ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.16 by jsr166, Thu Jul 23 19:44:46 2009 UTC vs.
Revision 1.81 by jsr166, Mon Sep 20 20:42:36 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.TimeoutException;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.locks.LockSupport;
24 > import java.util.concurrent.locks.ReentrantLock;
25  
26   /**
27 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
28 < * ForkJoinPool provides the entry point for submissions from
29 < * non-ForkJoinTasks, as well as management and monitoring operations.
30 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
27 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 > * A {@code ForkJoinPool} provides the entry point for submissions
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30 > * monitoring operations.
31   *
32 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
33 < * that they provide <em>work-stealing</em>: all threads in the pool
34 < * attempt to find and execute subtasks created by other active tasks
35 < * (eventually blocking if none exist). This makes them efficient when
36 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
37 < * as the mixed execution of some plain Runnable- or Callable- based
38 < * activities along with ForkJoinTasks. When setting
39 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
40 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
32 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33 > * ExecutorService} mainly by virtue of employing
34 > * <em>work-stealing</em>: all threads in the pool attempt to find and
35 > * execute subtasks created by other active tasks (eventually blocking
36 > * waiting for work if none exist). This enables efficient processing
37 > * when most tasks spawn other subtasks (as do most {@code
38 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
40 > * with event-style tasks that are never joined.
41   *
42 < * <p>A ForkJoinPool may be constructed with a given parallelism level
43 < * (target pool size), which it attempts to maintain by dynamically
44 < * adding, suspending, or resuming threads, even if some tasks are
45 < * waiting to join others. However, no such adjustments are performed
46 < * in the face of blocked IO or other unmanaged synchronization. The
47 < * nested {@code ManagedBlocker} interface enables extension of
48 < * the kinds of synchronization accommodated.  The target parallelism
49 < * level may also be changed dynamically ({@code setParallelism})
50 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
42 > * <p>A {@code ForkJoinPool} is constructed with a given target
43 > * parallelism level; by default, equal to the number of available
44 > * processors. The pool attempts to maintain enough active (or
45 > * available) threads by dynamically adding, suspending, or resuming
46 > * internal worker threads, even if some tasks are stalled waiting to
47 > * join others. However, no such adjustments are guaranteed in the
48 > * face of blocked IO or other unmanaged synchronization. The nested
49 > * {@link ManagedBlocker} interface enables extension of the kinds of
50 > * synchronization accommodated.
51   *
52   * <p>In addition to execution and lifecycle control methods, this
53   * class provides status check methods (for example
54 < * {@code getStealCount}) that are intended to aid in developing,
54 > * {@link #getStealCount}) that are intended to aid in developing,
55   * tuning, and monitoring fork/join applications. Also, method
56 < * {@code toString} returns indications of pool state in a
56 > * {@link #toString} returns indications of pool state in a
57   * convenient form for informal monitoring.
58   *
59 + * <p> As is the case with other ExecutorServices, there are three
60 + * main task execution methods summarized in the following
61 + * table. These are designed to be used by clients not already engaged
62 + * in fork/join computations in the current pool.  The main forms of
63 + * these methods accept instances of {@code ForkJoinTask}, but
64 + * overloaded forms also allow mixed execution of plain {@code
65 + * Runnable}- or {@code Callable}- based activities as well.  However,
66 + * tasks that are already executing in a pool should normally
67 + * <em>NOT</em> use these pool execution methods, but instead use the
68 + * within-computation forms listed in the table.
69 + *
70 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
71 + *  <tr>
72 + *    <td></td>
73 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Arrange async execution</td>
78 + *    <td> {@link #execute(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#fork}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Await and obtain result</td>
83 + *    <td> {@link #invoke(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#invoke}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Arrange exec and obtain Future</td>
88 + *    <td> {@link #submit(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90 + *  </tr>
91 + * </table>
92 + *
93 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94 + * used for all parallel task execution in a program or subsystem.
95 + * Otherwise, use would not usually outweigh the construction and
96 + * bookkeeping overhead of creating a large set of threads. For
97 + * example, a common pool could be used for the {@code SortTasks}
98 + * illustrated in {@link RecursiveAction}. Because {@code
99 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
100 + * daemon} mode, there is typically no need to explicitly {@link
101 + * #shutdown} such a pool upon program exit.
102 + *
103 + * <pre>
104 + * static final ForkJoinPool mainPool = new ForkJoinPool();
105 + * ...
106 + * public void sort(long[] array) {
107 + *   mainPool.invoke(new SortTask(array, 0, array.length));
108 + * }
109 + * </pre>
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 63 | Line 123 | import java.lang.reflect.*;
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
128 <     */
129 <
130 <    /** Mask for packing and unpacking shorts */
131 <    private static final int  shortMask = 0xffff;
132 <
133 <    /** Max pool size -- must be a power of two minus 1 */
134 <    private static final int MAX_THREADS =  0x7FFF;
135 <
136 <    /**
137 <     * Factory for creating new ForkJoinWorkerThreads.  A
138 <     * ForkJoinWorkerThreadFactory must be defined and used for
139 <     * ForkJoinWorkerThread subclasses that extend base functionality
140 <     * or initialize threads with different contexts.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * The main work-stealing mechanics implemented in class
133 >     * ForkJoinWorkerThread give first priority to processing tasks
134 >     * from their own queues (LIFO or FIFO, depending on mode), then
135 >     * to randomized FIFO steals of tasks in other worker queues, and
136 >     * lastly to new submissions. These mechanics do not consider
137 >     * affinities, loads, cache localities, etc, so rarely provide the
138 >     * best possible performance on a given machine, but portably
139 >     * provide good throughput by averaging over these factors.
140 >     * (Further, even if we did try to use such information, we do not
141 >     * usually have a basis for exploiting it. For example, some sets
142 >     * of tasks profit from cache affinities, but others are harmed by
143 >     * cache pollution effects.)
144 >     *
145 >     * Beyond work-stealing support and essential bookkeeping, the
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158 >     *
159 >     *   Helping: Arranging for the joiner to execute some task that it
160 >     *      would be running if the steal had not occurred.  Method
161 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 >     *      links to try to find such a task.
163 >     *
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180 >     *
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183 >     *
184 >     * The main throughput advantages of work-stealing stem from
185 >     * decentralized control -- workers mostly steal tasks from each
186 >     * other. We do not want to negate this by creating bottlenecks
187 >     * implementing other management responsibilities. So we use a
188 >     * collection of techniques that avoid, reduce, or cope well with
189 >     * contention. These entail several instances of bit-packing into
190 >     * CASable fields to maintain only the minimally required
191 >     * atomicity. To enable such packing, we restrict maximum
192 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193 >     * unbalanced increments and decrements) to fit into a 16 bit
194 >     * field, which is far in excess of normal operating range.  Even
195 >     * though updates to some of these bookkeeping fields do sometimes
196 >     * contend with each other, they don't normally cache-contend with
197 >     * updates to others enough to warrant memory padding or
198 >     * isolation. So they are all held as fields of ForkJoinPool
199 >     * objects.  The main capabilities are as follows:
200 >     *
201 >     * 1. Creating and removing workers. Workers are recorded in the
202 >     * "workers" array. This is an array as opposed to some other data
203 >     * structure to support index-based random steals by workers.
204 >     * Updates to the array recording new workers and unrecording
205 >     * terminated ones are protected from each other by a lock
206 >     * (workerLock) but the array is otherwise concurrently readable,
207 >     * and accessed directly by workers. To simplify index-based
208 >     * operations, the array size is always a power of two, and all
209 >     * readers must tolerate null slots. Currently, all worker thread
210 >     * creation is on-demand, triggered by task submissions,
211 >     * replacement of terminated workers, and/or compensation for
212 >     * blocked workers. However, all other support code is set up to
213 >     * work with other policies.
214 >     *
215 >     * To ensure that we do not hold on to worker references that
216 >     * would prevent GC, ALL accesses to workers are via indices into
217 >     * the workers array (which is one source of some of the unusual
218 >     * code constructions here). In essence, the workers array serves
219 >     * as a WeakReference mechanism. Thus for example the event queue
220 >     * stores worker indices, not worker references. Access to the
221 >     * workers in associated methods (for example releaseEventWaiters)
222 >     * must both index-check and null-check the IDs. All such accesses
223 >     * ignore bad IDs by returning out early from what they are doing,
224 >     * since this can only be associated with shutdown, in which case
225 >     * it is OK to give up. On termination, we just clobber these
226 >     * data structures without trying to use them.
227 >     *
228 >     * 2. Bookkeeping for dynamically adding and removing workers. We
229 >     * aim to approximately maintain the given level of parallelism.
230 >     * When some workers are known to be blocked (on joins or via
231 >     * ManagedBlocker), we may create or resume others to take their
232 >     * place until they unblock (see below). Implementing this
233 >     * requires counts of the number of "running" threads (i.e., those
234 >     * that are neither blocked nor artificially suspended) as well as
235 >     * the total number.  These two values are packed into one field,
236 >     * "workerCounts" because we need accurate snapshots when deciding
237 >     * to create, resume or suspend.  Note however that the
238 >     * correspondence of these counts to reality is not guaranteed. In
239 >     * particular updates for unblocked threads may lag until they
240 >     * actually wake up.
241 >     *
242 >     * 3. Maintaining global run state. The run state of the pool
243 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 >     * those in other Executor implementations, as well as a count of
245 >     * "active" workers -- those that are, or soon will be, or
246 >     * recently were executing tasks. The runLevel and active count
247 >     * are packed together in order to correctly trigger shutdown and
248 >     * termination. Without care, active counts can be subject to very
249 >     * high contention.  We substantially reduce this contention by
250 >     * relaxing update rules.  A worker must claim active status
251 >     * prospectively, by activating if it sees that a submitted or
252 >     * stealable task exists (it may find after activating that the
253 >     * task no longer exists). It stays active while processing this
254 >     * task (if it exists) and any other local subtasks it produces,
255 >     * until it cannot find any other tasks. It then tries
256 >     * inactivating (see method preStep), but upon update contention
257 >     * instead scans for more tasks, later retrying inactivation if it
258 >     * doesn't find any.
259 >     *
260 >     * 4. Managing idle workers waiting for tasks. We cannot let
261 >     * workers spin indefinitely scanning for tasks when none are
262 >     * available. On the other hand, we must quickly prod them into
263 >     * action when new tasks are submitted or generated.  We
264 >     * park/unpark these idle workers using an event-count scheme.
265 >     * Field eventCount is incremented upon events that may enable
266 >     * workers that previously could not find a task to now find one:
267 >     * Submission of a new task to the pool, or another worker pushing
268 >     * a task onto a previously empty queue.  (We also use this
269 >     * mechanism for configuration and termination actions that
270 >     * require wakeups of idle workers).  Each worker maintains its
271 >     * last known event count, and blocks when a scan for work did not
272 >     * find a task AND its lastEventCount matches the current
273 >     * eventCount. Waiting idle workers are recorded in a variant of
274 >     * Treiber stack headed by field eventWaiters which, when nonzero,
275 >     * encodes the thread index and count awaited for by the worker
276 >     * thread most recently calling eventSync. This thread in turn has
277 >     * a record (field nextEventWaiter) for the next waiting worker.
278 >     * In addition to allowing simpler decisions about need for
279 >     * wakeup, the event count bits in eventWaiters serve the role of
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286 >     * Conceptually they are merged into the same event, which is OK
287 >     * when their only purpose is to enable workers to scan for work.
288 >     *
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340 >     *
341 >     * Beware that there is a lot of representation-level coupling
342 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343 >     * ForkJoinTask.  For example, direct access to "workers" array by
344 >     * workers, and direct access to ForkJoinTask.status by both
345 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
346 >     * trying to reduce this, since any associated future changes in
347 >     * representations will need to be accompanied by algorithmic
348 >     * changes anyway.
349 >     *
350 >     * Style notes: There are lots of inline assignments (of form
351 >     * "while ((local = field) != 0)") which are usually the simplest
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359 >     *
360 >     * The order of declarations in this file is: (1) statics (2)
361 >     * fields (along with constants used when unpacking some of them)
362 >     * (3) internal control methods (4) callbacks and other support
363 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364 >     * methods (plus a few little helpers).
365 >     */
366 >
367 >    /**
368 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
369 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
370 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
371 >     * functionality or initialize threads with different contexts.
372       */
373      public static interface ForkJoinWorkerThreadFactory {
374          /**
375           * Returns a new worker thread operating in the given pool.
376           *
377           * @param pool the pool this thread works in
378 <         * @throws NullPointerException if pool is null
378 >         * @throws NullPointerException if the pool is null
379           */
380          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
381      }
382  
383      /**
384 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
384 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
385       * new ForkJoinWorkerThread.
386       */
387 <    static class  DefaultForkJoinWorkerThreadFactory
387 >    static class DefaultForkJoinWorkerThreadFactory
388          implements ForkJoinWorkerThreadFactory {
389          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 <            try {
100 <                return new ForkJoinWorkerThread(pool);
101 <            } catch (OutOfMemoryError oom)  {
102 <                return null;
103 <            }
390 >            return new ForkJoinWorkerThread(pool);
391          }
392      }
393  
# Line 136 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Array holding all worker threads in the pool. Initialized upon
427 <     * first use. Array size must be a power of two.  Updates and
428 <     * replacements are protected by workerLock, but it is always kept
429 <     * in a consistent enough state to be randomly accessed without
430 <     * locking by workers performing work-stealing.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443 >     */
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453 >
454 >    /**
455 >     * Array holding all worker threads in the pool.  Array size must
456 >     * be a power of two.  Updates and replacements are protected by
457 >     * workerLock, but the array is always kept in a consistent enough
458 >     * state to be randomly accessed without locking by workers
459 >     * performing work-stealing, as well as other traversal-based
460 >     * methods in this class. All readers must tolerate that some
461 >     * array slots may be null.
462       */
463      volatile ForkJoinWorkerThread[] workers;
464  
465      /**
466 <     * Lock protecting access to workers.
466 >     * Queue for external submissions.
467       */
468 <    private final ReentrantLock workerLock;
468 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469  
470      /**
471 <     * Condition for awaitTermination.
471 >     * Lock protecting updates to workers array.
472       */
473 <    private final Condition termination;
473 >    private final ReentrantLock workerLock;
474  
475      /**
476 <     * The uncaught exception handler used when any worker
159 <     * abruptly terminates
476 >     * Latch released upon termination.
477       */
478 <    private Thread.UncaughtExceptionHandler ueh;
478 >    private final Phaser termination;
479  
480      /**
481       * Creation factory for worker threads.
# Line 166 | Line 483 | public class ForkJoinPool extends Abstra
483      private final ForkJoinWorkerThreadFactory factory;
484  
485      /**
169     * Head of stack of threads that were created to maintain
170     * parallelism when other threads blocked, but have since
171     * suspended when the parallelism level rose.
172     */
173    private volatile WaitQueueNode spareStack;
174
175    /**
486       * Sum of per-thread steal counts, updated only when threads are
487       * idle or terminating.
488       */
489 <    private final AtomicLong stealCount;
489 >    private volatile long stealCount;
490  
491      /**
492 <     * Queue for external submissions.
492 >     * Encoded record of top of Treiber stack of threads waiting for
493 >     * events. The top 32 bits contain the count being waited for. The
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
497 >    private volatile long eventWaiters;
498  
499 <    /**
500 <     * Head of Treiber stack for barrier sync. See below for explanation
188 <     */
189 <    private volatile WaitQueueNode syncStack;
499 >    private static final int  EVENT_COUNT_SHIFT = 32;
500 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
501  
502      /**
503 <     * The count for event barrier
503 >     * A counter for events that may wake up worker threads:
504 >     *   - Submission of a new task to the pool
505 >     *   - A worker pushing a task on an empty queue
506 >     *   - termination
507       */
508 <    private volatile long eventCount;
508 >    private volatile int eventCount;
509  
510      /**
511 <     * Pool number, just for assigning useful names to worker threads
511 >     * Encoded record of top of Treiber stack of spare threads waiting
512 >     * for resumption. The top 16 bits contain an arbitrary count to
513 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 >     * index of waiting worker thread.
515       */
516 <    private final int poolNumber;
516 >    private volatile int spareWaiters;
517  
518 <    /**
519 <     * The maximum allowed pool size
203 <     */
204 <    private volatile int maxPoolSize;
518 >    private static final int SPARE_COUNT_SHIFT = 16;
519 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520  
521      /**
522 <     * The desired parallelism level, updated only under workerLock.
522 >     * Lifecycle control. The low word contains the number of workers
523 >     * that are (probably) executing tasks. This value is atomically
524 >     * incremented before a worker gets a task to run, and decremented
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526 >     * contain runLevel value. When all are zero, the pool is
527 >     * running. Level transitions are monotonic (running -> shutdown
528 >     * -> terminating -> terminated) so each transition adds a bit.
529 >     * These are bundled together to ensure consistent read for
530 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 >     * and active threads is zero).
532 >     *
533 >     * Notes: Most direct CASes are dependent on these bitfield
534 >     * positions.  Also, this field is non-private to enable direct
535 >     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private volatile int parallelism;
537 >    volatile int runState;
538  
539 <    /**
540 <     * True if use local fifo, not default lifo, for local polling
541 <     */
542 <    private volatile boolean locallyFifo;
539 >    // Note: The order among run level values matters.
540 >    private static final int RUNLEVEL_SHIFT     = 16;
541 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
545  
546      /**
547       * Holds number of total (i.e., created and not yet terminated)
548       * and running (i.e., not blocked on joins or other managed sync)
549 <     * threads, packed into one int to ensure consistent snapshot when
549 >     * threads, packed together to ensure consistent snapshot when
550       * making decisions about creating and suspending spare
551 <     * threads. Updated only by CAS.  Note: CASes in
552 <     * updateRunningCount and preJoin assume that running active count
553 <     * is in low word, so need to be modified if this changes.
551 >     * threads. Updated only by CAS. Note that adding a new worker
552 >     * requires incrementing both counts, since workers start off in
553 >     * running state.
554       */
555      private volatile int workerCounts;
556  
557 <    private static int totalCountOf(int s)           { return s >>> 16;  }
558 <    private static int runningCountOf(int s)         { return s & shortMask; }
559 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
557 >    private static final int TOTAL_COUNT_SHIFT  = 16;
558 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559 >    private static final int ONE_RUNNING        = 1;
560 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
561  
562      /**
563 <     * Adds delta (which may be negative) to running count.  This must
564 <     * be called before (with negative arg) and after (with positive)
234 <     * any managed synchronization (i.e., mainly, joins).
235 <     * @param delta the number to add
563 >     * The target parallelism level.
564 >     * Accessed directly by ForkJoinWorkerThreads.
565       */
566 <    final void updateRunningCount(int delta) {
238 <        int s;
239 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
240 <    }
566 >    final int parallelism;
567  
568      /**
569 <     * Adds delta (which may be negative) to both total and running
570 <     * count.  This must be called upon creation and termination of
245 <     * worker threads.
246 <     * @param delta the number to add
569 >     * True if use local fifo, not default lifo, for local polling
570 >     * Read by, and replicated by ForkJoinWorkerThreads
571       */
572 <    private void updateWorkerCount(int delta) {
249 <        int d = delta + (delta << 16); // add to both lo and hi parts
250 <        int s;
251 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
252 <    }
572 >    final boolean locallyFifo;
573  
574      /**
575 <     * Lifecycle control. High word contains runState, low word
576 <     * contains the number of workers that are (probably) executing
257 <     * tasks. This value is atomically incremented before a worker
258 <     * gets a task to run, and decremented when worker has no tasks
259 <     * and cannot find any. These two fields are bundled together to
260 <     * support correct termination triggering.  Note: activeCount
261 <     * CAS'es cheat by assuming active count is in low word, so need
262 <     * to be modified if this changes
575 >     * The uncaught exception handler used when any worker abruptly
576 >     * terminates.
577       */
578 <    private volatile int runControl;
578 >    private final Thread.UncaughtExceptionHandler ueh;
579  
580 <    // RunState values. Order among values matters
581 <    private static final int RUNNING     = 0;
582 <    private static final int SHUTDOWN    = 1;
583 <    private static final int TERMINATING = 2;
270 <    private static final int TERMINATED  = 3;
580 >    /**
581 >     * Pool number, just for assigning useful names to worker threads
582 >     */
583 >    private final int poolNumber;
584  
585 <    private static int runStateOf(int c)             { return c >>> 16; }
586 <    private static int activeCountOf(int c)          { return c & shortMask; }
274 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
585 >    // Utilities for CASing fields. Note that most of these
586 >    // are usually manually inlined by callers
587  
588      /**
589 <     * Try incrementing active count; fail on contention. Called by
278 <     * workers before/during executing tasks.
279 <     * @return true on success
589 >     * Increments running count part of workerCounts
590       */
591 <    final boolean tryIncrementActiveCount() {
592 <        int c = runControl;
593 <        return casRunControl(c, c+1);
591 >    final void incrementRunningCount() {
592 >        int c;
593 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 >                                               c = workerCounts,
595 >                                               c + ONE_RUNNING));
596      }
597  
598      /**
599 <     * Tries decrementing active count; fails on contention.
288 <     * Possibly triggers termination on success.
289 <     * Called by workers when they can't find tasks.
290 <     * @return true on success
599 >     * Tries to decrement running count unless already zero
600       */
601 <    final boolean tryDecrementActiveCount() {
602 <        int c = runControl;
603 <        int nextc = c - 1;
295 <        if (!casRunControl(c, nextc))
601 >    final boolean tryDecrementRunningCount() {
602 >        int wc = workerCounts;
603 >        if ((wc & RUNNING_COUNT_MASK) == 0)
604              return false;
605 <        if (canTerminateOnShutdown(nextc))
606 <            terminateOnShutdown();
607 <        return true;
605 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
606 >                                        wc, wc - ONE_RUNNING);
607 >    }
608 >
609 >    /**
610 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
611 >     * (rarely) necessary when other count updates lag.
612 >     *
613 >     * @param dr -- either zero or ONE_RUNNING
614 >     * @param dt -- either zero or ONE_TOTAL
615 >     */
616 >    private void decrementWorkerCounts(int dr, int dt) {
617 >        for (;;) {
618 >            int wc = workerCounts;
619 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
620 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
621 >                if ((runState & TERMINATED) != 0)
622 >                    return; // lagging termination on a backout
623 >                Thread.yield();
624 >            }
625 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
626 >                                         wc, wc - (dr + dt)))
627 >                return;
628 >        }
629      }
630  
631      /**
632 <     * Returns true if argument represents zero active count and
633 <     * nonzero runstate, which is the triggering condition for
305 <     * terminating on shutdown.
632 >     * Tries decrementing active count; fails on contention.
633 >     * Called when workers cannot find tasks to run.
634       */
635 <    private static boolean canTerminateOnShutdown(int c) {
636 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
635 >    final boolean tryDecrementActiveCount() {
636 >        int c;
637 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
638 >                                        c = runState, c - 1);
639      }
640  
641      /**
642 <     * Transition run state to at least the given state. Return true
643 <     * if not already at least given state.
642 >     * Advances to at least the given level. Returns true if not
643 >     * already in at least the given level.
644       */
645 <    private boolean transitionRunStateTo(int state) {
645 >    private boolean advanceRunLevel(int level) {
646          for (;;) {
647 <            int c = runControl;
648 <            if (runStateOf(c) >= state)
647 >            int s = runState;
648 >            if ((s & level) != 0)
649                  return false;
650 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
650 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
651                  return true;
652          }
653      }
654  
655 +    // workers array maintenance
656 +
657      /**
658 <     * Controls whether to add spares to maintain parallelism
658 >     * Records and returns a workers array index for new worker.
659       */
660 <    private volatile boolean maintainsParallelism;
660 >    private int recordWorker(ForkJoinWorkerThread w) {
661 >        // Try using slot totalCount-1. If not available, scan and/or resize
662 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
663 >        final ReentrantLock lock = this.workerLock;
664 >        lock.lock();
665 >        try {
666 >            ForkJoinWorkerThread[] ws = workers;
667 >            int n = ws.length;
668 >            if (k < 0 || k >= n || ws[k] != null) {
669 >                for (k = 0; k < n && ws[k] != null; ++k)
670 >                    ;
671 >                if (k == n)
672 >                    ws = Arrays.copyOf(ws, n << 1);
673 >            }
674 >            ws[k] = w;
675 >            workers = ws; // volatile array write ensures slot visibility
676 >        } finally {
677 >            lock.unlock();
678 >        }
679 >        return k;
680 >    }
681  
682 <    // Constructors
682 >    /**
683 >     * Nulls out record of worker in workers array.
684 >     */
685 >    private void forgetWorker(ForkJoinWorkerThread w) {
686 >        int idx = w.poolIndex;
687 >        // Locking helps method recordWorker avoid unnecessary expansion
688 >        final ReentrantLock lock = this.workerLock;
689 >        lock.lock();
690 >        try {
691 >            ForkJoinWorkerThread[] ws = workers;
692 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
693 >                ws[idx] = null;
694 >        } finally {
695 >            lock.unlock();
696 >        }
697 >    }
698  
699      /**
700 <     * Creates a ForkJoinPool with a pool size equal to the number of
701 <     * processors available on the system and using the default
702 <     * ForkJoinWorkerThreadFactory,
703 <     * @throws SecurityException if a security manager exists and
704 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
700 >     * Final callback from terminating worker.  Removes record of
701 >     * worker from array, and adjusts counts. If pool is shutting
702 >     * down, tries to complete termination.
703 >     *
704 >     * @param w the worker
705       */
706 <    public ForkJoinPool() {
707 <        this(Runtime.getRuntime().availableProcessors(),
708 <             defaultForkJoinWorkerThreadFactory);
706 >    final void workerTerminated(ForkJoinWorkerThread w) {
707 >        forgetWorker(w);
708 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
709 >        while (w.stealCount != 0) // collect final count
710 >            tryAccumulateStealCount(w);
711 >        tryTerminate(false);
712      }
713  
714 +    // Waiting for and signalling events
715 +
716      /**
717 <     * Creates a ForkJoinPool with the indicated parallelism level
718 <     * threads, and using the default ForkJoinWorkerThreadFactory,
719 <     * @param parallelism the number of worker threads
720 <     * @throws IllegalArgumentException if parallelism less than or
351 <     * equal to zero
352 <     * @throws SecurityException if a security manager exists and
353 <     *         the caller is not permitted to modify threads
354 <     *         because it does not hold {@link
355 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
717 >     * Releases workers blocked on a count not equal to current count.
718 >     * Normally called after precheck that eventWaiters isn't zero to
719 >     * avoid wasted array checks. Gives up upon a change in count or
720 >     * upon releasing two workers, letting others take over.
721       */
722 <    public ForkJoinPool(int parallelism) {
723 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
722 >    private void releaseEventWaiters() {
723 >        ForkJoinWorkerThread[] ws = workers;
724 >        int n = ws.length;
725 >        long h = eventWaiters;
726 >        int ec = eventCount;
727 >        boolean releasedOne = false;
728 >        ForkJoinWorkerThread w; int id;
729 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
730 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
731 >               id < n && (w = ws[id]) != null) {
732 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
733 >                                          h,  w.nextWaiter)) {
734 >                LockSupport.unpark(w);
735 >                if (releasedOne) // exit on second release
736 >                    break;
737 >                releasedOne = true;
738 >            }
739 >            if (eventCount != ec)
740 >                break;
741 >            h = eventWaiters;
742 >        }
743      }
744  
745      /**
746 <     * Creates a ForkJoinPool with parallelism equal to the number of
747 <     * processors available on the system and using the given
364 <     * ForkJoinWorkerThreadFactory,
365 <     * @param factory the factory for creating new threads
366 <     * @throws NullPointerException if factory is null
367 <     * @throws SecurityException if a security manager exists and
368 <     *         the caller is not permitted to modify threads
369 <     *         because it does not hold {@link
370 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
746 >     * Tries to advance eventCount and releases waiters. Called only
747 >     * from workers.
748       */
749 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
750 <        this(Runtime.getRuntime().availableProcessors(), factory);
749 >    final void signalWork() {
750 >        int c; // try to increment event count -- CAS failure OK
751 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
752 >        if (eventWaiters != 0L)
753 >            releaseEventWaiters();
754      }
755  
756      /**
757 <     * Creates a ForkJoinPool with the given parallelism and factory.
757 >     * Adds the given worker to event queue and blocks until
758 >     * terminating or event count advances from the given value
759       *
760 <     * @param parallelism the targeted number of worker threads
761 <     * @param factory the factory for creating new threads
381 <     * @throws IllegalArgumentException if parallelism less than or
382 <     * equal to zero, or greater than implementation limit
383 <     * @throws NullPointerException if factory is null
384 <     * @throws SecurityException if a security manager exists and
385 <     *         the caller is not permitted to modify threads
386 <     *         because it does not hold {@link
387 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
760 >     * @param w the calling worker thread
761 >     * @param ec the count
762       */
763 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
764 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
765 <            throw new IllegalArgumentException();
766 <        if (factory == null)
767 <            throw new NullPointerException();
768 <        checkPermission();
769 <        this.factory = factory;
770 <        this.parallelism = parallelism;
771 <        this.maxPoolSize = MAX_THREADS;
772 <        this.maintainsParallelism = true;
773 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
774 <        this.workerLock = new ReentrantLock();
775 <        this.termination = workerLock.newCondition();
402 <        this.stealCount = new AtomicLong();
403 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
404 <        // worker array and workers are lazily constructed
763 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
764 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
765 >        long h;
766 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
767 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
768 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
769 >               eventCount == ec) {
770 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
771 >                                          w.nextWaiter = h, nh)) {
772 >                awaitEvent(w, ec);
773 >                break;
774 >            }
775 >        }
776      }
777  
778      /**
779 <     * Create new worker using factory.
780 <     * @param index the index to assign worker
781 <     * @return new worker, or null of factory failed
779 >     * Blocks the given worker (that has already been entered as an
780 >     * event waiter) until terminating or event count advances from
781 >     * the given value. The oldest (first) waiter uses a timed wait to
782 >     * occasionally one-by-one shrink the number of workers (to a
783 >     * minimum of one) if the pool has not been used for extended
784 >     * periods.
785 >     *
786 >     * @param w the calling worker thread
787 >     * @param ec the count
788       */
789 <    private ForkJoinWorkerThread createWorker(int index) {
790 <        Thread.UncaughtExceptionHandler h = ueh;
791 <        ForkJoinWorkerThread w = factory.newThread(this);
792 <        if (w != null) {
793 <            w.poolIndex = index;
794 <            w.setDaemon(true);
795 <            w.setAsyncMode(locallyFifo);
796 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
797 <            if (h != null)
798 <                w.setUncaughtExceptionHandler(h);
789 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
790 >        while (eventCount == ec) {
791 >            if (tryAccumulateStealCount(w)) { // transfer while idle
792 >                boolean untimed = (w.nextWaiter != 0L ||
793 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
794 >                long startTime = untimed? 0 : System.nanoTime();
795 >                Thread.interrupted();         // clear/ignore interrupt
796 >                if (eventCount != ec || w.isTerminating())
797 >                    break;                    // recheck after clear
798 >                if (untimed)
799 >                    LockSupport.park(w);
800 >                else {
801 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
802 >                    if (eventCount != ec || w.isTerminating())
803 >                        break;
804 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
805 >                        tryShutdownUnusedWorker(ec);
806 >                }
807 >            }
808          }
423        return w;
809      }
810  
811 +    // Maintaining parallelism
812 +
813      /**
814 <     * Returns a good size for worker array given pool size.
428 <     * Currently requires size to be a power of two.
814 >     * Pushes worker onto the spare stack.
815       */
816 <    private static int arraySizeFor(int ps) {
817 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
816 >    final void pushSpare(ForkJoinWorkerThread w) {
817 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
818 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
819 >                                               w.nextSpare = spareWaiters,ns));
820      }
821  
822      /**
823 <     * Creates or resizes array if necessary to hold newLength.
824 <     * Call only under exclusion.
437 <     *
438 <     * @return the array
823 >     * Tries (once) to resume a spare if the number of running
824 >     * threads is less than target.
825       */
826 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
826 >    private void tryResumeSpare() {
827 >        int sw, id;
828          ForkJoinWorkerThread[] ws = workers;
829 <        if (ws == null)
830 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
831 <        else if (newLength > ws.length)
832 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
833 <        else
834 <            return ws;
829 >        int n = ws.length;
830 >        ForkJoinWorkerThread w;
831 >        if ((sw = spareWaiters) != 0 &&
832 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
833 >            id < n && (w = ws[id]) != null &&
834 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
835 >            spareWaiters == sw &&
836 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
837 >                                     sw, w.nextSpare)) {
838 >            int c; // increment running count before resume
839 >            do {} while (!UNSAFE.compareAndSwapInt
840 >                         (this, workerCountsOffset,
841 >                          c = workerCounts, c + ONE_RUNNING));
842 >            if (w.tryUnsuspend())
843 >                LockSupport.unpark(w);
844 >            else   // back out if w was shutdown
845 >                decrementWorkerCounts(ONE_RUNNING, 0);
846 >        }
847      }
848  
849      /**
850 <     * Try to shrink workers into smaller array after one or more terminate
851 <     */
852 <    private void tryShrinkWorkerArray() {
853 <        ForkJoinWorkerThread[] ws = workers;
854 <        if (ws != null) {
855 <            int len = ws.length;
856 <            int last = len - 1;
857 <            while (last >= 0 && ws[last] == null)
858 <                --last;
859 <            int newLength = arraySizeFor(last+1);
860 <            if (newLength < len)
861 <                workers = Arrays.copyOf(ws, newLength);
850 >     * Tries to increase the number of running workers if below target
851 >     * parallelism: If a spare exists tries to resume it via
852 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
853 >     * existing workers are busy, adds a new worker. In all cases also
854 >     * helps wake up releasable workers waiting for work.
855 >     */
856 >    private void helpMaintainParallelism() {
857 >        int pc = parallelism;
858 >        int wc, rs, tc;
859 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
860 >               (rs = runState) < TERMINATING) {
861 >            if (spareWaiters != 0)
862 >                tryResumeSpare();
863 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
864 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
865 >                break;   // enough total
866 >            else if (runState == rs && workerCounts == wc &&
867 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
868 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
869 >                ForkJoinWorkerThread w = null;
870 >                Throwable fail = null;
871 >                try {
872 >                    w = factory.newThread(this);
873 >                } catch (Throwable ex) {
874 >                    fail = ex;
875 >                }
876 >                if (w == null) { // null or exceptional factory return
877 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
878 >                    tryTerminate(false); // handle failure during shutdown
879 >                    // If originating from an external caller,
880 >                    // propagate exception, else ignore
881 >                    if (fail != null && runState < TERMINATING &&
882 >                        !(Thread.currentThread() instanceof
883 >                          ForkJoinWorkerThread))
884 >                        UNSAFE.throwException(fail);
885 >                    break;
886 >                }
887 >                w.start(recordWorker(w), ueh);
888 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
889 >                    int c; // advance event count
890 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
891 >                                             c = eventCount, c+1);
892 >                    break; // add at most one unless total below target
893 >                }
894 >            }
895          }
896 +        if (eventWaiters != 0L)
897 +            releaseEventWaiters();
898      }
899  
900      /**
901 <     * Initialize workers if necessary
901 >     * Callback from the oldest waiter in awaitEvent waking up after a
902 >     * period of non-use. If all workers are idle, tries (once) to
903 >     * shutdown an event waiter or a spare, if one exists. Note that
904 >     * we don't need CAS or locks here because the method is called
905 >     * only from one thread occasionally waking (and even misfires are
906 >     * OK). Note that until the shutdown worker fully terminates,
907 >     * workerCounts will overestimate total count, which is tolerable.
908 >     *
909 >     * @param ec the event count waited on by caller (to abort
910 >     * attempt if count has since changed).
911       */
912 <    final void ensureWorkerInitialization() {
913 <        ForkJoinWorkerThread[] ws = workers;
914 <        if (ws == null) {
915 <            final ReentrantLock lock = this.workerLock;
916 <            lock.lock();
917 <            try {
918 <                ws = workers;
919 <                if (ws == null) {
920 <                    int ps = parallelism;
921 <                    ws = ensureWorkerArrayCapacity(ps);
922 <                    for (int i = 0; i < ps; ++i) {
923 <                        ForkJoinWorkerThread w = createWorker(i);
924 <                        if (w != null) {
925 <                            ws[i] = w;
926 <                            w.start();
927 <                            updateWorkerCount(1);
928 <                        }
929 <                    }
912 >    private void tryShutdownUnusedWorker(int ec) {
913 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
914 >            ForkJoinWorkerThread[] ws = workers;
915 >            int n = ws.length;
916 >            ForkJoinWorkerThread w = null;
917 >            boolean shutdown = false;
918 >            int sw;
919 >            long h;
920 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
921 >                int id = (sw & SPARE_ID_MASK) - 1;
922 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
923 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
924 >                                             sw, w.nextSpare))
925 >                    shutdown = true;
926 >            }
927 >            else if ((h = eventWaiters) != 0L) {
928 >                long nh;
929 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
930 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
931 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
932 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
933 >                    shutdown = true;
934 >            }
935 >            if (w != null && shutdown) {
936 >                w.shutdown();
937 >                LockSupport.unpark(w);
938 >            }
939 >        }
940 >        releaseEventWaiters(); // in case of interference
941 >    }
942 >
943 >    /**
944 >     * Callback from workers invoked upon each top-level action (i.e.,
945 >     * stealing a task or taking a submission and running it).
946 >     * Performs one or more of the following:
947 >     *
948 >     * 1. If the worker is active and either did not run a task
949 >     *    or there are too many workers, try to set its active status
950 >     *    to inactive and update activeCount. On contention, we may
951 >     *    try again in this or a subsequent call.
952 >     *
953 >     * 2. If not enough total workers, help create some.
954 >     *
955 >     * 3. If there are too many running workers, suspend this worker
956 >     *    (first forcing inactive if necessary).  If it is not needed,
957 >     *    it may be shutdown while suspended (via
958 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
959 >     *    rechecks running thread count and need for event sync.
960 >     *
961 >     * 4. If worker did not run a task, await the next task event via
962 >     *    eventSync if necessary (first forcing inactivation), upon
963 >     *    which the worker may be shutdown via
964 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
965 >     *    existing event waiters that are now releasable,
966 >     *
967 >     * @param w the worker
968 >     * @param ran true if worker ran a task since last call to this method
969 >     */
970 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
971 >        int wec = w.lastEventCount;
972 >        boolean active = w.active;
973 >        boolean inactivate = false;
974 >        int pc = parallelism;
975 >        while (w.runState == 0) {
976 >            int rs = runState;
977 >            if (rs >= TERMINATING) { // propagate shutdown
978 >                w.shutdown();
979 >                break;
980 >            }
981 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
982 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
983 >                inactivate = active = w.active = false;
984 >            int wc = workerCounts;
985 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
986 >                if (!(inactivate |= active) && // must inactivate to suspend
987 >                    workerCounts == wc &&      // try to suspend as spare
988 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
989 >                                             wc, wc - ONE_RUNNING))
990 >                    w.suspendAsSpare();
991 >            }
992 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
993 >                helpMaintainParallelism();     // not enough workers
994 >            else if (!ran) {
995 >                long h = eventWaiters;
996 >                int ec = eventCount;
997 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
998 >                    releaseEventWaiters();     // release others before waiting
999 >                else if (ec != wec) {
1000 >                    w.lastEventCount = ec;     // no need to wait
1001 >                    break;
1002                  }
1003 <            } finally {
1004 <                lock.unlock();
1003 >                else if (!(inactivate |= active))
1004 >                    eventSync(w, wec);         // must inactivate before sync
1005              }
1006 +            else
1007 +                break;
1008          }
1009      }
1010  
1011      /**
1012 <     * Worker creation and startup for threads added via setParallelism.
1012 >     * Helps and/or blocks awaiting join of the given task.
1013 >     * See above for explanation.
1014 >     *
1015 >     * @param joinMe the task to join
1016 >     * @param worker the current worker thread
1017       */
1018 <    private void createAndStartAddedWorkers() {
1019 <        resumeAllSpares();  // Allow spares to convert to nonspare
1020 <        int ps = parallelism;
1021 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1022 <        int len = ws.length;
1023 <        // Sweep through slots, to keep lowest indices most populated
1024 <        int k = 0;
1025 <        while (k < len) {
1026 <            if (ws[k] != null) {
1027 <                ++k;
1028 <                continue;
1018 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1019 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1020 >        while (joinMe.status >= 0) {
1021 >            int wc;
1022 >            worker.helpJoinTask(joinMe);
1023 >            if (joinMe.status < 0)
1024 >                break;
1025 >            else if (retries > 0)
1026 >                --retries;
1027 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1028 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1029 >                                              wc, wc - ONE_RUNNING)) {
1030 >                int stat, c; long h;
1031 >                while ((stat = joinMe.status) >= 0 &&
1032 >                       (h = eventWaiters) != 0L && // help release others
1033 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1034 >                    releaseEventWaiters();
1035 >                if (stat >= 0 &&
1036 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1037 >                     (stat =
1038 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1039 >                    helpMaintainParallelism(); // timeout or no running workers
1040 >                do {} while (!UNSAFE.compareAndSwapInt
1041 >                             (this, workerCountsOffset,
1042 >                              c = workerCounts, c + ONE_RUNNING));
1043 >                if (stat < 0)
1044 >                    break;   // else restart
1045              }
1046 <            int s = workerCounts;
1047 <            int tc = totalCountOf(s);
1048 <            int rc = runningCountOf(s);
1049 <            if (rc >= ps || tc >= ps)
1046 >        }
1047 >    }
1048 >
1049 >    /**
1050 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1051 >     */
1052 >    final void awaitBlocker(ManagedBlocker blocker)
1053 >        throws InterruptedException {
1054 >        while (!blocker.isReleasable()) {
1055 >            int wc = workerCounts;
1056 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1057 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1058 >                                         wc, wc - ONE_RUNNING)) {
1059 >                try {
1060 >                    while (!blocker.isReleasable()) {
1061 >                        long h = eventWaiters;
1062 >                        if (h != 0L &&
1063 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1064 >                            releaseEventWaiters();
1065 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1066 >                                 runState < TERMINATING)
1067 >                            helpMaintainParallelism();
1068 >                        else if (blocker.block())
1069 >                            break;
1070 >                    }
1071 >                } finally {
1072 >                    int c;
1073 >                    do {} while (!UNSAFE.compareAndSwapInt
1074 >                                 (this, workerCountsOffset,
1075 >                                  c = workerCounts, c + ONE_RUNNING));
1076 >                }
1077                  break;
1078 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1079 <                ForkJoinWorkerThread w = createWorker(k);
1078 >            }
1079 >        }
1080 >    }
1081 >
1082 >    /**
1083 >     * Possibly initiates and/or completes termination.
1084 >     *
1085 >     * @param now if true, unconditionally terminate, else only
1086 >     * if shutdown and empty queue and no active workers
1087 >     * @return true if now terminating or terminated
1088 >     */
1089 >    private boolean tryTerminate(boolean now) {
1090 >        if (now)
1091 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1092 >        else if (runState < SHUTDOWN ||
1093 >                 !submissionQueue.isEmpty() ||
1094 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1095 >            return false;
1096 >
1097 >        if (advanceRunLevel(TERMINATING))
1098 >            startTerminating();
1099 >
1100 >        // Finish now if all threads terminated; else in some subsequent call
1101 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1102 >            advanceRunLevel(TERMINATED);
1103 >            termination.arrive();
1104 >        }
1105 >        return true;
1106 >    }
1107 >
1108 >
1109 >    /**
1110 >     * Actions on transition to TERMINATING
1111 >     *
1112 >     * Runs up to four passes through workers: (0) shutting down each
1113 >     * (without waking up if parked) to quickly spread notifications
1114 >     * without unnecessary bouncing around event queues etc (1) wake
1115 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1116 >     * interrupted workers
1117 >     */
1118 >    private void startTerminating() {
1119 >        cancelSubmissions();
1120 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1121 >            int c; // advance event count
1122 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1123 >                                     c = eventCount, c+1);
1124 >            eventWaiters = 0L; // clobber lists
1125 >            spareWaiters = 0;
1126 >            for (ForkJoinWorkerThread w : workers) {
1127                  if (w != null) {
1128 <                    ws[k++] = w;
1129 <                    w.start();
1130 <                }
1131 <                else {
1132 <                    updateWorkerCount(-1); // back out on failed creation
1133 <                    break;
1128 >                    w.shutdown();
1129 >                    if (passes > 0 && !w.isTerminated()) {
1130 >                        w.cancelTasks();
1131 >                        LockSupport.unpark(w);
1132 >                        if (passes > 1 && !w.isInterrupted()) {
1133 >                            try {
1134 >                                w.interrupt();
1135 >                            } catch (SecurityException ignore) {
1136 >                            }
1137 >                        }
1138 >                    }
1139                  }
1140              }
1141          }
1142      }
1143  
1144 +    /**
1145 +     * Clears out and cancels submissions, ignoring exceptions.
1146 +     */
1147 +    private void cancelSubmissions() {
1148 +        ForkJoinTask<?> task;
1149 +        while ((task = submissionQueue.poll()) != null) {
1150 +            try {
1151 +                task.cancel(false);
1152 +            } catch (Throwable ignore) {
1153 +            }
1154 +        }
1155 +    }
1156 +
1157 +    // misc support for ForkJoinWorkerThread
1158 +
1159 +    /**
1160 +     * Returns pool number.
1161 +     */
1162 +    final int getPoolNumber() {
1163 +        return poolNumber;
1164 +    }
1165 +
1166 +    /**
1167 +     * Tries to accumulate steal count from a worker, clearing
1168 +     * the worker's value if successful.
1169 +     *
1170 +     * @return true if worker steal count now zero
1171 +     */
1172 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1173 +        int sc = w.stealCount;
1174 +        long c = stealCount;
1175 +        // CAS even if zero, for fence effects
1176 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1177 +            if (sc != 0)
1178 +                w.stealCount = 0;
1179 +            return true;
1180 +        }
1181 +        return sc == 0;
1182 +    }
1183 +
1184 +    /**
1185 +     * Returns the approximate (non-atomic) number of idle threads per
1186 +     * active thread.
1187 +     */
1188 +    final int idlePerActive() {
1189 +        int pc = parallelism; // use parallelism, not rc
1190 +        int ac = runState;    // no mask -- artificially boosts during shutdown
1191 +        // Use exact results for small values, saturate past 4
1192 +        return ((pc <= ac) ? 0 :
1193 +                (pc >>> 1 <= ac) ? 1 :
1194 +                (pc >>> 2 <= ac) ? 3 :
1195 +                pc >>> 3);
1196 +    }
1197 +
1198 +    // Public and protected methods
1199 +
1200 +    // Constructors
1201 +
1202 +    /**
1203 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1204 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1205 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1206 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1207 +     *
1208 +     * @throws SecurityException if a security manager exists and
1209 +     *         the caller is not permitted to modify threads
1210 +     *         because it does not hold {@link
1211 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1212 +     */
1213 +    public ForkJoinPool() {
1214 +        this(Runtime.getRuntime().availableProcessors(),
1215 +             defaultForkJoinWorkerThreadFactory, null, false);
1216 +    }
1217 +
1218 +    /**
1219 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1220 +     * level, the {@linkplain
1221 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1222 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1223 +     *
1224 +     * @param parallelism the parallelism level
1225 +     * @throws IllegalArgumentException if parallelism less than or
1226 +     *         equal to zero, or greater than implementation limit
1227 +     * @throws SecurityException if a security manager exists and
1228 +     *         the caller is not permitted to modify threads
1229 +     *         because it does not hold {@link
1230 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1231 +     */
1232 +    public ForkJoinPool(int parallelism) {
1233 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1234 +    }
1235 +
1236 +    /**
1237 +     * Creates a {@code ForkJoinPool} with the given parameters.
1238 +     *
1239 +     * @param parallelism the parallelism level. For default value,
1240 +     * use {@link java.lang.Runtime#availableProcessors}.
1241 +     * @param factory the factory for creating new threads. For default value,
1242 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1243 +     * @param handler the handler for internal worker threads that
1244 +     * terminate due to unrecoverable errors encountered while executing
1245 +     * tasks. For default value, use {@code null}.
1246 +     * @param asyncMode if true,
1247 +     * establishes local first-in-first-out scheduling mode for forked
1248 +     * tasks that are never joined. This mode may be more appropriate
1249 +     * than default locally stack-based mode in applications in which
1250 +     * worker threads only process event-style asynchronous tasks.
1251 +     * For default value, use {@code false}.
1252 +     * @throws IllegalArgumentException if parallelism less than or
1253 +     *         equal to zero, or greater than implementation limit
1254 +     * @throws NullPointerException if the factory is null
1255 +     * @throws SecurityException if a security manager exists and
1256 +     *         the caller is not permitted to modify threads
1257 +     *         because it does not hold {@link
1258 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1259 +     */
1260 +    public ForkJoinPool(int parallelism,
1261 +                        ForkJoinWorkerThreadFactory factory,
1262 +                        Thread.UncaughtExceptionHandler handler,
1263 +                        boolean asyncMode) {
1264 +        checkPermission();
1265 +        if (factory == null)
1266 +            throw new NullPointerException();
1267 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1268 +            throw new IllegalArgumentException();
1269 +        this.parallelism = parallelism;
1270 +        this.factory = factory;
1271 +        this.ueh = handler;
1272 +        this.locallyFifo = asyncMode;
1273 +        int arraySize = initialArraySizeFor(parallelism);
1274 +        this.workers = new ForkJoinWorkerThread[arraySize];
1275 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1276 +        this.workerLock = new ReentrantLock();
1277 +        this.termination = new Phaser(1);
1278 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1279 +    }
1280 +
1281 +    /**
1282 +     * Returns initial power of two size for workers array.
1283 +     * @param pc the initial parallelism level
1284 +     */
1285 +    private static int initialArraySizeFor(int pc) {
1286 +        // If possible, initially allocate enough space for one spare
1287 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1288 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1289 +        size |= size >>> 1;
1290 +        size |= size >>> 2;
1291 +        size |= size >>> 4;
1292 +        size |= size >>> 8;
1293 +        return size + 1;
1294 +    }
1295 +
1296      // Execution methods
1297  
1298      /**
1299       * Common code for execute, invoke and submit
1300       */
1301      private <T> void doSubmit(ForkJoinTask<T> task) {
1302 <        if (isShutdown())
1302 >        if (task == null)
1303 >            throw new NullPointerException();
1304 >        if (runState >= SHUTDOWN)
1305              throw new RejectedExecutionException();
536        if (workers == null)
537            ensureWorkerInitialization();
1306          submissionQueue.offer(task);
1307 <        signalIdleWorkers();
1307 >        int c; // try to increment event count -- CAS failure OK
1308 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1309 >        helpMaintainParallelism(); // create, start, or resume some workers
1310      }
1311  
1312      /**
1313 <     * Performs the given task; returning its result upon completion
1313 >     * Performs the given task, returning its result upon completion.
1314 >     *
1315       * @param task the task
1316       * @return the task's result
1317 <     * @throws NullPointerException if task is null
1318 <     * @throws RejectedExecutionException if pool is shut down
1317 >     * @throws NullPointerException if the task is null
1318 >     * @throws RejectedExecutionException if the task cannot be
1319 >     *         scheduled for execution
1320       */
1321      public <T> T invoke(ForkJoinTask<T> task) {
1322          doSubmit(task);
# Line 553 | Line 1325 | public class ForkJoinPool extends Abstra
1325  
1326      /**
1327       * Arranges for (asynchronous) execution of the given task.
1328 +     *
1329       * @param task the task
1330 <     * @throws NullPointerException if task is null
1331 <     * @throws RejectedExecutionException if pool is shut down
1330 >     * @throws NullPointerException if the task is null
1331 >     * @throws RejectedExecutionException if the task cannot be
1332 >     *         scheduled for execution
1333       */
1334 <    public <T> void execute(ForkJoinTask<T> task) {
1334 >    public void execute(ForkJoinTask<?> task) {
1335          doSubmit(task);
1336      }
1337  
1338      // AbstractExecutorService methods
1339  
1340 +    /**
1341 +     * @throws NullPointerException if the task is null
1342 +     * @throws RejectedExecutionException if the task cannot be
1343 +     *         scheduled for execution
1344 +     */
1345      public void execute(Runnable task) {
1346 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1346 >        ForkJoinTask<?> job;
1347 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1348 >            job = (ForkJoinTask<?>) task;
1349 >        else
1350 >            job = ForkJoinTask.adapt(task, null);
1351 >        doSubmit(job);
1352 >    }
1353 >
1354 >    /**
1355 >     * Submits a ForkJoinTask for execution.
1356 >     *
1357 >     * @param task the task to submit
1358 >     * @return the task
1359 >     * @throws NullPointerException if the task is null
1360 >     * @throws RejectedExecutionException if the task cannot be
1361 >     *         scheduled for execution
1362 >     */
1363 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1364 >        doSubmit(task);
1365 >        return task;
1366      }
1367  
1368 +    /**
1369 +     * @throws NullPointerException if the task is null
1370 +     * @throws RejectedExecutionException if the task cannot be
1371 +     *         scheduled for execution
1372 +     */
1373      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1374 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1374 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1375          doSubmit(job);
1376          return job;
1377      }
1378  
1379 +    /**
1380 +     * @throws NullPointerException if the task is null
1381 +     * @throws RejectedExecutionException if the task cannot be
1382 +     *         scheduled for execution
1383 +     */
1384      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1385 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1385 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1386          doSubmit(job);
1387          return job;
1388      }
1389  
1390 +    /**
1391 +     * @throws NullPointerException if the task is null
1392 +     * @throws RejectedExecutionException if the task cannot be
1393 +     *         scheduled for execution
1394 +     */
1395      public ForkJoinTask<?> submit(Runnable task) {
1396 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1396 >        ForkJoinTask<?> job;
1397 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1398 >            job = (ForkJoinTask<?>) task;
1399 >        else
1400 >            job = ForkJoinTask.adapt(task, null);
1401          doSubmit(job);
1402          return job;
1403      }
1404  
1405      /**
1406 <     * Adaptor for Runnables. This implements RunnableFuture
1407 <     * to be compliant with AbstractExecutorService constraints
591 <     */
592 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
593 <        implements RunnableFuture<T> {
594 <        final Runnable runnable;
595 <        final T resultOnCompletion;
596 <        T result;
597 <        AdaptedRunnable(Runnable runnable, T result) {
598 <            if (runnable == null) throw new NullPointerException();
599 <            this.runnable = runnable;
600 <            this.resultOnCompletion = result;
601 <        }
602 <        public T getRawResult() { return result; }
603 <        public void setRawResult(T v) { result = v; }
604 <        public boolean exec() {
605 <            runnable.run();
606 <            result = resultOnCompletion;
607 <            return true;
608 <        }
609 <        public void run() { invoke(); }
610 <    }
611 <
612 <    /**
613 <     * Adaptor for Callables
1406 >     * @throws NullPointerException       {@inheritDoc}
1407 >     * @throws RejectedExecutionException {@inheritDoc}
1408       */
615    static final class AdaptedCallable<T> extends ForkJoinTask<T>
616        implements RunnableFuture<T> {
617        final Callable<T> callable;
618        T result;
619        AdaptedCallable(Callable<T> callable) {
620            if (callable == null) throw new NullPointerException();
621            this.callable = callable;
622        }
623        public T getRawResult() { return result; }
624        public void setRawResult(T v) { result = v; }
625        public boolean exec() {
626            try {
627                result = callable.call();
628                return true;
629            } catch (Error err) {
630                throw err;
631            } catch (RuntimeException rex) {
632                throw rex;
633            } catch (Exception ex) {
634                throw new RuntimeException(ex);
635            }
636        }
637        public void run() { invoke(); }
638    }
639
1409      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1410 <        ArrayList<ForkJoinTask<T>> ts =
1410 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1411              new ArrayList<ForkJoinTask<T>>(tasks.size());
1412 <        for (Callable<T> c : tasks)
1413 <            ts.add(new AdaptedCallable<T>(c));
1414 <        invoke(new InvokeAll<T>(ts));
1415 <        return (List<Future<T>>)(List)ts;
1412 >        for (Callable<T> task : tasks)
1413 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1414 >        invoke(new InvokeAll<T>(forkJoinTasks));
1415 >
1416 >        @SuppressWarnings({"unchecked", "rawtypes"})
1417 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1418 >        return futures;
1419      }
1420  
1421      static final class InvokeAll<T> extends RecursiveAction {
1422          final ArrayList<ForkJoinTask<T>> tasks;
1423          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1424          public void compute() {
1425 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1425 >            try { invokeAll(tasks); }
1426 >            catch (Exception ignore) {}
1427          }
1428 +        private static final long serialVersionUID = -7914297376763021607L;
1429      }
1430  
657    // Configuration and status settings and queries
658
1431      /**
1432 <     * Returns the factory used for constructing new workers
1432 >     * Returns the factory used for constructing new workers.
1433       *
1434       * @return the factory used for constructing new workers
1435       */
# Line 668 | Line 1440 | public class ForkJoinPool extends Abstra
1440      /**
1441       * Returns the handler for internal worker threads that terminate
1442       * due to unrecoverable errors encountered while executing tasks.
671     * @return the handler, or null if none
672     */
673    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
674        Thread.UncaughtExceptionHandler h;
675        final ReentrantLock lock = this.workerLock;
676        lock.lock();
677        try {
678            h = ueh;
679        } finally {
680            lock.unlock();
681        }
682        return h;
683    }
684
685    /**
686     * Sets the handler for internal worker threads that terminate due
687     * to unrecoverable errors encountered while executing tasks.
688     * Unless set, the current default or ThreadGroup handler is used
689     * as handler.
1443       *
1444 <     * @param h the new handler
692 <     * @return the old handler, or null if none
693 <     * @throws SecurityException if a security manager exists and
694 <     *         the caller is not permitted to modify threads
695 <     *         because it does not hold {@link
696 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
697 <     */
698 <    public Thread.UncaughtExceptionHandler
699 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700 <        checkPermission();
701 <        Thread.UncaughtExceptionHandler old = null;
702 <        final ReentrantLock lock = this.workerLock;
703 <        lock.lock();
704 <        try {
705 <            old = ueh;
706 <            ueh = h;
707 <            ForkJoinWorkerThread[] ws = workers;
708 <            if (ws != null) {
709 <                for (int i = 0; i < ws.length; ++i) {
710 <                    ForkJoinWorkerThread w = ws[i];
711 <                    if (w != null)
712 <                        w.setUncaughtExceptionHandler(h);
713 <                }
714 <            }
715 <        } finally {
716 <            lock.unlock();
717 <        }
718 <        return old;
719 <    }
720 <
721 <
722 <    /**
723 <     * Sets the target parallelism level of this pool.
724 <     * @param parallelism the target parallelism
725 <     * @throws IllegalArgumentException if parallelism less than or
726 <     * equal to zero or greater than maximum size bounds
727 <     * @throws SecurityException if a security manager exists and
728 <     *         the caller is not permitted to modify threads
729 <     *         because it does not hold {@link
730 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1444 >     * @return the handler, or {@code null} if none
1445       */
1446 <    public void setParallelism(int parallelism) {
1447 <        checkPermission();
734 <        if (parallelism <= 0 || parallelism > maxPoolSize)
735 <            throw new IllegalArgumentException();
736 <        final ReentrantLock lock = this.workerLock;
737 <        lock.lock();
738 <        try {
739 <            if (!isTerminating()) {
740 <                int p = this.parallelism;
741 <                this.parallelism = parallelism;
742 <                if (parallelism > p)
743 <                    createAndStartAddedWorkers();
744 <                else
745 <                    trimSpares();
746 <            }
747 <        } finally {
748 <            lock.unlock();
749 <        }
750 <        signalIdleWorkers();
1446 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1447 >        return ueh;
1448      }
1449  
1450      /**
1451 <     * Returns the targeted number of worker threads in this pool.
1451 >     * Returns the targeted parallelism level of this pool.
1452       *
1453 <     * @return the targeted number of worker threads in this pool
1453 >     * @return the targeted parallelism level of this pool
1454       */
1455      public int getParallelism() {
1456          return parallelism;
# Line 761 | Line 1458 | public class ForkJoinPool extends Abstra
1458  
1459      /**
1460       * Returns the number of worker threads that have started but not
1461 <     * yet terminated.  This result returned by this method may differ
1462 <     * from {@code getParallelism} when threads are created to
1461 >     * yet terminated.  The result returned by this method may differ
1462 >     * from {@link #getParallelism} when threads are created to
1463       * maintain parallelism when others are cooperatively blocked.
1464       *
1465       * @return the number of worker threads
1466       */
1467      public int getPoolSize() {
1468 <        return totalCountOf(workerCounts);
772 <    }
773 <
774 <    /**
775 <     * Returns the maximum number of threads allowed to exist in the
776 <     * pool, even if there are insufficient unblocked running threads.
777 <     * @return the maximum
778 <     */
779 <    public int getMaximumPoolSize() {
780 <        return maxPoolSize;
781 <    }
782 <
783 <    /**
784 <     * Sets the maximum number of threads allowed to exist in the
785 <     * pool, even if there are insufficient unblocked running threads.
786 <     * Setting this value has no effect on current pool size. It
787 <     * controls construction of new threads.
788 <     * @throws IllegalArgumentException if negative or greater then
789 <     * internal implementation limit
790 <     */
791 <    public void setMaximumPoolSize(int newMax) {
792 <        if (newMax < 0 || newMax > MAX_THREADS)
793 <            throw new IllegalArgumentException();
794 <        maxPoolSize = newMax;
795 <    }
796 <
797 <
798 <    /**
799 <     * Returns true if this pool dynamically maintains its target
800 <     * parallelism level. If false, new threads are added only to
801 <     * avoid possible starvation.
802 <     * This setting is by default true;
803 <     * @return true if maintains parallelism
804 <     */
805 <    public boolean getMaintainsParallelism() {
806 <        return maintainsParallelism;
807 <    }
808 <
809 <    /**
810 <     * Sets whether this pool dynamically maintains its target
811 <     * parallelism level. If false, new threads are added only to
812 <     * avoid possible starvation.
813 <     * @param enable true to maintains parallelism
814 <     */
815 <    public void setMaintainsParallelism(boolean enable) {
816 <        maintainsParallelism = enable;
817 <    }
818 <
819 <    /**
820 <     * Establishes local first-in-first-out scheduling mode for forked
821 <     * tasks that are never joined. This mode may be more appropriate
822 <     * than default locally stack-based mode in applications in which
823 <     * worker threads only process asynchronous tasks.  This method is
824 <     * designed to be invoked only when pool is quiescent, and
825 <     * typically only before any tasks are submitted. The effects of
826 <     * invocations at other times may be unpredictable.
827 <     *
828 <     * @param async if true, use locally FIFO scheduling
829 <     * @return the previous mode
830 <     */
831 <    public boolean setAsyncMode(boolean async) {
832 <        boolean oldMode = locallyFifo;
833 <        locallyFifo = async;
834 <        ForkJoinWorkerThread[] ws = workers;
835 <        if (ws != null) {
836 <            for (int i = 0; i < ws.length; ++i) {
837 <                ForkJoinWorkerThread t = ws[i];
838 <                if (t != null)
839 <                    t.setAsyncMode(async);
840 <            }
841 <        }
842 <        return oldMode;
1468 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1469      }
1470  
1471      /**
1472 <     * Returns true if this pool uses local first-in-first-out
1472 >     * Returns {@code true} if this pool uses local first-in-first-out
1473       * scheduling mode for forked tasks that are never joined.
1474       *
1475 <     * @return true if this pool uses async mode
1475 >     * @return {@code true} if this pool uses async mode
1476       */
1477      public boolean getAsyncMode() {
1478          return locallyFifo;
# Line 855 | Line 1481 | public class ForkJoinPool extends Abstra
1481      /**
1482       * Returns an estimate of the number of worker threads that are
1483       * not blocked waiting to join tasks or for other managed
1484 <     * synchronization.
1484 >     * synchronization. This method may overestimate the
1485 >     * number of running threads.
1486       *
1487       * @return the number of worker threads
1488       */
1489      public int getRunningThreadCount() {
1490 <        return runningCountOf(workerCounts);
1490 >        return workerCounts & RUNNING_COUNT_MASK;
1491      }
1492  
1493      /**
1494       * Returns an estimate of the number of threads that are currently
1495       * stealing or executing tasks. This method may overestimate the
1496       * number of active threads.
1497 +     *
1498       * @return the number of active threads
1499       */
1500      public int getActiveThreadCount() {
1501 <        return activeCountOf(runControl);
874 <    }
875 <
876 <    /**
877 <     * Returns an estimate of the number of threads that are currently
878 <     * idle waiting for tasks. This method may underestimate the
879 <     * number of idle threads.
880 <     * @return the number of idle threads
881 <     */
882 <    final int getIdleThreadCount() {
883 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
884 <        return (c <= 0)? 0 : c;
1501 >        return runState & ACTIVE_COUNT_MASK;
1502      }
1503  
1504      /**
1505 <     * Returns true if all worker threads are currently idle. An idle
1506 <     * worker is one that cannot obtain a task to execute because none
1507 <     * are available to steal from other threads, and there are no
1508 <     * pending submissions to the pool. This method is conservative:
1509 <     * It might not return true immediately upon idleness of all
1510 <     * threads, but will eventually become true if threads remain
1511 <     * inactive.
1512 <     * @return true if all threads are currently idle
1505 >     * Returns {@code true} if all worker threads are currently idle.
1506 >     * An idle worker is one that cannot obtain a task to execute
1507 >     * because none are available to steal from other threads, and
1508 >     * there are no pending submissions to the pool. This method is
1509 >     * conservative; it might not return {@code true} immediately upon
1510 >     * idleness of all threads, but will eventually become true if
1511 >     * threads remain inactive.
1512 >     *
1513 >     * @return {@code true} if all threads are currently idle
1514       */
1515      public boolean isQuiescent() {
1516 <        return activeCountOf(runControl) == 0;
1516 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1517      }
1518  
1519      /**
# Line 903 | Line 1521 | public class ForkJoinPool extends Abstra
1521       * one thread's work queue by another. The reported value
1522       * underestimates the actual total number of steals when the pool
1523       * is not quiescent. This value may be useful for monitoring and
1524 <     * tuning fork/join programs: In general, steal counts should be
1524 >     * tuning fork/join programs: in general, steal counts should be
1525       * high enough to keep threads busy, but low enough to avoid
1526       * overhead and contention across threads.
1527 +     *
1528       * @return the number of steals
1529       */
1530      public long getStealCount() {
1531 <        return stealCount.get();
913 <    }
914 <
915 <    /**
916 <     * Accumulate steal count from a worker. Call only
917 <     * when worker known to be idle.
918 <     */
919 <    private void updateStealCount(ForkJoinWorkerThread w) {
920 <        int sc = w.getAndClearStealCount();
921 <        if (sc != 0)
922 <            stealCount.addAndGet(sc);
1531 >        return stealCount;
1532      }
1533  
1534      /**
# Line 929 | Line 1538 | public class ForkJoinPool extends Abstra
1538       * an approximation, obtained by iterating across all threads in
1539       * the pool. This method may be useful for tuning task
1540       * granularities.
1541 +     *
1542       * @return the number of queued tasks
1543       */
1544      public long getQueuedTaskCount() {
1545          long count = 0;
1546 <        ForkJoinWorkerThread[] ws = workers;
1547 <        if (ws != null) {
1548 <            for (int i = 0; i < ws.length; ++i) {
939 <                ForkJoinWorkerThread t = ws[i];
940 <                if (t != null)
941 <                    count += t.getQueueSize();
942 <            }
943 <        }
1546 >        for (ForkJoinWorkerThread w : workers)
1547 >            if (w != null)
1548 >                count += w.getQueueSize();
1549          return count;
1550      }
1551  
1552      /**
1553 <     * Returns an estimate of the number tasks submitted to this pool
1554 <     * that have not yet begun executing. This method takes time
1553 >     * Returns an estimate of the number of tasks submitted to this
1554 >     * pool that have not yet begun executing.  This method takes time
1555       * proportional to the number of submissions.
1556 +     *
1557       * @return the number of queued submissions
1558       */
1559      public int getQueuedSubmissionCount() {
# Line 955 | Line 1561 | public class ForkJoinPool extends Abstra
1561      }
1562  
1563      /**
1564 <     * Returns true if there are any tasks submitted to this pool
1565 <     * that have not yet begun executing.
1564 >     * Returns {@code true} if there are any tasks submitted to this
1565 >     * pool that have not yet begun executing.
1566 >     *
1567       * @return {@code true} if there are any queued submissions
1568       */
1569      public boolean hasQueuedSubmissions() {
# Line 967 | Line 1574 | public class ForkJoinPool extends Abstra
1574       * Removes and returns the next unexecuted submission if one is
1575       * available.  This method may be useful in extensions to this
1576       * class that re-assign work in systems with multiple pools.
1577 <     * @return the next submission, or null if none
1577 >     *
1578 >     * @return the next submission, or {@code null} if none
1579       */
1580      protected ForkJoinTask<?> pollSubmission() {
1581          return submissionQueue.poll();
# Line 977 | Line 1585 | public class ForkJoinPool extends Abstra
1585       * Removes all available unexecuted submitted and forked tasks
1586       * from scheduling queues and adds them to the given collection,
1587       * without altering their execution status. These may include
1588 <     * artificially generated or wrapped tasks. This method is designed
1589 <     * to be invoked only when the pool is known to be
1588 >     * artificially generated or wrapped tasks. This method is
1589 >     * designed to be invoked only when the pool is known to be
1590       * quiescent. Invocations at other times may not remove all
1591       * tasks. A failure encountered while attempting to add elements
1592       * to collection {@code c} may result in elements being in
# Line 986 | Line 1594 | public class ForkJoinPool extends Abstra
1594       * exception is thrown.  The behavior of this operation is
1595       * undefined if the specified collection is modified while the
1596       * operation is in progress.
1597 +     *
1598       * @param c the collection to transfer elements into
1599       * @return the number of elements transferred
1600       */
1601 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1602 <        int n = submissionQueue.drainTo(c);
1603 <        ForkJoinWorkerThread[] ws = workers;
1604 <        if (ws != null) {
1605 <            for (int i = 0; i < ws.length; ++i) {
1606 <                ForkJoinWorkerThread w = ws[i];
998 <                if (w != null)
999 <                    n += w.drainTasksTo(c);
1000 <            }
1001 <        }
1002 <        return n;
1601 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1602 >        int count = submissionQueue.drainTo(c);
1603 >        for (ForkJoinWorkerThread w : workers)
1604 >            if (w != null)
1605 >                count += w.drainTasksTo(c);
1606 >        return count;
1607      }
1608  
1609      /**
# Line 1010 | Line 1614 | public class ForkJoinPool extends Abstra
1614       * @return a string identifying this pool, as well as its state
1615       */
1616      public String toString() {
1013        int ps = parallelism;
1014        int wc = workerCounts;
1015        int rc = runControl;
1617          long st = getStealCount();
1618          long qt = getQueuedTaskCount();
1619          long qs = getQueuedSubmissionCount();
1620 +        int wc = workerCounts;
1621 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1622 +        int rc = wc & RUNNING_COUNT_MASK;
1623 +        int pc = parallelism;
1624 +        int rs = runState;
1625 +        int ac = rs & ACTIVE_COUNT_MASK;
1626          return super.toString() +
1627 <            "[" + runStateToString(runStateOf(rc)) +
1628 <            ", parallelism = " + ps +
1629 <            ", size = " + totalCountOf(wc) +
1630 <            ", active = " + activeCountOf(rc) +
1631 <            ", running = " + runningCountOf(wc) +
1627 >            "[" + runLevelToString(rs) +
1628 >            ", parallelism = " + pc +
1629 >            ", size = " + tc +
1630 >            ", active = " + ac +
1631 >            ", running = " + rc +
1632              ", steals = " + st +
1633              ", tasks = " + qt +
1634              ", submissions = " + qs +
1635              "]";
1636      }
1637  
1638 <    private static String runStateToString(int rs) {
1639 <        switch(rs) {
1640 <        case RUNNING: return "Running";
1641 <        case SHUTDOWN: return "Shutting down";
1642 <        case TERMINATING: return "Terminating";
1036 <        case TERMINATED: return "Terminated";
1037 <        default: throw new Error("Unknown run state");
1038 <        }
1638 >    private static String runLevelToString(int s) {
1639 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1640 >                ((s & TERMINATING) != 0 ? "Terminating" :
1641 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1642 >                  "Running")));
1643      }
1644  
1041    // lifecycle control
1042
1645      /**
1646       * Initiates an orderly shutdown in which previously submitted
1647       * tasks are executed, but no new tasks will be accepted.
1648       * Invocation has no additional effect if already shut down.
1649       * Tasks that are in the process of being submitted concurrently
1650       * during the course of this method may or may not be rejected.
1651 +     *
1652       * @throws SecurityException if a security manager exists and
1653       *         the caller is not permitted to modify threads
1654       *         because it does not hold {@link
1655 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1655 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1656       */
1657      public void shutdown() {
1658          checkPermission();
1659 <        transitionRunStateTo(SHUTDOWN);
1660 <        if (canTerminateOnShutdown(runControl))
1058 <            terminateOnShutdown();
1659 >        advanceRunLevel(SHUTDOWN);
1660 >        tryTerminate(false);
1661      }
1662  
1663      /**
1664 <     * Attempts to stop all actively executing tasks, and cancels all
1665 <     * waiting tasks.  Tasks that are in the process of being
1666 <     * submitted or executed concurrently during the course of this
1667 <     * method may or may not be rejected. Unlike some other executors,
1668 <     * this method cancels rather than collects non-executed tasks
1669 <     * upon termination, so always returns an empty list. However, you
1670 <     * can use method {@code drainTasksTo} before invoking this
1671 <     * method to transfer unexecuted tasks to another collection.
1664 >     * Attempts to cancel and/or stop all tasks, and reject all
1665 >     * subsequently submitted tasks.  Tasks that are in the process of
1666 >     * being submitted or executed concurrently during the course of
1667 >     * this method may or may not be rejected. This method cancels
1668 >     * both existing and unexecuted tasks, in order to permit
1669 >     * termination in the presence of task dependencies. So the method
1670 >     * always returns an empty list (unlike the case for some other
1671 >     * Executors).
1672 >     *
1673       * @return an empty list
1674       * @throws SecurityException if a security manager exists and
1675       *         the caller is not permitted to modify threads
1676       *         because it does not hold {@link
1677 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1677 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1678       */
1679      public List<Runnable> shutdownNow() {
1680          checkPermission();
1681 <        terminate();
1681 >        tryTerminate(true);
1682          return Collections.emptyList();
1683      }
1684  
# Line 1085 | Line 1688 | public class ForkJoinPool extends Abstra
1688       * @return {@code true} if all tasks have completed following shut down
1689       */
1690      public boolean isTerminated() {
1691 <        return runStateOf(runControl) == TERMINATED;
1691 >        return runState >= TERMINATED;
1692      }
1693  
1694      /**
1695       * Returns {@code true} if the process of termination has
1696 <     * commenced but possibly not yet completed.
1696 >     * commenced but not yet completed.  This method may be useful for
1697 >     * debugging. A return of {@code true} reported a sufficient
1698 >     * period after shutdown may indicate that submitted tasks have
1699 >     * ignored or suppressed interruption, causing this executor not
1700 >     * to properly terminate.
1701       *
1702 <     * @return {@code true} if terminating
1702 >     * @return {@code true} if terminating but not yet terminated
1703       */
1704      public boolean isTerminating() {
1705 <        return runStateOf(runControl) >= TERMINATING;
1705 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1706 >    }
1707 >
1708 >    /**
1709 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1710 >     */
1711 >    final boolean isAtLeastTerminating() {
1712 >        return runState >= TERMINATING;
1713      }
1714  
1715      /**
# Line 1104 | Line 1718 | public class ForkJoinPool extends Abstra
1718       * @return {@code true} if this pool has been shut down
1719       */
1720      public boolean isShutdown() {
1721 <        return runStateOf(runControl) >= SHUTDOWN;
1721 >        return runState >= SHUTDOWN;
1722      }
1723  
1724      /**
# Line 1120 | Line 1734 | public class ForkJoinPool extends Abstra
1734       */
1735      public boolean awaitTermination(long timeout, TimeUnit unit)
1736          throws InterruptedException {
1123        long nanos = unit.toNanos(timeout);
1124        final ReentrantLock lock = this.workerLock;
1125        lock.lock();
1737          try {
1738 <            for (;;) {
1739 <                if (isTerminated())
1129 <                    return true;
1130 <                if (nanos <= 0)
1131 <                    return false;
1132 <                nanos = termination.awaitNanos(nanos);
1133 <            }
1134 <        } finally {
1135 <            lock.unlock();
1136 <        }
1137 <    }
1138 <
1139 <    // Shutdown and termination support
1140 <
1141 <    /**
1142 <     * Callback from terminating worker. Null out the corresponding
1143 <     * workers slot, and if terminating, try to terminate, else try to
1144 <     * shrink workers array.
1145 <     * @param w the worker
1146 <     */
1147 <    final void workerTerminated(ForkJoinWorkerThread w) {
1148 <        updateStealCount(w);
1149 <        updateWorkerCount(-1);
1150 <        final ReentrantLock lock = this.workerLock;
1151 <        lock.lock();
1152 <        try {
1153 <            ForkJoinWorkerThread[] ws = workers;
1154 <            if (ws != null) {
1155 <                int idx = w.poolIndex;
1156 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1157 <                    ws[idx] = null;
1158 <                if (totalCountOf(workerCounts) == 0) {
1159 <                    terminate(); // no-op if already terminating
1160 <                    transitionRunStateTo(TERMINATED);
1161 <                    termination.signalAll();
1162 <                }
1163 <                else if (!isTerminating()) {
1164 <                    tryShrinkWorkerArray();
1165 <                    tryResumeSpare(true); // allow replacement
1166 <                }
1167 <            }
1168 <        } finally {
1169 <            lock.unlock();
1170 <        }
1171 <        signalIdleWorkers();
1172 <    }
1173 <
1174 <    /**
1175 <     * Initiate termination.
1176 <     */
1177 <    private void terminate() {
1178 <        if (transitionRunStateTo(TERMINATING)) {
1179 <            stopAllWorkers();
1180 <            resumeAllSpares();
1181 <            signalIdleWorkers();
1182 <            cancelQueuedSubmissions();
1183 <            cancelQueuedWorkerTasks();
1184 <            interruptUnterminatedWorkers();
1185 <            signalIdleWorkers(); // resignal after interrupt
1186 <        }
1187 <    }
1188 <
1189 <    /**
1190 <     * Possibly terminates when on shutdown state.
1191 <     */
1192 <    private void terminateOnShutdown() {
1193 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1194 <            terminate();
1195 <    }
1196 <
1197 <    /**
1198 <     * Clears out and cancels submissions.
1199 <     */
1200 <    private void cancelQueuedSubmissions() {
1201 <        ForkJoinTask<?> task;
1202 <        while ((task = pollSubmission()) != null)
1203 <            task.cancel(false);
1204 <    }
1205 <
1206 <    /**
1207 <     * Cleans out worker queues.
1208 <     */
1209 <    private void cancelQueuedWorkerTasks() {
1210 <        final ReentrantLock lock = this.workerLock;
1211 <        lock.lock();
1212 <        try {
1213 <            ForkJoinWorkerThread[] ws = workers;
1214 <            if (ws != null) {
1215 <                for (int i = 0; i < ws.length; ++i) {
1216 <                    ForkJoinWorkerThread t = ws[i];
1217 <                    if (t != null)
1218 <                        t.cancelTasks();
1219 <                }
1220 <            }
1221 <        } finally {
1222 <            lock.unlock();
1223 <        }
1224 <    }
1225 <
1226 <    /**
1227 <     * Sets each worker's status to terminating. Requires lock to avoid
1228 <     * conflicts with add/remove.
1229 <     */
1230 <    private void stopAllWorkers() {
1231 <        final ReentrantLock lock = this.workerLock;
1232 <        lock.lock();
1233 <        try {
1234 <            ForkJoinWorkerThread[] ws = workers;
1235 <            if (ws != null) {
1236 <                for (int i = 0; i < ws.length; ++i) {
1237 <                    ForkJoinWorkerThread t = ws[i];
1238 <                    if (t != null)
1239 <                        t.shutdownNow();
1240 <                }
1241 <            }
1242 <        } finally {
1243 <            lock.unlock();
1244 <        }
1245 <    }
1246 <
1247 <    /**
1248 <     * Interrupts all unterminated workers.  This is not required for
1249 <     * sake of internal control, but may help unstick user code during
1250 <     * shutdown.
1251 <     */
1252 <    private void interruptUnterminatedWorkers() {
1253 <        final ReentrantLock lock = this.workerLock;
1254 <        lock.lock();
1255 <        try {
1256 <            ForkJoinWorkerThread[] ws = workers;
1257 <            if (ws != null) {
1258 <                for (int i = 0; i < ws.length; ++i) {
1259 <                    ForkJoinWorkerThread t = ws[i];
1260 <                    if (t != null && !t.isTerminated()) {
1261 <                        try {
1262 <                            t.interrupt();
1263 <                        } catch (SecurityException ignore) {
1264 <                        }
1265 <                    }
1266 <                }
1267 <            }
1268 <        } finally {
1269 <            lock.unlock();
1270 <        }
1271 <    }
1272 <
1273 <
1274 <    /*
1275 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1276 <     * are basic Treiber stack nodes, also used for spare stack.
1277 <     *
1278 <     * The event barrier has an event count and a wait queue (actually
1279 <     * a Treiber stack).  Workers are enabled to look for work when
1280 <     * the eventCount is incremented. If they fail to find work, they
1281 <     * may wait for next count. Upon release, threads help others wake
1282 <     * up.
1283 <     *
1284 <     * Synchronization events occur only in enough contexts to
1285 <     * maintain overall liveness:
1286 <     *
1287 <     *   - Submission of a new task to the pool
1288 <     *   - Resizes or other changes to the workers array
1289 <     *   - pool termination
1290 <     *   - A worker pushing a task on an empty queue
1291 <     *
1292 <     * The case of pushing a task occurs often enough, and is heavy
1293 <     * enough compared to simple stack pushes, to require special
1294 <     * handling: Method signalWork returns without advancing count if
1295 <     * the queue appears to be empty.  This would ordinarily result in
1296 <     * races causing some queued waiters not to be woken up. To avoid
1297 <     * this, the first worker enqueued in method sync (see
1298 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1299 <     * helps signal if any are found. This works well because the
1300 <     * worker has nothing better to do, and so might as well help
1301 <     * alleviate the overhead and contention on the threads actually
1302 <     * doing work.  Also, since event counts increments on task
1303 <     * availability exist to maintain liveness (rather than to force
1304 <     * refreshes etc), it is OK for callers to exit early if
1305 <     * contending with another signaller.
1306 <     */
1307 <    static final class WaitQueueNode {
1308 <        WaitQueueNode next; // only written before enqueued
1309 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1310 <        final long count; // unused for spare stack
1311 <
1312 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1313 <            count = c;
1314 <            thread = w;
1315 <        }
1316 <
1317 <        /**
1318 <         * Wakes up waiter, returning false if known to already
1319 <         */
1320 <        boolean signal() {
1321 <            ForkJoinWorkerThread t = thread;
1322 <            if (t == null)
1323 <                return false;
1324 <            thread = null;
1325 <            LockSupport.unpark(t);
1326 <            return true;
1327 <        }
1328 <
1329 <        /**
1330 <         * Awaits release on sync.
1331 <         */
1332 <        void awaitSyncRelease(ForkJoinPool p) {
1333 <            while (thread != null && !p.syncIsReleasable(this))
1334 <                LockSupport.park(this);
1335 <        }
1336 <
1337 <        /**
1338 <         * Awaits resumption as spare.
1339 <         */
1340 <        void awaitSpareRelease() {
1341 <            while (thread != null) {
1342 <                if (!Thread.interrupted())
1343 <                    LockSupport.park(this);
1344 <            }
1345 <        }
1346 <    }
1347 <
1348 <    /**
1349 <     * Ensures that no thread is waiting for count to advance from the
1350 <     * current value of eventCount read on entry to this method, by
1351 <     * releasing waiting threads if necessary.
1352 <     * @return the count
1353 <     */
1354 <    final long ensureSync() {
1355 <        long c = eventCount;
1356 <        WaitQueueNode q;
1357 <        while ((q = syncStack) != null && q.count < c) {
1358 <            if (casBarrierStack(q, null)) {
1359 <                do {
1360 <                    q.signal();
1361 <                } while ((q = q.next) != null);
1362 <                break;
1363 <            }
1364 <        }
1365 <        return c;
1366 <    }
1367 <
1368 <    /**
1369 <     * Increments event count and releases waiting threads.
1370 <     */
1371 <    private void signalIdleWorkers() {
1372 <        long c;
1373 <        do;while (!casEventCount(c = eventCount, c+1));
1374 <        ensureSync();
1375 <    }
1376 <
1377 <    /**
1378 <     * Signals threads waiting to poll a task. Because method sync
1379 <     * rechecks availability, it is OK to only proceed if queue
1380 <     * appears to be non-empty, and OK to skip under contention to
1381 <     * increment count (since some other thread succeeded).
1382 <     */
1383 <    final void signalWork() {
1384 <        long c;
1385 <        WaitQueueNode q;
1386 <        if (syncStack != null &&
1387 <            casEventCount(c = eventCount, c+1) &&
1388 <            (((q = syncStack) != null && q.count <= c) &&
1389 <             (!casBarrierStack(q, q.next) || !q.signal())))
1390 <            ensureSync();
1391 <    }
1392 <
1393 <    /**
1394 <     * Waits until event count advances from last value held by
1395 <     * caller, or if excess threads, caller is resumed as spare, or
1396 <     * caller or pool is terminating. Updates caller's event on exit.
1397 <     * @param w the calling worker thread
1398 <     */
1399 <    final void sync(ForkJoinWorkerThread w) {
1400 <        updateStealCount(w); // Transfer w's count while it is idle
1401 <
1402 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1403 <            long prev = w.lastEventCount;
1404 <            WaitQueueNode node = null;
1405 <            WaitQueueNode h;
1406 <            while (eventCount == prev &&
1407 <                   ((h = syncStack) == null || h.count == prev)) {
1408 <                if (node == null)
1409 <                    node = new WaitQueueNode(prev, w);
1410 <                if (casBarrierStack(node.next = h, node)) {
1411 <                    node.awaitSyncRelease(this);
1412 <                    break;
1413 <                }
1414 <            }
1415 <            long ec = ensureSync();
1416 <            if (ec != prev) {
1417 <                w.lastEventCount = ec;
1418 <                break;
1419 <            }
1420 <        }
1421 <    }
1422 <
1423 <    /**
1424 <     * Returns true if worker waiting on sync can proceed:
1425 <     *  - on signal (thread == null)
1426 <     *  - on event count advance (winning race to notify vs signaller)
1427 <     *  - on Interrupt
1428 <     *  - if the first queued node, we find work available
1429 <     * If node was not signalled and event count not advanced on exit,
1430 <     * then we also help advance event count.
1431 <     * @return true if node can be released
1432 <     */
1433 <    final boolean syncIsReleasable(WaitQueueNode node) {
1434 <        long prev = node.count;
1435 <        if (!Thread.interrupted() && node.thread != null &&
1436 <            (node.next != null ||
1437 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1438 <            eventCount == prev)
1738 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1739 >        } catch (TimeoutException ex) {
1740              return false;
1440        if (node.thread != null) {
1441            node.thread = null;
1442            long ec = eventCount;
1443            if (prev <= ec) // help signal
1444                casEventCount(ec, ec+1);
1445        }
1446        return true;
1447    }
1448
1449    /**
1450     * Returns true if a new sync event occurred since last call to
1451     * sync or this method, if so, updating caller's count.
1452     */
1453    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1454        long lc = w.lastEventCount;
1455        long ec = ensureSync();
1456        if (ec == lc)
1457            return false;
1458        w.lastEventCount = ec;
1459        return true;
1460    }
1461
1462    //  Parallelism maintenance
1463
1464    /**
1465     * Decrements running count; if too low, adds spare.
1466     *
1467     * Conceptually, all we need to do here is add or resume a
1468     * spare thread when one is about to block (and remove or
1469     * suspend it later when unblocked -- see suspendIfSpare).
1470     * However, implementing this idea requires coping with
1471     * several problems: We have imperfect information about the
1472     * states of threads. Some count updates can and usually do
1473     * lag run state changes, despite arrangements to keep them
1474     * accurate (for example, when possible, updating counts
1475     * before signalling or resuming), especially when running on
1476     * dynamic JVMs that don't optimize the infrequent paths that
1477     * update counts. Generating too many threads can make these
1478     * problems become worse, because excess threads are more
1479     * likely to be context-switched with others, slowing them all
1480     * down, especially if there is no work available, so all are
1481     * busy scanning or idling.  Also, excess spare threads can
1482     * only be suspended or removed when they are idle, not
1483     * immediately when they aren't needed. So adding threads will
1484     * raise parallelism level for longer than necessary.  Also,
1485     * FJ applications often encounter highly transient peaks when
1486     * many threads are blocked joining, but for less time than it
1487     * takes to create or resume spares.
1488     *
1489     * @param joinMe if non-null, return early if done
1490     * @param maintainParallelism if true, try to stay within
1491     * target counts, else create only to avoid starvation
1492     * @return true if joinMe known to be done
1493     */
1494    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1495        maintainParallelism &= maintainsParallelism; // overrride
1496        boolean dec = false;  // true when running count decremented
1497        while (spareStack == null || !tryResumeSpare(dec)) {
1498            int counts = workerCounts;
1499            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1500                if (!needSpare(counts, maintainParallelism))
1501                    break;
1502                if (joinMe.status < 0)
1503                    return true;
1504                if (tryAddSpare(counts))
1505                    break;
1506            }
1507        }
1508        return false;
1509    }
1510
1511    /**
1512     * Same idea as preJoin
1513     */
1514    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1515        maintainParallelism &= maintainsParallelism;
1516        boolean dec = false;
1517        while (spareStack == null || !tryResumeSpare(dec)) {
1518            int counts = workerCounts;
1519            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1520                if (!needSpare(counts, maintainParallelism))
1521                    break;
1522                if (blocker.isReleasable())
1523                    return true;
1524                if (tryAddSpare(counts))
1525                    break;
1526            }
1527        }
1528        return false;
1529    }
1530
1531    /**
1532     * Returns true if a spare thread appears to be needed.  If
1533     * maintaining parallelism, returns true when the deficit in
1534     * running threads is more than the surplus of total threads, and
1535     * there is apparently some work to do.  This self-limiting rule
1536     * means that the more threads that have already been added, the
1537     * less parallelism we will tolerate before adding another.
1538     * @param counts current worker counts
1539     * @param maintainParallelism try to maintain parallelism
1540     */
1541    private boolean needSpare(int counts, boolean maintainParallelism) {
1542        int ps = parallelism;
1543        int rc = runningCountOf(counts);
1544        int tc = totalCountOf(counts);
1545        int runningDeficit = ps - rc;
1546        int totalSurplus = tc - ps;
1547        return (tc < maxPoolSize &&
1548                (rc == 0 || totalSurplus < 0 ||
1549                 (maintainParallelism &&
1550                  runningDeficit > totalSurplus &&
1551                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1552    }
1553
1554    /**
1555     * Adds a spare worker if lock available and no more than the
1556     * expected numbers of threads exist.
1557     * @return true if successful
1558     */
1559    private boolean tryAddSpare(int expectedCounts) {
1560        final ReentrantLock lock = this.workerLock;
1561        int expectedRunning = runningCountOf(expectedCounts);
1562        int expectedTotal = totalCountOf(expectedCounts);
1563        boolean success = false;
1564        boolean locked = false;
1565        // confirm counts while locking; CAS after obtaining lock
1566        try {
1567            for (;;) {
1568                int s = workerCounts;
1569                int tc = totalCountOf(s);
1570                int rc = runningCountOf(s);
1571                if (rc > expectedRunning || tc > expectedTotal)
1572                    break;
1573                if (!locked && !(locked = lock.tryLock()))
1574                    break;
1575                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1576                    createAndStartSpare(tc);
1577                    success = true;
1578                    break;
1579                }
1580            }
1581        } finally {
1582            if (locked)
1583                lock.unlock();
1584        }
1585        return success;
1586    }
1587
1588    /**
1589     * Adds the kth spare worker. On entry, pool counts are already
1590     * adjusted to reflect addition.
1591     */
1592    private void createAndStartSpare(int k) {
1593        ForkJoinWorkerThread w = null;
1594        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1595        int len = ws.length;
1596        // Probably, we can place at slot k. If not, find empty slot
1597        if (k < len && ws[k] != null) {
1598            for (k = 0; k < len && ws[k] != null; ++k)
1599                ;
1600        }
1601        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1602            ws[k] = w;
1603            w.start();
1604        }
1605        else
1606            updateWorkerCount(-1); // adjust on failure
1607        signalIdleWorkers();
1608    }
1609
1610    /**
1611     * Suspends calling thread w if there are excess threads.  Called
1612     * only from sync.  Spares are enqueued in a Treiber stack using
1613     * the same WaitQueueNodes as barriers.  They are resumed mainly
1614     * in preJoin, but are also woken on pool events that require all
1615     * threads to check run state.
1616     * @param w the caller
1617     */
1618    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1619        WaitQueueNode node = null;
1620        int s;
1621        while (parallelism < runningCountOf(s = workerCounts)) {
1622            if (node == null)
1623                node = new WaitQueueNode(0, w);
1624            if (casWorkerCounts(s, s-1)) { // representation-dependent
1625                // push onto stack
1626                do;while (!casSpareStack(node.next = spareStack, node));
1627                // block until released by resumeSpare
1628                node.awaitSpareRelease();
1629                return true;
1630            }
1631        }
1632        return false;
1633    }
1634
1635    /**
1636     * Tries to pop and resume a spare thread.
1637     * @param updateCount if true, increment running count on success
1638     * @return true if successful
1639     */
1640    private boolean tryResumeSpare(boolean updateCount) {
1641        WaitQueueNode q;
1642        while ((q = spareStack) != null) {
1643            if (casSpareStack(q, q.next)) {
1644                if (updateCount)
1645                    updateRunningCount(1);
1646                q.signal();
1647                return true;
1648            }
1649        }
1650        return false;
1651    }
1652
1653    /**
1654     * Pops and resumes all spare threads. Same idea as ensureSync.
1655     * @return true if any spares released
1656     */
1657    private boolean resumeAllSpares() {
1658        WaitQueueNode q;
1659        while ( (q = spareStack) != null) {
1660            if (casSpareStack(q, null)) {
1661                do {
1662                    updateRunningCount(1);
1663                    q.signal();
1664                } while ((q = q.next) != null);
1665                return true;
1666            }
1667        }
1668        return false;
1669    }
1670
1671    /**
1672     * Pops and shuts down excessive spare threads. Call only while
1673     * holding lock. This is not guaranteed to eliminate all excess
1674     * threads, only those suspended as spares, which are the ones
1675     * unlikely to be needed in the future.
1676     */
1677    private void trimSpares() {
1678        int surplus = totalCountOf(workerCounts) - parallelism;
1679        WaitQueueNode q;
1680        while (surplus > 0 && (q = spareStack) != null) {
1681            if (casSpareStack(q, null)) {
1682                do {
1683                    updateRunningCount(1);
1684                    ForkJoinWorkerThread w = q.thread;
1685                    if (w != null && surplus > 0 &&
1686                        runningCountOf(workerCounts) > 0 && w.shutdown())
1687                        --surplus;
1688                    q.signal();
1689                } while ((q = q.next) != null);
1690            }
1741          }
1742      }
1743  
1744      /**
1745       * Interface for extending managed parallelism for tasks running
1746 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1747 <     * Method {@code isReleasable} must return true if blocking is not
1748 <     * necessary. Method {@code block} blocks the current thread
1749 <     * if necessary (perhaps internally invoking isReleasable before
1750 <     * actually blocking.).
1746 >     * in {@link ForkJoinPool}s.
1747 >     *
1748 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1749 >     * {@code isReleasable} must return {@code true} if blocking is
1750 >     * not necessary. Method {@code block} blocks the current thread
1751 >     * if necessary (perhaps internally invoking {@code isReleasable}
1752 >     * before actually blocking). The unusual methods in this API
1753 >     * accommodate synchronizers that may, but don't usually, block
1754 >     * for long periods. Similarly, they allow more efficient internal
1755 >     * handling of cases in which additional workers may be, but
1756 >     * usually are not, needed to ensure sufficient parallelism.
1757 >     * Toward this end, implementations of method {@code isReleasable}
1758 >     * must be amenable to repeated invocation.
1759 >     *
1760       * <p>For example, here is a ManagedBlocker based on a
1761       * ReentrantLock:
1762 <     * <pre>
1763 <     *   class ManagedLocker implements ManagedBlocker {
1764 <     *     final ReentrantLock lock;
1765 <     *     boolean hasLock = false;
1766 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1767 <     *     public boolean block() {
1768 <     *        if (!hasLock)
1769 <     *           lock.lock();
1770 <     *        return true;
1771 <     *     }
1772 <     *     public boolean isReleasable() {
1773 <     *        return hasLock || (hasLock = lock.tryLock());
1774 <     *     }
1762 >     *  <pre> {@code
1763 >     * class ManagedLocker implements ManagedBlocker {
1764 >     *   final ReentrantLock lock;
1765 >     *   boolean hasLock = false;
1766 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1767 >     *   public boolean block() {
1768 >     *     if (!hasLock)
1769 >     *       lock.lock();
1770 >     *     return true;
1771 >     *   }
1772 >     *   public boolean isReleasable() {
1773 >     *     return hasLock || (hasLock = lock.tryLock());
1774 >     *   }
1775 >     * }}</pre>
1776 >     *
1777 >     * <p>Here is a class that possibly blocks waiting for an
1778 >     * item on a given queue:
1779 >     *  <pre> {@code
1780 >     * class QueueTaker<E> implements ManagedBlocker {
1781 >     *   final BlockingQueue<E> queue;
1782 >     *   volatile E item = null;
1783 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1784 >     *   public boolean block() throws InterruptedException {
1785 >     *     if (item == null)
1786 >     *       item = queue.take();
1787 >     *     return true;
1788       *   }
1789 <     * </pre>
1789 >     *   public boolean isReleasable() {
1790 >     *     return item != null || (item = queue.poll()) != null;
1791 >     *   }
1792 >     *   public E getItem() { // call after pool.managedBlock completes
1793 >     *     return item;
1794 >     *   }
1795 >     * }}</pre>
1796       */
1797      public static interface ManagedBlocker {
1798          /**
1799           * Possibly blocks the current thread, for example waiting for
1800           * a lock or condition.
1801 <         * @return true if no additional blocking is necessary (i.e.,
1802 <         * if isReleasable would return true)
1801 >         *
1802 >         * @return {@code true} if no additional blocking is necessary
1803 >         * (i.e., if isReleasable would return true)
1804           * @throws InterruptedException if interrupted while waiting
1805 <         * (the method is not required to do so, but is allowed to).
1805 >         * (the method is not required to do so, but is allowed to)
1806           */
1807          boolean block() throws InterruptedException;
1808  
1809          /**
1810 <         * Returns true if blocking is unnecessary.
1810 >         * Returns {@code true} if blocking is unnecessary.
1811           */
1812          boolean isReleasable();
1813      }
1814  
1815      /**
1816       * Blocks in accord with the given blocker.  If the current thread
1817 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1818 <     * spare thread to be activated if necessary to ensure parallelism
1819 <     * while the current thread is blocked.  If
1820 <     * {@code maintainParallelism} is true and the pool supports
1821 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1822 <     * maintain the pool's nominal parallelism. Otherwise if activates
1823 <     * a thread only if necessary to avoid complete starvation. This
1824 <     * option may be preferable when blockages use timeouts, or are
1825 <     * almost always brief.
1826 <     *
1827 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1828 <     * equivalent to
1829 <     * <pre>
1830 <     *   while (!blocker.isReleasable())
1752 <     *      if (blocker.block())
1753 <     *         return;
1754 <     * </pre>
1755 <     * If the caller is a ForkJoinTask, then the pool may first
1756 <     * be expanded to ensure parallelism, and later adjusted.
1817 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1818 >     * arranges for a spare thread to be activated if necessary to
1819 >     * ensure sufficient parallelism while the current thread is blocked.
1820 >     *
1821 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1822 >     * behaviorally equivalent to
1823 >     *  <pre> {@code
1824 >     * while (!blocker.isReleasable())
1825 >     *   if (blocker.block())
1826 >     *     return;
1827 >     * }</pre>
1828 >     *
1829 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1830 >     * first be expanded to ensure parallelism, and later adjusted.
1831       *
1832       * @param blocker the blocker
1759     * @param maintainParallelism if true and supported by this pool,
1760     * attempt to maintain the pool's nominal parallelism; otherwise
1761     * activate a thread only if necessary to avoid complete
1762     * starvation.
1833       * @throws InterruptedException if blocker.block did so
1834       */
1835 <    public static void managedBlock(ManagedBlocker blocker,
1766 <                                    boolean maintainParallelism)
1835 >    public static void managedBlock(ManagedBlocker blocker)
1836          throws InterruptedException {
1837          Thread t = Thread.currentThread();
1838 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1839 <                             ((ForkJoinWorkerThread)t).pool : null);
1840 <        if (!blocker.isReleasable()) {
1841 <            try {
1842 <                if (pool == null ||
1843 <                    !pool.preBlock(blocker, maintainParallelism))
1775 <                    awaitBlocker(blocker);
1776 <            } finally {
1777 <                if (pool != null)
1778 <                    pool.updateRunningCount(1);
1779 <            }
1838 >        if (t instanceof ForkJoinWorkerThread) {
1839 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1840 >            w.pool.awaitBlocker(blocker);
1841 >        }
1842 >        else {
1843 >            do {} while (!blocker.isReleasable() && !blocker.block());
1844          }
1845      }
1846  
1847 <    private static void awaitBlocker(ManagedBlocker blocker)
1848 <        throws InterruptedException {
1849 <        do;while (!blocker.isReleasable() && !blocker.block());
1786 <    }
1787 <
1788 <    // AbstractExecutorService overrides
1847 >    // AbstractExecutorService overrides.  These rely on undocumented
1848 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1849 >    // implement RunnableFuture.
1850  
1851      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1852 <        return new AdaptedRunnable(runnable, value);
1852 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1853      }
1854  
1855      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1856 <        return new AdaptedCallable(callable);
1856 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1857      }
1858  
1859 +    // Unsafe mechanics
1860  
1861 <    // Temporary Unsafe mechanics for preliminary release
1862 <    private static Unsafe getUnsafe() throws Throwable {
1861 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1862 >    private static final long workerCountsOffset =
1863 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1864 >    private static final long runStateOffset =
1865 >        objectFieldOffset("runState", ForkJoinPool.class);
1866 >    private static final long eventCountOffset =
1867 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1868 >    private static final long eventWaitersOffset =
1869 >        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1870 >    private static final long stealCountOffset =
1871 >        objectFieldOffset("stealCount", ForkJoinPool.class);
1872 >    private static final long spareWaitersOffset =
1873 >        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1874 >
1875 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1876 >        try {
1877 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1878 >        } catch (NoSuchFieldException e) {
1879 >            // Convert Exception to corresponding Error
1880 >            NoSuchFieldError error = new NoSuchFieldError(field);
1881 >            error.initCause(e);
1882 >            throw error;
1883 >        }
1884 >    }
1885 >
1886 >    /**
1887 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1888 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1889 >     * into a jdk.
1890 >     *
1891 >     * @return a sun.misc.Unsafe
1892 >     */
1893 >    private static sun.misc.Unsafe getUnsafe() {
1894          try {
1895 <            return Unsafe.getUnsafe();
1895 >            return sun.misc.Unsafe.getUnsafe();
1896          } catch (SecurityException se) {
1897              try {
1898                  return java.security.AccessController.doPrivileged
1899 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1900 <                        public Unsafe run() throws Exception {
1901 <                            return getUnsafePrivileged();
1899 >                    (new java.security
1900 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1901 >                        public sun.misc.Unsafe run() throws Exception {
1902 >                            java.lang.reflect.Field f = sun.misc
1903 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1904 >                            f.setAccessible(true);
1905 >                            return (sun.misc.Unsafe) f.get(null);
1906                          }});
1907              } catch (java.security.PrivilegedActionException e) {
1908 <                throw e.getCause();
1908 >                throw new RuntimeException("Could not initialize intrinsics",
1909 >                                           e.getCause());
1910              }
1911          }
1912      }
1815
1816    private static Unsafe getUnsafePrivileged()
1817            throws NoSuchFieldException, IllegalAccessException {
1818        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1819        f.setAccessible(true);
1820        return (Unsafe) f.get(null);
1821    }
1822
1823    private static long fieldOffset(String fieldName)
1824            throws NoSuchFieldException {
1825        return UNSAFE.objectFieldOffset
1826            (ForkJoinPool.class.getDeclaredField(fieldName));
1827    }
1828
1829    static final Unsafe UNSAFE;
1830    static final long eventCountOffset;
1831    static final long workerCountsOffset;
1832    static final long runControlOffset;
1833    static final long syncStackOffset;
1834    static final long spareStackOffset;
1835
1836    static {
1837        try {
1838            UNSAFE = getUnsafe();
1839            eventCountOffset = fieldOffset("eventCount");
1840            workerCountsOffset = fieldOffset("workerCounts");
1841            runControlOffset = fieldOffset("runControl");
1842            syncStackOffset = fieldOffset("syncStack");
1843            spareStackOffset = fieldOffset("spareStack");
1844        } catch (Throwable e) {
1845            throw new RuntimeException("Could not initialize intrinsics", e);
1846        }
1847    }
1848
1849    private boolean casEventCount(long cmp, long val) {
1850        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1851    }
1852    private boolean casWorkerCounts(int cmp, int val) {
1853        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1854    }
1855    private boolean casRunControl(int cmp, int val) {
1856        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1857    }
1858    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1859        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1860    }
1861    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1862        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1863    }
1913   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines