ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.49 by jsr166, Mon Nov 16 04:57:09 2009 UTC vs.
Revision 1.90 by jsr166, Mon Nov 29 20:58:06 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.TimeoutException;
22 > import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
25  
26   /**
27   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28   * A {@code ForkJoinPool} provides the entry point for submissions
29 < * from non-{@code ForkJoinTask}s, as well as management and
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30   * monitoring operations.
31   *
32   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 35 | import java.util.concurrent.atomic.Atomi
35   * execute subtasks created by other active tasks (eventually blocking
36   * waiting for work if none exist). This enables efficient processing
37   * when most tasks spawn other subtasks (as do most {@code
38 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
39 < * execution of some plain {@code Runnable}- or {@code Callable}-
40 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
38 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
40 > * with event-style tasks that are never joined.
41   *
42   * <p>A {@code ForkJoinPool} is constructed with a given target
43   * parallelism level; by default, equal to the number of available
44 < * processors. Unless configured otherwise via {@link
45 < * #setMaintainsParallelism}, the pool attempts to maintain this
46 < * number of active (or available) threads by dynamically adding,
47 < * suspending, or resuming internal worker threads, even if some tasks
48 < * are stalled waiting to join others. However, no such adjustments
49 < * are performed in the face of blocked IO or other unmanaged
50 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
44 > * processors. The pool attempts to maintain enough active (or
45 > * available) threads by dynamically adding, suspending, or resuming
46 > * internal worker threads, even if some tasks are stalled waiting to
47 > * join others. However, no such adjustments are guaranteed in the
48 > * face of blocked IO or other unmanaged synchronization. The nested
49 > * {@link ManagedBlocker} interface enables extension of the kinds of
50 > * synchronization accommodated.
51   *
52   * <p>In addition to execution and lifecycle control methods, this
53   * class provides status check methods (for example
# Line 62 | Line 56 | import java.util.concurrent.atomic.Atomi
56   * {@link #toString} returns indications of pool state in a
57   * convenient form for informal monitoring.
58   *
59 + * <p> As is the case with other ExecutorServices, there are three
60 + * main task execution methods summarized in the following
61 + * table. These are designed to be used by clients not already engaged
62 + * in fork/join computations in the current pool.  The main forms of
63 + * these methods accept instances of {@code ForkJoinTask}, but
64 + * overloaded forms also allow mixed execution of plain {@code
65 + * Runnable}- or {@code Callable}- based activities as well.  However,
66 + * tasks that are already executing in a pool should normally
67 + * <em>NOT</em> use these pool execution methods, but instead use the
68 + * within-computation forms listed in the table.
69 + *
70 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
71 + *  <tr>
72 + *    <td></td>
73 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Arrange async execution</td>
78 + *    <td> {@link #execute(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#fork}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Await and obtain result</td>
83 + *    <td> {@link #invoke(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#invoke}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Arrange exec and obtain Future</td>
88 + *    <td> {@link #submit(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90 + *  </tr>
91 + * </table>
92 + *
93   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94   * used for all parallel task execution in a program or subsystem.
95   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 114 | import java.util.concurrent.atomic.Atomi
114   * {@code IllegalArgumentException}.
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117 < * {@link RejectedExecutionException}) only when the pool is shut down.
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 94 | Line 123 | import java.util.concurrent.atomic.Atomi
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * The main work-stealing mechanics implemented in class
133 >     * ForkJoinWorkerThread give first priority to processing tasks
134 >     * from their own queues (LIFO or FIFO, depending on mode), then
135 >     * to randomized FIFO steals of tasks in other worker queues, and
136 >     * lastly to new submissions. These mechanics do not consider
137 >     * affinities, loads, cache localities, etc, so rarely provide the
138 >     * best possible performance on a given machine, but portably
139 >     * provide good throughput by averaging over these factors.
140 >     * (Further, even if we did try to use such information, we do not
141 >     * usually have a basis for exploiting it. For example, some sets
142 >     * of tasks profit from cache affinities, but others are harmed by
143 >     * cache pollution effects.)
144 >     *
145 >     * Beyond work-stealing support and essential bookkeeping, the
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158 >     *
159 >     *   Helping: Arranging for the joiner to execute some task that it
160 >     *      would be running if the steal had not occurred.  Method
161 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 >     *      links to try to find such a task.
163 >     *
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180 >     *
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183 >     *
184 >     * The main throughput advantages of work-stealing stem from
185 >     * decentralized control -- workers mostly steal tasks from each
186 >     * other. We do not want to negate this by creating bottlenecks
187 >     * implementing other management responsibilities. So we use a
188 >     * collection of techniques that avoid, reduce, or cope well with
189 >     * contention. These entail several instances of bit-packing into
190 >     * CASable fields to maintain only the minimally required
191 >     * atomicity. To enable such packing, we restrict maximum
192 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193 >     * unbalanced increments and decrements) to fit into a 16 bit
194 >     * field, which is far in excess of normal operating range.  Even
195 >     * though updates to some of these bookkeeping fields do sometimes
196 >     * contend with each other, they don't normally cache-contend with
197 >     * updates to others enough to warrant memory padding or
198 >     * isolation. So they are all held as fields of ForkJoinPool
199 >     * objects.  The main capabilities are as follows:
200 >     *
201 >     * 1. Creating and removing workers. Workers are recorded in the
202 >     * "workers" array. This is an array as opposed to some other data
203 >     * structure to support index-based random steals by workers.
204 >     * Updates to the array recording new workers and unrecording
205 >     * terminated ones are protected from each other by a lock
206 >     * (workerLock) but the array is otherwise concurrently readable,
207 >     * and accessed directly by workers. To simplify index-based
208 >     * operations, the array size is always a power of two, and all
209 >     * readers must tolerate null slots. Currently, all worker thread
210 >     * creation is on-demand, triggered by task submissions,
211 >     * replacement of terminated workers, and/or compensation for
212 >     * blocked workers. However, all other support code is set up to
213 >     * work with other policies.
214 >     *
215 >     * To ensure that we do not hold on to worker references that
216 >     * would prevent GC, ALL accesses to workers are via indices into
217 >     * the workers array (which is one source of some of the unusual
218 >     * code constructions here). In essence, the workers array serves
219 >     * as a WeakReference mechanism. Thus for example the event queue
220 >     * stores worker indices, not worker references. Access to the
221 >     * workers in associated methods (for example releaseEventWaiters)
222 >     * must both index-check and null-check the IDs. All such accesses
223 >     * ignore bad IDs by returning out early from what they are doing,
224 >     * since this can only be associated with shutdown, in which case
225 >     * it is OK to give up. On termination, we just clobber these
226 >     * data structures without trying to use them.
227 >     *
228 >     * 2. Bookkeeping for dynamically adding and removing workers. We
229 >     * aim to approximately maintain the given level of parallelism.
230 >     * When some workers are known to be blocked (on joins or via
231 >     * ManagedBlocker), we may create or resume others to take their
232 >     * place until they unblock (see below). Implementing this
233 >     * requires counts of the number of "running" threads (i.e., those
234 >     * that are neither blocked nor artificially suspended) as well as
235 >     * the total number.  These two values are packed into one field,
236 >     * "workerCounts" because we need accurate snapshots when deciding
237 >     * to create, resume or suspend.  Note however that the
238 >     * correspondence of these counts to reality is not guaranteed. In
239 >     * particular updates for unblocked threads may lag until they
240 >     * actually wake up.
241 >     *
242 >     * 3. Maintaining global run state. The run state of the pool
243 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 >     * those in other Executor implementations, as well as a count of
245 >     * "active" workers -- those that are, or soon will be, or
246 >     * recently were executing tasks. The runLevel and active count
247 >     * are packed together in order to correctly trigger shutdown and
248 >     * termination. Without care, active counts can be subject to very
249 >     * high contention.  We substantially reduce this contention by
250 >     * relaxing update rules.  A worker must claim active status
251 >     * prospectively, by activating if it sees that a submitted or
252 >     * stealable task exists (it may find after activating that the
253 >     * task no longer exists). It stays active while processing this
254 >     * task (if it exists) and any other local subtasks it produces,
255 >     * until it cannot find any other tasks. It then tries
256 >     * inactivating (see method preStep), but upon update contention
257 >     * instead scans for more tasks, later retrying inactivation if it
258 >     * doesn't find any.
259 >     *
260 >     * 4. Managing idle workers waiting for tasks. We cannot let
261 >     * workers spin indefinitely scanning for tasks when none are
262 >     * available. On the other hand, we must quickly prod them into
263 >     * action when new tasks are submitted or generated.  We
264 >     * park/unpark these idle workers using an event-count scheme.
265 >     * Field eventCount is incremented upon events that may enable
266 >     * workers that previously could not find a task to now find one:
267 >     * Submission of a new task to the pool, or another worker pushing
268 >     * a task onto a previously empty queue.  (We also use this
269 >     * mechanism for configuration and termination actions that
270 >     * require wakeups of idle workers).  Each worker maintains its
271 >     * last known event count, and blocks when a scan for work did not
272 >     * find a task AND its lastEventCount matches the current
273 >     * eventCount. Waiting idle workers are recorded in a variant of
274 >     * Treiber stack headed by field eventWaiters which, when nonzero,
275 >     * encodes the thread index and count awaited for by the worker
276 >     * thread most recently calling eventSync. This thread in turn has
277 >     * a record (field nextEventWaiter) for the next waiting worker.
278 >     * In addition to allowing simpler decisions about need for
279 >     * wakeup, the event count bits in eventWaiters serve the role of
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286 >     * Conceptually they are merged into the same event, which is OK
287 >     * when their only purpose is to enable workers to scan for work.
288 >     *
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340 >     *
341 >     * Beware that there is a lot of representation-level coupling
342 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343 >     * ForkJoinTask.  For example, direct access to "workers" array by
344 >     * workers, and direct access to ForkJoinTask.status by both
345 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
346 >     * trying to reduce this, since any associated future changes in
347 >     * representations will need to be accompanied by algorithmic
348 >     * changes anyway.
349 >     *
350 >     * Style notes: There are lots of inline assignments (of form
351 >     * "while ((local = field) != 0)") which are usually the simplest
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359 >     *
360 >     * The order of declarations in this file is: (1) statics (2)
361 >     * fields (along with constants used when unpacking some of them)
362 >     * (3) internal control methods (4) callbacks and other support
363 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364 >     * methods (plus a few little helpers).
365       */
366  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
367      /**
368       * Factory for creating new {@link ForkJoinWorkerThread}s.
369       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 384 | public class ForkJoinPool extends Abstra
384       * Default ForkJoinWorkerThreadFactory implementation; creates a
385       * new ForkJoinWorkerThread.
386       */
387 <    static class  DefaultForkJoinWorkerThreadFactory
387 >    static class DefaultForkJoinWorkerThreadFactory
388          implements ForkJoinWorkerThreadFactory {
389          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
390 >            return new ForkJoinWorkerThread(pool);
391          }
392      }
393  
# Line 167 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Array holding all worker threads in the pool. Initialized upon
427 <     * first use. Array size must be a power of two.  Updates and
428 <     * replacements are protected by workerLock, but it is always kept
429 <     * in a consistent enough state to be randomly accessed without
430 <     * locking by workers performing work-stealing.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443 >     */
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453 >
454 >    /**
455 >     * Array holding all worker threads in the pool.  Array size must
456 >     * be a power of two.  Updates and replacements are protected by
457 >     * workerLock, but the array is always kept in a consistent enough
458 >     * state to be randomly accessed without locking by workers
459 >     * performing work-stealing, as well as other traversal-based
460 >     * methods in this class. All readers must tolerate that some
461 >     * array slots may be null.
462       */
463      volatile ForkJoinWorkerThread[] workers;
464  
465      /**
466 <     * Lock protecting access to workers.
466 >     * Queue for external submissions.
467       */
468 <    private final ReentrantLock workerLock;
468 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469  
470      /**
471 <     * Condition for awaitTermination.
471 >     * Lock protecting updates to workers array.
472       */
473 <    private final Condition termination;
473 >    private final ReentrantLock workerLock;
474  
475      /**
476 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
476 >     * Latch released upon termination.
477       */
478 <    private Thread.UncaughtExceptionHandler ueh;
478 >    private final Phaser termination;
479  
480      /**
481       * Creation factory for worker threads.
# Line 197 | Line 483 | public class ForkJoinPool extends Abstra
483      private final ForkJoinWorkerThreadFactory factory;
484  
485      /**
200     * Head of stack of threads that were created to maintain
201     * parallelism when other threads blocked, but have since
202     * suspended when the parallelism level rose.
203     */
204    private volatile WaitQueueNode spareStack;
205
206    /**
486       * Sum of per-thread steal counts, updated only when threads are
487       * idle or terminating.
488       */
489 <    private final AtomicLong stealCount;
489 >    private volatile long stealCount;
490  
491      /**
492 <     * Queue for external submissions.
492 >     * Encoded record of top of Treiber stack of threads waiting for
493 >     * events. The top 32 bits contain the count being waited for. The
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
497 >    private volatile long eventWaiters;
498 >
499 >    private static final int EVENT_COUNT_SHIFT = 32;
500 >    private static final int WAITER_ID_MASK    = (1 << 16) - 1;
501  
502      /**
503 <     * Head of Treiber stack for barrier sync. See below for explanation.
503 >     * A counter for events that may wake up worker threads:
504 >     *   - Submission of a new task to the pool
505 >     *   - A worker pushing a task on an empty queue
506 >     *   - termination
507       */
508 <    private volatile WaitQueueNode syncStack;
508 >    private volatile int eventCount;
509  
510      /**
511 <     * The count for event barrier
511 >     * Encoded record of top of Treiber stack of spare threads waiting
512 >     * for resumption. The top 16 bits contain an arbitrary count to
513 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 >     * index of waiting worker thread.
515       */
516 <    private volatile long eventCount;
516 >    private volatile int spareWaiters;
517 >
518 >    private static final int SPARE_COUNT_SHIFT = 16;
519 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520  
521      /**
522 <     * Pool number, just for assigning useful names to worker threads
522 >     * Lifecycle control. The low word contains the number of workers
523 >     * that are (probably) executing tasks. This value is atomically
524 >     * incremented before a worker gets a task to run, and decremented
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526 >     * contain runLevel value. When all are zero, the pool is
527 >     * running. Level transitions are monotonic (running -> shutdown
528 >     * -> terminating -> terminated) so each transition adds a bit.
529 >     * These are bundled together to ensure consistent read for
530 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 >     * and active threads is zero).
532 >     *
533 >     * Notes: Most direct CASes are dependent on these bitfield
534 >     * positions.  Also, this field is non-private to enable direct
535 >     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private final int poolNumber;
537 >    volatile int runState;
538 >
539 >    // Note: The order among run level values matters.
540 >    private static final int RUNLEVEL_SHIFT     = 16;
541 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
545  
546      /**
547 <     * The maximum allowed pool size
547 >     * Holds number of total (i.e., created and not yet terminated)
548 >     * and running (i.e., not blocked on joins or other managed sync)
549 >     * threads, packed together to ensure consistent snapshot when
550 >     * making decisions about creating and suspending spare
551 >     * threads. Updated only by CAS. Note that adding a new worker
552 >     * requires incrementing both counts, since workers start off in
553 >     * running state.
554       */
555 <    private volatile int maxPoolSize;
555 >    private volatile int workerCounts;
556 >
557 >    private static final int TOTAL_COUNT_SHIFT  = 16;
558 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559 >    private static final int ONE_RUNNING        = 1;
560 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
561  
562      /**
563 <     * The desired parallelism level, updated only under workerLock.
563 >     * The target parallelism level.
564 >     * Accessed directly by ForkJoinWorkerThreads.
565       */
566 <    private volatile int parallelism;
566 >    final int parallelism;
567  
568      /**
569       * True if use local fifo, not default lifo, for local polling
570 +     * Read by, and replicated by ForkJoinWorkerThreads
571       */
572 <    private volatile boolean locallyFifo;
572 >    final boolean locallyFifo;
573  
574      /**
575 <     * Holds number of total (i.e., created and not yet terminated)
576 <     * and running (i.e., not blocked on joins or other managed sync)
250 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
575 >     * The uncaught exception handler used when any worker abruptly
576 >     * terminates.
577       */
578 <    private volatile int workerCounts;
257 <
258 <    private static int totalCountOf(int s)           { return s >>> 16;  }
259 <    private static int runningCountOf(int s)         { return s & shortMask; }
260 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
578 >    private final Thread.UncaughtExceptionHandler ueh;
579  
580      /**
581 <     * Adds delta (which may be negative) to running count.  This must
264 <     * be called before (with negative arg) and after (with positive)
265 <     * any managed synchronization (i.e., mainly, joins).
266 <     *
267 <     * @param delta the number to add
581 >     * Pool number, just for assigning useful names to worker threads
582       */
583 <    final void updateRunningCount(int delta) {
584 <        int s;
585 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
586 <    }
583 >    private final int poolNumber;
584 >
585 >    // Utilities for CASing fields. Note that most of these
586 >    // are usually manually inlined by callers
587  
588      /**
589 <     * Adds delta (which may be negative) to both total and running
276 <     * count.  This must be called upon creation and termination of
277 <     * worker threads.
278 <     *
279 <     * @param delta the number to add
589 >     * Increments running count part of workerCounts.
590       */
591 <    private void updateWorkerCount(int delta) {
592 <        int d = delta + (delta << 16); // add to both lo and hi parts
593 <        int s;
594 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
591 >    final void incrementRunningCount() {
592 >        int c;
593 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 >                                               c = workerCounts,
595 >                                               c + ONE_RUNNING));
596      }
597  
598      /**
599 <     * Lifecycle control. High word contains runState, low word
289 <     * contains the number of workers that are (probably) executing
290 <     * tasks. This value is atomically incremented before a worker
291 <     * gets a task to run, and decremented when worker has no tasks
292 <     * and cannot find any. These two fields are bundled together to
293 <     * support correct termination triggering.  Note: activeCount
294 <     * CAS'es cheat by assuming active count is in low word, so need
295 <     * to be modified if this changes
599 >     * Tries to increment running count part of workerCounts.
600       */
601 <    private volatile int runControl;
602 <
603 <    // RunState values. Order among values matters
604 <    private static final int RUNNING     = 0;
605 <    private static final int SHUTDOWN    = 1;
606 <    private static final int TERMINATING = 2;
303 <    private static final int TERMINATED  = 3;
304 <
305 <    private static int runStateOf(int c)             { return c >>> 16; }
306 <    private static int activeCountOf(int c)          { return c & shortMask; }
307 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
601 >    final boolean tryIncrementRunningCount() {
602 >        int c;
603 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604 >                                        c = workerCounts,
605 >                                        c + ONE_RUNNING);
606 >    }
607  
608      /**
609 <     * Tries incrementing active count; fails on contention.
311 <     * Called by workers before/during executing tasks.
312 <     *
313 <     * @return true on success
609 >     * Tries to decrement running count unless already zero.
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final boolean tryDecrementRunningCount() {
612 >        int wc = workerCounts;
613 >        if ((wc & RUNNING_COUNT_MASK) == 0)
614 >            return false;
615 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616 >                                        wc, wc - ONE_RUNNING);
617      }
618  
619      /**
620 <     * Tries decrementing active count; fails on contention.
621 <     * Possibly triggers termination on success.
323 <     * Called by workers when they can't find tasks.
620 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
621 >     * (rarely) necessary when other count updates lag.
622       *
623 <     * @return true on success
623 >     * @param dr -- either zero or ONE_RUNNING
624 >     * @param dt -- either zero or ONE_TOTAL
625       */
626 <    final boolean tryDecrementActiveCount() {
627 <        int c = runControl;
628 <        int nextc = c - 1;
629 <        if (!casRunControl(c, nextc))
630 <            return false;
631 <        if (canTerminateOnShutdown(nextc))
632 <            terminateOnShutdown();
633 <        return true;
626 >    private void decrementWorkerCounts(int dr, int dt) {
627 >        for (;;) {
628 >            int wc = workerCounts;
629 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
630 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631 >                if ((runState & TERMINATED) != 0)
632 >                    return; // lagging termination on a backout
633 >                Thread.yield();
634 >            }
635 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636 >                                         wc, wc - (dr + dt)))
637 >                return;
638 >        }
639      }
640  
641      /**
642 <     * Returns {@code true} if argument represents zero active count
643 <     * and nonzero runstate, which is the triggering condition for
340 <     * terminating on shutdown.
642 >     * Tries decrementing active count; fails on contention.
643 >     * Called when workers cannot find tasks to run.
644       */
645 <    private static boolean canTerminateOnShutdown(int c) {
646 <        // i.e. least bit is nonzero runState bit
647 <        return ((c & -c) >>> 16) != 0;
645 >    final boolean tryDecrementActiveCount() {
646 >        int c;
647 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 >                                        c = runState, c - 1);
649      }
650  
651      /**
652 <     * Transition run state to at least the given state. Return true
653 <     * if not already at least given state.
652 >     * Advances to at least the given level. Returns true if not
653 >     * already in at least the given level.
654       */
655 <    private boolean transitionRunStateTo(int state) {
655 >    private boolean advanceRunLevel(int level) {
656          for (;;) {
657 <            int c = runControl;
658 <            if (runStateOf(c) >= state)
657 >            int s = runState;
658 >            if ((s & level) != 0)
659                  return false;
660 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
660 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
661                  return true;
662          }
663      }
664  
665 +    // workers array maintenance
666 +
667      /**
668 <     * Controls whether to add spares to maintain parallelism
668 >     * Records and returns a workers array index for new worker.
669       */
670 <    private volatile boolean maintainsParallelism;
670 >    private int recordWorker(ForkJoinWorkerThread w) {
671 >        // Try using slot totalCount-1. If not available, scan and/or resize
672 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
673 >        final ReentrantLock lock = this.workerLock;
674 >        lock.lock();
675 >        try {
676 >            ForkJoinWorkerThread[] ws = workers;
677 >            int n = ws.length;
678 >            if (k < 0 || k >= n || ws[k] != null) {
679 >                for (k = 0; k < n && ws[k] != null; ++k)
680 >                    ;
681 >                if (k == n)
682 >                    ws = workers = Arrays.copyOf(ws, n << 1);
683 >            }
684 >            ws[k] = w;
685 >            int c = eventCount; // advance event count to ensure visibility
686 >            UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
687 >        } finally {
688 >            lock.unlock();
689 >        }
690 >        return k;
691 >    }
692  
693 <    // Constructors
693 >    /**
694 >     * Nulls out record of worker in workers array.
695 >     */
696 >    private void forgetWorker(ForkJoinWorkerThread w) {
697 >        int idx = w.poolIndex;
698 >        // Locking helps method recordWorker avoid unnecessary expansion
699 >        final ReentrantLock lock = this.workerLock;
700 >        lock.lock();
701 >        try {
702 >            ForkJoinWorkerThread[] ws = workers;
703 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
704 >                ws[idx] = null;
705 >        } finally {
706 >            lock.unlock();
707 >        }
708 >    }
709  
710      /**
711 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
712 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
713 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
711 >     * Final callback from terminating worker.  Removes record of
712 >     * worker from array, and adjusts counts. If pool is shutting
713 >     * down, tries to complete termination.
714       *
715 <     * @throws SecurityException if a security manager exists and
374 <     *         the caller is not permitted to modify threads
375 <     *         because it does not hold {@link
376 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
715 >     * @param w the worker
716       */
717 <    public ForkJoinPool() {
718 <        this(Runtime.getRuntime().availableProcessors(),
719 <             defaultForkJoinWorkerThreadFactory);
717 >    final void workerTerminated(ForkJoinWorkerThread w) {
718 >        forgetWorker(w);
719 >        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 >        while (w.stealCount != 0) // collect final count
721 >            tryAccumulateStealCount(w);
722 >        tryTerminate(false);
723      }
724  
725 +    // Waiting for and signalling events
726 +
727      /**
728 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
729 <     * level and using the {@linkplain
730 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
731 <     *
388 <     * @param parallelism the parallelism level
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     *         equal to zero, or greater than implementation limit
391 <     * @throws SecurityException if a security manager exists and
392 <     *         the caller is not permitted to modify threads
393 <     *         because it does not hold {@link
394 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
728 >     * Releases workers blocked on a count not equal to current count.
729 >     * Normally called after precheck that eventWaiters isn't zero to
730 >     * avoid wasted array checks. Gives up upon a change in count or
731 >     * upon releasing four workers, letting others take over.
732       */
733 <    public ForkJoinPool(int parallelism) {
734 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
733 >    private void releaseEventWaiters() {
734 >        ForkJoinWorkerThread[] ws = workers;
735 >        int n = ws.length;
736 >        long h = eventWaiters;
737 >        int ec = eventCount;
738 >        int releases = 4;
739 >        ForkJoinWorkerThread w; int id;
740 >        while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
741 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
742 >               id < n && (w = ws[id]) != null) {
743 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
744 >                                          h,  w.nextWaiter)) {
745 >                LockSupport.unpark(w);
746 >                if (--releases == 0)
747 >                    break;
748 >            }
749 >            if (eventCount != ec)
750 >                break;
751 >            h = eventWaiters;
752 >        }
753      }
754  
755      /**
756 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
757 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
404 <     *
405 <     * @param factory the factory for creating new threads
406 <     * @throws NullPointerException if the factory is null
407 <     * @throws SecurityException if a security manager exists and
408 <     *         the caller is not permitted to modify threads
409 <     *         because it does not hold {@link
410 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
756 >     * Tries to advance eventCount and releases waiters. Called only
757 >     * from workers.
758       */
759 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
760 <        this(Runtime.getRuntime().availableProcessors(), factory);
759 >    final void signalWork() {
760 >        int c; // try to increment event count -- CAS failure OK
761 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
762 >        if (eventWaiters != 0L)
763 >            releaseEventWaiters();
764      }
765  
766      /**
767 <     * Creates a {@code ForkJoinPool} with the given parallelism and
768 <     * thread factory.
767 >     * Adds the given worker to event queue and blocks until
768 >     * terminating or event count advances from the given value
769       *
770 <     * @param parallelism the parallelism level
771 <     * @param factory the factory for creating new threads
422 <     * @throws IllegalArgumentException if parallelism less than or
423 <     *         equal to zero, or greater than implementation limit
424 <     * @throws NullPointerException if the factory is null
425 <     * @throws SecurityException if a security manager exists and
426 <     *         the caller is not permitted to modify threads
427 <     *         because it does not hold {@link
428 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
770 >     * @param w the calling worker thread
771 >     * @param ec the count
772       */
773 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
774 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
775 <            throw new IllegalArgumentException();
776 <        if (factory == null)
777 <            throw new NullPointerException();
778 <        checkPermission();
779 <        this.factory = factory;
780 <        this.parallelism = parallelism;
781 <        this.maxPoolSize = MAX_THREADS;
782 <        this.maintainsParallelism = true;
783 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
784 <        this.workerLock = new ReentrantLock();
785 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
444 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
445 <        // worker array and workers are lazily constructed
773 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
774 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
775 >        long h;
776 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
777 >               (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
778 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
779 >               eventCount == ec) {
780 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
781 >                                          w.nextWaiter = h, nh)) {
782 >                awaitEvent(w, ec);
783 >                break;
784 >            }
785 >        }
786      }
787  
788      /**
789 <     * Creates a new worker thread using factory.
789 >     * Blocks the given worker (that has already been entered as an
790 >     * event waiter) until terminating or event count advances from
791 >     * the given value. The oldest (first) waiter uses a timed wait to
792 >     * occasionally one-by-one shrink the number of workers (to a
793 >     * minimum of one) if the pool has not been used for extended
794 >     * periods.
795       *
796 <     * @param index the index to assign worker
797 <     * @return new worker, or null if factory failed
796 >     * @param w the calling worker thread
797 >     * @param ec the count
798       */
799 <    private ForkJoinWorkerThread createWorker(int index) {
800 <        Thread.UncaughtExceptionHandler h = ueh;
801 <        ForkJoinWorkerThread w = factory.newThread(this);
802 <        if (w != null) {
803 <            w.poolIndex = index;
804 <            w.setDaemon(true);
805 <            w.setAsyncMode(locallyFifo);
806 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
807 <            if (h != null)
808 <                w.setUncaughtExceptionHandler(h);
799 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
800 >        while (eventCount == ec) {
801 >            if (tryAccumulateStealCount(w)) { // transfer while idle
802 >                boolean untimed = (w.nextWaiter != 0L ||
803 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
804 >                long startTime = untimed ? 0 : System.nanoTime();
805 >                Thread.interrupted();         // clear/ignore interrupt
806 >                if (w.isTerminating() || eventCount != ec)
807 >                    break;                    // recheck after clear
808 >                if (untimed)
809 >                    LockSupport.park(w);
810 >                else {
811 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
812 >                    if (eventCount != ec || w.isTerminating())
813 >                        break;
814 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
815 >                        tryShutdownUnusedWorker(ec);
816 >                }
817 >            }
818          }
465        return w;
819      }
820  
821 +    // Maintaining parallelism
822 +
823      /**
824 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
824 >     * Pushes worker onto the spare stack.
825       */
826 <    private static int arraySizeFor(int poolSize) {
827 <        if (poolSize <= 1)
828 <            return 1;
829 <        // See Hackers Delight, sec 3.2
476 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
477 <        c |= c >>>  1;
478 <        c |= c >>>  2;
479 <        c |= c >>>  4;
480 <        c |= c >>>  8;
481 <        c |= c >>> 16;
482 <        return c + 1;
826 >    final void pushSpare(ForkJoinWorkerThread w) {
827 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
828 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
829 >                                               w.nextSpare = spareWaiters,ns));
830      }
831  
832      /**
833 <     * Creates or resizes array if necessary to hold newLength.
834 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
833 >     * Tries (once) to resume a spare if the number of running
834 >     * threads is less than target.
835       */
836 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
836 >    private void tryResumeSpare() {
837 >        int sw, id;
838          ForkJoinWorkerThread[] ws = workers;
839 <        if (ws == null)
840 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
841 <        else if (newLength > ws.length)
842 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
843 <        else
844 <            return ws;
839 >        int n = ws.length;
840 >        ForkJoinWorkerThread w;
841 >        if ((sw = spareWaiters) != 0 &&
842 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
843 >            id < n && (w = ws[id]) != null &&
844 >            (runState >= TERMINATING ||
845 >             (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
846 >            spareWaiters == sw &&
847 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
848 >                                     sw, w.nextSpare)) {
849 >            int c; // increment running count before resume
850 >            do {} while (!UNSAFE.compareAndSwapInt
851 >                         (this, workerCountsOffset,
852 >                          c = workerCounts, c + ONE_RUNNING));
853 >            if (w.tryUnsuspend())
854 >                LockSupport.unpark(w);
855 >            else   // back out if w was shutdown
856 >                decrementWorkerCounts(ONE_RUNNING, 0);
857 >        }
858      }
859  
860      /**
861 <     * Tries to shrink workers into smaller array after one or more terminate.
861 >     * Tries to increase the number of running workers if below target
862 >     * parallelism: If a spare exists tries to resume it via
863 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
864 >     * existing workers are busy, adds a new worker. In all cases also
865 >     * helps wake up releasable workers waiting for work.
866 >     */
867 >    private void helpMaintainParallelism() {
868 >        int pc = parallelism;
869 >        int wc, rs, tc;
870 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
871 >               (rs = runState) < TERMINATING) {
872 >            if (spareWaiters != 0)
873 >                tryResumeSpare();
874 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
875 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
876 >                break;   // enough total
877 >            else if (runState == rs && workerCounts == wc &&
878 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
879 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
880 >                ForkJoinWorkerThread w = null;
881 >                Throwable fail = null;
882 >                try {
883 >                    w = factory.newThread(this);
884 >                } catch (Throwable ex) {
885 >                    fail = ex;
886 >                }
887 >                if (w == null) { // null or exceptional factory return
888 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
889 >                    tryTerminate(false); // handle failure during shutdown
890 >                    // If originating from an external caller,
891 >                    // propagate exception, else ignore
892 >                    if (fail != null && runState < TERMINATING &&
893 >                        !(Thread.currentThread() instanceof
894 >                          ForkJoinWorkerThread))
895 >                        UNSAFE.throwException(fail);
896 >                    break;
897 >                }
898 >                w.start(recordWorker(w), ueh);
899 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
900 >                    break; // add at most one unless total below target
901 >            }
902 >        }
903 >        if (eventWaiters != 0L)
904 >            releaseEventWaiters();
905 >    }
906 >
907 >    /**
908 >     * Callback from the oldest waiter in awaitEvent waking up after a
909 >     * period of non-use. If all workers are idle, tries (once) to
910 >     * shutdown an event waiter or a spare, if one exists. Note that
911 >     * we don't need CAS or locks here because the method is called
912 >     * only from one thread occasionally waking (and even misfires are
913 >     * OK). Note that until the shutdown worker fully terminates,
914 >     * workerCounts will overestimate total count, which is tolerable.
915 >     *
916 >     * @param ec the event count waited on by caller (to abort
917 >     * attempt if count has since changed).
918       */
919 <    private void tryShrinkWorkerArray() {
920 <        ForkJoinWorkerThread[] ws = workers;
921 <        if (ws != null) {
922 <            int len = ws.length;
923 <            int last = len - 1;
924 <            while (last >= 0 && ws[last] == null)
925 <                --last;
926 <            int newLength = arraySizeFor(last+1);
927 <            if (newLength < len)
928 <                workers = Arrays.copyOf(ws, newLength);
919 >    private void tryShutdownUnusedWorker(int ec) {
920 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
921 >            ForkJoinWorkerThread[] ws = workers;
922 >            int n = ws.length;
923 >            ForkJoinWorkerThread w = null;
924 >            boolean shutdown = false;
925 >            int sw;
926 >            long h;
927 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
928 >                int id = (sw & SPARE_ID_MASK) - 1;
929 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
930 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
931 >                                             sw, w.nextSpare))
932 >                    shutdown = true;
933 >            }
934 >            else if ((h = eventWaiters) != 0L) {
935 >                long nh;
936 >                int id = (((int)h) & WAITER_ID_MASK) - 1;
937 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
938 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
939 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
940 >                    shutdown = true;
941 >            }
942 >            if (w != null && shutdown) {
943 >                w.shutdown();
944 >                LockSupport.unpark(w);
945 >            }
946 >        }
947 >        releaseEventWaiters(); // in case of interference
948 >    }
949 >
950 >    /**
951 >     * Callback from workers invoked upon each top-level action (i.e.,
952 >     * stealing a task or taking a submission and running it).
953 >     * Performs one or more of the following:
954 >     *
955 >     * 1. If the worker is active and either did not run a task
956 >     *    or there are too many workers, try to set its active status
957 >     *    to inactive and update activeCount. On contention, we may
958 >     *    try again in this or a subsequent call.
959 >     *
960 >     * 2. If not enough total workers, help create some.
961 >     *
962 >     * 3. If there are too many running workers, suspend this worker
963 >     *    (first forcing inactive if necessary).  If it is not needed,
964 >     *    it may be shutdown while suspended (via
965 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
966 >     *    rechecks running thread count and need for event sync.
967 >     *
968 >     * 4. If worker did not run a task, await the next task event via
969 >     *    eventSync if necessary (first forcing inactivation), upon
970 >     *    which the worker may be shutdown via
971 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
972 >     *    existing event waiters that are now releasable,
973 >     *
974 >     * @param w the worker
975 >     * @param ran true if worker ran a task since last call to this method
976 >     */
977 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
978 >        int wec = w.lastEventCount;
979 >        boolean active = w.active;
980 >        boolean inactivate = false;
981 >        int pc = parallelism;
982 >        while (w.runState == 0) {
983 >            int rs = runState;
984 >            if (rs >= TERMINATING) {           // propagate shutdown
985 >                w.shutdown();
986 >                break;
987 >            }
988 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
989 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
990 >                inactivate = active = w.active = false;
991 >                if (rs == SHUTDOWN) {          // all inactive and shut down
992 >                    tryTerminate(false);
993 >                    continue;
994 >                }
995 >            }
996 >            int wc = workerCounts;             // try to suspend as spare
997 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
998 >                if (!(inactivate |= active) && // must inactivate to suspend
999 >                    workerCounts == wc &&
1000 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1001 >                                             wc, wc - ONE_RUNNING))
1002 >                    w.suspendAsSpare();
1003 >            }
1004 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1005 >                helpMaintainParallelism();     // not enough workers
1006 >            else if (ran)
1007 >                break;
1008 >            else {
1009 >                long h = eventWaiters;
1010 >                int ec = eventCount;
1011 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1012 >                    releaseEventWaiters();     // release others before waiting
1013 >                else if (ec != wec) {
1014 >                    w.lastEventCount = ec;     // no need to wait
1015 >                    break;
1016 >                }
1017 >                else if (!(inactivate |= active))
1018 >                    eventSync(w, wec);         // must inactivate before sync
1019 >            }
1020          }
1021      }
1022  
1023      /**
1024 <     * Initializes workers if necessary.
1024 >     * Helps and/or blocks awaiting join of the given task.
1025 >     * See above for explanation.
1026 >     *
1027 >     * @param joinMe the task to join
1028 >     * @param worker the current worker thread
1029 >     * @param timed true if wait should time out
1030 >     * @param nanos timeout value if timed
1031       */
1032 <    final void ensureWorkerInitialization() {
1033 <        ForkJoinWorkerThread[] ws = workers;
1034 <        if (ws == null) {
1035 <            final ReentrantLock lock = this.workerLock;
1036 <            lock.lock();
1037 <            try {
1038 <                ws = workers;
1039 <                if (ws == null) {
1040 <                    int ps = parallelism;
1041 <                    ws = ensureWorkerArrayCapacity(ps);
1042 <                    for (int i = 0; i < ps; ++i) {
1043 <                        ForkJoinWorkerThread w = createWorker(i);
1044 <                        if (w != null) {
1045 <                            ws[i] = w;
1046 <                            w.start();
1047 <                            updateWorkerCount(1);
1032 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1033 >                         boolean timed, long nanos) {
1034 >        long startTime = timed ? System.nanoTime() : 0L;
1035 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1036 >        boolean running = true;               // false when count decremented
1037 >        while (joinMe.status >= 0) {
1038 >            if (runState >= TERMINATING) {
1039 >                joinMe.cancelIgnoringExceptions();
1040 >                break;
1041 >            }
1042 >            running = worker.helpJoinTask(joinMe, running);
1043 >            if (joinMe.status < 0)
1044 >                break;
1045 >            if (retries > 0) {
1046 >                --retries;
1047 >                continue;
1048 >            }
1049 >            int wc = workerCounts;
1050 >            if ((wc & RUNNING_COUNT_MASK) != 0) {
1051 >                if (running) {
1052 >                    if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1053 >                                                  wc, wc - ONE_RUNNING))
1054 >                        continue;
1055 >                    running = false;
1056 >                }
1057 >                long h = eventWaiters;
1058 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1059 >                    releaseEventWaiters();
1060 >                if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1061 >                    long ms; int ns;
1062 >                    if (!timed) {
1063 >                        ms = JOIN_TIMEOUT_MILLIS;
1064 >                        ns = 0;
1065 >                    }
1066 >                    else { // at most JOIN_TIMEOUT_MILLIS per wait
1067 >                        long nt = nanos - (System.nanoTime() - startTime);
1068 >                        if (nt <= 0L)
1069 >                            break;
1070 >                        ms = nt / 1000000;
1071 >                        if (ms > JOIN_TIMEOUT_MILLIS) {
1072 >                            ms = JOIN_TIMEOUT_MILLIS;
1073 >                            ns = 0;
1074                          }
1075 +                        else
1076 +                            ns = (int) (nt % 1000000);
1077                      }
1078 +                    joinMe.internalAwaitDone(ms, ns);
1079                  }
1080 <            } finally {
1081 <                lock.unlock();
1080 >                if (joinMe.status < 0)
1081 >                    break;
1082              }
1083 +            helpMaintainParallelism();
1084 +        }
1085 +        if (!running) {
1086 +            int c;
1087 +            do {} while (!UNSAFE.compareAndSwapInt
1088 +                         (this, workerCountsOffset,
1089 +                          c = workerCounts, c + ONE_RUNNING));
1090          }
1091      }
1092  
1093      /**
1094 <     * Worker creation and startup for threads added via setParallelism.
1094 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1095       */
1096 <    private void createAndStartAddedWorkers() {
1097 <        resumeAllSpares();  // Allow spares to convert to nonspare
1098 <        int ps = parallelism;
1099 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1100 <        int len = ws.length;
1101 <        // Sweep through slots, to keep lowest indices most populated
1102 <        int k = 0;
1103 <        while (k < len) {
1104 <            if (ws[k] != null) {
1105 <                ++k;
1106 <                continue;
1107 <            }
1108 <            int s = workerCounts;
1109 <            int tc = totalCountOf(s);
1110 <            int rc = runningCountOf(s);
1111 <            if (rc >= ps || tc >= ps)
1096 >    final void awaitBlocker(ManagedBlocker blocker)
1097 >        throws InterruptedException {
1098 >        while (!blocker.isReleasable()) {
1099 >            int wc = workerCounts;
1100 >            if ((wc & RUNNING_COUNT_MASK) == 0)
1101 >                helpMaintainParallelism();
1102 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1103 >                                              wc, wc - ONE_RUNNING)) {
1104 >                try {
1105 >                    while (!blocker.isReleasable()) {
1106 >                        long h = eventWaiters;
1107 >                        if (h != 0L &&
1108 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1109 >                            releaseEventWaiters();
1110 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1111 >                                 runState < TERMINATING)
1112 >                            helpMaintainParallelism();
1113 >                        else if (blocker.block())
1114 >                            break;
1115 >                    }
1116 >                } finally {
1117 >                    int c;
1118 >                    do {} while (!UNSAFE.compareAndSwapInt
1119 >                                 (this, workerCountsOffset,
1120 >                                  c = workerCounts, c + ONE_RUNNING));
1121 >                }
1122                  break;
1123 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1124 <                ForkJoinWorkerThread w = createWorker(k);
1123 >            }
1124 >        }
1125 >    }
1126 >
1127 >    /**
1128 >     * Possibly initiates and/or completes termination.
1129 >     *
1130 >     * @param now if true, unconditionally terminate, else only
1131 >     * if shutdown and empty queue and no active workers
1132 >     * @return true if now terminating or terminated
1133 >     */
1134 >    private boolean tryTerminate(boolean now) {
1135 >        if (now)
1136 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1137 >        else if (runState < SHUTDOWN ||
1138 >                 !submissionQueue.isEmpty() ||
1139 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1140 >            return false;
1141 >
1142 >        if (advanceRunLevel(TERMINATING))
1143 >            startTerminating();
1144 >
1145 >        // Finish now if all threads terminated; else in some subsequent call
1146 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1147 >            advanceRunLevel(TERMINATED);
1148 >            termination.forceTermination();
1149 >        }
1150 >        return true;
1151 >    }
1152 >
1153 >    /**
1154 >     * Actions on transition to TERMINATING
1155 >     *
1156 >     * Runs up to four passes through workers: (0) shutting down each
1157 >     * (without waking up if parked) to quickly spread notifications
1158 >     * without unnecessary bouncing around event queues etc (1) wake
1159 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1160 >     * interrupted workers
1161 >     */
1162 >    private void startTerminating() {
1163 >        cancelSubmissions();
1164 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1165 >            int c; // advance event count
1166 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1167 >                                     c = eventCount, c+1);
1168 >            eventWaiters = 0L; // clobber lists
1169 >            spareWaiters = 0;
1170 >            for (ForkJoinWorkerThread w : workers) {
1171                  if (w != null) {
1172 <                    ws[k++] = w;
1173 <                    w.start();
1174 <                }
1175 <                else {
1176 <                    updateWorkerCount(-1); // back out on failed creation
1177 <                    break;
1172 >                    w.shutdown();
1173 >                    if (passes > 0 && !w.isTerminated()) {
1174 >                        w.cancelTasks();
1175 >                        LockSupport.unpark(w);
1176 >                        if (passes > 1 && !w.isInterrupted()) {
1177 >                            try {
1178 >                                w.interrupt();
1179 >                            } catch (SecurityException ignore) {
1180 >                            }
1181 >                        }
1182 >                    }
1183                  }
1184              }
1185          }
1186      }
1187  
1188 +    /**
1189 +     * Clears out and cancels submissions, ignoring exceptions.
1190 +     */
1191 +    private void cancelSubmissions() {
1192 +        ForkJoinTask<?> task;
1193 +        while ((task = submissionQueue.poll()) != null) {
1194 +            try {
1195 +                task.cancel(false);
1196 +            } catch (Throwable ignore) {
1197 +            }
1198 +        }
1199 +    }
1200 +
1201 +    // misc support for ForkJoinWorkerThread
1202 +
1203 +    /**
1204 +     * Returns pool number.
1205 +     */
1206 +    final int getPoolNumber() {
1207 +        return poolNumber;
1208 +    }
1209 +
1210 +    /**
1211 +     * Tries to accumulate steal count from a worker, clearing
1212 +     * the worker's value if successful.
1213 +     *
1214 +     * @return true if worker steal count now zero
1215 +     */
1216 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1217 +        int sc = w.stealCount;
1218 +        long c = stealCount;
1219 +        // CAS even if zero, for fence effects
1220 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1221 +            if (sc != 0)
1222 +                w.stealCount = 0;
1223 +            return true;
1224 +        }
1225 +        return sc == 0;
1226 +    }
1227 +
1228 +    /**
1229 +     * Returns the approximate (non-atomic) number of idle threads per
1230 +     * active thread.
1231 +     */
1232 +    final int idlePerActive() {
1233 +        int pc = parallelism; // use parallelism, not rc
1234 +        int ac = runState;    // no mask -- artificially boosts during shutdown
1235 +        // Use exact results for small values, saturate past 4
1236 +        return ((pc <= ac) ? 0 :
1237 +                (pc >>> 1 <= ac) ? 1 :
1238 +                (pc >>> 2 <= ac) ? 3 :
1239 +                pc >>> 3);
1240 +    }
1241 +
1242 +    // Public and protected methods
1243 +
1244 +    // Constructors
1245 +
1246 +    /**
1247 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1248 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1249 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1250 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1251 +     *
1252 +     * @throws SecurityException if a security manager exists and
1253 +     *         the caller is not permitted to modify threads
1254 +     *         because it does not hold {@link
1255 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1256 +     */
1257 +    public ForkJoinPool() {
1258 +        this(Runtime.getRuntime().availableProcessors(),
1259 +             defaultForkJoinWorkerThreadFactory, null, false);
1260 +    }
1261 +
1262 +    /**
1263 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1264 +     * level, the {@linkplain
1265 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1266 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1267 +     *
1268 +     * @param parallelism the parallelism level
1269 +     * @throws IllegalArgumentException if parallelism less than or
1270 +     *         equal to zero, or greater than implementation limit
1271 +     * @throws SecurityException if a security manager exists and
1272 +     *         the caller is not permitted to modify threads
1273 +     *         because it does not hold {@link
1274 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1275 +     */
1276 +    public ForkJoinPool(int parallelism) {
1277 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1278 +    }
1279 +
1280 +    /**
1281 +     * Creates a {@code ForkJoinPool} with the given parameters.
1282 +     *
1283 +     * @param parallelism the parallelism level. For default value,
1284 +     * use {@link java.lang.Runtime#availableProcessors}.
1285 +     * @param factory the factory for creating new threads. For default value,
1286 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1287 +     * @param handler the handler for internal worker threads that
1288 +     * terminate due to unrecoverable errors encountered while executing
1289 +     * tasks. For default value, use {@code null}.
1290 +     * @param asyncMode if true,
1291 +     * establishes local first-in-first-out scheduling mode for forked
1292 +     * tasks that are never joined. This mode may be more appropriate
1293 +     * than default locally stack-based mode in applications in which
1294 +     * worker threads only process event-style asynchronous tasks.
1295 +     * For default value, use {@code false}.
1296 +     * @throws IllegalArgumentException if parallelism less than or
1297 +     *         equal to zero, or greater than implementation limit
1298 +     * @throws NullPointerException if the factory is null
1299 +     * @throws SecurityException if a security manager exists and
1300 +     *         the caller is not permitted to modify threads
1301 +     *         because it does not hold {@link
1302 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1303 +     */
1304 +    public ForkJoinPool(int parallelism,
1305 +                        ForkJoinWorkerThreadFactory factory,
1306 +                        Thread.UncaughtExceptionHandler handler,
1307 +                        boolean asyncMode) {
1308 +        checkPermission();
1309 +        if (factory == null)
1310 +            throw new NullPointerException();
1311 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1312 +            throw new IllegalArgumentException();
1313 +        this.parallelism = parallelism;
1314 +        this.factory = factory;
1315 +        this.ueh = handler;
1316 +        this.locallyFifo = asyncMode;
1317 +        int arraySize = initialArraySizeFor(parallelism);
1318 +        this.workers = new ForkJoinWorkerThread[arraySize];
1319 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1320 +        this.workerLock = new ReentrantLock();
1321 +        this.termination = new Phaser(1);
1322 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1323 +    }
1324 +
1325 +    /**
1326 +     * Returns initial power of two size for workers array.
1327 +     * @param pc the initial parallelism level
1328 +     */
1329 +    private static int initialArraySizeFor(int pc) {
1330 +        // If possible, initially allocate enough space for one spare
1331 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1332 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1333 +        size |= size >>> 1;
1334 +        size |= size >>> 2;
1335 +        size |= size >>> 4;
1336 +        size |= size >>> 8;
1337 +        return size + 1;
1338 +    }
1339 +
1340      // Execution methods
1341  
1342      /**
1343 <     * Common code for execute, invoke and submit
1343 >     * Submits task and creates, starts, or resumes some workers if necessary
1344       */
1345      private <T> void doSubmit(ForkJoinTask<T> task) {
585        if (task == null)
586            throw new NullPointerException();
587        if (isShutdown())
588            throw new RejectedExecutionException();
589        if (workers == null)
590            ensureWorkerInitialization();
1346          submissionQueue.offer(task);
1347 <        signalIdleWorkers();
1347 >        int c; // try to increment event count -- CAS failure OK
1348 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1349 >        helpMaintainParallelism();
1350      }
1351  
1352      /**
# Line 602 | Line 1359 | public class ForkJoinPool extends Abstra
1359       *         scheduled for execution
1360       */
1361      public <T> T invoke(ForkJoinTask<T> task) {
1362 <        doSubmit(task);
1363 <        return task.join();
1362 >        if (task == null)
1363 >            throw new NullPointerException();
1364 >        if (runState >= SHUTDOWN)
1365 >            throw new RejectedExecutionException();
1366 >        Thread t = Thread.currentThread();
1367 >        if ((t instanceof ForkJoinWorkerThread) &&
1368 >            ((ForkJoinWorkerThread)t).pool == this)
1369 >            return task.invoke();  // bypass submit if in same pool
1370 >        else {
1371 >            doSubmit(task);
1372 >            return task.join();
1373 >        }
1374 >    }
1375 >
1376 >    /**
1377 >     * Unless terminating, forks task if within an ongoing FJ
1378 >     * computation in the current pool, else submits as external task.
1379 >     */
1380 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1381 >        if (runState >= SHUTDOWN)
1382 >            throw new RejectedExecutionException();
1383 >        Thread t = Thread.currentThread();
1384 >        if ((t instanceof ForkJoinWorkerThread) &&
1385 >            ((ForkJoinWorkerThread)t).pool == this)
1386 >            task.fork();
1387 >        else
1388 >            doSubmit(task);
1389      }
1390  
1391      /**
# Line 615 | Line 1397 | public class ForkJoinPool extends Abstra
1397       *         scheduled for execution
1398       */
1399      public void execute(ForkJoinTask<?> task) {
1400 <        doSubmit(task);
1400 >        if (task == null)
1401 >            throw new NullPointerException();
1402 >        forkOrSubmit(task);
1403      }
1404  
1405      // AbstractExecutorService methods
# Line 626 | Line 1410 | public class ForkJoinPool extends Abstra
1410       *         scheduled for execution
1411       */
1412      public void execute(Runnable task) {
1413 +        if (task == null)
1414 +            throw new NullPointerException();
1415          ForkJoinTask<?> job;
1416          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1417              job = (ForkJoinTask<?>) task;
1418          else
1419              job = ForkJoinTask.adapt(task, null);
1420 <        doSubmit(job);
1420 >        forkOrSubmit(job);
1421 >    }
1422 >
1423 >    /**
1424 >     * Submits a ForkJoinTask for execution.
1425 >     *
1426 >     * @param task the task to submit
1427 >     * @return the task
1428 >     * @throws NullPointerException if the task is null
1429 >     * @throws RejectedExecutionException if the task cannot be
1430 >     *         scheduled for execution
1431 >     */
1432 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1433 >        if (task == null)
1434 >            throw new NullPointerException();
1435 >        forkOrSubmit(task);
1436 >        return task;
1437      }
1438  
1439      /**
# Line 640 | Line 1442 | public class ForkJoinPool extends Abstra
1442       *         scheduled for execution
1443       */
1444      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1445 +        if (task == null)
1446 +            throw new NullPointerException();
1447          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1448 <        doSubmit(job);
1448 >        forkOrSubmit(job);
1449          return job;
1450      }
1451  
# Line 651 | Line 1455 | public class ForkJoinPool extends Abstra
1455       *         scheduled for execution
1456       */
1457      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1458 +        if (task == null)
1459 +            throw new NullPointerException();
1460          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1461 <        doSubmit(job);
1461 >        forkOrSubmit(job);
1462          return job;
1463      }
1464  
# Line 662 | Line 1468 | public class ForkJoinPool extends Abstra
1468       *         scheduled for execution
1469       */
1470      public ForkJoinTask<?> submit(Runnable task) {
1471 +        if (task == null)
1472 +            throw new NullPointerException();
1473          ForkJoinTask<?> job;
1474          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1475              job = (ForkJoinTask<?>) task;
1476          else
1477              job = ForkJoinTask.adapt(task, null);
1478 <        doSubmit(job);
1478 >        forkOrSubmit(job);
1479          return job;
1480      }
1481  
1482      /**
675     * Submits a ForkJoinTask for execution.
676     *
677     * @param task the task to submit
678     * @return the task
679     * @throws NullPointerException if the task is null
680     * @throws RejectedExecutionException if the task cannot be
681     *         scheduled for execution
682     */
683    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
684        doSubmit(task);
685        return task;
686    }
687
688
689    /**
1483       * @throws NullPointerException       {@inheritDoc}
1484       * @throws RejectedExecutionException {@inheritDoc}
1485       */
# Line 698 | Line 1491 | public class ForkJoinPool extends Abstra
1491          invoke(new InvokeAll<T>(forkJoinTasks));
1492  
1493          @SuppressWarnings({"unchecked", "rawtypes"})
1494 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1494 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1495          return futures;
1496      }
1497  
# Line 712 | Line 1505 | public class ForkJoinPool extends Abstra
1505          private static final long serialVersionUID = -7914297376763021607L;
1506      }
1507  
715    // Configuration and status settings and queries
716
1508      /**
1509       * Returns the factory used for constructing new workers.
1510       *
# Line 730 | Line 1521 | public class ForkJoinPool extends Abstra
1521       * @return the handler, or {@code null} if none
1522       */
1523      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1524 <        Thread.UncaughtExceptionHandler h;
734 <        final ReentrantLock lock = this.workerLock;
735 <        lock.lock();
736 <        try {
737 <            h = ueh;
738 <        } finally {
739 <            lock.unlock();
740 <        }
741 <        return h;
742 <    }
743 <
744 <    /**
745 <     * Sets the handler for internal worker threads that terminate due
746 <     * to unrecoverable errors encountered while executing tasks.
747 <     * Unless set, the current default or ThreadGroup handler is used
748 <     * as handler.
749 <     *
750 <     * @param h the new handler
751 <     * @return the old handler, or {@code null} if none
752 <     * @throws SecurityException if a security manager exists and
753 <     *         the caller is not permitted to modify threads
754 <     *         because it does not hold {@link
755 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
756 <     */
757 <    public Thread.UncaughtExceptionHandler
758 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
759 <        checkPermission();
760 <        Thread.UncaughtExceptionHandler old = null;
761 <        final ReentrantLock lock = this.workerLock;
762 <        lock.lock();
763 <        try {
764 <            old = ueh;
765 <            ueh = h;
766 <            ForkJoinWorkerThread[] ws = workers;
767 <            if (ws != null) {
768 <                for (int i = 0; i < ws.length; ++i) {
769 <                    ForkJoinWorkerThread w = ws[i];
770 <                    if (w != null)
771 <                        w.setUncaughtExceptionHandler(h);
772 <                }
773 <            }
774 <        } finally {
775 <            lock.unlock();
776 <        }
777 <        return old;
778 <    }
779 <
780 <
781 <    /**
782 <     * Sets the target parallelism level of this pool.
783 <     *
784 <     * @param parallelism the target parallelism
785 <     * @throws IllegalArgumentException if parallelism less than or
786 <     * equal to zero or greater than maximum size bounds
787 <     * @throws SecurityException if a security manager exists and
788 <     *         the caller is not permitted to modify threads
789 <     *         because it does not hold {@link
790 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
791 <     */
792 <    public void setParallelism(int parallelism) {
793 <        checkPermission();
794 <        if (parallelism <= 0 || parallelism > maxPoolSize)
795 <            throw new IllegalArgumentException();
796 <        final ReentrantLock lock = this.workerLock;
797 <        lock.lock();
798 <        try {
799 <            if (isProcessingTasks()) {
800 <                int p = this.parallelism;
801 <                this.parallelism = parallelism;
802 <                if (parallelism > p)
803 <                    createAndStartAddedWorkers();
804 <                else
805 <                    trimSpares();
806 <            }
807 <        } finally {
808 <            lock.unlock();
809 <        }
810 <        signalIdleWorkers();
1524 >        return ueh;
1525      }
1526  
1527      /**
# Line 821 | Line 1535 | public class ForkJoinPool extends Abstra
1535  
1536      /**
1537       * Returns the number of worker threads that have started but not
1538 <     * yet terminated.  This result returned by this method may differ
1538 >     * yet terminated.  The result returned by this method may differ
1539       * from {@link #getParallelism} when threads are created to
1540       * maintain parallelism when others are cooperatively blocked.
1541       *
1542       * @return the number of worker threads
1543       */
1544      public int getPoolSize() {
1545 <        return totalCountOf(workerCounts);
832 <    }
833 <
834 <    /**
835 <     * Returns the maximum number of threads allowed to exist in the
836 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
837 <     * maximum is an implementation-defined value designed only to
838 <     * prevent runaway growth.
839 <     *
840 <     * @return the maximum
841 <     */
842 <    public int getMaximumPoolSize() {
843 <        return maxPoolSize;
844 <    }
845 <
846 <    /**
847 <     * Sets the maximum number of threads allowed to exist in the
848 <     * pool. The given value should normally be greater than or equal
849 <     * to the {@link #getParallelism parallelism} level. Setting this
850 <     * value has no effect on current pool size. It controls
851 <     * construction of new threads.
852 <     *
853 <     * @throws IllegalArgumentException if negative or greater than
854 <     * internal implementation limit
855 <     */
856 <    public void setMaximumPoolSize(int newMax) {
857 <        if (newMax < 0 || newMax > MAX_THREADS)
858 <            throw new IllegalArgumentException();
859 <        maxPoolSize = newMax;
860 <    }
861 <
862 <
863 <    /**
864 <     * Returns {@code true} if this pool dynamically maintains its
865 <     * target parallelism level. If false, new threads are added only
866 <     * to avoid possible starvation.  This setting is by default true.
867 <     *
868 <     * @return {@code true} if maintains parallelism
869 <     */
870 <    public boolean getMaintainsParallelism() {
871 <        return maintainsParallelism;
872 <    }
873 <
874 <    /**
875 <     * Sets whether this pool dynamically maintains its target
876 <     * parallelism level. If false, new threads are added only to
877 <     * avoid possible starvation.
878 <     *
879 <     * @param enable {@code true} to maintain parallelism
880 <     */
881 <    public void setMaintainsParallelism(boolean enable) {
882 <        maintainsParallelism = enable;
883 <    }
884 <
885 <    /**
886 <     * Establishes local first-in-first-out scheduling mode for forked
887 <     * tasks that are never joined. This mode may be more appropriate
888 <     * than default locally stack-based mode in applications in which
889 <     * worker threads only process asynchronous tasks.  This method is
890 <     * designed to be invoked only when the pool is quiescent, and
891 <     * typically only before any tasks are submitted. The effects of
892 <     * invocations at other times may be unpredictable.
893 <     *
894 <     * @param async if {@code true}, use locally FIFO scheduling
895 <     * @return the previous mode
896 <     * @see #getAsyncMode
897 <     */
898 <    public boolean setAsyncMode(boolean async) {
899 <        boolean oldMode = locallyFifo;
900 <        locallyFifo = async;
901 <        ForkJoinWorkerThread[] ws = workers;
902 <        if (ws != null) {
903 <            for (int i = 0; i < ws.length; ++i) {
904 <                ForkJoinWorkerThread t = ws[i];
905 <                if (t != null)
906 <                    t.setAsyncMode(async);
907 <            }
908 <        }
909 <        return oldMode;
1545 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1546      }
1547  
1548      /**
# Line 914 | Line 1550 | public class ForkJoinPool extends Abstra
1550       * scheduling mode for forked tasks that are never joined.
1551       *
1552       * @return {@code true} if this pool uses async mode
917     * @see #setAsyncMode
1553       */
1554      public boolean getAsyncMode() {
1555          return locallyFifo;
# Line 923 | Line 1558 | public class ForkJoinPool extends Abstra
1558      /**
1559       * Returns an estimate of the number of worker threads that are
1560       * not blocked waiting to join tasks or for other managed
1561 <     * synchronization.
1561 >     * synchronization. This method may overestimate the
1562 >     * number of running threads.
1563       *
1564       * @return the number of worker threads
1565       */
1566      public int getRunningThreadCount() {
1567 <        return runningCountOf(workerCounts);
1567 >        return workerCounts & RUNNING_COUNT_MASK;
1568      }
1569  
1570      /**
# Line 939 | Line 1575 | public class ForkJoinPool extends Abstra
1575       * @return the number of active threads
1576       */
1577      public int getActiveThreadCount() {
1578 <        return activeCountOf(runControl);
943 <    }
944 <
945 <    /**
946 <     * Returns an estimate of the number of threads that are currently
947 <     * idle waiting for tasks. This method may underestimate the
948 <     * number of idle threads.
949 <     *
950 <     * @return the number of idle threads
951 <     */
952 <    final int getIdleThreadCount() {
953 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
954 <        return (c <= 0) ? 0 : c;
1578 >        return runState & ACTIVE_COUNT_MASK;
1579      }
1580  
1581      /**
# Line 966 | Line 1590 | public class ForkJoinPool extends Abstra
1590       * @return {@code true} if all threads are currently idle
1591       */
1592      public boolean isQuiescent() {
1593 <        return activeCountOf(runControl) == 0;
1593 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1594      }
1595  
1596      /**
# Line 981 | Line 1605 | public class ForkJoinPool extends Abstra
1605       * @return the number of steals
1606       */
1607      public long getStealCount() {
1608 <        return stealCount.get();
985 <    }
986 <
987 <    /**
988 <     * Accumulates steal count from a worker.
989 <     * Call only when worker known to be idle.
990 <     */
991 <    private void updateStealCount(ForkJoinWorkerThread w) {
992 <        int sc = w.getAndClearStealCount();
993 <        if (sc != 0)
994 <            stealCount.addAndGet(sc);
1608 >        return stealCount;
1609      }
1610  
1611      /**
# Line 1006 | Line 1620 | public class ForkJoinPool extends Abstra
1620       */
1621      public long getQueuedTaskCount() {
1622          long count = 0;
1623 <        ForkJoinWorkerThread[] ws = workers;
1624 <        if (ws != null) {
1625 <            for (int i = 0; i < ws.length; ++i) {
1012 <                ForkJoinWorkerThread t = ws[i];
1013 <                if (t != null)
1014 <                    count += t.getQueueSize();
1015 <            }
1016 <        }
1623 >        for (ForkJoinWorkerThread w : workers)
1624 >            if (w != null)
1625 >                count += w.getQueueSize();
1626          return count;
1627      }
1628  
# Line 1067 | Line 1676 | public class ForkJoinPool extends Abstra
1676       * @return the number of elements transferred
1677       */
1678      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1679 <        int n = submissionQueue.drainTo(c);
1680 <        ForkJoinWorkerThread[] ws = workers;
1681 <        if (ws != null) {
1682 <            for (int i = 0; i < ws.length; ++i) {
1683 <                ForkJoinWorkerThread w = ws[i];
1075 <                if (w != null)
1076 <                    n += w.drainTasksTo(c);
1077 <            }
1078 <        }
1079 <        return n;
1679 >        int count = submissionQueue.drainTo(c);
1680 >        for (ForkJoinWorkerThread w : workers)
1681 >            if (w != null)
1682 >                count += w.drainTasksTo(c);
1683 >        return count;
1684      }
1685  
1686      /**
# Line 1087 | Line 1691 | public class ForkJoinPool extends Abstra
1691       * @return a string identifying this pool, as well as its state
1692       */
1693      public String toString() {
1090        int ps = parallelism;
1091        int wc = workerCounts;
1092        int rc = runControl;
1694          long st = getStealCount();
1695          long qt = getQueuedTaskCount();
1696          long qs = getQueuedSubmissionCount();
1697 +        int wc = workerCounts;
1698 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1699 +        int rc = wc & RUNNING_COUNT_MASK;
1700 +        int pc = parallelism;
1701 +        int rs = runState;
1702 +        int ac = rs & ACTIVE_COUNT_MASK;
1703          return super.toString() +
1704 <            "[" + runStateToString(runStateOf(rc)) +
1705 <            ", parallelism = " + ps +
1706 <            ", size = " + totalCountOf(wc) +
1707 <            ", active = " + activeCountOf(rc) +
1708 <            ", running = " + runningCountOf(wc) +
1704 >            "[" + runLevelToString(rs) +
1705 >            ", parallelism = " + pc +
1706 >            ", size = " + tc +
1707 >            ", active = " + ac +
1708 >            ", running = " + rc +
1709              ", steals = " + st +
1710              ", tasks = " + qt +
1711              ", submissions = " + qs +
1712              "]";
1713      }
1714  
1715 <    private static String runStateToString(int rs) {
1716 <        switch (rs) {
1717 <        case RUNNING: return "Running";
1718 <        case SHUTDOWN: return "Shutting down";
1719 <        case TERMINATING: return "Terminating";
1113 <        case TERMINATED: return "Terminated";
1114 <        default: throw new Error("Unknown run state");
1115 <        }
1715 >    private static String runLevelToString(int s) {
1716 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1717 >                ((s & TERMINATING) != 0 ? "Terminating" :
1718 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1719 >                  "Running")));
1720      }
1721  
1118    // lifecycle control
1119
1722      /**
1723       * Initiates an orderly shutdown in which previously submitted
1724       * tasks are executed, but no new tasks will be accepted.
# Line 1131 | Line 1733 | public class ForkJoinPool extends Abstra
1733       */
1734      public void shutdown() {
1735          checkPermission();
1736 <        transitionRunStateTo(SHUTDOWN);
1737 <        if (canTerminateOnShutdown(runControl)) {
1136 <            if (workers == null) { // shutting down before workers created
1137 <                final ReentrantLock lock = this.workerLock;
1138 <                lock.lock();
1139 <                try {
1140 <                    if (workers == null) {
1141 <                        terminate();
1142 <                        transitionRunStateTo(TERMINATED);
1143 <                        termination.signalAll();
1144 <                    }
1145 <                } finally {
1146 <                    lock.unlock();
1147 <                }
1148 <            }
1149 <            terminateOnShutdown();
1150 <        }
1736 >        advanceRunLevel(SHUTDOWN);
1737 >        tryTerminate(false);
1738      }
1739  
1740      /**
# Line 1168 | Line 1755 | public class ForkJoinPool extends Abstra
1755       */
1756      public List<Runnable> shutdownNow() {
1757          checkPermission();
1758 <        terminate();
1758 >        tryTerminate(true);
1759          return Collections.emptyList();
1760      }
1761  
# Line 1178 | Line 1765 | public class ForkJoinPool extends Abstra
1765       * @return {@code true} if all tasks have completed following shut down
1766       */
1767      public boolean isTerminated() {
1768 <        return runStateOf(runControl) == TERMINATED;
1768 >        return runState >= TERMINATED;
1769      }
1770  
1771      /**
# Line 1186 | Line 1773 | public class ForkJoinPool extends Abstra
1773       * commenced but not yet completed.  This method may be useful for
1774       * debugging. A return of {@code true} reported a sufficient
1775       * period after shutdown may indicate that submitted tasks have
1776 <     * ignored or suppressed interruption, causing this executor not
1777 <     * to properly terminate.
1776 >     * ignored or suppressed interruption, or are waiting for IO,
1777 >     * causing this executor not to properly terminate. (See the
1778 >     * advisory notes for class {@link ForkJoinTask} stating that
1779 >     * tasks should not normally entail blocking operations.  But if
1780 >     * they do, they must abort them on interrupt.)
1781       *
1782       * @return {@code true} if terminating but not yet terminated
1783       */
1784      public boolean isTerminating() {
1785 <        return runStateOf(runControl) == TERMINATING;
1785 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1786      }
1787  
1788      /**
1789 <     * Returns {@code true} if this pool has been shut down.
1200 <     *
1201 <     * @return {@code true} if this pool has been shut down
1789 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1790       */
1791 <    public boolean isShutdown() {
1792 <        return runStateOf(runControl) >= SHUTDOWN;
1791 >    final boolean isAtLeastTerminating() {
1792 >        return runState >= TERMINATING;
1793      }
1794  
1795      /**
1796 <     * Returns true if pool is not terminating or terminated.
1797 <     * Used internally to suppress execution when terminating.
1796 >     * Returns {@code true} if this pool has been shut down.
1797 >     *
1798 >     * @return {@code true} if this pool has been shut down
1799       */
1800 <    final boolean isProcessingTasks() {
1801 <        return runStateOf(runControl) < TERMINATING;
1800 >    public boolean isShutdown() {
1801 >        return runState >= SHUTDOWN;
1802      }
1803  
1804      /**
# Line 1225 | Line 1814 | public class ForkJoinPool extends Abstra
1814       */
1815      public boolean awaitTermination(long timeout, TimeUnit unit)
1816          throws InterruptedException {
1228        long nanos = unit.toNanos(timeout);
1229        final ReentrantLock lock = this.workerLock;
1230        lock.lock();
1231        try {
1232            for (;;) {
1233                if (isTerminated())
1234                    return true;
1235                if (nanos <= 0)
1236                    return false;
1237                nanos = termination.awaitNanos(nanos);
1238            }
1239        } finally {
1240            lock.unlock();
1241        }
1242    }
1243
1244    // Shutdown and termination support
1245
1246    /**
1247     * Callback from terminating worker. Nulls out the corresponding
1248     * workers slot, and if terminating, tries to terminate; else
1249     * tries to shrink workers array.
1250     *
1251     * @param w the worker
1252     */
1253    final void workerTerminated(ForkJoinWorkerThread w) {
1254        updateStealCount(w);
1255        updateWorkerCount(-1);
1256        final ReentrantLock lock = this.workerLock;
1257        lock.lock();
1258        try {
1259            ForkJoinWorkerThread[] ws = workers;
1260            if (ws != null) {
1261                int idx = w.poolIndex;
1262                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1263                    ws[idx] = null;
1264                if (totalCountOf(workerCounts) == 0) {
1265                    terminate(); // no-op if already terminating
1266                    transitionRunStateTo(TERMINATED);
1267                    termination.signalAll();
1268                }
1269                else if (isProcessingTasks()) {
1270                    tryShrinkWorkerArray();
1271                    tryResumeSpare(true); // allow replacement
1272                }
1273            }
1274        } finally {
1275            lock.unlock();
1276        }
1277        signalIdleWorkers();
1278    }
1279
1280    /**
1281     * Initiates termination.
1282     */
1283    private void terminate() {
1284        if (transitionRunStateTo(TERMINATING)) {
1285            stopAllWorkers();
1286            resumeAllSpares();
1287            signalIdleWorkers();
1288            cancelQueuedSubmissions();
1289            cancelQueuedWorkerTasks();
1290            interruptUnterminatedWorkers();
1291            signalIdleWorkers(); // resignal after interrupt
1292        }
1293    }
1294
1295    /**
1296     * Possibly terminates when on shutdown state.
1297     */
1298    private void terminateOnShutdown() {
1299        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1300            terminate();
1301    }
1302
1303    /**
1304     * Clears out and cancels submissions.
1305     */
1306    private void cancelQueuedSubmissions() {
1307        ForkJoinTask<?> task;
1308        while ((task = pollSubmission()) != null)
1309            task.cancel(false);
1310    }
1311
1312    /**
1313     * Cleans out worker queues.
1314     */
1315    private void cancelQueuedWorkerTasks() {
1316        final ReentrantLock lock = this.workerLock;
1317        lock.lock();
1318        try {
1319            ForkJoinWorkerThread[] ws = workers;
1320            if (ws != null) {
1321                for (int i = 0; i < ws.length; ++i) {
1322                    ForkJoinWorkerThread t = ws[i];
1323                    if (t != null)
1324                        t.cancelTasks();
1325                }
1326            }
1327        } finally {
1328            lock.unlock();
1329        }
1330    }
1331
1332    /**
1333     * Sets each worker's status to terminating. Requires lock to avoid
1334     * conflicts with add/remove.
1335     */
1336    private void stopAllWorkers() {
1337        final ReentrantLock lock = this.workerLock;
1338        lock.lock();
1339        try {
1340            ForkJoinWorkerThread[] ws = workers;
1341            if (ws != null) {
1342                for (int i = 0; i < ws.length; ++i) {
1343                    ForkJoinWorkerThread t = ws[i];
1344                    if (t != null)
1345                        t.shutdownNow();
1346                }
1347            }
1348        } finally {
1349            lock.unlock();
1350        }
1351    }
1352
1353    /**
1354     * Interrupts all unterminated workers.  This is not required for
1355     * sake of internal control, but may help unstick user code during
1356     * shutdown.
1357     */
1358    private void interruptUnterminatedWorkers() {
1359        final ReentrantLock lock = this.workerLock;
1360        lock.lock();
1817          try {
1818 <            ForkJoinWorkerThread[] ws = workers;
1819 <            if (ws != null) {
1364 <                for (int i = 0; i < ws.length; ++i) {
1365 <                    ForkJoinWorkerThread t = ws[i];
1366 <                    if (t != null && !t.isTerminated()) {
1367 <                        try {
1368 <                            t.interrupt();
1369 <                        } catch (SecurityException ignore) {
1370 <                        }
1371 <                    }
1372 <                }
1373 <            }
1374 <        } finally {
1375 <            lock.unlock();
1376 <        }
1377 <    }
1378 <
1379 <
1380 <    /*
1381 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1382 <     * are basic Treiber stack nodes, also used for spare stack.
1383 <     *
1384 <     * The event barrier has an event count and a wait queue (actually
1385 <     * a Treiber stack).  Workers are enabled to look for work when
1386 <     * the eventCount is incremented. If they fail to find work, they
1387 <     * may wait for next count. Upon release, threads help others wake
1388 <     * up.
1389 <     *
1390 <     * Synchronization events occur only in enough contexts to
1391 <     * maintain overall liveness:
1392 <     *
1393 <     *   - Submission of a new task to the pool
1394 <     *   - Resizes or other changes to the workers array
1395 <     *   - pool termination
1396 <     *   - A worker pushing a task on an empty queue
1397 <     *
1398 <     * The case of pushing a task occurs often enough, and is heavy
1399 <     * enough compared to simple stack pushes, to require special
1400 <     * handling: Method signalWork returns without advancing count if
1401 <     * the queue appears to be empty.  This would ordinarily result in
1402 <     * races causing some queued waiters not to be woken up. To avoid
1403 <     * this, the first worker enqueued in method sync (see
1404 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1405 <     * helps signal if any are found. This works well because the
1406 <     * worker has nothing better to do, and so might as well help
1407 <     * alleviate the overhead and contention on the threads actually
1408 <     * doing work.  Also, since event counts increments on task
1409 <     * availability exist to maintain liveness (rather than to force
1410 <     * refreshes etc), it is OK for callers to exit early if
1411 <     * contending with another signaller.
1412 <     */
1413 <    static final class WaitQueueNode {
1414 <        WaitQueueNode next; // only written before enqueued
1415 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1416 <        final long count; // unused for spare stack
1417 <
1418 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1419 <            count = c;
1420 <            thread = w;
1421 <        }
1422 <
1423 <        /**
1424 <         * Wakes up waiter, returning false if known to already
1425 <         */
1426 <        boolean signal() {
1427 <            ForkJoinWorkerThread t = thread;
1428 <            if (t == null)
1429 <                return false;
1430 <            thread = null;
1431 <            LockSupport.unpark(t);
1432 <            return true;
1433 <        }
1434 <
1435 <        /**
1436 <         * Awaits release on sync.
1437 <         */
1438 <        void awaitSyncRelease(ForkJoinPool p) {
1439 <            while (thread != null && !p.syncIsReleasable(this))
1440 <                LockSupport.park(this);
1441 <        }
1442 <
1443 <        /**
1444 <         * Awaits resumption as spare.
1445 <         */
1446 <        void awaitSpareRelease() {
1447 <            while (thread != null) {
1448 <                if (!Thread.interrupted())
1449 <                    LockSupport.park(this);
1450 <            }
1451 <        }
1452 <    }
1453 <
1454 <    /**
1455 <     * Ensures that no thread is waiting for count to advance from the
1456 <     * current value of eventCount read on entry to this method, by
1457 <     * releasing waiting threads if necessary.
1458 <     *
1459 <     * @return the count
1460 <     */
1461 <    final long ensureSync() {
1462 <        long c = eventCount;
1463 <        WaitQueueNode q;
1464 <        while ((q = syncStack) != null && q.count < c) {
1465 <            if (casBarrierStack(q, null)) {
1466 <                do {
1467 <                    q.signal();
1468 <                } while ((q = q.next) != null);
1469 <                break;
1470 <            }
1471 <        }
1472 <        return c;
1473 <    }
1474 <
1475 <    /**
1476 <     * Increments event count and releases waiting threads.
1477 <     */
1478 <    private void signalIdleWorkers() {
1479 <        long c;
1480 <        do {} while (!casEventCount(c = eventCount, c+1));
1481 <        ensureSync();
1482 <    }
1483 <
1484 <    /**
1485 <     * Signals threads waiting to poll a task. Because method sync
1486 <     * rechecks availability, it is OK to only proceed if queue
1487 <     * appears to be non-empty, and OK to skip under contention to
1488 <     * increment count (since some other thread succeeded).
1489 <     */
1490 <    final void signalWork() {
1491 <        long c;
1492 <        WaitQueueNode q;
1493 <        if (syncStack != null &&
1494 <            casEventCount(c = eventCount, c+1) &&
1495 <            (((q = syncStack) != null && q.count <= c) &&
1496 <             (!casBarrierStack(q, q.next) || !q.signal())))
1497 <            ensureSync();
1498 <    }
1499 <
1500 <    /**
1501 <     * Waits until event count advances from last value held by
1502 <     * caller, or if excess threads, caller is resumed as spare, or
1503 <     * caller or pool is terminating. Updates caller's event on exit.
1504 <     *
1505 <     * @param w the calling worker thread
1506 <     */
1507 <    final void sync(ForkJoinWorkerThread w) {
1508 <        updateStealCount(w); // Transfer w's count while it is idle
1509 <
1510 <        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1511 <            long prev = w.lastEventCount;
1512 <            WaitQueueNode node = null;
1513 <            WaitQueueNode h;
1514 <            while (eventCount == prev &&
1515 <                   ((h = syncStack) == null || h.count == prev)) {
1516 <                if (node == null)
1517 <                    node = new WaitQueueNode(prev, w);
1518 <                if (casBarrierStack(node.next = h, node)) {
1519 <                    node.awaitSyncRelease(this);
1520 <                    break;
1521 <                }
1522 <            }
1523 <            long ec = ensureSync();
1524 <            if (ec != prev) {
1525 <                w.lastEventCount = ec;
1526 <                break;
1527 <            }
1528 <        }
1529 <    }
1530 <
1531 <    /**
1532 <     * Returns {@code true} if worker waiting on sync can proceed:
1533 <     *  - on signal (thread == null)
1534 <     *  - on event count advance (winning race to notify vs signaller)
1535 <     *  - on interrupt
1536 <     *  - if the first queued node, we find work available
1537 <     * If node was not signalled and event count not advanced on exit,
1538 <     * then we also help advance event count.
1539 <     *
1540 <     * @return {@code true} if node can be released
1541 <     */
1542 <    final boolean syncIsReleasable(WaitQueueNode node) {
1543 <        long prev = node.count;
1544 <        if (!Thread.interrupted() && node.thread != null &&
1545 <            (node.next != null ||
1546 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1547 <            eventCount == prev)
1818 >            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1819 >        } catch (TimeoutException ex) {
1820              return false;
1549        if (node.thread != null) {
1550            node.thread = null;
1551            long ec = eventCount;
1552            if (prev <= ec) // help signal
1553                casEventCount(ec, ec+1);
1821          }
1822          return true;
1823      }
1824  
1825      /**
1559     * Returns {@code true} if a new sync event occurred since last
1560     * call to sync or this method, if so, updating caller's count.
1561     */
1562    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1563        long lc = w.lastEventCount;
1564        long ec = ensureSync();
1565        if (ec == lc)
1566            return false;
1567        w.lastEventCount = ec;
1568        return true;
1569    }
1570
1571    //  Parallelism maintenance
1572
1573    /**
1574     * Decrements running count; if too low, adds spare.
1575     *
1576     * Conceptually, all we need to do here is add or resume a
1577     * spare thread when one is about to block (and remove or
1578     * suspend it later when unblocked -- see suspendIfSpare).
1579     * However, implementing this idea requires coping with
1580     * several problems: we have imperfect information about the
1581     * states of threads. Some count updates can and usually do
1582     * lag run state changes, despite arrangements to keep them
1583     * accurate (for example, when possible, updating counts
1584     * before signalling or resuming), especially when running on
1585     * dynamic JVMs that don't optimize the infrequent paths that
1586     * update counts. Generating too many threads can make these
1587     * problems become worse, because excess threads are more
1588     * likely to be context-switched with others, slowing them all
1589     * down, especially if there is no work available, so all are
1590     * busy scanning or idling.  Also, excess spare threads can
1591     * only be suspended or removed when they are idle, not
1592     * immediately when they aren't needed. So adding threads will
1593     * raise parallelism level for longer than necessary.  Also,
1594     * FJ applications often encounter highly transient peaks when
1595     * many threads are blocked joining, but for less time than it
1596     * takes to create or resume spares.
1597     *
1598     * @param joinMe if non-null, return early if done
1599     * @param maintainParallelism if true, try to stay within
1600     * target counts, else create only to avoid starvation
1601     * @return true if joinMe known to be done
1602     */
1603    final boolean preJoin(ForkJoinTask<?> joinMe,
1604                          boolean maintainParallelism) {
1605        maintainParallelism &= maintainsParallelism; // overrride
1606        boolean dec = false;  // true when running count decremented
1607        while (spareStack == null || !tryResumeSpare(dec)) {
1608            int counts = workerCounts;
1609            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1610                if (!needSpare(counts, maintainParallelism))
1611                    break;
1612                if (joinMe.status < 0)
1613                    return true;
1614                if (tryAddSpare(counts))
1615                    break;
1616            }
1617        }
1618        return false;
1619    }
1620
1621    /**
1622     * Same idea as preJoin
1623     */
1624    final boolean preBlock(ManagedBlocker blocker,
1625                           boolean maintainParallelism) {
1626        maintainParallelism &= maintainsParallelism;
1627        boolean dec = false;
1628        while (spareStack == null || !tryResumeSpare(dec)) {
1629            int counts = workerCounts;
1630            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1631                if (!needSpare(counts, maintainParallelism))
1632                    break;
1633                if (blocker.isReleasable())
1634                    return true;
1635                if (tryAddSpare(counts))
1636                    break;
1637            }
1638        }
1639        return false;
1640    }
1641
1642    /**
1643     * Returns {@code true} if a spare thread appears to be needed.
1644     * If maintaining parallelism, returns true when the deficit in
1645     * running threads is more than the surplus of total threads, and
1646     * there is apparently some work to do.  This self-limiting rule
1647     * means that the more threads that have already been added, the
1648     * less parallelism we will tolerate before adding another.
1649     *
1650     * @param counts current worker counts
1651     * @param maintainParallelism try to maintain parallelism
1652     */
1653    private boolean needSpare(int counts, boolean maintainParallelism) {
1654        int ps = parallelism;
1655        int rc = runningCountOf(counts);
1656        int tc = totalCountOf(counts);
1657        int runningDeficit = ps - rc;
1658        int totalSurplus = tc - ps;
1659        return (tc < maxPoolSize &&
1660                (rc == 0 || totalSurplus < 0 ||
1661                 (maintainParallelism &&
1662                  runningDeficit > totalSurplus &&
1663                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1664    }
1665
1666    /**
1667     * Adds a spare worker if lock available and no more than the
1668     * expected numbers of threads exist.
1669     *
1670     * @return true if successful
1671     */
1672    private boolean tryAddSpare(int expectedCounts) {
1673        final ReentrantLock lock = this.workerLock;
1674        int expectedRunning = runningCountOf(expectedCounts);
1675        int expectedTotal = totalCountOf(expectedCounts);
1676        boolean success = false;
1677        boolean locked = false;
1678        // confirm counts while locking; CAS after obtaining lock
1679        try {
1680            for (;;) {
1681                int s = workerCounts;
1682                int tc = totalCountOf(s);
1683                int rc = runningCountOf(s);
1684                if (rc > expectedRunning || tc > expectedTotal)
1685                    break;
1686                if (!locked && !(locked = lock.tryLock()))
1687                    break;
1688                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1689                    createAndStartSpare(tc);
1690                    success = true;
1691                    break;
1692                }
1693            }
1694        } finally {
1695            if (locked)
1696                lock.unlock();
1697        }
1698        return success;
1699    }
1700
1701    /**
1702     * Adds the kth spare worker. On entry, pool counts are already
1703     * adjusted to reflect addition.
1704     */
1705    private void createAndStartSpare(int k) {
1706        ForkJoinWorkerThread w = null;
1707        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1708        int len = ws.length;
1709        // Probably, we can place at slot k. If not, find empty slot
1710        if (k < len && ws[k] != null) {
1711            for (k = 0; k < len && ws[k] != null; ++k)
1712                ;
1713        }
1714        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1715            ws[k] = w;
1716            w.start();
1717        }
1718        else
1719            updateWorkerCount(-1); // adjust on failure
1720        signalIdleWorkers();
1721    }
1722
1723    /**
1724     * Suspends calling thread w if there are excess threads.  Called
1725     * only from sync.  Spares are enqueued in a Treiber stack using
1726     * the same WaitQueueNodes as barriers.  They are resumed mainly
1727     * in preJoin, but are also woken on pool events that require all
1728     * threads to check run state.
1729     *
1730     * @param w the caller
1731     */
1732    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1733        WaitQueueNode node = null;
1734        int s;
1735        while (parallelism < runningCountOf(s = workerCounts)) {
1736            if (node == null)
1737                node = new WaitQueueNode(0, w);
1738            if (casWorkerCounts(s, s-1)) { // representation-dependent
1739                // push onto stack
1740                do {} while (!casSpareStack(node.next = spareStack, node));
1741                // block until released by resumeSpare
1742                node.awaitSpareRelease();
1743                return true;
1744            }
1745        }
1746        return false;
1747    }
1748
1749    /**
1750     * Tries to pop and resume a spare thread.
1751     *
1752     * @param updateCount if true, increment running count on success
1753     * @return true if successful
1754     */
1755    private boolean tryResumeSpare(boolean updateCount) {
1756        WaitQueueNode q;
1757        while ((q = spareStack) != null) {
1758            if (casSpareStack(q, q.next)) {
1759                if (updateCount)
1760                    updateRunningCount(1);
1761                q.signal();
1762                return true;
1763            }
1764        }
1765        return false;
1766    }
1767
1768    /**
1769     * Pops and resumes all spare threads. Same idea as ensureSync.
1770     *
1771     * @return true if any spares released
1772     */
1773    private boolean resumeAllSpares() {
1774        WaitQueueNode q;
1775        while ( (q = spareStack) != null) {
1776            if (casSpareStack(q, null)) {
1777                do {
1778                    updateRunningCount(1);
1779                    q.signal();
1780                } while ((q = q.next) != null);
1781                return true;
1782            }
1783        }
1784        return false;
1785    }
1786
1787    /**
1788     * Pops and shuts down excessive spare threads. Call only while
1789     * holding lock. This is not guaranteed to eliminate all excess
1790     * threads, only those suspended as spares, which are the ones
1791     * unlikely to be needed in the future.
1792     */
1793    private void trimSpares() {
1794        int surplus = totalCountOf(workerCounts) - parallelism;
1795        WaitQueueNode q;
1796        while (surplus > 0 && (q = spareStack) != null) {
1797            if (casSpareStack(q, null)) {
1798                do {
1799                    updateRunningCount(1);
1800                    ForkJoinWorkerThread w = q.thread;
1801                    if (w != null && surplus > 0 &&
1802                        runningCountOf(workerCounts) > 0 && w.shutdown())
1803                        --surplus;
1804                    q.signal();
1805                } while ((q = q.next) != null);
1806            }
1807        }
1808    }
1809
1810    /**
1826       * Interface for extending managed parallelism for tasks running
1827       * in {@link ForkJoinPool}s.
1828       *
1829 <     * <p>A {@code ManagedBlocker} provides two methods.
1830 <     * Method {@code isReleasable} must return {@code true} if
1831 <     * blocking is not necessary. Method {@code block} blocks the
1832 <     * current thread if necessary (perhaps internally invoking
1833 <     * {@code isReleasable} before actually blocking).
1829 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1830 >     * {@code isReleasable} must return {@code true} if blocking is
1831 >     * not necessary. Method {@code block} blocks the current thread
1832 >     * if necessary (perhaps internally invoking {@code isReleasable}
1833 >     * before actually blocking). The unusual methods in this API
1834 >     * accommodate synchronizers that may, but don't usually, block
1835 >     * for long periods. Similarly, they allow more efficient internal
1836 >     * handling of cases in which additional workers may be, but
1837 >     * usually are not, needed to ensure sufficient parallelism.
1838 >     * Toward this end, implementations of method {@code isReleasable}
1839 >     * must be amenable to repeated invocation.
1840       *
1841       * <p>For example, here is a ManagedBlocker based on a
1842       * ReentrantLock:
# Line 1833 | Line 1854 | public class ForkJoinPool extends Abstra
1854       *     return hasLock || (hasLock = lock.tryLock());
1855       *   }
1856       * }}</pre>
1857 +     *
1858 +     * <p>Here is a class that possibly blocks waiting for an
1859 +     * item on a given queue:
1860 +     *  <pre> {@code
1861 +     * class QueueTaker<E> implements ManagedBlocker {
1862 +     *   final BlockingQueue<E> queue;
1863 +     *   volatile E item = null;
1864 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1865 +     *   public boolean block() throws InterruptedException {
1866 +     *     if (item == null)
1867 +     *       item = queue.take();
1868 +     *     return true;
1869 +     *   }
1870 +     *   public boolean isReleasable() {
1871 +     *     return item != null || (item = queue.poll()) != null;
1872 +     *   }
1873 +     *   public E getItem() { // call after pool.managedBlock completes
1874 +     *     return item;
1875 +     *   }
1876 +     * }}</pre>
1877       */
1878      public static interface ManagedBlocker {
1879          /**
# Line 1856 | Line 1897 | public class ForkJoinPool extends Abstra
1897       * Blocks in accord with the given blocker.  If the current thread
1898       * is a {@link ForkJoinWorkerThread}, this method possibly
1899       * arranges for a spare thread to be activated if necessary to
1900 <     * ensure parallelism while the current thread is blocked.
1860 <     *
1861 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1862 <     * supports it ({@link #getMaintainsParallelism}), this method
1863 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1864 <     * it activates a thread only if necessary to avoid complete
1865 <     * starvation. This option may be preferable when blockages use
1866 <     * timeouts, or are almost always brief.
1900 >     * ensure sufficient parallelism while the current thread is blocked.
1901       *
1902       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1903       * behaviorally equivalent to
# Line 1877 | Line 1911 | public class ForkJoinPool extends Abstra
1911       * first be expanded to ensure parallelism, and later adjusted.
1912       *
1913       * @param blocker the blocker
1880     * @param maintainParallelism if {@code true} and supported by
1881     * this pool, attempt to maintain the pool's nominal parallelism;
1882     * otherwise activate a thread only if necessary to avoid
1883     * complete starvation.
1914       * @throws InterruptedException if blocker.block did so
1915       */
1916 <    public static void managedBlock(ManagedBlocker blocker,
1887 <                                    boolean maintainParallelism)
1916 >    public static void managedBlock(ManagedBlocker blocker)
1917          throws InterruptedException {
1918          Thread t = Thread.currentThread();
1919 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1920 <                             ((ForkJoinWorkerThread) t).pool : null);
1921 <        if (!blocker.isReleasable()) {
1922 <            try {
1923 <                if (pool == null ||
1924 <                    !pool.preBlock(blocker, maintainParallelism))
1896 <                    awaitBlocker(blocker);
1897 <            } finally {
1898 <                if (pool != null)
1899 <                    pool.updateRunningCount(1);
1900 <            }
1919 >        if (t instanceof ForkJoinWorkerThread) {
1920 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1921 >            w.pool.awaitBlocker(blocker);
1922 >        }
1923 >        else {
1924 >            do {} while (!blocker.isReleasable() && !blocker.block());
1925          }
1902    }
1903
1904    private static void awaitBlocker(ManagedBlocker blocker)
1905        throws InterruptedException {
1906        do {} while (!blocker.isReleasable() && !blocker.block());
1926      }
1927  
1928      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1921 | Line 1940 | public class ForkJoinPool extends Abstra
1940      // Unsafe mechanics
1941  
1942      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1924    private static final long eventCountOffset =
1925        objectFieldOffset("eventCount", ForkJoinPool.class);
1943      private static final long workerCountsOffset =
1944          objectFieldOffset("workerCounts", ForkJoinPool.class);
1945 <    private static final long runControlOffset =
1946 <        objectFieldOffset("runControl", ForkJoinPool.class);
1947 <    private static final long syncStackOffset =
1948 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1949 <    private static final long spareStackOffset =
1950 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1951 <
1952 <    private boolean casEventCount(long cmp, long val) {
1953 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1954 <    }
1938 <    private boolean casWorkerCounts(int cmp, int val) {
1939 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1940 <    }
1941 <    private boolean casRunControl(int cmp, int val) {
1942 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1943 <    }
1944 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1945 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1946 <    }
1947 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1948 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1949 <    }
1945 >    private static final long runStateOffset =
1946 >        objectFieldOffset("runState", ForkJoinPool.class);
1947 >    private static final long eventCountOffset =
1948 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1949 >    private static final long eventWaitersOffset =
1950 >        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1951 >    private static final long stealCountOffset =
1952 >        objectFieldOffset("stealCount", ForkJoinPool.class);
1953 >    private static final long spareWaitersOffset =
1954 >        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1955  
1956      private static long objectFieldOffset(String field, Class<?> klazz) {
1957          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines