ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.23 by dl, Sat Jul 25 15:50:57 2009 UTC vs.
Revision 1.88 by dl, Tue Nov 23 01:06:00 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.TimeoutException;
22 > import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
25  
26   /**
27 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
28 < * ForkJoinPool provides the entry point for submissions from
29 < * non-ForkJoinTasks, as well as management and monitoring operations.
30 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
27 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 > * A {@code ForkJoinPool} provides the entry point for submissions
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30 > * monitoring operations.
31   *
32 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
33 < * that they provide <em>work-stealing</em>: all threads in the pool
34 < * attempt to find and execute subtasks created by other active tasks
35 < * (eventually blocking if none exist). This makes them efficient when
36 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
37 < * as the mixed execution of some plain Runnable- or Callable- based
38 < * activities along with ForkJoinTasks. When setting
39 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
40 < * use with fine-grained tasks that are never joined. Otherwise, other
40 < * ExecutorService implementations are typically more appropriate
41 < * choices.
32 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33 > * ExecutorService} mainly by virtue of employing
34 > * <em>work-stealing</em>: all threads in the pool attempt to find and
35 > * execute subtasks created by other active tasks (eventually blocking
36 > * waiting for work if none exist). This enables efficient processing
37 > * when most tasks spawn other subtasks (as do most {@code
38 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
40 > * with event-style tasks that are never joined.
41   *
42 < * <p>A ForkJoinPool may be constructed with a given parallelism level
43 < * (target pool size), which it attempts to maintain by dynamically
44 < * adding, suspending, or resuming threads, even if some tasks are
45 < * waiting to join others. However, no such adjustments are performed
46 < * in the face of blocked IO or other unmanaged synchronization. The
47 < * nested {@code ManagedBlocker} interface enables extension of
48 < * the kinds of synchronization accommodated.  The target parallelism
49 < * level may also be changed dynamically ({@code setParallelism})
50 < * and thread construction can be limited using methods
52 < * {@code setMaximumPoolSize} and/or
53 < * {@code setMaintainsParallelism}.
42 > * <p>A {@code ForkJoinPool} is constructed with a given target
43 > * parallelism level; by default, equal to the number of available
44 > * processors. The pool attempts to maintain enough active (or
45 > * available) threads by dynamically adding, suspending, or resuming
46 > * internal worker threads, even if some tasks are stalled waiting to
47 > * join others. However, no such adjustments are guaranteed in the
48 > * face of blocked IO or other unmanaged synchronization. The nested
49 > * {@link ManagedBlocker} interface enables extension of the kinds of
50 > * synchronization accommodated.
51   *
52   * <p>In addition to execution and lifecycle control methods, this
53   * class provides status check methods (for example
54 < * {@code getStealCount}) that are intended to aid in developing,
54 > * {@link #getStealCount}) that are intended to aid in developing,
55   * tuning, and monitoring fork/join applications. Also, method
56 < * {@code toString} returns indications of pool state in a
56 > * {@link #toString} returns indications of pool state in a
57   * convenient form for informal monitoring.
58   *
59 + * <p> As is the case with other ExecutorServices, there are three
60 + * main task execution methods summarized in the following
61 + * table. These are designed to be used by clients not already engaged
62 + * in fork/join computations in the current pool.  The main forms of
63 + * these methods accept instances of {@code ForkJoinTask}, but
64 + * overloaded forms also allow mixed execution of plain {@code
65 + * Runnable}- or {@code Callable}- based activities as well.  However,
66 + * tasks that are already executing in a pool should normally
67 + * <em>NOT</em> use these pool execution methods, but instead use the
68 + * within-computation forms listed in the table.
69 + *
70 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
71 + *  <tr>
72 + *    <td></td>
73 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Arrange async execution</td>
78 + *    <td> {@link #execute(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#fork}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Await and obtain result</td>
83 + *    <td> {@link #invoke(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#invoke}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Arrange exec and obtain Future</td>
88 + *    <td> {@link #submit(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90 + *  </tr>
91 + * </table>
92 + *
93 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94 + * used for all parallel task execution in a program or subsystem.
95 + * Otherwise, use would not usually outweigh the construction and
96 + * bookkeeping overhead of creating a large set of threads. For
97 + * example, a common pool could be used for the {@code SortTasks}
98 + * illustrated in {@link RecursiveAction}. Because {@code
99 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
100 + * daemon} mode, there is typically no need to explicitly {@link
101 + * #shutdown} such a pool upon program exit.
102 + *
103 + * <pre>
104 + * static final ForkJoinPool mainPool = new ForkJoinPool();
105 + * ...
106 + * public void sort(long[] array) {
107 + *   mainPool.invoke(new SortTask(array, 0, array.length));
108 + * }
109 + * </pre>
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 70 | Line 123 | import java.util.concurrent.atomic.Atomi
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
128 <     */
129 <
130 <    /** Mask for packing and unpacking shorts */
131 <    private static final int  shortMask = 0xffff;
132 <
133 <    /** Max pool size -- must be a power of two minus 1 */
134 <    private static final int MAX_THREADS =  0x7FFF;
135 <
136 <    /**
137 <     * Factory for creating new ForkJoinWorkerThreads.  A
138 <     * ForkJoinWorkerThreadFactory must be defined and used for
139 <     * ForkJoinWorkerThread subclasses that extend base functionality
140 <     * or initialize threads with different contexts.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * The main work-stealing mechanics implemented in class
133 >     * ForkJoinWorkerThread give first priority to processing tasks
134 >     * from their own queues (LIFO or FIFO, depending on mode), then
135 >     * to randomized FIFO steals of tasks in other worker queues, and
136 >     * lastly to new submissions. These mechanics do not consider
137 >     * affinities, loads, cache localities, etc, so rarely provide the
138 >     * best possible performance on a given machine, but portably
139 >     * provide good throughput by averaging over these factors.
140 >     * (Further, even if we did try to use such information, we do not
141 >     * usually have a basis for exploiting it. For example, some sets
142 >     * of tasks profit from cache affinities, but others are harmed by
143 >     * cache pollution effects.)
144 >     *
145 >     * Beyond work-stealing support and essential bookkeeping, the
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158 >     *
159 >     *   Helping: Arranging for the joiner to execute some task that it
160 >     *      would be running if the steal had not occurred.  Method
161 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 >     *      links to try to find such a task.
163 >     *
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180 >     *
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183 >     *
184 >     * The main throughput advantages of work-stealing stem from
185 >     * decentralized control -- workers mostly steal tasks from each
186 >     * other. We do not want to negate this by creating bottlenecks
187 >     * implementing other management responsibilities. So we use a
188 >     * collection of techniques that avoid, reduce, or cope well with
189 >     * contention. These entail several instances of bit-packing into
190 >     * CASable fields to maintain only the minimally required
191 >     * atomicity. To enable such packing, we restrict maximum
192 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193 >     * unbalanced increments and decrements) to fit into a 16 bit
194 >     * field, which is far in excess of normal operating range.  Even
195 >     * though updates to some of these bookkeeping fields do sometimes
196 >     * contend with each other, they don't normally cache-contend with
197 >     * updates to others enough to warrant memory padding or
198 >     * isolation. So they are all held as fields of ForkJoinPool
199 >     * objects.  The main capabilities are as follows:
200 >     *
201 >     * 1. Creating and removing workers. Workers are recorded in the
202 >     * "workers" array. This is an array as opposed to some other data
203 >     * structure to support index-based random steals by workers.
204 >     * Updates to the array recording new workers and unrecording
205 >     * terminated ones are protected from each other by a lock
206 >     * (workerLock) but the array is otherwise concurrently readable,
207 >     * and accessed directly by workers. To simplify index-based
208 >     * operations, the array size is always a power of two, and all
209 >     * readers must tolerate null slots. Currently, all worker thread
210 >     * creation is on-demand, triggered by task submissions,
211 >     * replacement of terminated workers, and/or compensation for
212 >     * blocked workers. However, all other support code is set up to
213 >     * work with other policies.
214 >     *
215 >     * To ensure that we do not hold on to worker references that
216 >     * would prevent GC, ALL accesses to workers are via indices into
217 >     * the workers array (which is one source of some of the unusual
218 >     * code constructions here). In essence, the workers array serves
219 >     * as a WeakReference mechanism. Thus for example the event queue
220 >     * stores worker indices, not worker references. Access to the
221 >     * workers in associated methods (for example releaseEventWaiters)
222 >     * must both index-check and null-check the IDs. All such accesses
223 >     * ignore bad IDs by returning out early from what they are doing,
224 >     * since this can only be associated with shutdown, in which case
225 >     * it is OK to give up. On termination, we just clobber these
226 >     * data structures without trying to use them.
227 >     *
228 >     * 2. Bookkeeping for dynamically adding and removing workers. We
229 >     * aim to approximately maintain the given level of parallelism.
230 >     * When some workers are known to be blocked (on joins or via
231 >     * ManagedBlocker), we may create or resume others to take their
232 >     * place until they unblock (see below). Implementing this
233 >     * requires counts of the number of "running" threads (i.e., those
234 >     * that are neither blocked nor artificially suspended) as well as
235 >     * the total number.  These two values are packed into one field,
236 >     * "workerCounts" because we need accurate snapshots when deciding
237 >     * to create, resume or suspend.  Note however that the
238 >     * correspondence of these counts to reality is not guaranteed. In
239 >     * particular updates for unblocked threads may lag until they
240 >     * actually wake up.
241 >     *
242 >     * 3. Maintaining global run state. The run state of the pool
243 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 >     * those in other Executor implementations, as well as a count of
245 >     * "active" workers -- those that are, or soon will be, or
246 >     * recently were executing tasks. The runLevel and active count
247 >     * are packed together in order to correctly trigger shutdown and
248 >     * termination. Without care, active counts can be subject to very
249 >     * high contention.  We substantially reduce this contention by
250 >     * relaxing update rules.  A worker must claim active status
251 >     * prospectively, by activating if it sees that a submitted or
252 >     * stealable task exists (it may find after activating that the
253 >     * task no longer exists). It stays active while processing this
254 >     * task (if it exists) and any other local subtasks it produces,
255 >     * until it cannot find any other tasks. It then tries
256 >     * inactivating (see method preStep), but upon update contention
257 >     * instead scans for more tasks, later retrying inactivation if it
258 >     * doesn't find any.
259 >     *
260 >     * 4. Managing idle workers waiting for tasks. We cannot let
261 >     * workers spin indefinitely scanning for tasks when none are
262 >     * available. On the other hand, we must quickly prod them into
263 >     * action when new tasks are submitted or generated.  We
264 >     * park/unpark these idle workers using an event-count scheme.
265 >     * Field eventCount is incremented upon events that may enable
266 >     * workers that previously could not find a task to now find one:
267 >     * Submission of a new task to the pool, or another worker pushing
268 >     * a task onto a previously empty queue.  (We also use this
269 >     * mechanism for configuration and termination actions that
270 >     * require wakeups of idle workers).  Each worker maintains its
271 >     * last known event count, and blocks when a scan for work did not
272 >     * find a task AND its lastEventCount matches the current
273 >     * eventCount. Waiting idle workers are recorded in a variant of
274 >     * Treiber stack headed by field eventWaiters which, when nonzero,
275 >     * encodes the thread index and count awaited for by the worker
276 >     * thread most recently calling eventSync. This thread in turn has
277 >     * a record (field nextEventWaiter) for the next waiting worker.
278 >     * In addition to allowing simpler decisions about need for
279 >     * wakeup, the event count bits in eventWaiters serve the role of
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286 >     * Conceptually they are merged into the same event, which is OK
287 >     * when their only purpose is to enable workers to scan for work.
288 >     *
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340 >     *
341 >     * Beware that there is a lot of representation-level coupling
342 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343 >     * ForkJoinTask.  For example, direct access to "workers" array by
344 >     * workers, and direct access to ForkJoinTask.status by both
345 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
346 >     * trying to reduce this, since any associated future changes in
347 >     * representations will need to be accompanied by algorithmic
348 >     * changes anyway.
349 >     *
350 >     * Style notes: There are lots of inline assignments (of form
351 >     * "while ((local = field) != 0)") which are usually the simplest
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359 >     *
360 >     * The order of declarations in this file is: (1) statics (2)
361 >     * fields (along with constants used when unpacking some of them)
362 >     * (3) internal control methods (4) callbacks and other support
363 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364 >     * methods (plus a few little helpers).
365 >     */
366 >
367 >    /**
368 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
369 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
370 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
371 >     * functionality or initialize threads with different contexts.
372       */
373      public static interface ForkJoinWorkerThreadFactory {
374          /**
375           * Returns a new worker thread operating in the given pool.
376           *
377           * @param pool the pool this thread works in
378 <         * @throws NullPointerException if pool is null
378 >         * @throws NullPointerException if the pool is null
379           */
380          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
381      }
# Line 100 | Line 384 | public class ForkJoinPool extends Abstra
384       * Default ForkJoinWorkerThreadFactory implementation; creates a
385       * new ForkJoinWorkerThread.
386       */
387 <    static class  DefaultForkJoinWorkerThreadFactory
387 >    static class DefaultForkJoinWorkerThreadFactory
388          implements ForkJoinWorkerThreadFactory {
389          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 <            try {
107 <                return new ForkJoinWorkerThread(pool);
108 <            } catch (OutOfMemoryError oom)  {
109 <                return null;
110 <            }
390 >            return new ForkJoinWorkerThread(pool);
391          }
392      }
393  
# Line 143 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Array holding all worker threads in the pool. Initialized upon
427 <     * first use. Array size must be a power of two.  Updates and
428 <     * replacements are protected by workerLock, but it is always kept
429 <     * in a consistent enough state to be randomly accessed without
430 <     * locking by workers performing work-stealing.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443 >     */
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453 >
454 >    /**
455 >     * Array holding all worker threads in the pool.  Array size must
456 >     * be a power of two.  Updates and replacements are protected by
457 >     * workerLock, but the array is always kept in a consistent enough
458 >     * state to be randomly accessed without locking by workers
459 >     * performing work-stealing, as well as other traversal-based
460 >     * methods in this class. All readers must tolerate that some
461 >     * array slots may be null.
462       */
463      volatile ForkJoinWorkerThread[] workers;
464  
465      /**
466 <     * Lock protecting access to workers.
466 >     * Queue for external submissions.
467       */
468 <    private final ReentrantLock workerLock;
468 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469  
470      /**
471 <     * Condition for awaitTermination.
471 >     * Lock protecting updates to workers array.
472       */
473 <    private final Condition termination;
473 >    private final ReentrantLock workerLock;
474  
475      /**
476 <     * The uncaught exception handler used when any worker
166 <     * abruptly terminates
476 >     * Latch released upon termination.
477       */
478 <    private Thread.UncaughtExceptionHandler ueh;
478 >    private final Phaser termination;
479  
480      /**
481       * Creation factory for worker threads.
# Line 173 | Line 483 | public class ForkJoinPool extends Abstra
483      private final ForkJoinWorkerThreadFactory factory;
484  
485      /**
176     * Head of stack of threads that were created to maintain
177     * parallelism when other threads blocked, but have since
178     * suspended when the parallelism level rose.
179     */
180    private volatile WaitQueueNode spareStack;
181
182    /**
486       * Sum of per-thread steal counts, updated only when threads are
487       * idle or terminating.
488       */
489 <    private final AtomicLong stealCount;
489 >    private volatile long stealCount;
490  
491      /**
492 <     * Queue for external submissions.
492 >     * Encoded record of top of Treiber stack of threads waiting for
493 >     * events. The top 32 bits contain the count being waited for. The
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
497 >    private volatile long eventWaiters;
498 >
499 >    private static final int EVENT_COUNT_SHIFT = 32;
500 >    private static final int WAITER_ID_MASK    = (1 << 16) - 1;
501  
502      /**
503 <     * Head of Treiber stack for barrier sync. See below for explanation.
503 >     * A counter for events that may wake up worker threads:
504 >     *   - Submission of a new task to the pool
505 >     *   - A worker pushing a task on an empty queue
506 >     *   - termination
507       */
508 <    private volatile WaitQueueNode syncStack;
508 >    private volatile int eventCount;
509  
510      /**
511 <     * The count for event barrier
511 >     * Encoded record of top of Treiber stack of spare threads waiting
512 >     * for resumption. The top 16 bits contain an arbitrary count to
513 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 >     * index of waiting worker thread.
515       */
516 <    private volatile long eventCount;
516 >    private volatile int spareWaiters;
517 >
518 >    private static final int SPARE_COUNT_SHIFT = 16;
519 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520  
521      /**
522 <     * Pool number, just for assigning useful names to worker threads
522 >     * Lifecycle control. The low word contains the number of workers
523 >     * that are (probably) executing tasks. This value is atomically
524 >     * incremented before a worker gets a task to run, and decremented
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526 >     * contain runLevel value. When all are zero, the pool is
527 >     * running. Level transitions are monotonic (running -> shutdown
528 >     * -> terminating -> terminated) so each transition adds a bit.
529 >     * These are bundled together to ensure consistent read for
530 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 >     * and active threads is zero).
532 >     *
533 >     * Notes: Most direct CASes are dependent on these bitfield
534 >     * positions.  Also, this field is non-private to enable direct
535 >     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private final int poolNumber;
537 >    volatile int runState;
538 >
539 >    // Note: The order among run level values matters.
540 >    private static final int RUNLEVEL_SHIFT     = 16;
541 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
545  
546      /**
547 <     * The maximum allowed pool size
547 >     * Holds number of total (i.e., created and not yet terminated)
548 >     * and running (i.e., not blocked on joins or other managed sync)
549 >     * threads, packed together to ensure consistent snapshot when
550 >     * making decisions about creating and suspending spare
551 >     * threads. Updated only by CAS. Note that adding a new worker
552 >     * requires incrementing both counts, since workers start off in
553 >     * running state.
554       */
555 <    private volatile int maxPoolSize;
555 >    private volatile int workerCounts;
556 >
557 >    private static final int TOTAL_COUNT_SHIFT  = 16;
558 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559 >    private static final int ONE_RUNNING        = 1;
560 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
561  
562      /**
563 <     * The desired parallelism level, updated only under workerLock.
563 >     * The target parallelism level.
564 >     * Accessed directly by ForkJoinWorkerThreads.
565       */
566 <    private volatile int parallelism;
566 >    final int parallelism;
567  
568      /**
569       * True if use local fifo, not default lifo, for local polling
570 +     * Read by, and replicated by ForkJoinWorkerThreads
571       */
572 <    private volatile boolean locallyFifo;
572 >    final boolean locallyFifo;
573  
574      /**
575 <     * Holds number of total (i.e., created and not yet terminated)
576 <     * and running (i.e., not blocked on joins or other managed sync)
226 <     * threads, packed into one int to ensure consistent snapshot when
227 <     * making decisions about creating and suspending spare
228 <     * threads. Updated only by CAS.  Note: CASes in
229 <     * updateRunningCount and preJoin assume that running active count
230 <     * is in low word, so need to be modified if this changes.
575 >     * The uncaught exception handler used when any worker abruptly
576 >     * terminates.
577       */
578 <    private volatile int workerCounts;
233 <
234 <    private static int totalCountOf(int s)           { return s >>> 16;  }
235 <    private static int runningCountOf(int s)         { return s & shortMask; }
236 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
578 >    private final Thread.UncaughtExceptionHandler ueh;
579  
580      /**
581 <     * Adds delta (which may be negative) to running count.  This must
240 <     * be called before (with negative arg) and after (with positive)
241 <     * any managed synchronization (i.e., mainly, joins).
242 <     *
243 <     * @param delta the number to add
581 >     * Pool number, just for assigning useful names to worker threads
582       */
583 <    final void updateRunningCount(int delta) {
584 <        int s;
585 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
586 <    }
583 >    private final int poolNumber;
584 >
585 >    // Utilities for CASing fields. Note that most of these
586 >    // are usually manually inlined by callers
587  
588      /**
589 <     * Adds delta (which may be negative) to both total and running
252 <     * count.  This must be called upon creation and termination of
253 <     * worker threads.
254 <     *
255 <     * @param delta the number to add
589 >     * Increments running count part of workerCounts.
590       */
591 <    private void updateWorkerCount(int delta) {
592 <        int d = delta + (delta << 16); // add to both lo and hi parts
593 <        int s;
594 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
591 >    final void incrementRunningCount() {
592 >        int c;
593 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 >                                               c = workerCounts,
595 >                                               c + ONE_RUNNING));
596      }
597  
598      /**
599 <     * Lifecycle control. High word contains runState, low word
265 <     * contains the number of workers that are (probably) executing
266 <     * tasks. This value is atomically incremented before a worker
267 <     * gets a task to run, and decremented when worker has no tasks
268 <     * and cannot find any. These two fields are bundled together to
269 <     * support correct termination triggering.  Note: activeCount
270 <     * CAS'es cheat by assuming active count is in low word, so need
271 <     * to be modified if this changes
599 >     * Tries to increment running count part of workerCounts.
600       */
601 <    private volatile int runControl;
602 <
603 <    // RunState values. Order among values matters
604 <    private static final int RUNNING     = 0;
605 <    private static final int SHUTDOWN    = 1;
606 <    private static final int TERMINATING = 2;
279 <    private static final int TERMINATED  = 3;
280 <
281 <    private static int runStateOf(int c)             { return c >>> 16; }
282 <    private static int activeCountOf(int c)          { return c & shortMask; }
283 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
601 >    final boolean tryIncrementRunningCount() {
602 >        int c;
603 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604 >                                        c = workerCounts,
605 >                                        c + ONE_RUNNING);
606 >    }
607  
608      /**
609 <     * Tries incrementing active count; fails on contention.
287 <     * Called by workers before/during executing tasks.
288 <     *
289 <     * @return true on success
609 >     * Tries to decrement running count unless already zero.
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final boolean tryDecrementRunningCount() {
612 >        int wc = workerCounts;
613 >        if ((wc & RUNNING_COUNT_MASK) == 0)
614 >            return false;
615 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616 >                                        wc, wc - ONE_RUNNING);
617      }
618  
619      /**
620 <     * Tries decrementing active count; fails on contention.
621 <     * Possibly triggers termination on success.
299 <     * Called by workers when they can't find tasks.
620 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
621 >     * (rarely) necessary when other count updates lag.
622       *
623 <     * @return true on success
623 >     * @param dr -- either zero or ONE_RUNNING
624 >     * @param dt -- either zero or ONE_TOTAL
625       */
626 <    final boolean tryDecrementActiveCount() {
627 <        int c = runControl;
628 <        int nextc = c - 1;
629 <        if (!casRunControl(c, nextc))
630 <            return false;
631 <        if (canTerminateOnShutdown(nextc))
632 <            terminateOnShutdown();
633 <        return true;
626 >    private void decrementWorkerCounts(int dr, int dt) {
627 >        for (;;) {
628 >            int wc = workerCounts;
629 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
630 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631 >                if ((runState & TERMINATED) != 0)
632 >                    return; // lagging termination on a backout
633 >                Thread.yield();
634 >            }
635 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636 >                                         wc, wc - (dr + dt)))
637 >                return;
638 >        }
639      }
640  
641      /**
642 <     * Returns true if argument represents zero active count and
643 <     * nonzero runstate, which is the triggering condition for
316 <     * terminating on shutdown.
642 >     * Tries decrementing active count; fails on contention.
643 >     * Called when workers cannot find tasks to run.
644       */
645 <    private static boolean canTerminateOnShutdown(int c) {
646 <        // i.e. least bit is nonzero runState bit
647 <        return ((c & -c) >>> 16) != 0;
645 >    final boolean tryDecrementActiveCount() {
646 >        int c;
647 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 >                                        c = runState, c - 1);
649      }
650  
651      /**
652 <     * Transition run state to at least the given state. Return true
653 <     * if not already at least given state.
652 >     * Advances to at least the given level. Returns true if not
653 >     * already in at least the given level.
654       */
655 <    private boolean transitionRunStateTo(int state) {
655 >    private boolean advanceRunLevel(int level) {
656          for (;;) {
657 <            int c = runControl;
658 <            if (runStateOf(c) >= state)
657 >            int s = runState;
658 >            if ((s & level) != 0)
659                  return false;
660 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
660 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
661                  return true;
662          }
663      }
664  
665 +    // workers array maintenance
666 +
667      /**
668 <     * Controls whether to add spares to maintain parallelism
668 >     * Records and returns a workers array index for new worker.
669       */
670 <    private volatile boolean maintainsParallelism;
670 >    private int recordWorker(ForkJoinWorkerThread w) {
671 >        // Try using slot totalCount-1. If not available, scan and/or resize
672 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
673 >        final ReentrantLock lock = this.workerLock;
674 >        lock.lock();
675 >        try {
676 >            ForkJoinWorkerThread[] ws = workers;
677 >            int n = ws.length;
678 >            if (k < 0 || k >= n || ws[k] != null) {
679 >                for (k = 0; k < n && ws[k] != null; ++k)
680 >                    ;
681 >                if (k == n)
682 >                    ws = workers = Arrays.copyOf(ws, n << 1);
683 >            }
684 >            ws[k] = w;
685 >            int c = eventCount; // advance event count to ensure visibility
686 >            UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
687 >        } finally {
688 >            lock.unlock();
689 >        }
690 >        return k;
691 >    }
692  
693 <    // Constructors
693 >    /**
694 >     * Nulls out record of worker in workers array.
695 >     */
696 >    private void forgetWorker(ForkJoinWorkerThread w) {
697 >        int idx = w.poolIndex;
698 >        // Locking helps method recordWorker avoid unnecessary expansion
699 >        final ReentrantLock lock = this.workerLock;
700 >        lock.lock();
701 >        try {
702 >            ForkJoinWorkerThread[] ws = workers;
703 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
704 >                ws[idx] = null;
705 >        } finally {
706 >            lock.unlock();
707 >        }
708 >    }
709  
710      /**
711 <     * Creates a ForkJoinPool with a pool size equal to the number of
712 <     * processors available on the system, using the default
713 <     * ForkJoinWorkerThreadFactory.
711 >     * Final callback from terminating worker.  Removes record of
712 >     * worker from array, and adjusts counts. If pool is shutting
713 >     * down, tries to complete termination.
714       *
715 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
715 >     * @param w the worker
716       */
717 <    public ForkJoinPool() {
718 <        this(Runtime.getRuntime().availableProcessors(),
719 <             defaultForkJoinWorkerThreadFactory);
717 >    final void workerTerminated(ForkJoinWorkerThread w) {
718 >        forgetWorker(w);
719 >        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 >        while (w.stealCount != 0) // collect final count
721 >            tryAccumulateStealCount(w);
722 >        tryTerminate(false);
723      }
724  
725 +    // Waiting for and signalling events
726 +
727      /**
728 <     * Creates a ForkJoinPool with the indicated parallelism level
729 <     * threads and using the default ForkJoinWorkerThreadFactory.
730 <     *
731 <     * @param parallelism the number of worker threads
364 <     * @throws IllegalArgumentException if parallelism less than or
365 <     * equal to zero
366 <     * @throws SecurityException if a security manager exists and
367 <     *         the caller is not permitted to modify threads
368 <     *         because it does not hold {@link
369 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
728 >     * Releases workers blocked on a count not equal to current count.
729 >     * Normally called after precheck that eventWaiters isn't zero to
730 >     * avoid wasted array checks. Gives up upon a change in count or
731 >     * upon releasing two workers, letting others take over.
732       */
733 <    public ForkJoinPool(int parallelism) {
734 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
733 >    private void releaseEventWaiters() {
734 >        ForkJoinWorkerThread[] ws = workers;
735 >        int n = ws.length;
736 >        long h = eventWaiters;
737 >        int ec = eventCount;
738 >        boolean releasedOne = false;
739 >        ForkJoinWorkerThread w; int id;
740 >        while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
741 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
742 >               id < n && (w = ws[id]) != null) {
743 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
744 >                                          h,  w.nextWaiter)) {
745 >                LockSupport.unpark(w);
746 >                if (releasedOne) // exit on second release
747 >                    break;
748 >                releasedOne = true;
749 >            }
750 >            if (eventCount != ec)
751 >                break;
752 >            h = eventWaiters;
753 >        }
754      }
755  
756      /**
757 <     * Creates a ForkJoinPool with parallelism equal to the number of
758 <     * processors available on the system and using the given
378 <     * ForkJoinWorkerThreadFactory.
379 <     *
380 <     * @param factory the factory for creating new threads
381 <     * @throws NullPointerException if factory is null
382 <     * @throws SecurityException if a security manager exists and
383 <     *         the caller is not permitted to modify threads
384 <     *         because it does not hold {@link
385 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
757 >     * Tries to advance eventCount and releases waiters. Called only
758 >     * from workers.
759       */
760 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
761 <        this(Runtime.getRuntime().availableProcessors(), factory);
760 >    final void signalWork() {
761 >        int c; // try to increment event count -- CAS failure OK
762 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
763 >        if (eventWaiters != 0L)
764 >            releaseEventWaiters();
765      }
766  
767      /**
768 <     * Creates a ForkJoinPool with the given parallelism and factory.
768 >     * Adds the given worker to event queue and blocks until
769 >     * terminating or event count advances from the given value
770       *
771 <     * @param parallelism the targeted number of worker threads
772 <     * @param factory the factory for creating new threads
396 <     * @throws IllegalArgumentException if parallelism less than or
397 <     * equal to zero, or greater than implementation limit
398 <     * @throws NullPointerException if factory is null
399 <     * @throws SecurityException if a security manager exists and
400 <     *         the caller is not permitted to modify threads
401 <     *         because it does not hold {@link
402 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
771 >     * @param w the calling worker thread
772 >     * @param ec the count
773       */
774 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
775 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
776 <            throw new IllegalArgumentException();
777 <        if (factory == null)
778 <            throw new NullPointerException();
779 <        checkPermission();
780 <        this.factory = factory;
781 <        this.parallelism = parallelism;
782 <        this.maxPoolSize = MAX_THREADS;
783 <        this.maintainsParallelism = true;
784 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
785 <        this.workerLock = new ReentrantLock();
786 <        this.termination = workerLock.newCondition();
417 <        this.stealCount = new AtomicLong();
418 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 <        // worker array and workers are lazily constructed
774 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
775 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
776 >        long h;
777 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
778 >               (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
779 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
780 >               eventCount == ec) {
781 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
782 >                                          w.nextWaiter = h, nh)) {
783 >                awaitEvent(w, ec);
784 >                break;
785 >            }
786 >        }
787      }
788  
789      /**
790 <     * Creates a new worker thread using factory.
790 >     * Blocks the given worker (that has already been entered as an
791 >     * event waiter) until terminating or event count advances from
792 >     * the given value. The oldest (first) waiter uses a timed wait to
793 >     * occasionally one-by-one shrink the number of workers (to a
794 >     * minimum of one) if the pool has not been used for extended
795 >     * periods.
796       *
797 <     * @param index the index to assign worker
798 <     * @return new worker, or null of factory failed
797 >     * @param w the calling worker thread
798 >     * @param ec the count
799       */
800 <    private ForkJoinWorkerThread createWorker(int index) {
801 <        Thread.UncaughtExceptionHandler h = ueh;
802 <        ForkJoinWorkerThread w = factory.newThread(this);
803 <        if (w != null) {
804 <            w.poolIndex = index;
805 <            w.setDaemon(true);
806 <            w.setAsyncMode(locallyFifo);
807 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
808 <            if (h != null)
809 <                w.setUncaughtExceptionHandler(h);
800 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
801 >        while (eventCount == ec) {
802 >            if (tryAccumulateStealCount(w)) { // transfer while idle
803 >                boolean untimed = (w.nextWaiter != 0L ||
804 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
805 >                long startTime = untimed ? 0 : System.nanoTime();
806 >                Thread.interrupted();         // clear/ignore interrupt
807 >                if (w.isTerminating() || eventCount != ec)
808 >                    break;                    // recheck after clear
809 >                if (untimed)
810 >                    LockSupport.park(w);
811 >                else {
812 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
813 >                    if (eventCount != ec || w.isTerminating())
814 >                        break;
815 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
816 >                        tryShutdownUnusedWorker(ec);
817 >                }
818 >            }
819          }
820 <        return w;
820 >    }
821 >
822 >    // Maintaining parallelism
823 >
824 >    /**
825 >     * Pushes worker onto the spare stack.
826 >     */
827 >    final void pushSpare(ForkJoinWorkerThread w) {
828 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
829 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
830 >                                               w.nextSpare = spareWaiters,ns));
831      }
832  
833      /**
834 <     * Returns a good size for worker array given pool size.
835 <     * Currently requires size to be a power of two.
834 >     * Tries (once) to resume a spare if the number of running
835 >     * threads is less than target.
836       */
837 <    private static int arraySizeFor(int poolSize) {
838 <        return (poolSize <= 1) ? 1 :
839 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
837 >    private void tryResumeSpare() {
838 >        int sw, id;
839 >        ForkJoinWorkerThread[] ws = workers;
840 >        int n = ws.length;
841 >        ForkJoinWorkerThread w;
842 >        if ((sw = spareWaiters) != 0 &&
843 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
844 >            id < n && (w = ws[id]) != null &&
845 >            (runState >= TERMINATING ||
846 >             (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
847 >            spareWaiters == sw &&
848 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
849 >                                     sw, w.nextSpare)) {
850 >            int c; // increment running count before resume
851 >            do {} while (!UNSAFE.compareAndSwapInt
852 >                         (this, workerCountsOffset,
853 >                          c = workerCounts, c + ONE_RUNNING));
854 >            if (w.tryUnsuspend())
855 >                LockSupport.unpark(w);
856 >            else   // back out if w was shutdown
857 >                decrementWorkerCounts(ONE_RUNNING, 0);
858 >        }
859      }
860  
861      /**
862 <     * Creates or resizes array if necessary to hold newLength.
863 <     * Call only under exclusion.
862 >     * Tries to increase the number of running workers if below target
863 >     * parallelism: If a spare exists tries to resume it via
864 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
865 >     * existing workers are busy, adds a new worker. In all cases also
866 >     * helps wake up releasable workers waiting for work.
867 >     */
868 >    private void helpMaintainParallelism() {
869 >        int pc = parallelism;
870 >        int wc, rs, tc;
871 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
872 >               (rs = runState) < TERMINATING) {
873 >            if (spareWaiters != 0)
874 >                tryResumeSpare();
875 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
876 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
877 >                break;   // enough total
878 >            else if (runState == rs && workerCounts == wc &&
879 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
880 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
881 >                ForkJoinWorkerThread w = null;
882 >                Throwable fail = null;
883 >                try {
884 >                    w = factory.newThread(this);
885 >                } catch (Throwable ex) {
886 >                    fail = ex;
887 >                }
888 >                if (w == null) { // null or exceptional factory return
889 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
890 >                    tryTerminate(false); // handle failure during shutdown
891 >                    // If originating from an external caller,
892 >                    // propagate exception, else ignore
893 >                    if (fail != null && runState < TERMINATING &&
894 >                        !(Thread.currentThread() instanceof
895 >                          ForkJoinWorkerThread))
896 >                        UNSAFE.throwException(fail);
897 >                    break;
898 >                }
899 >                w.start(recordWorker(w), ueh);
900 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
901 >                    break; // add at most one unless total below target
902 >            }
903 >        }
904 >        if (eventWaiters != 0L)
905 >            releaseEventWaiters();
906 >    }
907 >
908 >    /**
909 >     * Callback from the oldest waiter in awaitEvent waking up after a
910 >     * period of non-use. If all workers are idle, tries (once) to
911 >     * shutdown an event waiter or a spare, if one exists. Note that
912 >     * we don't need CAS or locks here because the method is called
913 >     * only from one thread occasionally waking (and even misfires are
914 >     * OK). Note that until the shutdown worker fully terminates,
915 >     * workerCounts will overestimate total count, which is tolerable.
916       *
917 <     * @return the array
917 >     * @param ec the event count waited on by caller (to abort
918 >     * attempt if count has since changed).
919       */
920 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
921 <        ForkJoinWorkerThread[] ws = workers;
922 <        if (ws == null)
923 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
924 <        else if (newLength > ws.length)
925 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
926 <        else
927 <            return ws;
920 >    private void tryShutdownUnusedWorker(int ec) {
921 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
922 >            ForkJoinWorkerThread[] ws = workers;
923 >            int n = ws.length;
924 >            ForkJoinWorkerThread w = null;
925 >            boolean shutdown = false;
926 >            int sw;
927 >            long h;
928 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
929 >                int id = (sw & SPARE_ID_MASK) - 1;
930 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
931 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
932 >                                             sw, w.nextSpare))
933 >                    shutdown = true;
934 >            }
935 >            else if ((h = eventWaiters) != 0L) {
936 >                long nh;
937 >                int id = (((int)h) & WAITER_ID_MASK) - 1;
938 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
939 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
940 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
941 >                    shutdown = true;
942 >            }
943 >            if (w != null && shutdown) {
944 >                w.shutdown();
945 >                LockSupport.unpark(w);
946 >            }
947 >        }
948 >        releaseEventWaiters(); // in case of interference
949      }
950  
951      /**
952 <     * Tries to shrink workers into smaller array after one or more terminate.
952 >     * Callback from workers invoked upon each top-level action (i.e.,
953 >     * stealing a task or taking a submission and running it).
954 >     * Performs one or more of the following:
955 >     *
956 >     * 1. If the worker is active and either did not run a task
957 >     *    or there are too many workers, try to set its active status
958 >     *    to inactive and update activeCount. On contention, we may
959 >     *    try again in this or a subsequent call.
960 >     *
961 >     * 2. If not enough total workers, help create some.
962 >     *
963 >     * 3. If there are too many running workers, suspend this worker
964 >     *    (first forcing inactive if necessary).  If it is not needed,
965 >     *    it may be shutdown while suspended (via
966 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
967 >     *    rechecks running thread count and need for event sync.
968 >     *
969 >     * 4. If worker did not run a task, await the next task event via
970 >     *    eventSync if necessary (first forcing inactivation), upon
971 >     *    which the worker may be shutdown via
972 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
973 >     *    existing event waiters that are now releasable,
974 >     *
975 >     * @param w the worker
976 >     * @param ran true if worker ran a task since last call to this method
977       */
978 <    private void tryShrinkWorkerArray() {
979 <        ForkJoinWorkerThread[] ws = workers;
980 <        if (ws != null) {
981 <            int len = ws.length;
982 <            int last = len - 1;
983 <            while (last >= 0 && ws[last] == null)
984 <                --last;
985 <            int newLength = arraySizeFor(last+1);
986 <            if (newLength < len)
987 <                workers = Arrays.copyOf(ws, newLength);
978 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
979 >        int wec = w.lastEventCount;
980 >        boolean active = w.active;
981 >        boolean inactivate = false;
982 >        int pc = parallelism;
983 >        while (w.runState == 0) {
984 >            int rs = runState;
985 >            if (rs >= TERMINATING) {           // propagate shutdown
986 >                w.shutdown();
987 >                break;
988 >            }
989 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
990 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
991 >                inactivate = active = w.active = false;
992 >                if (rs == SHUTDOWN) {          // all inactive and shut down
993 >                    tryTerminate(false);
994 >                    continue;
995 >                }
996 >            }
997 >            int wc = workerCounts;             // try to suspend as spare
998 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
999 >                if (!(inactivate |= active) && // must inactivate to suspend
1000 >                    workerCounts == wc &&
1001 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1002 >                                             wc, wc - ONE_RUNNING))
1003 >                    w.suspendAsSpare();
1004 >            }
1005 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1006 >                helpMaintainParallelism();     // not enough workers
1007 >            else if (ran)
1008 >                break;
1009 >            else {
1010 >                long h = eventWaiters;
1011 >                int ec = eventCount;
1012 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1013 >                    releaseEventWaiters();     // release others before waiting
1014 >                else if (ec != wec) {
1015 >                    w.lastEventCount = ec;     // no need to wait
1016 >                    break;
1017 >                }
1018 >                else if (!(inactivate |= active))
1019 >                    eventSync(w, wec);         // must inactivate before sync
1020 >            }
1021          }
1022      }
1023  
1024      /**
1025 <     * Initializes workers if necessary.
1025 >     * Helps and/or blocks awaiting join of the given task.
1026 >     * See above for explanation.
1027 >     *
1028 >     * @param joinMe the task to join
1029 >     * @param worker the current worker thread
1030 >     * @param timed true if wait should time out
1031 >     * @param nanos timeout value if timed
1032       */
1033 <    final void ensureWorkerInitialization() {
1034 <        ForkJoinWorkerThread[] ws = workers;
1035 <        if (ws == null) {
1036 <            final ReentrantLock lock = this.workerLock;
1037 <            lock.lock();
1038 <            try {
1039 <                ws = workers;
1040 <                if (ws == null) {
1041 <                    int ps = parallelism;
1042 <                    ws = ensureWorkerArrayCapacity(ps);
1043 <                    for (int i = 0; i < ps; ++i) {
1044 <                        ForkJoinWorkerThread w = createWorker(i);
1045 <                        if (w != null) {
1046 <                            ws[i] = w;
1047 <                            w.start();
1048 <                            updateWorkerCount(1);
1033 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1034 >                         boolean timed, long nanos) {
1035 >        long startTime = timed? System.nanoTime() : 0L;
1036 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1037 >        boolean running = true;               // false when count decremented
1038 >        while (joinMe.status >= 0) {
1039 >            if (runState >= TERMINATING) {
1040 >                joinMe.cancelIgnoringExceptions();
1041 >                break;
1042 >            }
1043 >            running = worker.helpJoinTask(joinMe, running);
1044 >            if (joinMe.status < 0)
1045 >                break;
1046 >            if (retries > 0) {
1047 >                --retries;
1048 >                continue;
1049 >            }
1050 >            int wc = workerCounts;
1051 >            if ((wc & RUNNING_COUNT_MASK) != 0) {
1052 >                if (running) {
1053 >                    if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1054 >                                                  wc, wc - ONE_RUNNING))
1055 >                        continue;
1056 >                    running = false;
1057 >                }
1058 >                long h = eventWaiters;
1059 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1060 >                    releaseEventWaiters();
1061 >                if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1062 >                    long ms; int ns;
1063 >                    if (!timed) {
1064 >                        ms = JOIN_TIMEOUT_MILLIS;
1065 >                        ns = 0;
1066 >                    }
1067 >                    else { // at most JOIN_TIMEOUT_MILLIS per wait
1068 >                        long nt = nanos - (System.nanoTime() - startTime);
1069 >                        if (nt <= 0L)
1070 >                            break;
1071 >                        ms = nt / 1000000;
1072 >                        if (ms > JOIN_TIMEOUT_MILLIS) {
1073 >                            ms = JOIN_TIMEOUT_MILLIS;
1074 >                            ns = 0;
1075                          }
1076 +                        else
1077 +                            ns = (int) (nt % 1000000);
1078                      }
1079 +                    joinMe.internalAwaitDone(ms, ns);
1080                  }
1081 <            } finally {
1082 <                lock.unlock();
1081 >                if (joinMe.status < 0)
1082 >                    break;
1083              }
1084 +            helpMaintainParallelism();
1085 +        }
1086 +        if (!running) {
1087 +            int c;
1088 +            do {} while (!UNSAFE.compareAndSwapInt
1089 +                         (this, workerCountsOffset,
1090 +                          c = workerCounts, c + ONE_RUNNING));
1091          }
1092      }
1093  
1094      /**
1095 <     * Worker creation and startup for threads added via setParallelism.
1095 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1096       */
1097 <    private void createAndStartAddedWorkers() {
1098 <        resumeAllSpares();  // Allow spares to convert to nonspare
1099 <        int ps = parallelism;
1100 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1101 <        int len = ws.length;
1102 <        // Sweep through slots, to keep lowest indices most populated
1103 <        int k = 0;
1104 <        while (k < len) {
1105 <            if (ws[k] != null) {
1106 <                ++k;
1107 <                continue;
1108 <            }
1109 <            int s = workerCounts;
1110 <            int tc = totalCountOf(s);
1111 <            int rc = runningCountOf(s);
1112 <            if (rc >= ps || tc >= ps)
1097 >    final void awaitBlocker(ManagedBlocker blocker)
1098 >        throws InterruptedException {
1099 >        while (!blocker.isReleasable()) {
1100 >            int wc = workerCounts;
1101 >            if ((wc & RUNNING_COUNT_MASK) == 0)
1102 >                helpMaintainParallelism();
1103 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1104 >                                              wc, wc - ONE_RUNNING)) {
1105 >                try {
1106 >                    while (!blocker.isReleasable()) {
1107 >                        long h = eventWaiters;
1108 >                        if (h != 0L &&
1109 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1110 >                            releaseEventWaiters();
1111 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1112 >                                 runState < TERMINATING)
1113 >                            helpMaintainParallelism();
1114 >                        else if (blocker.block())
1115 >                            break;
1116 >                    }
1117 >                } finally {
1118 >                    int c;
1119 >                    do {} while (!UNSAFE.compareAndSwapInt
1120 >                                 (this, workerCountsOffset,
1121 >                                  c = workerCounts, c + ONE_RUNNING));
1122 >                }
1123                  break;
1124 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1125 <                ForkJoinWorkerThread w = createWorker(k);
1124 >            }
1125 >        }
1126 >    }
1127 >
1128 >    /**
1129 >     * Possibly initiates and/or completes termination.
1130 >     *
1131 >     * @param now if true, unconditionally terminate, else only
1132 >     * if shutdown and empty queue and no active workers
1133 >     * @return true if now terminating or terminated
1134 >     */
1135 >    private boolean tryTerminate(boolean now) {
1136 >        if (now)
1137 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1138 >        else if (runState < SHUTDOWN ||
1139 >                 !submissionQueue.isEmpty() ||
1140 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1141 >            return false;
1142 >
1143 >        if (advanceRunLevel(TERMINATING))
1144 >            startTerminating();
1145 >
1146 >        // Finish now if all threads terminated; else in some subsequent call
1147 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1148 >            advanceRunLevel(TERMINATED);
1149 >            termination.forceTermination();
1150 >        }
1151 >        return true;
1152 >    }
1153 >
1154 >    /**
1155 >     * Actions on transition to TERMINATING
1156 >     *
1157 >     * Runs up to four passes through workers: (0) shutting down each
1158 >     * (without waking up if parked) to quickly spread notifications
1159 >     * without unnecessary bouncing around event queues etc (1) wake
1160 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1161 >     * interrupted workers
1162 >     */
1163 >    private void startTerminating() {
1164 >        cancelSubmissions();
1165 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1166 >            int c; // advance event count
1167 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1168 >                                     c = eventCount, c+1);
1169 >            eventWaiters = 0L; // clobber lists
1170 >            spareWaiters = 0;
1171 >            for (ForkJoinWorkerThread w : workers) {
1172                  if (w != null) {
1173 <                    ws[k++] = w;
1174 <                    w.start();
1175 <                }
1176 <                else {
1177 <                    updateWorkerCount(-1); // back out on failed creation
1178 <                    break;
1173 >                    w.shutdown();
1174 >                    if (passes > 0 && !w.isTerminated()) {
1175 >                        w.cancelTasks();
1176 >                        LockSupport.unpark(w);
1177 >                        if (passes > 1 && !w.isInterrupted()) {
1178 >                            try {
1179 >                                w.interrupt();
1180 >                            } catch (SecurityException ignore) {
1181 >                            }
1182 >                        }
1183 >                    }
1184                  }
1185              }
1186          }
1187      }
1188  
1189 +    /**
1190 +     * Clears out and cancels submissions, ignoring exceptions.
1191 +     */
1192 +    private void cancelSubmissions() {
1193 +        ForkJoinTask<?> task;
1194 +        while ((task = submissionQueue.poll()) != null) {
1195 +            try {
1196 +                task.cancel(false);
1197 +            } catch (Throwable ignore) {
1198 +            }
1199 +        }
1200 +    }
1201 +
1202 +    // misc support for ForkJoinWorkerThread
1203 +
1204 +    /**
1205 +     * Returns pool number.
1206 +     */
1207 +    final int getPoolNumber() {
1208 +        return poolNumber;
1209 +    }
1210 +
1211 +    /**
1212 +     * Tries to accumulate steal count from a worker, clearing
1213 +     * the worker's value if successful.
1214 +     *
1215 +     * @return true if worker steal count now zero
1216 +     */
1217 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1218 +        int sc = w.stealCount;
1219 +        long c = stealCount;
1220 +        // CAS even if zero, for fence effects
1221 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1222 +            if (sc != 0)
1223 +                w.stealCount = 0;
1224 +            return true;
1225 +        }
1226 +        return sc == 0;
1227 +    }
1228 +
1229 +    /**
1230 +     * Returns the approximate (non-atomic) number of idle threads per
1231 +     * active thread.
1232 +     */
1233 +    final int idlePerActive() {
1234 +        int pc = parallelism; // use parallelism, not rc
1235 +        int ac = runState;    // no mask -- artificially boosts during shutdown
1236 +        // Use exact results for small values, saturate past 4
1237 +        return ((pc <= ac) ? 0 :
1238 +                (pc >>> 1 <= ac) ? 1 :
1239 +                (pc >>> 2 <= ac) ? 3 :
1240 +                pc >>> 3);
1241 +    }
1242 +
1243 +    // Public and protected methods
1244 +
1245 +    // Constructors
1246 +
1247 +    /**
1248 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1249 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1250 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1251 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1252 +     *
1253 +     * @throws SecurityException if a security manager exists and
1254 +     *         the caller is not permitted to modify threads
1255 +     *         because it does not hold {@link
1256 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1257 +     */
1258 +    public ForkJoinPool() {
1259 +        this(Runtime.getRuntime().availableProcessors(),
1260 +             defaultForkJoinWorkerThreadFactory, null, false);
1261 +    }
1262 +
1263 +    /**
1264 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1265 +     * level, the {@linkplain
1266 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1267 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1268 +     *
1269 +     * @param parallelism the parallelism level
1270 +     * @throws IllegalArgumentException if parallelism less than or
1271 +     *         equal to zero, or greater than implementation limit
1272 +     * @throws SecurityException if a security manager exists and
1273 +     *         the caller is not permitted to modify threads
1274 +     *         because it does not hold {@link
1275 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1276 +     */
1277 +    public ForkJoinPool(int parallelism) {
1278 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1279 +    }
1280 +
1281 +    /**
1282 +     * Creates a {@code ForkJoinPool} with the given parameters.
1283 +     *
1284 +     * @param parallelism the parallelism level. For default value,
1285 +     * use {@link java.lang.Runtime#availableProcessors}.
1286 +     * @param factory the factory for creating new threads. For default value,
1287 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1288 +     * @param handler the handler for internal worker threads that
1289 +     * terminate due to unrecoverable errors encountered while executing
1290 +     * tasks. For default value, use {@code null}.
1291 +     * @param asyncMode if true,
1292 +     * establishes local first-in-first-out scheduling mode for forked
1293 +     * tasks that are never joined. This mode may be more appropriate
1294 +     * than default locally stack-based mode in applications in which
1295 +     * worker threads only process event-style asynchronous tasks.
1296 +     * For default value, use {@code false}.
1297 +     * @throws IllegalArgumentException if parallelism less than or
1298 +     *         equal to zero, or greater than implementation limit
1299 +     * @throws NullPointerException if the factory is null
1300 +     * @throws SecurityException if a security manager exists and
1301 +     *         the caller is not permitted to modify threads
1302 +     *         because it does not hold {@link
1303 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1304 +     */
1305 +    public ForkJoinPool(int parallelism,
1306 +                        ForkJoinWorkerThreadFactory factory,
1307 +                        Thread.UncaughtExceptionHandler handler,
1308 +                        boolean asyncMode) {
1309 +        checkPermission();
1310 +        if (factory == null)
1311 +            throw new NullPointerException();
1312 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1313 +            throw new IllegalArgumentException();
1314 +        this.parallelism = parallelism;
1315 +        this.factory = factory;
1316 +        this.ueh = handler;
1317 +        this.locallyFifo = asyncMode;
1318 +        int arraySize = initialArraySizeFor(parallelism);
1319 +        this.workers = new ForkJoinWorkerThread[arraySize];
1320 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1321 +        this.workerLock = new ReentrantLock();
1322 +        this.termination = new Phaser(1);
1323 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1324 +    }
1325 +
1326 +    /**
1327 +     * Returns initial power of two size for workers array.
1328 +     * @param pc the initial parallelism level
1329 +     */
1330 +    private static int initialArraySizeFor(int pc) {
1331 +        // If possible, initially allocate enough space for one spare
1332 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1333 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1334 +        size |= size >>> 1;
1335 +        size |= size >>> 2;
1336 +        size |= size >>> 4;
1337 +        size |= size >>> 8;
1338 +        return size + 1;
1339 +    }
1340 +
1341      // Execution methods
1342  
1343      /**
1344 <     * Common code for execute, invoke and submit
1344 >     * Submits task and creates, starts, or resumes some workers if necessary
1345       */
1346      private <T> void doSubmit(ForkJoinTask<T> task) {
551        if (task == null)
552            throw new NullPointerException();
553        if (isShutdown())
554            throw new RejectedExecutionException();
555        if (workers == null)
556            ensureWorkerInitialization();
1347          submissionQueue.offer(task);
1348 <        signalIdleWorkers();
1348 >        int c; // try to increment event count -- CAS failure OK
1349 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1350 >        helpMaintainParallelism();
1351      }
1352  
1353      /**
# Line 563 | Line 1355 | public class ForkJoinPool extends Abstra
1355       *
1356       * @param task the task
1357       * @return the task's result
1358 <     * @throws NullPointerException if task is null
1359 <     * @throws RejectedExecutionException if pool is shut down
1358 >     * @throws NullPointerException if the task is null
1359 >     * @throws RejectedExecutionException if the task cannot be
1360 >     *         scheduled for execution
1361       */
1362      public <T> T invoke(ForkJoinTask<T> task) {
1363 <        doSubmit(task);
1364 <        return task.join();
1363 >        if (task == null)
1364 >            throw new NullPointerException();
1365 >        if (runState >= SHUTDOWN)
1366 >            throw new RejectedExecutionException();
1367 >        Thread t = Thread.currentThread();
1368 >        if ((t instanceof ForkJoinWorkerThread) &&
1369 >            ((ForkJoinWorkerThread)t).pool == this)
1370 >            return task.invoke();  // bypass submit if in same pool
1371 >        else {
1372 >            doSubmit(task);
1373 >            return task.join();
1374 >        }
1375 >    }
1376 >
1377 >    /**
1378 >     * Unless terminating, forks task if within an ongoing FJ
1379 >     * computation in the current pool, else submits as external task.
1380 >     */
1381 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1382 >        if (runState >= SHUTDOWN)
1383 >            throw new RejectedExecutionException();
1384 >        Thread t = Thread.currentThread();
1385 >        if ((t instanceof ForkJoinWorkerThread) &&
1386 >            ((ForkJoinWorkerThread)t).pool == this)
1387 >            task.fork();
1388 >        else
1389 >            doSubmit(task);
1390      }
1391  
1392      /**
1393       * Arranges for (asynchronous) execution of the given task.
1394       *
1395       * @param task the task
1396 <     * @throws NullPointerException if task is null
1397 <     * @throws RejectedExecutionException if pool is shut down
1396 >     * @throws NullPointerException if the task is null
1397 >     * @throws RejectedExecutionException if the task cannot be
1398 >     *         scheduled for execution
1399       */
1400 <    public <T> void execute(ForkJoinTask<T> task) {
1401 <        doSubmit(task);
1400 >    public void execute(ForkJoinTask<?> task) {
1401 >        if (task == null)
1402 >            throw new NullPointerException();
1403 >        forkOrSubmit(task);
1404      }
1405  
1406      // AbstractExecutorService methods
1407  
1408 +    /**
1409 +     * @throws NullPointerException if the task is null
1410 +     * @throws RejectedExecutionException if the task cannot be
1411 +     *         scheduled for execution
1412 +     */
1413      public void execute(Runnable task) {
1414 +        if (task == null)
1415 +            throw new NullPointerException();
1416          ForkJoinTask<?> job;
1417 <        if (task instanceof AdaptedCallable) // avoid re-wrap
1418 <            job = (AdaptedCallable<?>)task;
591 <        else if (task instanceof AdaptedRunnable)
592 <            job = (AdaptedRunnable<?>)task;
593 <        else
594 <            job = new AdaptedRunnable<Void>(task, null);
595 <        doSubmit(job);
596 <    }
597 <
598 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
599 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
600 <        doSubmit(job);
601 <        return job;
602 <    }
603 <
604 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
605 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
606 <        doSubmit(job);
607 <        return job;
608 <    }
609 <
610 <    public ForkJoinTask<?> submit(Runnable task) {
611 <        ForkJoinTask<?> job;
612 <        if (task instanceof AdaptedCallable) // avoid re-wrap
613 <            job = (AdaptedCallable<?>)task;
614 <        else if (task instanceof AdaptedRunnable)
615 <            job = (AdaptedRunnable<?>)task;
1417 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1418 >            job = (ForkJoinTask<?>) task;
1419          else
1420 <            job = new AdaptedRunnable<Void>(task, null);
1421 <        doSubmit(job);
619 <        return job;
1420 >            job = ForkJoinTask.adapt(task, null);
1421 >        forkOrSubmit(job);
1422      }
1423  
1424      /**
# Line 624 | Line 1426 | public class ForkJoinPool extends Abstra
1426       *
1427       * @param task the task to submit
1428       * @return the task
1429 +     * @throws NullPointerException if the task is null
1430       * @throws RejectedExecutionException if the task cannot be
1431       *         scheduled for execution
629     * @throws NullPointerException if the task is null
1432       */
1433      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1434 <        doSubmit(task);
1434 >        if (task == null)
1435 >            throw new NullPointerException();
1436 >        forkOrSubmit(task);
1437          return task;
1438      }
1439  
1440      /**
1441 <     * Adaptor for Runnables. This implements RunnableFuture
1442 <     * to be compliant with AbstractExecutorService constraints.
1441 >     * @throws NullPointerException if the task is null
1442 >     * @throws RejectedExecutionException if the task cannot be
1443 >     *         scheduled for execution
1444       */
1445 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
1446 <        implements RunnableFuture<T> {
1447 <        final Runnable runnable;
1448 <        final T resultOnCompletion;
1449 <        T result;
1450 <        AdaptedRunnable(Runnable runnable, T result) {
646 <            if (runnable == null) throw new NullPointerException();
647 <            this.runnable = runnable;
648 <            this.resultOnCompletion = result;
649 <        }
650 <        public T getRawResult() { return result; }
651 <        public void setRawResult(T v) { result = v; }
652 <        public boolean exec() {
653 <            runnable.run();
654 <            result = resultOnCompletion;
655 <            return true;
656 <        }
657 <        public void run() { invoke(); }
658 <        private static final long serialVersionUID = 5232453952276885070L;
1445 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
1446 >        if (task == null)
1447 >            throw new NullPointerException();
1448 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1449 >        forkOrSubmit(job);
1450 >        return job;
1451      }
1452  
1453      /**
1454 <     * Adaptor for Callables
1454 >     * @throws NullPointerException if the task is null
1455 >     * @throws RejectedExecutionException if the task cannot be
1456 >     *         scheduled for execution
1457       */
1458 <    static final class AdaptedCallable<T> extends ForkJoinTask<T>
1459 <        implements RunnableFuture<T> {
1460 <        final Callable<T> callable;
1461 <        T result;
1462 <        AdaptedCallable(Callable<T> callable) {
1463 <            if (callable == null) throw new NullPointerException();
1464 <            this.callable = callable;
1465 <        }
1466 <        public T getRawResult() { return result; }
1467 <        public void setRawResult(T v) { result = v; }
1468 <        public boolean exec() {
1469 <            try {
1470 <                result = callable.call();
1471 <                return true;
1472 <            } catch (Error err) {
1473 <                throw err;
1474 <            } catch (RuntimeException rex) {
1475 <                throw rex;
1476 <            } catch (Exception ex) {
1477 <                throw new RuntimeException(ex);
1478 <            }
1479 <        }
1480 <        public void run() { invoke(); }
687 <        private static final long serialVersionUID = 2838392045355241008L;
1458 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1459 >        if (task == null)
1460 >            throw new NullPointerException();
1461 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1462 >        forkOrSubmit(job);
1463 >        return job;
1464 >    }
1465 >
1466 >    /**
1467 >     * @throws NullPointerException if the task is null
1468 >     * @throws RejectedExecutionException if the task cannot be
1469 >     *         scheduled for execution
1470 >     */
1471 >    public ForkJoinTask<?> submit(Runnable task) {
1472 >        if (task == null)
1473 >            throw new NullPointerException();
1474 >        ForkJoinTask<?> job;
1475 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1476 >            job = (ForkJoinTask<?>) task;
1477 >        else
1478 >            job = ForkJoinTask.adapt(task, null);
1479 >        forkOrSubmit(job);
1480 >        return job;
1481      }
1482  
1483 +    /**
1484 +     * @throws NullPointerException       {@inheritDoc}
1485 +     * @throws RejectedExecutionException {@inheritDoc}
1486 +     */
1487      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1488          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1489              new ArrayList<ForkJoinTask<T>>(tasks.size());
1490          for (Callable<T> task : tasks)
1491 <            forkJoinTasks.add(new AdaptedCallable<T>(task));
1491 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1492          invoke(new InvokeAll<T>(forkJoinTasks));
1493  
1494          @SuppressWarnings({"unchecked", "rawtypes"})
1495 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1495 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1496          return futures;
1497      }
1498  
# Line 709 | Line 1506 | public class ForkJoinPool extends Abstra
1506          private static final long serialVersionUID = -7914297376763021607L;
1507      }
1508  
712    // Configuration and status settings and queries
713
1509      /**
1510       * Returns the factory used for constructing new workers.
1511       *
# Line 724 | Line 1519 | public class ForkJoinPool extends Abstra
1519       * Returns the handler for internal worker threads that terminate
1520       * due to unrecoverable errors encountered while executing tasks.
1521       *
1522 <     * @return the handler, or null if none
1522 >     * @return the handler, or {@code null} if none
1523       */
1524      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1525 <        Thread.UncaughtExceptionHandler h;
731 <        final ReentrantLock lock = this.workerLock;
732 <        lock.lock();
733 <        try {
734 <            h = ueh;
735 <        } finally {
736 <            lock.unlock();
737 <        }
738 <        return h;
739 <    }
740 <
741 <    /**
742 <     * Sets the handler for internal worker threads that terminate due
743 <     * to unrecoverable errors encountered while executing tasks.
744 <     * Unless set, the current default or ThreadGroup handler is used
745 <     * as handler.
746 <     *
747 <     * @param h the new handler
748 <     * @return the old handler, or null if none
749 <     * @throws SecurityException if a security manager exists and
750 <     *         the caller is not permitted to modify threads
751 <     *         because it does not hold {@link
752 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
753 <     */
754 <    public Thread.UncaughtExceptionHandler
755 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
756 <        checkPermission();
757 <        Thread.UncaughtExceptionHandler old = null;
758 <        final ReentrantLock lock = this.workerLock;
759 <        lock.lock();
760 <        try {
761 <            old = ueh;
762 <            ueh = h;
763 <            ForkJoinWorkerThread[] ws = workers;
764 <            if (ws != null) {
765 <                for (int i = 0; i < ws.length; ++i) {
766 <                    ForkJoinWorkerThread w = ws[i];
767 <                    if (w != null)
768 <                        w.setUncaughtExceptionHandler(h);
769 <                }
770 <            }
771 <        } finally {
772 <            lock.unlock();
773 <        }
774 <        return old;
775 <    }
776 <
777 <
778 <    /**
779 <     * Sets the target parallelism level of this pool.
780 <     *
781 <     * @param parallelism the target parallelism
782 <     * @throws IllegalArgumentException if parallelism less than or
783 <     * equal to zero or greater than maximum size bounds
784 <     * @throws SecurityException if a security manager exists and
785 <     *         the caller is not permitted to modify threads
786 <     *         because it does not hold {@link
787 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
788 <     */
789 <    public void setParallelism(int parallelism) {
790 <        checkPermission();
791 <        if (parallelism <= 0 || parallelism > maxPoolSize)
792 <            throw new IllegalArgumentException();
793 <        final ReentrantLock lock = this.workerLock;
794 <        lock.lock();
795 <        try {
796 <            if (!isTerminating()) {
797 <                int p = this.parallelism;
798 <                this.parallelism = parallelism;
799 <                if (parallelism > p)
800 <                    createAndStartAddedWorkers();
801 <                else
802 <                    trimSpares();
803 <            }
804 <        } finally {
805 <            lock.unlock();
806 <        }
807 <        signalIdleWorkers();
1525 >        return ueh;
1526      }
1527  
1528      /**
1529 <     * Returns the targeted number of worker threads in this pool.
1529 >     * Returns the targeted parallelism level of this pool.
1530       *
1531 <     * @return the targeted number of worker threads in this pool
1531 >     * @return the targeted parallelism level of this pool
1532       */
1533      public int getParallelism() {
1534          return parallelism;
# Line 818 | Line 1536 | public class ForkJoinPool extends Abstra
1536  
1537      /**
1538       * Returns the number of worker threads that have started but not
1539 <     * yet terminated.  This result returned by this method may differ
1540 <     * from {@code getParallelism} when threads are created to
1539 >     * yet terminated.  The result returned by this method may differ
1540 >     * from {@link #getParallelism} when threads are created to
1541       * maintain parallelism when others are cooperatively blocked.
1542       *
1543       * @return the number of worker threads
1544       */
1545      public int getPoolSize() {
1546 <        return totalCountOf(workerCounts);
829 <    }
830 <
831 <    /**
832 <     * Returns the maximum number of threads allowed to exist in the
833 <     * pool, even if there are insufficient unblocked running threads.
834 <     *
835 <     * @return the maximum
836 <     */
837 <    public int getMaximumPoolSize() {
838 <        return maxPoolSize;
839 <    }
840 <
841 <    /**
842 <     * Sets the maximum number of threads allowed to exist in the
843 <     * pool, even if there are insufficient unblocked running threads.
844 <     * Setting this value has no effect on current pool size. It
845 <     * controls construction of new threads.
846 <     *
847 <     * @throws IllegalArgumentException if negative or greater then
848 <     * internal implementation limit
849 <     */
850 <    public void setMaximumPoolSize(int newMax) {
851 <        if (newMax < 0 || newMax > MAX_THREADS)
852 <            throw new IllegalArgumentException();
853 <        maxPoolSize = newMax;
854 <    }
855 <
856 <
857 <    /**
858 <     * Returns true if this pool dynamically maintains its target
859 <     * parallelism level. If false, new threads are added only to
860 <     * avoid possible starvation.
861 <     * This setting is by default true.
862 <     *
863 <     * @return true if maintains parallelism
864 <     */
865 <    public boolean getMaintainsParallelism() {
866 <        return maintainsParallelism;
867 <    }
868 <
869 <    /**
870 <     * Sets whether this pool dynamically maintains its target
871 <     * parallelism level. If false, new threads are added only to
872 <     * avoid possible starvation.
873 <     *
874 <     * @param enable true to maintains parallelism
875 <     */
876 <    public void setMaintainsParallelism(boolean enable) {
877 <        maintainsParallelism = enable;
1546 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1547      }
1548  
1549      /**
1550 <     * Establishes local first-in-first-out scheduling mode for forked
882 <     * tasks that are never joined. This mode may be more appropriate
883 <     * than default locally stack-based mode in applications in which
884 <     * worker threads only process asynchronous tasks.  This method is
885 <     * designed to be invoked only when pool is quiescent, and
886 <     * typically only before any tasks are submitted. The effects of
887 <     * invocations at other times may be unpredictable.
888 <     *
889 <     * @param async if true, use locally FIFO scheduling
890 <     * @return the previous mode
891 <     */
892 <    public boolean setAsyncMode(boolean async) {
893 <        boolean oldMode = locallyFifo;
894 <        locallyFifo = async;
895 <        ForkJoinWorkerThread[] ws = workers;
896 <        if (ws != null) {
897 <            for (int i = 0; i < ws.length; ++i) {
898 <                ForkJoinWorkerThread t = ws[i];
899 <                if (t != null)
900 <                    t.setAsyncMode(async);
901 <            }
902 <        }
903 <        return oldMode;
904 <    }
905 <
906 <    /**
907 <     * Returns true if this pool uses local first-in-first-out
1550 >     * Returns {@code true} if this pool uses local first-in-first-out
1551       * scheduling mode for forked tasks that are never joined.
1552       *
1553 <     * @return true if this pool uses async mode
1553 >     * @return {@code true} if this pool uses async mode
1554       */
1555      public boolean getAsyncMode() {
1556          return locallyFifo;
# Line 916 | Line 1559 | public class ForkJoinPool extends Abstra
1559      /**
1560       * Returns an estimate of the number of worker threads that are
1561       * not blocked waiting to join tasks or for other managed
1562 <     * synchronization.
1562 >     * synchronization. This method may overestimate the
1563 >     * number of running threads.
1564       *
1565       * @return the number of worker threads
1566       */
1567      public int getRunningThreadCount() {
1568 <        return runningCountOf(workerCounts);
1568 >        return workerCounts & RUNNING_COUNT_MASK;
1569      }
1570  
1571      /**
# Line 932 | Line 1576 | public class ForkJoinPool extends Abstra
1576       * @return the number of active threads
1577       */
1578      public int getActiveThreadCount() {
1579 <        return activeCountOf(runControl);
936 <    }
937 <
938 <    /**
939 <     * Returns an estimate of the number of threads that are currently
940 <     * idle waiting for tasks. This method may underestimate the
941 <     * number of idle threads.
942 <     *
943 <     * @return the number of idle threads
944 <     */
945 <    final int getIdleThreadCount() {
946 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
947 <        return (c <= 0) ? 0 : c;
1579 >        return runState & ACTIVE_COUNT_MASK;
1580      }
1581  
1582      /**
1583 <     * Returns true if all worker threads are currently idle. An idle
1584 <     * worker is one that cannot obtain a task to execute because none
1585 <     * are available to steal from other threads, and there are no
1586 <     * pending submissions to the pool. This method is conservative;
1587 <     * it might not return true immediately upon idleness of all
1588 <     * threads, but will eventually become true if threads remain
1589 <     * inactive.
1583 >     * Returns {@code true} if all worker threads are currently idle.
1584 >     * An idle worker is one that cannot obtain a task to execute
1585 >     * because none are available to steal from other threads, and
1586 >     * there are no pending submissions to the pool. This method is
1587 >     * conservative; it might not return {@code true} immediately upon
1588 >     * idleness of all threads, but will eventually become true if
1589 >     * threads remain inactive.
1590       *
1591 <     * @return true if all threads are currently idle
1591 >     * @return {@code true} if all threads are currently idle
1592       */
1593      public boolean isQuiescent() {
1594 <        return activeCountOf(runControl) == 0;
1594 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1595      }
1596  
1597      /**
# Line 974 | Line 1606 | public class ForkJoinPool extends Abstra
1606       * @return the number of steals
1607       */
1608      public long getStealCount() {
1609 <        return stealCount.get();
978 <    }
979 <
980 <    /**
981 <     * Accumulates steal count from a worker.
982 <     * Call only when worker known to be idle.
983 <     */
984 <    private void updateStealCount(ForkJoinWorkerThread w) {
985 <        int sc = w.getAndClearStealCount();
986 <        if (sc != 0)
987 <            stealCount.addAndGet(sc);
1609 >        return stealCount;
1610      }
1611  
1612      /**
# Line 999 | Line 1621 | public class ForkJoinPool extends Abstra
1621       */
1622      public long getQueuedTaskCount() {
1623          long count = 0;
1624 <        ForkJoinWorkerThread[] ws = workers;
1625 <        if (ws != null) {
1626 <            for (int i = 0; i < ws.length; ++i) {
1005 <                ForkJoinWorkerThread t = ws[i];
1006 <                if (t != null)
1007 <                    count += t.getQueueSize();
1008 <            }
1009 <        }
1624 >        for (ForkJoinWorkerThread w : workers)
1625 >            if (w != null)
1626 >                count += w.getQueueSize();
1627          return count;
1628      }
1629  
1630      /**
1631 <     * Returns an estimate of the number tasks submitted to this pool
1632 <     * that have not yet begun executing. This method takes time
1631 >     * Returns an estimate of the number of tasks submitted to this
1632 >     * pool that have not yet begun executing.  This method takes time
1633       * proportional to the number of submissions.
1634       *
1635       * @return the number of queued submissions
# Line 1022 | Line 1639 | public class ForkJoinPool extends Abstra
1639      }
1640  
1641      /**
1642 <     * Returns true if there are any tasks submitted to this pool
1643 <     * that have not yet begun executing.
1642 >     * Returns {@code true} if there are any tasks submitted to this
1643 >     * pool that have not yet begun executing.
1644       *
1645       * @return {@code true} if there are any queued submissions
1646       */
# Line 1036 | Line 1653 | public class ForkJoinPool extends Abstra
1653       * available.  This method may be useful in extensions to this
1654       * class that re-assign work in systems with multiple pools.
1655       *
1656 <     * @return the next submission, or null if none
1656 >     * @return the next submission, or {@code null} if none
1657       */
1658      protected ForkJoinTask<?> pollSubmission() {
1659          return submissionQueue.poll();
# Line 1046 | Line 1663 | public class ForkJoinPool extends Abstra
1663       * Removes all available unexecuted submitted and forked tasks
1664       * from scheduling queues and adds them to the given collection,
1665       * without altering their execution status. These may include
1666 <     * artificially generated or wrapped tasks. This method is designed
1667 <     * to be invoked only when the pool is known to be
1666 >     * artificially generated or wrapped tasks. This method is
1667 >     * designed to be invoked only when the pool is known to be
1668       * quiescent. Invocations at other times may not remove all
1669       * tasks. A failure encountered while attempting to add elements
1670       * to collection {@code c} may result in elements being in
# Line 1059 | Line 1676 | public class ForkJoinPool extends Abstra
1676       * @param c the collection to transfer elements into
1677       * @return the number of elements transferred
1678       */
1679 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1680 <        int n = submissionQueue.drainTo(c);
1681 <        ForkJoinWorkerThread[] ws = workers;
1682 <        if (ws != null) {
1683 <            for (int i = 0; i < ws.length; ++i) {
1684 <                ForkJoinWorkerThread w = ws[i];
1068 <                if (w != null)
1069 <                    n += w.drainTasksTo(c);
1070 <            }
1071 <        }
1072 <        return n;
1679 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1680 >        int count = submissionQueue.drainTo(c);
1681 >        for (ForkJoinWorkerThread w : workers)
1682 >            if (w != null)
1683 >                count += w.drainTasksTo(c);
1684 >        return count;
1685      }
1686  
1687      /**
# Line 1080 | Line 1692 | public class ForkJoinPool extends Abstra
1692       * @return a string identifying this pool, as well as its state
1693       */
1694      public String toString() {
1083        int ps = parallelism;
1084        int wc = workerCounts;
1085        int rc = runControl;
1695          long st = getStealCount();
1696          long qt = getQueuedTaskCount();
1697          long qs = getQueuedSubmissionCount();
1698 +        int wc = workerCounts;
1699 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1700 +        int rc = wc & RUNNING_COUNT_MASK;
1701 +        int pc = parallelism;
1702 +        int rs = runState;
1703 +        int ac = rs & ACTIVE_COUNT_MASK;
1704          return super.toString() +
1705 <            "[" + runStateToString(runStateOf(rc)) +
1706 <            ", parallelism = " + ps +
1707 <            ", size = " + totalCountOf(wc) +
1708 <            ", active = " + activeCountOf(rc) +
1709 <            ", running = " + runningCountOf(wc) +
1705 >            "[" + runLevelToString(rs) +
1706 >            ", parallelism = " + pc +
1707 >            ", size = " + tc +
1708 >            ", active = " + ac +
1709 >            ", running = " + rc +
1710              ", steals = " + st +
1711              ", tasks = " + qt +
1712              ", submissions = " + qs +
1713              "]";
1714      }
1715  
1716 <    private static String runStateToString(int rs) {
1717 <        switch(rs) {
1718 <        case RUNNING: return "Running";
1719 <        case SHUTDOWN: return "Shutting down";
1720 <        case TERMINATING: return "Terminating";
1106 <        case TERMINATED: return "Terminated";
1107 <        default: throw new Error("Unknown run state");
1108 <        }
1716 >    private static String runLevelToString(int s) {
1717 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1718 >                ((s & TERMINATING) != 0 ? "Terminating" :
1719 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1720 >                  "Running")));
1721      }
1722  
1111    // lifecycle control
1112
1723      /**
1724       * Initiates an orderly shutdown in which previously submitted
1725       * tasks are executed, but no new tasks will be accepted.
# Line 1124 | Line 1734 | public class ForkJoinPool extends Abstra
1734       */
1735      public void shutdown() {
1736          checkPermission();
1737 <        transitionRunStateTo(SHUTDOWN);
1738 <        if (canTerminateOnShutdown(runControl))
1129 <            terminateOnShutdown();
1737 >        advanceRunLevel(SHUTDOWN);
1738 >        tryTerminate(false);
1739      }
1740  
1741      /**
1742 <     * Attempts to stop all actively executing tasks, and cancels all
1743 <     * waiting tasks.  Tasks that are in the process of being
1744 <     * submitted or executed concurrently during the course of this
1745 <     * method may or may not be rejected. Unlike some other executors,
1746 <     * this method cancels rather than collects non-executed tasks
1747 <     * upon termination, so always returns an empty list. However, you
1748 <     * can use method {@code drainTasksTo} before invoking this
1749 <     * method to transfer unexecuted tasks to another collection.
1742 >     * Attempts to cancel and/or stop all tasks, and reject all
1743 >     * subsequently submitted tasks.  Tasks that are in the process of
1744 >     * being submitted or executed concurrently during the course of
1745 >     * this method may or may not be rejected. This method cancels
1746 >     * both existing and unexecuted tasks, in order to permit
1747 >     * termination in the presence of task dependencies. So the method
1748 >     * always returns an empty list (unlike the case for some other
1749 >     * Executors).
1750       *
1751       * @return an empty list
1752       * @throws SecurityException if a security manager exists and
# Line 1147 | Line 1756 | public class ForkJoinPool extends Abstra
1756       */
1757      public List<Runnable> shutdownNow() {
1758          checkPermission();
1759 <        terminate();
1759 >        tryTerminate(true);
1760          return Collections.emptyList();
1761      }
1762  
# Line 1157 | Line 1766 | public class ForkJoinPool extends Abstra
1766       * @return {@code true} if all tasks have completed following shut down
1767       */
1768      public boolean isTerminated() {
1769 <        return runStateOf(runControl) == TERMINATED;
1769 >        return runState >= TERMINATED;
1770      }
1771  
1772      /**
1773       * Returns {@code true} if the process of termination has
1774 <     * commenced but possibly not yet completed.
1774 >     * commenced but not yet completed.  This method may be useful for
1775 >     * debugging. A return of {@code true} reported a sufficient
1776 >     * period after shutdown may indicate that submitted tasks have
1777 >     * ignored or suppressed interruption, or are waiting for IO,
1778 >     * causing this executor not to properly terminate. (See the
1779 >     * advisory notes for class {@link ForkJoinTask} stating that
1780 >     * tasks should not normally entail blocking operations.  But if
1781 >     * they do, they must abort them on interrupt.)
1782       *
1783 <     * @return {@code true} if terminating
1783 >     * @return {@code true} if terminating but not yet terminated
1784       */
1785      public boolean isTerminating() {
1786 <        return runStateOf(runControl) >= TERMINATING;
1786 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1787 >    }
1788 >
1789 >    /**
1790 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1791 >     */
1792 >    final boolean isAtLeastTerminating() {
1793 >        return runState >= TERMINATING;
1794      }
1795  
1796      /**
# Line 1176 | Line 1799 | public class ForkJoinPool extends Abstra
1799       * @return {@code true} if this pool has been shut down
1800       */
1801      public boolean isShutdown() {
1802 <        return runStateOf(runControl) >= SHUTDOWN;
1802 >        return runState >= SHUTDOWN;
1803      }
1804  
1805      /**
# Line 1192 | Line 1815 | public class ForkJoinPool extends Abstra
1815       */
1816      public boolean awaitTermination(long timeout, TimeUnit unit)
1817          throws InterruptedException {
1195        long nanos = unit.toNanos(timeout);
1196        final ReentrantLock lock = this.workerLock;
1197        lock.lock();
1818          try {
1819 <            for (;;) {
1820 <                if (isTerminated())
1201 <                    return true;
1202 <                if (nanos <= 0)
1203 <                    return false;
1204 <                nanos = termination.awaitNanos(nanos);
1205 <            }
1206 <        } finally {
1207 <            lock.unlock();
1208 <        }
1209 <    }
1210 <
1211 <    // Shutdown and termination support
1212 <
1213 <    /**
1214 <     * Callback from terminating worker. Nulls out the corresponding
1215 <     * workers slot, and if terminating, tries to terminate; else
1216 <     * tries to shrink workers array.
1217 <     *
1218 <     * @param w the worker
1219 <     */
1220 <    final void workerTerminated(ForkJoinWorkerThread w) {
1221 <        updateStealCount(w);
1222 <        updateWorkerCount(-1);
1223 <        final ReentrantLock lock = this.workerLock;
1224 <        lock.lock();
1225 <        try {
1226 <            ForkJoinWorkerThread[] ws = workers;
1227 <            if (ws != null) {
1228 <                int idx = w.poolIndex;
1229 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1230 <                    ws[idx] = null;
1231 <                if (totalCountOf(workerCounts) == 0) {
1232 <                    terminate(); // no-op if already terminating
1233 <                    transitionRunStateTo(TERMINATED);
1234 <                    termination.signalAll();
1235 <                }
1236 <                else if (!isTerminating()) {
1237 <                    tryShrinkWorkerArray();
1238 <                    tryResumeSpare(true); // allow replacement
1239 <                }
1240 <            }
1241 <        } finally {
1242 <            lock.unlock();
1243 <        }
1244 <        signalIdleWorkers();
1245 <    }
1246 <
1247 <    /**
1248 <     * Initiates termination.
1249 <     */
1250 <    private void terminate() {
1251 <        if (transitionRunStateTo(TERMINATING)) {
1252 <            stopAllWorkers();
1253 <            resumeAllSpares();
1254 <            signalIdleWorkers();
1255 <            cancelQueuedSubmissions();
1256 <            cancelQueuedWorkerTasks();
1257 <            interruptUnterminatedWorkers();
1258 <            signalIdleWorkers(); // resignal after interrupt
1259 <        }
1260 <    }
1261 <
1262 <    /**
1263 <     * Possibly terminates when on shutdown state.
1264 <     */
1265 <    private void terminateOnShutdown() {
1266 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1267 <            terminate();
1268 <    }
1269 <
1270 <    /**
1271 <     * Clears out and cancels submissions.
1272 <     */
1273 <    private void cancelQueuedSubmissions() {
1274 <        ForkJoinTask<?> task;
1275 <        while ((task = pollSubmission()) != null)
1276 <            task.cancel(false);
1277 <    }
1278 <
1279 <    /**
1280 <     * Cleans out worker queues.
1281 <     */
1282 <    private void cancelQueuedWorkerTasks() {
1283 <        final ReentrantLock lock = this.workerLock;
1284 <        lock.lock();
1285 <        try {
1286 <            ForkJoinWorkerThread[] ws = workers;
1287 <            if (ws != null) {
1288 <                for (int i = 0; i < ws.length; ++i) {
1289 <                    ForkJoinWorkerThread t = ws[i];
1290 <                    if (t != null)
1291 <                        t.cancelTasks();
1292 <                }
1293 <            }
1294 <        } finally {
1295 <            lock.unlock();
1296 <        }
1297 <    }
1298 <
1299 <    /**
1300 <     * Sets each worker's status to terminating. Requires lock to avoid
1301 <     * conflicts with add/remove.
1302 <     */
1303 <    private void stopAllWorkers() {
1304 <        final ReentrantLock lock = this.workerLock;
1305 <        lock.lock();
1306 <        try {
1307 <            ForkJoinWorkerThread[] ws = workers;
1308 <            if (ws != null) {
1309 <                for (int i = 0; i < ws.length; ++i) {
1310 <                    ForkJoinWorkerThread t = ws[i];
1311 <                    if (t != null)
1312 <                        t.shutdownNow();
1313 <                }
1314 <            }
1315 <        } finally {
1316 <            lock.unlock();
1317 <        }
1318 <    }
1319 <
1320 <    /**
1321 <     * Interrupts all unterminated workers.  This is not required for
1322 <     * sake of internal control, but may help unstick user code during
1323 <     * shutdown.
1324 <     */
1325 <    private void interruptUnterminatedWorkers() {
1326 <        final ReentrantLock lock = this.workerLock;
1327 <        lock.lock();
1328 <        try {
1329 <            ForkJoinWorkerThread[] ws = workers;
1330 <            if (ws != null) {
1331 <                for (int i = 0; i < ws.length; ++i) {
1332 <                    ForkJoinWorkerThread t = ws[i];
1333 <                    if (t != null && !t.isTerminated()) {
1334 <                        try {
1335 <                            t.interrupt();
1336 <                        } catch (SecurityException ignore) {
1337 <                        }
1338 <                    }
1339 <                }
1340 <            }
1341 <        } finally {
1342 <            lock.unlock();
1343 <        }
1344 <    }
1345 <
1346 <
1347 <    /*
1348 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1349 <     * are basic Treiber stack nodes, also used for spare stack.
1350 <     *
1351 <     * The event barrier has an event count and a wait queue (actually
1352 <     * a Treiber stack).  Workers are enabled to look for work when
1353 <     * the eventCount is incremented. If they fail to find work, they
1354 <     * may wait for next count. Upon release, threads help others wake
1355 <     * up.
1356 <     *
1357 <     * Synchronization events occur only in enough contexts to
1358 <     * maintain overall liveness:
1359 <     *
1360 <     *   - Submission of a new task to the pool
1361 <     *   - Resizes or other changes to the workers array
1362 <     *   - pool termination
1363 <     *   - A worker pushing a task on an empty queue
1364 <     *
1365 <     * The case of pushing a task occurs often enough, and is heavy
1366 <     * enough compared to simple stack pushes, to require special
1367 <     * handling: Method signalWork returns without advancing count if
1368 <     * the queue appears to be empty.  This would ordinarily result in
1369 <     * races causing some queued waiters not to be woken up. To avoid
1370 <     * this, the first worker enqueued in method sync (see
1371 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1372 <     * helps signal if any are found. This works well because the
1373 <     * worker has nothing better to do, and so might as well help
1374 <     * alleviate the overhead and contention on the threads actually
1375 <     * doing work.  Also, since event counts increments on task
1376 <     * availability exist to maintain liveness (rather than to force
1377 <     * refreshes etc), it is OK for callers to exit early if
1378 <     * contending with another signaller.
1379 <     */
1380 <    static final class WaitQueueNode {
1381 <        WaitQueueNode next; // only written before enqueued
1382 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1383 <        final long count; // unused for spare stack
1384 <
1385 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1386 <            count = c;
1387 <            thread = w;
1388 <        }
1389 <
1390 <        /**
1391 <         * Wakes up waiter, returning false if known to already
1392 <         */
1393 <        boolean signal() {
1394 <            ForkJoinWorkerThread t = thread;
1395 <            if (t == null)
1396 <                return false;
1397 <            thread = null;
1398 <            LockSupport.unpark(t);
1399 <            return true;
1400 <        }
1401 <
1402 <        /**
1403 <         * Awaits release on sync.
1404 <         */
1405 <        void awaitSyncRelease(ForkJoinPool p) {
1406 <            while (thread != null && !p.syncIsReleasable(this))
1407 <                LockSupport.park(this);
1408 <        }
1409 <
1410 <        /**
1411 <         * Awaits resumption as spare.
1412 <         */
1413 <        void awaitSpareRelease() {
1414 <            while (thread != null) {
1415 <                if (!Thread.interrupted())
1416 <                    LockSupport.park(this);
1417 <            }
1418 <        }
1419 <    }
1420 <
1421 <    /**
1422 <     * Ensures that no thread is waiting for count to advance from the
1423 <     * current value of eventCount read on entry to this method, by
1424 <     * releasing waiting threads if necessary.
1425 <     *
1426 <     * @return the count
1427 <     */
1428 <    final long ensureSync() {
1429 <        long c = eventCount;
1430 <        WaitQueueNode q;
1431 <        while ((q = syncStack) != null && q.count < c) {
1432 <            if (casBarrierStack(q, null)) {
1433 <                do {
1434 <                    q.signal();
1435 <                } while ((q = q.next) != null);
1436 <                break;
1437 <            }
1438 <        }
1439 <        return c;
1440 <    }
1441 <
1442 <    /**
1443 <     * Increments event count and releases waiting threads.
1444 <     */
1445 <    private void signalIdleWorkers() {
1446 <        long c;
1447 <        do {} while (!casEventCount(c = eventCount, c+1));
1448 <        ensureSync();
1449 <    }
1450 <
1451 <    /**
1452 <     * Signals threads waiting to poll a task. Because method sync
1453 <     * rechecks availability, it is OK to only proceed if queue
1454 <     * appears to be non-empty, and OK to skip under contention to
1455 <     * increment count (since some other thread succeeded).
1456 <     */
1457 <    final void signalWork() {
1458 <        long c;
1459 <        WaitQueueNode q;
1460 <        if (syncStack != null &&
1461 <            casEventCount(c = eventCount, c+1) &&
1462 <            (((q = syncStack) != null && q.count <= c) &&
1463 <             (!casBarrierStack(q, q.next) || !q.signal())))
1464 <            ensureSync();
1465 <    }
1466 <
1467 <    /**
1468 <     * Waits until event count advances from last value held by
1469 <     * caller, or if excess threads, caller is resumed as spare, or
1470 <     * caller or pool is terminating. Updates caller's event on exit.
1471 <     *
1472 <     * @param w the calling worker thread
1473 <     */
1474 <    final void sync(ForkJoinWorkerThread w) {
1475 <        updateStealCount(w); // Transfer w's count while it is idle
1476 <
1477 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1478 <            long prev = w.lastEventCount;
1479 <            WaitQueueNode node = null;
1480 <            WaitQueueNode h;
1481 <            while (eventCount == prev &&
1482 <                   ((h = syncStack) == null || h.count == prev)) {
1483 <                if (node == null)
1484 <                    node = new WaitQueueNode(prev, w);
1485 <                if (casBarrierStack(node.next = h, node)) {
1486 <                    node.awaitSyncRelease(this);
1487 <                    break;
1488 <                }
1489 <            }
1490 <            long ec = ensureSync();
1491 <            if (ec != prev) {
1492 <                w.lastEventCount = ec;
1493 <                break;
1494 <            }
1495 <        }
1496 <    }
1497 <
1498 <    /**
1499 <     * Returns true if worker waiting on sync can proceed:
1500 <     *  - on signal (thread == null)
1501 <     *  - on event count advance (winning race to notify vs signaller)
1502 <     *  - on interrupt
1503 <     *  - if the first queued node, we find work available
1504 <     * If node was not signalled and event count not advanced on exit,
1505 <     * then we also help advance event count.
1506 <     *
1507 <     * @return true if node can be released
1508 <     */
1509 <    final boolean syncIsReleasable(WaitQueueNode node) {
1510 <        long prev = node.count;
1511 <        if (!Thread.interrupted() && node.thread != null &&
1512 <            (node.next != null ||
1513 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1514 <            eventCount == prev)
1819 >            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1820 >        } catch (TimeoutException ex) {
1821              return false;
1516        if (node.thread != null) {
1517            node.thread = null;
1518            long ec = eventCount;
1519            if (prev <= ec) // help signal
1520                casEventCount(ec, ec+1);
1822          }
1823          return true;
1824      }
1825  
1826      /**
1526     * Returns true if a new sync event occurred since last call to
1527     * sync or this method, if so, updating caller's count.
1528     */
1529    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530        long lc = w.lastEventCount;
1531        long ec = ensureSync();
1532        if (ec == lc)
1533            return false;
1534        w.lastEventCount = ec;
1535        return true;
1536    }
1537
1538    //  Parallelism maintenance
1539
1540    /**
1541     * Decrements running count; if too low, adds spare.
1542     *
1543     * Conceptually, all we need to do here is add or resume a
1544     * spare thread when one is about to block (and remove or
1545     * suspend it later when unblocked -- see suspendIfSpare).
1546     * However, implementing this idea requires coping with
1547     * several problems: we have imperfect information about the
1548     * states of threads. Some count updates can and usually do
1549     * lag run state changes, despite arrangements to keep them
1550     * accurate (for example, when possible, updating counts
1551     * before signalling or resuming), especially when running on
1552     * dynamic JVMs that don't optimize the infrequent paths that
1553     * update counts. Generating too many threads can make these
1554     * problems become worse, because excess threads are more
1555     * likely to be context-switched with others, slowing them all
1556     * down, especially if there is no work available, so all are
1557     * busy scanning or idling.  Also, excess spare threads can
1558     * only be suspended or removed when they are idle, not
1559     * immediately when they aren't needed. So adding threads will
1560     * raise parallelism level for longer than necessary.  Also,
1561     * FJ applications often encounter highly transient peaks when
1562     * many threads are blocked joining, but for less time than it
1563     * takes to create or resume spares.
1564     *
1565     * @param joinMe if non-null, return early if done
1566     * @param maintainParallelism if true, try to stay within
1567     * target counts, else create only to avoid starvation
1568     * @return true if joinMe known to be done
1569     */
1570    final boolean preJoin(ForkJoinTask<?> joinMe,
1571                          boolean maintainParallelism) {
1572        maintainParallelism &= maintainsParallelism; // overrride
1573        boolean dec = false;  // true when running count decremented
1574        while (spareStack == null || !tryResumeSpare(dec)) {
1575            int counts = workerCounts;
1576            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577                // CAS cheat
1578                if (!needSpare(counts, maintainParallelism))
1579                    break;
1580                if (joinMe.status < 0)
1581                    return true;
1582                if (tryAddSpare(counts))
1583                    break;
1584            }
1585        }
1586        return false;
1587    }
1588
1589    /**
1590     * Same idea as preJoin
1591     */
1592    final boolean preBlock(ManagedBlocker blocker,
1593                           boolean maintainParallelism) {
1594        maintainParallelism &= maintainsParallelism;
1595        boolean dec = false;
1596        while (spareStack == null || !tryResumeSpare(dec)) {
1597            int counts = workerCounts;
1598            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1599                if (!needSpare(counts, maintainParallelism))
1600                    break;
1601                if (blocker.isReleasable())
1602                    return true;
1603                if (tryAddSpare(counts))
1604                    break;
1605            }
1606        }
1607        return false;
1608    }
1609
1610    /**
1611     * Returns true if a spare thread appears to be needed.  If
1612     * maintaining parallelism, returns true when the deficit in
1613     * running threads is more than the surplus of total threads, and
1614     * there is apparently some work to do.  This self-limiting rule
1615     * means that the more threads that have already been added, the
1616     * less parallelism we will tolerate before adding another.
1617     *
1618     * @param counts current worker counts
1619     * @param maintainParallelism try to maintain parallelism
1620     */
1621    private boolean needSpare(int counts, boolean maintainParallelism) {
1622        int ps = parallelism;
1623        int rc = runningCountOf(counts);
1624        int tc = totalCountOf(counts);
1625        int runningDeficit = ps - rc;
1626        int totalSurplus = tc - ps;
1627        return (tc < maxPoolSize &&
1628                (rc == 0 || totalSurplus < 0 ||
1629                 (maintainParallelism &&
1630                  runningDeficit > totalSurplus &&
1631                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1632    }
1633
1634    /**
1635     * Adds a spare worker if lock available and no more than the
1636     * expected numbers of threads exist.
1637     *
1638     * @return true if successful
1639     */
1640    private boolean tryAddSpare(int expectedCounts) {
1641        final ReentrantLock lock = this.workerLock;
1642        int expectedRunning = runningCountOf(expectedCounts);
1643        int expectedTotal = totalCountOf(expectedCounts);
1644        boolean success = false;
1645        boolean locked = false;
1646        // confirm counts while locking; CAS after obtaining lock
1647        try {
1648            for (;;) {
1649                int s = workerCounts;
1650                int tc = totalCountOf(s);
1651                int rc = runningCountOf(s);
1652                if (rc > expectedRunning || tc > expectedTotal)
1653                    break;
1654                if (!locked && !(locked = lock.tryLock()))
1655                    break;
1656                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1657                    createAndStartSpare(tc);
1658                    success = true;
1659                    break;
1660                }
1661            }
1662        } finally {
1663            if (locked)
1664                lock.unlock();
1665        }
1666        return success;
1667    }
1668
1669    /**
1670     * Adds the kth spare worker. On entry, pool counts are already
1671     * adjusted to reflect addition.
1672     */
1673    private void createAndStartSpare(int k) {
1674        ForkJoinWorkerThread w = null;
1675        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1676        int len = ws.length;
1677        // Probably, we can place at slot k. If not, find empty slot
1678        if (k < len && ws[k] != null) {
1679            for (k = 0; k < len && ws[k] != null; ++k)
1680                ;
1681        }
1682        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1683            ws[k] = w;
1684            w.start();
1685        }
1686        else
1687            updateWorkerCount(-1); // adjust on failure
1688        signalIdleWorkers();
1689    }
1690
1691    /**
1692     * Suspends calling thread w if there are excess threads.  Called
1693     * only from sync.  Spares are enqueued in a Treiber stack using
1694     * the same WaitQueueNodes as barriers.  They are resumed mainly
1695     * in preJoin, but are also woken on pool events that require all
1696     * threads to check run state.
1697     *
1698     * @param w the caller
1699     */
1700    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1701        WaitQueueNode node = null;
1702        int s;
1703        while (parallelism < runningCountOf(s = workerCounts)) {
1704            if (node == null)
1705                node = new WaitQueueNode(0, w);
1706            if (casWorkerCounts(s, s-1)) { // representation-dependent
1707                // push onto stack
1708                do {} while (!casSpareStack(node.next = spareStack, node));
1709                // block until released by resumeSpare
1710                node.awaitSpareRelease();
1711                return true;
1712            }
1713        }
1714        return false;
1715    }
1716
1717    /**
1718     * Tries to pop and resume a spare thread.
1719     *
1720     * @param updateCount if true, increment running count on success
1721     * @return true if successful
1722     */
1723    private boolean tryResumeSpare(boolean updateCount) {
1724        WaitQueueNode q;
1725        while ((q = spareStack) != null) {
1726            if (casSpareStack(q, q.next)) {
1727                if (updateCount)
1728                    updateRunningCount(1);
1729                q.signal();
1730                return true;
1731            }
1732        }
1733        return false;
1734    }
1735
1736    /**
1737     * Pops and resumes all spare threads. Same idea as ensureSync.
1738     *
1739     * @return true if any spares released
1740     */
1741    private boolean resumeAllSpares() {
1742        WaitQueueNode q;
1743        while ( (q = spareStack) != null) {
1744            if (casSpareStack(q, null)) {
1745                do {
1746                    updateRunningCount(1);
1747                    q.signal();
1748                } while ((q = q.next) != null);
1749                return true;
1750            }
1751        }
1752        return false;
1753    }
1754
1755    /**
1756     * Pops and shuts down excessive spare threads. Call only while
1757     * holding lock. This is not guaranteed to eliminate all excess
1758     * threads, only those suspended as spares, which are the ones
1759     * unlikely to be needed in the future.
1760     */
1761    private void trimSpares() {
1762        int surplus = totalCountOf(workerCounts) - parallelism;
1763        WaitQueueNode q;
1764        while (surplus > 0 && (q = spareStack) != null) {
1765            if (casSpareStack(q, null)) {
1766                do {
1767                    updateRunningCount(1);
1768                    ForkJoinWorkerThread w = q.thread;
1769                    if (w != null && surplus > 0 &&
1770                        runningCountOf(workerCounts) > 0 && w.shutdown())
1771                        --surplus;
1772                    q.signal();
1773                } while ((q = q.next) != null);
1774            }
1775        }
1776    }
1777
1778    /**
1827       * Interface for extending managed parallelism for tasks running
1828 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1829 <     * Method {@code isReleasable} must return true if blocking is not
1830 <     * necessary. Method {@code block} blocks the current thread if
1831 <     * necessary (perhaps internally invoking {@code isReleasable}
1832 <     * before actually blocking.).
1828 >     * in {@link ForkJoinPool}s.
1829 >     *
1830 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1831 >     * {@code isReleasable} must return {@code true} if blocking is
1832 >     * not necessary. Method {@code block} blocks the current thread
1833 >     * if necessary (perhaps internally invoking {@code isReleasable}
1834 >     * before actually blocking). The unusual methods in this API
1835 >     * accommodate synchronizers that may, but don't usually, block
1836 >     * for long periods. Similarly, they allow more efficient internal
1837 >     * handling of cases in which additional workers may be, but
1838 >     * usually are not, needed to ensure sufficient parallelism.
1839 >     * Toward this end, implementations of method {@code isReleasable}
1840 >     * must be amenable to repeated invocation.
1841       *
1842       * <p>For example, here is a ManagedBlocker based on a
1843       * ReentrantLock:
# Line 1799 | Line 1855 | public class ForkJoinPool extends Abstra
1855       *     return hasLock || (hasLock = lock.tryLock());
1856       *   }
1857       * }}</pre>
1858 +     *
1859 +     * <p>Here is a class that possibly blocks waiting for an
1860 +     * item on a given queue:
1861 +     *  <pre> {@code
1862 +     * class QueueTaker<E> implements ManagedBlocker {
1863 +     *   final BlockingQueue<E> queue;
1864 +     *   volatile E item = null;
1865 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1866 +     *   public boolean block() throws InterruptedException {
1867 +     *     if (item == null)
1868 +     *       item = queue.take();
1869 +     *     return true;
1870 +     *   }
1871 +     *   public boolean isReleasable() {
1872 +     *     return item != null || (item = queue.poll()) != null;
1873 +     *   }
1874 +     *   public E getItem() { // call after pool.managedBlock completes
1875 +     *     return item;
1876 +     *   }
1877 +     * }}</pre>
1878       */
1879      public static interface ManagedBlocker {
1880          /**
1881           * Possibly blocks the current thread, for example waiting for
1882           * a lock or condition.
1883           *
1884 <         * @return true if no additional blocking is necessary (i.e.,
1885 <         * if isReleasable would return true)
1884 >         * @return {@code true} if no additional blocking is necessary
1885 >         * (i.e., if isReleasable would return true)
1886           * @throws InterruptedException if interrupted while waiting
1887           * (the method is not required to do so, but is allowed to)
1888           */
1889          boolean block() throws InterruptedException;
1890  
1891          /**
1892 <         * Returns true if blocking is unnecessary.
1892 >         * Returns {@code true} if blocking is unnecessary.
1893           */
1894          boolean isReleasable();
1895      }
1896  
1897      /**
1898       * Blocks in accord with the given blocker.  If the current thread
1899 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1900 <     * spare thread to be activated if necessary to ensure parallelism
1901 <     * while the current thread is blocked.  If
1826 <     * {@code maintainParallelism} is true and the pool supports
1827 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1828 <     * maintain the pool's nominal parallelism. Otherwise it activates
1829 <     * a thread only if necessary to avoid complete starvation. This
1830 <     * option may be preferable when blockages use timeouts, or are
1831 <     * almost always brief.
1899 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1900 >     * arranges for a spare thread to be activated if necessary to
1901 >     * ensure sufficient parallelism while the current thread is blocked.
1902       *
1903 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1904 <     * equivalent to
1903 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1904 >     * behaviorally equivalent to
1905       *  <pre> {@code
1906       * while (!blocker.isReleasable())
1907       *   if (blocker.block())
1908       *     return;
1909       * }</pre>
1910 <     * If the caller is a ForkJoinTask, then the pool may first
1911 <     * be expanded to ensure parallelism, and later adjusted.
1910 >     *
1911 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1912 >     * first be expanded to ensure parallelism, and later adjusted.
1913       *
1914       * @param blocker the blocker
1844     * @param maintainParallelism if true and supported by this pool,
1845     * attempt to maintain the pool's nominal parallelism; otherwise
1846     * activate a thread only if necessary to avoid complete
1847     * starvation.
1915       * @throws InterruptedException if blocker.block did so
1916       */
1917 <    public static void managedBlock(ManagedBlocker blocker,
1851 <                                    boolean maintainParallelism)
1917 >    public static void managedBlock(ManagedBlocker blocker)
1918          throws InterruptedException {
1919          Thread t = Thread.currentThread();
1920 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1921 <                             ((ForkJoinWorkerThread) t).pool : null);
1922 <        if (!blocker.isReleasable()) {
1923 <            try {
1924 <                if (pool == null ||
1925 <                    !pool.preBlock(blocker, maintainParallelism))
1860 <                    awaitBlocker(blocker);
1861 <            } finally {
1862 <                if (pool != null)
1863 <                    pool.updateRunningCount(1);
1864 <            }
1920 >        if (t instanceof ForkJoinWorkerThread) {
1921 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1922 >            w.pool.awaitBlocker(blocker);
1923 >        }
1924 >        else {
1925 >            do {} while (!blocker.isReleasable() && !blocker.block());
1926          }
1927      }
1928  
1929 <    private static void awaitBlocker(ManagedBlocker blocker)
1930 <        throws InterruptedException {
1931 <        do {} while (!blocker.isReleasable() && !blocker.block());
1871 <    }
1872 <
1873 <    // AbstractExecutorService overrides
1929 >    // AbstractExecutorService overrides.  These rely on undocumented
1930 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1931 >    // implement RunnableFuture.
1932  
1933      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1934 <        return new AdaptedRunnable<T>(runnable, value);
1934 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1935      }
1936  
1937      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1938 <        return new AdaptedCallable<T>(callable);
1938 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1939      }
1940  
1941 +    // Unsafe mechanics
1942 +
1943 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1944 +    private static final long workerCountsOffset =
1945 +        objectFieldOffset("workerCounts", ForkJoinPool.class);
1946 +    private static final long runStateOffset =
1947 +        objectFieldOffset("runState", ForkJoinPool.class);
1948 +    private static final long eventCountOffset =
1949 +        objectFieldOffset("eventCount", ForkJoinPool.class);
1950 +    private static final long eventWaitersOffset =
1951 +        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1952 +    private static final long stealCountOffset =
1953 +        objectFieldOffset("stealCount", ForkJoinPool.class);
1954 +    private static final long spareWaitersOffset =
1955 +        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1956 +
1957 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1958 +        try {
1959 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1960 +        } catch (NoSuchFieldException e) {
1961 +            // Convert Exception to corresponding Error
1962 +            NoSuchFieldError error = new NoSuchFieldError(field);
1963 +            error.initCause(e);
1964 +            throw error;
1965 +        }
1966 +    }
1967  
1968 <    // Unsafe mechanics for jsr166y 3rd party package.
1968 >    /**
1969 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1970 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1971 >     * into a jdk.
1972 >     *
1973 >     * @return a sun.misc.Unsafe
1974 >     */
1975      private static sun.misc.Unsafe getUnsafe() {
1976          try {
1977              return sun.misc.Unsafe.getUnsafe();
1978          } catch (SecurityException se) {
1979              try {
1980                  return java.security.AccessController.doPrivileged
1981 <                    (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1981 >                    (new java.security
1982 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1983                          public sun.misc.Unsafe run() throws Exception {
1984 <                            return getUnsafeByReflection();
1984 >                            java.lang.reflect.Field f = sun.misc
1985 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1986 >                            f.setAccessible(true);
1987 >                            return (sun.misc.Unsafe) f.get(null);
1988                          }});
1989              } catch (java.security.PrivilegedActionException e) {
1990                  throw new RuntimeException("Could not initialize intrinsics",
# Line 1898 | Line 1992 | public class ForkJoinPool extends Abstra
1992              }
1993          }
1994      }
1901
1902    private static sun.misc.Unsafe getUnsafeByReflection()
1903            throws NoSuchFieldException, IllegalAccessException {
1904        java.lang.reflect.Field f =
1905            sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
1906        f.setAccessible(true);
1907        return (sun.misc.Unsafe) f.get(null);
1908    }
1909
1910    private static long fieldOffset(String fieldName, Class<?> klazz) {
1911        try {
1912            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
1913        } catch (NoSuchFieldException e) {
1914            // Convert Exception to Error
1915            NoSuchFieldError error = new NoSuchFieldError(fieldName);
1916            error.initCause(e);
1917            throw error;
1918        }
1919    }
1920
1921    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1922    static final long eventCountOffset =
1923        fieldOffset("eventCount", ForkJoinPool.class);
1924    static final long workerCountsOffset =
1925        fieldOffset("workerCounts", ForkJoinPool.class);
1926    static final long runControlOffset =
1927        fieldOffset("runControl", ForkJoinPool.class);
1928    static final long syncStackOffset =
1929        fieldOffset("syncStack",ForkJoinPool.class);
1930    static final long spareStackOffset =
1931        fieldOffset("spareStack", ForkJoinPool.class);
1932
1933    private boolean casEventCount(long cmp, long val) {
1934        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1935    }
1936    private boolean casWorkerCounts(int cmp, int val) {
1937        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1938    }
1939    private boolean casRunControl(int cmp, int val) {
1940        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1941    }
1942    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1943        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1944    }
1945    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1946        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1947    }
1995   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines