolean tryTerminate(boolean now, boolean enable) {
1825 >        Mutex lock = this.lock;
1826 >        for (long c;;) {
1827 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1828 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1829 >                    lock.lock();                    // don't need try/finally
1830 >                    termination.signalAll();        // signal when 0 workers
1831 >                    lock.unlock();
1832 >                }
1833 >                return true;
1834 >            }
1835 >            if (runState >= 0) {                    // not yet enabled
1836 >                if (!enable)
1837 >                    return false;
1838 >                lock.lock();
1839 >                runState |= SHUTDOWN;
1840 >                lock.unlock();
1841 >            }
1842 >            if (!now) {                             // check if idle & no tasks
1843 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
1844 >                    hasQueuedSubmissions())
1845 >                    return false;
1846 >                // Check for unqueued inactive workers. One pass suffices.
1847 >                WorkQueue[] ws = workQueues; WorkQueue w;
1848 >                if (ws != null) {
1849 >                    for (int i = 1; i < ws.length; i += 2) {
1850 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
1851 >                            return false;
1852 >                    }
1853 >                }
1854 >            }
1855 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
1856 >                for (int pass = 0; pass < 3; ++pass) {
1857 >                    WorkQueue[] ws = workQueues;
1858 >                    if (ws != null) {
1859 >                        WorkQueue w;
1860 >                        int n = ws.length;
1861 >                        for (int i = 0; i < n; ++i) {
1862 >                            if ((w = ws[i]) != null) {
1863 >                                w.runState = -1;
1864 >                                if (pass > 0) {
1865 >                                    w.cancelAll();
1866 >                                    if (pass > 1)
1867 >                                        w.interruptOwner();
1868 >                                }
1869 >                            }
1870 >                        }
1871 >                        // Wake up workers parked on event queue
1872 >                        int i, e; long cc; Thread p;
1873 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
1874 >                               (i = e & SMASK) < n &&
1875 >                               (w = ws[i]) != null) {
1876 >                            long nc = ((long)(w.nextWait & E_MASK) |
1877 >                                       ((cc + AC_UNIT) & AC_MASK) |
1878 >                                       (cc & (TC_MASK|STOP_BIT)));
1879 >                            if (w.eventCount == (e | INT_SIGN) &&
1880 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
1881 >                                w.eventCount = (e + E_SEQ) & E_MASK;
1882 >                                w.runState = -1;
1883 >                                if ((p = w.parker) != null)
1884 >                                    U.unpark(p);
1885 >                            }
1886 >                        }
1887 >                    }
1888 >                }
1889 >            }
1890 >        }
1891      }
1892  
1893 <    // Public and protected methods
1893 >    // Exported methods
1894  
1895      // Constructors
1896  
# Line 1226 | Line 1937 | public class ForkJoinPool extends Abstra
1937       * use {@link #defaultForkJoinWorkerThreadFactory}.
1938       * @param handler the handler for internal worker threads that
1939       * terminate due to unrecoverable errors encountered while executing
1940 <     * tasks. For default value, use <code>null</code>.
1940 >     * tasks. For default value, use {@code null}.
1941       * @param asyncMode if true,
1942       * establishes local first-in-first-out scheduling mode for forked
1943       * tasks that are never joined. This mode may be more appropriate
1944       * than default locally stack-based mode in applications in which
1945       * worker threads only process event-style asynchronous tasks.
1946 <     * For default value, use <code>false</code>.
1946 >     * For default value, use {@code false}.
1947       * @throws IllegalArgumentException if parallelism less than or
1948       *         equal to zero, or greater than implementation limit
1949       * @throws NullPointerException if the factory is null
# Line 1248 | Line 1959 | public class ForkJoinPool extends Abstra
1959          checkPermission();
1960          if (factory == null)
1961              throw new NullPointerException();
1962 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1962 >        if (parallelism <= 0 || parallelism > POOL_MAX)
1963              throw new IllegalArgumentException();
1964          this.parallelism = parallelism;
1965          this.factory = factory;
1966          this.ueh = handler;
1967 <        this.locallyFifo = asyncMode;
1968 <        int arraySize = initialArraySizeFor(parallelism);
1969 <        this.workers = new ForkJoinWorkerThread[arraySize];
1970 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1971 <        this.workerLock = new ReentrantLock();
1972 <        this.termination = new Phaser(1);
1973 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1974 <    }
1975 <
1976 <    /**
1977 <     * Returns initial power of two size for workers array.
1978 <     * @param pc the initial parallelism level
1979 <     */
1980 <    private static int initialArraySizeFor(int pc) {
1981 <        // If possible, initially allocate enough space for one spare
1982 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1983 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1984 <        size |= size >>> 1;
1985 <        size |= size >>> 2;
1275 <        size |= size >>> 4;
1276 <        size |= size >>> 8;
1277 <        return size + 1;
1967 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1968 >        this.growHints = 1;
1969 >        long np = (long)(-parallelism); // offset ctl counts
1970 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1971 >        // initialize workQueues array with room for 2*parallelism if possible
1972 >        int n = parallelism << 1;
1973 >        if (n >= POOL_MAX)
1974 >            n = POOL_MAX;
1975 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1976 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1977 >        }
1978 >        this.workQueues = new WorkQueue[(n + 1) << 1]; // #slots = 2 * #workers
1979 >        this.termination = (this.lock = new Mutex()).newCondition();
1980 >        this.stealCount = new AtomicLong();
1981 >        this.nextWorkerNumber = new AtomicInteger();
1982 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1983 >        sb.append(poolNumberGenerator.incrementAndGet());
1984 >        sb.append("-worker-");
1985 >        this.workerNamePrefix = sb.toString();
1986      }
1987  
1988      // Execution methods
1989  
1990      /**
1283     * Common code for execute, invoke and submit
1284     */
1285    private <T> void doSubmit(ForkJoinTask<T> task) {
1286        if (task == null)
1287            throw new NullPointerException();
1288        if (runState >= SHUTDOWN)
1289            throw new RejectedExecutionException();
1290        submissionQueue.offer(task);
1291        int c; // try to increment event count -- CAS failure OK
1292        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1293        helpMaintainParallelism(); // create, start, or resume some workers
1294    }
1295
1296    /**
1991       * Performs the given task, returning its result upon completion.
1992 +     * If the computation encounters an unchecked Exception or Error,
1993 +     * it is rethrown as the outcome of this invocation.  Rethrown
1994 +     * exceptions behave in the same way as regular exceptions, but,
1995 +     * when possible, contain stack traces (as displayed for example
1996 +     * using {@code ex.printStackTrace()}) of both the current thread
1997 +     * as well as the thread actually encountering the exception;
1998 +     * minimally only the latter.
1999       *
2000       * @param task the task
2001       * @return the task's result
# Line 1327 | Line 2028 | public class ForkJoinPool extends Abstra
2028       *         scheduled for execution
2029       */
2030      public void execute(Runnable task) {
2031 +        if (task == null)
2032 +            throw new NullPointerException();
2033          ForkJoinTask<?> job;
2034          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2035              job = (ForkJoinTask<?>) task;
# Line 1355 | Line 2058 | public class ForkJoinPool extends Abstra
2058       *         scheduled for execution
2059       */
2060      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2061 +        if (task == null)
2062 +            throw new NullPointerException();
2063          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2064          doSubmit(job);
2065          return job;
# Line 1366 | Line 2071 | public class ForkJoinPool extends Abstra
2071       *         scheduled for execution
2072       */
2073      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2074 +        if (task == null)
2075 +            throw new NullPointerException();
2076          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2077          doSubmit(job);
2078          return job;
# Line 1377 | Line 2084 | public class ForkJoinPool extends Abstra
2084       *         scheduled for execution
2085       */
2086      public ForkJoinTask<?> submit(Runnable task) {
2087 +        if (task == null)
2088 +            throw new NullPointerException();
2089          ForkJoinTask<?> job;
2090          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2091              job = (ForkJoinTask<?>) task;
# Line 1391 | Line 2100 | public class ForkJoinPool extends Abstra
2100       * @throws RejectedExecutionException {@inheritDoc}
2101       */
2102      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2103 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2104 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2105 <        for (Callable<T> task : tasks)
2106 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2107 <        invoke(new InvokeAll<T>(forkJoinTasks));
2108 <
2103 >        // In previous versions of this class, this method constructed
2104 >        // a task to run ForkJoinTask.invokeAll, but now external
2105 >        // invocation of multiple tasks is at least as efficient.
2106 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2107 >        // Workaround needed because method wasn't declared with
2108 >        // wildcards in return type but should have been.
2109          @SuppressWarnings({"unchecked", "rawtypes"})
2110 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1402 <        return futures;
1403 <    }
2110 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2111  
2112 <    static final class InvokeAll<T> extends RecursiveAction {
2113 <        final ArrayList<ForkJoinTask<T>> tasks;
2114 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2115 <        public void compute() {
2116 <            try { invokeAll(tasks); }
2117 <            catch (Exception ignore) {}
2112 >        boolean done = false;
2113 >        try {
2114 >            for (Callable<T> t : tasks) {
2115 >                ForkJoinTask<T> f = ForkJoinTask.adapt(t);
2116 >                doSubmit(f);
2117 >                fs.add(f);
2118 >            }
2119 >            for (ForkJoinTask<T> f : fs)
2120 >                f.quietlyJoin();
2121 >            done = true;
2122 >            return futures;
2123 >        } finally {
2124 >            if (!done)
2125 >                for (ForkJoinTask<T> f : fs)
2126 >                    f.cancel(false);
2127          }
1412        private static final long serialVersionUID = -7914297376763021607L;
2128      }
2129  
2130      /**
# Line 1442 | Line 2157 | public class ForkJoinPool extends Abstra
2157  
2158      /**
2159       * Returns the number of worker threads that have started but not
2160 <     * yet terminated.  This result returned by this method may differ
2160 >     * yet terminated.  The result returned by this method may differ
2161       * from {@link #getParallelism} when threads are created to
2162       * maintain parallelism when others are cooperatively blocked.
2163       *
2164       * @return the number of worker threads
2165       */
2166      public int getPoolSize() {
2167 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2167 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2168      }
2169  
2170      /**
# Line 1459 | Line 2174 | public class ForkJoinPool extends Abstra
2174       * @return {@code true} if this pool uses async mode
2175       */
2176      public boolean getAsyncMode() {
2177 <        return locallyFifo;
2177 >        return localMode != 0;
2178      }
2179  
2180      /**
# Line 1471 | Line 2186 | public class ForkJoinPool extends Abstra
2186       * @return the number of worker threads
2187       */
2188      public int getRunningThreadCount() {
2189 <        return workerCounts & RUNNING_COUNT_MASK;
2189 >        int rc = 0;
2190 >        WorkQueue[] ws; WorkQueue w;
2191 >        if ((ws = workQueues) != null) {
2192 >            for (int i = 1; i < ws.length; i += 2) {
2193 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2194 >                    ++rc;
2195 >            }
2196 >        }
2197 >        return rc;
2198      }
2199  
2200      /**
# Line 1482 | Line 2205 | public class ForkJoinPool extends Abstra
2205       * @return the number of active threads
2206       */
2207      public int getActiveThreadCount() {
2208 <        return runState & ACTIVE_COUNT_MASK;
2208 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2209 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2210      }
2211  
2212      /**
# Line 1497 | Line 2221 | public class ForkJoinPool extends Abstra
2221       * @return {@code true} if all threads are currently idle
2222       */
2223      public boolean isQuiescent() {
2224 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2224 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2225      }
2226  
2227      /**
# Line 1512 | Line 2236 | public class ForkJoinPool extends Abstra
2236       * @return the number of steals
2237       */
2238      public long getStealCount() {
2239 <        return stealCount;
2239 >        long count = stealCount.get();
2240 >        WorkQueue[] ws; WorkQueue w;
2241 >        if ((ws = workQueues) != null) {
2242 >            for (int i = 1; i < ws.length; i += 2) {
2243 >                if ((w = ws[i]) != null)
2244 >                    count += w.totalSteals;
2245 >            }
2246 >        }
2247 >        return count;
2248      }
2249  
2250      /**
# Line 1527 | Line 2259 | public class ForkJoinPool extends Abstra
2259       */
2260      public long getQueuedTaskCount() {
2261          long count = 0;
2262 <        ForkJoinWorkerThread[] ws = workers;
2263 <        int n = ws.length;
2264 <        for (int i = 0; i < n; ++i) {
2265 <            ForkJoinWorkerThread w = ws[i];
2266 <            if (w != null)
2267 <                count += w.getQueueSize();
2262 >        WorkQueue[] ws; WorkQueue w;
2263 >        if ((ws = workQueues) != null) {
2264 >            for (int i = 1; i < ws.length; i += 2) {
2265 >                if ((w = ws[i]) != null)
2266 >                    count += w.queueSize();
2267 >            }
2268          }
2269          return count;
2270      }
2271  
2272      /**
2273       * Returns an estimate of the number of tasks submitted to this
2274 <     * pool that have not yet begun executing.  This method takes time
2275 <     * proportional to the number of submissions.
2274 >     * pool that have not yet begun executing.  This method may take
2275 >     * time proportional to the number of submissions.
2276       *
2277       * @return the number of queued submissions
2278       */
2279      public int getQueuedSubmissionCount() {
2280 <        return submissionQueue.size();
2280 >        int count = 0;
2281 >        WorkQueue[] ws; WorkQueue w;
2282 >        if ((ws = workQueues) != null) {
2283 >            for (int i = 0; i < ws.length; i += 2) {
2284 >                if ((w = ws[i]) != null)
2285 >                    count += w.queueSize();
2286 >            }
2287 >        }
2288 >        return count;
2289      }
2290  
2291      /**
# Line 1555 | Line 2295 | public class ForkJoinPool extends Abstra
2295       * @return {@code true} if there are any queued submissions
2296       */
2297      public boolean hasQueuedSubmissions() {
2298 <        return !submissionQueue.isEmpty();
2298 >        WorkQueue[] ws; WorkQueue w;
2299 >        if ((ws = workQueues) != null) {
2300 >            for (int i = 0; i < ws.length; i += 2) {
2301 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2302 >                    return true;
2303 >            }
2304 >        }
2305 >        return false;
2306      }
2307  
2308      /**
# Line 1566 | Line 2313 | public class ForkJoinPool extends Abstra
2313       * @return the next submission, or {@code null} if none
2314       */
2315      protected ForkJoinTask<?> pollSubmission() {
2316 <        return submissionQueue.poll();
2316 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2317 >        if ((ws = workQueues) != null) {
2318 >            for (int i = 0; i < ws.length; i += 2) {
2319 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2320 >                    return t;
2321 >            }
2322 >        }
2323 >        return null;
2324      }
2325  
2326      /**
# Line 1587 | Line 2341 | public class ForkJoinPool extends Abstra
2341       * @return the number of elements transferred
2342       */
2343      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2344 <        int count = submissionQueue.drainTo(c);
2345 <        ForkJoinWorkerThread[] ws = workers;
2346 <        int n = ws.length;
2347 <        for (int i = 0; i < n; ++i) {
2348 <            ForkJoinWorkerThread w = ws[i];
2349 <            if (w != null)
2350 <                count += w.drainTasksTo(c);
2344 >        int count = 0;
2345 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2346 >        if ((ws = workQueues) != null) {
2347 >            for (int i = 0; i < ws.length; ++i) {
2348 >                if ((w = ws[i]) != null) {
2349 >                    while ((t = w.poll()) != null) {
2350 >                        c.add(t);
2351 >                        ++count;
2352 >                    }
2353 >                }
2354 >            }
2355          }
2356          return count;
2357      }
# Line 1606 | Line 2364 | public class ForkJoinPool extends Abstra
2364       * @return a string identifying this pool, as well as its state
2365       */
2366      public String toString() {
2367 <        long st = getStealCount();
2368 <        long qt = getQueuedTaskCount();
2369 <        long qs = getQueuedSubmissionCount();
2370 <        int wc = workerCounts;
2371 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2372 <        int rc = wc & RUNNING_COUNT_MASK;
2367 >        // Use a single pass through workQueues to collect counts
2368 >        long qt = 0L, qs = 0L; int rc = 0;
2369 >        long st = stealCount.get();
2370 >        long c = ctl;
2371 >        WorkQueue[] ws; WorkQueue w;
2372 >        if ((ws = workQueues) != null) {
2373 >            for (int i = 0; i < ws.length; ++i) {
2374 >                if ((w = ws[i]) != null) {
2375 >                    int size = w.queueSize();
2376 >                    if ((i & 1) == 0)
2377 >                        qs += size;
2378 >                    else {
2379 >                        qt += size;
2380 >                        st += w.totalSteals;
2381 >                        if (w.isApparentlyUnblocked())
2382 >                            ++rc;
2383 >                    }
2384 >                }
2385 >            }
2386 >        }
2387          int pc = parallelism;
2388 <        int rs = runState;
2389 <        int ac = rs & ACTIVE_COUNT_MASK;
2388 >        int tc = pc + (short)(c >>> TC_SHIFT);
2389 >        int ac = pc + (int)(c >> AC_SHIFT);
2390 >        if (ac < 0) // ignore transient negative
2391 >            ac = 0;
2392 >        String level;
2393 >        if ((c & STOP_BIT) != 0)
2394 >            level = (tc == 0) ? "Terminated" : "Terminating";
2395 >        else
2396 >            level = runState < 0 ? "Shutting down" : "Running";
2397          return super.toString() +
2398 <            "[" + runLevelToString(rs) +
2398 >            "[" + level +
2399              ", parallelism = " + pc +
2400              ", size = " + tc +
2401              ", active = " + ac +
# Line 1627 | Line 2406 | public class ForkJoinPool extends Abstra
2406              "]";
2407      }
2408  
1630    private static String runLevelToString(int s) {
1631        return ((s & TERMINATED) != 0 ? "Terminated" :
1632                ((s & TERMINATING) != 0 ? "Terminating" :
1633                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1634                  "Running")));
1635    }
1636
2409      /**
2410       * Initiates an orderly shutdown in which previously submitted
2411       * tasks are executed, but no new tasks will be accepted.
# Line 1648 | Line 2420 | public class ForkJoinPool extends Abstra
2420       */
2421      public void shutdown() {
2422          checkPermission();
2423 <        advanceRunLevel(SHUTDOWN);
1652 <        tryTerminate(false);
2423 >        tryTerminate(false, true);
2424      }
2425  
2426      /**
# Line 1670 | Line 2441 | public class ForkJoinPool extends Abstra
2441       */
2442      public List<Runnable> shutdownNow() {
2443          checkPermission();
2444 <        tryTerminate(true);
2444 >        tryTerminate(true, true);
2445          return Collections.emptyList();
2446      }
2447  
# Line 1680 | Line 2451 | public class ForkJoinPool extends Abstra
2451       * @return {@code true} if all tasks have completed following shut down
2452       */
2453      public boolean isTerminated() {
2454 <        return runState >= TERMINATED;
2454 >        long c = ctl;
2455 >        return ((c & STOP_BIT) != 0L &&
2456 >                (short)(c >>> TC_SHIFT) == -parallelism);
2457      }
2458  
2459      /**
# Line 1688 | Line 2461 | public class ForkJoinPool extends Abstra
2461       * commenced but not yet completed.  This method may be useful for
2462       * debugging. A return of {@code true} reported a sufficient
2463       * period after shutdown may indicate that submitted tasks have
2464 <     * ignored or suppressed interruption, causing this executor not
2465 <     * to properly terminate.
2464 >     * ignored or suppressed interruption, or are waiting for IO,
2465 >     * causing this executor not to properly terminate. (See the
2466 >     * advisory notes for class {@link ForkJoinTask} stating that
2467 >     * tasks should not normally entail blocking operations.  But if
2468 >     * they do, they must abort them on interrupt.)
2469       *
2470       * @return {@code true} if terminating but not yet terminated
2471       */
2472      public boolean isTerminating() {
2473 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2473 >        long c = ctl;
2474 >        return ((c & STOP_BIT) != 0L &&
2475 >                (short)(c >>> TC_SHIFT) != -parallelism);
2476      }
2477  
2478      /**
# Line 1703 | Line 2481 | public class ForkJoinPool extends Abstra
2481       * @return {@code true} if this pool has been shut down
2482       */
2483      public boolean isShutdown() {
2484 <        return runState >= SHUTDOWN;
2484 >        return runState < 0;
2485      }
2486  
2487      /**
# Line 1719 | Line 2497 | public class ForkJoinPool extends Abstra
2497       */
2498      public boolean awaitTermination(long timeout, TimeUnit unit)
2499          throws InterruptedException {
2500 +        long nanos = unit.toNanos(timeout);
2501 +        final Mutex lock = this.lock;
2502 +        lock.lock();
2503          try {
2504 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
2505 <        } catch (TimeoutException ex) {
2506 <            return false;
2504 >            for (;;) {
2505 >                if (isTerminated())
2506 >                    return true;
2507 >                if (nanos <= 0)
2508 >                    return false;
2509 >                nanos = termination.awaitNanos(nanos);
2510 >            }
2511 >        } finally {
2512 >            lock.unlock();
2513          }
2514      }
2515  
# Line 1734 | Line 2521 | public class ForkJoinPool extends Abstra
2521       * {@code isReleasable} must return {@code true} if blocking is
2522       * not necessary. Method {@code block} blocks the current thread
2523       * if necessary (perhaps internally invoking {@code isReleasable}
2524 <     * before actually blocking). The unusual methods in this API
2525 <     * accommodate synchronizers that may, but don't usually, block
2526 <     * for long periods. Similarly, they allow more efficient internal
2527 <     * handling of cases in which additional workers may be, but
2528 <     * usually are not, needed to ensure sufficient parallelism.
2529 <     * Toward this end, implementations of method {@code isReleasable}
2530 <     * must be amenable to repeated invocation.
2524 >     * before actually blocking). These actions are performed by any
2525 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2526 >     * unusual methods in this API accommodate synchronizers that may,
2527 >     * but don't usually, block for long periods. Similarly, they
2528 >     * allow more efficient internal handling of cases in which
2529 >     * additional workers may be, but usually are not, needed to
2530 >     * ensure sufficient parallelism.  Toward this end,
2531 >     * implementations of method {@code isReleasable} must be amenable
2532 >     * to repeated invocation.
2533       *
2534       * <p>For example, here is a ManagedBlocker based on a
2535       * ReentrantLock:
# Line 1820 | Line 2609 | public class ForkJoinPool extends Abstra
2609      public static void managedBlock(ManagedBlocker blocker)
2610          throws InterruptedException {
2611          Thread t = Thread.currentThread();
2612 <        if (t instanceof ForkJoinWorkerThread) {
2613 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2614 <            w.pool.awaitBlocker(blocker);
2615 <        }
2616 <        else {
2617 <            do {} while (!blocker.isReleasable() && !blocker.block());
2612 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2613 >                          ((ForkJoinWorkerThread)t).pool : null);
2614 >        while (!blocker.isReleasable()) {
2615 >            if (p == null || p.tryCompensate()) {
2616 >                try {
2617 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2618 >                } finally {
2619 >                    if (p != null)
2620 >                        p.incrementActiveCount();
2621 >                }
2622 >                break;
2623 >            }
2624          }
2625      }
2626  
# Line 1842 | Line 2637 | public class ForkJoinPool extends Abstra
2637      }
2638  
2639      // Unsafe mechanics
2640 <
2641 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2642 <    private static final long workerCountsOffset =
2643 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2644 <    private static final long runStateOffset =
2645 <        objectFieldOffset("runState", ForkJoinPool.class);
2646 <    private static final long eventCountOffset =
2647 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2648 <    private static final long eventWaitersOffset =
2649 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1855 <    private static final long stealCountOffset =
1856 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1857 <    private static final long spareWaitersOffset =
1858 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1859 <
1860 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2640 >    private static final sun.misc.Unsafe U;
2641 >    private static final long CTL;
2642 >    private static final long PARKBLOCKER;
2643 >
2644 >    static {
2645 >        poolNumberGenerator = new AtomicInteger();
2646 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2647 >        defaultForkJoinWorkerThreadFactory =
2648 >            new DefaultForkJoinWorkerThreadFactory();
2649 >        submitters = new ThreadSubmitter();
2650          try {
2651 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2652 <        } catch (NoSuchFieldException e) {
2653 <            // Convert Exception to corresponding Error
2654 <            NoSuchFieldError error = new NoSuchFieldError(field);
2655 <            error.initCause(e);
2656 <            throw error;
2651 >            U = getUnsafe();
2652 >            Class<?> k = ForkJoinPool.class;
2653 >            CTL = U.objectFieldOffset
2654 >                (k.getDeclaredField("ctl"));
2655 >            Class<?> tk = Thread.class;
2656 >            PARKBLOCKER = U.objectFieldOffset
2657 >                (tk.getDeclaredField("parkBlocker"));
2658 >        } catch (Exception e) {
2659 >            throw new Error(e);
2660          }
2661      }
2662  
# Line 1895 | Line 2687 | public class ForkJoinPool extends Abstra
2687              }
2688          }
2689      }
2690 +
2691   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines