ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.18 by jsr166, Thu Jul 23 23:23:41 2009 UTC vs.
Revision 1.82 by dl, Sun Oct 10 11:56:11 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.TimeoutException;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.locks.LockSupport;
24 > import java.util.concurrent.locks.ReentrantLock;
25  
26   /**
27 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
28 < * ForkJoinPool provides the entry point for submissions from
29 < * non-ForkJoinTasks, as well as management and monitoring operations.
30 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
27 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 > * A {@code ForkJoinPool} provides the entry point for submissions
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30 > * monitoring operations.
31   *
32 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
33 < * that they provide <em>work-stealing</em>: all threads in the pool
34 < * attempt to find and execute subtasks created by other active tasks
35 < * (eventually blocking if none exist). This makes them efficient when
36 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
37 < * as the mixed execution of some plain Runnable- or Callable- based
38 < * activities along with ForkJoinTasks. When setting
39 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
40 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
32 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33 > * ExecutorService} mainly by virtue of employing
34 > * <em>work-stealing</em>: all threads in the pool attempt to find and
35 > * execute subtasks created by other active tasks (eventually blocking
36 > * waiting for work if none exist). This enables efficient processing
37 > * when most tasks spawn other subtasks (as do most {@code
38 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
40 > * with event-style tasks that are never joined.
41   *
42 < * <p>A ForkJoinPool may be constructed with a given parallelism level
43 < * (target pool size), which it attempts to maintain by dynamically
44 < * adding, suspending, or resuming threads, even if some tasks are
45 < * waiting to join others. However, no such adjustments are performed
46 < * in the face of blocked IO or other unmanaged synchronization. The
47 < * nested {@code ManagedBlocker} interface enables extension of
48 < * the kinds of synchronization accommodated.  The target parallelism
49 < * level may also be changed dynamically ({@code setParallelism})
50 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
42 > * <p>A {@code ForkJoinPool} is constructed with a given target
43 > * parallelism level; by default, equal to the number of available
44 > * processors. The pool attempts to maintain enough active (or
45 > * available) threads by dynamically adding, suspending, or resuming
46 > * internal worker threads, even if some tasks are stalled waiting to
47 > * join others. However, no such adjustments are guaranteed in the
48 > * face of blocked IO or other unmanaged synchronization. The nested
49 > * {@link ManagedBlocker} interface enables extension of the kinds of
50 > * synchronization accommodated.
51   *
52   * <p>In addition to execution and lifecycle control methods, this
53   * class provides status check methods (for example
54 < * {@code getStealCount}) that are intended to aid in developing,
54 > * {@link #getStealCount}) that are intended to aid in developing,
55   * tuning, and monitoring fork/join applications. Also, method
56 < * {@code toString} returns indications of pool state in a
56 > * {@link #toString} returns indications of pool state in a
57   * convenient form for informal monitoring.
58   *
59 + * <p> As is the case with other ExecutorServices, there are three
60 + * main task execution methods summarized in the following
61 + * table. These are designed to be used by clients not already engaged
62 + * in fork/join computations in the current pool.  The main forms of
63 + * these methods accept instances of {@code ForkJoinTask}, but
64 + * overloaded forms also allow mixed execution of plain {@code
65 + * Runnable}- or {@code Callable}- based activities as well.  However,
66 + * tasks that are already executing in a pool should normally
67 + * <em>NOT</em> use these pool execution methods, but instead use the
68 + * within-computation forms listed in the table.
69 + *
70 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
71 + *  <tr>
72 + *    <td></td>
73 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Arrange async execution</td>
78 + *    <td> {@link #execute(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#fork}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Await and obtain result</td>
83 + *    <td> {@link #invoke(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#invoke}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Arrange exec and obtain Future</td>
88 + *    <td> {@link #submit(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90 + *  </tr>
91 + * </table>
92 + *
93 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94 + * used for all parallel task execution in a program or subsystem.
95 + * Otherwise, use would not usually outweigh the construction and
96 + * bookkeeping overhead of creating a large set of threads. For
97 + * example, a common pool could be used for the {@code SortTasks}
98 + * illustrated in {@link RecursiveAction}. Because {@code
99 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
100 + * daemon} mode, there is typically no need to explicitly {@link
101 + * #shutdown} such a pool upon program exit.
102 + *
103 + * <pre>
104 + * static final ForkJoinPool mainPool = new ForkJoinPool();
105 + * ...
106 + * public void sort(long[] array) {
107 + *   mainPool.invoke(new SortTask(array, 0, array.length));
108 + * }
109 + * </pre>
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 63 | Line 123 | import java.lang.reflect.*;
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
128 <     */
129 <
130 <    /** Mask for packing and unpacking shorts */
131 <    private static final int  shortMask = 0xffff;
132 <
133 <    /** Max pool size -- must be a power of two minus 1 */
134 <    private static final int MAX_THREADS =  0x7FFF;
135 <
136 <    /**
137 <     * Factory for creating new ForkJoinWorkerThreads.  A
138 <     * ForkJoinWorkerThreadFactory must be defined and used for
139 <     * ForkJoinWorkerThread subclasses that extend base functionality
140 <     * or initialize threads with different contexts.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * The main work-stealing mechanics implemented in class
133 >     * ForkJoinWorkerThread give first priority to processing tasks
134 >     * from their own queues (LIFO or FIFO, depending on mode), then
135 >     * to randomized FIFO steals of tasks in other worker queues, and
136 >     * lastly to new submissions. These mechanics do not consider
137 >     * affinities, loads, cache localities, etc, so rarely provide the
138 >     * best possible performance on a given machine, but portably
139 >     * provide good throughput by averaging over these factors.
140 >     * (Further, even if we did try to use such information, we do not
141 >     * usually have a basis for exploiting it. For example, some sets
142 >     * of tasks profit from cache affinities, but others are harmed by
143 >     * cache pollution effects.)
144 >     *
145 >     * Beyond work-stealing support and essential bookkeeping, the
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158 >     *
159 >     *   Helping: Arranging for the joiner to execute some task that it
160 >     *      would be running if the steal had not occurred.  Method
161 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 >     *      links to try to find such a task.
163 >     *
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180 >     *
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183 >     *
184 >     * The main throughput advantages of work-stealing stem from
185 >     * decentralized control -- workers mostly steal tasks from each
186 >     * other. We do not want to negate this by creating bottlenecks
187 >     * implementing other management responsibilities. So we use a
188 >     * collection of techniques that avoid, reduce, or cope well with
189 >     * contention. These entail several instances of bit-packing into
190 >     * CASable fields to maintain only the minimally required
191 >     * atomicity. To enable such packing, we restrict maximum
192 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193 >     * unbalanced increments and decrements) to fit into a 16 bit
194 >     * field, which is far in excess of normal operating range.  Even
195 >     * though updates to some of these bookkeeping fields do sometimes
196 >     * contend with each other, they don't normally cache-contend with
197 >     * updates to others enough to warrant memory padding or
198 >     * isolation. So they are all held as fields of ForkJoinPool
199 >     * objects.  The main capabilities are as follows:
200 >     *
201 >     * 1. Creating and removing workers. Workers are recorded in the
202 >     * "workers" array. This is an array as opposed to some other data
203 >     * structure to support index-based random steals by workers.
204 >     * Updates to the array recording new workers and unrecording
205 >     * terminated ones are protected from each other by a lock
206 >     * (workerLock) but the array is otherwise concurrently readable,
207 >     * and accessed directly by workers. To simplify index-based
208 >     * operations, the array size is always a power of two, and all
209 >     * readers must tolerate null slots. Currently, all worker thread
210 >     * creation is on-demand, triggered by task submissions,
211 >     * replacement of terminated workers, and/or compensation for
212 >     * blocked workers. However, all other support code is set up to
213 >     * work with other policies.
214 >     *
215 >     * To ensure that we do not hold on to worker references that
216 >     * would prevent GC, ALL accesses to workers are via indices into
217 >     * the workers array (which is one source of some of the unusual
218 >     * code constructions here). In essence, the workers array serves
219 >     * as a WeakReference mechanism. Thus for example the event queue
220 >     * stores worker indices, not worker references. Access to the
221 >     * workers in associated methods (for example releaseEventWaiters)
222 >     * must both index-check and null-check the IDs. All such accesses
223 >     * ignore bad IDs by returning out early from what they are doing,
224 >     * since this can only be associated with shutdown, in which case
225 >     * it is OK to give up. On termination, we just clobber these
226 >     * data structures without trying to use them.
227 >     *
228 >     * 2. Bookkeeping for dynamically adding and removing workers. We
229 >     * aim to approximately maintain the given level of parallelism.
230 >     * When some workers are known to be blocked (on joins or via
231 >     * ManagedBlocker), we may create or resume others to take their
232 >     * place until they unblock (see below). Implementing this
233 >     * requires counts of the number of "running" threads (i.e., those
234 >     * that are neither blocked nor artificially suspended) as well as
235 >     * the total number.  These two values are packed into one field,
236 >     * "workerCounts" because we need accurate snapshots when deciding
237 >     * to create, resume or suspend.  Note however that the
238 >     * correspondence of these counts to reality is not guaranteed. In
239 >     * particular updates for unblocked threads may lag until they
240 >     * actually wake up.
241 >     *
242 >     * 3. Maintaining global run state. The run state of the pool
243 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 >     * those in other Executor implementations, as well as a count of
245 >     * "active" workers -- those that are, or soon will be, or
246 >     * recently were executing tasks. The runLevel and active count
247 >     * are packed together in order to correctly trigger shutdown and
248 >     * termination. Without care, active counts can be subject to very
249 >     * high contention.  We substantially reduce this contention by
250 >     * relaxing update rules.  A worker must claim active status
251 >     * prospectively, by activating if it sees that a submitted or
252 >     * stealable task exists (it may find after activating that the
253 >     * task no longer exists). It stays active while processing this
254 >     * task (if it exists) and any other local subtasks it produces,
255 >     * until it cannot find any other tasks. It then tries
256 >     * inactivating (see method preStep), but upon update contention
257 >     * instead scans for more tasks, later retrying inactivation if it
258 >     * doesn't find any.
259 >     *
260 >     * 4. Managing idle workers waiting for tasks. We cannot let
261 >     * workers spin indefinitely scanning for tasks when none are
262 >     * available. On the other hand, we must quickly prod them into
263 >     * action when new tasks are submitted or generated.  We
264 >     * park/unpark these idle workers using an event-count scheme.
265 >     * Field eventCount is incremented upon events that may enable
266 >     * workers that previously could not find a task to now find one:
267 >     * Submission of a new task to the pool, or another worker pushing
268 >     * a task onto a previously empty queue.  (We also use this
269 >     * mechanism for configuration and termination actions that
270 >     * require wakeups of idle workers).  Each worker maintains its
271 >     * last known event count, and blocks when a scan for work did not
272 >     * find a task AND its lastEventCount matches the current
273 >     * eventCount. Waiting idle workers are recorded in a variant of
274 >     * Treiber stack headed by field eventWaiters which, when nonzero,
275 >     * encodes the thread index and count awaited for by the worker
276 >     * thread most recently calling eventSync. This thread in turn has
277 >     * a record (field nextEventWaiter) for the next waiting worker.
278 >     * In addition to allowing simpler decisions about need for
279 >     * wakeup, the event count bits in eventWaiters serve the role of
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286 >     * Conceptually they are merged into the same event, which is OK
287 >     * when their only purpose is to enable workers to scan for work.
288 >     *
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340 >     *
341 >     * Beware that there is a lot of representation-level coupling
342 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343 >     * ForkJoinTask.  For example, direct access to "workers" array by
344 >     * workers, and direct access to ForkJoinTask.status by both
345 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
346 >     * trying to reduce this, since any associated future changes in
347 >     * representations will need to be accompanied by algorithmic
348 >     * changes anyway.
349 >     *
350 >     * Style notes: There are lots of inline assignments (of form
351 >     * "while ((local = field) != 0)") which are usually the simplest
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359 >     *
360 >     * The order of declarations in this file is: (1) statics (2)
361 >     * fields (along with constants used when unpacking some of them)
362 >     * (3) internal control methods (4) callbacks and other support
363 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364 >     * methods (plus a few little helpers).
365 >     */
366 >
367 >    /**
368 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
369 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
370 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
371 >     * functionality or initialize threads with different contexts.
372       */
373      public static interface ForkJoinWorkerThreadFactory {
374          /**
375           * Returns a new worker thread operating in the given pool.
376           *
377           * @param pool the pool this thread works in
378 <         * @throws NullPointerException if pool is null
378 >         * @throws NullPointerException if the pool is null
379           */
380          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
381      }
# Line 93 | Line 384 | public class ForkJoinPool extends Abstra
384       * Default ForkJoinWorkerThreadFactory implementation; creates a
385       * new ForkJoinWorkerThread.
386       */
387 <    static class  DefaultForkJoinWorkerThreadFactory
387 >    static class DefaultForkJoinWorkerThreadFactory
388          implements ForkJoinWorkerThreadFactory {
389          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 <            try {
100 <                return new ForkJoinWorkerThread(pool);
101 <            } catch (OutOfMemoryError oom)  {
102 <                return null;
103 <            }
390 >            return new ForkJoinWorkerThread(pool);
391          }
392      }
393  
# Line 136 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Array holding all worker threads in the pool. Initialized upon
427 <     * first use. Array size must be a power of two.  Updates and
428 <     * replacements are protected by workerLock, but it is always kept
429 <     * in a consistent enough state to be randomly accessed without
430 <     * locking by workers performing work-stealing.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443 >     */
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453 >
454 >    /**
455 >     * Array holding all worker threads in the pool.  Array size must
456 >     * be a power of two.  Updates and replacements are protected by
457 >     * workerLock, but the array is always kept in a consistent enough
458 >     * state to be randomly accessed without locking by workers
459 >     * performing work-stealing, as well as other traversal-based
460 >     * methods in this class. All readers must tolerate that some
461 >     * array slots may be null.
462       */
463      volatile ForkJoinWorkerThread[] workers;
464  
465      /**
466 <     * Lock protecting access to workers.
466 >     * Queue for external submissions.
467       */
468 <    private final ReentrantLock workerLock;
468 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469  
470      /**
471 <     * Condition for awaitTermination.
471 >     * Lock protecting updates to workers array.
472       */
473 <    private final Condition termination;
473 >    private final ReentrantLock workerLock;
474  
475      /**
476 <     * The uncaught exception handler used when any worker
159 <     * abruptly terminates
476 >     * Latch released upon termination.
477       */
478 <    private Thread.UncaughtExceptionHandler ueh;
478 >    private final Phaser termination;
479  
480      /**
481       * Creation factory for worker threads.
# Line 166 | Line 483 | public class ForkJoinPool extends Abstra
483      private final ForkJoinWorkerThreadFactory factory;
484  
485      /**
169     * Head of stack of threads that were created to maintain
170     * parallelism when other threads blocked, but have since
171     * suspended when the parallelism level rose.
172     */
173    private volatile WaitQueueNode spareStack;
174
175    /**
486       * Sum of per-thread steal counts, updated only when threads are
487       * idle or terminating.
488       */
489 <    private final AtomicLong stealCount;
489 >    private volatile long stealCount;
490  
491      /**
492 <     * Queue for external submissions.
492 >     * Encoded record of top of Treiber stack of threads waiting for
493 >     * events. The top 32 bits contain the count being waited for. The
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
497 >    private volatile long eventWaiters;
498  
499 <    /**
500 <     * Head of Treiber stack for barrier sync. See below for explanation.
188 <     */
189 <    private volatile WaitQueueNode syncStack;
499 >    private static final int  EVENT_COUNT_SHIFT = 32;
500 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
501  
502      /**
503 <     * The count for event barrier
503 >     * A counter for events that may wake up worker threads:
504 >     *   - Submission of a new task to the pool
505 >     *   - A worker pushing a task on an empty queue
506 >     *   - termination
507       */
508 <    private volatile long eventCount;
508 >    private volatile int eventCount;
509  
510      /**
511 <     * Pool number, just for assigning useful names to worker threads
511 >     * Encoded record of top of Treiber stack of spare threads waiting
512 >     * for resumption. The top 16 bits contain an arbitrary count to
513 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 >     * index of waiting worker thread.
515       */
516 <    private final int poolNumber;
516 >    private volatile int spareWaiters;
517  
518 <    /**
519 <     * The maximum allowed pool size
203 <     */
204 <    private volatile int maxPoolSize;
518 >    private static final int SPARE_COUNT_SHIFT = 16;
519 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520  
521      /**
522 <     * The desired parallelism level, updated only under workerLock.
522 >     * Lifecycle control. The low word contains the number of workers
523 >     * that are (probably) executing tasks. This value is atomically
524 >     * incremented before a worker gets a task to run, and decremented
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526 >     * contain runLevel value. When all are zero, the pool is
527 >     * running. Level transitions are monotonic (running -> shutdown
528 >     * -> terminating -> terminated) so each transition adds a bit.
529 >     * These are bundled together to ensure consistent read for
530 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 >     * and active threads is zero).
532 >     *
533 >     * Notes: Most direct CASes are dependent on these bitfield
534 >     * positions.  Also, this field is non-private to enable direct
535 >     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private volatile int parallelism;
537 >    volatile int runState;
538  
539 <    /**
540 <     * True if use local fifo, not default lifo, for local polling
541 <     */
542 <    private volatile boolean locallyFifo;
539 >    // Note: The order among run level values matters.
540 >    private static final int RUNLEVEL_SHIFT     = 16;
541 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
545  
546      /**
547       * Holds number of total (i.e., created and not yet terminated)
548       * and running (i.e., not blocked on joins or other managed sync)
549 <     * threads, packed into one int to ensure consistent snapshot when
549 >     * threads, packed together to ensure consistent snapshot when
550       * making decisions about creating and suspending spare
551 <     * threads. Updated only by CAS.  Note: CASes in
552 <     * updateRunningCount and preJoin assume that running active count
553 <     * is in low word, so need to be modified if this changes.
551 >     * threads. Updated only by CAS. Note that adding a new worker
552 >     * requires incrementing both counts, since workers start off in
553 >     * running state.
554       */
555      private volatile int workerCounts;
556  
557 <    private static int totalCountOf(int s)           { return s >>> 16;  }
558 <    private static int runningCountOf(int s)         { return s & shortMask; }
559 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
557 >    private static final int TOTAL_COUNT_SHIFT  = 16;
558 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559 >    private static final int ONE_RUNNING        = 1;
560 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
561  
562      /**
563 <     * Adds delta (which may be negative) to running count.  This must
564 <     * be called before (with negative arg) and after (with positive)
234 <     * any managed synchronization (i.e., mainly, joins).
235 <     *
236 <     * @param delta the number to add
563 >     * The target parallelism level.
564 >     * Accessed directly by ForkJoinWorkerThreads.
565       */
566 <    final void updateRunningCount(int delta) {
239 <        int s;
240 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
241 <    }
566 >    final int parallelism;
567  
568      /**
569 <     * Adds delta (which may be negative) to both total and running
570 <     * count.  This must be called upon creation and termination of
246 <     * worker threads.
247 <     *
248 <     * @param delta the number to add
569 >     * True if use local fifo, not default lifo, for local polling
570 >     * Read by, and replicated by ForkJoinWorkerThreads
571       */
572 <    private void updateWorkerCount(int delta) {
251 <        int d = delta + (delta << 16); // add to both lo and hi parts
252 <        int s;
253 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
254 <    }
572 >    final boolean locallyFifo;
573  
574      /**
575 <     * Lifecycle control. High word contains runState, low word
576 <     * contains the number of workers that are (probably) executing
259 <     * tasks. This value is atomically incremented before a worker
260 <     * gets a task to run, and decremented when worker has no tasks
261 <     * and cannot find any. These two fields are bundled together to
262 <     * support correct termination triggering.  Note: activeCount
263 <     * CAS'es cheat by assuming active count is in low word, so need
264 <     * to be modified if this changes
575 >     * The uncaught exception handler used when any worker abruptly
576 >     * terminates.
577       */
578 <    private volatile int runControl;
578 >    private final Thread.UncaughtExceptionHandler ueh;
579  
580 <    // RunState values. Order among values matters
581 <    private static final int RUNNING     = 0;
582 <    private static final int SHUTDOWN    = 1;
583 <    private static final int TERMINATING = 2;
272 <    private static final int TERMINATED  = 3;
580 >    /**
581 >     * Pool number, just for assigning useful names to worker threads
582 >     */
583 >    private final int poolNumber;
584  
585 <    private static int runStateOf(int c)             { return c >>> 16; }
586 <    private static int activeCountOf(int c)          { return c & shortMask; }
276 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
585 >    // Utilities for CASing fields. Note that most of these
586 >    // are usually manually inlined by callers
587  
588      /**
589 <     * Tries incrementing active count; fails on contention.
280 <     * Called by workers before/during executing tasks.
281 <     *
282 <     * @return true on success
589 >     * Increments running count part of workerCounts
590       */
591 <    final boolean tryIncrementActiveCount() {
592 <        int c = runControl;
593 <        return casRunControl(c, c+1);
591 >    final void incrementRunningCount() {
592 >        int c;
593 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 >                                               c = workerCounts,
595 >                                               c + ONE_RUNNING));
596      }
597  
598      /**
599 <     * Tries decrementing active count; fails on contention.
291 <     * Possibly triggers termination on success.
292 <     * Called by workers when they can't find tasks.
293 <     *
294 <     * @return true on success
599 >     * Tries to decrement running count unless already zero
600       */
601 <    final boolean tryDecrementActiveCount() {
602 <        int c = runControl;
603 <        int nextc = c - 1;
299 <        if (!casRunControl(c, nextc))
601 >    final boolean tryDecrementRunningCount() {
602 >        int wc = workerCounts;
603 >        if ((wc & RUNNING_COUNT_MASK) == 0)
604              return false;
605 <        if (canTerminateOnShutdown(nextc))
606 <            terminateOnShutdown();
303 <        return true;
605 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
606 >                                        wc, wc - ONE_RUNNING);
607      }
608  
609      /**
610 <     * Returns true if argument represents zero active count and
611 <     * nonzero runstate, which is the triggering condition for
612 <     * terminating on shutdown.
610 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
611 >     * (rarely) necessary when other count updates lag.
612 >     *
613 >     * @param dr -- either zero or ONE_RUNNING
614 >     * @param dt -- either zero or ONE_TOTAL
615       */
616 <    private static boolean canTerminateOnShutdown(int c) {
617 <        // i.e. least bit is nonzero runState bit
618 <        return ((c & -c) >>> 16) != 0;
616 >    private void decrementWorkerCounts(int dr, int dt) {
617 >        for (;;) {
618 >            int wc = workerCounts;
619 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
620 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
621 >                if ((runState & TERMINATED) != 0)
622 >                    return; // lagging termination on a backout
623 >                Thread.yield();
624 >            }
625 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
626 >                                         wc, wc - (dr + dt)))
627 >                return;
628 >        }
629      }
630  
631      /**
632 <     * Transition run state to at least the given state. Return true
633 <     * if not already at least given state.
632 >     * Tries decrementing active count; fails on contention.
633 >     * Called when workers cannot find tasks to run.
634 >     */
635 >    final boolean tryDecrementActiveCount() {
636 >        int c;
637 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
638 >                                        c = runState, c - 1);
639 >    }
640 >
641 >    /**
642 >     * Advances to at least the given level. Returns true if not
643 >     * already in at least the given level.
644       */
645 <    private boolean transitionRunStateTo(int state) {
645 >    private boolean advanceRunLevel(int level) {
646          for (;;) {
647 <            int c = runControl;
648 <            if (runStateOf(c) >= state)
647 >            int s = runState;
648 >            if ((s & level) != 0)
649                  return false;
650 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
650 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
651                  return true;
652          }
653      }
654  
655 +    // workers array maintenance
656 +
657      /**
658 <     * Controls whether to add spares to maintain parallelism
658 >     * Records and returns a workers array index for new worker.
659       */
660 <    private volatile boolean maintainsParallelism;
661 <
662 <    // Constructors
660 >    private int recordWorker(ForkJoinWorkerThread w) {
661 >        // Try using slot totalCount-1. If not available, scan and/or resize
662 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
663 >        final ReentrantLock lock = this.workerLock;
664 >        lock.lock();
665 >        try {
666 >            ForkJoinWorkerThread[] ws = workers;
667 >            int n = ws.length;
668 >            if (k < 0 || k >= n || ws[k] != null) {
669 >                for (k = 0; k < n && ws[k] != null; ++k)
670 >                    ;
671 >                if (k == n)
672 >                    ws = Arrays.copyOf(ws, n << 1);
673 >            }
674 >            ws[k] = w;
675 >            workers = ws; // volatile array write ensures slot visibility
676 >        } finally {
677 >            lock.unlock();
678 >        }
679 >        return k;
680 >    }
681  
682      /**
683 <     * Creates a ForkJoinPool with a pool size equal to the number of
339 <     * processors available on the system, using the default
340 <     * ForkJoinWorkerThreadFactory.
341 <     *
342 <     * @throws SecurityException if a security manager exists and
343 <     *         the caller is not permitted to modify threads
344 <     *         because it does not hold {@link
345 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
683 >     * Nulls out record of worker in workers array.
684       */
685 <    public ForkJoinPool() {
686 <        this(Runtime.getRuntime().availableProcessors(),
687 <             defaultForkJoinWorkerThreadFactory);
685 >    private void forgetWorker(ForkJoinWorkerThread w) {
686 >        int idx = w.poolIndex;
687 >        // Locking helps method recordWorker avoid unnecessary expansion
688 >        final ReentrantLock lock = this.workerLock;
689 >        lock.lock();
690 >        try {
691 >            ForkJoinWorkerThread[] ws = workers;
692 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
693 >                ws[idx] = null;
694 >        } finally {
695 >            lock.unlock();
696 >        }
697      }
698  
699      /**
700 <     * Creates a ForkJoinPool with the indicated parallelism level
701 <     * threads and using the default ForkJoinWorkerThreadFactory.
700 >     * Final callback from terminating worker.  Removes record of
701 >     * worker from array, and adjusts counts. If pool is shutting
702 >     * down, tries to complete termination.
703       *
704 <     * @param parallelism the number of worker threads
357 <     * @throws IllegalArgumentException if parallelism less than or
358 <     * equal to zero
359 <     * @throws SecurityException if a security manager exists and
360 <     *         the caller is not permitted to modify threads
361 <     *         because it does not hold {@link
362 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
704 >     * @param w the worker
705       */
706 <    public ForkJoinPool(int parallelism) {
707 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
706 >    final void workerTerminated(ForkJoinWorkerThread w) {
707 >        forgetWorker(w);
708 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
709 >        while (w.stealCount != 0) // collect final count
710 >            tryAccumulateStealCount(w);
711 >        tryTerminate(false);
712      }
713  
714 +    // Waiting for and signalling events
715 +
716      /**
717 <     * Creates a ForkJoinPool with parallelism equal to the number of
718 <     * processors available on the system and using the given
719 <     * ForkJoinWorkerThreadFactory.
720 <     *
373 <     * @param factory the factory for creating new threads
374 <     * @throws NullPointerException if factory is null
375 <     * @throws SecurityException if a security manager exists and
376 <     *         the caller is not permitted to modify threads
377 <     *         because it does not hold {@link
378 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
717 >     * Releases workers blocked on a count not equal to current count.
718 >     * Normally called after precheck that eventWaiters isn't zero to
719 >     * avoid wasted array checks. Gives up upon a change in count or
720 >     * upon releasing two workers, letting others take over.
721       */
722 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
723 <        this(Runtime.getRuntime().availableProcessors(), factory);
722 >    private void releaseEventWaiters() {
723 >        ForkJoinWorkerThread[] ws = workers;
724 >        int n = ws.length;
725 >        long h = eventWaiters;
726 >        int ec = eventCount;
727 >        boolean releasedOne = false;
728 >        ForkJoinWorkerThread w; int id;
729 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
730 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
731 >               id < n && (w = ws[id]) != null) {
732 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
733 >                                          h,  w.nextWaiter)) {
734 >                LockSupport.unpark(w);
735 >                if (releasedOne) // exit on second release
736 >                    break;
737 >                releasedOne = true;
738 >            }
739 >            if (eventCount != ec)
740 >                break;
741 >            h = eventWaiters;
742 >        }
743      }
744  
745      /**
746 <     * Creates a ForkJoinPool with the given parallelism and factory.
747 <     *
387 <     * @param parallelism the targeted number of worker threads
388 <     * @param factory the factory for creating new threads
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     * equal to zero, or greater than implementation limit
391 <     * @throws NullPointerException if factory is null
392 <     * @throws SecurityException if a security manager exists and
393 <     *         the caller is not permitted to modify threads
394 <     *         because it does not hold {@link
395 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
746 >     * Tries to advance eventCount and releases waiters. Called only
747 >     * from workers.
748       */
749 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
750 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
751 <            throw new IllegalArgumentException();
752 <        if (factory == null)
753 <            throw new NullPointerException();
402 <        checkPermission();
403 <        this.factory = factory;
404 <        this.parallelism = parallelism;
405 <        this.maxPoolSize = MAX_THREADS;
406 <        this.maintainsParallelism = true;
407 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
408 <        this.workerLock = new ReentrantLock();
409 <        this.termination = workerLock.newCondition();
410 <        this.stealCount = new AtomicLong();
411 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
412 <        // worker array and workers are lazily constructed
749 >    final void signalWork() {
750 >        int c; // try to increment event count -- CAS failure OK
751 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
752 >        if (eventWaiters != 0L)
753 >            releaseEventWaiters();
754      }
755  
756      /**
757 <     * Creates a new worker thread using factory.
757 >     * Adds the given worker to event queue and blocks until
758 >     * terminating or event count advances from the given value
759       *
760 <     * @param index the index to assign worker
761 <     * @return new worker, or null of factory failed
760 >     * @param w the calling worker thread
761 >     * @param ec the count
762       */
763 <    private ForkJoinWorkerThread createWorker(int index) {
764 <        Thread.UncaughtExceptionHandler h = ueh;
765 <        ForkJoinWorkerThread w = factory.newThread(this);
766 <        if (w != null) {
767 <            w.poolIndex = index;
768 <            w.setDaemon(true);
769 <            w.setAsyncMode(locallyFifo);
770 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
771 <            if (h != null)
772 <                w.setUncaughtExceptionHandler(h);
763 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
764 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
765 >        long h;
766 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
767 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
768 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
769 >               eventCount == ec) {
770 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
771 >                                          w.nextWaiter = h, nh)) {
772 >                awaitEvent(w, ec);
773 >                break;
774 >            }
775          }
432        return w;
776      }
777  
778      /**
779 <     * Returns a good size for worker array given pool size.
780 <     * Currently requires size to be a power of two.
779 >     * Blocks the given worker (that has already been entered as an
780 >     * event waiter) until terminating or event count advances from
781 >     * the given value. The oldest (first) waiter uses a timed wait to
782 >     * occasionally one-by-one shrink the number of workers (to a
783 >     * minimum of one) if the pool has not been used for extended
784 >     * periods.
785 >     *
786 >     * @param w the calling worker thread
787 >     * @param ec the count
788       */
789 <    private static int arraySizeFor(int poolSize) {
790 <        return (poolSize <= 1) ? 1 :
791 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
789 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
790 >        while (eventCount == ec) {
791 >            if (tryAccumulateStealCount(w)) { // transfer while idle
792 >                boolean untimed = (w.nextWaiter != 0L ||
793 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
794 >                long startTime = untimed? 0 : System.nanoTime();
795 >                Thread.interrupted();         // clear/ignore interrupt
796 >                if (eventCount != ec || w.isTerminating())
797 >                    break;                    // recheck after clear
798 >                if (untimed)
799 >                    LockSupport.park(w);
800 >                else {
801 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
802 >                    if (eventCount != ec || w.isTerminating())
803 >                        break;
804 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
805 >                        tryShutdownUnusedWorker(ec);
806 >                }
807 >            }
808 >        }
809      }
810  
811 +    // Maintaining parallelism
812 +
813      /**
814 <     * Creates or resizes array if necessary to hold newLength.
446 <     * Call only under exclusion.
447 <     *
448 <     * @return the array
814 >     * Pushes worker onto the spare stack.
815       */
816 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
817 <        ForkJoinWorkerThread[] ws = workers;
818 <        if (ws == null)
819 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
454 <        else if (newLength > ws.length)
455 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
456 <        else
457 <            return ws;
816 >    final void pushSpare(ForkJoinWorkerThread w) {
817 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
818 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
819 >                                               w.nextSpare = spareWaiters,ns));
820      }
821  
822      /**
823 <     * Tries to shrink workers into smaller array after one or more terminate.
823 >     * Tries (once) to resume a spare if the number of running
824 >     * threads is less than target.
825       */
826 <    private void tryShrinkWorkerArray() {
826 >    private void tryResumeSpare() {
827 >        int sw, id;
828          ForkJoinWorkerThread[] ws = workers;
829 <        if (ws != null) {
830 <            int len = ws.length;
831 <            int last = len - 1;
832 <            while (last >= 0 && ws[last] == null)
833 <                --last;
834 <            int newLength = arraySizeFor(last+1);
835 <            if (newLength < len)
836 <                workers = Arrays.copyOf(ws, newLength);
829 >        int n = ws.length;
830 >        ForkJoinWorkerThread w;
831 >        if ((sw = spareWaiters) != 0 &&
832 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
833 >            id < n && (w = ws[id]) != null &&
834 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
835 >            spareWaiters == sw &&
836 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
837 >                                     sw, w.nextSpare)) {
838 >            int c; // increment running count before resume
839 >            do {} while (!UNSAFE.compareAndSwapInt
840 >                         (this, workerCountsOffset,
841 >                          c = workerCounts, c + ONE_RUNNING));
842 >            if (w.tryUnsuspend())
843 >                LockSupport.unpark(w);
844 >            else   // back out if w was shutdown
845 >                decrementWorkerCounts(ONE_RUNNING, 0);
846          }
847      }
848  
849      /**
850 <     * Initializes workers if necessary.
851 <     */
852 <    final void ensureWorkerInitialization() {
853 <        ForkJoinWorkerThread[] ws = workers;
854 <        if (ws == null) {
855 <            final ReentrantLock lock = this.workerLock;
856 <            lock.lock();
857 <            try {
858 <                ws = workers;
859 <                if (ws == null) {
860 <                    int ps = parallelism;
861 <                    ws = ensureWorkerArrayCapacity(ps);
862 <                    for (int i = 0; i < ps; ++i) {
863 <                        ForkJoinWorkerThread w = createWorker(i);
864 <                        if (w != null) {
865 <                            ws[i] = w;
866 <                            w.start();
867 <                            updateWorkerCount(1);
868 <                        }
869 <                    }
850 >     * Tries to increase the number of running workers if below target
851 >     * parallelism: If a spare exists tries to resume it via
852 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
853 >     * existing workers are busy, adds a new worker. In all cases also
854 >     * helps wake up releasable workers waiting for work.
855 >     */
856 >    private void helpMaintainParallelism() {
857 >        int pc = parallelism;
858 >        int wc, rs, tc;
859 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
860 >               (rs = runState) < TERMINATING) {
861 >            if (spareWaiters != 0)
862 >                tryResumeSpare();
863 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
864 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
865 >                break;   // enough total
866 >            else if (runState == rs && workerCounts == wc &&
867 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
868 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
869 >                ForkJoinWorkerThread w = null;
870 >                Throwable fail = null;
871 >                try {
872 >                    w = factory.newThread(this);
873 >                } catch (Throwable ex) {
874 >                    fail = ex;
875 >                }
876 >                if (w == null) { // null or exceptional factory return
877 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
878 >                    tryTerminate(false); // handle failure during shutdown
879 >                    // If originating from an external caller,
880 >                    // propagate exception, else ignore
881 >                    if (fail != null && runState < TERMINATING &&
882 >                        !(Thread.currentThread() instanceof
883 >                          ForkJoinWorkerThread))
884 >                        UNSAFE.throwException(fail);
885 >                    break;
886 >                }
887 >                w.start(recordWorker(w), ueh);
888 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
889 >                    int c; // advance event count
890 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
891 >                                             c = eventCount, c+1);
892 >                    break; // add at most one unless total below target
893                  }
498            } finally {
499                lock.unlock();
894              }
895          }
896 +        if (eventWaiters != 0L)
897 +            releaseEventWaiters();
898      }
899  
900      /**
901 <     * Worker creation and startup for threads added via setParallelism.
901 >     * Callback from the oldest waiter in awaitEvent waking up after a
902 >     * period of non-use. If all workers are idle, tries (once) to
903 >     * shutdown an event waiter or a spare, if one exists. Note that
904 >     * we don't need CAS or locks here because the method is called
905 >     * only from one thread occasionally waking (and even misfires are
906 >     * OK). Note that until the shutdown worker fully terminates,
907 >     * workerCounts will overestimate total count, which is tolerable.
908 >     *
909 >     * @param ec the event count waited on by caller (to abort
910 >     * attempt if count has since changed).
911       */
912 <    private void createAndStartAddedWorkers() {
913 <        resumeAllSpares();  // Allow spares to convert to nonspare
914 <        int ps = parallelism;
915 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
916 <        int len = ws.length;
917 <        // Sweep through slots, to keep lowest indices most populated
918 <        int k = 0;
919 <        while (k < len) {
920 <            if (ws[k] != null) {
921 <                ++k;
922 <                continue;
923 <            }
924 <            int s = workerCounts;
925 <            int tc = totalCountOf(s);
926 <            int rc = runningCountOf(s);
927 <            if (rc >= ps || tc >= ps)
912 >    private void tryShutdownUnusedWorker(int ec) {
913 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
914 >            ForkJoinWorkerThread[] ws = workers;
915 >            int n = ws.length;
916 >            ForkJoinWorkerThread w = null;
917 >            boolean shutdown = false;
918 >            int sw;
919 >            long h;
920 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
921 >                int id = (sw & SPARE_ID_MASK) - 1;
922 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
923 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
924 >                                             sw, w.nextSpare))
925 >                    shutdown = true;
926 >            }
927 >            else if ((h = eventWaiters) != 0L) {
928 >                long nh;
929 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
930 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
931 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
932 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
933 >                    shutdown = true;
934 >            }
935 >            if (w != null && shutdown) {
936 >                w.shutdown();
937 >                LockSupport.unpark(w);
938 >            }
939 >        }
940 >        releaseEventWaiters(); // in case of interference
941 >    }
942 >
943 >    /**
944 >     * Callback from workers invoked upon each top-level action (i.e.,
945 >     * stealing a task or taking a submission and running it).
946 >     * Performs one or more of the following:
947 >     *
948 >     * 1. If the worker is active and either did not run a task
949 >     *    or there are too many workers, try to set its active status
950 >     *    to inactive and update activeCount. On contention, we may
951 >     *    try again in this or a subsequent call.
952 >     *
953 >     * 2. If not enough total workers, help create some.
954 >     *
955 >     * 3. If there are too many running workers, suspend this worker
956 >     *    (first forcing inactive if necessary).  If it is not needed,
957 >     *    it may be shutdown while suspended (via
958 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
959 >     *    rechecks running thread count and need for event sync.
960 >     *
961 >     * 4. If worker did not run a task, await the next task event via
962 >     *    eventSync if necessary (first forcing inactivation), upon
963 >     *    which the worker may be shutdown via
964 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
965 >     *    existing event waiters that are now releasable,
966 >     *
967 >     * @param w the worker
968 >     * @param ran true if worker ran a task since last call to this method
969 >     */
970 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
971 >        int wec = w.lastEventCount;
972 >        boolean active = w.active;
973 >        boolean inactivate = false;
974 >        int pc = parallelism;
975 >        while (w.runState == 0) {
976 >            int rs = runState;
977 >            if (rs >= TERMINATING) { // propagate shutdown
978 >                w.shutdown();
979                  break;
980 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
981 <                ForkJoinWorkerThread w = createWorker(k);
982 <                if (w != null) {
983 <                    ws[k++] = w;
984 <                    w.start();
985 <                }
986 <                else {
987 <                    updateWorkerCount(-1); // back out on failed creation
980 >            }
981 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
982 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
983 >                inactivate = active = w.active = false;
984 >            int wc = workerCounts;
985 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
986 >                if (!(inactivate |= active) && // must inactivate to suspend
987 >                    workerCounts == wc &&      // try to suspend as spare
988 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
989 >                                             wc, wc - ONE_RUNNING))
990 >                    w.suspendAsSpare();
991 >            }
992 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
993 >                helpMaintainParallelism();     // not enough workers
994 >            else if (!ran) {
995 >                long h = eventWaiters;
996 >                int ec = eventCount;
997 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
998 >                    releaseEventWaiters();     // release others before waiting
999 >                else if (ec != wec) {
1000 >                    w.lastEventCount = ec;     // no need to wait
1001                      break;
1002                  }
1003 +                else if (!(inactivate |= active))
1004 +                    eventSync(w, wec);         // must inactivate before sync
1005              }
1006 +            else
1007 +                break;
1008          }
1009      }
1010  
538    // Execution methods
539
1011      /**
1012 <     * Common code for execute, invoke and submit
1012 >     * Helps and/or blocks awaiting join of the given task.
1013 >     * See above for explanation.
1014 >     *
1015 >     * @param joinMe the task to join
1016 >     * @param worker the current worker thread
1017       */
1018 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1019 <        if (isShutdown())
1020 <            throw new RejectedExecutionException();
1021 <        if (workers == null)
1022 <            ensureWorkerInitialization();
1023 <        submissionQueue.offer(task);
1024 <        signalIdleWorkers();
1018 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1019 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1020 >        while (joinMe.status >= 0) {
1021 >            int wc;
1022 >            if (runState >= TERMINATING) {
1023 >                joinMe.cancelIgnoringExceptions();
1024 >                break;
1025 >            }
1026 >            worker.helpJoinTask(joinMe);
1027 >            if (joinMe.status < 0)
1028 >                break;
1029 >            else if (retries > 0)
1030 >                --retries;
1031 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1032 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1033 >                                              wc, wc - ONE_RUNNING)) {
1034 >                int stat, c; long h;
1035 >                while ((stat = joinMe.status) >= 0 &&
1036 >                       (h = eventWaiters) != 0L && // help release others
1037 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1038 >                    releaseEventWaiters();
1039 >                if (stat >= 0 &&
1040 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1041 >                     (stat =
1042 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1043 >                    helpMaintainParallelism(); // timeout or no running workers
1044 >                do {} while (!UNSAFE.compareAndSwapInt
1045 >                             (this, workerCountsOffset,
1046 >                              c = workerCounts, c + ONE_RUNNING));
1047 >                if (stat < 0)
1048 >                    break;   // else restart
1049 >            }
1050 >        }
1051      }
1052  
1053      /**
1054 <     * Performs the given task, returning its result upon completion.
554 <     *
555 <     * @param task the task
556 <     * @return the task's result
557 <     * @throws NullPointerException if task is null
558 <     * @throws RejectedExecutionException if pool is shut down
1054 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1055       */
1056 <    public <T> T invoke(ForkJoinTask<T> task) {
1057 <        doSubmit(task);
1058 <        return task.join();
1056 >    final void awaitBlocker(ManagedBlocker blocker)
1057 >        throws InterruptedException {
1058 >        while (!blocker.isReleasable()) {
1059 >            int wc = workerCounts;
1060 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1061 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1062 >                                         wc, wc - ONE_RUNNING)) {
1063 >                try {
1064 >                    while (!blocker.isReleasable()) {
1065 >                        long h = eventWaiters;
1066 >                        if (h != 0L &&
1067 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1068 >                            releaseEventWaiters();
1069 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1070 >                                 runState < TERMINATING)
1071 >                            helpMaintainParallelism();
1072 >                        else if (blocker.block())
1073 >                            break;
1074 >                    }
1075 >                } finally {
1076 >                    int c;
1077 >                    do {} while (!UNSAFE.compareAndSwapInt
1078 >                                 (this, workerCountsOffset,
1079 >                                  c = workerCounts, c + ONE_RUNNING));
1080 >                }
1081 >                break;
1082 >            }
1083 >        }
1084      }
1085  
1086      /**
1087 <     * Arranges for (asynchronous) execution of the given task.
1087 >     * Possibly initiates and/or completes termination.
1088       *
1089 <     * @param task the task
1090 <     * @throws NullPointerException if task is null
1091 <     * @throws RejectedExecutionException if pool is shut down
1092 <     */
1093 <    public <T> void execute(ForkJoinTask<T> task) {
1094 <        doSubmit(task);
1095 <    }
1096 <
1097 <    // AbstractExecutorService methods
1098 <
1099 <    public void execute(Runnable task) {
579 <        doSubmit(new AdaptedRunnable<Void>(task, null));
580 <    }
1089 >     * @param now if true, unconditionally terminate, else only
1090 >     * if shutdown and empty queue and no active workers
1091 >     * @return true if now terminating or terminated
1092 >     */
1093 >    private boolean tryTerminate(boolean now) {
1094 >        if (now)
1095 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1096 >        else if (runState < SHUTDOWN ||
1097 >                 !submissionQueue.isEmpty() ||
1098 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1099 >            return false;
1100  
1101 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
1102 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
584 <        doSubmit(job);
585 <        return job;
586 <    }
1101 >        if (advanceRunLevel(TERMINATING))
1102 >            startTerminating();
1103  
1104 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1105 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1106 <        doSubmit(job);
1107 <        return job;
1104 >        // Finish now if all threads terminated; else in some subsequent call
1105 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1106 >            advanceRunLevel(TERMINATED);
1107 >            termination.arrive();
1108 >        }
1109 >        return true;
1110      }
1111  
594    public ForkJoinTask<?> submit(Runnable task) {
595        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
596        doSubmit(job);
597        return job;
598    }
1112  
1113      /**
1114 <     * Adaptor for Runnables. This implements RunnableFuture
1115 <     * to be compliant with AbstractExecutorService constraints.
1116 <     */
1117 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
1118 <        implements RunnableFuture<T> {
1119 <        final Runnable runnable;
1120 <        final T resultOnCompletion;
1121 <        T result;
1122 <        AdaptedRunnable(Runnable runnable, T result) {
1123 <            if (runnable == null) throw new NullPointerException();
1124 <            this.runnable = runnable;
1125 <            this.resultOnCompletion = result;
1126 <        }
1127 <        public T getRawResult() { return result; }
1128 <        public void setRawResult(T v) { result = v; }
1129 <        public boolean exec() {
1130 <            runnable.run();
1131 <            result = resultOnCompletion;
1132 <            return true;
1114 >     * Actions on transition to TERMINATING
1115 >     *
1116 >     * Runs up to four passes through workers: (0) shutting down each
1117 >     * (without waking up if parked) to quickly spread notifications
1118 >     * without unnecessary bouncing around event queues etc (1) wake
1119 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1120 >     * interrupted workers
1121 >     */
1122 >    private void startTerminating() {
1123 >        cancelSubmissions();
1124 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1125 >            int c; // advance event count
1126 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1127 >                                     c = eventCount, c+1);
1128 >            eventWaiters = 0L; // clobber lists
1129 >            spareWaiters = 0;
1130 >            for (ForkJoinWorkerThread w : workers) {
1131 >                if (w != null) {
1132 >                    w.shutdown();
1133 >                    if (passes > 0 && !w.isTerminated()) {
1134 >                        w.cancelTasks();
1135 >                        LockSupport.unpark(w);
1136 >                        if (passes > 1 && !w.isInterrupted()) {
1137 >                            try {
1138 >                                w.interrupt();
1139 >                            } catch (SecurityException ignore) {
1140 >                            }
1141 >                        }
1142 >                    }
1143 >                }
1144 >            }
1145          }
621        public void run() { invoke(); }
622        private static final long serialVersionUID = 5232453952276885070L;
1146      }
1147  
1148      /**
1149 <     * Adaptor for Callables
1149 >     * Clears out and cancels submissions, ignoring exceptions.
1150       */
1151 <    static final class AdaptedCallable<T> extends ForkJoinTask<T>
1152 <        implements RunnableFuture<T> {
1153 <        final Callable<T> callable;
631 <        T result;
632 <        AdaptedCallable(Callable<T> callable) {
633 <            if (callable == null) throw new NullPointerException();
634 <            this.callable = callable;
635 <        }
636 <        public T getRawResult() { return result; }
637 <        public void setRawResult(T v) { result = v; }
638 <        public boolean exec() {
1151 >    private void cancelSubmissions() {
1152 >        ForkJoinTask<?> task;
1153 >        while ((task = submissionQueue.poll()) != null) {
1154              try {
1155 <                result = callable.call();
1156 <                return true;
642 <            } catch (Error err) {
643 <                throw err;
644 <            } catch (RuntimeException rex) {
645 <                throw rex;
646 <            } catch (Exception ex) {
647 <                throw new RuntimeException(ex);
1155 >                task.cancel(false);
1156 >            } catch (Throwable ignore) {
1157              }
1158          }
650        public void run() { invoke(); }
651        private static final long serialVersionUID = 2838392045355241008L;
1159      }
1160  
1161 <    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1162 <        ArrayList<ForkJoinTask<T>> ts =
1163 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
1164 <        for (Callable<T> c : tasks)
1165 <            ts.add(new AdaptedCallable<T>(c));
1166 <        invoke(new InvokeAll<T>(ts));
1167 <        return (List<Future<T>>) (List) ts;
1161 >    // misc support for ForkJoinWorkerThread
1162 >
1163 >    /**
1164 >     * Returns pool number.
1165 >     */
1166 >    final int getPoolNumber() {
1167 >        return poolNumber;
1168      }
1169  
1170 <    static final class InvokeAll<T> extends RecursiveAction {
1171 <        final ArrayList<ForkJoinTask<T>> tasks;
1172 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1173 <        public void compute() {
1174 <            try { invokeAll(tasks); }
1175 <            catch (Exception ignore) {}
1170 >    /**
1171 >     * Tries to accumulate steal count from a worker, clearing
1172 >     * the worker's value if successful.
1173 >     *
1174 >     * @return true if worker steal count now zero
1175 >     */
1176 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1177 >        int sc = w.stealCount;
1178 >        long c = stealCount;
1179 >        // CAS even if zero, for fence effects
1180 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1181 >            if (sc != 0)
1182 >                w.stealCount = 0;
1183 >            return true;
1184          }
1185 <        private static final long serialVersionUID = -7914297376763021607L;
1185 >        return sc == 0;
1186      }
1187  
673    // Configuration and status settings and queries
674
1188      /**
1189 <     * Returns the factory used for constructing new workers.
1190 <     *
678 <     * @return the factory used for constructing new workers
1189 >     * Returns the approximate (non-atomic) number of idle threads per
1190 >     * active thread.
1191       */
1192 <    public ForkJoinWorkerThreadFactory getFactory() {
1193 <        return factory;
1192 >    final int idlePerActive() {
1193 >        int pc = parallelism; // use parallelism, not rc
1194 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1195 >        // Use exact results for small values, saturate past 4
1196 >        return ((pc <= ac) ? 0 :
1197 >                (pc >>> 1 <= ac) ? 1 :
1198 >                (pc >>> 2 <= ac) ? 3 :
1199 >                pc >>> 3);
1200      }
1201  
1202 +    // Public and protected methods
1203 +
1204 +    // Constructors
1205 +
1206      /**
1207 <     * Returns the handler for internal worker threads that terminate
1208 <     * due to unrecoverable errors encountered while executing tasks.
1207 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1208 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1209 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1210 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1211       *
1212 <     * @return the handler, or null if none
1212 >     * @throws SecurityException if a security manager exists and
1213 >     *         the caller is not permitted to modify threads
1214 >     *         because it does not hold {@link
1215 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1216       */
1217 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1218 <        Thread.UncaughtExceptionHandler h;
1219 <        final ReentrantLock lock = this.workerLock;
693 <        lock.lock();
694 <        try {
695 <            h = ueh;
696 <        } finally {
697 <            lock.unlock();
698 <        }
699 <        return h;
1217 >    public ForkJoinPool() {
1218 >        this(Runtime.getRuntime().availableProcessors(),
1219 >             defaultForkJoinWorkerThreadFactory, null, false);
1220      }
1221  
1222      /**
1223 <     * Sets the handler for internal worker threads that terminate due
1224 <     * to unrecoverable errors encountered while executing tasks.
1225 <     * Unless set, the current default or ThreadGroup handler is used
1226 <     * as handler.
1223 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1224 >     * level, the {@linkplain
1225 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1226 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1227       *
1228 <     * @param h the new handler
1229 <     * @return the old handler, or null if none
1228 >     * @param parallelism the parallelism level
1229 >     * @throws IllegalArgumentException if parallelism less than or
1230 >     *         equal to zero, or greater than implementation limit
1231       * @throws SecurityException if a security manager exists and
1232       *         the caller is not permitted to modify threads
1233       *         because it does not hold {@link
1234       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1235       */
1236 <    public Thread.UncaughtExceptionHandler
1237 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
717 <        checkPermission();
718 <        Thread.UncaughtExceptionHandler old = null;
719 <        final ReentrantLock lock = this.workerLock;
720 <        lock.lock();
721 <        try {
722 <            old = ueh;
723 <            ueh = h;
724 <            ForkJoinWorkerThread[] ws = workers;
725 <            if (ws != null) {
726 <                for (int i = 0; i < ws.length; ++i) {
727 <                    ForkJoinWorkerThread w = ws[i];
728 <                    if (w != null)
729 <                        w.setUncaughtExceptionHandler(h);
730 <                }
731 <            }
732 <        } finally {
733 <            lock.unlock();
734 <        }
735 <        return old;
1236 >    public ForkJoinPool(int parallelism) {
1237 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1238      }
1239  
738
1240      /**
1241 <     * Sets the target parallelism level of this pool.
1241 >     * Creates a {@code ForkJoinPool} with the given parameters.
1242       *
1243 <     * @param parallelism the target parallelism
1243 >     * @param parallelism the parallelism level. For default value,
1244 >     * use {@link java.lang.Runtime#availableProcessors}.
1245 >     * @param factory the factory for creating new threads. For default value,
1246 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1247 >     * @param handler the handler for internal worker threads that
1248 >     * terminate due to unrecoverable errors encountered while executing
1249 >     * tasks. For default value, use {@code null}.
1250 >     * @param asyncMode if true,
1251 >     * establishes local first-in-first-out scheduling mode for forked
1252 >     * tasks that are never joined. This mode may be more appropriate
1253 >     * than default locally stack-based mode in applications in which
1254 >     * worker threads only process event-style asynchronous tasks.
1255 >     * For default value, use {@code false}.
1256       * @throws IllegalArgumentException if parallelism less than or
1257 <     * equal to zero or greater than maximum size bounds
1257 >     *         equal to zero, or greater than implementation limit
1258 >     * @throws NullPointerException if the factory is null
1259       * @throws SecurityException if a security manager exists and
1260       *         the caller is not permitted to modify threads
1261       *         because it does not hold {@link
1262       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1263       */
1264 <    public void setParallelism(int parallelism) {
1264 >    public ForkJoinPool(int parallelism,
1265 >                        ForkJoinWorkerThreadFactory factory,
1266 >                        Thread.UncaughtExceptionHandler handler,
1267 >                        boolean asyncMode) {
1268          checkPermission();
1269 <        if (parallelism <= 0 || parallelism > maxPoolSize)
1269 >        if (factory == null)
1270 >            throw new NullPointerException();
1271 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1272              throw new IllegalArgumentException();
1273 <        final ReentrantLock lock = this.workerLock;
1274 <        lock.lock();
1275 <        try {
1276 <            if (!isTerminating()) {
1277 <                int p = this.parallelism;
1278 <                this.parallelism = parallelism;
1279 <                if (parallelism > p)
1280 <                    createAndStartAddedWorkers();
1281 <                else
1282 <                    trimSpares();
764 <            }
765 <        } finally {
766 <            lock.unlock();
767 <        }
768 <        signalIdleWorkers();
1273 >        this.parallelism = parallelism;
1274 >        this.factory = factory;
1275 >        this.ueh = handler;
1276 >        this.locallyFifo = asyncMode;
1277 >        int arraySize = initialArraySizeFor(parallelism);
1278 >        this.workers = new ForkJoinWorkerThread[arraySize];
1279 >        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1280 >        this.workerLock = new ReentrantLock();
1281 >        this.termination = new Phaser(1);
1282 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1283      }
1284  
1285      /**
1286 <     * Returns the targeted number of worker threads in this pool.
1287 <     *
774 <     * @return the targeted number of worker threads in this pool
1286 >     * Returns initial power of two size for workers array.
1287 >     * @param pc the initial parallelism level
1288       */
1289 <    public int getParallelism() {
1290 <        return parallelism;
1289 >    private static int initialArraySizeFor(int pc) {
1290 >        // If possible, initially allocate enough space for one spare
1291 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1292 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1293 >        size |= size >>> 1;
1294 >        size |= size >>> 2;
1295 >        size |= size >>> 4;
1296 >        size |= size >>> 8;
1297 >        return size + 1;
1298      }
1299  
1300 +    // Execution methods
1301 +
1302      /**
1303 <     * Returns the number of worker threads that have started but not
1304 <     * yet terminated.  This result returned by this method may differ
1305 <     * from {@code getParallelism} when threads are created to
1306 <     * maintain parallelism when others are cooperatively blocked.
1303 >     * Submits task and creates, starts, or resumes some workers if necessary
1304 >     */
1305 >    private <T> void doSubmit(ForkJoinTask<T> task) {
1306 >        submissionQueue.offer(task);
1307 >        int c; // try to increment event count -- CAS failure OK
1308 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1309 >        helpMaintainParallelism();
1310 >    }
1311 >
1312 >    /**
1313 >     * Performs the given task, returning its result upon completion.
1314       *
1315 <     * @return the number of worker threads
1315 >     * @param task the task
1316 >     * @return the task's result
1317 >     * @throws NullPointerException if the task is null
1318 >     * @throws RejectedExecutionException if the task cannot be
1319 >     *         scheduled for execution
1320       */
1321 <    public int getPoolSize() {
1322 <        return totalCountOf(workerCounts);
1321 >    public <T> T invoke(ForkJoinTask<T> task) {
1322 >        if (task == null)
1323 >            throw new NullPointerException();
1324 >        if (runState >= SHUTDOWN)
1325 >            throw new RejectedExecutionException();
1326 >        Thread t = Thread.currentThread();
1327 >        if ((t instanceof ForkJoinWorkerThread) &&
1328 >            ((ForkJoinWorkerThread)t).pool == this)
1329 >            return task.invoke();  // bypass submit if in same pool
1330 >        else {
1331 >            doSubmit(task);
1332 >            return task.join();
1333 >        }
1334 >    }
1335 >
1336 >    /**
1337 >     * Unless terminating, forks task if within an ongoing FJ
1338 >     * computation in the current pool, else submits as external task.
1339 >     */
1340 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1341 >        if (runState >= SHUTDOWN)
1342 >            throw new RejectedExecutionException();
1343 >        Thread t = Thread.currentThread();
1344 >        if ((t instanceof ForkJoinWorkerThread) &&
1345 >            ((ForkJoinWorkerThread)t).pool == this)
1346 >            task.fork();
1347 >        else
1348 >            doSubmit(task);
1349      }
1350  
1351      /**
1352 <     * Returns the maximum number of threads allowed to exist in the
794 <     * pool, even if there are insufficient unblocked running threads.
1352 >     * Arranges for (asynchronous) execution of the given task.
1353       *
1354 <     * @return the maximum
1354 >     * @param task the task
1355 >     * @throws NullPointerException if the task is null
1356 >     * @throws RejectedExecutionException if the task cannot be
1357 >     *         scheduled for execution
1358 >     */
1359 >    public void execute(ForkJoinTask<?> task) {
1360 >        if (task == null)
1361 >            throw new NullPointerException();
1362 >        forkOrSubmit(task);
1363 >    }
1364 >
1365 >    // AbstractExecutorService methods
1366 >
1367 >    /**
1368 >     * @throws NullPointerException if the task is null
1369 >     * @throws RejectedExecutionException if the task cannot be
1370 >     *         scheduled for execution
1371       */
1372 <    public int getMaximumPoolSize() {
1373 <        return maxPoolSize;
1372 >    public void execute(Runnable task) {
1373 >        if (task == null)
1374 >            throw new NullPointerException();
1375 >        ForkJoinTask<?> job;
1376 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1377 >            job = (ForkJoinTask<?>) task;
1378 >        else
1379 >            job = ForkJoinTask.adapt(task, null);
1380 >        forkOrSubmit(job);
1381      }
1382  
1383      /**
1384 <     * Sets the maximum number of threads allowed to exist in the
804 <     * pool, even if there are insufficient unblocked running threads.
805 <     * Setting this value has no effect on current pool size. It
806 <     * controls construction of new threads.
1384 >     * Submits a ForkJoinTask for execution.
1385       *
1386 <     * @throws IllegalArgumentException if negative or greater then
1387 <     * internal implementation limit
1386 >     * @param task the task to submit
1387 >     * @return the task
1388 >     * @throws NullPointerException if the task is null
1389 >     * @throws RejectedExecutionException if the task cannot be
1390 >     *         scheduled for execution
1391       */
1392 <    public void setMaximumPoolSize(int newMax) {
1393 <        if (newMax < 0 || newMax > MAX_THREADS)
1394 <            throw new IllegalArgumentException();
1395 <        maxPoolSize = newMax;
1392 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1393 >        if (task == null)
1394 >            throw new NullPointerException();
1395 >        forkOrSubmit(task);
1396 >        return task;
1397 >    }
1398 >
1399 >    /**
1400 >     * @throws NullPointerException if the task is null
1401 >     * @throws RejectedExecutionException if the task cannot be
1402 >     *         scheduled for execution
1403 >     */
1404 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
1405 >        if (task == null)
1406 >            throw new NullPointerException();
1407 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1408 >        forkOrSubmit(job);
1409 >        return job;
1410      }
1411  
1412 +    /**
1413 +     * @throws NullPointerException if the task is null
1414 +     * @throws RejectedExecutionException if the task cannot be
1415 +     *         scheduled for execution
1416 +     */
1417 +    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1418 +        if (task == null)
1419 +            throw new NullPointerException();
1420 +        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1421 +        forkOrSubmit(job);
1422 +        return job;
1423 +    }
1424 +
1425 +    /**
1426 +     * @throws NullPointerException if the task is null
1427 +     * @throws RejectedExecutionException if the task cannot be
1428 +     *         scheduled for execution
1429 +     */
1430 +    public ForkJoinTask<?> submit(Runnable task) {
1431 +        if (task == null)
1432 +            throw new NullPointerException();
1433 +        ForkJoinTask<?> job;
1434 +        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1435 +            job = (ForkJoinTask<?>) task;
1436 +        else
1437 +            job = ForkJoinTask.adapt(task, null);
1438 +        forkOrSubmit(job);
1439 +        return job;
1440 +    }
1441 +
1442 +    /**
1443 +     * @throws NullPointerException       {@inheritDoc}
1444 +     * @throws RejectedExecutionException {@inheritDoc}
1445 +     */
1446 +    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1447 +        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1448 +            new ArrayList<ForkJoinTask<T>>(tasks.size());
1449 +        for (Callable<T> task : tasks)
1450 +            forkJoinTasks.add(ForkJoinTask.adapt(task));
1451 +        invoke(new InvokeAll<T>(forkJoinTasks));
1452 +
1453 +        @SuppressWarnings({"unchecked", "rawtypes"})
1454 +            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1455 +        return futures;
1456 +    }
1457 +
1458 +    static final class InvokeAll<T> extends RecursiveAction {
1459 +        final ArrayList<ForkJoinTask<T>> tasks;
1460 +        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1461 +        public void compute() {
1462 +            try { invokeAll(tasks); }
1463 +            catch (Exception ignore) {}
1464 +        }
1465 +        private static final long serialVersionUID = -7914297376763021607L;
1466 +    }
1467  
1468      /**
1469 <     * Returns true if this pool dynamically maintains its target
820 <     * parallelism level. If false, new threads are added only to
821 <     * avoid possible starvation.
822 <     * This setting is by default true.
1469 >     * Returns the factory used for constructing new workers.
1470       *
1471 <     * @return true if maintains parallelism
1471 >     * @return the factory used for constructing new workers
1472       */
1473 <    public boolean getMaintainsParallelism() {
1474 <        return maintainsParallelism;
1473 >    public ForkJoinWorkerThreadFactory getFactory() {
1474 >        return factory;
1475      }
1476  
1477      /**
1478 <     * Sets whether this pool dynamically maintains its target
1479 <     * parallelism level. If false, new threads are added only to
833 <     * avoid possible starvation.
1478 >     * Returns the handler for internal worker threads that terminate
1479 >     * due to unrecoverable errors encountered while executing tasks.
1480       *
1481 <     * @param enable true to maintains parallelism
1481 >     * @return the handler, or {@code null} if none
1482       */
1483 <    public void setMaintainsParallelism(boolean enable) {
1484 <        maintainsParallelism = enable;
1483 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1484 >        return ueh;
1485      }
1486  
1487      /**
1488 <     * Establishes local first-in-first-out scheduling mode for forked
1489 <     * tasks that are never joined. This mode may be more appropriate
1490 <     * than default locally stack-based mode in applications in which
1491 <     * worker threads only process asynchronous tasks.  This method is
1492 <     * designed to be invoked only when pool is quiescent, and
1493 <     * typically only before any tasks are submitted. The effects of
848 <     * invocations at other times may be unpredictable.
849 <     *
850 <     * @param async if true, use locally FIFO scheduling
851 <     * @return the previous mode
852 <     */
853 <    public boolean setAsyncMode(boolean async) {
854 <        boolean oldMode = locallyFifo;
855 <        locallyFifo = async;
856 <        ForkJoinWorkerThread[] ws = workers;
857 <        if (ws != null) {
858 <            for (int i = 0; i < ws.length; ++i) {
859 <                ForkJoinWorkerThread t = ws[i];
860 <                if (t != null)
861 <                    t.setAsyncMode(async);
862 <            }
863 <        }
864 <        return oldMode;
1488 >     * Returns the targeted parallelism level of this pool.
1489 >     *
1490 >     * @return the targeted parallelism level of this pool
1491 >     */
1492 >    public int getParallelism() {
1493 >        return parallelism;
1494      }
1495  
1496      /**
1497 <     * Returns true if this pool uses local first-in-first-out
1497 >     * Returns the number of worker threads that have started but not
1498 >     * yet terminated.  The result returned by this method may differ
1499 >     * from {@link #getParallelism} when threads are created to
1500 >     * maintain parallelism when others are cooperatively blocked.
1501 >     *
1502 >     * @return the number of worker threads
1503 >     */
1504 >    public int getPoolSize() {
1505 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1506 >    }
1507 >
1508 >    /**
1509 >     * Returns {@code true} if this pool uses local first-in-first-out
1510       * scheduling mode for forked tasks that are never joined.
1511       *
1512 <     * @return true if this pool uses async mode
1512 >     * @return {@code true} if this pool uses async mode
1513       */
1514      public boolean getAsyncMode() {
1515          return locallyFifo;
# Line 877 | Line 1518 | public class ForkJoinPool extends Abstra
1518      /**
1519       * Returns an estimate of the number of worker threads that are
1520       * not blocked waiting to join tasks or for other managed
1521 <     * synchronization.
1521 >     * synchronization. This method may overestimate the
1522 >     * number of running threads.
1523       *
1524       * @return the number of worker threads
1525       */
1526      public int getRunningThreadCount() {
1527 <        return runningCountOf(workerCounts);
1527 >        return workerCounts & RUNNING_COUNT_MASK;
1528      }
1529  
1530      /**
# Line 893 | Line 1535 | public class ForkJoinPool extends Abstra
1535       * @return the number of active threads
1536       */
1537      public int getActiveThreadCount() {
1538 <        return activeCountOf(runControl);
897 <    }
898 <
899 <    /**
900 <     * Returns an estimate of the number of threads that are currently
901 <     * idle waiting for tasks. This method may underestimate the
902 <     * number of idle threads.
903 <     *
904 <     * @return the number of idle threads
905 <     */
906 <    final int getIdleThreadCount() {
907 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
908 <        return (c <= 0) ? 0 : c;
1538 >        return runState & ACTIVE_COUNT_MASK;
1539      }
1540  
1541      /**
1542 <     * Returns true if all worker threads are currently idle. An idle
1543 <     * worker is one that cannot obtain a task to execute because none
1544 <     * are available to steal from other threads, and there are no
1545 <     * pending submissions to the pool. This method is conservative;
1546 <     * it might not return true immediately upon idleness of all
1547 <     * threads, but will eventually become true if threads remain
1548 <     * inactive.
1542 >     * Returns {@code true} if all worker threads are currently idle.
1543 >     * An idle worker is one that cannot obtain a task to execute
1544 >     * because none are available to steal from other threads, and
1545 >     * there are no pending submissions to the pool. This method is
1546 >     * conservative; it might not return {@code true} immediately upon
1547 >     * idleness of all threads, but will eventually become true if
1548 >     * threads remain inactive.
1549       *
1550 <     * @return true if all threads are currently idle
1550 >     * @return {@code true} if all threads are currently idle
1551       */
1552      public boolean isQuiescent() {
1553 <        return activeCountOf(runControl) == 0;
1553 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1554      }
1555  
1556      /**
# Line 935 | Line 1565 | public class ForkJoinPool extends Abstra
1565       * @return the number of steals
1566       */
1567      public long getStealCount() {
1568 <        return stealCount.get();
939 <    }
940 <
941 <    /**
942 <     * Accumulates steal count from a worker.
943 <     * Call only when worker known to be idle.
944 <     */
945 <    private void updateStealCount(ForkJoinWorkerThread w) {
946 <        int sc = w.getAndClearStealCount();
947 <        if (sc != 0)
948 <            stealCount.addAndGet(sc);
1568 >        return stealCount;
1569      }
1570  
1571      /**
# Line 960 | Line 1580 | public class ForkJoinPool extends Abstra
1580       */
1581      public long getQueuedTaskCount() {
1582          long count = 0;
1583 <        ForkJoinWorkerThread[] ws = workers;
1584 <        if (ws != null) {
1585 <            for (int i = 0; i < ws.length; ++i) {
966 <                ForkJoinWorkerThread t = ws[i];
967 <                if (t != null)
968 <                    count += t.getQueueSize();
969 <            }
970 <        }
1583 >        for (ForkJoinWorkerThread w : workers)
1584 >            if (w != null)
1585 >                count += w.getQueueSize();
1586          return count;
1587      }
1588  
1589      /**
1590 <     * Returns an estimate of the number tasks submitted to this pool
1591 <     * that have not yet begun executing. This method takes time
1590 >     * Returns an estimate of the number of tasks submitted to this
1591 >     * pool that have not yet begun executing.  This method takes time
1592       * proportional to the number of submissions.
1593       *
1594       * @return the number of queued submissions
# Line 983 | Line 1598 | public class ForkJoinPool extends Abstra
1598      }
1599  
1600      /**
1601 <     * Returns true if there are any tasks submitted to this pool
1602 <     * that have not yet begun executing.
1601 >     * Returns {@code true} if there are any tasks submitted to this
1602 >     * pool that have not yet begun executing.
1603       *
1604       * @return {@code true} if there are any queued submissions
1605       */
# Line 997 | Line 1612 | public class ForkJoinPool extends Abstra
1612       * available.  This method may be useful in extensions to this
1613       * class that re-assign work in systems with multiple pools.
1614       *
1615 <     * @return the next submission, or null if none
1615 >     * @return the next submission, or {@code null} if none
1616       */
1617      protected ForkJoinTask<?> pollSubmission() {
1618          return submissionQueue.poll();
# Line 1007 | Line 1622 | public class ForkJoinPool extends Abstra
1622       * Removes all available unexecuted submitted and forked tasks
1623       * from scheduling queues and adds them to the given collection,
1624       * without altering their execution status. These may include
1625 <     * artificially generated or wrapped tasks. This method is designed
1626 <     * to be invoked only when the pool is known to be
1625 >     * artificially generated or wrapped tasks. This method is
1626 >     * designed to be invoked only when the pool is known to be
1627       * quiescent. Invocations at other times may not remove all
1628       * tasks. A failure encountered while attempting to add elements
1629       * to collection {@code c} may result in elements being in
# Line 1020 | Line 1635 | public class ForkJoinPool extends Abstra
1635       * @param c the collection to transfer elements into
1636       * @return the number of elements transferred
1637       */
1638 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1639 <        int n = submissionQueue.drainTo(c);
1640 <        ForkJoinWorkerThread[] ws = workers;
1641 <        if (ws != null) {
1642 <            for (int i = 0; i < ws.length; ++i) {
1643 <                ForkJoinWorkerThread w = ws[i];
1029 <                if (w != null)
1030 <                    n += w.drainTasksTo(c);
1031 <            }
1032 <        }
1033 <        return n;
1638 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1639 >        int count = submissionQueue.drainTo(c);
1640 >        for (ForkJoinWorkerThread w : workers)
1641 >            if (w != null)
1642 >                count += w.drainTasksTo(c);
1643 >        return count;
1644      }
1645  
1646      /**
# Line 1041 | Line 1651 | public class ForkJoinPool extends Abstra
1651       * @return a string identifying this pool, as well as its state
1652       */
1653      public String toString() {
1044        int ps = parallelism;
1045        int wc = workerCounts;
1046        int rc = runControl;
1654          long st = getStealCount();
1655          long qt = getQueuedTaskCount();
1656          long qs = getQueuedSubmissionCount();
1657 +        int wc = workerCounts;
1658 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1659 +        int rc = wc & RUNNING_COUNT_MASK;
1660 +        int pc = parallelism;
1661 +        int rs = runState;
1662 +        int ac = rs & ACTIVE_COUNT_MASK;
1663          return super.toString() +
1664 <            "[" + runStateToString(runStateOf(rc)) +
1665 <            ", parallelism = " + ps +
1666 <            ", size = " + totalCountOf(wc) +
1667 <            ", active = " + activeCountOf(rc) +
1668 <            ", running = " + runningCountOf(wc) +
1664 >            "[" + runLevelToString(rs) +
1665 >            ", parallelism = " + pc +
1666 >            ", size = " + tc +
1667 >            ", active = " + ac +
1668 >            ", running = " + rc +
1669              ", steals = " + st +
1670              ", tasks = " + qt +
1671              ", submissions = " + qs +
1672              "]";
1673      }
1674  
1675 <    private static String runStateToString(int rs) {
1676 <        switch(rs) {
1677 <        case RUNNING: return "Running";
1678 <        case SHUTDOWN: return "Shutting down";
1679 <        case TERMINATING: return "Terminating";
1067 <        case TERMINATED: return "Terminated";
1068 <        default: throw new Error("Unknown run state");
1069 <        }
1675 >    private static String runLevelToString(int s) {
1676 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1677 >                ((s & TERMINATING) != 0 ? "Terminating" :
1678 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1679 >                  "Running")));
1680      }
1681  
1072    // lifecycle control
1073
1682      /**
1683       * Initiates an orderly shutdown in which previously submitted
1684       * tasks are executed, but no new tasks will be accepted.
# Line 1085 | Line 1693 | public class ForkJoinPool extends Abstra
1693       */
1694      public void shutdown() {
1695          checkPermission();
1696 <        transitionRunStateTo(SHUTDOWN);
1697 <        if (canTerminateOnShutdown(runControl))
1090 <            terminateOnShutdown();
1696 >        advanceRunLevel(SHUTDOWN);
1697 >        tryTerminate(false);
1698      }
1699  
1700      /**
1701 <     * Attempts to stop all actively executing tasks, and cancels all
1702 <     * waiting tasks.  Tasks that are in the process of being
1703 <     * submitted or executed concurrently during the course of this
1704 <     * method may or may not be rejected. Unlike some other executors,
1705 <     * this method cancels rather than collects non-executed tasks
1706 <     * upon termination, so always returns an empty list. However, you
1707 <     * can use method {@code drainTasksTo} before invoking this
1708 <     * method to transfer unexecuted tasks to another collection.
1701 >     * Attempts to cancel and/or stop all tasks, and reject all
1702 >     * subsequently submitted tasks.  Tasks that are in the process of
1703 >     * being submitted or executed concurrently during the course of
1704 >     * this method may or may not be rejected. This method cancels
1705 >     * both existing and unexecuted tasks, in order to permit
1706 >     * termination in the presence of task dependencies. So the method
1707 >     * always returns an empty list (unlike the case for some other
1708 >     * Executors).
1709       *
1710       * @return an empty list
1711       * @throws SecurityException if a security manager exists and
# Line 1108 | Line 1715 | public class ForkJoinPool extends Abstra
1715       */
1716      public List<Runnable> shutdownNow() {
1717          checkPermission();
1718 <        terminate();
1718 >        tryTerminate(true);
1719          return Collections.emptyList();
1720      }
1721  
# Line 1118 | Line 1725 | public class ForkJoinPool extends Abstra
1725       * @return {@code true} if all tasks have completed following shut down
1726       */
1727      public boolean isTerminated() {
1728 <        return runStateOf(runControl) == TERMINATED;
1728 >        return runState >= TERMINATED;
1729      }
1730  
1731      /**
1732       * Returns {@code true} if the process of termination has
1733 <     * commenced but possibly not yet completed.
1733 >     * commenced but not yet completed.  This method may be useful for
1734 >     * debugging. A return of {@code true} reported a sufficient
1735 >     * period after shutdown may indicate that submitted tasks have
1736 >     * ignored or suppressed interruption, causing this executor not
1737 >     * to properly terminate.
1738       *
1739 <     * @return {@code true} if terminating
1739 >     * @return {@code true} if terminating but not yet terminated
1740       */
1741      public boolean isTerminating() {
1742 <        return runStateOf(runControl) >= TERMINATING;
1742 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1743 >    }
1744 >
1745 >    /**
1746 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1747 >     */
1748 >    final boolean isAtLeastTerminating() {
1749 >        return runState >= TERMINATING;
1750      }
1751  
1752      /**
# Line 1137 | Line 1755 | public class ForkJoinPool extends Abstra
1755       * @return {@code true} if this pool has been shut down
1756       */
1757      public boolean isShutdown() {
1758 <        return runStateOf(runControl) >= SHUTDOWN;
1758 >        return runState >= SHUTDOWN;
1759      }
1760  
1761      /**
# Line 1153 | Line 1771 | public class ForkJoinPool extends Abstra
1771       */
1772      public boolean awaitTermination(long timeout, TimeUnit unit)
1773          throws InterruptedException {
1156        long nanos = unit.toNanos(timeout);
1157        final ReentrantLock lock = this.workerLock;
1158        lock.lock();
1774          try {
1775 <            for (;;) {
1776 <                if (isTerminated())
1162 <                    return true;
1163 <                if (nanos <= 0)
1164 <                    return false;
1165 <                nanos = termination.awaitNanos(nanos);
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <    }
1171 <
1172 <    // Shutdown and termination support
1173 <
1174 <    /**
1175 <     * Callback from terminating worker. Nulls out the corresponding
1176 <     * workers slot, and if terminating, tries to terminate; else
1177 <     * tries to shrink workers array.
1178 <     *
1179 <     * @param w the worker
1180 <     */
1181 <    final void workerTerminated(ForkJoinWorkerThread w) {
1182 <        updateStealCount(w);
1183 <        updateWorkerCount(-1);
1184 <        final ReentrantLock lock = this.workerLock;
1185 <        lock.lock();
1186 <        try {
1187 <            ForkJoinWorkerThread[] ws = workers;
1188 <            if (ws != null) {
1189 <                int idx = w.poolIndex;
1190 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1191 <                    ws[idx] = null;
1192 <                if (totalCountOf(workerCounts) == 0) {
1193 <                    terminate(); // no-op if already terminating
1194 <                    transitionRunStateTo(TERMINATED);
1195 <                    termination.signalAll();
1196 <                }
1197 <                else if (!isTerminating()) {
1198 <                    tryShrinkWorkerArray();
1199 <                    tryResumeSpare(true); // allow replacement
1200 <                }
1201 <            }
1202 <        } finally {
1203 <            lock.unlock();
1204 <        }
1205 <        signalIdleWorkers();
1206 <    }
1207 <
1208 <    /**
1209 <     * Initiates termination.
1210 <     */
1211 <    private void terminate() {
1212 <        if (transitionRunStateTo(TERMINATING)) {
1213 <            stopAllWorkers();
1214 <            resumeAllSpares();
1215 <            signalIdleWorkers();
1216 <            cancelQueuedSubmissions();
1217 <            cancelQueuedWorkerTasks();
1218 <            interruptUnterminatedWorkers();
1219 <            signalIdleWorkers(); // resignal after interrupt
1220 <        }
1221 <    }
1222 <
1223 <    /**
1224 <     * Possibly terminates when on shutdown state.
1225 <     */
1226 <    private void terminateOnShutdown() {
1227 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1228 <            terminate();
1229 <    }
1230 <
1231 <    /**
1232 <     * Clears out and cancels submissions.
1233 <     */
1234 <    private void cancelQueuedSubmissions() {
1235 <        ForkJoinTask<?> task;
1236 <        while ((task = pollSubmission()) != null)
1237 <            task.cancel(false);
1238 <    }
1239 <
1240 <    /**
1241 <     * Cleans out worker queues.
1242 <     */
1243 <    private void cancelQueuedWorkerTasks() {
1244 <        final ReentrantLock lock = this.workerLock;
1245 <        lock.lock();
1246 <        try {
1247 <            ForkJoinWorkerThread[] ws = workers;
1248 <            if (ws != null) {
1249 <                for (int i = 0; i < ws.length; ++i) {
1250 <                    ForkJoinWorkerThread t = ws[i];
1251 <                    if (t != null)
1252 <                        t.cancelTasks();
1253 <                }
1254 <            }
1255 <        } finally {
1256 <            lock.unlock();
1257 <        }
1258 <    }
1259 <
1260 <    /**
1261 <     * Sets each worker's status to terminating. Requires lock to avoid
1262 <     * conflicts with add/remove.
1263 <     */
1264 <    private void stopAllWorkers() {
1265 <        final ReentrantLock lock = this.workerLock;
1266 <        lock.lock();
1267 <        try {
1268 <            ForkJoinWorkerThread[] ws = workers;
1269 <            if (ws != null) {
1270 <                for (int i = 0; i < ws.length; ++i) {
1271 <                    ForkJoinWorkerThread t = ws[i];
1272 <                    if (t != null)
1273 <                        t.shutdownNow();
1274 <                }
1275 <            }
1276 <        } finally {
1277 <            lock.unlock();
1278 <        }
1279 <    }
1280 <
1281 <    /**
1282 <     * Interrupts all unterminated workers.  This is not required for
1283 <     * sake of internal control, but may help unstick user code during
1284 <     * shutdown.
1285 <     */
1286 <    private void interruptUnterminatedWorkers() {
1287 <        final ReentrantLock lock = this.workerLock;
1288 <        lock.lock();
1289 <        try {
1290 <            ForkJoinWorkerThread[] ws = workers;
1291 <            if (ws != null) {
1292 <                for (int i = 0; i < ws.length; ++i) {
1293 <                    ForkJoinWorkerThread t = ws[i];
1294 <                    if (t != null && !t.isTerminated()) {
1295 <                        try {
1296 <                            t.interrupt();
1297 <                        } catch (SecurityException ignore) {
1298 <                        }
1299 <                    }
1300 <                }
1301 <            }
1302 <        } finally {
1303 <            lock.unlock();
1304 <        }
1305 <    }
1306 <
1307 <
1308 <    /*
1309 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1310 <     * are basic Treiber stack nodes, also used for spare stack.
1311 <     *
1312 <     * The event barrier has an event count and a wait queue (actually
1313 <     * a Treiber stack).  Workers are enabled to look for work when
1314 <     * the eventCount is incremented. If they fail to find work, they
1315 <     * may wait for next count. Upon release, threads help others wake
1316 <     * up.
1317 <     *
1318 <     * Synchronization events occur only in enough contexts to
1319 <     * maintain overall liveness:
1320 <     *
1321 <     *   - Submission of a new task to the pool
1322 <     *   - Resizes or other changes to the workers array
1323 <     *   - pool termination
1324 <     *   - A worker pushing a task on an empty queue
1325 <     *
1326 <     * The case of pushing a task occurs often enough, and is heavy
1327 <     * enough compared to simple stack pushes, to require special
1328 <     * handling: Method signalWork returns without advancing count if
1329 <     * the queue appears to be empty.  This would ordinarily result in
1330 <     * races causing some queued waiters not to be woken up. To avoid
1331 <     * this, the first worker enqueued in method sync (see
1332 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1333 <     * helps signal if any are found. This works well because the
1334 <     * worker has nothing better to do, and so might as well help
1335 <     * alleviate the overhead and contention on the threads actually
1336 <     * doing work.  Also, since event counts increments on task
1337 <     * availability exist to maintain liveness (rather than to force
1338 <     * refreshes etc), it is OK for callers to exit early if
1339 <     * contending with another signaller.
1340 <     */
1341 <    static final class WaitQueueNode {
1342 <        WaitQueueNode next; // only written before enqueued
1343 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1344 <        final long count; // unused for spare stack
1345 <
1346 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1347 <            count = c;
1348 <            thread = w;
1349 <        }
1350 <
1351 <        /**
1352 <         * Wakes up waiter, returning false if known to already
1353 <         */
1354 <        boolean signal() {
1355 <            ForkJoinWorkerThread t = thread;
1356 <            if (t == null)
1357 <                return false;
1358 <            thread = null;
1359 <            LockSupport.unpark(t);
1360 <            return true;
1361 <        }
1362 <
1363 <        /**
1364 <         * Awaits release on sync.
1365 <         */
1366 <        void awaitSyncRelease(ForkJoinPool p) {
1367 <            while (thread != null && !p.syncIsReleasable(this))
1368 <                LockSupport.park(this);
1369 <        }
1370 <
1371 <        /**
1372 <         * Awaits resumption as spare.
1373 <         */
1374 <        void awaitSpareRelease() {
1375 <            while (thread != null) {
1376 <                if (!Thread.interrupted())
1377 <                    LockSupport.park(this);
1378 <            }
1379 <        }
1380 <    }
1381 <
1382 <    /**
1383 <     * Ensures that no thread is waiting for count to advance from the
1384 <     * current value of eventCount read on entry to this method, by
1385 <     * releasing waiting threads if necessary.
1386 <     *
1387 <     * @return the count
1388 <     */
1389 <    final long ensureSync() {
1390 <        long c = eventCount;
1391 <        WaitQueueNode q;
1392 <        while ((q = syncStack) != null && q.count < c) {
1393 <            if (casBarrierStack(q, null)) {
1394 <                do {
1395 <                    q.signal();
1396 <                } while ((q = q.next) != null);
1397 <                break;
1398 <            }
1399 <        }
1400 <        return c;
1401 <    }
1402 <
1403 <    /**
1404 <     * Increments event count and releases waiting threads.
1405 <     */
1406 <    private void signalIdleWorkers() {
1407 <        long c;
1408 <        do {} while (!casEventCount(c = eventCount, c+1));
1409 <        ensureSync();
1410 <    }
1411 <
1412 <    /**
1413 <     * Signals threads waiting to poll a task. Because method sync
1414 <     * rechecks availability, it is OK to only proceed if queue
1415 <     * appears to be non-empty, and OK to skip under contention to
1416 <     * increment count (since some other thread succeeded).
1417 <     */
1418 <    final void signalWork() {
1419 <        long c;
1420 <        WaitQueueNode q;
1421 <        if (syncStack != null &&
1422 <            casEventCount(c = eventCount, c+1) &&
1423 <            (((q = syncStack) != null && q.count <= c) &&
1424 <             (!casBarrierStack(q, q.next) || !q.signal())))
1425 <            ensureSync();
1426 <    }
1427 <
1428 <    /**
1429 <     * Waits until event count advances from last value held by
1430 <     * caller, or if excess threads, caller is resumed as spare, or
1431 <     * caller or pool is terminating. Updates caller's event on exit.
1432 <     *
1433 <     * @param w the calling worker thread
1434 <     */
1435 <    final void sync(ForkJoinWorkerThread w) {
1436 <        updateStealCount(w); // Transfer w's count while it is idle
1437 <
1438 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1439 <            long prev = w.lastEventCount;
1440 <            WaitQueueNode node = null;
1441 <            WaitQueueNode h;
1442 <            while (eventCount == prev &&
1443 <                   ((h = syncStack) == null || h.count == prev)) {
1444 <                if (node == null)
1445 <                    node = new WaitQueueNode(prev, w);
1446 <                if (casBarrierStack(node.next = h, node)) {
1447 <                    node.awaitSyncRelease(this);
1448 <                    break;
1449 <                }
1450 <            }
1451 <            long ec = ensureSync();
1452 <            if (ec != prev) {
1453 <                w.lastEventCount = ec;
1454 <                break;
1455 <            }
1456 <        }
1457 <    }
1458 <
1459 <    /**
1460 <     * Returns true if worker waiting on sync can proceed:
1461 <     *  - on signal (thread == null)
1462 <     *  - on event count advance (winning race to notify vs signaller)
1463 <     *  - on interrupt
1464 <     *  - if the first queued node, we find work available
1465 <     * If node was not signalled and event count not advanced on exit,
1466 <     * then we also help advance event count.
1467 <     *
1468 <     * @return true if node can be released
1469 <     */
1470 <    final boolean syncIsReleasable(WaitQueueNode node) {
1471 <        long prev = node.count;
1472 <        if (!Thread.interrupted() && node.thread != null &&
1473 <            (node.next != null ||
1474 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1475 <            eventCount == prev)
1775 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1776 >        } catch (TimeoutException ex) {
1777              return false;
1477        if (node.thread != null) {
1478            node.thread = null;
1479            long ec = eventCount;
1480            if (prev <= ec) // help signal
1481                casEventCount(ec, ec+1);
1482        }
1483        return true;
1484    }
1485
1486    /**
1487     * Returns true if a new sync event occurred since last call to
1488     * sync or this method, if so, updating caller's count.
1489     */
1490    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1491        long lc = w.lastEventCount;
1492        long ec = ensureSync();
1493        if (ec == lc)
1494            return false;
1495        w.lastEventCount = ec;
1496        return true;
1497    }
1498
1499    //  Parallelism maintenance
1500
1501    /**
1502     * Decrements running count; if too low, adds spare.
1503     *
1504     * Conceptually, all we need to do here is add or resume a
1505     * spare thread when one is about to block (and remove or
1506     * suspend it later when unblocked -- see suspendIfSpare).
1507     * However, implementing this idea requires coping with
1508     * several problems: we have imperfect information about the
1509     * states of threads. Some count updates can and usually do
1510     * lag run state changes, despite arrangements to keep them
1511     * accurate (for example, when possible, updating counts
1512     * before signalling or resuming), especially when running on
1513     * dynamic JVMs that don't optimize the infrequent paths that
1514     * update counts. Generating too many threads can make these
1515     * problems become worse, because excess threads are more
1516     * likely to be context-switched with others, slowing them all
1517     * down, especially if there is no work available, so all are
1518     * busy scanning or idling.  Also, excess spare threads can
1519     * only be suspended or removed when they are idle, not
1520     * immediately when they aren't needed. So adding threads will
1521     * raise parallelism level for longer than necessary.  Also,
1522     * FJ applications often encounter highly transient peaks when
1523     * many threads are blocked joining, but for less time than it
1524     * takes to create or resume spares.
1525     *
1526     * @param joinMe if non-null, return early if done
1527     * @param maintainParallelism if true, try to stay within
1528     * target counts, else create only to avoid starvation
1529     * @return true if joinMe known to be done
1530     */
1531    final boolean preJoin(ForkJoinTask<?> joinMe,
1532                          boolean maintainParallelism) {
1533        maintainParallelism &= maintainsParallelism; // overrride
1534        boolean dec = false;  // true when running count decremented
1535        while (spareStack == null || !tryResumeSpare(dec)) {
1536            int counts = workerCounts;
1537            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1538                // CAS cheat
1539                if (!needSpare(counts, maintainParallelism))
1540                    break;
1541                if (joinMe.status < 0)
1542                    return true;
1543                if (tryAddSpare(counts))
1544                    break;
1545            }
1546        }
1547        return false;
1548    }
1549
1550    /**
1551     * Same idea as preJoin
1552     */
1553    final boolean preBlock(ManagedBlocker blocker,
1554                           boolean maintainParallelism) {
1555        maintainParallelism &= maintainsParallelism;
1556        boolean dec = false;
1557        while (spareStack == null || !tryResumeSpare(dec)) {
1558            int counts = workerCounts;
1559            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1560                if (!needSpare(counts, maintainParallelism))
1561                    break;
1562                if (blocker.isReleasable())
1563                    return true;
1564                if (tryAddSpare(counts))
1565                    break;
1566            }
1567        }
1568        return false;
1569    }
1570
1571    /**
1572     * Returns true if a spare thread appears to be needed.  If
1573     * maintaining parallelism, returns true when the deficit in
1574     * running threads is more than the surplus of total threads, and
1575     * there is apparently some work to do.  This self-limiting rule
1576     * means that the more threads that have already been added, the
1577     * less parallelism we will tolerate before adding another.
1578     *
1579     * @param counts current worker counts
1580     * @param maintainParallelism try to maintain parallelism
1581     */
1582    private boolean needSpare(int counts, boolean maintainParallelism) {
1583        int ps = parallelism;
1584        int rc = runningCountOf(counts);
1585        int tc = totalCountOf(counts);
1586        int runningDeficit = ps - rc;
1587        int totalSurplus = tc - ps;
1588        return (tc < maxPoolSize &&
1589                (rc == 0 || totalSurplus < 0 ||
1590                 (maintainParallelism &&
1591                  runningDeficit > totalSurplus &&
1592                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1593    }
1594
1595    /**
1596     * Adds a spare worker if lock available and no more than the
1597     * expected numbers of threads exist.
1598     *
1599     * @return true if successful
1600     */
1601    private boolean tryAddSpare(int expectedCounts) {
1602        final ReentrantLock lock = this.workerLock;
1603        int expectedRunning = runningCountOf(expectedCounts);
1604        int expectedTotal = totalCountOf(expectedCounts);
1605        boolean success = false;
1606        boolean locked = false;
1607        // confirm counts while locking; CAS after obtaining lock
1608        try {
1609            for (;;) {
1610                int s = workerCounts;
1611                int tc = totalCountOf(s);
1612                int rc = runningCountOf(s);
1613                if (rc > expectedRunning || tc > expectedTotal)
1614                    break;
1615                if (!locked && !(locked = lock.tryLock()))
1616                    break;
1617                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1618                    createAndStartSpare(tc);
1619                    success = true;
1620                    break;
1621                }
1622            }
1623        } finally {
1624            if (locked)
1625                lock.unlock();
1626        }
1627        return success;
1628    }
1629
1630    /**
1631     * Adds the kth spare worker. On entry, pool counts are already
1632     * adjusted to reflect addition.
1633     */
1634    private void createAndStartSpare(int k) {
1635        ForkJoinWorkerThread w = null;
1636        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1637        int len = ws.length;
1638        // Probably, we can place at slot k. If not, find empty slot
1639        if (k < len && ws[k] != null) {
1640            for (k = 0; k < len && ws[k] != null; ++k)
1641                ;
1642        }
1643        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1644            ws[k] = w;
1645            w.start();
1646        }
1647        else
1648            updateWorkerCount(-1); // adjust on failure
1649        signalIdleWorkers();
1650    }
1651
1652    /**
1653     * Suspends calling thread w if there are excess threads.  Called
1654     * only from sync.  Spares are enqueued in a Treiber stack using
1655     * the same WaitQueueNodes as barriers.  They are resumed mainly
1656     * in preJoin, but are also woken on pool events that require all
1657     * threads to check run state.
1658     *
1659     * @param w the caller
1660     */
1661    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1662        WaitQueueNode node = null;
1663        int s;
1664        while (parallelism < runningCountOf(s = workerCounts)) {
1665            if (node == null)
1666                node = new WaitQueueNode(0, w);
1667            if (casWorkerCounts(s, s-1)) { // representation-dependent
1668                // push onto stack
1669                do {} while (!casSpareStack(node.next = spareStack, node));
1670                // block until released by resumeSpare
1671                node.awaitSpareRelease();
1672                return true;
1673            }
1674        }
1675        return false;
1676    }
1677
1678    /**
1679     * Tries to pop and resume a spare thread.
1680     *
1681     * @param updateCount if true, increment running count on success
1682     * @return true if successful
1683     */
1684    private boolean tryResumeSpare(boolean updateCount) {
1685        WaitQueueNode q;
1686        while ((q = spareStack) != null) {
1687            if (casSpareStack(q, q.next)) {
1688                if (updateCount)
1689                    updateRunningCount(1);
1690                q.signal();
1691                return true;
1692            }
1693        }
1694        return false;
1695    }
1696
1697    /**
1698     * Pops and resumes all spare threads. Same idea as ensureSync.
1699     *
1700     * @return true if any spares released
1701     */
1702    private boolean resumeAllSpares() {
1703        WaitQueueNode q;
1704        while ( (q = spareStack) != null) {
1705            if (casSpareStack(q, null)) {
1706                do {
1707                    updateRunningCount(1);
1708                    q.signal();
1709                } while ((q = q.next) != null);
1710                return true;
1711            }
1712        }
1713        return false;
1714    }
1715
1716    /**
1717     * Pops and shuts down excessive spare threads. Call only while
1718     * holding lock. This is not guaranteed to eliminate all excess
1719     * threads, only those suspended as spares, which are the ones
1720     * unlikely to be needed in the future.
1721     */
1722    private void trimSpares() {
1723        int surplus = totalCountOf(workerCounts) - parallelism;
1724        WaitQueueNode q;
1725        while (surplus > 0 && (q = spareStack) != null) {
1726            if (casSpareStack(q, null)) {
1727                do {
1728                    updateRunningCount(1);
1729                    ForkJoinWorkerThread w = q.thread;
1730                    if (w != null && surplus > 0 &&
1731                        runningCountOf(workerCounts) > 0 && w.shutdown())
1732                        --surplus;
1733                    q.signal();
1734                } while ((q = q.next) != null);
1735            }
1778          }
1779      }
1780  
1781      /**
1782       * Interface for extending managed parallelism for tasks running
1783 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1784 <     * Method {@code isReleasable} must return true if blocking is not
1785 <     * necessary. Method {@code block} blocks the current thread if
1786 <     * necessary (perhaps internally invoking {@code isReleasable}
1787 <     * before actually blocking.).
1783 >     * in {@link ForkJoinPool}s.
1784 >     *
1785 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1786 >     * {@code isReleasable} must return {@code true} if blocking is
1787 >     * not necessary. Method {@code block} blocks the current thread
1788 >     * if necessary (perhaps internally invoking {@code isReleasable}
1789 >     * before actually blocking). The unusual methods in this API
1790 >     * accommodate synchronizers that may, but don't usually, block
1791 >     * for long periods. Similarly, they allow more efficient internal
1792 >     * handling of cases in which additional workers may be, but
1793 >     * usually are not, needed to ensure sufficient parallelism.
1794 >     * Toward this end, implementations of method {@code isReleasable}
1795 >     * must be amenable to repeated invocation.
1796       *
1797       * <p>For example, here is a ManagedBlocker based on a
1798       * ReentrantLock:
# Line 1760 | Line 1810 | public class ForkJoinPool extends Abstra
1810       *     return hasLock || (hasLock = lock.tryLock());
1811       *   }
1812       * }}</pre>
1813 +     *
1814 +     * <p>Here is a class that possibly blocks waiting for an
1815 +     * item on a given queue:
1816 +     *  <pre> {@code
1817 +     * class QueueTaker<E> implements ManagedBlocker {
1818 +     *   final BlockingQueue<E> queue;
1819 +     *   volatile E item = null;
1820 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1821 +     *   public boolean block() throws InterruptedException {
1822 +     *     if (item == null)
1823 +     *       item = queue.take();
1824 +     *     return true;
1825 +     *   }
1826 +     *   public boolean isReleasable() {
1827 +     *     return item != null || (item = queue.poll()) != null;
1828 +     *   }
1829 +     *   public E getItem() { // call after pool.managedBlock completes
1830 +     *     return item;
1831 +     *   }
1832 +     * }}</pre>
1833       */
1834      public static interface ManagedBlocker {
1835          /**
1836           * Possibly blocks the current thread, for example waiting for
1837           * a lock or condition.
1838           *
1839 <         * @return true if no additional blocking is necessary (i.e.,
1840 <         * if isReleasable would return true)
1839 >         * @return {@code true} if no additional blocking is necessary
1840 >         * (i.e., if isReleasable would return true)
1841           * @throws InterruptedException if interrupted while waiting
1842           * (the method is not required to do so, but is allowed to)
1843           */
1844          boolean block() throws InterruptedException;
1845  
1846          /**
1847 <         * Returns true if blocking is unnecessary.
1847 >         * Returns {@code true} if blocking is unnecessary.
1848           */
1849          boolean isReleasable();
1850      }
1851  
1852      /**
1853       * Blocks in accord with the given blocker.  If the current thread
1854 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1855 <     * spare thread to be activated if necessary to ensure parallelism
1856 <     * while the current thread is blocked.  If
1787 <     * {@code maintainParallelism} is true and the pool supports
1788 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1789 <     * maintain the pool's nominal parallelism. Otherwise it activates
1790 <     * a thread only if necessary to avoid complete starvation. This
1791 <     * option may be preferable when blockages use timeouts, or are
1792 <     * almost always brief.
1854 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1855 >     * arranges for a spare thread to be activated if necessary to
1856 >     * ensure sufficient parallelism while the current thread is blocked.
1857       *
1858 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1859 <     * equivalent to
1858 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1859 >     * behaviorally equivalent to
1860       *  <pre> {@code
1861       * while (!blocker.isReleasable())
1862       *   if (blocker.block())
1863       *     return;
1864       * }</pre>
1865 <     * If the caller is a ForkJoinTask, then the pool may first
1866 <     * be expanded to ensure parallelism, and later adjusted.
1865 >     *
1866 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1867 >     * first be expanded to ensure parallelism, and later adjusted.
1868       *
1869       * @param blocker the blocker
1805     * @param maintainParallelism if true and supported by this pool,
1806     * attempt to maintain the pool's nominal parallelism; otherwise
1807     * activate a thread only if necessary to avoid complete
1808     * starvation.
1870       * @throws InterruptedException if blocker.block did so
1871       */
1872 <    public static void managedBlock(ManagedBlocker blocker,
1812 <                                    boolean maintainParallelism)
1872 >    public static void managedBlock(ManagedBlocker blocker)
1873          throws InterruptedException {
1874          Thread t = Thread.currentThread();
1875 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1876 <                             ((ForkJoinWorkerThread) t).pool : null);
1877 <        if (!blocker.isReleasable()) {
1878 <            try {
1879 <                if (pool == null ||
1880 <                    !pool.preBlock(blocker, maintainParallelism))
1821 <                    awaitBlocker(blocker);
1822 <            } finally {
1823 <                if (pool != null)
1824 <                    pool.updateRunningCount(1);
1825 <            }
1875 >        if (t instanceof ForkJoinWorkerThread) {
1876 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1877 >            w.pool.awaitBlocker(blocker);
1878 >        }
1879 >        else {
1880 >            do {} while (!blocker.isReleasable() && !blocker.block());
1881          }
1882      }
1883  
1884 <    private static void awaitBlocker(ManagedBlocker blocker)
1885 <        throws InterruptedException {
1886 <        do {} while (!blocker.isReleasable() && !blocker.block());
1832 <    }
1833 <
1834 <    // AbstractExecutorService overrides
1884 >    // AbstractExecutorService overrides.  These rely on undocumented
1885 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1886 >    // implement RunnableFuture.
1887  
1888      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1889 <        return new AdaptedRunnable(runnable, value);
1889 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1890      }
1891  
1892      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1893 <        return new AdaptedCallable(callable);
1893 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1894      }
1895  
1896 +    // Unsafe mechanics
1897 +
1898 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1899 +    private static final long workerCountsOffset =
1900 +        objectFieldOffset("workerCounts", ForkJoinPool.class);
1901 +    private static final long runStateOffset =
1902 +        objectFieldOffset("runState", ForkJoinPool.class);
1903 +    private static final long eventCountOffset =
1904 +        objectFieldOffset("eventCount", ForkJoinPool.class);
1905 +    private static final long eventWaitersOffset =
1906 +        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1907 +    private static final long stealCountOffset =
1908 +        objectFieldOffset("stealCount", ForkJoinPool.class);
1909 +    private static final long spareWaitersOffset =
1910 +        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1911 +
1912 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1913 +        try {
1914 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1915 +        } catch (NoSuchFieldException e) {
1916 +            // Convert Exception to corresponding Error
1917 +            NoSuchFieldError error = new NoSuchFieldError(field);
1918 +            error.initCause(e);
1919 +            throw error;
1920 +        }
1921 +    }
1922  
1923 <    // Temporary Unsafe mechanics for preliminary release
1924 <    private static Unsafe getUnsafe() throws Throwable {
1923 >    /**
1924 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1925 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1926 >     * into a jdk.
1927 >     *
1928 >     * @return a sun.misc.Unsafe
1929 >     */
1930 >    private static sun.misc.Unsafe getUnsafe() {
1931          try {
1932 <            return Unsafe.getUnsafe();
1932 >            return sun.misc.Unsafe.getUnsafe();
1933          } catch (SecurityException se) {
1934              try {
1935                  return java.security.AccessController.doPrivileged
1936 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1937 <                        public Unsafe run() throws Exception {
1938 <                            return getUnsafePrivileged();
1936 >                    (new java.security
1937 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1938 >                        public sun.misc.Unsafe run() throws Exception {
1939 >                            java.lang.reflect.Field f = sun.misc
1940 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1941 >                            f.setAccessible(true);
1942 >                            return (sun.misc.Unsafe) f.get(null);
1943                          }});
1944              } catch (java.security.PrivilegedActionException e) {
1945 <                throw e.getCause();
1945 >                throw new RuntimeException("Could not initialize intrinsics",
1946 >                                           e.getCause());
1947              }
1948          }
1949      }
1861
1862    private static Unsafe getUnsafePrivileged()
1863            throws NoSuchFieldException, IllegalAccessException {
1864        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1865        f.setAccessible(true);
1866        return (Unsafe) f.get(null);
1867    }
1868
1869    private static long fieldOffset(String fieldName)
1870            throws NoSuchFieldException {
1871        return UNSAFE.objectFieldOffset
1872            (ForkJoinPool.class.getDeclaredField(fieldName));
1873    }
1874
1875    static final Unsafe UNSAFE;
1876    static final long eventCountOffset;
1877    static final long workerCountsOffset;
1878    static final long runControlOffset;
1879    static final long syncStackOffset;
1880    static final long spareStackOffset;
1881
1882    static {
1883        try {
1884            UNSAFE = getUnsafe();
1885            eventCountOffset = fieldOffset("eventCount");
1886            workerCountsOffset = fieldOffset("workerCounts");
1887            runControlOffset = fieldOffset("runControl");
1888            syncStackOffset = fieldOffset("syncStack");
1889            spareStackOffset = fieldOffset("spareStack");
1890        } catch (Throwable e) {
1891            throw new RuntimeException("Could not initialize intrinsics", e);
1892        }
1893    }
1894
1895    private boolean casEventCount(long cmp, long val) {
1896        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1897    }
1898    private boolean casWorkerCounts(int cmp, int val) {
1899        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1900    }
1901    private boolean casRunControl(int cmp, int val) {
1902        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1903    }
1904    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1905        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1906    }
1907    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1908        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1909    }
1950   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines