ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.7 by jsr166, Mon Jul 20 21:45:06 2009 UTC vs.
Revision 1.107 by jsr166, Fri Jul 1 03:09:02 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.locks.LockSupport;
24 > import java.util.concurrent.locks.ReentrantLock;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
29 < * ForkJoinPool provides the entry point for submissions from
30 < * non-ForkJoinTasks, as well as management and monitoring operations.
31 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
28 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 > * A {@code ForkJoinPool} provides the entry point for submissions
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31 > * monitoring operations.
32   *
33 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
34 < * that they provide <em>work-stealing</em>: all threads in the pool
35 < * attempt to find and execute subtasks created by other active tasks
36 < * (eventually blocking if none exist). This makes them efficient when
37 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
38 < * as the mixed execution of some plain Runnable- or Callable- based
39 < * activities along with ForkJoinTasks. When setting
40 < * <tt>setAsyncMode</tt>, a ForkJoinPools may also be appropriate for
41 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
33 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 > * ExecutorService} mainly by virtue of employing
35 > * <em>work-stealing</em>: all threads in the pool attempt to find and
36 > * execute subtasks created by other active tasks (eventually blocking
37 > * waiting for work if none exist). This enables efficient processing
38 > * when most tasks spawn other subtasks (as do most {@code
39 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 > * with event-style tasks that are never joined.
42   *
43 < * <p>A ForkJoinPool may be constructed with a given parallelism level
44 < * (target pool size), which it attempts to maintain by dynamically
45 < * adding, suspending, or resuming threads, even if some tasks are
46 < * waiting to join others. However, no such adjustments are performed
47 < * in the face of blocked IO or other unmanaged synchronization. The
48 < * nested <code>ManagedBlocker</code> interface enables extension of
49 < * the kinds of synchronization accommodated.  The target parallelism
50 < * level may also be changed dynamically (<code>setParallelism</code>)
51 < * and thread construction can be limited using methods
45 < * <code>setMaximumPoolSize</code> and/or
46 < * <code>setMaintainsParallelism</code>.
43 > * <p>A {@code ForkJoinPool} is constructed with a given target
44 > * parallelism level; by default, equal to the number of available
45 > * processors. The pool attempts to maintain enough active (or
46 > * available) threads by dynamically adding, suspending, or resuming
47 > * internal worker threads, even if some tasks are stalled waiting to
48 > * join others. However, no such adjustments are guaranteed in the
49 > * face of blocked IO or other unmanaged synchronization. The nested
50 > * {@link ManagedBlocker} interface enables extension of the kinds of
51 > * synchronization accommodated.
52   *
53   * <p>In addition to execution and lifecycle control methods, this
54   * class provides status check methods (for example
55 < * <code>getStealCount</code>) that are intended to aid in developing,
55 > * {@link #getStealCount}) that are intended to aid in developing,
56   * tuning, and monitoring fork/join applications. Also, method
57 < * <code>toString</code> returns indications of pool state in a
57 > * {@link #toString} returns indications of pool state in a
58   * convenient form for informal monitoring.
59   *
60 + * <p> As is the case with other ExecutorServices, there are three
61 + * main task execution methods summarized in the following
62 + * table. These are designed to be used by clients not already engaged
63 + * in fork/join computations in the current pool.  The main forms of
64 + * these methods accept instances of {@code ForkJoinTask}, but
65 + * overloaded forms also allow mixed execution of plain {@code
66 + * Runnable}- or {@code Callable}- based activities as well.  However,
67 + * tasks that are already executing in a pool should normally
68 + * <em>NOT</em> use these pool execution methods, but instead use the
69 + * within-computation forms listed in the table.
70 + *
71 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
72 + *  <tr>
73 + *    <td></td>
74 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
75 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
76 + *  </tr>
77 + *  <tr>
78 + *    <td> <b>Arrange async execution</td>
79 + *    <td> {@link #execute(ForkJoinTask)}</td>
80 + *    <td> {@link ForkJoinTask#fork}</td>
81 + *  </tr>
82 + *  <tr>
83 + *    <td> <b>Await and obtain result</td>
84 + *    <td> {@link #invoke(ForkJoinTask)}</td>
85 + *    <td> {@link ForkJoinTask#invoke}</td>
86 + *  </tr>
87 + *  <tr>
88 + *    <td> <b>Arrange exec and obtain Future</td>
89 + *    <td> {@link #submit(ForkJoinTask)}</td>
90 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
91 + *  </tr>
92 + * </table>
93 + *
94 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
95 + * used for all parallel task execution in a program or subsystem.
96 + * Otherwise, use would not usually outweigh the construction and
97 + * bookkeeping overhead of creating a large set of threads. For
98 + * example, a common pool could be used for the {@code SortTasks}
99 + * illustrated in {@link RecursiveAction}. Because {@code
100 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
101 + * daemon} mode, there is typically no need to explicitly {@link
102 + * #shutdown} such a pool upon program exit.
103 + *
104 + *  <pre> {@code
105 + * static final ForkJoinPool mainPool = new ForkJoinPool();
106 + * ...
107 + * public void sort(long[] array) {
108 + *   mainPool.invoke(new SortTask(array, 0, array.length));
109 + * }}</pre>
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119 > *
120 > * @since 1.7
121 > * @author Doug Lea
122   */
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
128 <     */
129 <
130 <    /** Mask for packing and unpacking shorts */
131 <    private static final int  shortMask = 0xffff;
132 <
133 <    /** Max pool size -- must be a power of two minus 1 */
134 <    private static final int MAX_THREADS =  0x7FFF;
135 <
136 <    /**
137 <     * Factory for creating new ForkJoinWorkerThreads.  A
138 <     * ForkJoinWorkerThreadFactory must be defined and used for
139 <     * ForkJoinWorkerThread subclasses that extend base functionality
140 <     * or initialize threads with different contexts.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * Preference rules give first priority to processing tasks from
133 >     * their own queues (LIFO or FIFO, depending on mode), then to
134 >     * randomized FIFO steals of tasks in other worker queues, and
135 >     * lastly to new submissions.
136 >     *
137 >     * The main throughput advantages of work-stealing stem from
138 >     * decentralized control -- workers mostly take tasks from
139 >     * themselves or each other. We cannot negate this in the
140 >     * implementation of other management responsibilities. The main
141 >     * tactic for avoiding bottlenecks is packing nearly all
142 >     * essentially atomic control state into a single 64bit volatile
143 >     * variable ("ctl"). This variable is read on the order of 10-100
144 >     * times as often as it is modified (always via CAS). (There is
145 >     * some additional control state, for example variable "shutdown"
146 >     * for which we can cope with uncoordinated updates.)  This
147 >     * streamlines synchronization and control at the expense of messy
148 >     * constructions needed to repack status bits upon updates.
149 >     * Updates tend not to contend with each other except during
150 >     * bursts while submitted tasks begin or end.  In some cases when
151 >     * they do contend, threads can instead do something else
152 >     * (usually, scan for tasks) until contention subsides.
153 >     *
154 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
155 >     * (which is far in excess of normal operating range) to allow
156 >     * ids, counts, and their negations (used for thresholding) to fit
157 >     * into 16bit fields.
158 >     *
159 >     * Recording Workers.  Workers are recorded in the "workers" array
160 >     * that is created upon pool construction and expanded if (rarely)
161 >     * necessary.  This is an array as opposed to some other data
162 >     * structure to support index-based random steals by workers.
163 >     * Updates to the array recording new workers and unrecording
164 >     * terminated ones are protected from each other by a seqLock
165 >     * (scanGuard) but the array is otherwise concurrently readable,
166 >     * and accessed directly by workers. To simplify index-based
167 >     * operations, the array size is always a power of two, and all
168 >     * readers must tolerate null slots. To avoid flailing during
169 >     * start-up, the array is presized to hold twice #parallelism
170 >     * workers (which is unlikely to need further resizing during
171 >     * execution). But to avoid dealing with so many null slots,
172 >     * variable scanGuard includes a mask for the nearest power of two
173 >     * that contains all current workers.  All worker thread creation
174 >     * is on-demand, triggered by task submissions, replacement of
175 >     * terminated workers, and/or compensation for blocked
176 >     * workers. However, all other support code is set up to work with
177 >     * other policies.  To ensure that we do not hold on to worker
178 >     * references that would prevent GC, ALL accesses to workers are
179 >     * via indices into the workers array (which is one source of some
180 >     * of the messy code constructions here). In essence, the workers
181 >     * array serves as a weak reference mechanism. Thus for example
182 >     * the wait queue field of ctl stores worker indices, not worker
183 >     * references.  Access to the workers in associated methods (for
184 >     * example signalWork) must both index-check and null-check the
185 >     * IDs. All such accesses ignore bad IDs by returning out early
186 >     * from what they are doing, since this can only be associated
187 >     * with termination, in which case it is OK to give up.
188 >     *
189 >     * All uses of the workers array, as well as queue arrays, check
190 >     * that the array is non-null (even if previously non-null). This
191 >     * allows nulling during termination, which is currently not
192 >     * necessary, but remains an option for resource-revocation-based
193 >     * shutdown schemes.
194 >     *
195 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
196 >     * let workers spin indefinitely scanning for tasks when none can
197 >     * be found immediately, and we cannot start/resume workers unless
198 >     * there appear to be tasks available.  On the other hand, we must
199 >     * quickly prod them into action when new tasks are submitted or
200 >     * generated.  We park/unpark workers after placing in an event
201 >     * wait queue when they cannot find work. This "queue" is actually
202 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
203 >     * 15bit counter value to both wake up waiters (by advancing their
204 >     * count) and avoid ABA effects. Successors are held in worker
205 >     * field "nextWait".  Queuing deals with several intrinsic races,
206 >     * mainly that a task-producing thread can miss seeing (and
207 >     * signalling) another thread that gave up looking for work but
208 >     * has not yet entered the wait queue. We solve this by requiring
209 >     * a full sweep of all workers both before (in scan()) and after
210 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
211 >     * queue. During a rescan, the worker might release some other
212 >     * queued worker rather than itself, which has the same net
213 >     * effect. Because enqueued workers may actually be rescanning
214 >     * rather than waiting, we set and clear the "parked" field of
215 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
216 >     * (Use of the parked field requires a secondary recheck to avoid
217 >     * missed signals.)
218 >     *
219 >     * Signalling.  We create or wake up workers only when there
220 >     * appears to be at least one task they might be able to find and
221 >     * execute.  When a submission is added or another worker adds a
222 >     * task to a queue that previously had two or fewer tasks, they
223 >     * signal waiting workers (or trigger creation of new ones if
224 >     * fewer than the given parallelism level -- see signalWork).
225 >     * These primary signals are buttressed by signals during rescans
226 >     * as well as those performed when a worker steals a task and
227 >     * notices that there are more tasks too; together these cover the
228 >     * signals needed in cases when more than two tasks are pushed
229 >     * but untaken.
230 >     *
231 >     * Trimming workers. To release resources after periods of lack of
232 >     * use, a worker starting to wait when the pool is quiescent will
233 >     * time out and terminate if the pool has remained quiescent for
234 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
235 >     * terminating all workers after long periods of non-use.
236 >     *
237 >     * Submissions. External submissions are maintained in an
238 >     * array-based queue that is structured identically to
239 >     * ForkJoinWorkerThread queues except for the use of
240 >     * submissionLock in method addSubmission. Unlike the case for
241 >     * worker queues, multiple external threads can add new
242 >     * submissions, so adding requires a lock.
243 >     *
244 >     * Compensation. Beyond work-stealing support and lifecycle
245 >     * control, the main responsibility of this framework is to take
246 >     * actions when one worker is waiting to join a task stolen (or
247 >     * always held by) another.  Because we are multiplexing many
248 >     * tasks on to a pool of workers, we can't just let them block (as
249 >     * in Thread.join).  We also cannot just reassign the joiner's
250 >     * run-time stack with another and replace it later, which would
251 >     * be a form of "continuation", that even if possible is not
252 >     * necessarily a good idea since we sometimes need both an
253 >     * unblocked task and its continuation to progress. Instead we
254 >     * combine two tactics:
255 >     *
256 >     *   Helping: Arranging for the joiner to execute some task that it
257 >     *      would be running if the steal had not occurred.  Method
258 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
259 >     *      links to try to find such a task.
260 >     *
261 >     *   Compensating: Unless there are already enough live threads,
262 >     *      method tryPreBlock() may create or re-activate a spare
263 >     *      thread to compensate for blocked joiners until they
264 >     *      unblock.
265 >     *
266 >     * The ManagedBlocker extension API can't use helping so relies
267 >     * only on compensation in method awaitBlocker.
268 >     *
269 >     * It is impossible to keep exactly the target parallelism number
270 >     * of threads running at any given time.  Determining the
271 >     * existence of conservatively safe helping targets, the
272 >     * availability of already-created spares, and the apparent need
273 >     * to create new spares are all racy and require heuristic
274 >     * guidance, so we rely on multiple retries of each.  Currently,
275 >     * in keeping with on-demand signalling policy, we compensate only
276 >     * if blocking would leave less than one active (non-waiting,
277 >     * non-blocked) worker. Additionally, to avoid some false alarms
278 >     * due to GC, lagging counters, system activity, etc, compensated
279 >     * blocking for joins is only attempted after rechecks stabilize
280 >     * (retries are interspersed with Thread.yield, for good
281 >     * citizenship).  The variable blockedCount, incremented before
282 >     * blocking and decremented after, is sometimes needed to
283 >     * distinguish cases of waiting for work vs blocking on joins or
284 >     * other managed sync. Both cases are equivalent for most pool
285 >     * control, so we can update non-atomically. (Additionally,
286 >     * contention on blockedCount alleviates some contention on ctl).
287 >     *
288 >     * Shutdown and Termination. A call to shutdownNow atomically sets
289 >     * the ctl stop bit and then (non-atomically) sets each workers
290 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
291 >     * all waiting workers.  Detecting whether termination should
292 >     * commence after a non-abrupt shutdown() call requires more work
293 >     * and bookkeeping. We need consensus about quiescence (i.e., that
294 >     * there is no more work) which is reflected in active counts so
295 >     * long as there are no current blockers, as well as possible
296 >     * re-evaluations during independent changes in blocking or
297 >     * quiescing workers.
298 >     *
299 >     * Style notes: There is a lot of representation-level coupling
300 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
301 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
302 >     * data structures managed by ForkJoinPool, so are directly
303 >     * accessed.  Conversely we allow access to "workers" array by
304 >     * workers, and direct access to ForkJoinTask.status by both
305 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
306 >     * trying to reduce this, since any associated future changes in
307 >     * representations will need to be accompanied by algorithmic
308 >     * changes anyway. All together, these low-level implementation
309 >     * choices produce as much as a factor of 4 performance
310 >     * improvement compared to naive implementations, and enable the
311 >     * processing of billions of tasks per second, at the expense of
312 >     * some ugliness.
313 >     *
314 >     * Methods signalWork() and scan() are the main bottlenecks so are
315 >     * especially heavily micro-optimized/mangled.  There are lots of
316 >     * inline assignments (of form "while ((local = field) != 0)")
317 >     * which are usually the simplest way to ensure the required read
318 >     * orderings (which are sometimes critical). This leads to a
319 >     * "C"-like style of listing declarations of these locals at the
320 >     * heads of methods or blocks.  There are several occurrences of
321 >     * the unusual "do {} while (!cas...)"  which is the simplest way
322 >     * to force an update of a CAS'ed variable. There are also other
323 >     * coding oddities that help some methods perform reasonably even
324 >     * when interpreted (not compiled).
325 >     *
326 >     * The order of declarations in this file is: (1) declarations of
327 >     * statics (2) fields (along with constants used when unpacking
328 >     * some of them), listed in an order that tends to reduce
329 >     * contention among them a bit under most JVMs.  (3) internal
330 >     * control methods (4) callbacks and other support for
331 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
332 >     * methods (plus a few little helpers). (6) static block
333 >     * initializing all statics in a minimally dependent order.
334 >     */
335 >
336 >    /**
337 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
338 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
339 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
340 >     * functionality or initialize threads with different contexts.
341       */
342      public static interface ForkJoinWorkerThreadFactory {
343          /**
344           * Returns a new worker thread operating in the given pool.
345           *
346           * @param pool the pool this thread works in
347 <         * @throws NullPointerException if pool is null;
347 >         * @throws NullPointerException if the pool is null
348           */
349          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
350      }
351  
352      /**
353 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
353 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
354       * new ForkJoinWorkerThread.
355       */
356 <    static class  DefaultForkJoinWorkerThreadFactory
356 >    static class DefaultForkJoinWorkerThreadFactory
357          implements ForkJoinWorkerThreadFactory {
358          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
359 <            try {
97 <                return new ForkJoinWorkerThread(pool);
98 <            } catch (OutOfMemoryError oom)  {
99 <                return null;
100 <            }
359 >            return new ForkJoinWorkerThread(pool);
360          }
361      }
362  
# Line 106 | Line 365 | public class ForkJoinPool extends Abstra
365       * overridden in ForkJoinPool constructors.
366       */
367      public static final ForkJoinWorkerThreadFactory
368 <        defaultForkJoinWorkerThreadFactory =
110 <        new DefaultForkJoinWorkerThreadFactory();
368 >        defaultForkJoinWorkerThreadFactory;
369  
370      /**
371       * Permission required for callers of methods that may start or
372       * kill threads.
373       */
374 <    private static final RuntimePermission modifyThreadPermission =
117 <        new RuntimePermission("modifyThread");
374 >    private static final RuntimePermission modifyThreadPermission;
375  
376      /**
377       * If there is a security manager, makes sure caller has
# Line 129 | Line 386 | public class ForkJoinPool extends Abstra
386      /**
387       * Generator for assigning sequence numbers as pool names.
388       */
389 <    private static final AtomicInteger poolNumberGenerator =
133 <        new AtomicInteger();
389 >    private static final AtomicInteger poolNumberGenerator;
390  
391      /**
392 <     * Array holding all worker threads in the pool. Initialized upon
393 <     * first use. Array size must be a power of two.  Updates and
394 <     * replacements are protected by workerLock, but it is always kept
395 <     * in a consistent enough state to be randomly accessed without
396 <     * locking by workers performing work-stealing.
392 >     * Generator for initial random seeds for worker victim
393 >     * selection. This is used only to create initial seeds. Random
394 >     * steals use a cheaper xorshift generator per steal attempt. We
395 >     * don't expect much contention on seedGenerator, so just use a
396 >     * plain Random.
397       */
398 <    volatile ForkJoinWorkerThread[] workers;
398 >    static final Random workerSeedGenerator;
399  
400      /**
401 <     * Lock protecting access to workers.
401 >     * Array holding all worker threads in the pool.  Initialized upon
402 >     * construction. Array size must be a power of two.  Updates and
403 >     * replacements are protected by scanGuard, but the array is
404 >     * always kept in a consistent enough state to be randomly
405 >     * accessed without locking by workers performing work-stealing,
406 >     * as well as other traversal-based methods in this class, so long
407 >     * as reads memory-acquire by first reading ctl. All readers must
408 >     * tolerate that some array slots may be null.
409       */
410 <    private final ReentrantLock workerLock;
410 >    ForkJoinWorkerThread[] workers;
411  
412      /**
413 <     * Condition for awaitTermination.
413 >     * Initial size for submission queue array. Must be a power of
414 >     * two.  In many applications, these always stay small so we use a
415 >     * small initial cap.
416       */
417 <    private final Condition termination;
417 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
418 >
419 >    /**
420 >     * Maximum size for submission queue array. Must be a power of two
421 >     * less than or equal to 1 << (31 - width of array entry) to
422 >     * ensure lack of index wraparound, but is capped at a lower
423 >     * value to help users trap runaway computations.
424 >     */
425 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
426 >
427 >    /**
428 >     * Array serving as submission queue. Initialized upon construction.
429 >     */
430 >    private ForkJoinTask<?>[] submissionQueue;
431 >
432 >    /**
433 >     * Lock protecting submissions array for addSubmission
434 >     */
435 >    private final ReentrantLock submissionLock;
436  
437      /**
438 <     * The uncaught exception handler used when any worker
439 <     * abrupty terminates
438 >     * Condition for awaitTermination, using submissionLock for
439 >     * convenience.
440       */
441 <    private Thread.UncaughtExceptionHandler ueh;
441 >    private final Condition termination;
442  
443      /**
444       * Creation factory for worker threads.
# Line 163 | Line 446 | public class ForkJoinPool extends Abstra
446      private final ForkJoinWorkerThreadFactory factory;
447  
448      /**
449 <     * Head of stack of threads that were created to maintain
450 <     * parallelism when other threads blocked, but have since
168 <     * suspended when the parallelism level rose.
449 >     * The uncaught exception handler used when any worker abruptly
450 >     * terminates.
451       */
452 <    private volatile WaitQueueNode spareStack;
452 >    final Thread.UncaughtExceptionHandler ueh;
453 >
454 >    /**
455 >     * Prefix for assigning names to worker threads
456 >     */
457 >    private final String workerNamePrefix;
458  
459      /**
460       * Sum of per-thread steal counts, updated only when threads are
461       * idle or terminating.
462       */
463 <    private final AtomicLong stealCount;
463 >    private volatile long stealCount;
464  
465      /**
466 <     * Queue for external submissions.
466 >     * Main pool control -- a long packed with:
467 >     * AC: Number of active running workers minus target parallelism (16 bits)
468 >     * TC: Number of total workers minus target parallelism (16 bits)
469 >     * ST: true if pool is terminating (1 bit)
470 >     * EC: the wait count of top waiting thread (15 bits)
471 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
472 >     *
473 >     * When convenient, we can extract the upper 32 bits of counts and
474 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
475 >     * (int)ctl.  The ec field is never accessed alone, but always
476 >     * together with id and st. The offsets of counts by the target
477 >     * parallelism and the positionings of fields makes it possible to
478 >     * perform the most common checks via sign tests of fields: When
479 >     * ac is negative, there are not enough active workers, when tc is
480 >     * negative, there are not enough total workers, when id is
481 >     * negative, there is at least one waiting worker, and when e is
482 >     * negative, the pool is terminating.  To deal with these possibly
483 >     * negative fields, we use casts in and out of "short" and/or
484 >     * signed shifts to maintain signedness.
485       */
486 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
486 >    volatile long ctl;
487 >
488 >    // bit positions/shifts for fields
489 >    private static final int  AC_SHIFT   = 48;
490 >    private static final int  TC_SHIFT   = 32;
491 >    private static final int  ST_SHIFT   = 31;
492 >    private static final int  EC_SHIFT   = 16;
493 >
494 >    // bounds
495 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
496 >    private static final int  SMASK      = 0xffff;  // mask short bits
497 >    private static final int  SHORT_SIGN = 1 << 15;
498 >    private static final int  INT_SIGN   = 1 << 31;
499 >
500 >    // masks
501 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
502 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
503 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
504 >
505 >    // units for incrementing and decrementing
506 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
507 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
508 >
509 >    // masks and units for dealing with u = (int)(ctl >>> 32)
510 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
511 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
512 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
513 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
514 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
515 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
516 >
517 >    // masks and units for dealing with e = (int)ctl
518 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
519 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
520  
521      /**
522 <     * Head of Treiber stack for barrier sync. See below for explanation
522 >     * The target parallelism level.
523       */
524 <    private volatile WaitQueueNode syncStack;
524 >    final int parallelism;
525  
526      /**
527 <     * The count for event barrier
527 >     * Index (mod submission queue length) of next element to take
528 >     * from submission queue. Usage is identical to that for
529 >     * per-worker queues -- see ForkJoinWorkerThread internal
530 >     * documentation.
531       */
532 <    private volatile long eventCount;
532 >    volatile int queueBase;
533  
534      /**
535 <     * Pool number, just for assigning useful names to worker threads
535 >     * Index (mod submission queue length) of next element to add
536 >     * in submission queue. Usage is identical to that for
537 >     * per-worker queues -- see ForkJoinWorkerThread internal
538 >     * documentation.
539       */
540 <    private final int poolNumber;
540 >    int queueTop;
541  
542      /**
543 <     * The maximum allowed pool size
543 >     * True when shutdown() has been called.
544       */
545 <    private volatile int maxPoolSize;
545 >    volatile boolean shutdown;
546  
547      /**
548 <     * The desired parallelism level, updated only under workerLock.
548 >     * True if use local fifo, not default lifo, for local polling.
549 >     * Read by, and replicated by ForkJoinWorkerThreads.
550       */
551 <    private volatile int parallelism;
551 >    final boolean locallyFifo;
552  
553      /**
554 <     * True if use local fifo, not default lifo, for local polling
554 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
555 >     * When non-zero, suppresses automatic shutdown when active
556 >     * counts become zero.
557       */
558 <    private volatile boolean locallyFifo;
558 >    volatile int quiescerCount;
559  
560      /**
561 <     * Holds number of total (i.e., created and not yet terminated)
215 <     * and running (i.e., not blocked on joins or other managed sync)
216 <     * threads, packed into one int to ensure consistent snapshot when
217 <     * making decisions about creating and suspending spare
218 <     * threads. Updated only by CAS.  Note: CASes in
219 <     * updateRunningCount and preJoin running active count is in low
220 <     * word, so need to be modified if this changes
561 >     * The number of threads blocked in join.
562       */
563 <    private volatile int workerCounts;
223 <
224 <    private static int totalCountOf(int s)           { return s >>> 16;  }
225 <    private static int runningCountOf(int s)         { return s & shortMask; }
226 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
563 >    volatile int blockedCount;
564  
565      /**
566 <     * Add delta (which may be negative) to running count.  This must
230 <     * be called before (with negative arg) and after (with positive)
231 <     * any managed synchronization (i.e., mainly, joins)
232 <     * @param delta the number to add
566 >     * Counter for worker Thread names (unrelated to their poolIndex)
567       */
568 <    final void updateRunningCount(int delta) {
235 <        int s;
236 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
237 <    }
568 >    private volatile int nextWorkerNumber;
569  
570      /**
571 <     * Add delta (which may be negative) to both total and running
241 <     * count.  This must be called upon creation and termination of
242 <     * worker threads.
243 <     * @param delta the number to add
571 >     * The index for the next created worker. Accessed under scanGuard.
572       */
573 <    private void updateWorkerCount(int delta) {
246 <        int d = delta + (delta << 16); // add to both lo and hi parts
247 <        int s;
248 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
249 <    }
573 >    private int nextWorkerIndex;
574  
575      /**
576 <     * Lifecycle control. High word contains runState, low word
577 <     * contains the number of workers that are (probably) executing
578 <     * tasks. This value is atomically incremented before a worker
579 <     * gets a task to run, and decremented when worker has no tasks
580 <     * and cannot find any. These two fields are bundled together to
581 <     * support correct termination triggering.  Note: activeCount
582 <     * CAS'es cheat by assuming active count is in low word, so need
583 <     * to be modified if this changes
576 >     * SeqLock and index masking for updates to workers array.  Locked
577 >     * when SG_UNIT is set. Unlocking clears bit by adding
578 >     * SG_UNIT. Staleness of read-only operations can be checked by
579 >     * comparing scanGuard to value before the reads. The low 16 bits
580 >     * (i.e, anding with SMASK) hold (the smallest power of two
581 >     * covering all worker indices, minus one, and is used to avoid
582 >     * dealing with large numbers of null slots when the workers array
583 >     * is overallocated.
584       */
585 <    private volatile int runControl;
585 >    volatile int scanGuard;
586  
587 <    // RunState values. Order among values matters
264 <    private static final int RUNNING     = 0;
265 <    private static final int SHUTDOWN    = 1;
266 <    private static final int TERMINATING = 2;
267 <    private static final int TERMINATED  = 3;
587 >    private static final int SG_UNIT = 1 << 16;
588  
589 <    private static int runStateOf(int c)             { return c >>> 16; }
590 <    private static int activeCountOf(int c)          { return c & shortMask; }
591 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
589 >    /**
590 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
591 >     * task when the pool is quiescent to instead try to shrink the
592 >     * number of workers.  The exact value does not matter too
593 >     * much. It must be short enough to release resources during
594 >     * sustained periods of idleness, but not so short that threads
595 >     * are continually re-created.
596 >     */
597 >    private static final long SHRINK_RATE =
598 >        4L * 1000L * 1000L * 1000L; // 4 seconds
599  
600      /**
601 <     * Try incrementing active count; fail on contention. Called by
602 <     * workers before/during executing tasks.
603 <     * @return true on success;
601 >     * Top-level loop for worker threads: On each step: if the
602 >     * previous step swept through all queues and found no tasks, or
603 >     * there are excess threads, then possibly blocks. Otherwise,
604 >     * scans for and, if found, executes a task. Returns when pool
605 >     * and/or worker terminate.
606 >     *
607 >     * @param w the worker
608       */
609 <    final boolean tryIncrementActiveCount() {
610 <        int c = runControl;
611 <        return casRunControl(c, c+1);
609 >    final void work(ForkJoinWorkerThread w) {
610 >        boolean swept = false;                // true on empty scans
611 >        long c;
612 >        while (!w.terminate && (int)(c = ctl) >= 0) {
613 >            int a;                            // active count
614 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
615 >                swept = scan(w, a);
616 >            else if (tryAwaitWork(w, c))
617 >                swept = false;
618 >        }
619      }
620  
621 +    // Signalling
622 +
623      /**
624 <     * Try decrementing active count; fail on contention.
285 <     * Possibly trigger termination on success
286 <     * Called by workers when they can't find tasks.
287 <     * @return true on success
624 >     * Wakes up or creates a worker.
625       */
626 <    final boolean tryDecrementActiveCount() {
627 <        int c = runControl;
628 <        int nextc = c - 1;
629 <        if (!casRunControl(c, nextc))
630 <            return false;
631 <        if (canTerminateOnShutdown(nextc))
632 <            terminateOnShutdown();
633 <        return true;
626 >    final void signalWork() {
627 >        /*
628 >         * The while condition is true if: (there is are too few total
629 >         * workers OR there is at least one waiter) AND (there are too
630 >         * few active workers OR the pool is terminating).  The value
631 >         * of e distinguishes the remaining cases: zero (no waiters)
632 >         * for create, negative if terminating (in which case do
633 >         * nothing), else release a waiter. The secondary checks for
634 >         * release (non-null array etc) can fail if the pool begins
635 >         * terminating after the test, and don't impose any added cost
636 >         * because JVMs must perform null and bounds checks anyway.
637 >         */
638 >        long c; int e, u;
639 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
640 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
641 >            if (e > 0) {                         // release a waiting worker
642 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
643 >                if ((ws = workers) == null ||
644 >                    (i = ~e & SMASK) >= ws.length ||
645 >                    (w = ws[i]) == null)
646 >                    break;
647 >                long nc = (((long)(w.nextWait & E_MASK)) |
648 >                           ((long)(u + UAC_UNIT) << 32));
649 >                if (w.eventCount == e &&
650 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
651 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
652 >                    if (w.parked)
653 >                        UNSAFE.unpark(w);
654 >                    break;
655 >                }
656 >            }
657 >            else if (UNSAFE.compareAndSwapLong
658 >                     (this, ctlOffset, c,
659 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
660 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
661 >                addWorker();
662 >                break;
663 >            }
664 >        }
665      }
666  
667      /**
668 <     * Return true if argument represents zero active count and
669 <     * nonzero runstate, which is the triggering condition for
670 <     * terminating on shutdown.
668 >     * Variant of signalWork to help release waiters on rescans.
669 >     * Tries once to release a waiter if active count < 0.
670 >     *
671 >     * @return false if failed due to contention, else true
672       */
673 <    private static boolean canTerminateOnShutdown(int c) {
674 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
673 >    private boolean tryReleaseWaiter() {
674 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
675 >        if ((e = (int)(c = ctl)) > 0 &&
676 >            (int)(c >> AC_SHIFT) < 0 &&
677 >            (ws = workers) != null &&
678 >            (i = ~e & SMASK) < ws.length &&
679 >            (w = ws[i]) != null) {
680 >            long nc = ((long)(w.nextWait & E_MASK) |
681 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
682 >            if (w.eventCount != e ||
683 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
684 >                return false;
685 >            w.eventCount = (e + EC_UNIT) & E_MASK;
686 >            if (w.parked)
687 >                UNSAFE.unpark(w);
688 >        }
689 >        return true;
690      }
691  
692 +    // Scanning for tasks
693 +
694      /**
695 <     * Transition run state to at least the given state. Return true
696 <     * if not already at least given state.
695 >     * Scans for and, if found, executes one task. Scans start at a
696 >     * random index of workers array, and randomly select the first
697 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
698 >     * circular sweeps, which is necessary to check quiescence. and
699 >     * taking a submission only if no stealable tasks were found.  The
700 >     * steal code inside the loop is a specialized form of
701 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
702 >     * helpJoinTask and signal propagation. The code for submission
703 >     * queues is almost identical. On each steal, the worker completes
704 >     * not only the task, but also all local tasks that this task may
705 >     * have generated. On detecting staleness or contention when
706 >     * trying to take a task, this method returns without finishing
707 >     * sweep, which allows global state rechecks before retry.
708 >     *
709 >     * @param w the worker
710 >     * @param a the number of active workers
711 >     * @return true if swept all queues without finding a task
712       */
713 <    private boolean transitionRunStateTo(int state) {
714 <        for (;;) {
715 <            int c = runControl;
716 <            if (runStateOf(c) >= state)
713 >    private boolean scan(ForkJoinWorkerThread w, int a) {
714 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
715 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        if (ws == null || ws.length <= m)         // staleness check
718 >            return false;
719 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
720 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
721 >            ForkJoinWorkerThread v = ws[k & m];
722 >            if (v != null && (b = v.queueBase) != v.queueTop &&
723 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
724 >                long u = (i << ASHIFT) + ABASE;
725 >                if ((t = q[i]) != null && v.queueBase == b &&
726 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
727 >                    int d = (v.queueBase = b + 1) - v.queueTop;
728 >                    v.stealHint = w.poolIndex;
729 >                    if (d != 0)
730 >                        signalWork();             // propagate if nonempty
731 >                    w.execTask(t);
732 >                }
733 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
734 >                return false;                     // store next seed
735 >            }
736 >            else if (j < 0) {                     // xorshift
737 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
738 >            }
739 >            else
740 >                ++k;
741 >        }
742 >        if (scanGuard != g)                       // staleness check
743 >            return false;
744 >        else {                                    // try to take submission
745 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
746 >            if ((b = queueBase) != queueTop &&
747 >                (q = submissionQueue) != null &&
748 >                (i = (q.length - 1) & b) >= 0) {
749 >                long u = (i << ASHIFT) + ABASE;
750 >                if ((t = q[i]) != null && queueBase == b &&
751 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
752 >                    queueBase = b + 1;
753 >                    w.execTask(t);
754 >                }
755                  return false;
756 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
756 >            }
757 >            return true;                         // all queues empty
758 >        }
759 >    }
760 >
761 >    /**
762 >     * Tries to enqueue worker w in wait queue and await change in
763 >     * worker's eventCount.  If the pool is quiescent and there is
764 >     * more than one worker, possibly terminates worker upon exit.
765 >     * Otherwise, before blocking, rescans queues to avoid missed
766 >     * signals.  Upon finding work, releases at least one worker
767 >     * (which may be the current worker). Rescans restart upon
768 >     * detected staleness or failure to release due to
769 >     * contention. Note the unusual conventions about Thread.interrupt
770 >     * here and elsewhere: Because interrupts are used solely to alert
771 >     * threads to check termination, which is checked here anyway, we
772 >     * clear status (using Thread.interrupted) before any call to
773 >     * park, so that park does not immediately return due to status
774 >     * being set via some other unrelated call to interrupt in user
775 >     * code.
776 >     *
777 >     * @param w the calling worker
778 >     * @param c the ctl value on entry
779 >     * @return true if waited or another thread was released upon enq
780 >     */
781 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
782 >        int v = w.eventCount;
783 >        w.nextWait = (int)c;                      // w's successor record
784 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
785 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
786 >            long d = ctl; // return true if lost to a deq, to force scan
787 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
788 >        }
789 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
790 >            long s = stealCount;
791 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
792 >                sc = w.stealCount = 0;
793 >            else if (w.eventCount != v)
794 >                return true;                      // update next time
795 >        }
796 >        if ((!shutdown || !tryTerminate(false)) &&
797 >            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802                  return true;
803 +            if (!rescanned) {
804 +                int g = scanGuard, m = g & SMASK;
805 +                ForkJoinWorkerThread[] ws = workers;
806 +                if (ws != null && m < ws.length) {
807 +                    rescanned = true;
808 +                    for (int i = 0; i <= m; ++i) {
809 +                        ForkJoinWorkerThread u = ws[i];
810 +                        if (u != null) {
811 +                            if (u.queueBase != u.queueTop &&
812 +                                !tryReleaseWaiter())
813 +                                rescanned = false; // contended
814 +                            if (w.eventCount != v)
815 +                                return true;
816 +                        }
817 +                    }
818 +                }
819 +                if (scanGuard != g ||              // stale
820 +                    (queueBase != queueTop && !tryReleaseWaiter()))
821 +                    rescanned = false;
822 +                if (!rescanned)
823 +                    Thread.yield();                // reduce contention
824 +                else
825 +                    Thread.interrupted();          // clear before park
826 +            }
827 +            else {
828 +                w.parked = true;                   // must recheck
829 +                if (w.eventCount != v) {
830 +                    w.parked = false;
831 +                    return true;
832 +                }
833 +                LockSupport.park(this);
834 +                rescanned = w.parked = false;
835 +            }
836          }
837      }
838  
839      /**
840 <     * Controls whether to add spares to maintain parallelism
841 <     */
842 <    private volatile boolean maintainsParallelism;
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime <
868 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 >                    Thread.interrupted();          // spurious wakeup
870 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 >                                                   currentCtl, prevCtl)) {
872 >                    w.terminate = true;            // restore previous
873 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 >                    break;
875 >                }
876 >            }
877 >        }
878 >    }
879  
880 <    // Constructors
880 >    // Submissions
881  
882      /**
883 <     * Creates a ForkJoinPool with a pool size equal to the number of
884 <     * processors available on the system and using the default
885 <     * ForkJoinWorkerThreadFactory,
886 <     * @throws SecurityException if a security manager exists and
334 <     *         the caller is not permitted to modify threads
335 <     *         because it does not hold {@link
336 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
883 >     * Enqueues the given task in the submissionQueue.  Same idea as
884 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885 >     *
886 >     * @param t the task
887       */
888 <    public ForkJoinPool() {
889 <        this(Runtime.getRuntime().availableProcessors(),
890 <             defaultForkJoinWorkerThreadFactory);
888 >    private void addSubmission(ForkJoinTask<?> t) {
889 >        final ReentrantLock lock = this.submissionLock;
890 >        lock.lock();
891 >        try {
892 >            ForkJoinTask<?>[] q; int s, m;
893 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 >                UNSAFE.putOrderedObject(q, u, t);
896 >                queueTop = s + 1;
897 >                if (s - queueBase == m)
898 >                    growSubmissionQueue();
899 >            }
900 >        } finally {
901 >            lock.unlock();
902 >        }
903 >        signalWork();
904      }
905  
906 +    //  (pollSubmission is defined below with exported methods)
907 +
908      /**
909 <     * Creates a ForkJoinPool with the indicated parellelism level
910 <     * threads, and using the default ForkJoinWorkerThreadFactory,
346 <     * @param parallelism the number of worker threads
347 <     * @throws IllegalArgumentException if parallelism less than or
348 <     * equal to zero
349 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
909 >     * Creates or doubles submissionQueue array.
910 >     * Basically identical to ForkJoinWorkerThread version.
911       */
912 <    public ForkJoinPool(int parallelism) {
913 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
912 >    private void growSubmissionQueue() {
913 >        ForkJoinTask<?>[] oldQ = submissionQueue;
914 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915 >        if (size > MAXIMUM_QUEUE_CAPACITY)
916 >            throw new RejectedExecutionException("Queue capacity exceeded");
917 >        if (size < INITIAL_QUEUE_CAPACITY)
918 >            size = INITIAL_QUEUE_CAPACITY;
919 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 >        int mask = size - 1;
921 >        int top = queueTop;
922 >        int oldMask;
923 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 >            for (int b = queueBase; b != top; ++b) {
925 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 >                    UNSAFE.putObjectVolatile
929 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 >            }
931 >        }
932 >    }
933 >
934 >    // Blocking support
935 >
936 >    /**
937 >     * Tries to increment blockedCount, decrement active count
938 >     * (sometimes implicitly) and possibly release or create a
939 >     * compensating worker in preparation for blocking. Fails
940 >     * on contention or termination.
941 >     *
942 >     * @return true if the caller can block, else should recheck and retry
943 >     */
944 >    private boolean tryPreBlock() {
945 >        int b = blockedCount;
946 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947 >            int pc = parallelism;
948 >            do {
949 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 >                int e, ac, tc, i;
951 >                long c = ctl;
952 >                int u = (int)(c >>> 32);
953 >                if ((e = (int)c) < 0) {
954 >                                                 // skip -- terminating
955 >                }
956 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957 >                         (ws = workers) != null &&
958 >                         (i = ~e & SMASK) < ws.length &&
959 >                         (w = ws[i]) != null) {
960 >                    long nc = ((long)(w.nextWait & E_MASK) |
961 >                               (c & (AC_MASK|TC_MASK)));
962 >                    if (w.eventCount == e &&
963 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 >                        if (w.parked)
966 >                            UNSAFE.unpark(w);
967 >                        return true;             // release an idle worker
968 >                    }
969 >                }
970 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973 >                        return true;             // no compensation needed
974 >                }
975 >                else if (tc + pc < MAX_ID) {
976 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 >                        addWorker();
979 >                        return true;            // create a replacement
980 >                    }
981 >                }
982 >                // try to back out on any failure and let caller retry
983 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                               b = blockedCount, b - 1));
985 >        }
986 >        return false;
987      }
988  
989      /**
990 <     * Creates a ForkJoinPool with parallelism equal to the number of
360 <     * processors available on the system and using the given
361 <     * ForkJoinWorkerThreadFactory,
362 <     * @param factory the factory for creating new threads
363 <     * @throws NullPointerException if factory is null
364 <     * @throws SecurityException if a security manager exists and
365 <     *         the caller is not permitted to modify threads
366 <     *         because it does not hold {@link
367 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
990 >     * Decrements blockedCount and increments active count.
991       */
992 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
993 <        this(Runtime.getRuntime().availableProcessors(), factory);
992 >    private void postBlock() {
993 >        long c;
994 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 >                                                c = ctl, c + AC_UNIT));
996 >        int b;
997 >        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 >                                               b = blockedCount, b - 1));
999      }
1000  
1001      /**
1002 <     * Creates a ForkJoinPool with the given parallelism and factory.
1002 >     * Possibly blocks waiting for the given task to complete, or
1003 >     * cancels the task if terminating.  Fails to wait if contended.
1004       *
1005 <     * @param parallelism the targeted number of worker threads
377 <     * @param factory the factory for creating new threads
378 <     * @throws IllegalArgumentException if parallelism less than or
379 <     * equal to zero, or greater than implementation limit.
380 <     * @throws NullPointerException if factory is null
381 <     * @throws SecurityException if a security manager exists and
382 <     *         the caller is not permitted to modify threads
383 <     *         because it does not hold {@link
384 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1005 >     * @param joinMe the task
1006       */
1007 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1008 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1009 <            throw new IllegalArgumentException();
1010 <        if (factory == null)
1011 <            throw new NullPointerException();
1012 <        checkPermission();
1013 <        this.factory = factory;
1014 <        this.parallelism = parallelism;
1015 <        this.maxPoolSize = MAX_THREADS;
1016 <        this.maintainsParallelism = true;
396 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
397 <        this.workerLock = new ReentrantLock();
398 <        this.termination = workerLock.newCondition();
399 <        this.stealCount = new AtomicLong();
400 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
401 <        // worker array and workers are lazily constructed
1007 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008 >        Thread.interrupted(); // clear interrupts before checking termination
1009 >        if (joinMe.status >= 0) {
1010 >            if (tryPreBlock()) {
1011 >                joinMe.tryAwaitDone(0L);
1012 >                postBlock();
1013 >            }
1014 >            else if ((ctl & STOP_BIT) != 0L)
1015 >                joinMe.cancelIgnoringExceptions();
1016 >        }
1017      }
1018  
1019      /**
1020 <     * Create new worker using factory.
1021 <     * @param index the index to assign worker
1022 <     * @return new worker, or null of factory failed
1020 >     * Possibly blocks the given worker waiting for joinMe to
1021 >     * complete or timeout.
1022 >     *
1023 >     * @param joinMe the task
1024 >     * @param millis the wait time for underlying Object.wait
1025       */
1026 <    private ForkJoinWorkerThread createWorker(int index) {
1027 <        Thread.UncaughtExceptionHandler h = ueh;
1028 <        ForkJoinWorkerThread w = factory.newThread(this);
1029 <        if (w != null) {
1030 <            w.poolIndex = index;
1031 <            w.setDaemon(true);
1032 <            w.setAsyncMode(locallyFifo);
1033 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1034 <            if (h != null)
1035 <                w.setUncaughtExceptionHandler(h);
1026 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1027 >        while (joinMe.status >= 0) {
1028 >            Thread.interrupted();
1029 >            if ((ctl & STOP_BIT) != 0L) {
1030 >                joinMe.cancelIgnoringExceptions();
1031 >                break;
1032 >            }
1033 >            if (tryPreBlock()) {
1034 >                long last = System.nanoTime();
1035 >                while (joinMe.status >= 0) {
1036 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1037 >                    if (millis <= 0)
1038 >                        break;
1039 >                    joinMe.tryAwaitDone(millis);
1040 >                    if (joinMe.status < 0)
1041 >                        break;
1042 >                    if ((ctl & STOP_BIT) != 0L) {
1043 >                        joinMe.cancelIgnoringExceptions();
1044 >                        break;
1045 >                    }
1046 >                    long now = System.nanoTime();
1047 >                    nanos -= now - last;
1048 >                    last = now;
1049 >                }
1050 >                postBlock();
1051 >                break;
1052 >            }
1053          }
420        return w;
1054      }
1055  
1056      /**
1057 <     * Return a good size for worker array given pool size.
425 <     * Currently requires size to be a power of two.
1057 >     * If necessary, compensates for blocker, and blocks.
1058       */
1059 <    private static int arraySizeFor(int ps) {
1060 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1059 >    private void awaitBlocker(ManagedBlocker blocker)
1060 >        throws InterruptedException {
1061 >        while (!blocker.isReleasable()) {
1062 >            if (tryPreBlock()) {
1063 >                try {
1064 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1065 >                } finally {
1066 >                    postBlock();
1067 >                }
1068 >                break;
1069 >            }
1070 >        }
1071      }
1072  
1073 +    // Creating, registering and deregistring workers
1074 +
1075      /**
1076 <     * Create or resize array if necessary to hold newLength.
1077 <     * Call only under exlusion or lock
434 <     * @return the array
1076 >     * Tries to create and start a worker; minimally rolls back counts
1077 >     * on failure.
1078       */
1079 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1080 <        ForkJoinWorkerThread[] ws = workers;
1081 <        if (ws == null)
1082 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1083 <        else if (newLength > ws.length)
1084 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1079 >    private void addWorker() {
1080 >        Throwable ex = null;
1081 >        ForkJoinWorkerThread t = null;
1082 >        try {
1083 >            t = factory.newThread(this);
1084 >        } catch (Throwable e) {
1085 >            ex = e;
1086 >        }
1087 >        if (t == null) {  // null or exceptional factory return
1088 >            long c;       // adjust counts
1089 >            do {} while (!UNSAFE.compareAndSwapLong
1090 >                         (this, ctlOffset, c = ctl,
1091 >                          (((c - AC_UNIT) & AC_MASK) |
1092 >                           ((c - TC_UNIT) & TC_MASK) |
1093 >                           (c & ~(AC_MASK|TC_MASK)))));
1094 >            // Propagate exception if originating from an external caller
1095 >            if (!tryTerminate(false) && ex != null &&
1096 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1097 >                UNSAFE.throwException(ex);
1098 >        }
1099          else
1100 <            return ws;
1100 >            t.start();
1101      }
1102  
1103      /**
1104 <     * Try to shrink workers into smaller array after one or more terminate
1104 >     * Callback from ForkJoinWorkerThread constructor to assign a
1105 >     * public name
1106       */
1107 <    private void tryShrinkWorkerArray() {
1108 <        ForkJoinWorkerThread[] ws = workers;
1109 <        if (ws != null) {
1110 <            int len = ws.length;
1111 <            int last = len - 1;
454 <            while (last >= 0 && ws[last] == null)
455 <                --last;
456 <            int newLength = arraySizeFor(last+1);
457 <            if (newLength < len)
458 <                workers = Arrays.copyOf(ws, newLength);
1107 >    final String nextWorkerName() {
1108 >        for (int n;;) {
1109 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1110 >                                         n = nextWorkerNumber, ++n))
1111 >                return workerNamePrefix + n;
1112          }
1113      }
1114  
1115      /**
1116 <     * Initialize workers if necessary
1116 >     * Callback from ForkJoinWorkerThread constructor to
1117 >     * determine its poolIndex and record in workers array.
1118 >     *
1119 >     * @param w the worker
1120 >     * @return the worker's pool index
1121       */
1122 <    final void ensureWorkerInitialization() {
1123 <        ForkJoinWorkerThread[] ws = workers;
1124 <        if (ws == null) {
1125 <            final ReentrantLock lock = this.workerLock;
1126 <            lock.lock();
1127 <            try {
1128 <                ws = workers;
1129 <                if (ws == null) {
1130 <                    int ps = parallelism;
1131 <                    ws = ensureWorkerArrayCapacity(ps);
1132 <                    for (int i = 0; i < ps; ++i) {
1133 <                        ForkJoinWorkerThread w = createWorker(i);
1134 <                        if (w != null) {
1135 <                            ws[i] = w;
1136 <                            w.start();
1137 <                            updateWorkerCount(1);
1122 >    final int registerWorker(ForkJoinWorkerThread w) {
1123 >        /*
1124 >         * In the typical case, a new worker acquires the lock, uses
1125 >         * next available index and returns quickly.  Since we should
1126 >         * not block callers (ultimately from signalWork or
1127 >         * tryPreBlock) waiting for the lock needed to do this, we
1128 >         * instead help release other workers while waiting for the
1129 >         * lock.
1130 >         */
1131 >        for (int g;;) {
1132 >            ForkJoinWorkerThread[] ws;
1133 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1134 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1135 >                                         g, g | SG_UNIT)) {
1136 >                int k = nextWorkerIndex;
1137 >                try {
1138 >                    if ((ws = workers) != null) { // ignore on shutdown
1139 >                        int n = ws.length;
1140 >                        if (k < 0 || k >= n || ws[k] != null) {
1141 >                            for (k = 0; k < n && ws[k] != null; ++k)
1142 >                                ;
1143 >                            if (k == n)
1144 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1145                          }
1146 +                        ws[k] = w;
1147 +                        nextWorkerIndex = k + 1;
1148 +                        int m = g & SMASK;
1149 +                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1150 +                    }
1151 +                } finally {
1152 +                    scanGuard = g;
1153 +                }
1154 +                return k;
1155 +            }
1156 +            else if ((ws = workers) != null) { // help release others
1157 +                for (ForkJoinWorkerThread u : ws) {
1158 +                    if (u != null && u.queueBase != u.queueTop) {
1159 +                        if (tryReleaseWaiter())
1160 +                            break;
1161                      }
1162                  }
1163 +            }
1164 +        }
1165 +    }
1166 +
1167 +    /**
1168 +     * Final callback from terminating worker.  Removes record of
1169 +     * worker from array, and adjusts counts. If pool is shutting
1170 +     * down, tries to complete termination.
1171 +     *
1172 +     * @param w the worker
1173 +     */
1174 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1175 +        int idx = w.poolIndex;
1176 +        int sc = w.stealCount;
1177 +        int steps = 0;
1178 +        // Remove from array, adjust worker counts and collect steal count.
1179 +        // We can intermix failed removes or adjusts with steal updates
1180 +        do {
1181 +            long s, c;
1182 +            int g;
1183 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1184 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1185 +                                         g, g |= SG_UNIT)) {
1186 +                ForkJoinWorkerThread[] ws = workers;
1187 +                if (ws != null && idx >= 0 &&
1188 +                    idx < ws.length && ws[idx] == w)
1189 +                    ws[idx] = null;    // verify
1190 +                nextWorkerIndex = idx;
1191 +                scanGuard = g + SG_UNIT;
1192 +                steps = 1;
1193 +            }
1194 +            if (steps == 1 &&
1195 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1196 +                                          (((c - AC_UNIT) & AC_MASK) |
1197 +                                           ((c - TC_UNIT) & TC_MASK) |
1198 +                                           (c & ~(AC_MASK|TC_MASK)))))
1199 +                steps = 2;
1200 +            if (sc != 0 &&
1201 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1202 +                                          s = stealCount, s + sc))
1203 +                sc = 0;
1204 +        } while (steps != 2 || sc != 0);
1205 +        if (!tryTerminate(false)) {
1206 +            if (ex != null)   // possibly replace if died abnormally
1207 +                signalWork();
1208 +            else
1209 +                tryReleaseWaiter();
1210 +        }
1211 +    }
1212 +
1213 +    // Shutdown and termination
1214 +
1215 +    /**
1216 +     * Possibly initiates and/or completes termination.
1217 +     *
1218 +     * @param now if true, unconditionally terminate, else only
1219 +     * if shutdown and empty queue and no active workers
1220 +     * @return true if now terminating or terminated
1221 +     */
1222 +    private boolean tryTerminate(boolean now) {
1223 +        long c;
1224 +        while (((c = ctl) & STOP_BIT) == 0) {
1225 +            if (!now) {
1226 +                if ((int)(c >> AC_SHIFT) != -parallelism)
1227 +                    return false;
1228 +                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1229 +                    queueBase != queueTop) {
1230 +                    if (ctl == c) // staleness check
1231 +                        return false;
1232 +                    continue;
1233 +                }
1234 +            }
1235 +            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1236 +                startTerminating();
1237 +        }
1238 +        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1239 +            final ReentrantLock lock = this.submissionLock;
1240 +            lock.lock();
1241 +            try {
1242 +                termination.signalAll();
1243              } finally {
1244                  lock.unlock();
1245              }
1246          }
1247 +        return true;
1248      }
1249  
1250      /**
1251 <     * Worker creation and startup for threads added via setParallelism.
1252 <     */
1253 <    private void createAndStartAddedWorkers() {
1254 <        resumeAllSpares();  // Allow spares to convert to nonspare
1255 <        int ps = parallelism;
1256 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1257 <        int len = ws.length;
1258 <        // Sweep through slots, to keep lowest indices most populated
1259 <        int k = 0;
1260 <        while (k < len) {
1261 <            if (ws[k] != null) {
1262 <                ++k;
1263 <                continue;
1251 >     * Runs up to three passes through workers: (0) Setting
1252 >     * termination status for each worker, followed by wakeups up to
1253 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1254 >     * lagging threads (likely in external tasks, but possibly also
1255 >     * blocked in joins).  Each pass repeats previous steps because of
1256 >     * potential lagging thread creation.
1257 >     */
1258 >    private void startTerminating() {
1259 >        cancelSubmissions();
1260 >        for (int pass = 0; pass < 3; ++pass) {
1261 >            ForkJoinWorkerThread[] ws = workers;
1262 >            if (ws != null) {
1263 >                for (ForkJoinWorkerThread w : ws) {
1264 >                    if (w != null) {
1265 >                        w.terminate = true;
1266 >                        if (pass > 0) {
1267 >                            w.cancelTasks();
1268 >                            if (pass > 1 && !w.isInterrupted()) {
1269 >                                try {
1270 >                                    w.interrupt();
1271 >                                } catch (SecurityException ignore) {
1272 >                                }
1273 >                            }
1274 >                        }
1275 >                    }
1276 >                }
1277 >                terminateWaiters();
1278              }
1279 <            int s = workerCounts;
1280 <            int tc = totalCountOf(s);
1281 <            int rc = runningCountOf(s);
1282 <            if (rc >= ps || tc >= ps)
1283 <                break;
1284 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1285 <                ForkJoinWorkerThread w = createWorker(k);
1286 <                if (w != null) {
1287 <                    ws[k++] = w;
1288 <                    w.start();
1279 >        }
1280 >    }
1281 >
1282 >    /**
1283 >     * Polls and cancels all submissions. Called only during termination.
1284 >     */
1285 >    private void cancelSubmissions() {
1286 >        while (queueBase != queueTop) {
1287 >            ForkJoinTask<?> task = pollSubmission();
1288 >            if (task != null) {
1289 >                try {
1290 >                    task.cancel(false);
1291 >                } catch (Throwable ignore) {
1292                  }
1293 <                else {
1294 <                    updateWorkerCount(-1); // back out on failed creation
1295 <                    break;
1293 >            }
1294 >        }
1295 >    }
1296 >
1297 >    /**
1298 >     * Tries to set the termination status of waiting workers, and
1299 >     * then wakes them up (after which they will terminate).
1300 >     */
1301 >    private void terminateWaiters() {
1302 >        ForkJoinWorkerThread[] ws = workers;
1303 >        if (ws != null) {
1304 >            ForkJoinWorkerThread w; long c; int i, e;
1305 >            int n = ws.length;
1306 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1307 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1308 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1309 >                                              (long)(w.nextWait & E_MASK) |
1310 >                                              ((c + AC_UNIT) & AC_MASK) |
1311 >                                              (c & (TC_MASK|STOP_BIT)))) {
1312 >                    w.terminate = true;
1313 >                    w.eventCount = e + EC_UNIT;
1314 >                    if (w.parked)
1315 >                        UNSAFE.unpark(w);
1316                  }
1317              }
1318          }
1319      }
1320  
1321 <    // Execution methods
1321 >    // misc ForkJoinWorkerThread support
1322  
1323      /**
1324 <     * Common code for execute, invoke and submit
1324 >     * Increments or decrements quiescerCount. Needed only to prevent
1325 >     * triggering shutdown if a worker is transiently inactive while
1326 >     * checking quiescence.
1327 >     *
1328 >     * @param delta 1 for increment, -1 for decrement
1329       */
1330 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1331 <        if (isShutdown())
1332 <            throw new RejectedExecutionException();
1333 <        if (workers == null)
533 <            ensureWorkerInitialization();
534 <        submissionQueue.offer(task);
535 <        signalIdleWorkers();
1330 >    final void addQuiescerCount(int delta) {
1331 >        int c;
1332 >        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1333 >                                               c = quiescerCount, c + delta));
1334      }
1335  
1336      /**
1337 <     * Performs the given task; returning its result upon completion
1337 >     * Directly increments or decrements active count without queuing.
1338 >     * This method is used to transiently assert inactivation while
1339 >     * checking quiescence.
1340 >     *
1341 >     * @param delta 1 for increment, -1 for decrement
1342 >     */
1343 >    final void addActiveCount(int delta) {
1344 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1345 >        long c;
1346 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1347 >                                                ((c + d) & AC_MASK) |
1348 >                                                (c & ~AC_MASK)));
1349 >    }
1350 >
1351 >    /**
1352 >     * Returns the approximate (non-atomic) number of idle threads per
1353 >     * active thread.
1354 >     */
1355 >    final int idlePerActive() {
1356 >        // Approximate at powers of two for small values, saturate past 4
1357 >        int p = parallelism;
1358 >        int a = p + (int)(ctl >> AC_SHIFT);
1359 >        return (a > (p >>>= 1) ? 0 :
1360 >                a > (p >>>= 1) ? 1 :
1361 >                a > (p >>>= 1) ? 2 :
1362 >                a > (p >>>= 1) ? 4 :
1363 >                8);
1364 >    }
1365 >
1366 >    // Exported methods
1367 >
1368 >    // Constructors
1369 >
1370 >    /**
1371 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1372 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1373 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1374 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1375 >     *
1376 >     * @throws SecurityException if a security manager exists and
1377 >     *         the caller is not permitted to modify threads
1378 >     *         because it does not hold {@link
1379 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1380 >     */
1381 >    public ForkJoinPool() {
1382 >        this(Runtime.getRuntime().availableProcessors(),
1383 >             defaultForkJoinWorkerThreadFactory, null, false);
1384 >    }
1385 >
1386 >    /**
1387 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1388 >     * level, the {@linkplain
1389 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1390 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1391 >     *
1392 >     * @param parallelism the parallelism level
1393 >     * @throws IllegalArgumentException if parallelism less than or
1394 >     *         equal to zero, or greater than implementation limit
1395 >     * @throws SecurityException if a security manager exists and
1396 >     *         the caller is not permitted to modify threads
1397 >     *         because it does not hold {@link
1398 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1399 >     */
1400 >    public ForkJoinPool(int parallelism) {
1401 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1402 >    }
1403 >
1404 >    /**
1405 >     * Creates a {@code ForkJoinPool} with the given parameters.
1406 >     *
1407 >     * @param parallelism the parallelism level. For default value,
1408 >     * use {@link java.lang.Runtime#availableProcessors}.
1409 >     * @param factory the factory for creating new threads. For default value,
1410 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1411 >     * @param handler the handler for internal worker threads that
1412 >     * terminate due to unrecoverable errors encountered while executing
1413 >     * tasks. For default value, use {@code null}.
1414 >     * @param asyncMode if true,
1415 >     * establishes local first-in-first-out scheduling mode for forked
1416 >     * tasks that are never joined. This mode may be more appropriate
1417 >     * than default locally stack-based mode in applications in which
1418 >     * worker threads only process event-style asynchronous tasks.
1419 >     * For default value, use {@code false}.
1420 >     * @throws IllegalArgumentException if parallelism less than or
1421 >     *         equal to zero, or greater than implementation limit
1422 >     * @throws NullPointerException if the factory is null
1423 >     * @throws SecurityException if a security manager exists and
1424 >     *         the caller is not permitted to modify threads
1425 >     *         because it does not hold {@link
1426 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1427 >     */
1428 >    public ForkJoinPool(int parallelism,
1429 >                        ForkJoinWorkerThreadFactory factory,
1430 >                        Thread.UncaughtExceptionHandler handler,
1431 >                        boolean asyncMode) {
1432 >        checkPermission();
1433 >        if (factory == null)
1434 >            throw new NullPointerException();
1435 >        if (parallelism <= 0 || parallelism > MAX_ID)
1436 >            throw new IllegalArgumentException();
1437 >        this.parallelism = parallelism;
1438 >        this.factory = factory;
1439 >        this.ueh = handler;
1440 >        this.locallyFifo = asyncMode;
1441 >        long np = (long)(-parallelism); // offset ctl counts
1442 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1443 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1444 >        // initialize workers array with room for 2*parallelism if possible
1445 >        int n = parallelism << 1;
1446 >        if (n >= MAX_ID)
1447 >            n = MAX_ID;
1448 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1449 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1450 >        }
1451 >        workers = new ForkJoinWorkerThread[n + 1];
1452 >        this.submissionLock = new ReentrantLock();
1453 >        this.termination = submissionLock.newCondition();
1454 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1455 >        sb.append(poolNumberGenerator.incrementAndGet());
1456 >        sb.append("-worker-");
1457 >        this.workerNamePrefix = sb.toString();
1458 >    }
1459 >
1460 >    // Execution methods
1461 >
1462 >    /**
1463 >     * Performs the given task, returning its result upon completion.
1464 >     * If the computation encounters an unchecked Exception or Error,
1465 >     * it is rethrown as the outcome of this invocation.  Rethrown
1466 >     * exceptions behave in the same way as regular exceptions, but,
1467 >     * when possible, contain stack traces (as displayed for example
1468 >     * using {@code ex.printStackTrace()}) of both the current thread
1469 >     * as well as the thread actually encountering the exception;
1470 >     * minimally only the latter.
1471 >     *
1472       * @param task the task
1473       * @return the task's result
1474 <     * @throws NullPointerException if task is null
1475 <     * @throws RejectedExecutionException if pool is shut down
1474 >     * @throws NullPointerException if the task is null
1475 >     * @throws RejectedExecutionException if the task cannot be
1476 >     *         scheduled for execution
1477       */
1478      public <T> T invoke(ForkJoinTask<T> task) {
1479 <        doSubmit(task);
1480 <        return task.join();
1479 >        Thread t = Thread.currentThread();
1480 >        if (task == null)
1481 >            throw new NullPointerException();
1482 >        if (shutdown)
1483 >            throw new RejectedExecutionException();
1484 >        if ((t instanceof ForkJoinWorkerThread) &&
1485 >            ((ForkJoinWorkerThread)t).pool == this)
1486 >            return task.invoke();  // bypass submit if in same pool
1487 >        else {
1488 >            addSubmission(task);
1489 >            return task.join();
1490 >        }
1491 >    }
1492 >
1493 >    /**
1494 >     * Unless terminating, forks task if within an ongoing FJ
1495 >     * computation in the current pool, else submits as external task.
1496 >     */
1497 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1498 >        ForkJoinWorkerThread w;
1499 >        Thread t = Thread.currentThread();
1500 >        if (shutdown)
1501 >            throw new RejectedExecutionException();
1502 >        if ((t instanceof ForkJoinWorkerThread) &&
1503 >            (w = (ForkJoinWorkerThread)t).pool == this)
1504 >            w.pushTask(task);
1505 >        else
1506 >            addSubmission(task);
1507      }
1508  
1509      /**
1510       * Arranges for (asynchronous) execution of the given task.
1511 +     *
1512       * @param task the task
1513 <     * @throws NullPointerException if task is null
1514 <     * @throws RejectedExecutionException if pool is shut down
1513 >     * @throws NullPointerException if the task is null
1514 >     * @throws RejectedExecutionException if the task cannot be
1515 >     *         scheduled for execution
1516       */
1517 <    public <T> void execute(ForkJoinTask<T> task) {
1518 <        doSubmit(task);
1517 >    public void execute(ForkJoinTask<?> task) {
1518 >        if (task == null)
1519 >            throw new NullPointerException();
1520 >        forkOrSubmit(task);
1521      }
1522  
1523      // AbstractExecutorService methods
1524  
1525 +    /**
1526 +     * @throws NullPointerException if the task is null
1527 +     * @throws RejectedExecutionException if the task cannot be
1528 +     *         scheduled for execution
1529 +     */
1530      public void execute(Runnable task) {
1531 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1531 >        if (task == null)
1532 >            throw new NullPointerException();
1533 >        ForkJoinTask<?> job;
1534 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1535 >            job = (ForkJoinTask<?>) task;
1536 >        else
1537 >            job = ForkJoinTask.adapt(task, null);
1538 >        forkOrSubmit(job);
1539 >    }
1540 >
1541 >    /**
1542 >     * Submits a ForkJoinTask for execution.
1543 >     *
1544 >     * @param task the task to submit
1545 >     * @return the task
1546 >     * @throws NullPointerException if the task is null
1547 >     * @throws RejectedExecutionException if the task cannot be
1548 >     *         scheduled for execution
1549 >     */
1550 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1551 >        if (task == null)
1552 >            throw new NullPointerException();
1553 >        forkOrSubmit(task);
1554 >        return task;
1555      }
1556  
1557 +    /**
1558 +     * @throws NullPointerException if the task is null
1559 +     * @throws RejectedExecutionException if the task cannot be
1560 +     *         scheduled for execution
1561 +     */
1562      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1563 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1564 <        doSubmit(job);
1563 >        if (task == null)
1564 >            throw new NullPointerException();
1565 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1566 >        forkOrSubmit(job);
1567          return job;
1568      }
1569  
1570 +    /**
1571 +     * @throws NullPointerException if the task is null
1572 +     * @throws RejectedExecutionException if the task cannot be
1573 +     *         scheduled for execution
1574 +     */
1575      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1576 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1577 <        doSubmit(job);
1576 >        if (task == null)
1577 >            throw new NullPointerException();
1578 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1579 >        forkOrSubmit(job);
1580          return job;
1581      }
1582  
1583 +    /**
1584 +     * @throws NullPointerException if the task is null
1585 +     * @throws RejectedExecutionException if the task cannot be
1586 +     *         scheduled for execution
1587 +     */
1588      public ForkJoinTask<?> submit(Runnable task) {
1589 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1590 <        doSubmit(job);
1589 >        if (task == null)
1590 >            throw new NullPointerException();
1591 >        ForkJoinTask<?> job;
1592 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1593 >            job = (ForkJoinTask<?>) task;
1594 >        else
1595 >            job = ForkJoinTask.adapt(task, null);
1596 >        forkOrSubmit(job);
1597          return job;
1598      }
1599  
1600      /**
1601 <     * Adaptor for Runnables. This implements RunnableFuture
1602 <     * to be compliant with AbstractExecutorService constraints
1601 >     * @throws NullPointerException       {@inheritDoc}
1602 >     * @throws RejectedExecutionException {@inheritDoc}
1603       */
588    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
589        implements RunnableFuture<T> {
590        final Runnable runnable;
591        final T resultOnCompletion;
592        T result;
593        AdaptedRunnable(Runnable runnable, T result) {
594            if (runnable == null) throw new NullPointerException();
595            this.runnable = runnable;
596            this.resultOnCompletion = result;
597        }
598        public T getRawResult() { return result; }
599        public void setRawResult(T v) { result = v; }
600        public boolean exec() {
601            runnable.run();
602            result = resultOnCompletion;
603            return true;
604        }
605        public void run() { invoke(); }
606    }
607
608    /**
609     * Adaptor for Callables
610     */
611    static final class AdaptedCallable<T> extends ForkJoinTask<T>
612        implements RunnableFuture<T> {
613        final Callable<T> callable;
614        T result;
615        AdaptedCallable(Callable<T> callable) {
616            if (callable == null) throw new NullPointerException();
617            this.callable = callable;
618        }
619        public T getRawResult() { return result; }
620        public void setRawResult(T v) { result = v; }
621        public boolean exec() {
622            try {
623                result = callable.call();
624                return true;
625            } catch (Error err) {
626                throw err;
627            } catch (RuntimeException rex) {
628                throw rex;
629            } catch (Exception ex) {
630                throw new RuntimeException(ex);
631            }
632        }
633        public void run() { invoke(); }
634    }
635
1604      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1605 <        ArrayList<ForkJoinTask<T>> ts =
1605 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1606              new ArrayList<ForkJoinTask<T>>(tasks.size());
1607 <        for (Callable<T> c : tasks)
1608 <            ts.add(new AdaptedCallable<T>(c));
1609 <        invoke(new InvokeAll<T>(ts));
1610 <        return (List<Future<T>>)(List)ts;
1607 >        for (Callable<T> task : tasks)
1608 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1609 >        invoke(new InvokeAll<T>(forkJoinTasks));
1610 >
1611 >        @SuppressWarnings({"unchecked", "rawtypes"})
1612 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1613 >        return futures;
1614      }
1615  
1616      static final class InvokeAll<T> extends RecursiveAction {
1617          final ArrayList<ForkJoinTask<T>> tasks;
1618          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1619          public void compute() {
1620 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1620 >            try { invokeAll(tasks); }
1621 >            catch (Exception ignore) {}
1622          }
1623 +        private static final long serialVersionUID = -7914297376763021607L;
1624      }
1625  
653    // Configuration and status settings and queries
654
1626      /**
1627 <     * Returns the factory used for constructing new workers
1627 >     * Returns the factory used for constructing new workers.
1628       *
1629       * @return the factory used for constructing new workers
1630       */
# Line 664 | Line 1635 | public class ForkJoinPool extends Abstra
1635      /**
1636       * Returns the handler for internal worker threads that terminate
1637       * due to unrecoverable errors encountered while executing tasks.
667     * @return the handler, or null if none
668     */
669    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
670        Thread.UncaughtExceptionHandler h;
671        final ReentrantLock lock = this.workerLock;
672        lock.lock();
673        try {
674            h = ueh;
675        } finally {
676            lock.unlock();
677        }
678        return h;
679    }
680
681    /**
682     * Sets the handler for internal worker threads that terminate due
683     * to unrecoverable errors encountered while executing tasks.
684     * Unless set, the current default or ThreadGroup handler is used
685     * as handler.
1638       *
1639 <     * @param h the new handler
688 <     * @return the old handler, or null if none
689 <     * @throws SecurityException if a security manager exists and
690 <     *         the caller is not permitted to modify threads
691 <     *         because it does not hold {@link
692 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
693 <     */
694 <    public Thread.UncaughtExceptionHandler
695 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696 <        checkPermission();
697 <        Thread.UncaughtExceptionHandler old = null;
698 <        final ReentrantLock lock = this.workerLock;
699 <        lock.lock();
700 <        try {
701 <            old = ueh;
702 <            ueh = h;
703 <            ForkJoinWorkerThread[] ws = workers;
704 <            if (ws != null) {
705 <                for (int i = 0; i < ws.length; ++i) {
706 <                    ForkJoinWorkerThread w = ws[i];
707 <                    if (w != null)
708 <                        w.setUncaughtExceptionHandler(h);
709 <                }
710 <            }
711 <        } finally {
712 <            lock.unlock();
713 <        }
714 <        return old;
715 <    }
716 <
717 <
718 <    /**
719 <     * Sets the target paralleism level of this pool.
720 <     * @param parallelism the target parallelism
721 <     * @throws IllegalArgumentException if parallelism less than or
722 <     * equal to zero or greater than maximum size bounds.
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1639 >     * @return the handler, or {@code null} if none
1640       */
1641 <    public void setParallelism(int parallelism) {
1642 <        checkPermission();
730 <        if (parallelism <= 0 || parallelism > maxPoolSize)
731 <            throw new IllegalArgumentException();
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            if (!isTerminating()) {
736 <                int p = this.parallelism;
737 <                this.parallelism = parallelism;
738 <                if (parallelism > p)
739 <                    createAndStartAddedWorkers();
740 <                else
741 <                    trimSpares();
742 <            }
743 <        } finally {
744 <            lock.unlock();
745 <        }
746 <        signalIdleWorkers();
1641 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1642 >        return ueh;
1643      }
1644  
1645      /**
1646 <     * Returns the targeted number of worker threads in this pool.
1646 >     * Returns the targeted parallelism level of this pool.
1647       *
1648 <     * @return the targeted number of worker threads in this pool
1648 >     * @return the targeted parallelism level of this pool
1649       */
1650      public int getParallelism() {
1651          return parallelism;
# Line 757 | Line 1653 | public class ForkJoinPool extends Abstra
1653  
1654      /**
1655       * Returns the number of worker threads that have started but not
1656 <     * yet terminated.  This result returned by this method may differ
1657 <     * from <code>getParallelism</code> when threads are created to
1656 >     * yet terminated.  The result returned by this method may differ
1657 >     * from {@link #getParallelism} when threads are created to
1658       * maintain parallelism when others are cooperatively blocked.
1659       *
1660       * @return the number of worker threads
1661       */
1662      public int getPoolSize() {
1663 <        return totalCountOf(workerCounts);
768 <    }
769 <
770 <    /**
771 <     * Returns the maximum number of threads allowed to exist in the
772 <     * pool, even if there are insufficient unblocked running threads.
773 <     * @return the maximum
774 <     */
775 <    public int getMaximumPoolSize() {
776 <        return maxPoolSize;
777 <    }
778 <
779 <    /**
780 <     * Sets the maximum number of threads allowed to exist in the
781 <     * pool, even if there are insufficient unblocked running threads.
782 <     * Setting this value has no effect on current pool size. It
783 <     * controls construction of new threads.
784 <     * @throws IllegalArgumentException if negative or greater then
785 <     * internal implementation limit.
786 <     */
787 <    public void setMaximumPoolSize(int newMax) {
788 <        if (newMax < 0 || newMax > MAX_THREADS)
789 <            throw new IllegalArgumentException();
790 <        maxPoolSize = newMax;
791 <    }
792 <
793 <
794 <    /**
795 <     * Returns true if this pool dynamically maintains its target
796 <     * parallelism level. If false, new threads are added only to
797 <     * avoid possible starvation.
798 <     * This setting is by default true;
799 <     * @return true if maintains parallelism
800 <     */
801 <    public boolean getMaintainsParallelism() {
802 <        return maintainsParallelism;
803 <    }
804 <
805 <    /**
806 <     * Sets whether this pool dynamically maintains its target
807 <     * parallelism level. If false, new threads are added only to
808 <     * avoid possible starvation.
809 <     * @param enable true to maintains parallelism
810 <     */
811 <    public void setMaintainsParallelism(boolean enable) {
812 <        maintainsParallelism = enable;
1663 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1664      }
1665  
1666      /**
1667 <     * Establishes local first-in-first-out scheduling mode for forked
817 <     * tasks that are never joined. This mode may be more appropriate
818 <     * than default locally stack-based mode in applications in which
819 <     * worker threads only process asynchronous tasks.  This method is
820 <     * designed to be invoked only when pool is quiescent, and
821 <     * typically only before any tasks are submitted. The effects of
822 <     * invocations at ather times may be unpredictable.
823 <     *
824 <     * @param async if true, use locally FIFO scheduling
825 <     * @return the previous mode.
826 <     */
827 <    public boolean setAsyncMode(boolean async) {
828 <        boolean oldMode = locallyFifo;
829 <        locallyFifo = async;
830 <        ForkJoinWorkerThread[] ws = workers;
831 <        if (ws != null) {
832 <            for (int i = 0; i < ws.length; ++i) {
833 <                ForkJoinWorkerThread t = ws[i];
834 <                if (t != null)
835 <                    t.setAsyncMode(async);
836 <            }
837 <        }
838 <        return oldMode;
839 <    }
840 <
841 <    /**
842 <     * Returns true if this pool uses local first-in-first-out
1667 >     * Returns {@code true} if this pool uses local first-in-first-out
1668       * scheduling mode for forked tasks that are never joined.
1669       *
1670 <     * @return true if this pool uses async mode.
1670 >     * @return {@code true} if this pool uses async mode
1671       */
1672      public boolean getAsyncMode() {
1673          return locallyFifo;
# Line 851 | Line 1676 | public class ForkJoinPool extends Abstra
1676      /**
1677       * Returns an estimate of the number of worker threads that are
1678       * not blocked waiting to join tasks or for other managed
1679 <     * synchronization.
1679 >     * synchronization. This method may overestimate the
1680 >     * number of running threads.
1681       *
1682       * @return the number of worker threads
1683       */
1684      public int getRunningThreadCount() {
1685 <        return runningCountOf(workerCounts);
1685 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1686 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1687      }
1688  
1689      /**
1690       * Returns an estimate of the number of threads that are currently
1691       * stealing or executing tasks. This method may overestimate the
1692       * number of active threads.
1693 <     * @return the number of active threads.
1693 >     *
1694 >     * @return the number of active threads
1695       */
1696      public int getActiveThreadCount() {
1697 <        return activeCountOf(runControl);
1697 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1698 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1699      }
1700  
1701      /**
1702 <     * Returns an estimate of the number of threads that are currently
1703 <     * idle waiting for tasks. This method may underestimate the
1704 <     * number of idle threads.
1705 <     * @return the number of idle threads.
1706 <     */
1707 <    final int getIdleThreadCount() {
1708 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
1709 <        return (c <= 0)? 0 : c;
1710 <    }
882 <
883 <    /**
884 <     * Returns true if all worker threads are currently idle. An idle
885 <     * worker is one that cannot obtain a task to execute because none
886 <     * are available to steal from other threads, and there are no
887 <     * pending submissions to the pool. This method is conservative:
888 <     * It might not return true immediately upon idleness of all
889 <     * threads, but will eventually become true if threads remain
890 <     * inactive.
891 <     * @return true if all threads are currently idle
1702 >     * Returns {@code true} if all worker threads are currently idle.
1703 >     * An idle worker is one that cannot obtain a task to execute
1704 >     * because none are available to steal from other threads, and
1705 >     * there are no pending submissions to the pool. This method is
1706 >     * conservative; it might not return {@code true} immediately upon
1707 >     * idleness of all threads, but will eventually become true if
1708 >     * threads remain inactive.
1709 >     *
1710 >     * @return {@code true} if all threads are currently idle
1711       */
1712      public boolean isQuiescent() {
1713 <        return activeCountOf(runControl) == 0;
1713 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1714      }
1715  
1716      /**
# Line 899 | Line 1718 | public class ForkJoinPool extends Abstra
1718       * one thread's work queue by another. The reported value
1719       * underestimates the actual total number of steals when the pool
1720       * is not quiescent. This value may be useful for monitoring and
1721 <     * tuning fork/join programs: In general, steal counts should be
1721 >     * tuning fork/join programs: in general, steal counts should be
1722       * high enough to keep threads busy, but low enough to avoid
1723       * overhead and contention across threads.
1724 <     * @return the number of steals.
1724 >     *
1725 >     * @return the number of steals
1726       */
1727      public long getStealCount() {
1728 <        return stealCount.get();
909 <    }
910 <
911 <    /**
912 <     * Accumulate steal count from a worker. Call only
913 <     * when worker known to be idle.
914 <     */
915 <    private void updateStealCount(ForkJoinWorkerThread w) {
916 <        int sc = w.getAndClearStealCount();
917 <        if (sc != 0)
918 <            stealCount.addAndGet(sc);
1728 >        return stealCount;
1729      }
1730  
1731      /**
# Line 925 | Line 1735 | public class ForkJoinPool extends Abstra
1735       * an approximation, obtained by iterating across all threads in
1736       * the pool. This method may be useful for tuning task
1737       * granularities.
1738 <     * @return the number of queued tasks.
1738 >     *
1739 >     * @return the number of queued tasks
1740       */
1741      public long getQueuedTaskCount() {
1742          long count = 0;
1743 <        ForkJoinWorkerThread[] ws = workers;
1744 <        if (ws != null) {
1745 <            for (int i = 0; i < ws.length; ++i) {
1746 <                ForkJoinWorkerThread t = ws[i];
1747 <                if (t != null)
1748 <                    count += t.getQueueSize();
938 <            }
1743 >        ForkJoinWorkerThread[] ws;
1744 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1745 >            (ws = workers) != null) {
1746 >            for (ForkJoinWorkerThread w : ws)
1747 >                if (w != null)
1748 >                    count -= w.queueBase - w.queueTop; // must read base first
1749          }
1750          return count;
1751      }
1752  
1753      /**
1754 <     * Returns an estimate of the number tasks submitted to this pool
1755 <     * that have not yet begun executing. This method takes time
1756 <     * proportional to the number of submissions.
1757 <     * @return the number of queued submissions.
1754 >     * Returns an estimate of the number of tasks submitted to this
1755 >     * pool that have not yet begun executing.  This method may take
1756 >     * time proportional to the number of submissions.
1757 >     *
1758 >     * @return the number of queued submissions
1759       */
1760      public int getQueuedSubmissionCount() {
1761 <        return submissionQueue.size();
1761 >        return -queueBase + queueTop;
1762      }
1763  
1764      /**
1765 <     * Returns true if there are any tasks submitted to this pool
1766 <     * that have not yet begun executing.
1767 <     * @return <code>true</code> if there are any queued submissions.
1765 >     * Returns {@code true} if there are any tasks submitted to this
1766 >     * pool that have not yet begun executing.
1767 >     *
1768 >     * @return {@code true} if there are any queued submissions
1769       */
1770      public boolean hasQueuedSubmissions() {
1771 <        return !submissionQueue.isEmpty();
1771 >        return queueBase != queueTop;
1772      }
1773  
1774      /**
1775       * Removes and returns the next unexecuted submission if one is
1776       * available.  This method may be useful in extensions to this
1777       * class that re-assign work in systems with multiple pools.
1778 <     * @return the next submission, or null if none
1778 >     *
1779 >     * @return the next submission, or {@code null} if none
1780       */
1781      protected ForkJoinTask<?> pollSubmission() {
1782 <        return submissionQueue.poll();
1782 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1783 >        while ((b = queueBase) != queueTop &&
1784 >               (q = submissionQueue) != null &&
1785 >               (i = (q.length - 1) & b) >= 0) {
1786 >            long u = (i << ASHIFT) + ABASE;
1787 >            if ((t = q[i]) != null &&
1788 >                queueBase == b &&
1789 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1790 >                queueBase = b + 1;
1791 >                return t;
1792 >            }
1793 >        }
1794 >        return null;
1795      }
1796  
1797      /**
1798       * Removes all available unexecuted submitted and forked tasks
1799       * from scheduling queues and adds them to the given collection,
1800       * without altering their execution status. These may include
1801 <     * artifically generated or wrapped tasks. This method id designed
1802 <     * to be invoked only when the pool is known to be
1801 >     * artificially generated or wrapped tasks. This method is
1802 >     * designed to be invoked only when the pool is known to be
1803       * quiescent. Invocations at other times may not remove all
1804       * tasks. A failure encountered while attempting to add elements
1805 <     * to collection <tt>c</tt> may result in elements being in
1805 >     * to collection {@code c} may result in elements being in
1806       * neither, either or both collections when the associated
1807       * exception is thrown.  The behavior of this operation is
1808       * undefined if the specified collection is modified while the
1809       * operation is in progress.
1810 +     *
1811       * @param c the collection to transfer elements into
1812       * @return the number of elements transferred
1813       */
1814 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1815 <        int n = submissionQueue.drainTo(c);
1816 <        ForkJoinWorkerThread[] ws = workers;
1817 <        if (ws != null) {
1818 <            for (int i = 0; i < ws.length; ++i) {
1819 <                ForkJoinWorkerThread w = ws[i];
1820 <                if (w != null)
995 <                    n += w.drainTasksTo(c);
1814 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1815 >        int count = 0;
1816 >        while (queueBase != queueTop) {
1817 >            ForkJoinTask<?> t = pollSubmission();
1818 >            if (t != null) {
1819 >                c.add(t);
1820 >                ++count;
1821              }
1822          }
1823 <        return n;
1823 >        ForkJoinWorkerThread[] ws;
1824 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1825 >            (ws = workers) != null) {
1826 >            for (ForkJoinWorkerThread w : ws)
1827 >                if (w != null)
1828 >                    count += w.drainTasksTo(c);
1829 >        }
1830 >        return count;
1831      }
1832  
1833      /**
# Line 1006 | Line 1838 | public class ForkJoinPool extends Abstra
1838       * @return a string identifying this pool, as well as its state
1839       */
1840      public String toString() {
1009        int ps = parallelism;
1010        int wc = workerCounts;
1011        int rc = runControl;
1841          long st = getStealCount();
1842          long qt = getQueuedTaskCount();
1843          long qs = getQueuedSubmissionCount();
1844 +        int pc = parallelism;
1845 +        long c = ctl;
1846 +        int tc = pc + (short)(c >>> TC_SHIFT);
1847 +        int rc = pc + (int)(c >> AC_SHIFT);
1848 +        if (rc < 0) // ignore transient negative
1849 +            rc = 0;
1850 +        int ac = rc + blockedCount;
1851 +        String level;
1852 +        if ((c & STOP_BIT) != 0)
1853 +            level = (tc == 0) ? "Terminated" : "Terminating";
1854 +        else
1855 +            level = shutdown ? "Shutting down" : "Running";
1856          return super.toString() +
1857 <            "[" + runStateToString(runStateOf(rc)) +
1858 <            ", parallelism = " + ps +
1859 <            ", size = " + totalCountOf(wc) +
1860 <            ", active = " + activeCountOf(rc) +
1861 <            ", running = " + runningCountOf(wc) +
1857 >            "[" + level +
1858 >            ", parallelism = " + pc +
1859 >            ", size = " + tc +
1860 >            ", active = " + ac +
1861 >            ", running = " + rc +
1862              ", steals = " + st +
1863              ", tasks = " + qt +
1864              ", submissions = " + qs +
1865              "]";
1866      }
1867  
1027    private static String runStateToString(int rs) {
1028        switch(rs) {
1029        case RUNNING: return "Running";
1030        case SHUTDOWN: return "Shutting down";
1031        case TERMINATING: return "Terminating";
1032        case TERMINATED: return "Terminated";
1033        default: throw new Error("Unknown run state");
1034        }
1035    }
1036
1037    // lifecycle control
1038
1868      /**
1869       * Initiates an orderly shutdown in which previously submitted
1870       * tasks are executed, but no new tasks will be accepted.
1871       * Invocation has no additional effect if already shut down.
1872       * Tasks that are in the process of being submitted concurrently
1873       * during the course of this method may or may not be rejected.
1874 +     *
1875       * @throws SecurityException if a security manager exists and
1876       *         the caller is not permitted to modify threads
1877       *         because it does not hold {@link
1878 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1878 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1879       */
1880      public void shutdown() {
1881          checkPermission();
1882 <        transitionRunStateTo(SHUTDOWN);
1883 <        if (canTerminateOnShutdown(runControl))
1054 <            terminateOnShutdown();
1882 >        shutdown = true;
1883 >        tryTerminate(false);
1884      }
1885  
1886      /**
1887 <     * Attempts to stop all actively executing tasks, and cancels all
1888 <     * waiting tasks.  Tasks that are in the process of being
1889 <     * submitted or executed concurrently during the course of this
1890 <     * method may or may not be rejected. Unlike some other executors,
1891 <     * this method cancels rather than collects non-executed tasks
1892 <     * upon termination, so always returns an empty list. However, you
1893 <     * can use method <code>drainTasksTo</code> before invoking this
1894 <     * method to transfer unexecuted tasks to another collection.
1887 >     * Attempts to cancel and/or stop all tasks, and reject all
1888 >     * subsequently submitted tasks.  Tasks that are in the process of
1889 >     * being submitted or executed concurrently during the course of
1890 >     * this method may or may not be rejected. This method cancels
1891 >     * both existing and unexecuted tasks, in order to permit
1892 >     * termination in the presence of task dependencies. So the method
1893 >     * always returns an empty list (unlike the case for some other
1894 >     * Executors).
1895 >     *
1896       * @return an empty list
1897       * @throws SecurityException if a security manager exists and
1898       *         the caller is not permitted to modify threads
1899       *         because it does not hold {@link
1900 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1900 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1901       */
1902      public List<Runnable> shutdownNow() {
1903          checkPermission();
1904 <        terminate();
1904 >        shutdown = true;
1905 >        tryTerminate(true);
1906          return Collections.emptyList();
1907      }
1908  
1909      /**
1910 <     * Returns <code>true</code> if all tasks have completed following shut down.
1910 >     * Returns {@code true} if all tasks have completed following shut down.
1911       *
1912 <     * @return <code>true</code> if all tasks have completed following shut down
1912 >     * @return {@code true} if all tasks have completed following shut down
1913       */
1914      public boolean isTerminated() {
1915 <        return runStateOf(runControl) == TERMINATED;
1915 >        long c = ctl;
1916 >        return ((c & STOP_BIT) != 0L &&
1917 >                (short)(c >>> TC_SHIFT) == -parallelism);
1918      }
1919  
1920      /**
1921 <     * Returns <code>true</code> if the process of termination has
1922 <     * commenced but possibly not yet completed.
1921 >     * Returns {@code true} if the process of termination has
1922 >     * commenced but not yet completed.  This method may be useful for
1923 >     * debugging. A return of {@code true} reported a sufficient
1924 >     * period after shutdown may indicate that submitted tasks have
1925 >     * ignored or suppressed interruption, or are waiting for IO,
1926 >     * causing this executor not to properly terminate. (See the
1927 >     * advisory notes for class {@link ForkJoinTask} stating that
1928 >     * tasks should not normally entail blocking operations.  But if
1929 >     * they do, they must abort them on interrupt.)
1930       *
1931 <     * @return <code>true</code> if terminating
1931 >     * @return {@code true} if terminating but not yet terminated
1932       */
1933      public boolean isTerminating() {
1934 <        return runStateOf(runControl) >= TERMINATING;
1934 >        long c = ctl;
1935 >        return ((c & STOP_BIT) != 0L &&
1936 >                (short)(c >>> TC_SHIFT) != -parallelism);
1937      }
1938  
1939      /**
1940 <     * Returns <code>true</code> if this pool has been shut down.
1940 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1941 >     */
1942 >    final boolean isAtLeastTerminating() {
1943 >        return (ctl & STOP_BIT) != 0L;
1944 >    }
1945 >
1946 >    /**
1947 >     * Returns {@code true} if this pool has been shut down.
1948       *
1949 <     * @return <code>true</code> if this pool has been shut down
1949 >     * @return {@code true} if this pool has been shut down
1950       */
1951      public boolean isShutdown() {
1952 <        return runStateOf(runControl) >= SHUTDOWN;
1952 >        return shutdown;
1953      }
1954  
1955      /**
# Line 1110 | Line 1959 | public class ForkJoinPool extends Abstra
1959       *
1960       * @param timeout the maximum time to wait
1961       * @param unit the time unit of the timeout argument
1962 <     * @return <code>true</code> if this executor terminated and
1963 <     *         <code>false</code> if the timeout elapsed before termination
1962 >     * @return {@code true} if this executor terminated and
1963 >     *         {@code false} if the timeout elapsed before termination
1964       * @throws InterruptedException if interrupted while waiting
1965       */
1966      public boolean awaitTermination(long timeout, TimeUnit unit)
1967          throws InterruptedException {
1968          long nanos = unit.toNanos(timeout);
1969 <        final ReentrantLock lock = this.workerLock;
1969 >        final ReentrantLock lock = this.submissionLock;
1970          lock.lock();
1971          try {
1972              for (;;) {
# Line 1132 | Line 1981 | public class ForkJoinPool extends Abstra
1981          }
1982      }
1983  
1135    // Shutdown and termination support
1136
1137    /**
1138     * Callback from terminating worker. Null out the corresponding
1139     * workers slot, and if terminating, try to terminate, else try to
1140     * shrink workers array.
1141     * @param w the worker
1142     */
1143    final void workerTerminated(ForkJoinWorkerThread w) {
1144        updateStealCount(w);
1145        updateWorkerCount(-1);
1146        final ReentrantLock lock = this.workerLock;
1147        lock.lock();
1148        try {
1149            ForkJoinWorkerThread[] ws = workers;
1150            if (ws != null) {
1151                int idx = w.poolIndex;
1152                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153                    ws[idx] = null;
1154                if (totalCountOf(workerCounts) == 0) {
1155                    terminate(); // no-op if already terminating
1156                    transitionRunStateTo(TERMINATED);
1157                    termination.signalAll();
1158                }
1159                else if (!isTerminating()) {
1160                    tryShrinkWorkerArray();
1161                    tryResumeSpare(true); // allow replacement
1162                }
1163            }
1164        } finally {
1165            lock.unlock();
1166        }
1167        signalIdleWorkers();
1168    }
1169
1170    /**
1171     * Initiate termination.
1172     */
1173    private void terminate() {
1174        if (transitionRunStateTo(TERMINATING)) {
1175            stopAllWorkers();
1176            resumeAllSpares();
1177            signalIdleWorkers();
1178            cancelQueuedSubmissions();
1179            cancelQueuedWorkerTasks();
1180            interruptUnterminatedWorkers();
1181            signalIdleWorkers(); // resignal after interrupt
1182        }
1183    }
1184
1185    /**
1186     * Possibly terminate when on shutdown state
1187     */
1188    private void terminateOnShutdown() {
1189        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190            terminate();
1191    }
1192
1193    /**
1194     * Clear out and cancel submissions
1195     */
1196    private void cancelQueuedSubmissions() {
1197        ForkJoinTask<?> task;
1198        while ((task = pollSubmission()) != null)
1199            task.cancel(false);
1200    }
1201
1202    /**
1203     * Clean out worker queues.
1204     */
1205    private void cancelQueuedWorkerTasks() {
1206        final ReentrantLock lock = this.workerLock;
1207        lock.lock();
1208        try {
1209            ForkJoinWorkerThread[] ws = workers;
1210            if (ws != null) {
1211                for (int i = 0; i < ws.length; ++i) {
1212                    ForkJoinWorkerThread t = ws[i];
1213                    if (t != null)
1214                        t.cancelTasks();
1215                }
1216            }
1217        } finally {
1218            lock.unlock();
1219        }
1220    }
1221
1222    /**
1223     * Set each worker's status to terminating. Requires lock to avoid
1224     * conflicts with add/remove
1225     */
1226    private void stopAllWorkers() {
1227        final ReentrantLock lock = this.workerLock;
1228        lock.lock();
1229        try {
1230            ForkJoinWorkerThread[] ws = workers;
1231            if (ws != null) {
1232                for (int i = 0; i < ws.length; ++i) {
1233                    ForkJoinWorkerThread t = ws[i];
1234                    if (t != null)
1235                        t.shutdownNow();
1236                }
1237            }
1238        } finally {
1239            lock.unlock();
1240        }
1241    }
1242
1984      /**
1985 <     * Interrupt all unterminated workers.  This is not required for
1986 <     * sake of internal control, but may help unstick user code during
1246 <     * shutdown.
1247 <     */
1248 <    private void interruptUnterminatedWorkers() {
1249 <        final ReentrantLock lock = this.workerLock;
1250 <        lock.lock();
1251 <        try {
1252 <            ForkJoinWorkerThread[] ws = workers;
1253 <            if (ws != null) {
1254 <                for (int i = 0; i < ws.length; ++i) {
1255 <                    ForkJoinWorkerThread t = ws[i];
1256 <                    if (t != null && !t.isTerminated()) {
1257 <                        try {
1258 <                            t.interrupt();
1259 <                        } catch (SecurityException ignore) {
1260 <                        }
1261 <                    }
1262 <                }
1263 <            }
1264 <        } finally {
1265 <            lock.unlock();
1266 <        }
1267 <    }
1268 <
1269 <
1270 <    /*
1271 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1272 <     * are basic Treiber stack nodes, also used for spare stack.
1985 >     * Interface for extending managed parallelism for tasks running
1986 >     * in {@link ForkJoinPool}s.
1987       *
1988 <     * The event barrier has an event count and a wait queue (actually
1989 <     * a Treiber stack).  Workers are enabled to look for work when
1990 <     * the eventCount is incremented. If they fail to find work, they
1991 <     * may wait for next count. Upon release, threads help others wake
1992 <     * up.
1993 <     *
1994 <     * Synchronization events occur only in enough contexts to
1995 <     * maintain overall liveness:
1996 <     *
1997 <     *   - Submission of a new task to the pool
1998 <     *   - Resizes or other changes to the workers array
1999 <     *   - pool termination
2000 <     *   - A worker pushing a task on an empty queue
1287 <     *
1288 <     * The case of pushing a task occurs often enough, and is heavy
1289 <     * enough compared to simple stack pushes, to require special
1290 <     * handling: Method signalWork returns without advancing count if
1291 <     * the queue appears to be empty.  This would ordinarily result in
1292 <     * races causing some queued waiters not to be woken up. To avoid
1293 <     * this, the first worker enqueued in method sync (see
1294 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1295 <     * helps signal if any are found. This works well because the
1296 <     * worker has nothing better to do, and so might as well help
1297 <     * alleviate the overhead and contention on the threads actually
1298 <     * doing work.  Also, since event counts increments on task
1299 <     * availability exist to maintain liveness (rather than to force
1300 <     * refreshes etc), it is OK for callers to exit early if
1301 <     * contending with another signaller.
1302 <     */
1303 <    static final class WaitQueueNode {
1304 <        WaitQueueNode next; // only written before enqueued
1305 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306 <        final long count; // unused for spare stack
1307 <
1308 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 <            count = c;
1310 <            thread = w;
1311 <        }
1312 <
1313 <        /**
1314 <         * Wake up waiter, returning false if known to already
1315 <         */
1316 <        boolean signal() {
1317 <            ForkJoinWorkerThread t = thread;
1318 <            if (t == null)
1319 <                return false;
1320 <            thread = null;
1321 <            LockSupport.unpark(t);
1322 <            return true;
1323 <        }
1324 <
1325 <        /**
1326 <         * Await release on sync
1327 <         */
1328 <        void awaitSyncRelease(ForkJoinPool p) {
1329 <            while (thread != null && !p.syncIsReleasable(this))
1330 <                LockSupport.park(this);
1331 <        }
1332 <
1333 <        /**
1334 <         * Await resumption as spare
1335 <         */
1336 <        void awaitSpareRelease() {
1337 <            while (thread != null) {
1338 <                if (!Thread.interrupted())
1339 <                    LockSupport.park(this);
1340 <            }
1341 <        }
1342 <    }
1343 <
1344 <    /**
1345 <     * Ensures that no thread is waiting for count to advance from the
1346 <     * current value of eventCount read on entry to this method, by
1347 <     * releasing waiting threads if necessary.
1348 <     * @return the count
1349 <     */
1350 <    final long ensureSync() {
1351 <        long c = eventCount;
1352 <        WaitQueueNode q;
1353 <        while ((q = syncStack) != null && q.count < c) {
1354 <            if (casBarrierStack(q, null)) {
1355 <                do {
1356 <                    q.signal();
1357 <                } while ((q = q.next) != null);
1358 <                break;
1359 <            }
1360 <        }
1361 <        return c;
1362 <    }
1363 <
1364 <    /**
1365 <     * Increments event count and releases waiting threads.
1366 <     */
1367 <    private void signalIdleWorkers() {
1368 <        long c;
1369 <        do;while (!casEventCount(c = eventCount, c+1));
1370 <        ensureSync();
1371 <    }
1372 <
1373 <    /**
1374 <     * Signal threads waiting to poll a task. Because method sync
1375 <     * rechecks availability, it is OK to only proceed if queue
1376 <     * appears to be non-empty, and OK to skip under contention to
1377 <     * increment count (since some other thread succeeded).
1378 <     */
1379 <    final void signalWork() {
1380 <        long c;
1381 <        WaitQueueNode q;
1382 <        if (syncStack != null &&
1383 <            casEventCount(c = eventCount, c+1) &&
1384 <            (((q = syncStack) != null && q.count <= c) &&
1385 <             (!casBarrierStack(q, q.next) || !q.signal())))
1386 <            ensureSync();
1387 <    }
1388 <
1389 <    /**
1390 <     * Waits until event count advances from last value held by
1391 <     * caller, or if excess threads, caller is resumed as spare, or
1392 <     * caller or pool is terminating. Updates caller's event on exit.
1393 <     * @param w the calling worker thread
1394 <     */
1395 <    final void sync(ForkJoinWorkerThread w) {
1396 <        updateStealCount(w); // Transfer w's count while it is idle
1397 <
1398 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399 <            long prev = w.lastEventCount;
1400 <            WaitQueueNode node = null;
1401 <            WaitQueueNode h;
1402 <            while (eventCount == prev &&
1403 <                   ((h = syncStack) == null || h.count == prev)) {
1404 <                if (node == null)
1405 <                    node = new WaitQueueNode(prev, w);
1406 <                if (casBarrierStack(node.next = h, node)) {
1407 <                    node.awaitSyncRelease(this);
1408 <                    break;
1409 <                }
1410 <            }
1411 <            long ec = ensureSync();
1412 <            if (ec != prev) {
1413 <                w.lastEventCount = ec;
1414 <                break;
1415 <            }
1416 <        }
1417 <    }
1418 <
1419 <    /**
1420 <     * Returns true if worker waiting on sync can proceed:
1421 <     *  - on signal (thread == null)
1422 <     *  - on event count advance (winning race to notify vs signaller)
1423 <     *  - on Interrupt
1424 <     *  - if the first queued node, we find work available
1425 <     * If node was not signalled and event count not advanced on exit,
1426 <     * then we also help advance event count.
1427 <     * @return true if node can be released
1428 <     */
1429 <    final boolean syncIsReleasable(WaitQueueNode node) {
1430 <        long prev = node.count;
1431 <        if (!Thread.interrupted() && node.thread != null &&
1432 <            (node.next != null ||
1433 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434 <            eventCount == prev)
1435 <            return false;
1436 <        if (node.thread != null) {
1437 <            node.thread = null;
1438 <            long ec = eventCount;
1439 <            if (prev <= ec) // help signal
1440 <                casEventCount(ec, ec+1);
1441 <        }
1442 <        return true;
1443 <    }
1444 <
1445 <    /**
1446 <     * Returns true if a new sync event occurred since last call to
1447 <     * sync or this method, if so, updating caller's count.
1448 <     */
1449 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450 <        long lc = w.lastEventCount;
1451 <        long ec = ensureSync();
1452 <        if (ec == lc)
1453 <            return false;
1454 <        w.lastEventCount = ec;
1455 <        return true;
1456 <    }
1457 <
1458 <    //  Parallelism maintenance
1459 <
1460 <    /**
1461 <     * Decrement running count; if too low, add spare.
1988 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1989 >     * {@code isReleasable} must return {@code true} if blocking is
1990 >     * not necessary. Method {@code block} blocks the current thread
1991 >     * if necessary (perhaps internally invoking {@code isReleasable}
1992 >     * before actually blocking). These actions are performed by any
1993 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1994 >     * unusual methods in this API accommodate synchronizers that may,
1995 >     * but don't usually, block for long periods. Similarly, they
1996 >     * allow more efficient internal handling of cases in which
1997 >     * additional workers may be, but usually are not, needed to
1998 >     * ensure sufficient parallelism.  Toward this end,
1999 >     * implementations of method {@code isReleasable} must be amenable
2000 >     * to repeated invocation.
2001       *
1463     * Conceptually, all we need to do here is add or resume a
1464     * spare thread when one is about to block (and remove or
1465     * suspend it later when unblocked -- see suspendIfSpare).
1466     * However, implementing this idea requires coping with
1467     * several problems: We have imperfect information about the
1468     * states of threads. Some count updates can and usually do
1469     * lag run state changes, despite arrangements to keep them
1470     * accurate (for example, when possible, updating counts
1471     * before signalling or resuming), especially when running on
1472     * dynamic JVMs that don't optimize the infrequent paths that
1473     * update counts. Generating too many threads can make these
1474     * problems become worse, because excess threads are more
1475     * likely to be context-switched with others, slowing them all
1476     * down, especially if there is no work available, so all are
1477     * busy scanning or idling.  Also, excess spare threads can
1478     * only be suspended or removed when they are idle, not
1479     * immediately when they aren't needed. So adding threads will
1480     * raise parallelism level for longer than necessary.  Also,
1481     * FJ applications often enounter highly transient peaks when
1482     * many threads are blocked joining, but for less time than it
1483     * takes to create or resume spares.
1484     *
1485     * @param joinMe if non-null, return early if done
1486     * @param maintainParallelism if true, try to stay within
1487     * target counts, else create only to avoid starvation
1488     * @return true if joinMe known to be done
1489     */
1490    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491        maintainParallelism &= maintainsParallelism; // overrride
1492        boolean dec = false;  // true when running count decremented
1493        while (spareStack == null || !tryResumeSpare(dec)) {
1494            int counts = workerCounts;
1495            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496                if (!needSpare(counts, maintainParallelism))
1497                    break;
1498                if (joinMe.status < 0)
1499                    return true;
1500                if (tryAddSpare(counts))
1501                    break;
1502            }
1503        }
1504        return false;
1505    }
1506
1507    /**
1508     * Same idea as preJoin
1509     */
1510    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1511        maintainParallelism &= maintainsParallelism;
1512        boolean dec = false;
1513        while (spareStack == null || !tryResumeSpare(dec)) {
1514            int counts = workerCounts;
1515            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1516                if (!needSpare(counts, maintainParallelism))
1517                    break;
1518                if (blocker.isReleasable())
1519                    return true;
1520                if (tryAddSpare(counts))
1521                    break;
1522            }
1523        }
1524        return false;
1525    }
1526
1527    /**
1528     * Returns true if a spare thread appears to be needed.  If
1529     * maintaining parallelism, returns true when the deficit in
1530     * running threads is more than the surplus of total threads, and
1531     * there is apparently some work to do.  This self-limiting rule
1532     * means that the more threads that have already been added, the
1533     * less parallelism we will tolerate before adding another.
1534     * @param counts current worker counts
1535     * @param maintainParallelism try to maintain parallelism
1536     */
1537    private boolean needSpare(int counts, boolean maintainParallelism) {
1538        int ps = parallelism;
1539        int rc = runningCountOf(counts);
1540        int tc = totalCountOf(counts);
1541        int runningDeficit = ps - rc;
1542        int totalSurplus = tc - ps;
1543        return (tc < maxPoolSize &&
1544                (rc == 0 || totalSurplus < 0 ||
1545                 (maintainParallelism &&
1546                  runningDeficit > totalSurplus &&
1547                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548    }
1549
1550    /**
1551     * Add a spare worker if lock available and no more than the
1552     * expected numbers of threads exist
1553     * @return true if successful
1554     */
1555    private boolean tryAddSpare(int expectedCounts) {
1556        final ReentrantLock lock = this.workerLock;
1557        int expectedRunning = runningCountOf(expectedCounts);
1558        int expectedTotal = totalCountOf(expectedCounts);
1559        boolean success = false;
1560        boolean locked = false;
1561        // confirm counts while locking; CAS after obtaining lock
1562        try {
1563            for (;;) {
1564                int s = workerCounts;
1565                int tc = totalCountOf(s);
1566                int rc = runningCountOf(s);
1567                if (rc > expectedRunning || tc > expectedTotal)
1568                    break;
1569                if (!locked && !(locked = lock.tryLock()))
1570                    break;
1571                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572                    createAndStartSpare(tc);
1573                    success = true;
1574                    break;
1575                }
1576            }
1577        } finally {
1578            if (locked)
1579                lock.unlock();
1580        }
1581        return success;
1582    }
1583
1584    /**
1585     * Add the kth spare worker. On entry, pool coounts are already
1586     * adjusted to reflect addition.
1587     */
1588    private void createAndStartSpare(int k) {
1589        ForkJoinWorkerThread w = null;
1590        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591        int len = ws.length;
1592        // Probably, we can place at slot k. If not, find empty slot
1593        if (k < len && ws[k] != null) {
1594            for (k = 0; k < len && ws[k] != null; ++k)
1595                ;
1596        }
1597        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598            ws[k] = w;
1599            w.start();
1600        }
1601        else
1602            updateWorkerCount(-1); // adjust on failure
1603        signalIdleWorkers();
1604    }
1605
1606    /**
1607     * Suspend calling thread w if there are excess threads.  Called
1608     * only from sync.  Spares are enqueued in a Treiber stack
1609     * using the same WaitQueueNodes as barriers.  They are resumed
1610     * mainly in preJoin, but are also woken on pool events that
1611     * require all threads to check run state.
1612     * @param w the caller
1613     */
1614    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1615        WaitQueueNode node = null;
1616        int s;
1617        while (parallelism < runningCountOf(s = workerCounts)) {
1618            if (node == null)
1619                node = new WaitQueueNode(0, w);
1620            if (casWorkerCounts(s, s-1)) { // representation-dependent
1621                // push onto stack
1622                do;while (!casSpareStack(node.next = spareStack, node));
1623                // block until released by resumeSpare
1624                node.awaitSpareRelease();
1625                return true;
1626            }
1627        }
1628        return false;
1629    }
1630
1631    /**
1632     * Try to pop and resume a spare thread.
1633     * @param updateCount if true, increment running count on success
1634     * @return true if successful
1635     */
1636    private boolean tryResumeSpare(boolean updateCount) {
1637        WaitQueueNode q;
1638        while ((q = spareStack) != null) {
1639            if (casSpareStack(q, q.next)) {
1640                if (updateCount)
1641                    updateRunningCount(1);
1642                q.signal();
1643                return true;
1644            }
1645        }
1646        return false;
1647    }
1648
1649    /**
1650     * Pop and resume all spare threads. Same idea as ensureSync.
1651     * @return true if any spares released
1652     */
1653    private boolean resumeAllSpares() {
1654        WaitQueueNode q;
1655        while ( (q = spareStack) != null) {
1656            if (casSpareStack(q, null)) {
1657                do {
1658                    updateRunningCount(1);
1659                    q.signal();
1660                } while ((q = q.next) != null);
1661                return true;
1662            }
1663        }
1664        return false;
1665    }
1666
1667    /**
1668     * Pop and shutdown excessive spare threads. Call only while
1669     * holding lock. This is not guaranteed to eliminate all excess
1670     * threads, only those suspended as spares, which are the ones
1671     * unlikely to be needed in the future.
1672     */
1673    private void trimSpares() {
1674        int surplus = totalCountOf(workerCounts) - parallelism;
1675        WaitQueueNode q;
1676        while (surplus > 0 && (q = spareStack) != null) {
1677            if (casSpareStack(q, null)) {
1678                do {
1679                    updateRunningCount(1);
1680                    ForkJoinWorkerThread w = q.thread;
1681                    if (w != null && surplus > 0 &&
1682                        runningCountOf(workerCounts) > 0 && w.shutdown())
1683                        --surplus;
1684                    q.signal();
1685                } while ((q = q.next) != null);
1686            }
1687        }
1688    }
1689
1690    /**
1691     * Interface for extending managed parallelism for tasks running
1692     * in ForkJoinPools. A ManagedBlocker provides two methods.
1693     * Method <code>isReleasable</code> must return true if blocking is not
1694     * necessary. Method <code>block</code> blocks the current thread
1695     * if necessary (perhaps internally invoking isReleasable before
1696     * actually blocking.).
2002       * <p>For example, here is a ManagedBlocker based on a
2003       * ReentrantLock:
2004 <     * <pre>
2005 <     *   class ManagedLocker implements ManagedBlocker {
2006 <     *     final ReentrantLock lock;
2007 <     *     boolean hasLock = false;
2008 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2009 <     *     public boolean block() {
2010 <     *        if (!hasLock)
2011 <     *           lock.lock();
2012 <     *        return true;
2013 <     *     }
2014 <     *     public boolean isReleasable() {
2015 <     *        return hasLock || (hasLock = lock.tryLock());
2016 <     *     }
2004 >     *  <pre> {@code
2005 >     * class ManagedLocker implements ManagedBlocker {
2006 >     *   final ReentrantLock lock;
2007 >     *   boolean hasLock = false;
2008 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2009 >     *   public boolean block() {
2010 >     *     if (!hasLock)
2011 >     *       lock.lock();
2012 >     *     return true;
2013 >     *   }
2014 >     *   public boolean isReleasable() {
2015 >     *     return hasLock || (hasLock = lock.tryLock());
2016 >     *   }
2017 >     * }}</pre>
2018 >     *
2019 >     * <p>Here is a class that possibly blocks waiting for an
2020 >     * item on a given queue:
2021 >     *  <pre> {@code
2022 >     * class QueueTaker<E> implements ManagedBlocker {
2023 >     *   final BlockingQueue<E> queue;
2024 >     *   volatile E item = null;
2025 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2026 >     *   public boolean block() throws InterruptedException {
2027 >     *     if (item == null)
2028 >     *       item = queue.take();
2029 >     *     return true;
2030 >     *   }
2031 >     *   public boolean isReleasable() {
2032 >     *     return item != null || (item = queue.poll()) != null;
2033       *   }
2034 <     * </pre>
2034 >     *   public E getItem() { // call after pool.managedBlock completes
2035 >     *     return item;
2036 >     *   }
2037 >     * }}</pre>
2038       */
2039      public static interface ManagedBlocker {
2040          /**
2041           * Possibly blocks the current thread, for example waiting for
2042           * a lock or condition.
2043 <         * @return true if no additional blocking is necessary (i.e.,
2044 <         * if isReleasable would return true).
2043 >         *
2044 >         * @return {@code true} if no additional blocking is necessary
2045 >         * (i.e., if isReleasable would return true)
2046           * @throws InterruptedException if interrupted while waiting
2047 <         * (the method is not required to do so, but is allowe to).
2047 >         * (the method is not required to do so, but is allowed to)
2048           */
2049          boolean block() throws InterruptedException;
2050  
2051          /**
2052 <         * Returns true if blocking is unnecessary.
2052 >         * Returns {@code true} if blocking is unnecessary.
2053           */
2054          boolean isReleasable();
2055      }
2056  
2057      /**
2058       * Blocks in accord with the given blocker.  If the current thread
2059 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2060 <     * spare thread to be activated if necessary to ensure parallelism
2061 <     * while the current thread is blocked.  If
2062 <     * <code>maintainParallelism</code> is true and the pool supports
2063 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2064 <     * maintain the pool's nominal parallelism. Otherwise if activates
2065 <     * a thread only if necessary to avoid complete starvation. This
2066 <     * option may be preferable when blockages use timeouts, or are
2067 <     * almost always brief.
2068 <     *
2069 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2070 <     * equivalent to
2071 <     * <pre>
2072 <     *   while (!blocker.isReleasable())
1748 <     *      if (blocker.block())
1749 <     *         return;
1750 <     * </pre>
1751 <     * If the caller is a ForkJoinTask, then the pool may first
1752 <     * be expanded to ensure parallelism, and later adjusted.
2059 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2060 >     * arranges for a spare thread to be activated if necessary to
2061 >     * ensure sufficient parallelism while the current thread is blocked.
2062 >     *
2063 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2064 >     * behaviorally equivalent to
2065 >     *  <pre> {@code
2066 >     * while (!blocker.isReleasable())
2067 >     *   if (blocker.block())
2068 >     *     return;
2069 >     * }</pre>
2070 >     *
2071 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2072 >     * first be expanded to ensure parallelism, and later adjusted.
2073       *
2074       * @param blocker the blocker
2075 <     * @param maintainParallelism if true and supported by this pool,
1756 <     * attempt to maintain the pool's nominal parallelism; otherwise
1757 <     * activate a thread only if necessary to avoid complete
1758 <     * starvation.
1759 <     * @throws InterruptedException if blocker.block did so.
2075 >     * @throws InterruptedException if blocker.block did so
2076       */
2077 <    public static void managedBlock(ManagedBlocker blocker,
1762 <                                    boolean maintainParallelism)
2077 >    public static void managedBlock(ManagedBlocker blocker)
2078          throws InterruptedException {
2079          Thread t = Thread.currentThread();
2080 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2081 <                             ((ForkJoinWorkerThread)t).pool : null);
2082 <        if (!blocker.isReleasable()) {
2083 <            try {
2084 <                if (pool == null ||
2085 <                    !pool.preBlock(blocker, maintainParallelism))
1771 <                    awaitBlocker(blocker);
1772 <            } finally {
1773 <                if (pool != null)
1774 <                    pool.updateRunningCount(1);
1775 <            }
2080 >        if (t instanceof ForkJoinWorkerThread) {
2081 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2082 >            w.pool.awaitBlocker(blocker);
2083 >        }
2084 >        else {
2085 >            do {} while (!blocker.isReleasable() && !blocker.block());
2086          }
2087      }
2088  
2089 <    private static void awaitBlocker(ManagedBlocker blocker)
2090 <        throws InterruptedException {
2091 <        do;while (!blocker.isReleasable() && !blocker.block());
1782 <    }
1783 <
1784 <    // AbstractExecutorService overrides
2089 >    // AbstractExecutorService overrides.  These rely on undocumented
2090 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2091 >    // implement RunnableFuture.
2092  
2093      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2094 <        return new AdaptedRunnable(runnable, value);
2094 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2095      }
2096  
2097      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2098 <        return new AdaptedCallable(callable);
2098 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2099      }
2100  
2101 +    // Unsafe mechanics
2102 +    private static final sun.misc.Unsafe UNSAFE;
2103 +    private static final long ctlOffset;
2104 +    private static final long stealCountOffset;
2105 +    private static final long blockedCountOffset;
2106 +    private static final long quiescerCountOffset;
2107 +    private static final long scanGuardOffset;
2108 +    private static final long nextWorkerNumberOffset;
2109 +    private static final long ABASE;
2110 +    private static final int ASHIFT;
2111  
2112 <    // Temporary Unsafe mechanics for preliminary release
2113 <    private static Unsafe getUnsafe() throws Throwable {
2112 >    static {
2113 >        poolNumberGenerator = new AtomicInteger();
2114 >        workerSeedGenerator = new Random();
2115 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2116 >        defaultForkJoinWorkerThreadFactory =
2117 >            new DefaultForkJoinWorkerThreadFactory();
2118          try {
2119 <            return Unsafe.getUnsafe();
2119 >            UNSAFE = getUnsafe();
2120 >            Class<?> k = ForkJoinPool.class;
2121 >            ctlOffset = UNSAFE.objectFieldOffset
2122 >                (k.getDeclaredField("ctl"));
2123 >            stealCountOffset = UNSAFE.objectFieldOffset
2124 >                (k.getDeclaredField("stealCount"));
2125 >            blockedCountOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("blockedCount"));
2127 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("quiescerCount"));
2129 >            scanGuardOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("scanGuard"));
2131 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("nextWorkerNumber"));
2133 >        } catch (Exception e) {
2134 >            throw new Error(e);
2135 >        }
2136 >        Class<?> a = ForkJoinTask[].class;
2137 >        ABASE = UNSAFE.arrayBaseOffset(a);
2138 >        int s = UNSAFE.arrayIndexScale(a);
2139 >        if ((s & (s-1)) != 0)
2140 >            throw new Error("data type scale not a power of two");
2141 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2142 >    }
2143 >
2144 >    /**
2145 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2146 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2147 >     * into a jdk.
2148 >     *
2149 >     * @return a sun.misc.Unsafe
2150 >     */
2151 >    private static sun.misc.Unsafe getUnsafe() {
2152 >        try {
2153 >            return sun.misc.Unsafe.getUnsafe();
2154          } catch (SecurityException se) {
2155              try {
2156                  return java.security.AccessController.doPrivileged
2157 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2158 <                        public Unsafe run() throws Exception {
2159 <                            return getUnsafePrivileged();
2157 >                    (new java.security
2158 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2159 >                        public sun.misc.Unsafe run() throws Exception {
2160 >                            java.lang.reflect.Field f = sun.misc
2161 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2162 >                            f.setAccessible(true);
2163 >                            return (sun.misc.Unsafe) f.get(null);
2164                          }});
2165              } catch (java.security.PrivilegedActionException e) {
2166 <                throw e.getCause();
2166 >                throw new RuntimeException("Could not initialize intrinsics",
2167 >                                           e.getCause());
2168              }
2169          }
2170      }
1811
1812    private static Unsafe getUnsafePrivileged()
1813            throws NoSuchFieldException, IllegalAccessException {
1814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1815        f.setAccessible(true);
1816        return (Unsafe) f.get(null);
1817    }
1818
1819    private static long fieldOffset(String fieldName)
1820            throws NoSuchFieldException {
1821        return _unsafe.objectFieldOffset
1822            (ForkJoinPool.class.getDeclaredField(fieldName));
1823    }
1824
1825    static final Unsafe _unsafe;
1826    static final long eventCountOffset;
1827    static final long workerCountsOffset;
1828    static final long runControlOffset;
1829    static final long syncStackOffset;
1830    static final long spareStackOffset;
1831
1832    static {
1833        try {
1834            _unsafe = getUnsafe();
1835            eventCountOffset = fieldOffset("eventCount");
1836            workerCountsOffset = fieldOffset("workerCounts");
1837            runControlOffset = fieldOffset("runControl");
1838            syncStackOffset = fieldOffset("syncStack");
1839            spareStackOffset = fieldOffset("spareStack");
1840        } catch (Throwable e) {
1841            throw new RuntimeException("Could not initialize intrinsics", e);
1842        }
1843    }
1844
1845    private boolean casEventCount(long cmp, long val) {
1846        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847    }
1848    private boolean casWorkerCounts(int cmp, int val) {
1849        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850    }
1851    private boolean casRunControl(int cmp, int val) {
1852        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1853    }
1854    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856    }
1857    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859    }
2171   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines