ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.7 by jsr166, Mon Jul 20 21:45:06 2009 UTC vs.
Revision 1.189 by jsr166, Sat Sep 12 19:16:45 2015 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
24 < * ForkJoinPool provides the entry point for submissions from
25 < * non-ForkJoinTasks, as well as management and monitoring operations.
26 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
23 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 > * A {@code ForkJoinPool} provides the entry point for submissions
25 > * from non-{@code ForkJoinTask} clients, as well as management and
26 > * monitoring operations.
27 > *
28 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 > * ExecutorService} mainly by virtue of employing
30 > * <em>work-stealing</em>: all threads in the pool attempt to find and
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
41 < * that they provide <em>work-stealing</em>: all threads in the pool
42 < * attempt to find and execute subtasks created by other active tasks
43 < * (eventually blocking if none exist). This makes them efficient when
44 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
45 < * as the mixed execution of some plain Runnable- or Callable- based
30 < * activities along with ForkJoinTasks. When setting
31 < * <tt>setAsyncMode</tt>, a ForkJoinPools may also be appropriate for
32 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A ForkJoinPool may be constructed with a given parallelism level
48 < * (target pool size), which it attempts to maintain by dynamically
49 < * adding, suspending, or resuming threads, even if some tasks are
50 < * waiting to join others. However, no such adjustments are performed
51 < * in the face of blocked IO or other unmanaged synchronization. The
52 < * nested <code>ManagedBlocker</code> interface enables extension of
53 < * the kinds of synchronization accommodated.  The target parallelism
54 < * level may also be changed dynamically (<code>setParallelism</code>)
55 < * and thread construction can be limited using methods
56 < * <code>setMaximumPoolSize</code> and/or
46 < * <code>setMaintainsParallelism</code>.
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56 > * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
59   * class provides status check methods (for example
60 < * <code>getStealCount</code>) that are intended to aid in developing,
60 > * {@link #getStealCount}) that are intended to aid in developing,
61   * tuning, and monitoring fork/join applications. Also, method
62 < * <code>toString</code> returns indications of pool state in a
62 > * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 + * <p>As is the case with other ExecutorServices, there are three
66 + * main task execution methods summarized in the following table.
67 + * These are designed to be used primarily by clients not already
68 + * engaged in fork/join computations in the current pool.  The main
69 + * forms of these methods accept instances of {@code ForkJoinTask},
70 + * but overloaded forms also allow mixed execution of plain {@code
71 + * Runnable}- or {@code Callable}- based activities as well.  However,
72 + * tasks that are already executing in a pool should normally instead
73 + * use the within-computation forms listed in the table unless using
74 + * async event-style tasks that are not usually joined, in which case
75 + * there is little difference among choice of methods.
76 + *
77 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 + *  <tr>
79 + *    <td></td>
80 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Arrange async execution</td>
85 + *    <td> {@link #execute(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#fork}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Await and obtain result</td>
90 + *    <td> {@link #invoke(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#invoke}</td>
92 + *  </tr>
93 + *  <tr>
94 + *    <td> <b>Arrange exec and obtain Future</td>
95 + *    <td> {@link #submit(ForkJoinTask)}</td>
96 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 + *  </tr>
98 + * </table>
99 + *
100 + * <p>The common pool is by default constructed with default
101 + * parameters, but these may be controlled by setting three {@link
102 + * System#getProperty system properties} with prefix {@code
103 + * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 + * an integer greater than zero, {@code threadFactory} -- the class
105 + * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 + * exceptionHandler} -- the class name of a {@link
107 + * java.lang.Thread.UncaughtExceptionHandler
108 + * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 + * these settings, default parameters are used.
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119 > *
120 > * @since 1.7
121 > * @author Doug Lea
122   */
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
126 >     * Implementation Overview
127 >     *
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218 >     *
219 >     * The main throughput advantages of work-stealing stem from
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362 >     *
363 >     *   Helping: Arranging for the joiner to execute some task that it
364 >     *      would be running if the steal had not occurred.
365 >     *
366 >     *   Compensating: Unless there are already enough live threads,
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377 >     *
378 >     * The ManagedBlocker extension API can't use helping so relies
379 >     * only on compensation in method awaitBlocker.
380 >     *
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494       */
495  
496 <    /** Mask for packing and unpacking shorts */
68 <    private static final int  shortMask = 0xffff;
496 >    // Static utilities
497  
498 <    /** Max pool size -- must be a power of two minus 1 */
499 <    private static final int MAX_THREADS =  0x7FFF;
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501 >     */
502 >    private static void checkPermission() {
503 >        SecurityManager security = System.getSecurityManager();
504 >        if (security != null)
505 >            security.checkPermission(modifyThreadPermission);
506 >    }
507 >
508 >    // Nested classes
509  
510      /**
511 <     * Factory for creating new ForkJoinWorkerThreads.  A
512 <     * ForkJoinWorkerThreadFactory must be defined and used for
513 <     * ForkJoinWorkerThread subclasses that extend base functionality
514 <     * or initialize threads with different contexts.
511 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
512 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
514 >     * functionality or initialize threads with different contexts.
515       */
516      public static interface ForkJoinWorkerThreadFactory {
517          /**
518           * Returns a new worker thread operating in the given pool.
519           *
520           * @param pool the pool this thread works in
521 <         * @throws NullPointerException if pool is null;
521 >         * @throws NullPointerException if the pool is null
522           */
523          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524      }
525  
526      /**
527 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
527 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class  DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 <            try {
534 <                return new ForkJoinWorkerThread(pool);
535 <            } catch (OutOfMemoryError oom)  {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 >            return new ForkJoinWorkerThread(pool);
534 >        }
535 >    }
536 >
537 >    /**
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555 >    }
556 >
557 >    /**
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562 >     */
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570 >
571 >    /**
572 >     * Queues supporting work-stealing as well as external task
573 >     * submission. See above for main rationale and algorithms.
574 >     * Implementation relies heavily on "Unsafe" intrinsics
575 >     * and selective use of "volatile":
576 >     *
577 >     * Field "base" is the index (mod array.length) of the least valid
578 >     * queue slot, which is always the next position to steal (poll)
579 >     * from if nonempty. Reads and writes require volatile orderings
580 >     * but not CAS, because updates are only performed after slot
581 >     * CASes.
582 >     *
583 >     * Field "top" is the index (mod array.length) of the next queue
584 >     * slot to push to or pop from. It is written only by owner thread
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596 >     *
597 >     * The array slots are read and written using the emulation of
598 >     * volatiles/atomics provided by Unsafe. Insertions must in
599 >     * general use putOrderedObject as a form of releasing store to
600 >     * ensure that all writes to the task object are ordered before
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605 >     *
606 >     * In addition to basic queuing support, this class contains
607 >     * fields described elsewhere to control execution. It turns out
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610 >     *
611 >     * Performance on most platforms is very sensitive to placement of
612 >     * instances of both WorkQueues and their arrays -- we absolutely
613 >     * do not want multiple WorkQueue instances or multiple queue
614 >     * arrays sharing cache lines. (It would be best for queue objects
615 >     * and their arrays to share, but there is nothing available to
616 >     * help arrange that).  Unfortunately, because they are recorded
617 >     * in a common array, WorkQueue instances are often moved to be
618 >     * adjacent by garbage collectors. To reduce impact, we use field
619 >     * padding that works OK on common platforms; this effectively
620 >     * trades off slightly slower average field access for the sake of
621 >     * avoiding really bad worst-case access. (Until better JVM
622 >     * support is in place, this padding is dependent on transient
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627 >     */
628 >    static final class WorkQueue {
629 >        /**
630 >         * Capacity of work-stealing queue array upon initialization.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637 >         */
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639 >
640 >        /**
641 >         * Maximum size for queue arrays. Must be a power of two less
642 >         * than or equal to 1 << (31 - width of array entry) to ensure
643 >         * lack of wraparound of index calculations, but defined to a
644 >         * value a bit less than this to help users trap runaway
645 >         * programs before saturating systems.
646 >         */
647 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648 >
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652 >        int seed;                  // for random scanning; initialize nonzero
653 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 >        int nextWait;              // encoded record of next event waiter
655 >        int hint;                  // steal or signal hint (index)
656 >        int poolIndex;             // index of this queue in pool (or 0)
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 >        volatile int base;         // index of next slot for poll
661 >        int top;                   // index of next slot for push
662 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 >        final ForkJoinPool pool;   // the containing pool (may be null)
664 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 >        volatile Thread parker;    // == owner during call to park; else null
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 >
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675 >            this.owner = owner;
676 >            this.mode = mode;
677 >            this.seed = seed;
678 >            // Place indices in the center of array (that is not yet allocated)
679 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 >        }
681 >
682 >        /**
683 >         * Returns the approximate number of tasks in the queue.
684 >         */
685 >        final int queueSize() {
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >        /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 >        }
705 >
706 >        /**
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709 >         *
710 >         * @param task the task. Caller must ensure non-null.
711 >         * @throws RejectedExecutionException if array cannot be resized
712 >         */
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715 >            int s = top, m, n;
716 >            if ((a = array) != null) {    // ignore if queue removed
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719 >                if ((n = (top = s + 1) - base) <= 2) {
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722 >                }
723 >                else if (n >= m)
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >        /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752 >            }
753 >            return a;
754 >        }
755 >
756 >        /**
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759 >         */
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770 >                    }
771 >                }
772 >            }
773 >            return null;
774 >        }
775 >
776 >        /**
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 >         */
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787 >                    U.compareAndSwapObject(a, j, t, null)) {
788 >                    base = b + 1;
789 >                    return t;
790 >                }
791 >            }
792 >            return null;
793 >        }
794 >
795 >        /**
796 >         * Takes next task, if one exists, in FIFO order.
797 >         */
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807 >                        return t;
808 >                    }
809 >                }
810 >                else if (base == b) {
811 >                    if (b + 1 == top)
812 >                        break;
813 >                    Thread.yield(); // wait for lagging update (very rare)
814 >                }
815 >            }
816 >            return null;
817 >        }
818 >
819 >        /**
820 >         * Takes next task, if one exists, in order specified by mode.
821 >         */
822 >        final ForkJoinTask<?> nextLocalTask() {
823 >            return mode == 0 ? pop() : poll();
824 >        }
825 >
826 >        /**
827 >         * Returns next task, if one exists, in order specified by mode.
828 >         */
829 >        final ForkJoinTask<?> peek() {
830 >            ForkJoinTask<?>[] a = array; int m;
831 >            if (a == null || (m = a.length - 1) < 0)
832                  return null;
833 +            int i = mode == 0 ? top - 1 : base;
834 +            int j = ((i & m) << ASHIFT) + ABASE;
835 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 +        }
837 +
838 +        /**
839 +         * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841 +         */
842 +        final boolean tryUnpush(ForkJoinTask<?> t) {
843 +            ForkJoinTask<?>[] a; int s;
844 +            if ((a = array) != null && (s = top) != base &&
845 +                U.compareAndSwapObject
846 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 +                top = s;
848 +                return true;
849 +            }
850 +            return false;
851 +        }
852 +
853 +        /**
854 +         * Removes and cancels all known tasks, ignoring any exceptions.
855 +         */
856 +        final void cancelAll() {
857 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 +                ForkJoinTask.cancelIgnoringExceptions(t);
861 +        }
862 +
863 +        /**
864 +         * Computes next value for random probes.  Scans don't require
865 +         * a very high quality generator, but also not a crummy one.
866 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 +         * This is manually inlined in its usages in ForkJoinPool to
868 +         * avoid writes inside busy scan loops.
869 +         */
870 +        final int nextSeed() {
871 +            int r = seed;
872 +            r ^= r << 13;
873 +            r ^= r >>> 17;
874 +            return seed = r ^= r << 5;
875 +        }
876 +
877 +        // Specialized execution methods
878 +
879 +        /**
880 +         * Pops and runs tasks until empty.
881 +         */
882 +        private void popAndExecAll() {
883 +            // A bit faster than repeated pop calls
884 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 +                   (s = top - 1) - base >= 0 &&
887 +                   (t = ((ForkJoinTask<?>)
888 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 +                   != null) {
890 +                if (U.compareAndSwapObject(a, j, t, null)) {
891 +                    top = s;
892 +                    t.doExec();
893 +                }
894 +            }
895 +        }
896 +
897 +        /**
898 +         * Polls and runs tasks until empty.
899 +         */
900 +        private void pollAndExecAll() {
901 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 +                t.doExec();
903 +        }
904 +
905 +        /**
906 +         * If present, removes from queue and executes the given task,
907 +         * or any other cancelled task. Returns (true) on any CAS
908 +         * or consistency check failure so caller can retry.
909 +         *
910 +         * @return false if no progress can be made, else true
911 +         */
912 +        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 +            boolean stat = true, removed = false, empty = true;
914 +            ForkJoinTask<?>[] a; int m, s, b, n;
915 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 +                (n = (s = top) - (b = base)) > 0) {
917 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 +                    int j = ((--s & m) << ASHIFT) + ABASE;
919 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 +                    if (t == null)                    // inconsistent length
921 +                        break;
922 +                    else if (t == task) {
923 +                        if (s + 1 == top) {           // pop
924 +                            if (!U.compareAndSwapObject(a, j, task, null))
925 +                                break;
926 +                            top = s;
927 +                            removed = true;
928 +                        }
929 +                        else if (base == b)           // replace with proxy
930 +                            removed = U.compareAndSwapObject(a, j, task,
931 +                                                             new EmptyTask());
932 +                        break;
933 +                    }
934 +                    else if (t.status >= 0)
935 +                        empty = false;
936 +                    else if (s + 1 == top) {          // pop and throw away
937 +                        if (U.compareAndSwapObject(a, j, t, null))
938 +                            top = s;
939 +                        break;
940 +                    }
941 +                    if (--n == 0) {
942 +                        if (!empty && base == b)
943 +                            stat = false;
944 +                        break;
945 +                    }
946 +                }
947 +            }
948 +            if (removed)
949 +                task.doExec();
950 +            return stat;
951 +        }
952 +
953 +        /**
954 +         * Polls for and executes the given task or any other task in
955 +         * its CountedCompleter computation.
956 +         */
957 +        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 +            ForkJoinTask<?>[] a; int b; Object o;
959 +            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 +                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 +                if ((o = U.getObject(a, j)) == null ||
962 +                    !(o instanceof CountedCompleter))
963 +                    break;
964 +                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 +                    if (r == root) {
966 +                        if (base == b &&
967 +                            U.compareAndSwapObject(a, j, t, null)) {
968 +                            base = b + 1;
969 +                            t.doExec();
970 +                            return true;
971 +                        }
972 +                        else
973 +                            break; // restart
974 +                    }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977 +                }
978 +            }
979 +            return false;
980 +        }
981 +
982 +        /**
983 +         * Executes a top-level task and any local tasks remaining
984 +         * after execution.
985 +         */
986 +        final void runTask(ForkJoinTask<?> t) {
987 +            if (t != null) {
988 +                (currentSteal = t).doExec();
989 +                currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997 +            }
998 +        }
999 +
1000 +        /**
1001 +         * Executes a non-top-level (stolen) task.
1002 +         */
1003 +        final void runSubtask(ForkJoinTask<?> t) {
1004 +            if (t != null) {
1005 +                ForkJoinTask<?> ps = currentSteal;
1006 +                (currentSteal = t).doExec();
1007 +                currentSteal = ps;
1008 +            }
1009 +        }
1010 +
1011 +        /**
1012 +         * Returns true if owned and not known to be blocked.
1013 +         */
1014 +        final boolean isApparentlyUnblocked() {
1015 +            Thread wt; Thread.State s;
1016 +            return (eventCount >= 0 &&
1017 +                    (wt = owner) != null &&
1018 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 +                    s != Thread.State.WAITING &&
1020 +                    s != Thread.State.TIMED_WAITING);
1021 +        }
1022 +
1023 +        // Unsafe mechanics
1024 +        private static final sun.misc.Unsafe U;
1025 +        private static final long QLOCK;
1026 +        private static final int ABASE;
1027 +        private static final int ASHIFT;
1028 +        static {
1029 +            try {
1030 +                U = getUnsafe();
1031 +                Class<?> k = WorkQueue.class;
1032 +                Class<?> ak = ForkJoinTask[].class;
1033 +                QLOCK = U.objectFieldOffset
1034 +                    (k.getDeclaredField("qlock"));
1035 +                ABASE = U.arrayBaseOffset(ak);
1036 +                int scale = U.arrayIndexScale(ak);
1037 +                if ((scale & (scale - 1)) != 0)
1038 +                    throw new Error("data type scale not a power of two");
1039 +                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1040 +            } catch (Exception e) {
1041 +                throw new Error(e);
1042              }
1043          }
1044      }
1045  
1046 +    // static fields (initialized in static initializer below)
1047 +
1048      /**
1049       * Creates a new ForkJoinWorkerThread. This factory is used unless
1050       * overridden in ForkJoinPool constructors.
1051       */
1052      public static final ForkJoinWorkerThreadFactory
1053 <        defaultForkJoinWorkerThreadFactory =
110 <        new DefaultForkJoinWorkerThreadFactory();
1053 >        defaultForkJoinWorkerThreadFactory;
1054  
1055      /**
1056 <     * Permission required for callers of methods that may start or
1057 <     * kill threads.
1056 >     * Per-thread submission bookkeeping. Shared across all pools
1057 >     * to reduce ThreadLocal pollution and because random motion
1058 >     * to avoid contention in one pool is likely to hold for others.
1059 >     * Lazily initialized on first submission (but null-checked
1060 >     * in other contexts to avoid unnecessary initialization).
1061       */
1062 <    private static final RuntimePermission modifyThreadPermission =
117 <        new RuntimePermission("modifyThread");
1062 >    static final ThreadLocal<Submitter> submitters;
1063  
1064      /**
1065 <     * If there is a security manager, makes sure caller has
1066 <     * permission to modify threads.
1065 >     * Permission required for callers of methods that may start or
1066 >     * kill threads.
1067       */
1068 <    private static void checkPermission() {
124 <        SecurityManager security = System.getSecurityManager();
125 <        if (security != null)
126 <            security.checkPermission(modifyThreadPermission);
127 <    }
1068 >    private static final RuntimePermission modifyThreadPermission;
1069  
1070      /**
1071 <     * Generator for assigning sequence numbers as pool names.
1071 >     * Common (static) pool. Non-null for public use unless a static
1072 >     * construction exception, but internal usages null-check on use
1073 >     * to paranoically avoid potential initialization circularities
1074 >     * as well as to simplify generated code.
1075       */
1076 <    private static final AtomicInteger poolNumberGenerator =
133 <        new AtomicInteger();
1076 >    static final ForkJoinPool common;
1077  
1078      /**
1079 <     * Array holding all worker threads in the pool. Initialized upon
137 <     * first use. Array size must be a power of two.  Updates and
138 <     * replacements are protected by workerLock, but it is always kept
139 <     * in a consistent enough state to be randomly accessed without
140 <     * locking by workers performing work-stealing.
1079 >     * Common pool parallelism. Must equal common.parallelism.
1080       */
1081 <    volatile ForkJoinWorkerThread[] workers;
1081 >    static final int commonParallelism;
1082  
1083      /**
1084 <     * Lock protecting access to workers.
1084 >     * Sequence number for creating workerNamePrefix.
1085       */
1086 <    private final ReentrantLock workerLock;
1086 >    private static int poolNumberSequence;
1087  
1088      /**
1089 <     * Condition for awaitTermination.
1089 >     * Returns the next sequence number. We don't expect this to
1090 >     * ever contend, so use simple builtin sync.
1091       */
1092 <    private final Condition termination;
1092 >    private static final synchronized int nextPoolId() {
1093 >        return ++poolNumberSequence;
1094 >    }
1095  
1096 <    /**
155 <     * The uncaught exception handler used when any worker
156 <     * abrupty terminates
157 <     */
158 <    private Thread.UncaughtExceptionHandler ueh;
1096 >    // static constants
1097  
1098      /**
1099 <     * Creation factory for worker threads.
1099 >     * Initial timeout value (in nanoseconds) for the thread
1100 >     * triggering quiescence to park waiting for new work. On timeout,
1101 >     * the thread will instead try to shrink the number of
1102 >     * workers. The value should be large enough to avoid overly
1103 >     * aggressive shrinkage during most transient stalls (long GCs
1104 >     * etc).
1105       */
1106 <    private final ForkJoinWorkerThreadFactory factory;
1106 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1107  
1108      /**
1109 <     * Head of stack of threads that were created to maintain
167 <     * parallelism when other threads blocked, but have since
168 <     * suspended when the parallelism level rose.
1109 >     * Timeout value when there are more threads than parallelism level
1110       */
1111 <    private volatile WaitQueueNode spareStack;
1111 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1112  
1113      /**
1114 <     * Sum of per-thread steal counts, updated only when threads are
174 <     * idle or terminating.
1114 >     * Tolerance for idle timeouts, to cope with timer undershoots
1115       */
1116 <    private final AtomicLong stealCount;
1116 >    private static final long TIMEOUT_SLOP = 2000000L;
1117  
1118      /**
1119 <     * Queue for external submissions.
1119 >     * The maximum stolen->joining link depth allowed in method
1120 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1121 >     * chains are unbounded, but we use a fixed constant to avoid
1122 >     * (otherwise unchecked) cycles and to bound staleness of
1123 >     * traversal parameters at the expense of sometimes blocking when
1124 >     * we could be helping.
1125       */
1126 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1126 >    private static final int MAX_HELP = 64;
1127  
1128      /**
1129 <     * Head of Treiber stack for barrier sync. See below for explanation
1129 >     * Increment for seed generators. See class ThreadLocal for
1130 >     * explanation.
1131       */
1132 <    private volatile WaitQueueNode syncStack;
1132 >    private static final int SEED_INCREMENT = 0x61c88647;
1133  
1134 <    /**
1135 <     * The count for event barrier
1136 <     */
1137 <    private volatile long eventCount;
1134 >    /*
1135 >     * Bits and masks for control variables
1136 >     *
1137 >     * Field ctl is a long packed with:
1138 >     * AC: Number of active running workers minus target parallelism (16 bits)
1139 >     * TC: Number of total workers minus target parallelism (16 bits)
1140 >     * ST: true if pool is terminating (1 bit)
1141 >     * EC: the wait count of top waiting thread (15 bits)
1142 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1143 >     *
1144 >     * When convenient, we can extract the upper 32 bits of counts and
1145 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1146 >     * (int)ctl.  The ec field is never accessed alone, but always
1147 >     * together with id and st. The offsets of counts by the target
1148 >     * parallelism and the positionings of fields makes it possible to
1149 >     * perform the most common checks via sign tests of fields: When
1150 >     * ac is negative, there are not enough active workers, when tc is
1151 >     * negative, there are not enough total workers, and when e is
1152 >     * negative, the pool is terminating.  To deal with these possibly
1153 >     * negative fields, we use casts in and out of "short" and/or
1154 >     * signed shifts to maintain signedness.
1155 >     *
1156 >     * When a thread is queued (inactivated), its eventCount field is
1157 >     * set negative, which is the only way to tell if a worker is
1158 >     * prevented from executing tasks, even though it must continue to
1159 >     * scan for them to avoid queuing races. Note however that
1160 >     * eventCount updates lag releases so usage requires care.
1161 >     *
1162 >     * Field plock is an int packed with:
1163 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1164 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1165 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1166 >     *
1167 >     * The sequence number enables simple consistency checks:
1168 >     * Staleness of read-only operations on the workQueues array can
1169 >     * be checked by comparing plock before vs after the reads.
1170 >     */
1171 >
1172 >    // bit positions/shifts for fields
1173 >    private static final int  AC_SHIFT   = 48;
1174 >    private static final int  TC_SHIFT   = 32;
1175 >    private static final int  ST_SHIFT   = 31;
1176 >    private static final int  EC_SHIFT   = 16;
1177 >
1178 >    // bounds
1179 >    private static final int  SMASK      = 0xffff;  // short bits
1180 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1181 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1182 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1183 >    private static final int  SHORT_SIGN = 1 << 15;
1184 >    private static final int  INT_SIGN   = 1 << 31;
1185 >
1186 >    // masks
1187 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1188 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1189 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1190 >
1191 >    // units for incrementing and decrementing
1192 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1193 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1194 >
1195 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1196 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1197 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1198 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1199 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1200 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1201 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1202 >
1203 >    // masks and units for dealing with e = (int)ctl
1204 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1205 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1206 >
1207 >    // plock bits
1208 >    private static final int SHUTDOWN    = 1 << 31;
1209 >    private static final int PL_LOCK     = 2;
1210 >    private static final int PL_SIGNAL   = 1;
1211 >    private static final int PL_SPINS    = 1 << 8;
1212 >
1213 >    // access mode for WorkQueue
1214 >    static final int LIFO_QUEUE          =  0;
1215 >    static final int FIFO_QUEUE          =  1;
1216 >    static final int SHARED_QUEUE        = -1;
1217 >
1218 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1219 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1220 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1221  
1222 <    /**
1223 <     * Pool number, just for assigning useful names to worker threads
1222 >    // Instance fields
1223 >
1224 >    /*
1225 >     * Field layout of this class tends to matter more than one would
1226 >     * like. Runtime layout order is only loosely related to
1227 >     * declaration order and may differ across JVMs, but the following
1228 >     * empirically works OK on current JVMs.
1229 >     */
1230 >
1231 >    // Heuristic padding to ameliorate unfortunate memory placements
1232 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233 >
1234 >    volatile long stealCount;                  // collects worker counts
1235 >    volatile long ctl;                         // main pool control
1236 >    volatile int plock;                        // shutdown status and seqLock
1237 >    volatile int indexSeed;                    // worker/submitter index seed
1238 >    final int config;                          // mode and parallelism level
1239 >    WorkQueue[] workQueues;                    // main registry
1240 >    final ForkJoinWorkerThreadFactory factory;
1241 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1242 >    final String workerNamePrefix;             // to create worker name string
1243 >
1244 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245 >    volatile Object pad18, pad19, pad1a, pad1b;
1246 >
1247 >    /**
1248 >     * Acquires the plock lock to protect worker array and related
1249 >     * updates. This method is called only if an initial CAS on plock
1250 >     * fails. This acts as a spinlock for normal cases, but falls back
1251 >     * to builtin monitor to block when (rarely) needed. This would be
1252 >     * a terrible idea for a highly contended lock, but works fine as
1253 >     * a more conservative alternative to a pure spinlock.
1254       */
1255 <    private final int poolNumber;
1255 >    private int acquirePlock() {
1256 >        int spins = PL_SPINS, r = 0, ps, nps;
1257 >        for (;;) {
1258 >            if (((ps = plock) & PL_LOCK) == 0 &&
1259 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260 >                return nps;
1261 >            else if (r == 0) { // randomize spins if possible
1262 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1263 >                if ((t instanceof ForkJoinWorkerThread) &&
1264 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1265 >                    r = w.seed;
1266 >                else if ((z = submitters.get()) != null)
1267 >                    r = z.seed;
1268 >                else
1269 >                    r = 1;
1270 >            }
1271 >            else if (spins >= 0) {
1272 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1273 >                if (r >= 0)
1274 >                    --spins;
1275 >            }
1276 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1277 >                synchronized (this) {
1278 >                    if ((plock & PL_SIGNAL) != 0) {
1279 >                        try {
1280 >                            wait();
1281 >                        } catch (InterruptedException ie) {
1282 >                            try {
1283 >                                Thread.currentThread().interrupt();
1284 >                            } catch (SecurityException ignore) {
1285 >                            }
1286 >                        }
1287 >                    }
1288 >                    else
1289 >                        notifyAll();
1290 >                }
1291 >            }
1292 >        }
1293 >    }
1294  
1295      /**
1296 <     * The maximum allowed pool size
1296 >     * Unlocks and signals any thread waiting for plock. Called only
1297 >     * when CAS of seq value for unlock fails.
1298       */
1299 <    private volatile int maxPoolSize;
1299 >    private void releasePlock(int ps) {
1300 >        plock = ps;
1301 >        synchronized (this) { notifyAll(); }
1302 >    }
1303  
1304      /**
1305 <     * The desired parallelism level, updated only under workerLock.
1306 <     */
1307 <    private volatile int parallelism;
1305 >     * Tries to create and start one worker if fewer than target
1306 >     * parallelism level exist. Adjusts counts etc on failure.
1307 >     */
1308 >    private void tryAddWorker() {
1309 >        long c; int u;
1310 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1311 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1312 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1313 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1314 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1315 >                ForkJoinWorkerThreadFactory fac;
1316 >                Throwable ex = null;
1317 >                ForkJoinWorkerThread wt = null;
1318 >                try {
1319 >                    if ((fac = factory) != null &&
1320 >                        (wt = fac.newThread(this)) != null) {
1321 >                        wt.start();
1322 >                        break;
1323 >                    }
1324 >                } catch (Throwable e) {
1325 >                    ex = e;
1326 >                }
1327 >                deregisterWorker(wt, ex);
1328 >                break;
1329 >            }
1330 >        }
1331 >    }
1332 >
1333 >    //  Registering and deregistering workers
1334  
1335      /**
1336 <     * True if use local fifo, not default lifo, for local polling
1337 <     */
1338 <    private volatile boolean locallyFifo;
1336 >     * Callback from ForkJoinWorkerThread to establish and record its
1337 >     * WorkQueue. To avoid scanning bias due to packing entries in
1338 >     * front of the workQueues array, we treat the array as a simple
1339 >     * power-of-two hash table using per-thread seed as hash,
1340 >     * expanding as needed.
1341 >     *
1342 >     * @param wt the worker thread
1343 >     * @return the worker's queue
1344 >     */
1345 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1346 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1347 >        wt.setDaemon(true);
1348 >        if ((handler = ueh) != null)
1349 >            wt.setUncaughtExceptionHandler(handler);
1350 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1351 >                                          s += SEED_INCREMENT) ||
1352 >                     s == 0); // skip 0
1353 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1354 >        if (((ps = plock) & PL_LOCK) != 0 ||
1355 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1356 >            ps = acquirePlock();
1357 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1358 >        try {
1359 >            if ((ws = workQueues) != null) {    // skip if shutting down
1360 >                int n = ws.length, m = n - 1;
1361 >                int r = (s << 1) | 1;           // use odd-numbered indices
1362 >                if (ws[r &= m] != null) {       // collision
1363 >                    int probes = 0;             // step by approx half size
1364 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1365 >                    while (ws[r = (r + step) & m] != null) {
1366 >                        if (++probes >= n) {
1367 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1368 >                            m = n - 1;
1369 >                            probes = 0;
1370 >                        }
1371 >                    }
1372 >                }
1373 >                w.eventCount = w.poolIndex = r; // volatile write orders
1374 >                ws[r] = w;
1375 >            }
1376 >        } finally {
1377 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1378 >                releasePlock(nps);
1379 >        }
1380 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1381 >        return w;
1382 >    }
1383  
1384      /**
1385 <     * Holds number of total (i.e., created and not yet terminated)
1386 <     * and running (i.e., not blocked on joins or other managed sync)
1387 <     * threads, packed into one int to ensure consistent snapshot when
1388 <     * making decisions about creating and suspending spare
1389 <     * threads. Updated only by CAS.  Note: CASes in
1390 <     * updateRunningCount and preJoin running active count is in low
1391 <     * word, so need to be modified if this changes
1392 <     */
1393 <    private volatile int workerCounts;
1385 >     * Final callback from terminating worker, as well as upon failure
1386 >     * to construct or start a worker.  Removes record of worker from
1387 >     * array, and adjusts counts. If pool is shutting down, tries to
1388 >     * complete termination.
1389 >     *
1390 >     * @param wt the worker thread or null if construction failed
1391 >     * @param ex the exception causing failure, or null if none
1392 >     */
1393 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1394 >        WorkQueue w = null;
1395 >        if (wt != null && (w = wt.workQueue) != null) {
1396 >            int ps;
1397 >            w.qlock = -1;                // ensure set
1398 >            long ns = w.nsteals, sc;     // collect steal count
1399 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1400 >                                               sc = stealCount, sc + ns));
1401 >            if (((ps = plock) & PL_LOCK) != 0 ||
1402 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1403 >                ps = acquirePlock();
1404 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1405 >            try {
1406 >                int idx = w.poolIndex;
1407 >                WorkQueue[] ws = workQueues;
1408 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409 >                    ws[idx] = null;
1410 >            } finally {
1411 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412 >                    releasePlock(nps);
1413 >            }
1414 >        }
1415  
1416 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1417 <    private static int runningCountOf(int s)         { return s & shortMask; }
1418 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1416 >        long c;                          // adjust ctl counts
1417 >        do {} while (!U.compareAndSwapLong
1418 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1419 >                                           ((c - TC_UNIT) & TC_MASK) |
1420 >                                           (c & ~(AC_MASK|TC_MASK)))));
1421 >
1422 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1423 >            w.cancelAll();               // cancel remaining tasks
1424 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1425 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1426 >                if (e > 0) {             // activate or create replacement
1427 >                    if ((ws = workQueues) == null ||
1428 >                        (i = e & SMASK) >= ws.length ||
1429 >                        (v = ws[i]) == null)
1430 >                        break;
1431 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1432 >                               ((long)(u + UAC_UNIT) << 32));
1433 >                    if (v.eventCount != (e | INT_SIGN))
1434 >                        break;
1435 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1436 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1437 >                        if ((p = v.parker) != null)
1438 >                            U.unpark(p);
1439 >                        break;
1440 >                    }
1441 >                }
1442 >                else {
1443 >                    if ((short)u < 0)
1444 >                        tryAddWorker();
1445 >                    break;
1446 >                }
1447 >            }
1448 >        }
1449 >        if (ex == null)                     // help clean refs on way out
1450 >            ForkJoinTask.helpExpungeStaleExceptions();
1451 >        else                                // rethrow
1452 >            ForkJoinTask.rethrow(ex);
1453 >    }
1454 >
1455 >    // Submissions
1456 >
1457 >    /**
1458 >     * Unless shutting down, adds the given task to a submission queue
1459 >     * at submitter's current queue index (modulo submission
1460 >     * range). Only the most common path is directly handled in this
1461 >     * method. All others are relayed to fullExternalPush.
1462 >     *
1463 >     * @param task the task. Caller must ensure non-null.
1464 >     */
1465 >    final void externalPush(ForkJoinTask<?> task) {
1466 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1467 >        if ((z = submitters.get()) != null && plock > 0 &&
1468 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1469 >            (q = ws[m & z.seed & SQMASK]) != null &&
1470 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1471 >            int b = q.base, s = q.top, n, an;
1472 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1473 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1474 >                U.putOrderedObject(a, j, task);
1475 >                q.top = s + 1;                     // push on to deque
1476 >                q.qlock = 0;
1477 >                if (n <= 2)
1478 >                    signalWork(q);
1479 >                return;
1480 >            }
1481 >            q.qlock = 0;
1482 >        }
1483 >        fullExternalPush(task);
1484 >    }
1485 >
1486 >    /**
1487 >     * Full version of externalPush. This method is called, among
1488 >     * other times, upon the first submission of the first task to the
1489 >     * pool, so must perform secondary initialization.  It also
1490 >     * detects first submission by an external thread by looking up
1491 >     * its ThreadLocal, and creates a new shared queue if the one at
1492 >     * index if empty or contended. The plock lock body must be
1493 >     * exception-free (so no try/finally) so we optimistically
1494 >     * allocate new queues outside the lock and throw them away if
1495 >     * (very rarely) not needed.
1496 >     *
1497 >     * Secondary initialization occurs when plock is zero, to create
1498 >     * workQueue array and set plock to a valid value.  This lock body
1499 >     * must also be exception-free. Because the plock seq value can
1500 >     * eventually wrap around zero, this method harmlessly fails to
1501 >     * reinitialize if workQueues exists, while still advancing plock.
1502 >     */
1503 >    private void fullExternalPush(ForkJoinTask<?> task) {
1504 >        int r = 0; // random index seed
1505 >        for (Submitter z = submitters.get();;) {
1506 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1507 >            if (z == null) {
1508 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1509 >                                        r += SEED_INCREMENT) && r != 0)
1510 >                    submitters.set(z = new Submitter(r));
1511 >            }
1512 >            else if (r == 0) {                  // move to a different index
1513 >                r = z.seed;
1514 >                r ^= r << 13;                   // same xorshift as WorkQueues
1515 >                r ^= r >>> 17;
1516 >                z.seed = r ^ (r << 5);
1517 >            }
1518 >            else if ((ps = plock) < 0)
1519 >                throw new RejectedExecutionException();
1520 >            else if (ps == 0 || (ws = workQueues) == null ||
1521 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1522 >                int p = config & SMASK;         // find power of two table size
1523 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1524 >                n |= n >>> 1;
1525 >                n |= n >>> 2;
1526 >                n |= n >>> 4;
1527 >                n |= n >>> 8;
1528 >                n |= n >>> 16;
1529 >                n = (n + 1) << 1;
1530 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1531 >                                   new WorkQueue[n] : null);
1532 >                if (((ps = plock) & PL_LOCK) != 0 ||
1533 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1534 >                    ps = acquirePlock();
1535 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1536 >                    workQueues = nws;
1537 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1538 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1539 >                    releasePlock(nps);
1540 >            }
1541 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1542 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1543 >                    ForkJoinTask<?>[] a = q.array;
1544 >                    int s = q.top;
1545 >                    boolean submitted = false;
1546 >                    try {                      // locked version of push
1547 >                        if ((a != null && a.length > s + 1 - q.base) ||
1548 >                            (a = q.growArray()) != null) {   // must presize
1549 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1550 >                            U.putOrderedObject(a, j, task);
1551 >                            q.top = s + 1;
1552 >                            submitted = true;
1553 >                        }
1554 >                    } finally {
1555 >                        q.qlock = 0;  // unlock
1556 >                    }
1557 >                    if (submitted) {
1558 >                        signalWork(q);
1559 >                        return;
1560 >                    }
1561 >                }
1562 >                r = 0; // move on failure
1563 >            }
1564 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1565 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1566 >                if (((ps = plock) & PL_LOCK) != 0 ||
1567 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1568 >                    ps = acquirePlock();
1569 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1570 >                    ws[k] = q;
1571 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1572 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1573 >                    releasePlock(nps);
1574 >            }
1575 >            else
1576 >                r = 0; // try elsewhere while lock held
1577 >        }
1578 >    }
1579 >
1580 >    // Maintaining ctl counts
1581  
1582      /**
1583 <     * Add delta (which may be negative) to running count.  This must
230 <     * be called before (with negative arg) and after (with positive)
231 <     * any managed synchronization (i.e., mainly, joins)
232 <     * @param delta the number to add
1583 >     * Increments active count; mainly called upon return from blocking.
1584       */
1585 <    final void updateRunningCount(int delta) {
1586 <        int s;
1587 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1585 >    final void incrementActiveCount() {
1586 >        long c;
1587 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1588      }
1589  
1590      /**
1591 <     * Add delta (which may be negative) to both total and running
1592 <     * count.  This must be called upon creation and termination of
1593 <     * worker threads.
243 <     * @param delta the number to add
1591 >     * Tries to create or activate a worker if too few are active.
1592 >     *
1593 >     * @param q the (non-null) queue holding tasks to be signalled
1594       */
1595 <    private void updateWorkerCount(int delta) {
1596 <        int d = delta + (delta << 16); // add to both lo and hi parts
1597 <        int s;
1598 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1595 >    final void signalWork(WorkQueue q) {
1596 >        int hint = q.poolIndex;
1597 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1598 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1599 >            if ((e = (int)c) > 0) {
1600 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1601 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1602 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1603 >                               ((long)(u + UAC_UNIT) << 32));
1604 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1605 >                        w.hint = hint;
1606 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1607 >                        if ((p = w.parker) != null)
1608 >                            U.unpark(p);
1609 >                        break;
1610 >                    }
1611 >                    if (q.top - q.base <= 0)
1612 >                        break;
1613 >                }
1614 >                else
1615 >                    break;
1616 >            }
1617 >            else {
1618 >                if ((short)u < 0)
1619 >                    tryAddWorker();
1620 >                break;
1621 >            }
1622 >        }
1623      }
1624  
1625 +    // Scanning for tasks
1626 +
1627      /**
1628 <     * Lifecycle control. High word contains runState, low word
253 <     * contains the number of workers that are (probably) executing
254 <     * tasks. This value is atomically incremented before a worker
255 <     * gets a task to run, and decremented when worker has no tasks
256 <     * and cannot find any. These two fields are bundled together to
257 <     * support correct termination triggering.  Note: activeCount
258 <     * CAS'es cheat by assuming active count is in low word, so need
259 <     * to be modified if this changes
1628 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1629       */
1630 <    private volatile int runControl;
1630 >    final void runWorker(WorkQueue w) {
1631 >        w.growArray(); // allocate queue
1632 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1633 >    }
1634 >
1635 >    /**
1636 >     * Scans for and, if found, returns one task, else possibly
1637 >     * inactivates the worker. This method operates on single reads of
1638 >     * volatile state and is designed to be re-invoked continuously,
1639 >     * in part because it returns upon detecting inconsistencies,
1640 >     * contention, or state changes that indicate possible success on
1641 >     * re-invocation.
1642 >     *
1643 >     * The scan searches for tasks across queues (starting at a random
1644 >     * index, and relying on registerWorker to irregularly scatter
1645 >     * them within array to avoid bias), checking each at least twice.
1646 >     * The scan terminates upon either finding a non-empty queue, or
1647 >     * completing the sweep. If the worker is not inactivated, it
1648 >     * takes and returns a task from this queue. Otherwise, if not
1649 >     * activated, it signals workers (that may include itself) and
1650 >     * returns so caller can retry. Also returns for true if the
1651 >     * worker array may have changed during an empty scan.  On failure
1652 >     * to find a task, we take one of the following actions, after
1653 >     * which the caller will retry calling this method unless
1654 >     * terminated.
1655 >     *
1656 >     * * If pool is terminating, terminate the worker.
1657 >     *
1658 >     * * If not already enqueued, try to inactivate and enqueue the
1659 >     * worker on wait queue. Or, if inactivating has caused the pool
1660 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1661 >     * pool.
1662 >     *
1663 >     * * If already enqueued and none of the above apply, possibly
1664 >     * park awaiting signal, else lingering to help scan and signal.
1665 >     *
1666 >     * * If a non-empty queue discovered or left as a hint,
1667 >     * help wake up other workers before return.
1668 >     *
1669 >     * @param w the worker (via its WorkQueue)
1670 >     * @return a task or null if none found
1671 >     */
1672 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1673 >        WorkQueue[] ws; int m;
1674 >        int ps = plock;                          // read plock before ws
1675 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1676 >            int ec = w.eventCount;               // ec is negative if inactive
1677 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1678 >            w.hint = -1;                         // update seed and clear hint
1679 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1680 >            do {
1681 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1682 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1683 >                    (a = q.array) != null) {     // probably nonempty
1684 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1685 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1686 >                        U.getObjectVolatile(a, i);
1687 >                    if (q.base == b && ec >= 0 && t != null &&
1688 >                        U.compareAndSwapObject(a, i, t, null)) {
1689 >                        if ((q.base = b + 1) - q.top < 0)
1690 >                            signalWork(q);
1691 >                        return t;                // taken
1692 >                    }
1693 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1694 >                        w.hint = (r + j) & m;    // help signal below
1695 >                        break;                   // cannot take
1696 >                    }
1697 >                }
1698 >            } while (--j >= 0);
1699  
1700 <    // RunState values. Order among values matters
1701 <    private static final int RUNNING     = 0;
1702 <    private static final int SHUTDOWN    = 1;
1703 <    private static final int TERMINATING = 2;
1704 <    private static final int TERMINATED  = 3;
1700 >            int h, e, ns; long c, sc; WorkQueue q;
1701 >            if ((ns = w.nsteals) != 0) {
1702 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1703 >                                         sc = stealCount, sc + ns))
1704 >                    w.nsteals = 0;               // collect steals and rescan
1705 >            }
1706 >            else if (plock != ps)                // consistency check
1707 >                ;                                // skip
1708 >            else if ((e = (int)(c = ctl)) < 0)
1709 >                w.qlock = -1;                    // pool is terminating
1710 >            else {
1711 >                if ((h = w.hint) < 0) {
1712 >                    if (ec >= 0) {               // try to enqueue/inactivate
1713 >                        long nc = (((long)ec |
1714 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1715 >                        w.nextWait = e;          // link and mark inactive
1716 >                        w.eventCount = ec | INT_SIGN;
1717 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1718 >                            w.eventCount = ec;   // unmark on CAS failure
1719 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1720 >                            idleAwaitWork(w, nc, c);
1721 >                    }
1722 >                    else if (w.eventCount < 0 && ctl == c) {
1723 >                        Thread wt = Thread.currentThread();
1724 >                        Thread.interrupted();    // clear status
1725 >                        U.putObject(wt, PARKBLOCKER, this);
1726 >                        w.parker = wt;           // emulate LockSupport.park
1727 >                        if (w.eventCount < 0)    // recheck
1728 >                            U.park(false, 0L);   // block
1729 >                        w.parker = null;
1730 >                        U.putObject(wt, PARKBLOCKER, null);
1731 >                    }
1732 >                }
1733 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1734 >                    (ws = workQueues) != null && h < ws.length &&
1735 >                    (q = ws[h]) != null) {      // signal others before retry
1736 >                    WorkQueue v; Thread p; int u, i, s;
1737 >                    for (int n = (config & SMASK) - 1;;) {
1738 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1739 >                        if (((s = idleCount - q.base + q.top) <= n &&
1740 >                             (n = s) <= 0) ||
1741 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1742 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1743 >                            (v = ws[i]) == null)
1744 >                            break;
1745 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1746 >                                   ((long)(u + UAC_UNIT) << 32));
1747 >                        if (v.eventCount != (e | INT_SIGN) ||
1748 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1749 >                            break;
1750 >                        v.hint = h;
1751 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1752 >                        if ((p = v.parker) != null)
1753 >                            U.unpark(p);
1754 >                        if (--n <= 0)
1755 >                            break;
1756 >                    }
1757 >                }
1758 >            }
1759 >        }
1760 >        return null;
1761 >    }
1762  
1763 <    private static int runStateOf(int c)             { return c >>> 16; }
1764 <    private static int activeCountOf(int c)          { return c & shortMask; }
1765 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1763 >    /**
1764 >     * If inactivating worker w has caused the pool to become
1765 >     * quiescent, checks for pool termination, and, so long as this is
1766 >     * not the only worker, waits for event for up to a given
1767 >     * duration.  On timeout, if ctl has not changed, terminates the
1768 >     * worker, which will in turn wake up another worker to possibly
1769 >     * repeat this process.
1770 >     *
1771 >     * @param w the calling worker
1772 >     * @param currentCtl the ctl value triggering possible quiescence
1773 >     * @param prevCtl the ctl value to restore if thread is terminated
1774 >     */
1775 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 >        if (w != null && w.eventCount < 0 &&
1777 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1778 >            ctl == currentCtl) {
1779 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1780 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1781 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1782 >            Thread wt = Thread.currentThread();
1783 >            while (ctl == currentCtl) {
1784 >                Thread.interrupted();  // timed variant of version in scan()
1785 >                U.putObject(wt, PARKBLOCKER, this);
1786 >                w.parker = wt;
1787 >                if (ctl == currentCtl)
1788 >                    U.park(false, parkTime);
1789 >                w.parker = null;
1790 >                U.putObject(wt, PARKBLOCKER, null);
1791 >                if (ctl != currentCtl)
1792 >                    break;
1793 >                if (deadline - System.nanoTime() <= 0L &&
1794 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1795 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1796 >                    w.hint = -1;
1797 >                    w.qlock = -1;   // shrink
1798 >                    break;
1799 >                }
1800 >            }
1801 >        }
1802 >    }
1803  
1804      /**
1805 <     * Try incrementing active count; fail on contention. Called by
1806 <     * workers before/during executing tasks.
1807 <     * @return true on success;
1808 <     */
1809 <    final boolean tryIncrementActiveCount() {
1810 <        int c = runControl;
1811 <        return casRunControl(c, c+1);
1805 >     * Scans through queues looking for work while joining a task; if
1806 >     * any present, signals. May return early if more signalling is
1807 >     * detectably unneeded.
1808 >     *
1809 >     * @param task return early if done
1810 >     * @param origin an index to start scan
1811 >     */
1812 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1813 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1814 >        if (task != null && task.status >= 0 &&
1815 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1816 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1817 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1818 >                WorkQueue q = ws[k++ & m];
1819 >                for (int n = m;;) { // limit to at most m signals
1820 >                    if (task.status < 0)
1821 >                        break outer;
1822 >                    if (q == null ||
1823 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1824 >                        break;
1825 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1826 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1827 >                        (w = ws[i]) == null)
1828 >                        break outer;
1829 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1830 >                               ((long)(u + UAC_UNIT) << 32));
1831 >                    if (w.eventCount != (e | INT_SIGN))
1832 >                        break outer;
1833 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1834 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1835 >                        if ((p = w.parker) != null)
1836 >                            U.unpark(p);
1837 >                        if (--n <= 0)
1838 >                            break;
1839 >                    }
1840 >                }
1841 >            }
1842 >        }
1843      }
1844  
1845      /**
1846 <     * Try decrementing active count; fail on contention.
1847 <     * Possibly trigger termination on success
1848 <     * Called by workers when they can't find tasks.
1849 <     * @return true on success
1850 <     */
1851 <    final boolean tryDecrementActiveCount() {
1852 <        int c = runControl;
1853 <        int nextc = c - 1;
1854 <        if (!casRunControl(c, nextc))
1855 <            return false;
1856 <        if (canTerminateOnShutdown(nextc))
1857 <            terminateOnShutdown();
1858 <        return true;
1846 >     * Tries to locate and execute tasks for a stealer of the given
1847 >     * task, or in turn one of its stealers, Traces currentSteal ->
1848 >     * currentJoin links looking for a thread working on a descendant
1849 >     * of the given task and with a non-empty queue to steal back and
1850 >     * execute tasks from. The first call to this method upon a
1851 >     * waiting join will often entail scanning/search, (which is OK
1852 >     * because the joiner has nothing better to do), but this method
1853 >     * leaves hints in workers to speed up subsequent calls. The
1854 >     * implementation is very branchy to cope with potential
1855 >     * inconsistencies or loops encountering chains that are stale,
1856 >     * unknown, or so long that they are likely cyclic.
1857 >     *
1858 >     * @param joiner the joining worker
1859 >     * @param task the task to join
1860 >     * @return 0 if no progress can be made, negative if task
1861 >     * known complete, else positive
1862 >     */
1863 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1864 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1865 >        if (joiner != null && task != null) {       // hoist null checks
1866 >            restart: for (;;) {
1867 >                ForkJoinTask<?> subtask = task;     // current target
1868 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1869 >                    WorkQueue[] ws; int m, s, h;
1870 >                    if ((s = task.status) < 0) {
1871 >                        stat = s;
1872 >                        break restart;
1873 >                    }
1874 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1875 >                        break restart;              // shutting down
1876 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1877 >                        v.currentSteal != subtask) {
1878 >                        for (int origin = h;;) {    // find stealer
1879 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1880 >                                (subtask.status < 0 || j.currentJoin != subtask))
1881 >                                continue restart;   // occasional staleness check
1882 >                            if ((v = ws[h]) != null &&
1883 >                                v.currentSteal == subtask) {
1884 >                                j.hint = h;        // save hint
1885 >                                break;
1886 >                            }
1887 >                            if (h == origin)
1888 >                                break restart;      // cannot find stealer
1889 >                        }
1890 >                    }
1891 >                    for (;;) { // help stealer or descend to its stealer
1892 >                        ForkJoinTask[] a;  int b;
1893 >                        if (subtask.status < 0)     // surround probes with
1894 >                            continue restart;       //   consistency checks
1895 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1896 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1897 >                            ForkJoinTask<?> t =
1898 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1899 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1900 >                                v.currentSteal != subtask)
1901 >                                continue restart;   // stale
1902 >                            stat = 1;               // apparent progress
1903 >                            if (t != null && v.base == b &&
1904 >                                U.compareAndSwapObject(a, i, t, null)) {
1905 >                                v.base = b + 1;     // help stealer
1906 >                                joiner.runSubtask(t);
1907 >                            }
1908 >                            else if (v.base == b && ++steps == MAX_HELP)
1909 >                                break restart;      // v apparently stalled
1910 >                        }
1911 >                        else {                      // empty -- try to descend
1912 >                            ForkJoinTask<?> next = v.currentJoin;
1913 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1914 >                                v.currentSteal != subtask)
1915 >                                continue restart;   // stale
1916 >                            else if (next == null || ++steps == MAX_HELP)
1917 >                                break restart;      // dead-end or maybe cyclic
1918 >                            else {
1919 >                                subtask = next;
1920 >                                j = v;
1921 >                                break;
1922 >                            }
1923 >                        }
1924 >                    }
1925 >                }
1926 >            }
1927 >        }
1928 >        return stat;
1929      }
1930  
1931      /**
1932 <     * Return true if argument represents zero active count and
1933 <     * nonzero runstate, which is the triggering condition for
1934 <     * terminating on shutdown.
1935 <     */
1936 <    private static boolean canTerminateOnShutdown(int c) {
1937 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1932 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1933 >     * and run tasks within the target's computation.
1934 >     *
1935 >     * @param task the task to join
1936 >     * @param mode if shared, exit upon completing any task
1937 >     * if all workers are active
1938 >     */
1939 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1940 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1941 >        if (task != null && (ws = workQueues) != null &&
1942 >            (m = ws.length - 1) >= 0) {
1943 >            for (int j = 1, origin = j;;) {
1944 >                if ((s = task.status) < 0)
1945 >                    return s;
1946 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1947 >                    origin = j;
1948 >                    if (mode == SHARED_QUEUE &&
1949 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1950 >                        break;
1951 >                }
1952 >                else if ((j = (j + 2) & m) == origin)
1953 >                    break;
1954 >            }
1955 >        }
1956 >        return 0;
1957      }
1958  
1959      /**
1960 <     * Transition run state to at least the given state. Return true
1961 <     * if not already at least given state.
1962 <     */
1963 <    private boolean transitionRunStateTo(int state) {
1964 <        for (;;) {
1965 <            int c = runControl;
1966 <            if (runStateOf(c) >= state)
1967 <                return false;
1968 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1969 <                return true;
1960 >     * Tries to decrement active count (sometimes implicitly) and
1961 >     * possibly release or create a compensating worker in preparation
1962 >     * for blocking. Fails on contention or termination. Otherwise,
1963 >     * adds a new thread if no idle workers are available and pool
1964 >     * may become starved.
1965 >     */
1966 >    final boolean tryCompensate() {
1967 >        int pc = config & SMASK, e, i, tc; long c;
1968 >        WorkQueue[] ws; WorkQueue w; Thread p;
1969 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1970 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1971 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1972 >                long nc = ((long)(w.nextWait & E_MASK) |
1973 >                           (c & (AC_MASK|TC_MASK)));
1974 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1975 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1976 >                    if ((p = w.parker) != null)
1977 >                        U.unpark(p);
1978 >                    return true;   // replace with idle worker
1979 >                }
1980 >            }
1981 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1982 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1983 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1984 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1985 >                    return true;   // no compensation
1986 >            }
1987 >            else if (tc + pc < MAX_CAP) {
1988 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1989 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1990 >                    ForkJoinWorkerThreadFactory fac;
1991 >                    Throwable ex = null;
1992 >                    ForkJoinWorkerThread wt = null;
1993 >                    try {
1994 >                        if ((fac = factory) != null &&
1995 >                            (wt = fac.newThread(this)) != null) {
1996 >                            wt.start();
1997 >                            return true;
1998 >                        }
1999 >                    } catch (Throwable rex) {
2000 >                        ex = rex;
2001 >                    }
2002 >                    deregisterWorker(wt, ex); // clean up and return false
2003 >                }
2004 >            }
2005          }
2006 +        return false;
2007      }
2008  
2009      /**
2010 <     * Controls whether to add spares to maintain parallelism
2010 >     * Helps and/or blocks until the given task is done.
2011 >     *
2012 >     * @param joiner the joining worker
2013 >     * @param task the task
2014 >     * @return task status on exit
2015       */
2016 <    private volatile boolean maintainsParallelism;
2017 <
2018 <    // Constructors
2016 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2017 >        int s = 0;
2018 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2019 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2020 >            joiner.currentJoin = task;
2021 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2022 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2023 >            if (s >= 0 && (s = task.status) >= 0) {
2024 >                helpSignal(task, joiner.poolIndex);
2025 >                if ((s = task.status) >= 0 &&
2026 >                    (task instanceof CountedCompleter))
2027 >                    s = helpComplete(task, LIFO_QUEUE);
2028 >            }
2029 >            while (s >= 0 && (s = task.status) >= 0) {
2030 >                if ((!joiner.isEmpty() ||           // try helping
2031 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2032 >                    (s = task.status) >= 0) {
2033 >                    helpSignal(task, joiner.poolIndex);
2034 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2035 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2036 >                            synchronized (task) {
2037 >                                if (task.status >= 0) {
2038 >                                    try {                // see ForkJoinTask
2039 >                                        task.wait();     //  for explanation
2040 >                                    } catch (InterruptedException ie) {
2041 >                                    }
2042 >                                }
2043 >                                else
2044 >                                    task.notifyAll();
2045 >                            }
2046 >                        }
2047 >                        long c;                          // re-activate
2048 >                        do {} while (!U.compareAndSwapLong
2049 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2050 >                    }
2051 >                }
2052 >            }
2053 >            joiner.currentJoin = prevJoin;
2054 >        }
2055 >        return s;
2056 >    }
2057  
2058      /**
2059 <     * Creates a ForkJoinPool with a pool size equal to the number of
2060 <     * processors available on the system and using the default
2061 <     * ForkJoinWorkerThreadFactory,
2062 <     * @throws SecurityException if a security manager exists and
2063 <     *         the caller is not permitted to modify threads
2064 <     *         because it does not hold {@link
336 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2059 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2060 >     * to help join only while there is continuous progress. (Caller
2061 >     * will then enter a timed wait.)
2062 >     *
2063 >     * @param joiner the joining worker
2064 >     * @param task the task
2065       */
2066 <    public ForkJoinPool() {
2067 <        this(Runtime.getRuntime().availableProcessors(),
2068 <             defaultForkJoinWorkerThreadFactory);
2066 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2067 >        int s;
2068 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2069 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2070 >            joiner.currentJoin = task;
2071 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2072 >                         joiner.tryRemoveAndExec(task));
2073 >            if (s >= 0 && (s = task.status) >= 0) {
2074 >                helpSignal(task, joiner.poolIndex);
2075 >                if ((s = task.status) >= 0 &&
2076 >                    (task instanceof CountedCompleter))
2077 >                    s = helpComplete(task, LIFO_QUEUE);
2078 >            }
2079 >            if (s >= 0 && joiner.isEmpty()) {
2080 >                do {} while (task.status >= 0 &&
2081 >                             tryHelpStealer(joiner, task) > 0);
2082 >            }
2083 >            joiner.currentJoin = prevJoin;
2084 >        }
2085      }
2086  
2087      /**
2088 <     * Creates a ForkJoinPool with the indicated parellelism level
2089 <     * threads, and using the default ForkJoinWorkerThreadFactory,
2090 <     * @param parallelism the number of worker threads
2091 <     * @throws IllegalArgumentException if parallelism less than or
348 <     * equal to zero
349 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2088 >     * Returns a (probably) non-empty steal queue, if one is found
2089 >     * during a scan, else null.  This method must be retried by
2090 >     * caller if, by the time it tries to use the queue, it is empty.
2091 >     * @param r a (random) seed for scanning
2092       */
2093 <    public ForkJoinPool(int parallelism) {
2094 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
2093 >    private WorkQueue findNonEmptyStealQueue(int r) {
2094 >        for (;;) {
2095 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2096 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2097 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2098 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2099 >                        q.base - q.top < 0)
2100 >                        return q;
2101 >                }
2102 >            }
2103 >            if (plock == ps)
2104 >                return null;
2105 >        }
2106      }
2107  
2108      /**
2109 <     * Creates a ForkJoinPool with parallelism equal to the number of
2110 <     * processors available on the system and using the given
2111 <     * ForkJoinWorkerThreadFactory,
2112 <     * @param factory the factory for creating new threads
2113 <     * @throws NullPointerException if factory is null
2114 <     * @throws SecurityException if a security manager exists and
2115 <     *         the caller is not permitted to modify threads
2116 <     *         because it does not hold {@link
2117 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2118 <     */
2119 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
2120 <        this(Runtime.getRuntime().availableProcessors(), factory);
2109 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2110 >     * active count ctl maintenance, but rather than blocking
2111 >     * when tasks cannot be found, we rescan until all others cannot
2112 >     * find tasks either.
2113 >     */
2114 >    final void helpQuiescePool(WorkQueue w) {
2115 >        for (boolean active = true;;) {
2116 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2117 >            while ((t = w.nextLocalTask()) != null) {
2118 >                if (w.base - w.top < 0)
2119 >                    signalWork(w);
2120 >                t.doExec();
2121 >            }
2122 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2123 >                if (!active) {      // re-establish active count
2124 >                    active = true;
2125 >                    do {} while (!U.compareAndSwapLong
2126 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2127 >                }
2128 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2129 >                    if (q.base - q.top < 0)
2130 >                        signalWork(q);
2131 >                    w.runSubtask(t);
2132 >                }
2133 >            }
2134 >            else if (active) {      // decrement active count without queuing
2135 >                long nc = (c = ctl) - AC_UNIT;
2136 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2137 >                    return;         // bypass decrement-then-increment
2138 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2139 >                    active = false;
2140 >            }
2141 >            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2142 >                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2143 >                return;
2144 >        }
2145      }
2146  
2147      /**
2148 <     * Creates a ForkJoinPool with the given parallelism and factory.
2148 >     * Gets and removes a local or stolen task for the given worker.
2149       *
2150 <     * @param parallelism the targeted number of worker threads
377 <     * @param factory the factory for creating new threads
378 <     * @throws IllegalArgumentException if parallelism less than or
379 <     * equal to zero, or greater than implementation limit.
380 <     * @throws NullPointerException if factory is null
381 <     * @throws SecurityException if a security manager exists and
382 <     *         the caller is not permitted to modify threads
383 <     *         because it does not hold {@link
384 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2150 >     * @return a task, if available
2151       */
2152 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2153 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2154 <            throw new IllegalArgumentException();
2155 <        if (factory == null)
2156 <            throw new NullPointerException();
2157 <        checkPermission();
2158 <        this.factory = factory;
2159 <        this.parallelism = parallelism;
2160 <        this.maxPoolSize = MAX_THREADS;
2161 <        this.maintainsParallelism = true;
2162 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2163 <        this.workerLock = new ReentrantLock();
2164 <        this.termination = workerLock.newCondition();
399 <        this.stealCount = new AtomicLong();
400 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
401 <        // worker array and workers are lazily constructed
2152 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2153 >        for (ForkJoinTask<?> t;;) {
2154 >            WorkQueue q; int b;
2155 >            if ((t = w.nextLocalTask()) != null)
2156 >                return t;
2157 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2158 >                return null;
2159 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2160 >                if (q.base - q.top < 0)
2161 >                    signalWork(q);
2162 >                return t;
2163 >            }
2164 >        }
2165      }
2166  
2167      /**
2168 <     * Create new worker using factory.
2169 <     * @param index the index to assign worker
2170 <     * @return new worker, or null of factory failed
2171 <     */
2172 <    private ForkJoinWorkerThread createWorker(int index) {
2173 <        Thread.UncaughtExceptionHandler h = ueh;
2174 <        ForkJoinWorkerThread w = factory.newThread(this);
2175 <        if (w != null) {
2176 <            w.poolIndex = index;
2177 <            w.setDaemon(true);
2178 <            w.setAsyncMode(locallyFifo);
2179 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
2180 <            if (h != null)
2181 <                w.setUncaughtExceptionHandler(h);
2168 >     * Returns a cheap heuristic guide for task partitioning when
2169 >     * programmers, frameworks, tools, or languages have little or no
2170 >     * idea about task granularity.  In essence by offering this
2171 >     * method, we ask users only about tradeoffs in overhead vs
2172 >     * expected throughput and its variance, rather than how finely to
2173 >     * partition tasks.
2174 >     *
2175 >     * In a steady state strict (tree-structured) computation, each
2176 >     * thread makes available for stealing enough tasks for other
2177 >     * threads to remain active. Inductively, if all threads play by
2178 >     * the same rules, each thread should make available only a
2179 >     * constant number of tasks.
2180 >     *
2181 >     * The minimum useful constant is just 1. But using a value of 1
2182 >     * would require immediate replenishment upon each steal to
2183 >     * maintain enough tasks, which is infeasible.  Further,
2184 >     * partitionings/granularities of offered tasks should minimize
2185 >     * steal rates, which in general means that threads nearer the top
2186 >     * of computation tree should generate more than those nearer the
2187 >     * bottom. In perfect steady state, each thread is at
2188 >     * approximately the same level of computation tree. However,
2189 >     * producing extra tasks amortizes the uncertainty of progress and
2190 >     * diffusion assumptions.
2191 >     *
2192 >     * So, users will want to use values larger (but not much larger)
2193 >     * than 1 to both smooth over transient shortages and hedge
2194 >     * against uneven progress; as traded off against the cost of
2195 >     * extra task overhead. We leave the user to pick a threshold
2196 >     * value to compare with the results of this call to guide
2197 >     * decisions, but recommend values such as 3.
2198 >     *
2199 >     * When all threads are active, it is on average OK to estimate
2200 >     * surplus strictly locally. In steady-state, if one thread is
2201 >     * maintaining say 2 surplus tasks, then so are others. So we can
2202 >     * just use estimated queue length.  However, this strategy alone
2203 >     * leads to serious mis-estimates in some non-steady-state
2204 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2205 >     * many of these by further considering the number of "idle"
2206 >     * threads, that are known to have zero queued tasks, so
2207 >     * compensate by a factor of (#idle/#active) threads.
2208 >     *
2209 >     * Note: The approximation of #busy workers as #active workers is
2210 >     * not very good under current signalling scheme, and should be
2211 >     * improved.
2212 >     */
2213 >    static int getSurplusQueuedTaskCount() {
2214 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2215 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2216 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2217 >            int n = (q = wt.workQueue).top - q.base;
2218 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2219 >            return n - (a > (p >>>= 1) ? 0 :
2220 >                        a > (p >>>= 1) ? 1 :
2221 >                        a > (p >>>= 1) ? 2 :
2222 >                        a > (p >>>= 1) ? 4 :
2223 >                        8);
2224 >        }
2225 >        return 0;
2226 >    }
2227 >
2228 >    //  Termination
2229 >
2230 >    /**
2231 >     * Possibly initiates and/or completes termination.  The caller
2232 >     * triggering termination runs three passes through workQueues:
2233 >     * (0) Setting termination status, followed by wakeups of queued
2234 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2235 >     * threads (likely in external tasks, but possibly also blocked in
2236 >     * joins).  Each pass repeats previous steps because of potential
2237 >     * lagging thread creation.
2238 >     *
2239 >     * @param now if true, unconditionally terminate, else only
2240 >     * if no work and no active workers
2241 >     * @param enable if true, enable shutdown when next possible
2242 >     * @return true if now terminating or terminated
2243 >     */
2244 >    private boolean tryTerminate(boolean now, boolean enable) {
2245 >        int ps;
2246 >        if (this == common)                    // cannot shut down
2247 >            return false;
2248 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2249 >            if (!enable)
2250 >                return false;
2251 >            if ((ps & PL_LOCK) != 0 ||
2252 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2253 >                ps = acquirePlock();
2254 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2255 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2256 >                releasePlock(nps);
2257 >        }
2258 >        for (long c;;) {
2259 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2260 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2261 >                    synchronized (this) {
2262 >                        notifyAll();               // signal when 0 workers
2263 >                    }
2264 >                }
2265 >                return true;
2266 >            }
2267 >            if (!now) {                            // check if idle & no tasks
2268 >                WorkQueue[] ws; WorkQueue w;
2269 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2270 >                    return false;
2271 >                if ((ws = workQueues) != null) {
2272 >                    for (int i = 0; i < ws.length; ++i) {
2273 >                        if ((w = ws[i]) != null) {
2274 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2275 >                                signalWork(w);
2276 >                                return false;
2277 >                            }
2278 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2279 >                                return false;      // unqueued inactive worker
2280 >                        }
2281 >                    }
2282 >                }
2283 >            }
2284 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2285 >                for (int pass = 0; pass < 3; ++pass) {
2286 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2287 >                    if ((ws = workQueues) != null) {
2288 >                        int n = ws.length;
2289 >                        for (int i = 0; i < n; ++i) {
2290 >                            if ((w = ws[i]) != null) {
2291 >                                w.qlock = -1;
2292 >                                if (pass > 0) {
2293 >                                    w.cancelAll();
2294 >                                    if (pass > 1 && (wt = w.owner) != null) {
2295 >                                        if (!wt.isInterrupted()) {
2296 >                                            try {
2297 >                                                wt.interrupt();
2298 >                                            } catch (Throwable ignore) {
2299 >                                            }
2300 >                                        }
2301 >                                        U.unpark(wt);
2302 >                                    }
2303 >                                }
2304 >                            }
2305 >                        }
2306 >                        // Wake up workers parked on event queue
2307 >                        int i, e; long cc; Thread p;
2308 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2309 >                               (i = e & SMASK) < n && i >= 0 &&
2310 >                               (w = ws[i]) != null) {
2311 >                            long nc = ((long)(w.nextWait & E_MASK) |
2312 >                                       ((cc + AC_UNIT) & AC_MASK) |
2313 >                                       (cc & (TC_MASK|STOP_BIT)));
2314 >                            if (w.eventCount == (e | INT_SIGN) &&
2315 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2316 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2317 >                                w.qlock = -1;
2318 >                                if ((p = w.parker) != null)
2319 >                                    U.unpark(p);
2320 >                            }
2321 >                        }
2322 >                    }
2323 >                }
2324 >            }
2325          }
420        return w;
2326      }
2327  
2328 <    /**
424 <     * Return a good size for worker array given pool size.
425 <     * Currently requires size to be a power of two.
426 <     */
427 <    private static int arraySizeFor(int ps) {
428 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
429 <    }
2328 >    // external operations on common pool
2329  
2330      /**
2331 <     * Create or resize array if necessary to hold newLength.
2332 <     * Call only under exlusion or lock
434 <     * @return the array
2331 >     * Returns common pool queue for a thread that has submitted at
2332 >     * least one task.
2333       */
2334 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
2335 <        ForkJoinWorkerThread[] ws = workers;
2336 <        if (ws == null)
2337 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
2338 <        else if (newLength > ws.length)
2339 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
2340 <        else
443 <            return ws;
2334 >    static WorkQueue commonSubmitterQueue() {
2335 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2336 >        return ((z = submitters.get()) != null &&
2337 >                (p = common) != null &&
2338 >                (ws = p.workQueues) != null &&
2339 >                (m = ws.length - 1) >= 0) ?
2340 >            ws[m & z.seed & SQMASK] : null;
2341      }
2342  
2343      /**
2344 <     * Try to shrink workers into smaller array after one or more terminate
2345 <     */
2346 <    private void tryShrinkWorkerArray() {
2347 <        ForkJoinWorkerThread[] ws = workers;
2348 <        if (ws != null) {
2349 <            int len = ws.length;
2350 <            int last = len - 1;
2351 <            while (last >= 0 && ws[last] == null)
2352 <                --last;
2353 <            int newLength = arraySizeFor(last+1);
2354 <            if (newLength < len)
2355 <                workers = Arrays.copyOf(ws, newLength);
2344 >     * Tries to pop the given task from submitter's queue in common pool.
2345 >     */
2346 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2347 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2348 >        ForkJoinTask<?>[] a;  int m, s;
2349 >        if (t != null &&
2350 >            (z = submitters.get()) != null &&
2351 >            (p = common) != null &&
2352 >            (ws = p.workQueues) != null &&
2353 >            (m = ws.length - 1) >= 0 &&
2354 >            (q = ws[m & z.seed & SQMASK]) != null &&
2355 >            (s = q.top) != q.base &&
2356 >            (a = q.array) != null) {
2357 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2358 >            if (U.getObject(a, j) == t &&
2359 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2360 >                if (q.array == a && q.top == s && // recheck
2361 >                    U.compareAndSwapObject(a, j, t, null)) {
2362 >                    q.top = s - 1;
2363 >                    q.qlock = 0;
2364 >                    return true;
2365 >                }
2366 >                q.qlock = 0;
2367 >            }
2368          }
2369 +        return false;
2370      }
2371  
2372      /**
2373 <     * Initialize workers if necessary
2374 <     */
2375 <    final void ensureWorkerInitialization() {
2376 <        ForkJoinWorkerThread[] ws = workers;
2377 <        if (ws == null) {
2378 <            final ReentrantLock lock = this.workerLock;
2379 <            lock.lock();
2380 <            try {
2381 <                ws = workers;
2382 <                if (ws == null) {
2383 <                    int ps = parallelism;
2384 <                    ws = ensureWorkerArrayCapacity(ps);
2385 <                    for (int i = 0; i < ps; ++i) {
2386 <                        ForkJoinWorkerThread w = createWorker(i);
2387 <                        if (w != null) {
2388 <                            ws[i] = w;
2389 <                            w.start();
2390 <                            updateWorkerCount(1);
2391 <                        }
2373 >     * Tries to pop and run local tasks within the same computation
2374 >     * as the given root. On failure, tries to help complete from
2375 >     * other queues via helpComplete.
2376 >     */
2377 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2378 >        ForkJoinTask<?>[] a; int m;
2379 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2380 >            root != null && root.status >= 0) {
2381 >            for (;;) {
2382 >                int s, u; Object o; CountedCompleter<?> task = null;
2383 >                if ((s = q.top) - q.base > 0) {
2384 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2385 >                    if ((o = U.getObject(a, j)) != null &&
2386 >                        (o instanceof CountedCompleter)) {
2387 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2388 >                        do {
2389 >                            if (r == root) {
2390 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 >                                    if (q.array == a && q.top == s &&
2392 >                                        U.compareAndSwapObject(a, j, t, null)) {
2393 >                                        q.top = s - 1;
2394 >                                        task = t;
2395 >                                    }
2396 >                                    q.qlock = 0;
2397 >                                }
2398 >                                break;
2399 >                            }
2400 >                        } while ((r = r.completer) != null);
2401                      }
2402                  }
2403 <            } finally {
2404 <                lock.unlock();
2403 >                if (task != null)
2404 >                    task.doExec();
2405 >                if (root.status < 0 ||
2406 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2407 >                    break;
2408 >                if (task == null) {
2409 >                    helpSignal(root, q.poolIndex);
2410 >                    if (root.status >= 0)
2411 >                        helpComplete(root, SHARED_QUEUE);
2412 >                    break;
2413 >                }
2414              }
2415          }
2416      }
2417  
2418      /**
2419 <     * Worker creation and startup for threads added via setParallelism.
2419 >     * Tries to help execute or signal availability of the given task
2420 >     * from submitter's queue in common pool.
2421       */
2422 <    private void createAndStartAddedWorkers() {
2423 <        resumeAllSpares();  // Allow spares to convert to nonspare
2424 <        int ps = parallelism;
2425 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
2426 <        int len = ws.length;
2427 <        // Sweep through slots, to keep lowest indices most populated
2428 <        int k = 0;
2429 <        while (k < len) {
2430 <            if (ws[k] != null) {
2431 <                ++k;
2432 <                continue;
2433 <            }
2434 <            int s = workerCounts;
2435 <            int tc = totalCountOf(s);
2436 <            int rc = runningCountOf(s);
2437 <            if (rc >= ps || tc >= ps)
2438 <                break;
2439 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
2440 <                ForkJoinWorkerThread w = createWorker(k);
2441 <                if (w != null) {
2442 <                    ws[k++] = w;
2443 <                    w.start();
2444 <                }
2445 <                else {
517 <                    updateWorkerCount(-1); // back out on failed creation
518 <                    break;
2422 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2423 >        // Some hard-to-avoid overlap with tryExternalUnpush
2424 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2425 >        ForkJoinTask<?>[] a;  int m, s, n;
2426 >        if (t != null &&
2427 >            (z = submitters.get()) != null &&
2428 >            (p = common) != null &&
2429 >            (ws = p.workQueues) != null &&
2430 >            (m = ws.length - 1) >= 0 &&
2431 >            (q = ws[m & z.seed & SQMASK]) != null &&
2432 >            (a = q.array) != null) {
2433 >            int am = a.length - 1;
2434 >            if ((s = q.top) != q.base) {
2435 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2436 >                if (U.getObject(a, j) == t &&
2437 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2438 >                    if (q.array == a && q.top == s &&
2439 >                        U.compareAndSwapObject(a, j, t, null)) {
2440 >                        q.top = s - 1;
2441 >                        q.qlock = 0;
2442 >                        t.doExec();
2443 >                    }
2444 >                    else
2445 >                        q.qlock = 0;
2446                  }
2447              }
2448 +            if (t.status >= 0) {
2449 +                if (t instanceof CountedCompleter)
2450 +                    p.externalHelpComplete(q, t);
2451 +                else
2452 +                    p.helpSignal(t, q.poolIndex);
2453 +            }
2454          }
2455      }
2456  
2457 <    // Execution methods
2457 >    // Exported methods
2458 >
2459 >    // Constructors
2460 >
2461 >    /**
2462 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2463 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2464 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2465 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2466 >     *
2467 >     * @throws SecurityException if a security manager exists and
2468 >     *         the caller is not permitted to modify threads
2469 >     *         because it does not hold {@link
2470 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2471 >     */
2472 >    public ForkJoinPool() {
2473 >        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2474 >             defaultForkJoinWorkerThreadFactory, null, false);
2475 >    }
2476 >
2477 >    /**
2478 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2479 >     * level, the {@linkplain
2480 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2481 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2482 >     *
2483 >     * @param parallelism the parallelism level
2484 >     * @throws IllegalArgumentException if parallelism less than or
2485 >     *         equal to zero, or greater than implementation limit
2486 >     * @throws SecurityException if a security manager exists and
2487 >     *         the caller is not permitted to modify threads
2488 >     *         because it does not hold {@link
2489 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2490 >     */
2491 >    public ForkJoinPool(int parallelism) {
2492 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2493 >    }
2494  
2495      /**
2496 <     * Common code for execute, invoke and submit
2496 >     * Creates a {@code ForkJoinPool} with the given parameters.
2497 >     *
2498 >     * @param parallelism the parallelism level. For default value,
2499 >     * use {@link java.lang.Runtime#availableProcessors}.
2500 >     * @param factory the factory for creating new threads. For default value,
2501 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2502 >     * @param handler the handler for internal worker threads that
2503 >     * terminate due to unrecoverable errors encountered while executing
2504 >     * tasks. For default value, use {@code null}.
2505 >     * @param asyncMode if true,
2506 >     * establishes local first-in-first-out scheduling mode for forked
2507 >     * tasks that are never joined. This mode may be more appropriate
2508 >     * than default locally stack-based mode in applications in which
2509 >     * worker threads only process event-style asynchronous tasks.
2510 >     * For default value, use {@code false}.
2511 >     * @throws IllegalArgumentException if parallelism less than or
2512 >     *         equal to zero, or greater than implementation limit
2513 >     * @throws NullPointerException if the factory is null
2514 >     * @throws SecurityException if a security manager exists and
2515 >     *         the caller is not permitted to modify threads
2516 >     *         because it does not hold {@link
2517 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2518       */
2519 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2520 <        if (isShutdown())
2521 <            throw new RejectedExecutionException();
2522 <        if (workers == null)
2523 <            ensureWorkerInitialization();
2524 <        submissionQueue.offer(task);
2525 <        signalIdleWorkers();
2519 >    public ForkJoinPool(int parallelism,
2520 >                        ForkJoinWorkerThreadFactory factory,
2521 >                        Thread.UncaughtExceptionHandler handler,
2522 >                        boolean asyncMode) {
2523 >        checkPermission();
2524 >        if (factory == null)
2525 >            throw new NullPointerException();
2526 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2527 >            throw new IllegalArgumentException();
2528 >        this.factory = factory;
2529 >        this.ueh = handler;
2530 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2531 >        long np = (long)(-parallelism); // offset ctl counts
2532 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2533 >        int pn = nextPoolId();
2534 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2535 >        sb.append(Integer.toString(pn));
2536 >        sb.append("-worker-");
2537 >        this.workerNamePrefix = sb.toString();
2538 >    }
2539 >
2540 >    /**
2541 >     * Constructor for common pool, suitable only for static initialization.
2542 >     * Basically the same as above, but uses smallest possible initial footprint.
2543 >     */
2544 >    ForkJoinPool(int parallelism, long ctl,
2545 >                 ForkJoinWorkerThreadFactory factory,
2546 >                 Thread.UncaughtExceptionHandler handler) {
2547 >        this.config = parallelism;
2548 >        this.ctl = ctl;
2549 >        this.factory = factory;
2550 >        this.ueh = handler;
2551 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2552 >    }
2553 >
2554 >    /**
2555 >     * Returns the common pool instance. This pool is statically
2556 >     * constructed; its run state is unaffected by attempts to {@link
2557 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2558 >     * ongoing processing are automatically terminated upon program
2559 >     * {@link System#exit}.  Any program that relies on asynchronous
2560 >     * task processing to complete before program termination should
2561 >     * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2562 >     * exit.
2563 >     *
2564 >     * @return the common pool instance
2565 >     * @since 1.8
2566 >     */
2567 >    public static ForkJoinPool commonPool() {
2568 >        // assert common != null : "static init error";
2569 >        return common;
2570      }
2571  
2572 +    // Execution methods
2573 +
2574      /**
2575 <     * Performs the given task; returning its result upon completion
2575 >     * Performs the given task, returning its result upon completion.
2576 >     * If the computation encounters an unchecked Exception or Error,
2577 >     * it is rethrown as the outcome of this invocation.  Rethrown
2578 >     * exceptions behave in the same way as regular exceptions, but,
2579 >     * when possible, contain stack traces (as displayed for example
2580 >     * using {@code ex.printStackTrace()}) of both the current thread
2581 >     * as well as the thread actually encountering the exception;
2582 >     * minimally only the latter.
2583 >     *
2584       * @param task the task
2585       * @return the task's result
2586 <     * @throws NullPointerException if task is null
2587 <     * @throws RejectedExecutionException if pool is shut down
2586 >     * @throws NullPointerException if the task is null
2587 >     * @throws RejectedExecutionException if the task cannot be
2588 >     *         scheduled for execution
2589       */
2590      public <T> T invoke(ForkJoinTask<T> task) {
2591 <        doSubmit(task);
2591 >        if (task == null)
2592 >            throw new NullPointerException();
2593 >        externalPush(task);
2594          return task.join();
2595      }
2596  
2597      /**
2598       * Arranges for (asynchronous) execution of the given task.
2599 +     *
2600       * @param task the task
2601 <     * @throws NullPointerException if task is null
2602 <     * @throws RejectedExecutionException if pool is shut down
2601 >     * @throws NullPointerException if the task is null
2602 >     * @throws RejectedExecutionException if the task cannot be
2603 >     *         scheduled for execution
2604       */
2605 <    public <T> void execute(ForkJoinTask<T> task) {
2606 <        doSubmit(task);
2605 >    public void execute(ForkJoinTask<?> task) {
2606 >        if (task == null)
2607 >            throw new NullPointerException();
2608 >        externalPush(task);
2609      }
2610  
2611      // AbstractExecutorService methods
2612  
2613 +    /**
2614 +     * @throws NullPointerException if the task is null
2615 +     * @throws RejectedExecutionException if the task cannot be
2616 +     *         scheduled for execution
2617 +     */
2618      public void execute(Runnable task) {
2619 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2619 >        if (task == null)
2620 >            throw new NullPointerException();
2621 >        ForkJoinTask<?> job;
2622 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2623 >            job = (ForkJoinTask<?>) task;
2624 >        else
2625 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2626 >        externalPush(job);
2627      }
2628  
2629 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2630 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2631 <        doSubmit(job);
2632 <        return job;
2629 >    /**
2630 >     * Submits a ForkJoinTask for execution.
2631 >     *
2632 >     * @param task the task to submit
2633 >     * @return the task
2634 >     * @throws NullPointerException if the task is null
2635 >     * @throws RejectedExecutionException if the task cannot be
2636 >     *         scheduled for execution
2637 >     */
2638 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2639 >        if (task == null)
2640 >            throw new NullPointerException();
2641 >        externalPush(task);
2642 >        return task;
2643      }
2644  
2645 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2646 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2647 <        doSubmit(job);
2645 >    /**
2646 >     * @throws NullPointerException if the task is null
2647 >     * @throws RejectedExecutionException if the task cannot be
2648 >     *         scheduled for execution
2649 >     */
2650 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2651 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2652 >        externalPush(job);
2653          return job;
2654      }
2655  
2656 <    public ForkJoinTask<?> submit(Runnable task) {
2657 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2658 <        doSubmit(job);
2656 >    /**
2657 >     * @throws NullPointerException if the task is null
2658 >     * @throws RejectedExecutionException if the task cannot be
2659 >     *         scheduled for execution
2660 >     */
2661 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2662 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2663 >        externalPush(job);
2664          return job;
2665      }
2666  
2667      /**
2668 <     * Adaptor for Runnables. This implements RunnableFuture
2669 <     * to be compliant with AbstractExecutorService constraints
2668 >     * @throws NullPointerException if the task is null
2669 >     * @throws RejectedExecutionException if the task cannot be
2670 >     *         scheduled for execution
2671       */
2672 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
2673 <        implements RunnableFuture<T> {
2674 <        final Runnable runnable;
2675 <        final T resultOnCompletion;
2676 <        T result;
2677 <        AdaptedRunnable(Runnable runnable, T result) {
2678 <            if (runnable == null) throw new NullPointerException();
2679 <            this.runnable = runnable;
2680 <            this.resultOnCompletion = result;
2681 <        }
598 <        public T getRawResult() { return result; }
599 <        public void setRawResult(T v) { result = v; }
600 <        public boolean exec() {
601 <            runnable.run();
602 <            result = resultOnCompletion;
603 <            return true;
604 <        }
605 <        public void run() { invoke(); }
2672 >    public ForkJoinTask<?> submit(Runnable task) {
2673 >        if (task == null)
2674 >            throw new NullPointerException();
2675 >        ForkJoinTask<?> job;
2676 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2677 >            job = (ForkJoinTask<?>) task;
2678 >        else
2679 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2680 >        externalPush(job);
2681 >        return job;
2682      }
2683  
2684      /**
2685 <     * Adaptor for Callables
2685 >     * @throws NullPointerException       {@inheritDoc}
2686 >     * @throws RejectedExecutionException {@inheritDoc}
2687       */
611    static final class AdaptedCallable<T> extends ForkJoinTask<T>
612        implements RunnableFuture<T> {
613        final Callable<T> callable;
614        T result;
615        AdaptedCallable(Callable<T> callable) {
616            if (callable == null) throw new NullPointerException();
617            this.callable = callable;
618        }
619        public T getRawResult() { return result; }
620        public void setRawResult(T v) { result = v; }
621        public boolean exec() {
622            try {
623                result = callable.call();
624                return true;
625            } catch (Error err) {
626                throw err;
627            } catch (RuntimeException rex) {
628                throw rex;
629            } catch (Exception ex) {
630                throw new RuntimeException(ex);
631            }
632        }
633        public void run() { invoke(); }
634    }
635
2688      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2689 <        ArrayList<ForkJoinTask<T>> ts =
2690 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2691 <        for (Callable<T> c : tasks)
2692 <            ts.add(new AdaptedCallable<T>(c));
641 <        invoke(new InvokeAll<T>(ts));
642 <        return (List<Future<T>>)(List)ts;
643 <    }
2689 >        // In previous versions of this class, this method constructed
2690 >        // a task to run ForkJoinTask.invokeAll, but now external
2691 >        // invocation of multiple tasks is at least as efficient.
2692 >        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2693  
2694 <    static final class InvokeAll<T> extends RecursiveAction {
2695 <        final ArrayList<ForkJoinTask<T>> tasks;
2696 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2697 <        public void compute() {
2698 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2694 >        boolean done = false;
2695 >        try {
2696 >            for (Callable<T> t : tasks) {
2697 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2698 >                futures.add(f);
2699 >                externalPush(f);
2700 >            }
2701 >            for (int i = 0, size = futures.size(); i < size; i++)
2702 >                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2703 >            done = true;
2704 >            return futures;
2705 >        } finally {
2706 >            if (!done)
2707 >                for (int i = 0, size = futures.size(); i < size; i++)
2708 >                    futures.get(i).cancel(false);
2709          }
2710      }
2711  
653    // Configuration and status settings and queries
654
2712      /**
2713 <     * Returns the factory used for constructing new workers
2713 >     * Returns the factory used for constructing new workers.
2714       *
2715       * @return the factory used for constructing new workers
2716       */
# Line 664 | Line 2721 | public class ForkJoinPool extends Abstra
2721      /**
2722       * Returns the handler for internal worker threads that terminate
2723       * due to unrecoverable errors encountered while executing tasks.
2724 <     * @return the handler, or null if none
2724 >     *
2725 >     * @return the handler, or {@code null} if none
2726       */
2727      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2728 <        Thread.UncaughtExceptionHandler h;
671 <        final ReentrantLock lock = this.workerLock;
672 <        lock.lock();
673 <        try {
674 <            h = ueh;
675 <        } finally {
676 <            lock.unlock();
677 <        }
678 <        return h;
2728 >        return ueh;
2729      }
2730  
2731      /**
2732 <     * Sets the handler for internal worker threads that terminate due
683 <     * to unrecoverable errors encountered while executing tasks.
684 <     * Unless set, the current default or ThreadGroup handler is used
685 <     * as handler.
2732 >     * Returns the targeted parallelism level of this pool.
2733       *
2734 <     * @param h the new handler
688 <     * @return the old handler, or null if none
689 <     * @throws SecurityException if a security manager exists and
690 <     *         the caller is not permitted to modify threads
691 <     *         because it does not hold {@link
692 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2734 >     * @return the targeted parallelism level of this pool
2735       */
2736 <    public Thread.UncaughtExceptionHandler
2737 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696 <        checkPermission();
697 <        Thread.UncaughtExceptionHandler old = null;
698 <        final ReentrantLock lock = this.workerLock;
699 <        lock.lock();
700 <        try {
701 <            old = ueh;
702 <            ueh = h;
703 <            ForkJoinWorkerThread[] ws = workers;
704 <            if (ws != null) {
705 <                for (int i = 0; i < ws.length; ++i) {
706 <                    ForkJoinWorkerThread w = ws[i];
707 <                    if (w != null)
708 <                        w.setUncaughtExceptionHandler(h);
709 <                }
710 <            }
711 <        } finally {
712 <            lock.unlock();
713 <        }
714 <        return old;
715 <    }
716 <
717 <
718 <    /**
719 <     * Sets the target paralleism level of this pool.
720 <     * @param parallelism the target parallelism
721 <     * @throws IllegalArgumentException if parallelism less than or
722 <     * equal to zero or greater than maximum size bounds.
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
727 <     */
728 <    public void setParallelism(int parallelism) {
729 <        checkPermission();
730 <        if (parallelism <= 0 || parallelism > maxPoolSize)
731 <            throw new IllegalArgumentException();
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            if (!isTerminating()) {
736 <                int p = this.parallelism;
737 <                this.parallelism = parallelism;
738 <                if (parallelism > p)
739 <                    createAndStartAddedWorkers();
740 <                else
741 <                    trimSpares();
742 <            }
743 <        } finally {
744 <            lock.unlock();
745 <        }
746 <        signalIdleWorkers();
2736 >    public int getParallelism() {
2737 >        return config & SMASK;
2738      }
2739  
2740      /**
2741 <     * Returns the targeted number of worker threads in this pool.
2741 >     * Returns the targeted parallelism level of the common pool.
2742       *
2743 <     * @return the targeted number of worker threads in this pool
2743 >     * @return the targeted parallelism level of the common pool
2744 >     * @since 1.8
2745       */
2746 <    public int getParallelism() {
2747 <        return parallelism;
2746 >    public static int getCommonPoolParallelism() {
2747 >        return commonParallelism;
2748      }
2749  
2750      /**
2751       * Returns the number of worker threads that have started but not
2752 <     * yet terminated.  This result returned by this method may differ
2753 <     * from <code>getParallelism</code> when threads are created to
2752 >     * yet terminated.  The result returned by this method may differ
2753 >     * from {@link #getParallelism} when threads are created to
2754       * maintain parallelism when others are cooperatively blocked.
2755       *
2756       * @return the number of worker threads
2757       */
2758      public int getPoolSize() {
2759 <        return totalCountOf(workerCounts);
768 <    }
769 <
770 <    /**
771 <     * Returns the maximum number of threads allowed to exist in the
772 <     * pool, even if there are insufficient unblocked running threads.
773 <     * @return the maximum
774 <     */
775 <    public int getMaximumPoolSize() {
776 <        return maxPoolSize;
2759 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2760      }
2761  
2762      /**
2763 <     * Sets the maximum number of threads allowed to exist in the
781 <     * pool, even if there are insufficient unblocked running threads.
782 <     * Setting this value has no effect on current pool size. It
783 <     * controls construction of new threads.
784 <     * @throws IllegalArgumentException if negative or greater then
785 <     * internal implementation limit.
786 <     */
787 <    public void setMaximumPoolSize(int newMax) {
788 <        if (newMax < 0 || newMax > MAX_THREADS)
789 <            throw new IllegalArgumentException();
790 <        maxPoolSize = newMax;
791 <    }
792 <
793 <
794 <    /**
795 <     * Returns true if this pool dynamically maintains its target
796 <     * parallelism level. If false, new threads are added only to
797 <     * avoid possible starvation.
798 <     * This setting is by default true;
799 <     * @return true if maintains parallelism
800 <     */
801 <    public boolean getMaintainsParallelism() {
802 <        return maintainsParallelism;
803 <    }
804 <
805 <    /**
806 <     * Sets whether this pool dynamically maintains its target
807 <     * parallelism level. If false, new threads are added only to
808 <     * avoid possible starvation.
809 <     * @param enable true to maintains parallelism
810 <     */
811 <    public void setMaintainsParallelism(boolean enable) {
812 <        maintainsParallelism = enable;
813 <    }
814 <
815 <    /**
816 <     * Establishes local first-in-first-out scheduling mode for forked
817 <     * tasks that are never joined. This mode may be more appropriate
818 <     * than default locally stack-based mode in applications in which
819 <     * worker threads only process asynchronous tasks.  This method is
820 <     * designed to be invoked only when pool is quiescent, and
821 <     * typically only before any tasks are submitted. The effects of
822 <     * invocations at ather times may be unpredictable.
823 <     *
824 <     * @param async if true, use locally FIFO scheduling
825 <     * @return the previous mode.
826 <     */
827 <    public boolean setAsyncMode(boolean async) {
828 <        boolean oldMode = locallyFifo;
829 <        locallyFifo = async;
830 <        ForkJoinWorkerThread[] ws = workers;
831 <        if (ws != null) {
832 <            for (int i = 0; i < ws.length; ++i) {
833 <                ForkJoinWorkerThread t = ws[i];
834 <                if (t != null)
835 <                    t.setAsyncMode(async);
836 <            }
837 <        }
838 <        return oldMode;
839 <    }
840 <
841 <    /**
842 <     * Returns true if this pool uses local first-in-first-out
2763 >     * Returns {@code true} if this pool uses local first-in-first-out
2764       * scheduling mode for forked tasks that are never joined.
2765       *
2766 <     * @return true if this pool uses async mode.
2766 >     * @return {@code true} if this pool uses async mode
2767       */
2768      public boolean getAsyncMode() {
2769 <        return locallyFifo;
2769 >        return (config >>> 16) == FIFO_QUEUE;
2770      }
2771  
2772      /**
2773       * Returns an estimate of the number of worker threads that are
2774       * not blocked waiting to join tasks or for other managed
2775 <     * synchronization.
2775 >     * synchronization. This method may overestimate the
2776 >     * number of running threads.
2777       *
2778       * @return the number of worker threads
2779       */
2780      public int getRunningThreadCount() {
2781 <        return runningCountOf(workerCounts);
2781 >        int rc = 0;
2782 >        WorkQueue[] ws; WorkQueue w;
2783 >        if ((ws = workQueues) != null) {
2784 >            for (int i = 1; i < ws.length; i += 2) {
2785 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2786 >                    ++rc;
2787 >            }
2788 >        }
2789 >        return rc;
2790      }
2791  
2792      /**
2793       * Returns an estimate of the number of threads that are currently
2794       * stealing or executing tasks. This method may overestimate the
2795       * number of active threads.
2796 <     * @return the number of active threads.
2796 >     *
2797 >     * @return the number of active threads
2798       */
2799      public int getActiveThreadCount() {
2800 <        return activeCountOf(runControl);
2800 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2801 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2802      }
2803  
2804      /**
2805 <     * Returns an estimate of the number of threads that are currently
2806 <     * idle waiting for tasks. This method may underestimate the
2807 <     * number of idle threads.
2808 <     * @return the number of idle threads.
2809 <     */
2810 <    final int getIdleThreadCount() {
2811 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
2812 <        return (c <= 0)? 0 : c;
2813 <    }
882 <
883 <    /**
884 <     * Returns true if all worker threads are currently idle. An idle
885 <     * worker is one that cannot obtain a task to execute because none
886 <     * are available to steal from other threads, and there are no
887 <     * pending submissions to the pool. This method is conservative:
888 <     * It might not return true immediately upon idleness of all
889 <     * threads, but will eventually become true if threads remain
890 <     * inactive.
891 <     * @return true if all threads are currently idle
2805 >     * Returns {@code true} if all worker threads are currently idle.
2806 >     * An idle worker is one that cannot obtain a task to execute
2807 >     * because none are available to steal from other threads, and
2808 >     * there are no pending submissions to the pool. This method is
2809 >     * conservative; it might not return {@code true} immediately upon
2810 >     * idleness of all threads, but will eventually become true if
2811 >     * threads remain inactive.
2812 >     *
2813 >     * @return {@code true} if all threads are currently idle
2814       */
2815      public boolean isQuiescent() {
2816 <        return activeCountOf(runControl) == 0;
2816 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2817      }
2818  
2819      /**
# Line 899 | Line 2821 | public class ForkJoinPool extends Abstra
2821       * one thread's work queue by another. The reported value
2822       * underestimates the actual total number of steals when the pool
2823       * is not quiescent. This value may be useful for monitoring and
2824 <     * tuning fork/join programs: In general, steal counts should be
2824 >     * tuning fork/join programs: in general, steal counts should be
2825       * high enough to keep threads busy, but low enough to avoid
2826       * overhead and contention across threads.
2827 <     * @return the number of steals.
2827 >     *
2828 >     * @return the number of steals
2829       */
2830      public long getStealCount() {
2831 <        return stealCount.get();
2832 <    }
2833 <
2834 <    /**
2835 <     * Accumulate steal count from a worker. Call only
2836 <     * when worker known to be idle.
2837 <     */
2838 <    private void updateStealCount(ForkJoinWorkerThread w) {
2839 <        int sc = w.getAndClearStealCount();
917 <        if (sc != 0)
918 <            stealCount.addAndGet(sc);
2831 >        long count = stealCount;
2832 >        WorkQueue[] ws; WorkQueue w;
2833 >        if ((ws = workQueues) != null) {
2834 >            for (int i = 1; i < ws.length; i += 2) {
2835 >                if ((w = ws[i]) != null)
2836 >                    count += w.nsteals;
2837 >            }
2838 >        }
2839 >        return count;
2840      }
2841  
2842      /**
# Line 925 | Line 2846 | public class ForkJoinPool extends Abstra
2846       * an approximation, obtained by iterating across all threads in
2847       * the pool. This method may be useful for tuning task
2848       * granularities.
2849 <     * @return the number of queued tasks.
2849 >     *
2850 >     * @return the number of queued tasks
2851       */
2852      public long getQueuedTaskCount() {
2853          long count = 0;
2854 <        ForkJoinWorkerThread[] ws = workers;
2855 <        if (ws != null) {
2856 <            for (int i = 0; i < ws.length; ++i) {
2857 <                ForkJoinWorkerThread t = ws[i];
2858 <                if (t != null)
937 <                    count += t.getQueueSize();
2854 >        WorkQueue[] ws; WorkQueue w;
2855 >        if ((ws = workQueues) != null) {
2856 >            for (int i = 1; i < ws.length; i += 2) {
2857 >                if ((w = ws[i]) != null)
2858 >                    count += w.queueSize();
2859              }
2860          }
2861          return count;
2862      }
2863  
2864      /**
2865 <     * Returns an estimate of the number tasks submitted to this pool
2866 <     * that have not yet begun executing. This method takes time
2867 <     * proportional to the number of submissions.
2868 <     * @return the number of queued submissions.
2865 >     * Returns an estimate of the number of tasks submitted to this
2866 >     * pool that have not yet begun executing.  This method may take
2867 >     * time proportional to the number of submissions.
2868 >     *
2869 >     * @return the number of queued submissions
2870       */
2871      public int getQueuedSubmissionCount() {
2872 <        return submissionQueue.size();
2872 >        int count = 0;
2873 >        WorkQueue[] ws; WorkQueue w;
2874 >        if ((ws = workQueues) != null) {
2875 >            for (int i = 0; i < ws.length; i += 2) {
2876 >                if ((w = ws[i]) != null)
2877 >                    count += w.queueSize();
2878 >            }
2879 >        }
2880 >        return count;
2881      }
2882  
2883      /**
2884 <     * Returns true if there are any tasks submitted to this pool
2885 <     * that have not yet begun executing.
2886 <     * @return <code>true</code> if there are any queued submissions.
2884 >     * Returns {@code true} if there are any tasks submitted to this
2885 >     * pool that have not yet begun executing.
2886 >     *
2887 >     * @return {@code true} if there are any queued submissions
2888       */
2889      public boolean hasQueuedSubmissions() {
2890 <        return !submissionQueue.isEmpty();
2890 >        WorkQueue[] ws; WorkQueue w;
2891 >        if ((ws = workQueues) != null) {
2892 >            for (int i = 0; i < ws.length; i += 2) {
2893 >                if ((w = ws[i]) != null && !w.isEmpty())
2894 >                    return true;
2895 >            }
2896 >        }
2897 >        return false;
2898      }
2899  
2900      /**
2901       * Removes and returns the next unexecuted submission if one is
2902       * available.  This method may be useful in extensions to this
2903       * class that re-assign work in systems with multiple pools.
2904 <     * @return the next submission, or null if none
2904 >     *
2905 >     * @return the next submission, or {@code null} if none
2906       */
2907      protected ForkJoinTask<?> pollSubmission() {
2908 <        return submissionQueue.poll();
2908 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2909 >        if ((ws = workQueues) != null) {
2910 >            for (int i = 0; i < ws.length; i += 2) {
2911 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2912 >                    return t;
2913 >            }
2914 >        }
2915 >        return null;
2916      }
2917  
2918      /**
2919       * Removes all available unexecuted submitted and forked tasks
2920       * from scheduling queues and adds them to the given collection,
2921       * without altering their execution status. These may include
2922 <     * artifically generated or wrapped tasks. This method id designed
2923 <     * to be invoked only when the pool is known to be
2922 >     * artificially generated or wrapped tasks. This method is
2923 >     * designed to be invoked only when the pool is known to be
2924       * quiescent. Invocations at other times may not remove all
2925       * tasks. A failure encountered while attempting to add elements
2926 <     * to collection <tt>c</tt> may result in elements being in
2926 >     * to collection {@code c} may result in elements being in
2927       * neither, either or both collections when the associated
2928       * exception is thrown.  The behavior of this operation is
2929       * undefined if the specified collection is modified while the
2930       * operation is in progress.
2931 +     *
2932       * @param c the collection to transfer elements into
2933       * @return the number of elements transferred
2934       */
2935 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
2936 <        int n = submissionQueue.drainTo(c);
2937 <        ForkJoinWorkerThread[] ws = workers;
2938 <        if (ws != null) {
2935 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2936 >        int count = 0;
2937 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2938 >        if ((ws = workQueues) != null) {
2939              for (int i = 0; i < ws.length; ++i) {
2940 <                ForkJoinWorkerThread w = ws[i];
2941 <                if (w != null)
2942 <                    n += w.drainTasksTo(c);
2940 >                if ((w = ws[i]) != null) {
2941 >                    while ((t = w.poll()) != null) {
2942 >                        c.add(t);
2943 >                        ++count;
2944 >                    }
2945 >                }
2946              }
2947          }
2948 <        return n;
2948 >        return count;
2949      }
2950  
2951      /**
# Line 1006 | Line 2956 | public class ForkJoinPool extends Abstra
2956       * @return a string identifying this pool, as well as its state
2957       */
2958      public String toString() {
2959 <        int ps = parallelism;
2960 <        int wc = workerCounts;
2961 <        int rc = runControl;
2962 <        long st = getStealCount();
2963 <        long qt = getQueuedTaskCount();
2964 <        long qs = getQueuedSubmissionCount();
2959 >        // Use a single pass through workQueues to collect counts
2960 >        long qt = 0L, qs = 0L; int rc = 0;
2961 >        long st = stealCount;
2962 >        long c = ctl;
2963 >        WorkQueue[] ws; WorkQueue w;
2964 >        if ((ws = workQueues) != null) {
2965 >            for (int i = 0; i < ws.length; ++i) {
2966 >                if ((w = ws[i]) != null) {
2967 >                    int size = w.queueSize();
2968 >                    if ((i & 1) == 0)
2969 >                        qs += size;
2970 >                    else {
2971 >                        qt += size;
2972 >                        st += w.nsteals;
2973 >                        if (w.isApparentlyUnblocked())
2974 >                            ++rc;
2975 >                    }
2976 >                }
2977 >            }
2978 >        }
2979 >        int pc = (config & SMASK);
2980 >        int tc = pc + (short)(c >>> TC_SHIFT);
2981 >        int ac = pc + (int)(c >> AC_SHIFT);
2982 >        if (ac < 0) // ignore transient negative
2983 >            ac = 0;
2984 >        String level;
2985 >        if ((c & STOP_BIT) != 0)
2986 >            level = (tc == 0) ? "Terminated" : "Terminating";
2987 >        else
2988 >            level = plock < 0 ? "Shutting down" : "Running";
2989          return super.toString() +
2990 <            "[" + runStateToString(runStateOf(rc)) +
2991 <            ", parallelism = " + ps +
2992 <            ", size = " + totalCountOf(wc) +
2993 <            ", active = " + activeCountOf(rc) +
2994 <            ", running = " + runningCountOf(wc) +
2990 >            "[" + level +
2991 >            ", parallelism = " + pc +
2992 >            ", size = " + tc +
2993 >            ", active = " + ac +
2994 >            ", running = " + rc +
2995              ", steals = " + st +
2996              ", tasks = " + qt +
2997              ", submissions = " + qs +
2998              "]";
2999      }
3000  
1027    private static String runStateToString(int rs) {
1028        switch(rs) {
1029        case RUNNING: return "Running";
1030        case SHUTDOWN: return "Shutting down";
1031        case TERMINATING: return "Terminating";
1032        case TERMINATED: return "Terminated";
1033        default: throw new Error("Unknown run state");
1034        }
1035    }
1036
1037    // lifecycle control
1038
3001      /**
3002 <     * Initiates an orderly shutdown in which previously submitted
3003 <     * tasks are executed, but no new tasks will be accepted.
3004 <     * Invocation has no additional effect if already shut down.
3005 <     * Tasks that are in the process of being submitted concurrently
3006 <     * during the course of this method may or may not be rejected.
3002 >     * Possibly initiates an orderly shutdown in which previously
3003 >     * submitted tasks are executed, but no new tasks will be
3004 >     * accepted. Invocation has no effect on execution state if this
3005 >     * is the {@link #commonPool()}, and no additional effect if
3006 >     * already shut down.  Tasks that are in the process of being
3007 >     * submitted concurrently during the course of this method may or
3008 >     * may not be rejected.
3009 >     *
3010       * @throws SecurityException if a security manager exists and
3011       *         the caller is not permitted to modify threads
3012       *         because it does not hold {@link
3013 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
3013 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3014       */
3015      public void shutdown() {
3016          checkPermission();
3017 <        transitionRunStateTo(SHUTDOWN);
1053 <        if (canTerminateOnShutdown(runControl))
1054 <            terminateOnShutdown();
3017 >        tryTerminate(false, true);
3018      }
3019  
3020      /**
3021 <     * Attempts to stop all actively executing tasks, and cancels all
3022 <     * waiting tasks.  Tasks that are in the process of being
3023 <     * submitted or executed concurrently during the course of this
3024 <     * method may or may not be rejected. Unlike some other executors,
3025 <     * this method cancels rather than collects non-executed tasks
3026 <     * upon termination, so always returns an empty list. However, you
3027 <     * can use method <code>drainTasksTo</code> before invoking this
3028 <     * method to transfer unexecuted tasks to another collection.
3021 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3022 >     * all subsequently submitted tasks.  Invocation has no effect on
3023 >     * execution state if this is the {@link #commonPool()}, and no
3024 >     * additional effect if already shut down. Otherwise, tasks that
3025 >     * are in the process of being submitted or executed concurrently
3026 >     * during the course of this method may or may not be
3027 >     * rejected. This method cancels both existing and unexecuted
3028 >     * tasks, in order to permit termination in the presence of task
3029 >     * dependencies. So the method always returns an empty list
3030 >     * (unlike the case for some other Executors).
3031 >     *
3032       * @return an empty list
3033       * @throws SecurityException if a security manager exists and
3034       *         the caller is not permitted to modify threads
3035       *         because it does not hold {@link
3036 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
3036 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3037       */
3038      public List<Runnable> shutdownNow() {
3039          checkPermission();
3040 <        terminate();
3040 >        tryTerminate(true, true);
3041          return Collections.emptyList();
3042      }
3043  
3044      /**
3045 <     * Returns <code>true</code> if all tasks have completed following shut down.
3045 >     * Returns {@code true} if all tasks have completed following shut down.
3046       *
3047 <     * @return <code>true</code> if all tasks have completed following shut down
3047 >     * @return {@code true} if all tasks have completed following shut down
3048       */
3049      public boolean isTerminated() {
3050 <        return runStateOf(runControl) == TERMINATED;
3050 >        long c = ctl;
3051 >        return ((c & STOP_BIT) != 0L &&
3052 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3053      }
3054  
3055      /**
3056 <     * Returns <code>true</code> if the process of termination has
3057 <     * commenced but possibly not yet completed.
3056 >     * Returns {@code true} if the process of termination has
3057 >     * commenced but not yet completed.  This method may be useful for
3058 >     * debugging. A return of {@code true} reported a sufficient
3059 >     * period after shutdown may indicate that submitted tasks have
3060 >     * ignored or suppressed interruption, or are waiting for I/O,
3061 >     * causing this executor not to properly terminate. (See the
3062 >     * advisory notes for class {@link ForkJoinTask} stating that
3063 >     * tasks should not normally entail blocking operations.  But if
3064 >     * they do, they must abort them on interrupt.)
3065       *
3066 <     * @return <code>true</code> if terminating
3066 >     * @return {@code true} if terminating but not yet terminated
3067       */
3068      public boolean isTerminating() {
3069 <        return runStateOf(runControl) >= TERMINATING;
3069 >        long c = ctl;
3070 >        return ((c & STOP_BIT) != 0L &&
3071 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3072      }
3073  
3074      /**
3075 <     * Returns <code>true</code> if this pool has been shut down.
3075 >     * Returns {@code true} if this pool has been shut down.
3076       *
3077 <     * @return <code>true</code> if this pool has been shut down
3077 >     * @return {@code true} if this pool has been shut down
3078       */
3079      public boolean isShutdown() {
3080 <        return runStateOf(runControl) >= SHUTDOWN;
3080 >        return plock < 0;
3081      }
3082  
3083      /**
3084 <     * Blocks until all tasks have completed execution after a shutdown
3085 <     * request, or the timeout occurs, or the current thread is
3086 <     * interrupted, whichever happens first.
3084 >     * Blocks until all tasks have completed execution after a
3085 >     * shutdown request, or the timeout occurs, or the current thread
3086 >     * is interrupted, whichever happens first. Because the {@link
3087 >     * #commonPool()} never terminates until program shutdown, when
3088 >     * applied to the common pool, this method is equivalent to {@link
3089 >     * #awaitQuiescence} but always returns {@code false}.
3090       *
3091       * @param timeout the maximum time to wait
3092       * @param unit the time unit of the timeout argument
3093 <     * @return <code>true</code> if this executor terminated and
3094 <     *         <code>false</code> if the timeout elapsed before termination
3093 >     * @return {@code true} if this executor terminated and
3094 >     *         {@code false} if the timeout elapsed before termination
3095       * @throws InterruptedException if interrupted while waiting
3096       */
3097      public boolean awaitTermination(long timeout, TimeUnit unit)
3098          throws InterruptedException {
3099 <        long nanos = unit.toNanos(timeout);
3100 <        final ReentrantLock lock = this.workerLock;
3101 <        lock.lock();
3102 <        try {
3103 <            for (;;) {
1124 <                if (isTerminated())
1125 <                    return true;
1126 <                if (nanos <= 0)
1127 <                    return false;
1128 <                nanos = termination.awaitNanos(nanos);
1129 <            }
1130 <        } finally {
1131 <            lock.unlock();
1132 <        }
1133 <    }
1134 <
1135 <    // Shutdown and termination support
1136 <
1137 <    /**
1138 <     * Callback from terminating worker. Null out the corresponding
1139 <     * workers slot, and if terminating, try to terminate, else try to
1140 <     * shrink workers array.
1141 <     * @param w the worker
1142 <     */
1143 <    final void workerTerminated(ForkJoinWorkerThread w) {
1144 <        updateStealCount(w);
1145 <        updateWorkerCount(-1);
1146 <        final ReentrantLock lock = this.workerLock;
1147 <        lock.lock();
1148 <        try {
1149 <            ForkJoinWorkerThread[] ws = workers;
1150 <            if (ws != null) {
1151 <                int idx = w.poolIndex;
1152 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153 <                    ws[idx] = null;
1154 <                if (totalCountOf(workerCounts) == 0) {
1155 <                    terminate(); // no-op if already terminating
1156 <                    transitionRunStateTo(TERMINATED);
1157 <                    termination.signalAll();
1158 <                }
1159 <                else if (!isTerminating()) {
1160 <                    tryShrinkWorkerArray();
1161 <                    tryResumeSpare(true); // allow replacement
1162 <                }
1163 <            }
1164 <        } finally {
1165 <            lock.unlock();
1166 <        }
1167 <        signalIdleWorkers();
1168 <    }
1169 <
1170 <    /**
1171 <     * Initiate termination.
1172 <     */
1173 <    private void terminate() {
1174 <        if (transitionRunStateTo(TERMINATING)) {
1175 <            stopAllWorkers();
1176 <            resumeAllSpares();
1177 <            signalIdleWorkers();
1178 <            cancelQueuedSubmissions();
1179 <            cancelQueuedWorkerTasks();
1180 <            interruptUnterminatedWorkers();
1181 <            signalIdleWorkers(); // resignal after interrupt
1182 <        }
1183 <    }
1184 <
1185 <    /**
1186 <     * Possibly terminate when on shutdown state
1187 <     */
1188 <    private void terminateOnShutdown() {
1189 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190 <            terminate();
1191 <    }
1192 <
1193 <    /**
1194 <     * Clear out and cancel submissions
1195 <     */
1196 <    private void cancelQueuedSubmissions() {
1197 <        ForkJoinTask<?> task;
1198 <        while ((task = pollSubmission()) != null)
1199 <            task.cancel(false);
1200 <    }
1201 <
1202 <    /**
1203 <     * Clean out worker queues.
1204 <     */
1205 <    private void cancelQueuedWorkerTasks() {
1206 <        final ReentrantLock lock = this.workerLock;
1207 <        lock.lock();
1208 <        try {
1209 <            ForkJoinWorkerThread[] ws = workers;
1210 <            if (ws != null) {
1211 <                for (int i = 0; i < ws.length; ++i) {
1212 <                    ForkJoinWorkerThread t = ws[i];
1213 <                    if (t != null)
1214 <                        t.cancelTasks();
1215 <                }
1216 <            }
1217 <        } finally {
1218 <            lock.unlock();
1219 <        }
1220 <    }
1221 <
1222 <    /**
1223 <     * Set each worker's status to terminating. Requires lock to avoid
1224 <     * conflicts with add/remove
1225 <     */
1226 <    private void stopAllWorkers() {
1227 <        final ReentrantLock lock = this.workerLock;
1228 <        lock.lock();
1229 <        try {
1230 <            ForkJoinWorkerThread[] ws = workers;
1231 <            if (ws != null) {
1232 <                for (int i = 0; i < ws.length; ++i) {
1233 <                    ForkJoinWorkerThread t = ws[i];
1234 <                    if (t != null)
1235 <                        t.shutdownNow();
1236 <                }
1237 <            }
1238 <        } finally {
1239 <            lock.unlock();
1240 <        }
1241 <    }
1242 <
1243 <    /**
1244 <     * Interrupt all unterminated workers.  This is not required for
1245 <     * sake of internal control, but may help unstick user code during
1246 <     * shutdown.
1247 <     */
1248 <    private void interruptUnterminatedWorkers() {
1249 <        final ReentrantLock lock = this.workerLock;
1250 <        lock.lock();
1251 <        try {
1252 <            ForkJoinWorkerThread[] ws = workers;
1253 <            if (ws != null) {
1254 <                for (int i = 0; i < ws.length; ++i) {
1255 <                    ForkJoinWorkerThread t = ws[i];
1256 <                    if (t != null && !t.isTerminated()) {
1257 <                        try {
1258 <                            t.interrupt();
1259 <                        } catch (SecurityException ignore) {
1260 <                        }
1261 <                    }
1262 <                }
1263 <            }
1264 <        } finally {
1265 <            lock.unlock();
1266 <        }
1267 <    }
1268 <
1269 <
1270 <    /*
1271 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1272 <     * are basic Treiber stack nodes, also used for spare stack.
1273 <     *
1274 <     * The event barrier has an event count and a wait queue (actually
1275 <     * a Treiber stack).  Workers are enabled to look for work when
1276 <     * the eventCount is incremented. If they fail to find work, they
1277 <     * may wait for next count. Upon release, threads help others wake
1278 <     * up.
1279 <     *
1280 <     * Synchronization events occur only in enough contexts to
1281 <     * maintain overall liveness:
1282 <     *
1283 <     *   - Submission of a new task to the pool
1284 <     *   - Resizes or other changes to the workers array
1285 <     *   - pool termination
1286 <     *   - A worker pushing a task on an empty queue
1287 <     *
1288 <     * The case of pushing a task occurs often enough, and is heavy
1289 <     * enough compared to simple stack pushes, to require special
1290 <     * handling: Method signalWork returns without advancing count if
1291 <     * the queue appears to be empty.  This would ordinarily result in
1292 <     * races causing some queued waiters not to be woken up. To avoid
1293 <     * this, the first worker enqueued in method sync (see
1294 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1295 <     * helps signal if any are found. This works well because the
1296 <     * worker has nothing better to do, and so might as well help
1297 <     * alleviate the overhead and contention on the threads actually
1298 <     * doing work.  Also, since event counts increments on task
1299 <     * availability exist to maintain liveness (rather than to force
1300 <     * refreshes etc), it is OK for callers to exit early if
1301 <     * contending with another signaller.
1302 <     */
1303 <    static final class WaitQueueNode {
1304 <        WaitQueueNode next; // only written before enqueued
1305 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306 <        final long count; // unused for spare stack
1307 <
1308 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 <            count = c;
1310 <            thread = w;
3099 >        if (Thread.interrupted())
3100 >            throw new InterruptedException();
3101 >        if (this == common) {
3102 >            awaitQuiescence(timeout, unit);
3103 >            return false;
3104          }
3105 <
3106 <        /**
1314 <         * Wake up waiter, returning false if known to already
1315 <         */
1316 <        boolean signal() {
1317 <            ForkJoinWorkerThread t = thread;
1318 <            if (t == null)
1319 <                return false;
1320 <            thread = null;
1321 <            LockSupport.unpark(t);
3105 >        long nanos = unit.toNanos(timeout);
3106 >        if (isTerminated())
3107              return true;
3108 <        }
3109 <
3110 <        /**
3111 <         * Await release on sync
3112 <         */
3113 <        void awaitSyncRelease(ForkJoinPool p) {
3114 <            while (thread != null && !p.syncIsReleasable(this))
1330 <                LockSupport.park(this);
1331 <        }
1332 <
1333 <        /**
1334 <         * Await resumption as spare
1335 <         */
1336 <        void awaitSpareRelease() {
1337 <            while (thread != null) {
1338 <                if (!Thread.interrupted())
1339 <                    LockSupport.park(this);
1340 <            }
1341 <        }
1342 <    }
1343 <
1344 <    /**
1345 <     * Ensures that no thread is waiting for count to advance from the
1346 <     * current value of eventCount read on entry to this method, by
1347 <     * releasing waiting threads if necessary.
1348 <     * @return the count
1349 <     */
1350 <    final long ensureSync() {
1351 <        long c = eventCount;
1352 <        WaitQueueNode q;
1353 <        while ((q = syncStack) != null && q.count < c) {
1354 <            if (casBarrierStack(q, null)) {
1355 <                do {
1356 <                    q.signal();
1357 <                } while ((q = q.next) != null);
1358 <                break;
1359 <            }
1360 <        }
1361 <        return c;
1362 <    }
1363 <
1364 <    /**
1365 <     * Increments event count and releases waiting threads.
1366 <     */
1367 <    private void signalIdleWorkers() {
1368 <        long c;
1369 <        do;while (!casEventCount(c = eventCount, c+1));
1370 <        ensureSync();
1371 <    }
1372 <
1373 <    /**
1374 <     * Signal threads waiting to poll a task. Because method sync
1375 <     * rechecks availability, it is OK to only proceed if queue
1376 <     * appears to be non-empty, and OK to skip under contention to
1377 <     * increment count (since some other thread succeeded).
1378 <     */
1379 <    final void signalWork() {
1380 <        long c;
1381 <        WaitQueueNode q;
1382 <        if (syncStack != null &&
1383 <            casEventCount(c = eventCount, c+1) &&
1384 <            (((q = syncStack) != null && q.count <= c) &&
1385 <             (!casBarrierStack(q, q.next) || !q.signal())))
1386 <            ensureSync();
1387 <    }
1388 <
1389 <    /**
1390 <     * Waits until event count advances from last value held by
1391 <     * caller, or if excess threads, caller is resumed as spare, or
1392 <     * caller or pool is terminating. Updates caller's event on exit.
1393 <     * @param w the calling worker thread
1394 <     */
1395 <    final void sync(ForkJoinWorkerThread w) {
1396 <        updateStealCount(w); // Transfer w's count while it is idle
1397 <
1398 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399 <            long prev = w.lastEventCount;
1400 <            WaitQueueNode node = null;
1401 <            WaitQueueNode h;
1402 <            while (eventCount == prev &&
1403 <                   ((h = syncStack) == null || h.count == prev)) {
1404 <                if (node == null)
1405 <                    node = new WaitQueueNode(prev, w);
1406 <                if (casBarrierStack(node.next = h, node)) {
1407 <                    node.awaitSyncRelease(this);
3108 >        long startTime = System.nanoTime();
3109 >        boolean terminated = false;
3110 >        synchronized (this) {
3111 >            for (long waitTime = nanos, millis = 0L;;) {
3112 >                if (terminated = isTerminated() ||
3113 >                    waitTime <= 0L ||
3114 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3115                      break;
3116 <                }
3116 >                wait(millis);
3117 >                waitTime = nanos - (System.nanoTime() - startTime);
3118              }
1411            long ec = ensureSync();
1412            if (ec != prev) {
1413                w.lastEventCount = ec;
1414                break;
1415            }
1416        }
1417    }
1418
1419    /**
1420     * Returns true if worker waiting on sync can proceed:
1421     *  - on signal (thread == null)
1422     *  - on event count advance (winning race to notify vs signaller)
1423     *  - on Interrupt
1424     *  - if the first queued node, we find work available
1425     * If node was not signalled and event count not advanced on exit,
1426     * then we also help advance event count.
1427     * @return true if node can be released
1428     */
1429    final boolean syncIsReleasable(WaitQueueNode node) {
1430        long prev = node.count;
1431        if (!Thread.interrupted() && node.thread != null &&
1432            (node.next != null ||
1433             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434            eventCount == prev)
1435            return false;
1436        if (node.thread != null) {
1437            node.thread = null;
1438            long ec = eventCount;
1439            if (prev <= ec) // help signal
1440                casEventCount(ec, ec+1);
3119          }
3120 <        return true;
1443 <    }
1444 <
1445 <    /**
1446 <     * Returns true if a new sync event occurred since last call to
1447 <     * sync or this method, if so, updating caller's count.
1448 <     */
1449 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450 <        long lc = w.lastEventCount;
1451 <        long ec = ensureSync();
1452 <        if (ec == lc)
1453 <            return false;
1454 <        w.lastEventCount = ec;
1455 <        return true;
3120 >        return terminated;
3121      }
3122  
1458    //  Parallelism maintenance
1459
3123      /**
3124 <     * Decrement running count; if too low, add spare.
3124 >     * If called by a ForkJoinTask operating in this pool, equivalent
3125 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3126 >     * waits and/or attempts to assist performing tasks until this
3127 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3128       *
3129 <     * Conceptually, all we need to do here is add or resume a
3130 <     * spare thread when one is about to block (and remove or
3131 <     * suspend it later when unblocked -- see suspendIfSpare).
3132 <     * However, implementing this idea requires coping with
1467 <     * several problems: We have imperfect information about the
1468 <     * states of threads. Some count updates can and usually do
1469 <     * lag run state changes, despite arrangements to keep them
1470 <     * accurate (for example, when possible, updating counts
1471 <     * before signalling or resuming), especially when running on
1472 <     * dynamic JVMs that don't optimize the infrequent paths that
1473 <     * update counts. Generating too many threads can make these
1474 <     * problems become worse, because excess threads are more
1475 <     * likely to be context-switched with others, slowing them all
1476 <     * down, especially if there is no work available, so all are
1477 <     * busy scanning or idling.  Also, excess spare threads can
1478 <     * only be suspended or removed when they are idle, not
1479 <     * immediately when they aren't needed. So adding threads will
1480 <     * raise parallelism level for longer than necessary.  Also,
1481 <     * FJ applications often enounter highly transient peaks when
1482 <     * many threads are blocked joining, but for less time than it
1483 <     * takes to create or resume spares.
1484 <     *
1485 <     * @param joinMe if non-null, return early if done
1486 <     * @param maintainParallelism if true, try to stay within
1487 <     * target counts, else create only to avoid starvation
1488 <     * @return true if joinMe known to be done
1489 <     */
1490 <    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491 <        maintainParallelism &= maintainsParallelism; // overrride
1492 <        boolean dec = false;  // true when running count decremented
1493 <        while (spareStack == null || !tryResumeSpare(dec)) {
1494 <            int counts = workerCounts;
1495 <            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496 <                if (!needSpare(counts, maintainParallelism))
1497 <                    break;
1498 <                if (joinMe.status < 0)
1499 <                    return true;
1500 <                if (tryAddSpare(counts))
1501 <                    break;
1502 <            }
1503 <        }
1504 <        return false;
1505 <    }
1506 <
1507 <    /**
1508 <     * Same idea as preJoin
3129 >     * @param timeout the maximum time to wait
3130 >     * @param unit the time unit of the timeout argument
3131 >     * @return {@code true} if quiescent; {@code false} if the
3132 >     * timeout elapsed.
3133       */
3134 <    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
3135 <        maintainParallelism &= maintainsParallelism;
3136 <        boolean dec = false;
3137 <        while (spareStack == null || !tryResumeSpare(dec)) {
3138 <            int counts = workerCounts;
3139 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
3140 <                if (!needSpare(counts, maintainParallelism))
3141 <                    break;
1518 <                if (blocker.isReleasable())
1519 <                    return true;
1520 <                if (tryAddSpare(counts))
1521 <                    break;
1522 <            }
3134 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3135 >        long nanos = unit.toNanos(timeout);
3136 >        ForkJoinWorkerThread wt;
3137 >        Thread thread = Thread.currentThread();
3138 >        if ((thread instanceof ForkJoinWorkerThread) &&
3139 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3140 >            helpQuiescePool(wt.workQueue);
3141 >            return true;
3142          }
3143 <        return false;
3144 <    }
3145 <
3146 <    /**
3147 <     * Returns true if a spare thread appears to be needed.  If
3148 <     * maintaining parallelism, returns true when the deficit in
3149 <     * running threads is more than the surplus of total threads, and
3150 <     * there is apparently some work to do.  This self-limiting rule
3151 <     * means that the more threads that have already been added, the
3152 <     * less parallelism we will tolerate before adding another.
3153 <     * @param counts current worker counts
3154 <     * @param maintainParallelism try to maintain parallelism
3155 <     */
3156 <    private boolean needSpare(int counts, boolean maintainParallelism) {
3157 <        int ps = parallelism;
3158 <        int rc = runningCountOf(counts);
3159 <        int tc = totalCountOf(counts);
3160 <        int runningDeficit = ps - rc;
3161 <        int totalSurplus = tc - ps;
3162 <        return (tc < maxPoolSize &&
3163 <                (rc == 0 || totalSurplus < 0 ||
1545 <                 (maintainParallelism &&
1546 <                  runningDeficit > totalSurplus &&
1547 <                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548 <    }
1549 <
1550 <    /**
1551 <     * Add a spare worker if lock available and no more than the
1552 <     * expected numbers of threads exist
1553 <     * @return true if successful
1554 <     */
1555 <    private boolean tryAddSpare(int expectedCounts) {
1556 <        final ReentrantLock lock = this.workerLock;
1557 <        int expectedRunning = runningCountOf(expectedCounts);
1558 <        int expectedTotal = totalCountOf(expectedCounts);
1559 <        boolean success = false;
1560 <        boolean locked = false;
1561 <        // confirm counts while locking; CAS after obtaining lock
1562 <        try {
1563 <            for (;;) {
1564 <                int s = workerCounts;
1565 <                int tc = totalCountOf(s);
1566 <                int rc = runningCountOf(s);
1567 <                if (rc > expectedRunning || tc > expectedTotal)
1568 <                    break;
1569 <                if (!locked && !(locked = lock.tryLock()))
1570 <                    break;
1571 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572 <                    createAndStartSpare(tc);
1573 <                    success = true;
3143 >        long startTime = System.nanoTime();
3144 >        WorkQueue[] ws;
3145 >        int r = 0, m;
3146 >        boolean found = true;
3147 >        while (!isQuiescent() && (ws = workQueues) != null &&
3148 >               (m = ws.length - 1) >= 0) {
3149 >            if (!found) {
3150 >                if ((System.nanoTime() - startTime) > nanos)
3151 >                    return false;
3152 >                Thread.yield(); // cannot block
3153 >            }
3154 >            found = false;
3155 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3156 >                ForkJoinTask<?> t; WorkQueue q; int b;
3157 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3158 >                    found = true;
3159 >                    if ((t = q.pollAt(b)) != null) {
3160 >                        if (q.base - q.top < 0)
3161 >                            signalWork(q);
3162 >                        t.doExec();
3163 >                    }
3164                      break;
3165                  }
3166              }
1577        } finally {
1578            if (locked)
1579                lock.unlock();
1580        }
1581        return success;
1582    }
1583
1584    /**
1585     * Add the kth spare worker. On entry, pool coounts are already
1586     * adjusted to reflect addition.
1587     */
1588    private void createAndStartSpare(int k) {
1589        ForkJoinWorkerThread w = null;
1590        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591        int len = ws.length;
1592        // Probably, we can place at slot k. If not, find empty slot
1593        if (k < len && ws[k] != null) {
1594            for (k = 0; k < len && ws[k] != null; ++k)
1595                ;
3167          }
3168 <        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598 <            ws[k] = w;
1599 <            w.start();
1600 <        }
1601 <        else
1602 <            updateWorkerCount(-1); // adjust on failure
1603 <        signalIdleWorkers();
3168 >        return true;
3169      }
3170  
3171      /**
3172 <     * Suspend calling thread w if there are excess threads.  Called
3173 <     * only from sync.  Spares are enqueued in a Treiber stack
1609 <     * using the same WaitQueueNodes as barriers.  They are resumed
1610 <     * mainly in preJoin, but are also woken on pool events that
1611 <     * require all threads to check run state.
1612 <     * @param w the caller
3172 >     * Waits and/or attempts to assist performing tasks indefinitely
3173 >     * until the {@link #commonPool()} {@link #isQuiescent}.
3174       */
3175 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
3176 <        WaitQueueNode node = null;
1616 <        int s;
1617 <        while (parallelism < runningCountOf(s = workerCounts)) {
1618 <            if (node == null)
1619 <                node = new WaitQueueNode(0, w);
1620 <            if (casWorkerCounts(s, s-1)) { // representation-dependent
1621 <                // push onto stack
1622 <                do;while (!casSpareStack(node.next = spareStack, node));
1623 <                // block until released by resumeSpare
1624 <                node.awaitSpareRelease();
1625 <                return true;
1626 <            }
1627 <        }
1628 <        return false;
1629 <    }
1630 <
1631 <    /**
1632 <     * Try to pop and resume a spare thread.
1633 <     * @param updateCount if true, increment running count on success
1634 <     * @return true if successful
1635 <     */
1636 <    private boolean tryResumeSpare(boolean updateCount) {
1637 <        WaitQueueNode q;
1638 <        while ((q = spareStack) != null) {
1639 <            if (casSpareStack(q, q.next)) {
1640 <                if (updateCount)
1641 <                    updateRunningCount(1);
1642 <                q.signal();
1643 <                return true;
1644 <            }
1645 <        }
1646 <        return false;
1647 <    }
1648 <
1649 <    /**
1650 <     * Pop and resume all spare threads. Same idea as ensureSync.
1651 <     * @return true if any spares released
1652 <     */
1653 <    private boolean resumeAllSpares() {
1654 <        WaitQueueNode q;
1655 <        while ( (q = spareStack) != null) {
1656 <            if (casSpareStack(q, null)) {
1657 <                do {
1658 <                    updateRunningCount(1);
1659 <                    q.signal();
1660 <                } while ((q = q.next) != null);
1661 <                return true;
1662 <            }
1663 <        }
1664 <        return false;
1665 <    }
1666 <
1667 <    /**
1668 <     * Pop and shutdown excessive spare threads. Call only while
1669 <     * holding lock. This is not guaranteed to eliminate all excess
1670 <     * threads, only those suspended as spares, which are the ones
1671 <     * unlikely to be needed in the future.
1672 <     */
1673 <    private void trimSpares() {
1674 <        int surplus = totalCountOf(workerCounts) - parallelism;
1675 <        WaitQueueNode q;
1676 <        while (surplus > 0 && (q = spareStack) != null) {
1677 <            if (casSpareStack(q, null)) {
1678 <                do {
1679 <                    updateRunningCount(1);
1680 <                    ForkJoinWorkerThread w = q.thread;
1681 <                    if (w != null && surplus > 0 &&
1682 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1683 <                        --surplus;
1684 <                    q.signal();
1685 <                } while ((q = q.next) != null);
1686 <            }
1687 <        }
3175 >    static void quiesceCommonPool() {
3176 >        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3177      }
3178  
3179      /**
3180       * Interface for extending managed parallelism for tasks running
3181 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
3182 <     * Method <code>isReleasable</code> must return true if blocking is not
3183 <     * necessary. Method <code>block</code> blocks the current thread
3184 <     * if necessary (perhaps internally invoking isReleasable before
3185 <     * actually blocking.).
3181 >     * in {@link ForkJoinPool}s.
3182 >     *
3183 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3184 >     * {@code isReleasable} must return {@code true} if blocking is
3185 >     * not necessary. Method {@code block} blocks the current thread
3186 >     * if necessary (perhaps internally invoking {@code isReleasable}
3187 >     * before actually blocking). These actions are performed by any
3188 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3189 >     * unusual methods in this API accommodate synchronizers that may,
3190 >     * but don't usually, block for long periods. Similarly, they
3191 >     * allow more efficient internal handling of cases in which
3192 >     * additional workers may be, but usually are not, needed to
3193 >     * ensure sufficient parallelism.  Toward this end,
3194 >     * implementations of method {@code isReleasable} must be amenable
3195 >     * to repeated invocation.
3196 >     *
3197       * <p>For example, here is a ManagedBlocker based on a
3198       * ReentrantLock:
3199 <     * <pre>
3200 <     *   class ManagedLocker implements ManagedBlocker {
3201 <     *     final ReentrantLock lock;
3202 <     *     boolean hasLock = false;
3203 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3204 <     *     public boolean block() {
3205 <     *        if (!hasLock)
3206 <     *           lock.lock();
3207 <     *        return true;
3208 <     *     }
3209 <     *     public boolean isReleasable() {
3210 <     *        return hasLock || (hasLock = lock.tryLock());
3211 <     *     }
3199 >     *  <pre> {@code
3200 >     * class ManagedLocker implements ManagedBlocker {
3201 >     *   final ReentrantLock lock;
3202 >     *   boolean hasLock = false;
3203 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3204 >     *   public boolean block() {
3205 >     *     if (!hasLock)
3206 >     *       lock.lock();
3207 >     *     return true;
3208 >     *   }
3209 >     *   public boolean isReleasable() {
3210 >     *     return hasLock || (hasLock = lock.tryLock());
3211 >     *   }
3212 >     * }}</pre>
3213 >     *
3214 >     * <p>Here is a class that possibly blocks waiting for an
3215 >     * item on a given queue:
3216 >     *  <pre> {@code
3217 >     * class QueueTaker<E> implements ManagedBlocker {
3218 >     *   final BlockingQueue<E> queue;
3219 >     *   volatile E item = null;
3220 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3221 >     *   public boolean block() throws InterruptedException {
3222 >     *     if (item == null)
3223 >     *       item = queue.take();
3224 >     *     return true;
3225 >     *   }
3226 >     *   public boolean isReleasable() {
3227 >     *     return item != null || (item = queue.poll()) != null;
3228       *   }
3229 <     * </pre>
3229 >     *   public E getItem() { // call after pool.managedBlock completes
3230 >     *     return item;
3231 >     *   }
3232 >     * }}</pre>
3233       */
3234      public static interface ManagedBlocker {
3235          /**
3236           * Possibly blocks the current thread, for example waiting for
3237           * a lock or condition.
3238 <         * @return true if no additional blocking is necessary (i.e.,
3239 <         * if isReleasable would return true).
3238 >         *
3239 >         * @return {@code true} if no additional blocking is necessary
3240 >         * (i.e., if isReleasable would return true)
3241           * @throws InterruptedException if interrupted while waiting
3242 <         * (the method is not required to do so, but is allowe to).
3242 >         * (the method is not required to do so, but is allowed to)
3243           */
3244          boolean block() throws InterruptedException;
3245  
3246          /**
3247 <         * Returns true if blocking is unnecessary.
3247 >         * Returns {@code true} if blocking is unnecessary.
3248           */
3249          boolean isReleasable();
3250      }
3251  
3252      /**
3253       * Blocks in accord with the given blocker.  If the current thread
3254 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
3255 <     * spare thread to be activated if necessary to ensure parallelism
3256 <     * while the current thread is blocked.  If
3257 <     * <code>maintainParallelism</code> is true and the pool supports
3258 <     * it ({@link #getMaintainsParallelism}), this method attempts to
3259 <     * maintain the pool's nominal parallelism. Otherwise if activates
3260 <     * a thread only if necessary to avoid complete starvation. This
3261 <     * option may be preferable when blockages use timeouts, or are
3262 <     * almost always brief.
3263 <     *
3264 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
3265 <     * equivalent to
3266 <     * <pre>
3267 <     *   while (!blocker.isReleasable())
1748 <     *      if (blocker.block())
1749 <     *         return;
1750 <     * </pre>
1751 <     * If the caller is a ForkJoinTask, then the pool may first
1752 <     * be expanded to ensure parallelism, and later adjusted.
3254 >     * is a {@link ForkJoinWorkerThread}, this method possibly
3255 >     * arranges for a spare thread to be activated if necessary to
3256 >     * ensure sufficient parallelism while the current thread is blocked.
3257 >     *
3258 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3259 >     * behaviorally equivalent to
3260 >     *  <pre> {@code
3261 >     * while (!blocker.isReleasable())
3262 >     *   if (blocker.block())
3263 >     *     return;
3264 >     * }</pre>
3265 >     *
3266 >     * If the caller is a {@code ForkJoinTask}, then the pool may
3267 >     * first be expanded to ensure parallelism, and later adjusted.
3268       *
3269       * @param blocker the blocker
3270 <     * @param maintainParallelism if true and supported by this pool,
1756 <     * attempt to maintain the pool's nominal parallelism; otherwise
1757 <     * activate a thread only if necessary to avoid complete
1758 <     * starvation.
1759 <     * @throws InterruptedException if blocker.block did so.
3270 >     * @throws InterruptedException if blocker.block did so
3271       */
3272 <    public static void managedBlock(ManagedBlocker blocker,
1762 <                                    boolean maintainParallelism)
3272 >    public static void managedBlock(ManagedBlocker blocker)
3273          throws InterruptedException {
3274          Thread t = Thread.currentThread();
3275 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
3276 <                             ((ForkJoinWorkerThread)t).pool : null);
3277 <        if (!blocker.isReleasable()) {
3278 <            try {
3279 <                if (pool == null ||
3280 <                    !pool.preBlock(blocker, maintainParallelism))
3281 <                    awaitBlocker(blocker);
3282 <            } finally {
3283 <                if (pool != null)
3284 <                    pool.updateRunningCount(1);
3275 >        if (t instanceof ForkJoinWorkerThread) {
3276 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3277 >            while (!blocker.isReleasable()) { // variant of helpSignal
3278 >                WorkQueue[] ws; WorkQueue q; int m, u;
3279 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3280 >                    for (int i = 0; i <= m; ++i) {
3281 >                        if (blocker.isReleasable())
3282 >                            return;
3283 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3284 >                            p.signalWork(q);
3285 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3286 >                                (u >> UAC_SHIFT) >= 0)
3287 >                                break;
3288 >                        }
3289 >                    }
3290 >                }
3291 >                if (p.tryCompensate()) {
3292 >                    try {
3293 >                        do {} while (!blocker.isReleasable() &&
3294 >                                     !blocker.block());
3295 >                    } finally {
3296 >                        p.incrementActiveCount();
3297 >                    }
3298 >                    break;
3299 >                }
3300              }
3301          }
3302 +        else {
3303 +            do {} while (!blocker.isReleasable() &&
3304 +                         !blocker.block());
3305 +        }
3306      }
3307  
3308 <    private static void awaitBlocker(ManagedBlocker blocker)
3309 <        throws InterruptedException {
3310 <        do;while (!blocker.isReleasable() && !blocker.block());
1782 <    }
1783 <
1784 <    // AbstractExecutorService overrides
3308 >    // AbstractExecutorService overrides.  These rely on undocumented
3309 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3310 >    // implement RunnableFuture.
3311  
3312      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3313 <        return new AdaptedRunnable(runnable, value);
3313 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3314      }
3315  
3316      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3317 <        return new AdaptedCallable(callable);
3317 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3318      }
3319  
3320 +    // Unsafe mechanics
3321 +    private static final sun.misc.Unsafe U;
3322 +    private static final long CTL;
3323 +    private static final long PARKBLOCKER;
3324 +    private static final int ABASE;
3325 +    private static final int ASHIFT;
3326 +    private static final long STEALCOUNT;
3327 +    private static final long PLOCK;
3328 +    private static final long INDEXSEED;
3329 +    private static final long QLOCK;
3330  
3331 <    // Temporary Unsafe mechanics for preliminary release
3332 <    private static Unsafe getUnsafe() throws Throwable {
3331 >    static {
3332 >        // initialize field offsets for CAS etc
3333          try {
3334 <            return Unsafe.getUnsafe();
3335 <        } catch (SecurityException se) {
3336 <            try {
3337 <                return java.security.AccessController.doPrivileged
3338 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
3339 <                        public Unsafe run() throws Exception {
3340 <                            return getUnsafePrivileged();
3341 <                        }});
3342 <            } catch (java.security.PrivilegedActionException e) {
3343 <                throw e.getCause();
3344 <            }
3345 <        }
3346 <    }
3347 <
3348 <    private static Unsafe getUnsafePrivileged()
3349 <            throws NoSuchFieldException, IllegalAccessException {
3350 <        Field f = Unsafe.class.getDeclaredField("theUnsafe");
3351 <        f.setAccessible(true);
3352 <        return (Unsafe) f.get(null);
3353 <    }
3334 >            U = getUnsafe();
3335 >            Class<?> k = ForkJoinPool.class;
3336 >            CTL = U.objectFieldOffset
3337 >                (k.getDeclaredField("ctl"));
3338 >            STEALCOUNT = U.objectFieldOffset
3339 >                (k.getDeclaredField("stealCount"));
3340 >            PLOCK = U.objectFieldOffset
3341 >                (k.getDeclaredField("plock"));
3342 >            INDEXSEED = U.objectFieldOffset
3343 >                (k.getDeclaredField("indexSeed"));
3344 >            Class<?> tk = Thread.class;
3345 >            PARKBLOCKER = U.objectFieldOffset
3346 >                (tk.getDeclaredField("parkBlocker"));
3347 >            Class<?> wk = WorkQueue.class;
3348 >            QLOCK = U.objectFieldOffset
3349 >                (wk.getDeclaredField("qlock"));
3350 >            Class<?> ak = ForkJoinTask[].class;
3351 >            ABASE = U.arrayBaseOffset(ak);
3352 >            int scale = U.arrayIndexScale(ak);
3353 >            if ((scale & (scale - 1)) != 0)
3354 >                throw new Error("data type scale not a power of two");
3355 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3356 >        } catch (Exception e) {
3357 >            throw new Error(e);
3358 >        }
3359 >
3360 >        submitters = new ThreadLocal<Submitter>();
3361 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3362 >            new DefaultForkJoinWorkerThreadFactory();
3363 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3364 >
3365 >        /*
3366 >         * Establish common pool parameters.  For extra caution,
3367 >         * computations to set up common pool state are here; the
3368 >         * constructor just assigns these values to fields.
3369 >         */
3370  
3371 <    private static long fieldOffset(String fieldName)
3372 <            throws NoSuchFieldException {
3373 <        return _unsafe.objectFieldOffset
3374 <            (ForkJoinPool.class.getDeclaredField(fieldName));
3371 >        int par = 0;
3372 >        Thread.UncaughtExceptionHandler handler = null;
3373 >        try {  // TBD: limit or report ignored exceptions?
3374 >            String pp = System.getProperty
3375 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3376 >            String hp = System.getProperty
3377 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3378 >            String fp = System.getProperty
3379 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3380 >            if (fp != null)
3381 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3382 >                       getSystemClassLoader().loadClass(fp).newInstance());
3383 >            if (hp != null)
3384 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3385 >                           getSystemClassLoader().loadClass(hp).newInstance());
3386 >            if (pp != null)
3387 >                par = Integer.parseInt(pp);
3388 >        } catch (Exception ignore) {
3389 >        }
3390 >
3391 >        if (par <= 0)
3392 >            par = Runtime.getRuntime().availableProcessors();
3393 >        if (par > MAX_CAP)
3394 >            par = MAX_CAP;
3395 >        commonParallelism = par;
3396 >        long np = (long)(-par); // precompute initial ctl value
3397 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3398 >
3399 >        common = new ForkJoinPool(par, ct, fac, handler);
3400      }
3401  
3402 <    static final Unsafe _unsafe;
3403 <    static final long eventCountOffset;
3404 <    static final long workerCountsOffset;
3405 <    static final long runControlOffset;
3406 <    static final long syncStackOffset;
3407 <    static final long spareStackOffset;
3408 <
3409 <    static {
3402 >    /**
3403 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3404 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
3405 >     * into a jdk.
3406 >     *
3407 >     * @return a sun.misc.Unsafe
3408 >     */
3409 >    private static sun.misc.Unsafe getUnsafe() {
3410 >        try {
3411 >            return sun.misc.Unsafe.getUnsafe();
3412 >        } catch (SecurityException tryReflectionInstead) {}
3413          try {
3414 <            _unsafe = getUnsafe();
3415 <            eventCountOffset = fieldOffset("eventCount");
3416 <            workerCountsOffset = fieldOffset("workerCounts");
3417 <            runControlOffset = fieldOffset("runControl");
3418 <            syncStackOffset = fieldOffset("syncStack");
3419 <            spareStackOffset = fieldOffset("spareStack");
3420 <        } catch (Throwable e) {
3421 <            throw new RuntimeException("Could not initialize intrinsics", e);
3414 >            return java.security.AccessController.doPrivileged
3415 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3416 >                public sun.misc.Unsafe run() throws Exception {
3417 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3418 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3419 >                        f.setAccessible(true);
3420 >                        Object x = f.get(null);
3421 >                        if (k.isInstance(x))
3422 >                            return k.cast(x);
3423 >                    }
3424 >                    throw new NoSuchFieldError("the Unsafe");
3425 >                }});
3426 >        } catch (java.security.PrivilegedActionException e) {
3427 >            throw new RuntimeException("Could not initialize intrinsics",
3428 >                                       e.getCause());
3429          }
3430      }
1844
1845    private boolean casEventCount(long cmp, long val) {
1846        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847    }
1848    private boolean casWorkerCounts(int cmp, int val) {
1849        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850    }
1851    private boolean casRunControl(int cmp, int val) {
1852        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1853    }
1854    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856    }
1857    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859    }
3431   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines