ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.58 by dl, Fri Jul 23 13:07:43 2010 UTC vs.
Revision 1.87 by dl, Tue Nov 23 00:10:39 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.concurrent.AbstractExecutorService;
15 + import java.util.concurrent.Callable;
16 + import java.util.concurrent.ExecutorService;
17 + import java.util.concurrent.Future;
18 + import java.util.concurrent.RejectedExecutionException;
19 + import java.util.concurrent.RunnableFuture;
20 + import java.util.concurrent.TimeUnit;
21 + import java.util.concurrent.TimeoutException;
22 + import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.ReentrantLock;
18 import java.util.concurrent.atomic.AtomicInteger;
19 import java.util.concurrent.CountDownLatch;
25  
26   /**
27   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 52 | Line 57 | import java.util.concurrent.CountDownLat
57   * convenient form for informal monitoring.
58   *
59   * <p> As is the case with other ExecutorServices, there are three
60 < * main task execution methods summarized in the follwoing
60 > * main task execution methods summarized in the following
61   * table. These are designed to be used by clients not already engaged
62   * in fork/join computations in the current pool.  The main forms of
63   * these methods accept instances of {@code ForkJoinTask}, but
# Line 60 | Line 65 | import java.util.concurrent.CountDownLat
65   * Runnable}- or {@code Callable}- based activities as well.  However,
66   * tasks that are already executing in a pool should normally
67   * <em>NOT</em> use these pool execution methods, but instead use the
68 < * within-computation forms listed in the table.
68 > * within-computation forms listed in the table.
69   *
70   * <table BORDER CELLPADDING=3 CELLSPACING=1>
71   *  <tr>
# Line 69 | Line 74 | import java.util.concurrent.CountDownLat
74   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75   *  </tr>
76   *  <tr>
77 < *    <td> <b>Arange async execution</td>
77 > *    <td> <b>Arrange async execution</td>
78   *    <td> {@link #execute(ForkJoinTask)}</td>
79   *    <td> {@link ForkJoinTask#fork}</td>
80   *  </tr>
# Line 84 | Line 89 | import java.util.concurrent.CountDownLat
89   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90   *  </tr>
91   * </table>
92 < *
92 > *
93   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94   * used for all parallel task execution in a program or subsystem.
95   * Otherwise, use would not usually outweigh the construction and
# Line 110 | Line 115 | import java.util.concurrent.CountDownLat
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117   * {@link RejectedExecutionException}) only when the pool is shut down
118 < * or internal resources have been exhuasted.
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 138 | Line 143 | public class ForkJoinPool extends Abstra
143       * cache pollution effects.)
144       *
145       * Beyond work-stealing support and essential bookkeeping, the
146 <     * main responsibility of this framework is to arrange tactics for
147 <     * when one worker is waiting to join a task stolen (or always
148 <     * held by) another.  Becauae we are multiplexing many tasks on to
149 <     * a pool of workers, we can't just let them block (as in
150 <     * Thread.join).  We also cannot just reassign the joiner's
151 <     * run-time stack with another and replace it later, which would
152 <     * be a form of "continuation", that even if possible is not
153 <     * necessarily a good idea. Given that the creation costs of most
154 <     * threads on most systems mainly surrounds setting up runtime
155 <     * stacks, thread creation and switching is usually not much more
156 <     * expensive than stack creation and switching, and is more
157 <     * flexible). Instead we combine two tactics:
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158       *
159 <     *   1. Arranging for the joiner to execute some task that it
159 >     *   Helping: Arranging for the joiner to execute some task that it
160       *      would be running if the steal had not occurred.  Method
161       *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162       *      links to try to find such a task.
163       *
164 <     *   2. Unless there are already enough live threads, creating or
165 <     *      or re-activating a spare thread to compensate for the
166 <     *      (blocked) joiner until it unblocks.  Spares then suspend
167 <     *      at their next opportunity or eventually die if unused for
168 <     *      too long.  See below and the internal documentation
169 <     *      for tryAwaitJoin for more details about compensation
170 <     *      rules.
171 <     *
172 <     * Because the determining existence of conservatively safe
173 <     * helping targets, the availability of already-created spares,
174 <     * and the apparent need to create new spares are all racy and
175 <     * require heuristic guidance, joins (in
176 <     * ForkJoinWorkerThread.joinTask) interleave these options until
177 <     * successful.  Creating a new spare always succeeds, but also
178 <     * increases application footprint, so we try to avoid it, within
179 <     * reason.
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180       *
181 <     * The ManagedBlocker extension API can't use option (1) so uses a
182 <     * special version of (2) in method awaitBlocker.
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183       *
184       * The main throughput advantages of work-stealing stem from
185       * decentralized control -- workers mostly steal tasks from each
# Line 207 | Line 212 | public class ForkJoinPool extends Abstra
212       * blocked workers. However, all other support code is set up to
213       * work with other policies.
214       *
215 +     * To ensure that we do not hold on to worker references that
216 +     * would prevent GC, ALL accesses to workers are via indices into
217 +     * the workers array (which is one source of some of the unusual
218 +     * code constructions here). In essence, the workers array serves
219 +     * as a WeakReference mechanism. Thus for example the event queue
220 +     * stores worker indices, not worker references. Access to the
221 +     * workers in associated methods (for example releaseEventWaiters)
222 +     * must both index-check and null-check the IDs. All such accesses
223 +     * ignore bad IDs by returning out early from what they are doing,
224 +     * since this can only be associated with shutdown, in which case
225 +     * it is OK to give up. On termination, we just clobber these
226 +     * data structures without trying to use them.
227 +     *
228       * 2. Bookkeeping for dynamically adding and removing workers. We
229       * aim to approximately maintain the given level of parallelism.
230       * When some workers are known to be blocked (on joins or via
231       * ManagedBlocker), we may create or resume others to take their
232       * place until they unblock (see below). Implementing this
233       * requires counts of the number of "running" threads (i.e., those
234 <     * that are neither blocked nor artifically suspended) as well as
234 >     * that are neither blocked nor artificially suspended) as well as
235       * the total number.  These two values are packed into one field,
236       * "workerCounts" because we need accurate snapshots when deciding
237       * to create, resume or suspend.  Note however that the
238 <     * correspondance of these counts to reality is not guaranteed. In
238 >     * correspondence of these counts to reality is not guaranteed. In
239       * particular updates for unblocked threads may lag until they
240       * actually wake up.
241       *
# Line 248 | Line 266 | public class ForkJoinPool extends Abstra
266       * workers that previously could not find a task to now find one:
267       * Submission of a new task to the pool, or another worker pushing
268       * a task onto a previously empty queue.  (We also use this
269 <     * mechanism for termination and reconfiguration actions that
269 >     * mechanism for configuration and termination actions that
270       * require wakeups of idle workers).  Each worker maintains its
271       * last known event count, and blocks when a scan for work did not
272       * find a task AND its lastEventCount matches the current
# Line 259 | Line 277 | public class ForkJoinPool extends Abstra
277       * a record (field nextEventWaiter) for the next waiting worker.
278       * In addition to allowing simpler decisions about need for
279       * wakeup, the event count bits in eventWaiters serve the role of
280 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
281 <     * in task diffusion, workers not otherwise occupied may invoke
282 <     * method releaseWaiters, that removes and signals (unparks)
283 <     * workers not waiting on current count. To minimize task
284 <     * production stalls associate with signalling, any worker pushing
285 <     * a task on an empty queue invokes the weaker method signalWork,
268 <     * that only releases idle workers until it detects interference
269 <     * by other threads trying to release, and lets them take
270 <     * over. The net effect is a tree-like diffusion of signals, where
271 <     * released threads (and possibly others) help with unparks.  To
272 <     * further reduce contention effects a bit, failed CASes to
273 <     * increment field eventCount are tolerated without retries.
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286       * Conceptually they are merged into the same event, which is OK
287       * when their only purpose is to enable workers to scan for work.
288       *
289 <     * 5. Managing suspension of extra workers. When a worker is about
290 <     * to block waiting for a join (or via ManagedBlockers), we may
291 <     * create a new thread to maintain parallelism level, or at least
292 <     * avoid starvation. Usually, extra threads are needed for only
293 <     * very short periods, yet join dependencies are such that we
294 <     * sometimes need them in bursts. Rather than create new threads
295 <     * each time this happens, we suspend no-longer-needed extra ones
296 <     * as "spares". For most purposes, we don't distinguish "extra"
297 <     * spare threads from normal "core" threads: On each call to
298 <     * preStep (the only point at which we can do this) a worker
299 <     * checks to see if there are now too many running workers, and if
300 <     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
301 <     * look for suspended threads to resume before considering
302 <     * creating a new replacement. We don't need a special data
303 <     * structure to maintain spares; simply scanning the workers array
304 <     * looking for worker.isSuspended() is fine because the calling
305 <     * thread is otherwise not doing anything useful anyway; we are at
306 <     * least as happy if after locating a spare, the caller doesn't
307 <     * actually block because the join is ready before we try to
308 <     * adjust and compensate.  Note that this is intrinsically racy.
309 <     * One thread may become a spare at about the same time as another
310 <     * is needlessly being created. We counteract this and related
311 <     * slop in part by requiring resumed spares to immediately recheck
312 <     * (in preStep) to see whether they they should re-suspend. The
313 <     * only effective difference between "extra" and "core" threads is
314 <     * that we allow the "extra" ones to time out and die if they are
315 <     * not resumed within a keep-alive interval of a few seconds. This
316 <     * is implemented mainly within ForkJoinWorkerThread, but requires
317 <     * some coordination (isTrimmed() -- meaning killed while
318 <     * suspended) to correctly maintain pool counts.
319 <     *
320 <     * 6. Deciding when to create new workers. The main dynamic
321 <     * control in this class is deciding when to create extra threads,
322 <     * in methods awaitJoin and awaitBlocker. We always need to create
323 <     * one when the number of running threads would become zero and
324 <     * all workers are busy. However, this is not easy to detect
325 <     * reliably in the presence of transients so we use retries and
326 <     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
327 <     * effectively reduce churn at the price of systematically
328 <     * undershooting target parallelism when many threads are blocked.
329 <     * However, biasing toward undeshooting partially compensates for
330 <     * the above mechanics to suspend extra threads, that normally
331 <     * lead to overshoot because we can only suspend workers
332 <     * in-between top-level actions. It also better copes with the
333 <     * fact that some of the methods in this class tend to never
334 <     * become compiled (but are interpreted), so some components of
335 <     * the entire set of controls might execute many times faster than
336 <     * others. And similarly for cases where the apparent lack of work
337 <     * is just due to GC stalls and other transient system activity.
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340       *
341       * Beware that there is a lot of representation-level coupling
342       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 335 | Line 349 | public class ForkJoinPool extends Abstra
349       *
350       * Style notes: There are lots of inline assignments (of form
351       * "while ((local = field) != 0)") which are usually the simplest
352 <     * way to ensure read orderings. Also several occurrences of the
353 <     * unusual "do {} while(!cas...)" which is the simplest way to
354 <     * force an update of a CAS'ed variable. There are also other
355 <     * coding oddities that help some methods perform reasonably even
356 <     * when interpreted (not compiled), at the expense of messiness.
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359       *
360       * The order of declarations in this file is: (1) statics (2)
361       * fields (along with constants used when unpacking some of them)
# Line 407 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Absolute bound for parallelism level. Twice this number must
427 <     * fit into a 16bit field to enable word-packing for some counts.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443       */
444 <    private static final int MAX_THREADS = 0x7fff;
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453  
454      /**
455       * Array holding all worker threads in the pool.  Array size must
# Line 450 | Line 489 | public class ForkJoinPool extends Abstra
489      private volatile long stealCount;
490  
491      /**
492 <     * Encoded record of top of treiber stack of threads waiting for
492 >     * Encoded record of top of Treiber stack of threads waiting for
493       * events. The top 32 bits contain the count being waited for. The
494 <     * bottom word contains one plus the pool index of waiting worker
495 <     * thread.
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497      private volatile long eventWaiters;
498  
499 <    private static final int  EVENT_COUNT_SHIFT = 32;
500 <    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
499 >    private static final int EVENT_COUNT_SHIFT = 32;
500 >    private static final int WAITER_ID_MASK    = (1 << 16) - 1;
501  
502      /**
503       * A counter for events that may wake up worker threads:
504       *   - Submission of a new task to the pool
505       *   - A worker pushing a task on an empty queue
506 <     *   - termination and reconfiguration
506 >     *   - termination
507       */
508      private volatile int eventCount;
509  
510      /**
511 +     * Encoded record of top of Treiber stack of spare threads waiting
512 +     * for resumption. The top 16 bits contain an arbitrary count to
513 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 +     * index of waiting worker thread.
515 +     */
516 +    private volatile int spareWaiters;
517 +
518 +    private static final int SPARE_COUNT_SHIFT = 16;
519 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520 +
521 +    /**
522       * Lifecycle control. The low word contains the number of workers
523       * that are (probably) executing tasks. This value is atomically
524       * incremented before a worker gets a task to run, and decremented
525 <     * when worker has no tasks and cannot find any.  Bits 16-18
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526       * contain runLevel value. When all are zero, the pool is
527       * running. Level transitions are monotonic (running -> shutdown
528       * -> terminating -> terminated) so each transition adds a bit.
529       * These are bundled together to ensure consistent read for
530       * termination checks (i.e., that runLevel is at least SHUTDOWN
531       * and active threads is zero).
532 +     *
533 +     * Notes: Most direct CASes are dependent on these bitfield
534 +     * positions.  Also, this field is non-private to enable direct
535 +     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private volatile int runState;
537 >    volatile int runState;
538  
539      // Note: The order among run level values matters.
540      private static final int RUNLEVEL_SHIFT     = 16;
# Line 488 | Line 542 | public class ForkJoinPool extends Abstra
542      private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543      private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544      private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491    private static final int ONE_ACTIVE         = 1; // active update delta
545  
546      /**
547       * Holds number of total (i.e., created and not yet terminated)
# Line 497 | Line 550 | public class ForkJoinPool extends Abstra
550       * making decisions about creating and suspending spare
551       * threads. Updated only by CAS. Note that adding a new worker
552       * requires incrementing both counts, since workers start off in
553 <     * running state.  This field is also used for memory-fencing
501 <     * configuration parameters.
553 >     * running state.
554       */
555      private volatile int workerCounts;
556  
# Line 530 | Line 582 | public class ForkJoinPool extends Abstra
582       */
583      private final int poolNumber;
584  
585 <    // Utilities for CASing fields. Note that several of these
586 <    // are manually inlined by callers
585 >    // Utilities for CASing fields. Note that most of these
586 >    // are usually manually inlined by callers
587  
588      /**
589 <     * Increments running count.  Also used by ForkJoinTask.
589 >     * Increments running count part of workerCounts.
590       */
591      final void incrementRunningCount() {
592          int c;
593          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 <                                               c = workerCounts,
594 >                                               c = workerCounts,
595                                                 c + ONE_RUNNING));
596      }
597  
598      /**
599 <     * Tries to decrement running count unless already zero
599 >     * Tries to increment running count part of workerCounts.
600       */
601 <    final boolean tryDecrementRunningCount() {
602 <        int wc = workerCounts;
551 <        if ((wc & RUNNING_COUNT_MASK) == 0)
552 <            return false;
601 >    final boolean tryIncrementRunningCount() {
602 >        int c;
603          return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604 <                                        wc, wc - ONE_RUNNING);
604 >                                        c = workerCounts,
605 >                                        c + ONE_RUNNING);
606      }
607  
608      /**
609 <     * Tries to increment running count
609 >     * Tries to decrement running count unless already zero.
610       */
611 <    final boolean tryIncrementRunningCount() {
612 <        int wc;
611 >    final boolean tryDecrementRunningCount() {
612 >        int wc = workerCounts;
613 >        if ((wc & RUNNING_COUNT_MASK) == 0)
614 >            return false;
615          return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616 <                                        wc = workerCounts, wc + ONE_RUNNING);
616 >                                        wc, wc - ONE_RUNNING);
617      }
618  
619      /**
620 <     * Tries incrementing active count; fails on contention.
621 <     * Called by workers before executing tasks.
620 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
621 >     * (rarely) necessary when other count updates lag.
622       *
623 <     * @return true on success
623 >     * @param dr -- either zero or ONE_RUNNING
624 >     * @param dt -- either zero or ONE_TOTAL
625       */
626 <    final boolean tryIncrementActiveCount() {
627 <        int c;
628 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
629 <                                        c = runState, c + ONE_ACTIVE);
626 >    private void decrementWorkerCounts(int dr, int dt) {
627 >        for (;;) {
628 >            int wc = workerCounts;
629 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
630 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631 >                if ((runState & TERMINATED) != 0)
632 >                    return; // lagging termination on a backout
633 >                Thread.yield();
634 >            }
635 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636 >                                         wc, wc - (dr + dt)))
637 >                return;
638 >        }
639      }
640  
641      /**
# Line 582 | Line 645 | public class ForkJoinPool extends Abstra
645      final boolean tryDecrementActiveCount() {
646          int c;
647          return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 <                                        c = runState, c - ONE_ACTIVE);
648 >                                        c = runState, c - 1);
649      }
650  
651      /**
# Line 611 | Line 674 | public class ForkJoinPool extends Abstra
674          lock.lock();
675          try {
676              ForkJoinWorkerThread[] ws = workers;
677 <            int nws = ws.length;
678 <            if (k < 0 || k >= nws || ws[k] != null) {
679 <                for (k = 0; k < nws && ws[k] != null; ++k)
677 >            int n = ws.length;
678 >            if (k < 0 || k >= n || ws[k] != null) {
679 >                for (k = 0; k < n && ws[k] != null; ++k)
680                      ;
681 <                if (k == nws)
682 <                    ws = Arrays.copyOf(ws, nws << 1);
681 >                if (k == n)
682 >                    ws = workers = Arrays.copyOf(ws, n << 1);
683              }
684              ws[k] = w;
685 <            workers = ws; // volatile array write ensures slot visibility
685 >            int c = eventCount; // advance event count to ensure visibility
686 >            UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
687          } finally {
688              lock.unlock();
689          }
# Line 627 | Line 691 | public class ForkJoinPool extends Abstra
691      }
692  
693      /**
694 <     * Nulls out record of worker in workers array
694 >     * Nulls out record of worker in workers array.
695       */
696      private void forgetWorker(ForkJoinWorkerThread w) {
697          int idx = w.poolIndex;
698 <        // Locking helps method recordWorker avoid unecessary expansion
698 >        // Locking helps method recordWorker avoid unnecessary expansion
699          final ReentrantLock lock = this.workerLock;
700          lock.lock();
701          try {
# Line 643 | Line 707 | public class ForkJoinPool extends Abstra
707          }
708      }
709  
646    // adding and removing workers
647
710      /**
711 <     * Tries to create and add new worker. Assumes that worker counts
712 <     * are already updated to accommodate the worker, so adjusts on
713 <     * failure.
711 >     * Final callback from terminating worker.  Removes record of
712 >     * worker from array, and adjusts counts. If pool is shutting
713 >     * down, tries to complete termination.
714       *
715 <     * @return new worker or null if creation failed
715 >     * @param w the worker
716       */
717 <    private ForkJoinWorkerThread addWorker() {
718 <        ForkJoinWorkerThread w = null;
719 <        try {
720 <            w = factory.newThread(this);
721 <        } finally { // Adjust on either null or exceptional factory return
722 <            if (w == null) {
661 <                onWorkerCreationFailure();
662 <                return null;
663 <            }
664 <        }
665 <        w.start(recordWorker(w), ueh);
666 <        return w;
717 >    final void workerTerminated(ForkJoinWorkerThread w) {
718 >        forgetWorker(w);
719 >        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 >        while (w.stealCount != 0) // collect final count
721 >            tryAccumulateStealCount(w);
722 >        tryTerminate(false);
723      }
724  
725 +    // Waiting for and signalling events
726 +
727      /**
728 <     * Adjusts counts upon failure to create worker
728 >     * Releases workers blocked on a count not equal to current count.
729 >     * Normally called after precheck that eventWaiters isn't zero to
730 >     * avoid wasted array checks. Gives up upon a change in count or
731 >     * upon releasing two workers, letting others take over.
732       */
733 <    private void onWorkerCreationFailure() {
734 <        for (;;) {
735 <            int wc = workerCounts;
736 <            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
737 <                Thread.yield(); // wait for other counts to settle
738 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
739 <                                              wc - (ONE_RUNNING|ONE_TOTAL)))
733 >    private void releaseEventWaiters() {
734 >        ForkJoinWorkerThread[] ws = workers;
735 >        int n = ws.length;
736 >        long h = eventWaiters;
737 >        int ec = eventCount;
738 >        boolean releasedOne = false;
739 >        ForkJoinWorkerThread w; int id;
740 >        while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
741 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
742 >               id < n && (w = ws[id]) != null) {
743 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
744 >                                          h,  w.nextWaiter)) {
745 >                LockSupport.unpark(w);
746 >                if (releasedOne) // exit on second release
747 >                    break;
748 >                releasedOne = true;
749 >            }
750 >            if (eventCount != ec)
751                  break;
752 +            h = eventWaiters;
753          }
681        tryTerminate(false); // in case of failure during shutdown
754      }
755  
756      /**
757 <     * Creates and/or resumes enough workers to establish target
758 <     * parallelism, giving up if terminating or addWorker fails
687 <     *
688 <     * TODO: recast this to support lazier creation and automated
689 <     * parallelism maintenance
757 >     * Tries to advance eventCount and releases waiters. Called only
758 >     * from workers.
759       */
760 <    private void ensureEnoughWorkers() {
761 <        for (;;) {
762 <            int pc = parallelism;
763 <            int wc = workerCounts;
764 <            int rc = wc & RUNNING_COUNT_MASK;
696 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
697 <            if (tc < pc) {
698 <                if (runState == TERMINATING ||
699 <                    (UNSAFE.compareAndSwapInt
700 <                     (this, workerCountsOffset,
701 <                      wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
702 <                     addWorker() == null))
703 <                    break;
704 <            }
705 <            else if (tc > pc && rc < pc &&
706 <                     tc > (runState & ACTIVE_COUNT_MASK)) {
707 <                ForkJoinWorkerThread spare = null;
708 <                ForkJoinWorkerThread[] ws = workers;
709 <                int nws = ws.length;
710 <                for (int i = 0; i < nws; ++i) {
711 <                    ForkJoinWorkerThread w = ws[i];
712 <                    if (w != null && w.isSuspended()) {
713 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc ||
714 <                            runState == TERMINATING)
715 <                            return;
716 <                        if (w.tryResumeSpare())
717 <                            incrementRunningCount();
718 <                        break;
719 <                    }
720 <                }
721 <            }
722 <            else
723 <                break;
724 <        }
760 >    final void signalWork() {
761 >        int c; // try to increment event count -- CAS failure OK
762 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
763 >        if (eventWaiters != 0L)
764 >            releaseEventWaiters();
765      }
766  
767      /**
768 <     * Final callback from terminating worker.  Removes record of
769 <     * worker from array, and adjusts counts. If pool is shutting
730 <     * down, tries to complete terminatation, else possibly replaces
731 <     * the worker.
768 >     * Adds the given worker to event queue and blocks until
769 >     * terminating or event count advances from the given value
770       *
771 <     * @param w the worker
771 >     * @param w the calling worker thread
772 >     * @param ec the count
773       */
774 <    final void workerTerminated(ForkJoinWorkerThread w) {
775 <        if (w.active) { // force inactive
776 <            w.active = false;
777 <            do {} while (!tryDecrementActiveCount());
778 <        }
779 <        forgetWorker(w);
780 <
781 <        // Decrement total count, and if was running, running count
782 <        // Spin (waiting for other updates) if either would be negative
783 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
745 <        int unit = ONE_TOTAL + nr;
746 <        for (;;) {
747 <            int wc = workerCounts;
748 <            int rc = wc & RUNNING_COUNT_MASK;
749 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
750 <                Thread.yield(); // back off if waiting for other updates
751 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
752 <                                              wc, wc - unit))
774 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
775 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
776 >        long h;
777 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
778 >               (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
779 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
780 >               eventCount == ec) {
781 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
782 >                                          w.nextWaiter = h, nh)) {
783 >                awaitEvent(w, ec);
784                  break;
785 +            }
786          }
755
756        accumulateStealCount(w); // collect final count
757        if (!tryTerminate(false))
758            ensureEnoughWorkers();
787      }
788  
761    // Waiting for and signalling events
762
789      /**
790 <     * Releases workers blocked on a count not equal to current count.
791 <     * @return true if any released
790 >     * Blocks the given worker (that has already been entered as an
791 >     * event waiter) until terminating or event count advances from
792 >     * the given value. The oldest (first) waiter uses a timed wait to
793 >     * occasionally one-by-one shrink the number of workers (to a
794 >     * minimum of one) if the pool has not been used for extended
795 >     * periods.
796 >     *
797 >     * @param w the calling worker thread
798 >     * @param ec the count
799       */
800 <    private void releaseWaiters() {
801 <        long top;
802 <        while ((top = eventWaiters) != 0L) {
803 <            ForkJoinWorkerThread[] ws = workers;
804 <            int n = ws.length;
805 <            for (;;) {
806 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
807 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
808 <                    return;
809 <                ForkJoinWorkerThread w;
810 <                if (i < n && (w = ws[i]) != null &&
811 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
812 <                                              top, w.nextWaiter)) {
813 <                    LockSupport.unpark(w);
814 <                    top = eventWaiters;
800 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
801 >        while (eventCount == ec) {
802 >            if (tryAccumulateStealCount(w)) { // transfer while idle
803 >                boolean untimed = (w.nextWaiter != 0L ||
804 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
805 >                long startTime = untimed ? 0 : System.nanoTime();
806 >                Thread.interrupted();         // clear/ignore interrupt
807 >                if (w.isTerminating() || eventCount != ec)
808 >                    break;                    // recheck after clear
809 >                if (untimed)
810 >                    LockSupport.park(w);
811 >                else {
812 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
813 >                    if (eventCount != ec || w.isTerminating())
814 >                        break;
815 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
816 >                        tryShutdownUnusedWorker(ec);
817                  }
783                else
784                    break;      // possibly stale; reread
818              }
819          }
820      }
821  
822 +    // Maintaining parallelism
823 +
824      /**
825 <     * Ensures eventCount on exit is different (mod 2^32) than on
791 <     * entry and wakes up all waiters
825 >     * Pushes worker onto the spare stack.
826       */
827 <    private void signalEvent() {
828 <        int c;
829 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
830 <                                               c = eventCount, c+1));
797 <        releaseWaiters();
827 >    final void pushSpare(ForkJoinWorkerThread w) {
828 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
829 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
830 >                                               w.nextSpare = spareWaiters,ns));
831      }
832  
833      /**
834 <     * Advances eventCount and releases waiters until interference by
835 <     * other releasing threads is detected.
834 >     * Tries (once) to resume a spare if the number of running
835 >     * threads is less than target.
836       */
837 <    final void signalWork() {
838 <        int c;
839 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
840 <        long top;
841 <        while ((top = eventWaiters) != 0L) {
842 <            int ec = eventCount;
843 <            ForkJoinWorkerThread[] ws = workers;
844 <            int n = ws.length;
845 <            for (;;) {
846 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
847 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
848 <                    return;
849 <                ForkJoinWorkerThread w;
850 <                if (i < n && (w = ws[i]) != null &&
851 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
852 <                                              top, top = w.nextWaiter)) {
853 <                    LockSupport.unpark(w);
854 <                    if (top != eventWaiters) // let someone else take over
855 <                        return;
856 <                }
857 <                else
825 <                    break;      // possibly stale; reread
826 <            }
837 >    private void tryResumeSpare() {
838 >        int sw, id;
839 >        ForkJoinWorkerThread[] ws = workers;
840 >        int n = ws.length;
841 >        ForkJoinWorkerThread w;
842 >        if ((sw = spareWaiters) != 0 &&
843 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
844 >            id < n && (w = ws[id]) != null &&
845 >            (runState >= TERMINATING ||
846 >             (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
847 >            spareWaiters == sw &&
848 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
849 >                                     sw, w.nextSpare)) {
850 >            int c; // increment running count before resume
851 >            do {} while (!UNSAFE.compareAndSwapInt
852 >                         (this, workerCountsOffset,
853 >                          c = workerCounts, c + ONE_RUNNING));
854 >            if (w.tryUnsuspend())
855 >                LockSupport.unpark(w);
856 >            else   // back out if w was shutdown
857 >                decrementWorkerCounts(ONE_RUNNING, 0);
858          }
859      }
860  
861      /**
862 <     * If worker is inactive, blocks until terminating or event count
863 <     * advances from last value held by worker; in any case helps
864 <     * release others.
865 <     *
866 <     * @param w the calling worker thread
836 <     * @param retries the number of scans by caller failing to find work
837 <     * @return false if now too many threads running
862 >     * Tries to increase the number of running workers if below target
863 >     * parallelism: If a spare exists tries to resume it via
864 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
865 >     * existing workers are busy, adds a new worker. In all cases also
866 >     * helps wake up releasable workers waiting for work.
867       */
868 <    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
869 <        int wec = w.lastEventCount;
870 <        if (retries > 1) { // can only block after 2nd miss
871 <            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
872 <                            ((long)(w.poolIndex + 1)));
873 <            long top;
874 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
875 <                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
876 <                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
877 <                   eventCount == wec) {
878 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
879 <                                              w.nextWaiter = top, nextTop)) {
880 <                    accumulateStealCount(w); // transfer steals while idle
881 <                    Thread.interrupted();    // clear/ignore interrupt
882 <                    while (eventCount == wec)
883 <                        w.doPark();
868 >    private void helpMaintainParallelism() {
869 >        int pc = parallelism;
870 >        int wc, rs, tc;
871 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
872 >               (rs = runState) < TERMINATING) {
873 >            if (spareWaiters != 0)
874 >                tryResumeSpare();
875 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
876 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
877 >                break;   // enough total
878 >            else if (runState == rs && workerCounts == wc &&
879 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
880 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
881 >                ForkJoinWorkerThread w = null;
882 >                Throwable fail = null;
883 >                try {
884 >                    w = factory.newThread(this);
885 >                } catch (Throwable ex) {
886 >                    fail = ex;
887 >                }
888 >                if (w == null) { // null or exceptional factory return
889 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
890 >                    tryTerminate(false); // handle failure during shutdown
891 >                    // If originating from an external caller,
892 >                    // propagate exception, else ignore
893 >                    if (fail != null && runState < TERMINATING &&
894 >                        !(Thread.currentThread() instanceof
895 >                          ForkJoinWorkerThread))
896 >                        UNSAFE.throwException(fail);
897                      break;
898                  }
899 +                w.start(recordWorker(w), ueh);
900 +                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
901 +                    break; // add at most one unless total below target
902              }
858            wec = eventCount;
903          }
904 <        releaseWaiters();
905 <        int wc = workerCounts;
906 <        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
907 <            w.lastEventCount = wec;
908 <            return true;
904 >        if (eventWaiters != 0L)
905 >            releaseEventWaiters();
906 >    }
907 >
908 >    /**
909 >     * Callback from the oldest waiter in awaitEvent waking up after a
910 >     * period of non-use. If all workers are idle, tries (once) to
911 >     * shutdown an event waiter or a spare, if one exists. Note that
912 >     * we don't need CAS or locks here because the method is called
913 >     * only from one thread occasionally waking (and even misfires are
914 >     * OK). Note that until the shutdown worker fully terminates,
915 >     * workerCounts will overestimate total count, which is tolerable.
916 >     *
917 >     * @param ec the event count waited on by caller (to abort
918 >     * attempt if count has since changed).
919 >     */
920 >    private void tryShutdownUnusedWorker(int ec) {
921 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
922 >            ForkJoinWorkerThread[] ws = workers;
923 >            int n = ws.length;
924 >            ForkJoinWorkerThread w = null;
925 >            boolean shutdown = false;
926 >            int sw;
927 >            long h;
928 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
929 >                int id = (sw & SPARE_ID_MASK) - 1;
930 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
931 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
932 >                                             sw, w.nextSpare))
933 >                    shutdown = true;
934 >            }
935 >            else if ((h = eventWaiters) != 0L) {
936 >                long nh;
937 >                int id = (((int)h) & WAITER_ID_MASK) - 1;
938 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
939 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
940 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
941 >                    shutdown = true;
942 >            }
943 >            if (w != null && shutdown) {
944 >                w.shutdown();
945 >                LockSupport.unpark(w);
946 >            }
947          }
948 <        if (wec != w.lastEventCount) // back up if may re-wait
867 <            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
868 <        return false;
948 >        releaseEventWaiters(); // in case of interference
949      }
950  
951      /**
952       * Callback from workers invoked upon each top-level action (i.e.,
953 <     * stealing a task or taking a submission and running
954 <     * it). Performs one or both of the following:
953 >     * stealing a task or taking a submission and running it).
954 >     * Performs one or more of the following:
955       *
956 <     * * If the worker cannot find work, updates its active status to
957 <     * inactive and updates activeCount unless there is contention, in
958 <     * which case it may try again (either in this or a subsequent
959 <     * call).  Additionally, awaits the next task event and/or helps
960 <     * wake up other releasable waiters.
961 <     *
962 <     * * If there are too many running threads, suspends this worker
963 <     * (first forcing inactivation if necessary).  If it is not
964 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
965 <     * -- killed while suspended within suspendAsSpare. Otherwise,
966 <     * upon resume it rechecks to make sure that it is still needed.
956 >     * 1. If the worker is active and either did not run a task
957 >     *    or there are too many workers, try to set its active status
958 >     *    to inactive and update activeCount. On contention, we may
959 >     *    try again in this or a subsequent call.
960 >     *
961 >     * 2. If not enough total workers, help create some.
962 >     *
963 >     * 3. If there are too many running workers, suspend this worker
964 >     *    (first forcing inactive if necessary).  If it is not needed,
965 >     *    it may be shutdown while suspended (via
966 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
967 >     *    rechecks running thread count and need for event sync.
968 >     *
969 >     * 4. If worker did not run a task, await the next task event via
970 >     *    eventSync if necessary (first forcing inactivation), upon
971 >     *    which the worker may be shutdown via
972 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
973 >     *    existing event waiters that are now releasable,
974       *
975       * @param w the worker
976 <     * @param retries the number of scans by caller failing to find work
890 <     * find any (in which case it may block waiting for work).
976 >     * @param ran true if worker ran a task since last call to this method
977       */
978 <    final void preStep(ForkJoinWorkerThread w, int retries) {
978 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
979 >        int wec = w.lastEventCount;
980          boolean active = w.active;
981 <        boolean inactivate = active && retries != 0;
982 <        for (;;) {
983 <            int rs, wc;
984 <            if (inactivate &&
985 <                UNSAFE.compareAndSwapInt(this, runStateOffset,
986 <                                         rs = runState, rs - ONE_ACTIVE))
981 >        boolean inactivate = false;
982 >        int pc = parallelism;
983 >        while (w.runState == 0) {
984 >            int rs = runState;
985 >            if (rs >= TERMINATING) {           // propagate shutdown
986 >                w.shutdown();
987 >                break;
988 >            }
989 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
990 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
991                  inactivate = active = w.active = false;
992 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
993 <                if (active || eventSync(w, retries))
994 <                    break;
992 >                if (rs == SHUTDOWN) {          // all inactive and shut down
993 >                    tryTerminate(false);
994 >                    continue;
995 >                }
996 >            }
997 >            int wc = workerCounts;             // try to suspend as spare
998 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
999 >                if (!(inactivate |= active) && // must inactivate to suspend
1000 >                    workerCounts == wc &&
1001 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1002 >                                             wc, wc - ONE_RUNNING))
1003 >                    w.suspendAsSpare();
1004              }
1005 <            else if (!(inactivate |= active) &&  // must inactivate to suspend
1006 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1007 <                                         wc, wc - ONE_RUNNING) &&
908 <                !w.suspendAsSpare())             // false if trimmed
1005 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1006 >                helpMaintainParallelism();     // not enough workers
1007 >            else if (ran)
1008                  break;
1009 +            else {
1010 +                long h = eventWaiters;
1011 +                int ec = eventCount;
1012 +                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1013 +                    releaseEventWaiters();     // release others before waiting
1014 +                else if (ec != wec) {
1015 +                    w.lastEventCount = ec;     // no need to wait
1016 +                    break;
1017 +                }
1018 +                else if (!(inactivate |= active))
1019 +                    eventSync(w, wec);         // must inactivate before sync
1020 +            }
1021          }
1022      }
1023  
1024      /**
1025 <     * Awaits join of the given task if enough threads, or can resume
1026 <     * or create a spare. Fails (in which case the given task might
916 <     * not be done) upon contention or lack of decision about
917 <     * blocking. Returns void because caller must check
918 <     * task status on return anyway.
919 <     *
920 <     * We allow blocking if:
921 <     *
922 <     * 1. There would still be at least as many running threads as
923 <     *    parallelism level if this thread blocks.
924 <     *
925 <     * 2. A spare is resumed to replace this worker. We tolerate
926 <     *    slop in the decision to replace if a spare is found without
927 <     *    first decrementing run count.  This may release too many,
928 <     *    but if so, the superfluous ones will re-suspend via
929 <     *    preStep().
930 <     *
931 <     * 3. After #spares repeated checks, there are no fewer than #spare
932 <     *    threads not running. We allow this slack to avoid hysteresis
933 <     *    and as a hedge against lag/uncertainty of running count
934 <     *    estimates when signalling or unblocking stalls.
935 <     *
936 <     * 4. All existing workers are busy (as rechecked via repeated
937 <     *    retries by caller) and a new spare is created.
938 <     *
939 <     * If none of the above hold, we try to escape out by
940 <     * re-incrementing count and returning to caller, which can retry
941 <     * later.
1025 >     * Helps and/or blocks awaiting join of the given task.
1026 >     * See above for explanation.
1027       *
1028       * @param joinMe the task to join
1029 <     * @param retries if negative, then serve only as a precheck
1030 <     *   that the thread can be replaced by a spare. Otherwise,
1031 <     *   the number of repeated calls to this method returning busy
1032 <     * @return true if the call must be retried because there
1033 <     *   none of the blocking checks hold
1034 <     */
1035 <    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
1036 <        if (joinMe.status < 0) // precheck to prime loop
1037 <            return false;
1038 <        int pc = parallelism;
1039 <        boolean running = true; // false when running count decremented
1040 <        outer:for (;;) {
1029 >     * @param worker the current worker thread
1030 >     * @param timed true if wait should time out
1031 >     * @param nanos timeout value if timed
1032 >     */
1033 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1034 >                         boolean timed, long nanos) {
1035 >        long startTime = timed? System.nanoTime() : 0L;
1036 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1037 >        boolean running = true;               // false when count decremented
1038 >        while (joinMe.status >= 0) {
1039 >            if (runState >= TERMINATING) {
1040 >                joinMe.cancelIgnoringExceptions();
1041 >                break;
1042 >            }
1043 >            running = worker.helpJoinTask(joinMe, running);
1044 >            if (joinMe.status < 0)
1045 >                break;
1046 >            if (retries > 0) {
1047 >                --retries;
1048 >                continue;
1049 >            }
1050              int wc = workerCounts;
1051 <            int rc = wc & RUNNING_COUNT_MASK;
1052 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1053 <            if (running) { // replace with spare or decrement count
1054 <                if (rc <= pc && tc > pc &&
1055 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1056 <                    ForkJoinWorkerThread[] ws = workers;
1057 <                    int nws = ws.length;
1058 <                    for (int i = 0; i < nws; ++i) { // search for spare
1059 <                        ForkJoinWorkerThread w = ws[i];
1060 <                        if (w != null) {
1061 <                            if (joinMe.status < 0)
1062 <                                return false;
1063 <                            if (w.isSuspended()) {
1064 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1065 <                                    w.tryResumeSpare()) {
1066 <                                    running = false;
1067 <                                    break outer;
1068 <                                }
1069 <                                continue outer; // rescan
1070 <                            }
1051 >            if ((wc & RUNNING_COUNT_MASK) != 0) {
1052 >                if (running) {
1053 >                    if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1054 >                                                  wc, wc - ONE_RUNNING))
1055 >                        continue;
1056 >                    running = false;
1057 >                }
1058 >                long h = eventWaiters;
1059 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1060 >                    releaseEventWaiters();
1061 >                if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1062 >                    long ms; int ns;
1063 >                    if (!timed) {
1064 >                        ms = JOIN_TIMEOUT_MILLIS;
1065 >                        ns = 0;
1066 >                    }
1067 >                    else { // at most JOIN_TIMEOUT_MILLIS per wait
1068 >                        long nt = nanos - (System.nanoTime() - startTime);
1069 >                        if (nt <= 0L)
1070 >                            break;
1071 >                        ms = nt / 1000000;
1072 >                        if (ms > JOIN_TIMEOUT_MILLIS) {
1073 >                            ms = JOIN_TIMEOUT_MILLIS;
1074 >                            ns = 0;
1075                          }
1076 +                        else
1077 +                            ns = (int) (nt % 1000000);
1078                      }
1079 +                    joinMe.internalAwaitDone(ms, ns);
1080                  }
1081 <                if (retries < 0 || // < 0 means replacement check only
981 <                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
982 <                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
983 <                                              wc, wc - ONE_RUNNING))
984 <                    return false; // done or inconsistent or contended
985 <                running = false;
986 <                if (rc > pc)
987 <                    break;
988 <            }
989 <            else { // allow blocking if enough threads
990 <                if (rc >= pc || joinMe.status < 0)
1081 >                if (joinMe.status < 0)
1082                      break;
992                int sc = tc - pc + 1; // = spare threads, plus the one to add
993                if (retries > sc) {
994                    if (rc > 0 && rc >= pc - sc) // allow slack
995                        break;
996                    if (tc < MAX_THREADS &&
997                        tc == (runState & ACTIVE_COUNT_MASK) &&
998                        workerCounts == wc &&
999                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1000                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1001                        addWorker();
1002                        break;
1003                    }
1004                }
1005                if (workerCounts == wc &&        // back out to allow rescan
1006                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1007                                              wc, wc + ONE_RUNNING)) {
1008                    releaseWaiters();            // help others progress
1009                    return true;                 // let caller retry
1010                }
1083              }
1084 +            helpMaintainParallelism();
1085 +        }
1086 +        if (!running) {
1087 +            int c;
1088 +            do {} while (!UNSAFE.compareAndSwapInt
1089 +                         (this, workerCountsOffset,
1090 +                          c = workerCounts, c + ONE_RUNNING));
1091          }
1013        // arrive here if can block
1014        joinMe.internalAwaitDone();
1015        int c;                      // to inline incrementRunningCount
1016        do {} while (!UNSAFE.compareAndSwapInt
1017                     (this, workerCountsOffset,
1018                      c = workerCounts, c + ONE_RUNNING));
1019        return false;
1092      }
1093  
1094      /**
1095 <     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1024 <     * but self-contained because there are no caller retries.
1025 <     * TODO: Rework to use simpler API.
1095 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1096       */
1097      final void awaitBlocker(ManagedBlocker blocker)
1098          throws InterruptedException {
1099 <        boolean done;
1030 <        if (done = blocker.isReleasable())
1031 <            return;
1032 <        int pc = parallelism;
1033 <        int retries = 0;
1034 <        boolean running = true; // false when running count decremented
1035 <        outer:for (;;) {
1099 >        while (!blocker.isReleasable()) {
1100              int wc = workerCounts;
1101 <            int rc = wc & RUNNING_COUNT_MASK;
1102 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1103 <            if (running) {
1104 <                if (rc <= pc && tc > pc &&
1105 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1106 <                    ForkJoinWorkerThread[] ws = workers;
1107 <                    int nws = ws.length;
1108 <                    for (int i = 0; i < nws; ++i) {
1109 <                        ForkJoinWorkerThread w = ws[i];
1110 <                        if (w != null) {
1111 <                            if (done = blocker.isReleasable())
1112 <                                return;
1113 <                            if (w.isSuspended()) {
1114 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1115 <                                    w.tryResumeSpare()) {
1052 <                                    running = false;
1053 <                                    break outer;
1054 <                                }
1055 <                                continue outer; // rescan
1056 <                            }
1057 <                        }
1058 <                    }
1059 <                }
1060 <                if (done = blocker.isReleasable())
1061 <                    return;
1062 <                if (rc == 0 || workerCounts != wc ||
1063 <                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1064 <                                              wc, wc - ONE_RUNNING))
1065 <                    continue;
1066 <                running = false;
1067 <                if (rc > pc)
1068 <                    break;
1069 <            }
1070 <            else {
1071 <                if (rc >= pc || (done = blocker.isReleasable()))
1072 <                    break;
1073 <                int sc = tc - pc + 1;
1074 <                if (retries++ > sc) {
1075 <                    if (rc > 0 && rc >= pc - sc)
1076 <                        break;
1077 <                    if (tc < MAX_THREADS &&
1078 <                        tc == (runState & ACTIVE_COUNT_MASK) &&
1079 <                        workerCounts == wc &&
1080 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1081 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1082 <                        addWorker();
1083 <                        break;
1101 >            if ((wc & RUNNING_COUNT_MASK) == 0)
1102 >                helpMaintainParallelism();
1103 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1104 >                                              wc, wc - ONE_RUNNING)) {
1105 >                try {
1106 >                    while (!blocker.isReleasable()) {
1107 >                        long h = eventWaiters;
1108 >                        if (h != 0L &&
1109 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1110 >                            releaseEventWaiters();
1111 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1112 >                                 runState < TERMINATING)
1113 >                            helpMaintainParallelism();
1114 >                        else if (blocker.block())
1115 >                            break;
1116                      }
1117 +                } finally {
1118 +                    int c;
1119 +                    do {} while (!UNSAFE.compareAndSwapInt
1120 +                                 (this, workerCountsOffset,
1121 +                                  c = workerCounts, c + ONE_RUNNING));
1122                  }
1123 <                Thread.yield();
1087 <            }
1088 <        }
1089 <        
1090 <        try {
1091 <            if (!done)
1092 <                do {} while (!blocker.isReleasable() && !blocker.block());
1093 <        } finally {
1094 <            if (!running) {
1095 <                int c;
1096 <                do {} while (!UNSAFE.compareAndSwapInt
1097 <                             (this, workerCountsOffset,
1098 <                              c = workerCounts, c + ONE_RUNNING));
1123 >                break;
1124              }
1125          }
1126 <    }  
1126 >    }
1127  
1128      /**
1129       * Possibly initiates and/or completes termination.
# Line 1121 | Line 1146 | public class ForkJoinPool extends Abstra
1146          // Finish now if all threads terminated; else in some subsequent call
1147          if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1148              advanceRunLevel(TERMINATED);
1149 <            termination.arrive();
1149 >            termination.forceTermination();
1150          }
1151          return true;
1152      }
1153  
1154      /**
1155       * Actions on transition to TERMINATING
1156 +     *
1157 +     * Runs up to four passes through workers: (0) shutting down each
1158 +     * (without waking up if parked) to quickly spread notifications
1159 +     * without unnecessary bouncing around event queues etc (1) wake
1160 +     * up and help cancel tasks (2) interrupt (3) mop up races with
1161 +     * interrupted workers
1162       */
1163      private void startTerminating() {
1164 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1165 <            cancelSubmissions();
1166 <            shutdownWorkers();
1167 <            cancelWorkerTasks();
1168 <            signalEvent();
1169 <            interruptWorkers();
1164 >        cancelSubmissions();
1165 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1166 >            int c; // advance event count
1167 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1168 >                                     c = eventCount, c+1);
1169 >            eventWaiters = 0L; // clobber lists
1170 >            spareWaiters = 0;
1171 >            for (ForkJoinWorkerThread w : workers) {
1172 >                if (w != null) {
1173 >                    w.shutdown();
1174 >                    if (passes > 0 && !w.isTerminated()) {
1175 >                        w.cancelTasks();
1176 >                        LockSupport.unpark(w);
1177 >                        if (passes > 1 && !w.isInterrupted()) {
1178 >                            try {
1179 >                                w.interrupt();
1180 >                            } catch (SecurityException ignore) {
1181 >                            }
1182 >                        }
1183 >                    }
1184 >                }
1185 >            }
1186          }
1187      }
1188  
1189      /**
1190 <     * Clear out and cancel submissions, ignoring exceptions
1190 >     * Clears out and cancels submissions, ignoring exceptions.
1191       */
1192      private void cancelSubmissions() {
1193          ForkJoinTask<?> task;
# Line 1152 | Line 1199 | public class ForkJoinPool extends Abstra
1199          }
1200      }
1201  
1155    /**
1156     * Sets all worker run states to at least shutdown,
1157     * also resuming suspended workers
1158     */
1159    private void shutdownWorkers() {
1160        ForkJoinWorkerThread[] ws = workers;
1161        int nws = ws.length;
1162        for (int i = 0; i < nws; ++i) {
1163            ForkJoinWorkerThread w = ws[i];
1164            if (w != null)
1165                w.shutdown();
1166        }
1167    }
1168
1169    /**
1170     * Clears out and cancels all locally queued tasks
1171     */
1172    private void cancelWorkerTasks() {
1173        ForkJoinWorkerThread[] ws = workers;
1174        int nws = ws.length;
1175        for (int i = 0; i < nws; ++i) {
1176            ForkJoinWorkerThread w = ws[i];
1177            if (w != null)
1178                w.cancelTasks();
1179        }
1180    }
1181
1182    /**
1183     * Unsticks all workers blocked on joins etc
1184     */
1185    private void interruptWorkers() {
1186        ForkJoinWorkerThread[] ws = workers;
1187        int nws = ws.length;
1188        for (int i = 0; i < nws; ++i) {
1189            ForkJoinWorkerThread w = ws[i];
1190            if (w != null && !w.isTerminated()) {
1191                try {
1192                    w.interrupt();
1193                } catch (SecurityException ignore) {
1194                }
1195            }
1196        }
1197    }
1198
1202      // misc support for ForkJoinWorkerThread
1203  
1204      /**
1205 <     * Returns pool number
1205 >     * Returns pool number.
1206       */
1207      final int getPoolNumber() {
1208          return poolNumber;
1209      }
1210  
1211      /**
1212 <     * Accumulates steal count from a worker, clearing
1213 <     * the worker's value
1212 >     * Tries to accumulate steal count from a worker, clearing
1213 >     * the worker's value if successful.
1214 >     *
1215 >     * @return true if worker steal count now zero
1216       */
1217 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1217 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1218          int sc = w.stealCount;
1219 <        if (sc != 0) {
1220 <            long c;
1221 <            w.stealCount = 0;
1222 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1223 <                                                    c = stealCount, c + sc));
1219 >        long c = stealCount;
1220 >        // CAS even if zero, for fence effects
1221 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1222 >            if (sc != 0)
1223 >                w.stealCount = 0;
1224 >            return true;
1225          }
1226 +        return sc == 0;
1227      }
1228  
1229      /**
# Line 1225 | Line 1232 | public class ForkJoinPool extends Abstra
1232       */
1233      final int idlePerActive() {
1234          int pc = parallelism; // use parallelism, not rc
1235 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1235 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1236          // Use exact results for small values, saturate past 4
1237 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1237 >        return ((pc <= ac) ? 0 :
1238 >                (pc >>> 1 <= ac) ? 1 :
1239 >                (pc >>> 2 <= ac) ? 3 :
1240 >                pc >>> 3);
1241      }
1242  
1243      // Public and protected methods
# Line 1275 | Line 1285 | public class ForkJoinPool extends Abstra
1285       * use {@link java.lang.Runtime#availableProcessors}.
1286       * @param factory the factory for creating new threads. For default value,
1287       * use {@link #defaultForkJoinWorkerThreadFactory}.
1288 <     * @param handler the handler for internal worker threads that
1289 <     * terminate due to unrecoverable errors encountered while executing
1290 <     * tasks. For default value, use <code>null</code>.
1291 <     * @param asyncMode if true,
1288 >     * @param handler the handler for internal worker threads that
1289 >     * terminate due to unrecoverable errors encountered while executing
1290 >     * tasks. For default value, use {@code null}.
1291 >     * @param asyncMode if true,
1292       * establishes local first-in-first-out scheduling mode for forked
1293       * tasks that are never joined. This mode may be more appropriate
1294       * than default locally stack-based mode in applications in which
1295       * worker threads only process event-style asynchronous tasks.
1296 <     * For default value, use <code>false</code>.
1296 >     * For default value, use {@code false}.
1297       * @throws IllegalArgumentException if parallelism less than or
1298       *         equal to zero, or greater than implementation limit
1299       * @throws NullPointerException if the factory is null
# Line 1292 | Line 1302 | public class ForkJoinPool extends Abstra
1302       *         because it does not hold {@link
1303       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1304       */
1305 <    public ForkJoinPool(int parallelism,
1305 >    public ForkJoinPool(int parallelism,
1306                          ForkJoinWorkerThreadFactory factory,
1307                          Thread.UncaughtExceptionHandler handler,
1308                          boolean asyncMode) {
1309          checkPermission();
1310          if (factory == null)
1311              throw new NullPointerException();
1312 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1312 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1313              throw new IllegalArgumentException();
1314          this.parallelism = parallelism;
1315          this.factory = factory;
# Line 1318 | Line 1328 | public class ForkJoinPool extends Abstra
1328       * @param pc the initial parallelism level
1329       */
1330      private static int initialArraySizeFor(int pc) {
1331 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1332 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1331 >        // If possible, initially allocate enough space for one spare
1332 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1333 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1334          size |= size >>> 1;
1335          size |= size >>> 2;
1336          size |= size >>> 4;
# Line 1330 | Line 1341 | public class ForkJoinPool extends Abstra
1341      // Execution methods
1342  
1343      /**
1344 <     * Common code for execute, invoke and submit
1344 >     * Submits task and creates, starts, or resumes some workers if necessary
1345       */
1346      private <T> void doSubmit(ForkJoinTask<T> task) {
1336        if (task == null)
1337            throw new NullPointerException();
1338        if (runState >= SHUTDOWN)
1339            throw new RejectedExecutionException();
1347          submissionQueue.offer(task);
1348 <        signalEvent();
1349 <        ensureEnoughWorkers();
1348 >        int c; // try to increment event count -- CAS failure OK
1349 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1350 >        helpMaintainParallelism();
1351      }
1352  
1353      /**
1354       * Performs the given task, returning its result upon completion.
1347     * If the caller is already engaged in a fork/join computation in
1348     * the current pool, this method is equivalent in effect to
1349     * {@link ForkJoinTask#invoke}.
1355       *
1356       * @param task the task
1357       * @return the task's result
# Line 1355 | Line 1360 | public class ForkJoinPool extends Abstra
1360       *         scheduled for execution
1361       */
1362      public <T> T invoke(ForkJoinTask<T> task) {
1363 <        doSubmit(task);
1364 <        return task.join();
1363 >        if (task == null)
1364 >            throw new NullPointerException();
1365 >        if (runState >= SHUTDOWN)
1366 >            throw new RejectedExecutionException();
1367 >        Thread t = Thread.currentThread();
1368 >        if ((t instanceof ForkJoinWorkerThread) &&
1369 >            ((ForkJoinWorkerThread)t).pool == this)
1370 >            return task.invoke();  // bypass submit if in same pool
1371 >        else {
1372 >            doSubmit(task);
1373 >            return task.join();
1374 >        }
1375 >    }
1376 >
1377 >    /**
1378 >     * Unless terminating, forks task if within an ongoing FJ
1379 >     * computation in the current pool, else submits as external task.
1380 >     */
1381 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1382 >        if (runState >= SHUTDOWN)
1383 >            throw new RejectedExecutionException();
1384 >        Thread t = Thread.currentThread();
1385 >        if ((t instanceof ForkJoinWorkerThread) &&
1386 >            ((ForkJoinWorkerThread)t).pool == this)
1387 >            task.fork();
1388 >        else
1389 >            doSubmit(task);
1390      }
1391  
1392      /**
1393       * Arranges for (asynchronous) execution of the given task.
1364     * If the caller is already engaged in a fork/join computation in
1365     * the current pool, this method is equivalent in effect to
1366     * {@link ForkJoinTask#fork}.
1394       *
1395       * @param task the task
1396       * @throws NullPointerException if the task is null
# Line 1371 | Line 1398 | public class ForkJoinPool extends Abstra
1398       *         scheduled for execution
1399       */
1400      public void execute(ForkJoinTask<?> task) {
1401 <        doSubmit(task);
1401 >        if (task == null)
1402 >            throw new NullPointerException();
1403 >        forkOrSubmit(task);
1404      }
1405  
1406      // AbstractExecutorService methods
# Line 1382 | Line 1411 | public class ForkJoinPool extends Abstra
1411       *         scheduled for execution
1412       */
1413      public void execute(Runnable task) {
1414 +        if (task == null)
1415 +            throw new NullPointerException();
1416          ForkJoinTask<?> job;
1417          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1418              job = (ForkJoinTask<?>) task;
1419          else
1420              job = ForkJoinTask.adapt(task, null);
1421 <        doSubmit(job);
1421 >        forkOrSubmit(job);
1422      }
1423  
1424      /**
1425       * Submits a ForkJoinTask for execution.
1395     * If the caller is already engaged in a fork/join computation in
1396     * the current pool, this method is equivalent in effect to
1397     * {@link ForkJoinTask#fork}.
1426       *
1427       * @param task the task to submit
1428       * @return the task
# Line 1403 | Line 1431 | public class ForkJoinPool extends Abstra
1431       *         scheduled for execution
1432       */
1433      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1434 <        doSubmit(task);
1434 >        if (task == null)
1435 >            throw new NullPointerException();
1436 >        forkOrSubmit(task);
1437          return task;
1438      }
1439  
# Line 1413 | Line 1443 | public class ForkJoinPool extends Abstra
1443       *         scheduled for execution
1444       */
1445      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1446 +        if (task == null)
1447 +            throw new NullPointerException();
1448          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1449 <        doSubmit(job);
1449 >        forkOrSubmit(job);
1450          return job;
1451      }
1452  
# Line 1424 | Line 1456 | public class ForkJoinPool extends Abstra
1456       *         scheduled for execution
1457       */
1458      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1459 +        if (task == null)
1460 +            throw new NullPointerException();
1461          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1462 <        doSubmit(job);
1462 >        forkOrSubmit(job);
1463          return job;
1464      }
1465  
# Line 1435 | Line 1469 | public class ForkJoinPool extends Abstra
1469       *         scheduled for execution
1470       */
1471      public ForkJoinTask<?> submit(Runnable task) {
1472 +        if (task == null)
1473 +            throw new NullPointerException();
1474          ForkJoinTask<?> job;
1475          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1476              job = (ForkJoinTask<?>) task;
1477          else
1478              job = ForkJoinTask.adapt(task, null);
1479 <        doSubmit(job);
1479 >        forkOrSubmit(job);
1480          return job;
1481      }
1482  
# Line 1500 | Line 1536 | public class ForkJoinPool extends Abstra
1536  
1537      /**
1538       * Returns the number of worker threads that have started but not
1539 <     * yet terminated.  This result returned by this method may differ
1539 >     * yet terminated.  The result returned by this method may differ
1540       * from {@link #getParallelism} when threads are created to
1541       * maintain parallelism when others are cooperatively blocked.
1542       *
# Line 1585 | Line 1621 | public class ForkJoinPool extends Abstra
1621       */
1622      public long getQueuedTaskCount() {
1623          long count = 0;
1624 <        ForkJoinWorkerThread[] ws = workers;
1589 <        int nws = ws.length;
1590 <        for (int i = 0; i < nws; ++i) {
1591 <            ForkJoinWorkerThread w = ws[i];
1624 >        for (ForkJoinWorkerThread w : workers)
1625              if (w != null)
1626                  count += w.getQueueSize();
1594        }
1627          return count;
1628      }
1629  
# Line 1645 | Line 1677 | public class ForkJoinPool extends Abstra
1677       * @return the number of elements transferred
1678       */
1679      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1680 <        int n = submissionQueue.drainTo(c);
1681 <        ForkJoinWorkerThread[] ws = workers;
1650 <        int nws = ws.length;
1651 <        for (int i = 0; i < nws; ++i) {
1652 <            ForkJoinWorkerThread w = ws[i];
1653 <            if (w != null)
1654 <                n += w.drainTasksTo(c);
1655 <        }
1656 <        return n;
1657 <    }
1658 <
1659 <    /**
1660 <     * Returns count of total parks by existing workers.
1661 <     * Used during development only since not meaningful to users.
1662 <     */
1663 <    private int collectParkCount() {
1664 <        int count = 0;
1665 <        ForkJoinWorkerThread[] ws = workers;
1666 <        int nws = ws.length;
1667 <        for (int i = 0; i < nws; ++i) {
1668 <            ForkJoinWorkerThread w = ws[i];
1680 >        int count = submissionQueue.drainTo(c);
1681 >        for (ForkJoinWorkerThread w : workers)
1682              if (w != null)
1683 <                count += w.parkCount;
1671 <        }
1683 >                count += w.drainTasksTo(c);
1684          return count;
1685      }
1686  
# Line 1689 | Line 1701 | public class ForkJoinPool extends Abstra
1701          int pc = parallelism;
1702          int rs = runState;
1703          int ac = rs & ACTIVE_COUNT_MASK;
1692        //        int pk = collectParkCount();
1704          return super.toString() +
1705              "[" + runLevelToString(rs) +
1706              ", parallelism = " + pc +
# Line 1699 | Line 1710 | public class ForkJoinPool extends Abstra
1710              ", steals = " + st +
1711              ", tasks = " + qt +
1712              ", submissions = " + qs +
1702            //            ", parks = " + pk +
1713              "]";
1714      }
1715  
# Line 1774 | Line 1784 | public class ForkJoinPool extends Abstra
1784      }
1785  
1786      /**
1787 +     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1788 +     */
1789 +    final boolean isAtLeastTerminating() {
1790 +        return runState >= TERMINATING;
1791 +    }
1792 +
1793 +    /**
1794       * Returns {@code true} if this pool has been shut down.
1795       *
1796       * @return {@code true} if this pool has been shut down
# Line 1796 | Line 1813 | public class ForkJoinPool extends Abstra
1813      public boolean awaitTermination(long timeout, TimeUnit unit)
1814          throws InterruptedException {
1815          try {
1816 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1817 <        } catch(TimeoutException ex) {
1816 >            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1817 >        } catch (TimeoutException ex) {
1818              return false;
1819          }
1820 +        return true;
1821      }
1822  
1823      /**
1824       * Interface for extending managed parallelism for tasks running
1825       * in {@link ForkJoinPool}s.
1826       *
1827 <     * <p>A {@code ManagedBlocker} provides two methods.
1828 <     * Method {@code isReleasable} must return {@code true} if
1829 <     * blocking is not necessary. Method {@code block} blocks the
1830 <     * current thread if necessary (perhaps internally invoking
1831 <     * {@code isReleasable} before actually blocking).
1827 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1828 >     * {@code isReleasable} must return {@code true} if blocking is
1829 >     * not necessary. Method {@code block} blocks the current thread
1830 >     * if necessary (perhaps internally invoking {@code isReleasable}
1831 >     * before actually blocking). The unusual methods in this API
1832 >     * accommodate synchronizers that may, but don't usually, block
1833 >     * for long periods. Similarly, they allow more efficient internal
1834 >     * handling of cases in which additional workers may be, but
1835 >     * usually are not, needed to ensure sufficient parallelism.
1836 >     * Toward this end, implementations of method {@code isReleasable}
1837 >     * must be amenable to repeated invocation.
1838       *
1839       * <p>For example, here is a ManagedBlocker based on a
1840       * ReentrantLock:
# Line 1828 | Line 1852 | public class ForkJoinPool extends Abstra
1852       *     return hasLock || (hasLock = lock.tryLock());
1853       *   }
1854       * }}</pre>
1855 +     *
1856 +     * <p>Here is a class that possibly blocks waiting for an
1857 +     * item on a given queue:
1858 +     *  <pre> {@code
1859 +     * class QueueTaker<E> implements ManagedBlocker {
1860 +     *   final BlockingQueue<E> queue;
1861 +     *   volatile E item = null;
1862 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1863 +     *   public boolean block() throws InterruptedException {
1864 +     *     if (item == null)
1865 +     *       item = queue.take();
1866 +     *     return true;
1867 +     *   }
1868 +     *   public boolean isReleasable() {
1869 +     *     return item != null || (item = queue.poll()) != null;
1870 +     *   }
1871 +     *   public E getItem() { // call after pool.managedBlock completes
1872 +     *     return item;
1873 +     *   }
1874 +     * }}</pre>
1875       */
1876      public static interface ManagedBlocker {
1877          /**
# Line 1870 | Line 1914 | public class ForkJoinPool extends Abstra
1914      public static void managedBlock(ManagedBlocker blocker)
1915          throws InterruptedException {
1916          Thread t = Thread.currentThread();
1917 <        if (t instanceof ForkJoinWorkerThread)
1918 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1917 >        if (t instanceof ForkJoinWorkerThread) {
1918 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1919 >            w.pool.awaitBlocker(blocker);
1920 >        }
1921          else {
1922              do {} while (!blocker.isReleasable() && !blocker.block());
1923          }
# Line 1899 | Line 1945 | public class ForkJoinPool extends Abstra
1945      private static final long eventCountOffset =
1946          objectFieldOffset("eventCount", ForkJoinPool.class);
1947      private static final long eventWaitersOffset =
1948 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1948 >        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1949      private static final long stealCountOffset =
1950 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1950 >        objectFieldOffset("stealCount", ForkJoinPool.class);
1951 >    private static final long spareWaitersOffset =
1952 >        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1953  
1954      private static long objectFieldOffset(String field, Class<?> klazz) {
1955          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines