ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.90 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.91 by dl, Tue Feb 22 00:39:31 2011 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15   import java.util.concurrent.AbstractExecutorService;
16   import java.util.concurrent.Callable;
17   import java.util.concurrent.ExecutorService;
# Line 22 | Line 23 | import java.util.concurrent.TimeoutExcep
23   import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 + import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 129 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
138 <     * lastly to new submissions. These mechanics do not consider
139 <     * affinities, loads, cache localities, etc, so rarely provide the
140 <     * best possible performance on a given machine, but portably
141 <     * provide good throughput by averaging over these factors.
142 <     * (Further, even if we did try to use such information, we do not
143 <     * usually have a basis for exploiting it. For example, some sets
144 <     * of tasks profit from cache affinities, but others are harmed by
145 <     * cache pollution effects.)
146 <     *
147 <     * Beyond work-stealing support and essential bookkeeping, the
148 <     * main responsibility of this framework is to take actions when
149 <     * one worker is waiting to join a task stolen (or always held by)
150 <     * another.  Because we are multiplexing many tasks on to a pool
151 <     * of workers, we can't just let them block (as in Thread.join).
152 <     * We also cannot just reassign the joiner's run-time stack with
153 <     * another and replace it later, which would be a form of
154 <     * "continuation", that even if possible is not necessarily a good
155 <     * idea. Given that the creation costs of most threads on most
156 <     * systems mainly surrounds setting up runtime stacks, thread
157 <     * creation and switching is usually not much more expensive than
158 <     * stack creation and switching, and is more flexible). Instead we
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250       * combine two tactics:
251       *
252       *   Helping: Arranging for the joiner to execute some task that it
253       *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255       *      links to try to find such a task.
256       *
257       *   Compensating: Unless there are already enough live threads,
258 <     *      method helpMaintainParallelism() may create or
259 <     *      re-activate a spare thread to compensate for blocked
260 <     *      joiners until they unblock.
168 <     *
169 <     * It is impossible to keep exactly the target (parallelism)
170 <     * number of threads running at any given time.  Determining
171 <     * existence of conservatively safe helping targets, the
172 <     * availability of already-created spares, and the apparent need
173 <     * to create new spares are all racy and require heuristic
174 <     * guidance, so we rely on multiple retries of each.  Compensation
175 <     * occurs in slow-motion. It is triggered only upon timeouts of
176 <     * Object.wait used for joins. This reduces poor decisions that
177 <     * would otherwise be made when threads are waiting for others
178 <     * that are stalled because of unrelated activities such as
179 <     * garbage collection.
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261       *
262       * The ManagedBlocker extension API can't use helping so relies
263       * only on compensation in method awaitBlocker.
264       *
265 <     * The main throughput advantages of work-stealing stem from
266 <     * decentralized control -- workers mostly steal tasks from each
267 <     * other. We do not want to negate this by creating bottlenecks
268 <     * implementing other management responsibilities. So we use a
269 <     * collection of techniques that avoid, reduce, or cope well with
270 <     * contention. These entail several instances of bit-packing into
271 <     * CASable fields to maintain only the minimally required
272 <     * atomicity. To enable such packing, we restrict maximum
273 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
274 <     * unbalanced increments and decrements) to fit into a 16 bit
275 <     * field, which is far in excess of normal operating range.  Even
276 <     * though updates to some of these bookkeeping fields do sometimes
277 <     * contend with each other, they don't normally cache-contend with
278 <     * updates to others enough to warrant memory padding or
279 <     * isolation. So they are all held as fields of ForkJoinPool
280 <     * objects.  The main capabilities are as follows:
281 <     *
282 <     * 1. Creating and removing workers. Workers are recorded in the
283 <     * "workers" array. This is an array as opposed to some other data
284 <     * structure to support index-based random steals by workers.
285 <     * Updates to the array recording new workers and unrecording
286 <     * terminated ones are protected from each other by a lock
287 <     * (workerLock) but the array is otherwise concurrently readable,
288 <     * and accessed directly by workers. To simplify index-based
289 <     * operations, the array size is always a power of two, and all
290 <     * readers must tolerate null slots. Currently, all worker thread
291 <     * creation is on-demand, triggered by task submissions,
292 <     * replacement of terminated workers, and/or compensation for
293 <     * blocked workers. However, all other support code is set up to
294 <     * work with other policies.
214 <     *
215 <     * To ensure that we do not hold on to worker references that
216 <     * would prevent GC, ALL accesses to workers are via indices into
217 <     * the workers array (which is one source of some of the unusual
218 <     * code constructions here). In essence, the workers array serves
219 <     * as a WeakReference mechanism. Thus for example the event queue
220 <     * stores worker indices, not worker references. Access to the
221 <     * workers in associated methods (for example releaseEventWaiters)
222 <     * must both index-check and null-check the IDs. All such accesses
223 <     * ignore bad IDs by returning out early from what they are doing,
224 <     * since this can only be associated with shutdown, in which case
225 <     * it is OK to give up. On termination, we just clobber these
226 <     * data structures without trying to use them.
227 <     *
228 <     * 2. Bookkeeping for dynamically adding and removing workers. We
229 <     * aim to approximately maintain the given level of parallelism.
230 <     * When some workers are known to be blocked (on joins or via
231 <     * ManagedBlocker), we may create or resume others to take their
232 <     * place until they unblock (see below). Implementing this
233 <     * requires counts of the number of "running" threads (i.e., those
234 <     * that are neither blocked nor artificially suspended) as well as
235 <     * the total number.  These two values are packed into one field,
236 <     * "workerCounts" because we need accurate snapshots when deciding
237 <     * to create, resume or suspend.  Note however that the
238 <     * correspondence of these counts to reality is not guaranteed. In
239 <     * particular updates for unblocked threads may lag until they
240 <     * actually wake up.
241 <     *
242 <     * 3. Maintaining global run state. The run state of the pool
243 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 <     * those in other Executor implementations, as well as a count of
245 <     * "active" workers -- those that are, or soon will be, or
246 <     * recently were executing tasks. The runLevel and active count
247 <     * are packed together in order to correctly trigger shutdown and
248 <     * termination. Without care, active counts can be subject to very
249 <     * high contention.  We substantially reduce this contention by
250 <     * relaxing update rules.  A worker must claim active status
251 <     * prospectively, by activating if it sees that a submitted or
252 <     * stealable task exists (it may find after activating that the
253 <     * task no longer exists). It stays active while processing this
254 <     * task (if it exists) and any other local subtasks it produces,
255 <     * until it cannot find any other tasks. It then tries
256 <     * inactivating (see method preStep), but upon update contention
257 <     * instead scans for more tasks, later retrying inactivation if it
258 <     * doesn't find any.
259 <     *
260 <     * 4. Managing idle workers waiting for tasks. We cannot let
261 <     * workers spin indefinitely scanning for tasks when none are
262 <     * available. On the other hand, we must quickly prod them into
263 <     * action when new tasks are submitted or generated.  We
264 <     * park/unpark these idle workers using an event-count scheme.
265 <     * Field eventCount is incremented upon events that may enable
266 <     * workers that previously could not find a task to now find one:
267 <     * Submission of a new task to the pool, or another worker pushing
268 <     * a task onto a previously empty queue.  (We also use this
269 <     * mechanism for configuration and termination actions that
270 <     * require wakeups of idle workers).  Each worker maintains its
271 <     * last known event count, and blocks when a scan for work did not
272 <     * find a task AND its lastEventCount matches the current
273 <     * eventCount. Waiting idle workers are recorded in a variant of
274 <     * Treiber stack headed by field eventWaiters which, when nonzero,
275 <     * encodes the thread index and count awaited for by the worker
276 <     * thread most recently calling eventSync. This thread in turn has
277 <     * a record (field nextEventWaiter) for the next waiting worker.
278 <     * In addition to allowing simpler decisions about need for
279 <     * wakeup, the event count bits in eventWaiters serve the role of
280 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 <     * released threads also try to release at most two others.  The
282 <     * net effect is a tree-like diffusion of signals, where released
283 <     * threads (and possibly others) help with unparks.  To further
284 <     * reduce contention effects a bit, failed CASes to increment
285 <     * field eventCount are tolerated without retries in signalWork.
286 <     * Conceptually they are merged into the same event, which is OK
287 <     * when their only purpose is to enable workers to scan for work.
288 <     *
289 <     * 5. Managing suspension of extra workers. When a worker notices
290 <     * (usually upon timeout of a wait()) that there are too few
291 <     * running threads, we may create a new thread to maintain
292 <     * parallelism level, or at least avoid starvation. Usually, extra
293 <     * threads are needed for only very short periods, yet join
294 <     * dependencies are such that we sometimes need them in
295 <     * bursts. Rather than create new threads each time this happens,
296 <     * we suspend no-longer-needed extra ones as "spares". For most
297 <     * purposes, we don't distinguish "extra" spare threads from
298 <     * normal "core" threads: On each call to preStep (the only point
299 <     * at which we can do this) a worker checks to see if there are
300 <     * now too many running workers, and if so, suspends itself.
301 <     * Method helpMaintainParallelism looks for suspended threads to
302 <     * resume before considering creating a new replacement. The
303 <     * spares themselves are encoded on another variant of a Treiber
304 <     * Stack, headed at field "spareWaiters".  Note that the use of
305 <     * spares is intrinsically racy.  One thread may become a spare at
306 <     * about the same time as another is needlessly being created. We
307 <     * counteract this and related slop in part by requiring resumed
308 <     * spares to immediately recheck (in preStep) to see whether they
309 <     * should re-suspend.
310 <     *
311 <     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 <     * shed unused workers: The oldest (first) event queue waiter uses
313 <     * a timed rather than hard wait. When this wait times out without
314 <     * a normal wakeup, it tries to shutdown any one (for convenience
315 <     * the newest) other spare or event waiter via
316 <     * tryShutdownUnusedWorker. This eventually reduces the number of
317 <     * worker threads to a minimum of one after a long enough period
318 <     * without use.
319 <     *
320 <     * 7. Deciding when to create new workers. The main dynamic
321 <     * control in this class is deciding when to create extra threads
322 <     * in method helpMaintainParallelism. We would like to keep
323 <     * exactly #parallelism threads running, which is an impossible
324 <     * task. We always need to create one when the number of running
325 <     * threads would become zero and all workers are busy. Beyond
326 <     * this, we must rely on heuristics that work well in the
327 <     * presence of transient phenomena such as GC stalls, dynamic
328 <     * compilation, and wake-up lags. These transients are extremely
329 <     * common -- we are normally trying to fully saturate the CPUs on
330 <     * a machine, so almost any activity other than running tasks
331 <     * impedes accuracy. Our main defense is to allow parallelism to
332 <     * lapse for a while during joins, and use a timeout to see if,
333 <     * after the resulting settling, there is still a need for
334 <     * additional workers.  This also better copes with the fact that
335 <     * some of the methods in this class tend to never become compiled
336 <     * (but are interpreted), so some components of the entire set of
337 <     * controls might execute 100 times faster than others. And
338 <     * similarly for cases where the apparent lack of work is just due
339 <     * to GC stalls and other transient system activity.
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295       *
296 <     * Beware that there is a lot of representation-level coupling
296 >     * Style notes: There is a lot of representation-level coupling
297       * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 <     * ForkJoinTask.  For example, direct access to "workers" array by
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301       * workers, and direct access to ForkJoinTask.status by both
302       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303       * trying to reduce this, since any associated future changes in
304       * representations will need to be accompanied by algorithmic
305 <     * changes anyway.
306 <     *
307 <     * Style notes: There are lots of inline assignments (of form
308 <     * "while ((local = field) != 0)") which are usually the simplest
309 <     * way to ensure the required read orderings (which are sometimes
310 <     * critical). Also several occurrences of the unusual "do {}
311 <     * while (!cas...)" which is the simplest way to force an update of
312 <     * a CAS'ed variable. There are also other coding oddities that
313 <     * help some methods perform reasonably even when interpreted (not
314 <     * compiled), at the expense of some messy constructions that
315 <     * reduce byte code counts.
316 <     *
317 <     * The order of declarations in this file is: (1) statics (2)
318 <     * fields (along with constants used when unpacking some of them)
319 <     * (3) internal control methods (4) callbacks and other support
320 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
321 <     * methods (plus a few little helpers).
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
333      /**
# Line 396 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
400 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
407 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 419 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
423 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * The time to block in a join (see awaitJoin) before checking if
390 <     * a new worker should be (re)started to maintain parallelism
391 <     * level. The value should be short enough to maintain global
392 <     * responsiveness and progress but long enough to avoid
393 <     * counterproductive firings during GC stalls or unrelated system
431 <     * activity, and to not bog down systems with continual re-firings
432 <     * on GCs or legitimately long waits.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * The wakeup interval (in nanoseconds) for the oldest worker
399 <     * waiting for an event to invoke tryShutdownUnusedWorker to
400 <     * shrink the number of workers.  The exact value does not matter
401 <     * too much. It must be short enough to release resources during
402 <     * sustained periods of idleness, but not so short that threads
403 <     * are continually re-created.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private static final long SHRINK_RATE_NANOS =
445 <        30L * 1000L * 1000L * 1000L; // 2 per minute
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Absolute bound for parallelism level. Twice this number plus
411 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
412 <     * word-packing for some counts and indices.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private static final int MAX_WORKERS   = 0x7fff;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415  
416      /**
417 <     * Array holding all worker threads in the pool.  Array size must
418 <     * be a power of two.  Updates and replacements are protected by
419 <     * workerLock, but the array is always kept in a consistent enough
420 <     * state to be randomly accessed without locking by workers
459 <     * performing work-stealing, as well as other traversal-based
460 <     * methods in this class. All readers must tolerate that some
461 <     * array slots may be null.
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421       */
422 <    volatile ForkJoinWorkerThread[] workers;
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * Queue for external submissions.
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
427 >    private ForkJoinTask<?>[] submissionQueue;
428  
429      /**
430 <     * Lock protecting updates to workers array.
430 >     * Lock protecting submissions array for addSubmission
431       */
432 <    private final ReentrantLock workerLock;
432 >    private final ReentrantLock submissionLock;
433  
434      /**
435 <     * Latch released upon termination.
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437       */
438 <    private final Phaser termination;
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 483 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * Sum of per-thread steal counts, updated only when threads are
447 <     * idle or terminating.
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    private volatile long stealCount;
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Encoded record of top of Treiber stack of threads waiting for
493 <     * events. The top 32 bits contain the count being waited for. The
494 <     * bottom 16 bits contains one plus the pool index of waiting
495 <     * worker thread. (Bits 16-31 are unused.)
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private volatile long eventWaiters;
498 <
499 <    private static final int EVENT_COUNT_SHIFT = 32;
500 <    private static final int WAITER_ID_MASK    = (1 << 16) - 1;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * A counter for events that may wake up worker threads:
458 <     *   - Submission of a new task to the pool
505 <     *   - A worker pushing a task on an empty queue
506 <     *   - termination
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private volatile int eventCount;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Encoded record of top of Treiber stack of spare threads waiting
464 <     * for resumption. The top 16 bits contain an arbitrary count to
465 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
466 <     * index of waiting worker thread.
467 <     */
468 <    private volatile int spareWaiters;
469 <
470 <    private static final int SPARE_COUNT_SHIFT = 16;
471 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.  Note: AC_SHIFT is
482 >     * redundantly declared in ForkJoinWorkerThread in order to
483 >     * integrate a surplus-threads check.
484 >     */
485 >    volatile long ctl;
486 >
487 >    // bit positions/shifts for fields
488 >    private static final int  AC_SHIFT   = 48;
489 >    private static final int  TC_SHIFT   = 32;
490 >    private static final int  ST_SHIFT   = 31;
491 >    private static final int  EC_SHIFT   = 16;
492 >
493 >    // bounds
494 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
495 >    private static final int  SMASK      = 0xffff;  // mask short bits
496 >    private static final int  SHORT_SIGN = 1 << 15;
497 >    private static final int  INT_SIGN   = 1 << 31;
498 >
499 >    // masks
500 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
501 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
502 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
503 >
504 >    // units for incrementing and decrementing
505 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
506 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
507 >
508 >    // masks and units for dealing with u = (int)(ctl >>> 32)
509 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
510 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
511 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
512 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
513 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
514 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
515 >
516 >    // masks and units for dealing with e = (int)ctl
517 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
518 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
519  
520      /**
521 <     * Lifecycle control. The low word contains the number of workers
523 <     * that are (probably) executing tasks. This value is atomically
524 <     * incremented before a worker gets a task to run, and decremented
525 <     * when a worker has no tasks and cannot find any.  Bits 16-18
526 <     * contain runLevel value. When all are zero, the pool is
527 <     * running. Level transitions are monotonic (running -> shutdown
528 <     * -> terminating -> terminated) so each transition adds a bit.
529 <     * These are bundled together to ensure consistent read for
530 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 <     * and active threads is zero).
532 <     *
533 <     * Notes: Most direct CASes are dependent on these bitfield
534 <     * positions.  Also, this field is non-private to enable direct
535 <     * performance-sensitive CASes in ForkJoinWorkerThread.
521 >     * The target parallelism level.
522       */
523 <    volatile int runState;
538 <
539 <    // Note: The order among run level values matters.
540 <    private static final int RUNLEVEL_SHIFT     = 16;
541 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
523 >    final int parallelism;
524  
525      /**
526 <     * Holds number of total (i.e., created and not yet terminated)
527 <     * and running (i.e., not blocked on joins or other managed sync)
549 <     * threads, packed together to ensure consistent snapshot when
550 <     * making decisions about creating and suspending spare
551 <     * threads. Updated only by CAS. Note that adding a new worker
552 <     * requires incrementing both counts, since workers start off in
553 <     * running state.
526 >     * Index (mod submission queue length) of next element to take
527 >     * from submission queue.
528       */
529 <    private volatile int workerCounts;
529 >    volatile int queueBase;
530  
531 <    private static final int TOTAL_COUNT_SHIFT  = 16;
532 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
533 <    private static final int ONE_RUNNING        = 1;
534 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
531 >    /**
532 >     * Index (mod submission queue length) of next element to add
533 >     * in submission queue.
534 >     */
535 >    int queueTop;
536  
537      /**
538 <     * The target parallelism level.
564 <     * Accessed directly by ForkJoinWorkerThreads.
538 >     * True when shutdown() has been called.
539       */
540 <    final int parallelism;
540 >    volatile boolean shutdown;
541  
542      /**
543       * True if use local fifo, not default lifo, for local polling
# Line 572 | Line 546 | public class ForkJoinPool extends Abstra
546      final boolean locallyFifo;
547  
548      /**
549 <     * The uncaught exception handler used when any worker abruptly
550 <     * terminates.
549 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 >     * When non-zero, suppresses automatic shutdown when active
551 >     * counts become zero.
552       */
553 <    private final Thread.UncaughtExceptionHandler ueh;
553 >    volatile int quiescerCount;
554  
555      /**
556 <     * Pool number, just for assigning useful names to worker threads
556 >     * The number of threads blocked in join.
557       */
558 <    private final int poolNumber;
584 <
585 <    // Utilities for CASing fields. Note that most of these
586 <    // are usually manually inlined by callers
558 >    volatile int blockedCount;
559  
560      /**
561 <     * Increments running count part of workerCounts.
561 >     * Counter for worker Thread names (unrelated to their poolIndex)
562       */
563 <    final void incrementRunningCount() {
592 <        int c;
593 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 <                                               c = workerCounts,
595 <                                               c + ONE_RUNNING));
596 <    }
563 >    private volatile int nextWorkerNumber;
564  
565      /**
566 <     * Tries to increment running count part of workerCounts.
566 >     * The index for the next created worker. Accessed under scanGuard.
567       */
568 <    final boolean tryIncrementRunningCount() {
602 <        int c;
603 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604 <                                        c = workerCounts,
605 <                                        c + ONE_RUNNING);
606 <    }
568 >    private int nextWorkerIndex;
569  
570      /**
571 <     * Tries to decrement running count unless already zero.
571 >     * SeqLock and index masking for for updates to workers array.
572 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 >     * SG_UNIT. Staleness of read-only operations can be checked by
574 >     * comparing scanGuard to value before the reads. The low 16 bits
575 >     * (i.e, anding with SMASK) hold (the smallest power of two
576 >     * covering all worker indices, minus one, and is used to avoid
577 >     * dealing with large numbers of null slots when the workers array
578 >     * is overallocated.
579       */
580 <    final boolean tryDecrementRunningCount() {
612 <        int wc = workerCounts;
613 <        if ((wc & RUNNING_COUNT_MASK) == 0)
614 <            return false;
615 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616 <                                        wc, wc - ONE_RUNNING);
617 <    }
580 >    volatile int scanGuard;
581  
582 <    /**
620 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
621 <     * (rarely) necessary when other count updates lag.
622 <     *
623 <     * @param dr -- either zero or ONE_RUNNING
624 <     * @param dt -- either zero or ONE_TOTAL
625 <     */
626 <    private void decrementWorkerCounts(int dr, int dt) {
627 <        for (;;) {
628 <            int wc = workerCounts;
629 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
630 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631 <                if ((runState & TERMINATED) != 0)
632 <                    return; // lagging termination on a backout
633 <                Thread.yield();
634 <            }
635 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636 <                                         wc, wc - (dr + dt)))
637 <                return;
638 <        }
639 <    }
582 >    private static final int SG_UNIT = 1 << 16;
583  
584      /**
585 <     * Tries decrementing active count; fails on contention.
586 <     * Called when workers cannot find tasks to run.
585 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
586 >     * task when the pool is quiescent to instead try to shrink the
587 >     * number of workers.  The exact value does not matter too
588 >     * much. It must be short enough to release resources during
589 >     * sustained periods of idleness, but not so short that threads
590 >     * are continually re-created.
591       */
592 <    final boolean tryDecrementActiveCount() {
593 <        int c;
647 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 <                                        c = runState, c - 1);
649 <    }
592 >    private static final long SHRINK_RATE =
593 >        4L * 1000L * 1000L * 1000L; // 4 seconds
594  
595      /**
596 <     * Advances to at least the given level. Returns true if not
597 <     * already in at least the given level.
596 >     * Top-level loop for worker threads: On each step: if the
597 >     * previous step swept through all queues and found no tasks, or
598 >     * there are excess threads, then possibly blocks. Otherwise,
599 >     * scans for and, if found, executes a task. Returns when pool
600 >     * and/or worker terminate.
601 >     *
602 >     * @param w the worker
603       */
604 <    private boolean advanceRunLevel(int level) {
605 <        for (;;) {
606 <            int s = runState;
607 <            if ((s & level) != 0)
608 <                return false;
609 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
610 <                return true;
604 >    final void work(ForkJoinWorkerThread w) {
605 >        boolean swept = false;                // true on empty scans
606 >        long c;
607 >        while (!w.terminate && (int)(c = ctl) >= 0) {
608 >            int a;                            // active count
609 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 >                swept = scan(w, a);
611 >            else if (tryAwaitWork(w, c))
612 >                swept = false;
613          }
614      }
615  
616 <    // workers array maintenance
616 >    // Signalling
617  
618      /**
619 <     * Records and returns a workers array index for new worker.
619 >     * Wakes up or creates a worker.
620       */
621 <    private int recordWorker(ForkJoinWorkerThread w) {
622 <        // Try using slot totalCount-1. If not available, scan and/or resize
623 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
624 <        final ReentrantLock lock = this.workerLock;
625 <        lock.lock();
626 <        try {
627 <            ForkJoinWorkerThread[] ws = workers;
628 <            int n = ws.length;
629 <            if (k < 0 || k >= n || ws[k] != null) {
630 <                for (k = 0; k < n && ws[k] != null; ++k)
631 <                    ;
632 <                if (k == n)
633 <                    ws = workers = Arrays.copyOf(ws, n << 1);
634 <            }
635 <            ws[k] = w;
636 <            int c = eventCount; // advance event count to ensure visibility
637 <            UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
638 <        } finally {
639 <            lock.unlock();
621 >    final void signalWork() {
622 >        /*
623 >         * The while condition is true if: (there is are too few total
624 >         * workers OR there is at least one waiter) AND (there are too
625 >         * few active workers OR the pool is terminating).  The value
626 >         * of e distinguishes the remaining cases: zero (no waiters)
627 >         * for create, negative if terminating (in which case do
628 >         * nothing), else release a waiter. The secondary checks for
629 >         * release (non-null array etc) can fail if the pool begins
630 >         * terminating after the test, and don't impose any added cost
631 >         * because JVMs must perform null and bounds checks anyway.
632 >         */
633 >        long c; int e, u;
634 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636 >            if (e > 0) {                         // release a waiting worker
637 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 >                if ((ws = workers) == null ||
639 >                    (i = ~e & SMASK) >= ws.length ||
640 >                    (w = ws[i]) == null)
641 >                    break;
642 >                long nc = (((long)(w.nextWait & E_MASK)) |
643 >                           ((long)(u + UAC_UNIT) << 32));
644 >                if (w.eventCount == e &&
645 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
647 >                    if (w.parked)
648 >                        UNSAFE.unpark(w);
649 >                    break;
650 >                }
651 >            }
652 >            else if (UNSAFE.compareAndSwapLong
653 >                     (this, ctlOffset, c,
654 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 >                addWorker();
657 >                break;
658 >            }
659          }
690        return k;
660      }
661  
662      /**
663 <     * Nulls out record of worker in workers array.
663 >     * Variant of signalWork to help release waiters on rescans.
664 >     * Tries once to release a waiter if active count < 0.
665 >     *
666 >     * @return false if failed due to contention, else true
667       */
668 <    private void forgetWorker(ForkJoinWorkerThread w) {
669 <        int idx = w.poolIndex;
670 <        // Locking helps method recordWorker avoid unnecessary expansion
671 <        final ReentrantLock lock = this.workerLock;
672 <        lock.lock();
673 <        try {
674 <            ForkJoinWorkerThread[] ws = workers;
675 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
676 <                ws[idx] = null;
677 <        } finally {
678 <            lock.unlock();
668 >    private boolean tryReleaseWaiter() {
669 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670 >        if ((e = (int)(c = ctl)) > 0 &&
671 >            (int)(c >> AC_SHIFT) < 0 &&
672 >            (ws = workers) != null &&
673 >            (i = ~e & SMASK) < ws.length &&
674 >            (w = ws[i]) != null) {
675 >            long nc = ((long)(w.nextWait & E_MASK) |
676 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 >            if (w.eventCount != e ||
678 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 >                return false;
680 >            w.eventCount = (e + EC_UNIT) & E_MASK;
681 >            if (w.parked)
682 >                UNSAFE.unpark(w);
683          }
684 +        return true;
685      }
686  
687 +    // Scanning for tasks
688 +
689      /**
690 <     * Final callback from terminating worker.  Removes record of
691 <     * worker from array, and adjusts counts. If pool is shutting
692 <     * down, tries to complete termination.
690 >     * Scans for and, if found, executes one task. Scans start at a
691 >     * random index of workers array, and randomly select the first
692 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693 >     * circular sweeps, which is necessary to check quiescence. and
694 >     * taking a submission only if no stealable tasks were found.  The
695 >     * steal code inside the loop is a specialized form of
696 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697 >     * helpJoinTask and signal propagation. The code for submission
698 >     * queues is almost identical. On each steal, the worker completes
699 >     * not only the task, but also all local tasks that this task may
700 >     * have generated. On detecting staleness or contention when
701 >     * trying to take a task, this method returns without finishing
702 >     * sweep, which allows global state rechecks before retry.
703       *
704       * @param w the worker
705 +     * @param a the number of active workers
706 +     * @return true if swept all queues without finding a task
707       */
708 <    final void workerTerminated(ForkJoinWorkerThread w) {
709 <        forgetWorker(w);
710 <        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 <        while (w.stealCount != 0) // collect final count
721 <            tryAccumulateStealCount(w);
722 <        tryTerminate(false);
723 <    }
724 <
725 <    // Waiting for and signalling events
726 <
727 <    /**
728 <     * Releases workers blocked on a count not equal to current count.
729 <     * Normally called after precheck that eventWaiters isn't zero to
730 <     * avoid wasted array checks. Gives up upon a change in count or
731 <     * upon releasing four workers, letting others take over.
732 <     */
733 <    private void releaseEventWaiters() {
708 >    private boolean scan(ForkJoinWorkerThread w, int a) {
709 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
710 >        int m = parallelism == 1 - a? 0 : g & SMASK;
711          ForkJoinWorkerThread[] ws = workers;
712 <        int n = ws.length;
713 <        long h = eventWaiters;
714 <        int ec = eventCount;
715 <        int releases = 4;
716 <        ForkJoinWorkerThread w; int id;
717 <        while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
718 <               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
719 <               id < n && (w = ws[id]) != null) {
720 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
721 <                                          h,  w.nextWaiter)) {
722 <                LockSupport.unpark(w);
723 <                if (--releases == 0)
724 <                    break;
712 >        if (ws == null || ws.length <= m)         // staleness check
713 >            return false;
714 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716 >            ForkJoinWorkerThread v = ws[k & m];
717 >            if (v != null && (b = v.queueBase) != v.queueTop &&
718 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719 >                long u = (i << ASHIFT) + ABASE;
720 >                if ((t = q[i]) != null && v.queueBase == b &&
721 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 >                    int d = (v.queueBase = b + 1) - v.queueTop;
723 >                    v.stealHint = w.poolIndex;
724 >                    if (d != 0)
725 >                        signalWork();             // propagate if nonempty
726 >                    w.execTask(t);
727 >                }
728 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729 >                return false;                     // store next seed
730              }
731 <            if (eventCount != ec)
732 <                break;
733 <            h = eventWaiters;
731 >            else if (j < 0) {                     // xorshift
732 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733 >            }
734 >            else
735 >                ++k;
736 >        }
737 >        if (scanGuard != g)                       // staleness check
738 >            return false;
739 >        else {                                    // try to take submission
740 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 >            if ((b = queueBase) != queueTop &&
742 >                (q = submissionQueue) != null &&
743 >                (i = (q.length - 1) & b) >= 0) {
744 >                long u = (i << ASHIFT) + ABASE;
745 >                if ((t = q[i]) != null && queueBase == b &&
746 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 >                    queueBase = b + 1;
748 >                    w.execTask(t);
749 >                }
750 >                return false;
751 >            }
752 >            return true;                         // all queues empty
753          }
754      }
755  
756      /**
757 <     * Tries to advance eventCount and releases waiters. Called only
758 <     * from workers.
757 >     * Tries to enqueue worker in wait queue and await change in
758 >     * worker's eventCount.  Before blocking, rescans queues to avoid
759 >     * missed signals.  If the pool is quiescent, possibly terminates
760 >     * worker upon exit.
761 >     *
762 >     * @param w the calling worker
763 >     * @param c the ctl value on entry
764 >     * @return true if waited or another thread was released upon enq
765       */
766 <    final void signalWork() {
767 <        int c; // try to increment event count -- CAS failure OK
768 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
769 <        if (eventWaiters != 0L)
770 <            releaseEventWaiters();
771 <    }
772 <
773 <    /**
774 <     * Adds the given worker to event queue and blocks until
775 <     * terminating or event count advances from the given value
776 <     *
777 <     * @param w the calling worker thread
778 <     * @param ec the count
779 <     */
780 <    private void eventSync(ForkJoinWorkerThread w, int ec) {
781 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
782 <        long h;
783 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
784 <               (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
785 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
786 <               eventCount == ec) {
787 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
788 <                                          w.nextWaiter = h, nh)) {
789 <                awaitEvent(w, ec);
790 <                break;
766 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767 >        int v = w.eventCount;
768 >        w.nextWait = (int)c;                       // w's successor record
769 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771 >            long d = ctl; // return true if lost to a deq, to force rescan
772 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773 >        }
774 >        boolean rescanned = false;
775 >        for (int sc;;) {
776 >            if (w.eventCount != v)
777 >                return true;
778 >            if ((sc = w.stealCount) != 0) {
779 >                long s = stealCount;               // accumulate stealCount
780 >                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
781 >                    w.stealCount = 0;
782 >            }
783 >            else if (!rescanned) {
784 >                int g = scanGuard, m = g & SMASK;
785 >                ForkJoinWorkerThread[] ws = workers;
786 >                if (ws != null && m < ws.length) {
787 >                    rescanned = true;
788 >                    for (int i = 0; i <= m; ++i) {
789 >                        ForkJoinWorkerThread u = ws[i];
790 >                        if (u != null) {
791 >                            if (u.queueBase != u.queueTop &&
792 >                                !tryReleaseWaiter())
793 >                                rescanned = false; // contended
794 >                            if (w.eventCount != v)
795 >                                return true;
796 >                        }
797 >                    }
798 >                }
799 >                if (scanGuard != g ||              // stale
800 >                    (queueBase != queueTop && !tryReleaseWaiter()))
801 >                    rescanned = false;
802 >                if (!rescanned)
803 >                    Thread.yield();                // reduce contention
804 >                else
805 >                    Thread.interrupted();          // clear before park
806 >            }
807 >            else if (parallelism + (int)(ctl >> AC_SHIFT) == 0 &&
808 >                     blockedCount == 0 && quiescerCount == 0)
809 >                idleAwaitWork(w, v);               // quiescent -- maybe shrink
810 >            else {
811 >                w.parked = true;                   // must recheck
812 >                if (w.eventCount != v) {
813 >                    w.parked = false;
814 >                    return true;
815 >                }
816 >                LockSupport.park(this);
817 >                rescanned = w.parked = false;
818              }
819          }
820      }
821  
822      /**
823 <     * Blocks the given worker (that has already been entered as an
824 <     * event waiter) until terminating or event count advances from
825 <     * the given value. The oldest (first) waiter uses a timed wait to
826 <     * occasionally one-by-one shrink the number of workers (to a
827 <     * minimum of one) if the pool has not been used for extended
828 <     * periods.
829 <     *
830 <     * @param w the calling worker thread
831 <     * @param ec the count
832 <     */
833 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
834 <        while (eventCount == ec) {
835 <            if (tryAccumulateStealCount(w)) { // transfer while idle
836 <                boolean untimed = (w.nextWaiter != 0L ||
837 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
838 <                long startTime = untimed ? 0 : System.nanoTime();
839 <                Thread.interrupted();         // clear/ignore interrupt
840 <                if (w.isTerminating() || eventCount != ec)
841 <                    break;                    // recheck after clear
842 <                if (untimed)
843 <                    LockSupport.park(w);
844 <                else {
845 <                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
846 <                    if (eventCount != ec || w.isTerminating())
847 <                        break;
848 <                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
849 <                        tryShutdownUnusedWorker(ec);
823 >     * If pool is quiescent, checks for termination, and waits for
824 >     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
825 >     * has not changed, terminates the worker. Upon its termination
826 >     * (see deregisterWorker), it may wake up another worker to
827 >     * possibly repeat this process.
828 >     *
829 >     * @param w the calling worker
830 >     * @param v the eventCount w must wait until changed
831 >     */
832 >    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
833 >        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
834 >        if (shutdown)
835 >            tryTerminate(false);
836 >        long c = ctl;
837 >        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
838 >                   (long)(w.nextWait & E_MASK)); // ctl value to release w
839 >        if (w.eventCount == v &&
840 >            parallelism + (int)(c >> AC_SHIFT) == 0 &&
841 >            blockedCount == 0 && quiescerCount == 0) {
842 >            long startTime = System.nanoTime();
843 >            Thread.interrupted();
844 >            if (w.eventCount == v) {
845 >                w.parked = true;
846 >                if (w.eventCount == v)
847 >                    LockSupport.parkNanos(this, SHRINK_RATE);
848 >                w.parked = false;
849 >                if (w.eventCount == v && ctl == c &&
850 >                    System.nanoTime() - startTime >= SHRINK_RATE &&
851 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
852 >                    w.terminate = true;
853 >                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
854                  }
855              }
856          }
857      }
858  
859 <    // Maintaining parallelism
859 >    // Submissions
860  
861      /**
862 <     * Pushes worker onto the spare stack.
862 >     * Enqueues the given task in the submissionQueue.  Same idea as
863 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
864 >     *
865 >     * @param t the task
866       */
867 <    final void pushSpare(ForkJoinWorkerThread w) {
868 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
869 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
870 <                                               w.nextSpare = spareWaiters,ns));
867 >    private void addSubmission(ForkJoinTask<?> t) {
868 >        final ReentrantLock lock = this.submissionLock;
869 >        lock.lock();
870 >        try {
871 >            ForkJoinTask<?>[] q; int s, m;
872 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
873 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
874 >                UNSAFE.putOrderedObject(q, u, t);
875 >                queueTop = s + 1;
876 >                if (s - queueBase == m)
877 >                    growSubmissionQueue();
878 >            }
879 >        } finally {
880 >            lock.unlock();
881 >        }
882 >        signalWork();
883      }
884  
885 +    //  (pollSubmission is defined below with exported methods)
886 +
887      /**
888 <     * Tries (once) to resume a spare if the number of running
889 <     * threads is less than target.
888 >     * Creates or doubles submissionQueue array.
889 >     * Basically identical to ForkJoinWorkerThread version
890       */
891 <    private void tryResumeSpare() {
892 <        int sw, id;
893 <        ForkJoinWorkerThread[] ws = workers;
894 <        int n = ws.length;
895 <        ForkJoinWorkerThread w;
896 <        if ((sw = spareWaiters) != 0 &&
897 <            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
898 <            id < n && (w = ws[id]) != null &&
899 <            (runState >= TERMINATING ||
900 <             (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
901 <            spareWaiters == sw &&
902 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
903 <                                     sw, w.nextSpare)) {
904 <            int c; // increment running count before resume
905 <            do {} while (!UNSAFE.compareAndSwapInt
906 <                         (this, workerCountsOffset,
907 <                          c = workerCounts, c + ONE_RUNNING));
908 <            if (w.tryUnsuspend())
909 <                LockSupport.unpark(w);
855 <            else   // back out if w was shutdown
856 <                decrementWorkerCounts(ONE_RUNNING, 0);
891 >    private void growSubmissionQueue() {
892 >        ForkJoinTask<?>[] oldQ = submissionQueue;
893 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
894 >        if (size > MAXIMUM_QUEUE_CAPACITY)
895 >            throw new RejectedExecutionException("Queue capacity exceeded");
896 >        if (size < INITIAL_QUEUE_CAPACITY)
897 >            size = INITIAL_QUEUE_CAPACITY;
898 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
899 >        int mask = size - 1;
900 >        int top = queueTop;
901 >        int oldMask;
902 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
903 >            for (int b = queueBase; b != top; ++b) {
904 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
905 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
906 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
907 >                    UNSAFE.putObjectVolatile
908 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
909 >            }
910          }
911      }
912  
913 +    // Blocking support
914 +
915      /**
916 <     * Tries to increase the number of running workers if below target
917 <     * parallelism: If a spare exists tries to resume it via
918 <     * tryResumeSpare.  Otherwise, if not enough total workers or all
919 <     * existing workers are busy, adds a new worker. In all cases also
920 <     * helps wake up releasable workers waiting for work.
921 <     */
922 <    private void helpMaintainParallelism() {
923 <        int pc = parallelism;
924 <        int wc, rs, tc;
925 <        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
926 <               (rs = runState) < TERMINATING) {
927 <            if (spareWaiters != 0)
928 <                tryResumeSpare();
929 <            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
930 <                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
931 <                break;   // enough total
932 <            else if (runState == rs && workerCounts == wc &&
933 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
879 <                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
880 <                ForkJoinWorkerThread w = null;
881 <                Throwable fail = null;
882 <                try {
883 <                    w = factory.newThread(this);
884 <                } catch (Throwable ex) {
885 <                    fail = ex;
916 >     * Tries to increment blockedCount, decrement active count
917 >     * (sometimes implicitly) and possibly release or create a
918 >     * compensating worker in preparation for blocking. Fails
919 >     * on contention or termination.
920 >     *
921 >     * @return true if the caller can block, else should recheck and retry
922 >     */
923 >    private boolean tryPreBlock() {
924 >        int b = blockedCount;
925 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
926 >            int pc = parallelism;
927 >            do {
928 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
929 >                int e, ac, tc, rc, i;
930 >                long c = ctl;
931 >                int u = (int)(c >>> 32);
932 >                if ((e = (int)c) < 0) {
933 >                                                 // skip -- terminating
934                  }
935 <                if (w == null) { // null or exceptional factory return
936 <                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
937 <                    tryTerminate(false); // handle failure during shutdown
938 <                    // If originating from an external caller,
939 <                    // propagate exception, else ignore
940 <                    if (fail != null && runState < TERMINATING &&
941 <                        !(Thread.currentThread() instanceof
942 <                          ForkJoinWorkerThread))
943 <                        UNSAFE.throwException(fail);
944 <                    break;
935 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
936 >                         (ws = workers) != null &&
937 >                         (i = ~e & SMASK) < ws.length &&
938 >                         (w = ws[i]) != null) {
939 >                    long nc = ((long)(w.nextWait & E_MASK) |
940 >                               (c & (AC_MASK|TC_MASK)));
941 >                    if (w.eventCount == e &&
942 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
943 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
944 >                        if (w.parked)
945 >                            UNSAFE.unpark(w);
946 >                        return true;             // release an idle worker
947 >                    }
948                  }
949 <                w.start(recordWorker(w), ueh);
950 <                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
951 <                    break; // add at most one unless total below target
952 <            }
949 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
950 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
951 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
952 >                        return true;             // no compensation needed
953 >                }
954 >                else if (tc + pc < MAX_ID) {
955 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
956 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
957 >                        addWorker();
958 >                        return true;            // create a replacement
959 >                    }
960 >                }
961 >                // try to back out on any failure and let caller retry
962 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
963 >                                               b = blockedCount, b - 1));
964          }
965 <        if (eventWaiters != 0L)
904 <            releaseEventWaiters();
965 >        return false;
966      }
967  
968      /**
969 <     * Callback from the oldest waiter in awaitEvent waking up after a
909 <     * period of non-use. If all workers are idle, tries (once) to
910 <     * shutdown an event waiter or a spare, if one exists. Note that
911 <     * we don't need CAS or locks here because the method is called
912 <     * only from one thread occasionally waking (and even misfires are
913 <     * OK). Note that until the shutdown worker fully terminates,
914 <     * workerCounts will overestimate total count, which is tolerable.
915 <     *
916 <     * @param ec the event count waited on by caller (to abort
917 <     * attempt if count has since changed).
969 >     * Decrements blockedCount and increments active count
970       */
971 <    private void tryShutdownUnusedWorker(int ec) {
972 <        if (runState == 0 && eventCount == ec) { // only trigger if all idle
973 <            ForkJoinWorkerThread[] ws = workers;
974 <            int n = ws.length;
975 <            ForkJoinWorkerThread w = null;
976 <            boolean shutdown = false;
977 <            int sw;
926 <            long h;
927 <            if ((sw = spareWaiters) != 0) { // prefer killing spares
928 <                int id = (sw & SPARE_ID_MASK) - 1;
929 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
930 <                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
931 <                                             sw, w.nextSpare))
932 <                    shutdown = true;
933 <            }
934 <            else if ((h = eventWaiters) != 0L) {
935 <                long nh;
936 <                int id = (((int)h) & WAITER_ID_MASK) - 1;
937 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
938 <                    (nh = w.nextWaiter) != 0L && // keep at least one worker
939 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
940 <                    shutdown = true;
941 <            }
942 <            if (w != null && shutdown) {
943 <                w.shutdown();
944 <                LockSupport.unpark(w);
945 <            }
946 <        }
947 <        releaseEventWaiters(); // in case of interference
971 >    private void postBlock() {
972 >        long c;
973 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
974 >                                                c = ctl, c + AC_UNIT));
975 >        int b;
976 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
977 >                                              b = blockedCount, b - 1));
978      }
979  
980      /**
981 <     * Callback from workers invoked upon each top-level action (i.e.,
982 <     * stealing a task or taking a submission and running it).
953 <     * Performs one or more of the following:
954 <     *
955 <     * 1. If the worker is active and either did not run a task
956 <     *    or there are too many workers, try to set its active status
957 <     *    to inactive and update activeCount. On contention, we may
958 <     *    try again in this or a subsequent call.
959 <     *
960 <     * 2. If not enough total workers, help create some.
961 <     *
962 <     * 3. If there are too many running workers, suspend this worker
963 <     *    (first forcing inactive if necessary).  If it is not needed,
964 <     *    it may be shutdown while suspended (via
965 <     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
966 <     *    rechecks running thread count and need for event sync.
967 <     *
968 <     * 4. If worker did not run a task, await the next task event via
969 <     *    eventSync if necessary (first forcing inactivation), upon
970 <     *    which the worker may be shutdown via
971 <     *    tryShutdownUnusedWorker.  Otherwise, help release any
972 <     *    existing event waiters that are now releasable,
981 >     * Possibly blocks waiting for the given task to complete, or
982 >     * cancels the task if terminating.  Fails to wait if contended.
983       *
984 <     * @param w the worker
975 <     * @param ran true if worker ran a task since last call to this method
984 >     * @param joinMe the task
985       */
986 <    final void preStep(ForkJoinWorkerThread w, boolean ran) {
987 <        int wec = w.lastEventCount;
988 <        boolean active = w.active;
989 <        boolean inactivate = false;
990 <        int pc = parallelism;
991 <        while (w.runState == 0) {
992 <            int rs = runState;
984 <            if (rs >= TERMINATING) {           // propagate shutdown
985 <                w.shutdown();
986 <                break;
987 <            }
988 <            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
989 <                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
990 <                inactivate = active = w.active = false;
991 <                if (rs == SHUTDOWN) {          // all inactive and shut down
992 <                    tryTerminate(false);
993 <                    continue;
994 <                }
995 <            }
996 <            int wc = workerCounts;             // try to suspend as spare
997 <            if ((wc & RUNNING_COUNT_MASK) > pc) {
998 <                if (!(inactivate |= active) && // must inactivate to suspend
999 <                    workerCounts == wc &&
1000 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1001 <                                             wc, wc - ONE_RUNNING))
1002 <                    w.suspendAsSpare();
1003 <            }
1004 <            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1005 <                helpMaintainParallelism();     // not enough workers
1006 <            else if (ran)
1007 <                break;
1008 <            else {
1009 <                long h = eventWaiters;
1010 <                int ec = eventCount;
1011 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1012 <                    releaseEventWaiters();     // release others before waiting
1013 <                else if (ec != wec) {
1014 <                    w.lastEventCount = ec;     // no need to wait
1015 <                    break;
1016 <                }
1017 <                else if (!(inactivate |= active))
1018 <                    eventSync(w, wec);         // must inactivate before sync
986 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
987 >        int s;
988 >        Thread.interrupted(); // clear interrupts before checking termination
989 >        if (joinMe.status >= 0) {
990 >            if (tryPreBlock()) {
991 >                joinMe.tryAwaitDone(0L);
992 >                postBlock();
993              }
994 +            if ((ctl & STOP_BIT) != 0L)
995 +                joinMe.cancelIgnoringExceptions();
996          }
997      }
998  
999      /**
1000 <     * Helps and/or blocks awaiting join of the given task.
1001 <     * See above for explanation.
1000 >     * Possibly blocks the given worker waiting for joinMe to
1001 >     * complete or timeout
1002       *
1003 <     * @param joinMe the task to join
1004 <     * @param worker the current worker thread
1029 <     * @param timed true if wait should time out
1030 <     * @param nanos timeout value if timed
1003 >     * @param joinMe the task
1004 >     * @param millis the wait time for underlying Object.wait
1005       */
1006 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1033 <                         boolean timed, long nanos) {
1034 <        long startTime = timed ? System.nanoTime() : 0L;
1035 <        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1036 <        boolean running = true;               // false when count decremented
1006 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1007          while (joinMe.status >= 0) {
1008 <            if (runState >= TERMINATING) {
1008 >            Thread.interrupted();
1009 >            if ((ctl & STOP_BIT) != 0L) {
1010                  joinMe.cancelIgnoringExceptions();
1011                  break;
1012              }
1013 <            running = worker.helpJoinTask(joinMe, running);
1014 <            if (joinMe.status < 0)
1015 <                break;
1016 <            if (retries > 0) {
1017 <                --retries;
1018 <                continue;
1019 <            }
1020 <            int wc = workerCounts;
1021 <            if ((wc & RUNNING_COUNT_MASK) != 0) {
1022 <                if (running) {
1023 <                    if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1024 <                                                  wc, wc - ONE_RUNNING))
1054 <                        continue;
1055 <                    running = false;
1056 <                }
1057 <                long h = eventWaiters;
1058 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1059 <                    releaseEventWaiters();
1060 <                if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1061 <                    long ms; int ns;
1062 <                    if (!timed) {
1063 <                        ms = JOIN_TIMEOUT_MILLIS;
1064 <                        ns = 0;
1065 <                    }
1066 <                    else { // at most JOIN_TIMEOUT_MILLIS per wait
1067 <                        long nt = nanos - (System.nanoTime() - startTime);
1068 <                        if (nt <= 0L)
1069 <                            break;
1070 <                        ms = nt / 1000000;
1071 <                        if (ms > JOIN_TIMEOUT_MILLIS) {
1072 <                            ms = JOIN_TIMEOUT_MILLIS;
1073 <                            ns = 0;
1074 <                        }
1075 <                        else
1076 <                            ns = (int) (nt % 1000000);
1013 >            if (tryPreBlock()) {
1014 >                long last = System.nanoTime();
1015 >                while (joinMe.status >= 0) {
1016 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1017 >                    if (millis <= 0)
1018 >                        break;
1019 >                    joinMe.tryAwaitDone(millis);
1020 >                    if (joinMe.status < 0)
1021 >                        break;
1022 >                    if ((ctl & STOP_BIT) != 0L) {
1023 >                        joinMe.cancelIgnoringExceptions();
1024 >                        break;
1025                      }
1026 <                    joinMe.internalAwaitDone(ms, ns);
1026 >                    long now = System.nanoTime();
1027 >                    nanos -= now - last;
1028 >                    last = now;
1029                  }
1030 <                if (joinMe.status < 0)
1031 <                    break;
1030 >                postBlock();
1031 >                break;
1032              }
1083            helpMaintainParallelism();
1084        }
1085        if (!running) {
1086            int c;
1087            do {} while (!UNSAFE.compareAndSwapInt
1088                         (this, workerCountsOffset,
1089                          c = workerCounts, c + ONE_RUNNING));
1033          }
1034      }
1035  
1036      /**
1037 <     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1037 >     * If necessary, compensates for blocker, and blocks
1038       */
1039 <    final void awaitBlocker(ManagedBlocker blocker)
1039 >    private void awaitBlocker(ManagedBlocker blocker)
1040          throws InterruptedException {
1041          while (!blocker.isReleasable()) {
1042 <            int wc = workerCounts;
1100 <            if ((wc & RUNNING_COUNT_MASK) == 0)
1101 <                helpMaintainParallelism();
1102 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1103 <                                              wc, wc - ONE_RUNNING)) {
1042 >            if (tryPreBlock()) {
1043                  try {
1044 <                    while (!blocker.isReleasable()) {
1106 <                        long h = eventWaiters;
1107 <                        if (h != 0L &&
1108 <                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1109 <                            releaseEventWaiters();
1110 <                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1111 <                                 runState < TERMINATING)
1112 <                            helpMaintainParallelism();
1113 <                        else if (blocker.block())
1114 <                            break;
1115 <                    }
1044 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1045                  } finally {
1046 <                    int c;
1118 <                    do {} while (!UNSAFE.compareAndSwapInt
1119 <                                 (this, workerCountsOffset,
1120 <                                  c = workerCounts, c + ONE_RUNNING));
1046 >                    postBlock();
1047                  }
1048                  break;
1049              }
1050          }
1051      }
1052  
1053 +    // Creating, registering and deregistring workers
1054 +
1055 +    /**
1056 +     * Tries to create and start a worker; minimally rolls back counts
1057 +     * on failure.
1058 +     */
1059 +    private void addWorker() {
1060 +        Throwable ex = null;
1061 +        ForkJoinWorkerThread t = null;
1062 +        try {
1063 +            t = factory.newThread(this);
1064 +        } catch (Throwable e) {
1065 +            ex = e;
1066 +        }
1067 +        if (t == null) {  // null or exceptional factory return
1068 +            long c;       // adjust counts
1069 +            do {} while (!UNSAFE.compareAndSwapLong
1070 +                         (this, ctlOffset, c = ctl,
1071 +                          (((c - AC_UNIT) & AC_MASK) |
1072 +                           ((c - TC_UNIT) & TC_MASK) |
1073 +                           (c & ~(AC_MASK|TC_MASK)))));
1074 +            // Propagate exception if originating from an external caller
1075 +            if (!tryTerminate(false) && ex != null &&
1076 +                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1077 +                UNSAFE.throwException(ex);
1078 +        }
1079 +        else
1080 +            t.start();
1081 +    }
1082 +
1083 +    /**
1084 +     * Callback from ForkJoinWorkerThread constructor to assign a
1085 +     * public name
1086 +     */
1087 +    final String nextWorkerName() {
1088 +        for (int n;;) {
1089 +            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1090 +                                         n = nextWorkerNumber, ++n))
1091 +                return workerNamePrefix + n;
1092 +        }
1093 +    }
1094 +
1095 +    /**
1096 +     * Callback from ForkJoinWorkerThread constructor to
1097 +     * determine its poolIndex and record in workers array.
1098 +     *
1099 +     * @param w the worker
1100 +     * @return the worker's pool index
1101 +     */
1102 +    final int registerWorker(ForkJoinWorkerThread w) {
1103 +        /*
1104 +         * In the typical case, a new worker acquires the lock, uses
1105 +         * next available index and returns quickly.  Since we should
1106 +         * not block callers (ultimately from signalWork or
1107 +         * tryPreBlock) waiting for the lock needed to do this, we
1108 +         * instead help release other workers while waiting for the
1109 +         * lock.
1110 +         */
1111 +        for (int g;;) {
1112 +            ForkJoinWorkerThread[] ws;
1113 +            if (((g = scanGuard) & SG_UNIT) == 0 &&
1114 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1115 +                                         g, g | SG_UNIT)) {
1116 +                int k = nextWorkerIndex;
1117 +                try {
1118 +                    if ((ws = workers) != null) { // ignore on shutdown
1119 +                        int n = ws.length;
1120 +                        if (k < 0 || k >= n || ws[k] != null) {
1121 +                            for (k = 0; k < n && ws[k] != null; ++k)
1122 +                                ;
1123 +                            if (k == n)
1124 +                                ws = workers = Arrays.copyOf(ws, n << 1);
1125 +                        }
1126 +                        ws[k] = w;
1127 +                        nextWorkerIndex = k + 1;
1128 +                        int m = g & SMASK;
1129 +                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1130 +                    }
1131 +                } finally {
1132 +                    scanGuard = g;
1133 +                }
1134 +                return k;
1135 +            }
1136 +            else if ((ws = workers) != null) { // help release others
1137 +                for (ForkJoinWorkerThread u : ws) {
1138 +                    if (u != null && u.queueBase != u.queueTop) {
1139 +                        if (tryReleaseWaiter())
1140 +                            break;
1141 +                    }
1142 +                }
1143 +            }
1144 +        }
1145 +    }
1146 +
1147 +    /**
1148 +     * Final callback from terminating worker.  Removes record of
1149 +     * worker from array, and adjusts counts. If pool is shutting
1150 +     * down, tries to complete termination.
1151 +     *
1152 +     * @param w the worker
1153 +     */
1154 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1155 +        int idx = w.poolIndex;
1156 +        int sc = w.stealCount;
1157 +        int steps = 0;
1158 +        // Remove from array, adjust worker counts and collect steal count.
1159 +        // We can intermix failed removes or adjusts with steal updates
1160 +        do {
1161 +            long s, c;
1162 +            int g;
1163 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1164 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1165 +                                         g, g |= SG_UNIT)) {
1166 +                ForkJoinWorkerThread[] ws = workers;
1167 +                if (ws != null && idx >= 0 &&
1168 +                    idx < ws.length && ws[idx] == w)
1169 +                    ws[idx] = null;    // verify
1170 +                nextWorkerIndex = idx;
1171 +                scanGuard = g + SG_UNIT;
1172 +                steps = 1;
1173 +            }
1174 +            if (steps == 1 &&
1175 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1176 +                                          (((c - AC_UNIT) & AC_MASK) |
1177 +                                           ((c - TC_UNIT) & TC_MASK) |
1178 +                                           (c & ~(AC_MASK|TC_MASK)))))
1179 +                steps = 2;
1180 +            if (sc != 0 &&
1181 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1182 +                                          s = stealCount, s + sc))
1183 +                sc = 0;
1184 +        } while (steps != 2 || sc != 0);
1185 +        if (!tryTerminate(false)) {
1186 +            if (ex != null)   // possibly replace if died abnormally
1187 +                signalWork();
1188 +            else
1189 +                tryReleaseWaiter();
1190 +        }
1191 +    }
1192 +
1193 +    // Shutdown and termination
1194 +
1195      /**
1196       * Possibly initiates and/or completes termination.
1197       *
# Line 1132 | Line 1200 | public class ForkJoinPool extends Abstra
1200       * @return true if now terminating or terminated
1201       */
1202      private boolean tryTerminate(boolean now) {
1203 <        if (now)
1204 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1205 <        else if (runState < SHUTDOWN ||
1206 <                 !submissionQueue.isEmpty() ||
1207 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1208 <            return false;
1209 <
1210 <        if (advanceRunLevel(TERMINATING))
1211 <            startTerminating();
1212 <
1213 <        // Finish now if all threads terminated; else in some subsequent call
1214 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1215 <            advanceRunLevel(TERMINATED);
1216 <            termination.forceTermination();
1203 >        long c;
1204 >        while (((c = ctl) & STOP_BIT) == 0) {
1205 >            if (!now) {
1206 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1207 >                    return false;
1208 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1209 >                    queueTop - queueBase > 0) {
1210 >                    if (ctl == c) // staleness check
1211 >                        return false;
1212 >                    continue;
1213 >                }
1214 >            }
1215 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1216 >                startTerminating();
1217 >        }
1218 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1219 >            submissionLock.lock();
1220 >            termination.signalAll();
1221 >            submissionLock.unlock();
1222          }
1223          return true;
1224      }
1225  
1226      /**
1227 <     * Actions on transition to TERMINATING
1228 <     *
1229 <     * Runs up to four passes through workers: (0) shutting down each
1230 <     * (without waking up if parked) to quickly spread notifications
1231 <     * without unnecessary bouncing around event queues etc (1) wake
1232 <     * up and help cancel tasks (2) interrupt (3) mop up races with
1160 <     * interrupted workers
1227 >     * Runs up to three passes through workers: (0) Setting
1228 >     * termination status for each worker, followed by wakeups up
1229 >     * queued workers (1) helping cancel tasks (2) interrupting
1230 >     * lagging threads (likely in external tasks, but possibly also
1231 >     * blocked in joins).  Each pass repeats previous steps because of
1232 >     * potential lagging thread creation.
1233       */
1234      private void startTerminating() {
1235          cancelSubmissions();
1236 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1237 <            int c; // advance event count
1238 <            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1239 <                                     c = eventCount, c+1);
1240 <            eventWaiters = 0L; // clobber lists
1241 <            spareWaiters = 0;
1242 <            for (ForkJoinWorkerThread w : workers) {
1243 <                if (w != null) {
1244 <                    w.shutdown();
1245 <                    if (passes > 0 && !w.isTerminated()) {
1246 <                        w.cancelTasks();
1247 <                        LockSupport.unpark(w);
1248 <                        if (passes > 1 && !w.isInterrupted()) {
1177 <                            try {
1178 <                                w.interrupt();
1179 <                            } catch (SecurityException ignore) {
1236 >        for (int pass = 0; pass < 3; ++pass) {
1237 >            ForkJoinWorkerThread[] ws = workers;
1238 >            if (ws != null) {
1239 >                for (ForkJoinWorkerThread w : ws) {
1240 >                    if (w != null) {
1241 >                        w.terminate = true;
1242 >                        if (pass > 0) {
1243 >                            w.cancelTasks();
1244 >                            if (pass > 1 && !w.isInterrupted()) {
1245 >                                try {
1246 >                                    w.interrupt();
1247 >                                } catch (SecurityException ignore) {
1248 >                                }
1249                              }
1250                          }
1251                      }
1252                  }
1253 +                terminateWaiters();
1254              }
1255          }
1256      }
1257  
1258      /**
1259 <     * Clears out and cancels submissions, ignoring exceptions.
1259 >     * Polls and cancels all submissions. Called only during termination.
1260       */
1261      private void cancelSubmissions() {
1262 <        ForkJoinTask<?> task;
1263 <        while ((task = submissionQueue.poll()) != null) {
1264 <            try {
1265 <                task.cancel(false);
1266 <            } catch (Throwable ignore) {
1262 >        while (queueBase != queueTop) {
1263 >            ForkJoinTask<?> task = pollSubmission();
1264 >            if (task != null) {
1265 >                try {
1266 >                    task.cancel(false);
1267 >                } catch (Throwable ignore) {
1268 >                }
1269              }
1270          }
1271      }
1272  
1273 <    // misc support for ForkJoinWorkerThread
1273 >    /**
1274 >     * Tries to set the termination status of waiting workers, and
1275 >     * then wake them up (after which they will terminate).
1276 >     */
1277 >    private void terminateWaiters() {
1278 >        ForkJoinWorkerThread[] ws = workers;
1279 >        if (ws != null) {
1280 >            ForkJoinWorkerThread w; long c; int i, e;
1281 >            int n = ws.length;
1282 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1283 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1284 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1285 >                                              (long)(w.nextWait & E_MASK) |
1286 >                                              ((c + AC_UNIT) & AC_MASK) |
1287 >                                              (c & (TC_MASK|STOP_BIT)))) {
1288 >                    w.terminate = true;
1289 >                    w.eventCount = e + EC_UNIT;
1290 >                    if (w.parked)
1291 >                        UNSAFE.unpark(w);
1292 >                }
1293 >            }
1294 >        }
1295 >    }
1296 >
1297 >    // misc ForkJoinWorkerThread support
1298  
1299      /**
1300 <     * Returns pool number.
1300 >     * Increment or decrement quiescerCount. Needed only to prevent
1301 >     * triggering shutdown if a worker is transiently inactive while
1302 >     * checking quiescence.
1303 >     *
1304 >     * @param delta 1 for increment, -1 for decrement
1305       */
1306 <    final int getPoolNumber() {
1307 <        return poolNumber;
1306 >    final void addQuiescerCount(int delta) {
1307 >        int c;
1308 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1309 >                                              c = quiescerCount, c + delta));
1310      }
1311  
1312      /**
1313 <     * Tries to accumulate steal count from a worker, clearing
1314 <     * the worker's value if successful.
1313 >     * Directly increment or decrement active count without
1314 >     * queuing. This method is used to transiently assert inactivation
1315 >     * while checking quiescence.
1316       *
1317 <     * @return true if worker steal count now zero
1317 >     * @param delta 1 for increment, -1 for decrement
1318       */
1319 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1320 <        int sc = w.stealCount;
1321 <        long c = stealCount;
1322 <        // CAS even if zero, for fence effects
1323 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1324 <            if (sc != 0)
1222 <                w.stealCount = 0;
1223 <            return true;
1224 <        }
1225 <        return sc == 0;
1319 >    final void addActiveCount(int delta) {
1320 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1321 >        long c;
1322 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1323 >                                                ((c + d) & AC_MASK) |
1324 >                                                (c & ~AC_MASK)));
1325      }
1326  
1327      /**
# Line 1230 | Line 1329 | public class ForkJoinPool extends Abstra
1329       * active thread.
1330       */
1331      final int idlePerActive() {
1332 <        int pc = parallelism; // use parallelism, not rc
1333 <        int ac = runState;    // no mask -- artificially boosts during shutdown
1334 <        // Use exact results for small values, saturate past 4
1335 <        return ((pc <= ac) ? 0 :
1336 <                (pc >>> 1 <= ac) ? 1 :
1337 <                (pc >>> 2 <= ac) ? 3 :
1338 <                pc >>> 3);
1332 >        // Approximate at powers of two for small values, saturate past 4
1333 >        int p = parallelism;
1334 >        int a = p + (int)(ctl >> AC_SHIFT);
1335 >        return (a > (p >>>= 1) ? 0 :
1336 >                a > (p >>>= 1) ? 1 :
1337 >                a > (p >>>= 1) ? 2 :
1338 >                a > (p >>>= 1) ? 4 :
1339 >                8);
1340      }
1341  
1342 <    // Public and protected methods
1342 >    // Exported methods
1343  
1344      // Constructors
1345  
# Line 1308 | Line 1408 | public class ForkJoinPool extends Abstra
1408          checkPermission();
1409          if (factory == null)
1410              throw new NullPointerException();
1411 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1411 >        if (parallelism <= 0 || parallelism > MAX_ID)
1412              throw new IllegalArgumentException();
1413          this.parallelism = parallelism;
1414          this.factory = factory;
1415          this.ueh = handler;
1416          this.locallyFifo = asyncMode;
1417 <        int arraySize = initialArraySizeFor(parallelism);
1418 <        this.workers = new ForkJoinWorkerThread[arraySize];
1419 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1420 <        this.workerLock = new ReentrantLock();
1421 <        this.termination = new Phaser(1);
1422 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1423 <    }
1424 <
1425 <    /**
1426 <     * Returns initial power of two size for workers array.
1427 <     * @param pc the initial parallelism level
1428 <     */
1429 <    private static int initialArraySizeFor(int pc) {
1430 <        // If possible, initially allocate enough space for one spare
1431 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1432 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1433 <        size |= size >>> 1;
1334 <        size |= size >>> 2;
1335 <        size |= size >>> 4;
1336 <        size |= size >>> 8;
1337 <        return size + 1;
1417 >        long np = (long)(-parallelism); // offset ctl counts
1418 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1419 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1420 >        // initialize workers array with room for 2*parallelism if possible
1421 >        int n = parallelism << 1;
1422 >        if (n >= MAX_ID)
1423 >            n = MAX_ID;
1424 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1425 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1426 >        }
1427 >        workers = new ForkJoinWorkerThread[n + 1];
1428 >        this.submissionLock = new ReentrantLock();
1429 >        this.termination = submissionLock.newCondition();
1430 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1431 >        sb.append(poolNumberGenerator.incrementAndGet());
1432 >        sb.append("-worker-");
1433 >        this.workerNamePrefix = sb.toString();
1434      }
1435  
1436      // Execution methods
1437  
1438      /**
1343     * Submits task and creates, starts, or resumes some workers if necessary
1344     */
1345    private <T> void doSubmit(ForkJoinTask<T> task) {
1346        submissionQueue.offer(task);
1347        int c; // try to increment event count -- CAS failure OK
1348        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1349        helpMaintainParallelism();
1350    }
1351
1352    /**
1439       * Performs the given task, returning its result upon completion.
1440 +     * If the computation encounters an unchecked Exception or Error,
1441 +     * it is rethrown as the outcome of this invocation.  Rethrown
1442 +     * exceptions behave in the same way as regular exceptions, but,
1443 +     * when possible, contain stack traces (as displayed for example
1444 +     * using {@code ex.printStackTrace()}) of both the current thread
1445 +     * as well as the thread actually encountering the exception;
1446 +     * minimally only the latter.
1447       *
1448       * @param task the task
1449       * @return the task's result
# Line 1359 | Line 1452 | public class ForkJoinPool extends Abstra
1452       *         scheduled for execution
1453       */
1454      public <T> T invoke(ForkJoinTask<T> task) {
1455 +        Thread t = Thread.currentThread();
1456          if (task == null)
1457              throw new NullPointerException();
1458 <        if (runState >= SHUTDOWN)
1458 >        if (shutdown)
1459              throw new RejectedExecutionException();
1366        Thread t = Thread.currentThread();
1460          if ((t instanceof ForkJoinWorkerThread) &&
1461              ((ForkJoinWorkerThread)t).pool == this)
1462              return task.invoke();  // bypass submit if in same pool
1463          else {
1464 <            doSubmit(task);
1464 >            addSubmission(task);
1465              return task.join();
1466          }
1467      }
# Line 1378 | Line 1471 | public class ForkJoinPool extends Abstra
1471       * computation in the current pool, else submits as external task.
1472       */
1473      private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1474 <        if (runState >= SHUTDOWN)
1382 <            throw new RejectedExecutionException();
1474 >        ForkJoinWorkerThread w;
1475          Thread t = Thread.currentThread();
1476 +        if (shutdown)
1477 +            throw new RejectedExecutionException();
1478          if ((t instanceof ForkJoinWorkerThread) &&
1479 <            ((ForkJoinWorkerThread)t).pool == this)
1480 <            task.fork();
1479 >            (w = (ForkJoinWorkerThread)t).pool == this)
1480 >            w.pushTask(task);
1481          else
1482 <            doSubmit(task);
1482 >            addSubmission(task);
1483      }
1484  
1485      /**
# Line 1542 | Line 1636 | public class ForkJoinPool extends Abstra
1636       * @return the number of worker threads
1637       */
1638      public int getPoolSize() {
1639 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1639 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1640      }
1641  
1642      /**
# Line 1564 | Line 1658 | public class ForkJoinPool extends Abstra
1658       * @return the number of worker threads
1659       */
1660      public int getRunningThreadCount() {
1661 <        return workerCounts & RUNNING_COUNT_MASK;
1661 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1662 >        return r <= 0? 0 : r; // suppress momentarily negative values
1663      }
1664  
1665      /**
# Line 1575 | Line 1670 | public class ForkJoinPool extends Abstra
1670       * @return the number of active threads
1671       */
1672      public int getActiveThreadCount() {
1673 <        return runState & ACTIVE_COUNT_MASK;
1673 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1674 >        return r <= 0? 0 : r; // suppress momentarily negative values
1675      }
1676  
1677      /**
# Line 1590 | Line 1686 | public class ForkJoinPool extends Abstra
1686       * @return {@code true} if all threads are currently idle
1687       */
1688      public boolean isQuiescent() {
1689 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1689 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1690      }
1691  
1692      /**
# Line 1620 | Line 1716 | public class ForkJoinPool extends Abstra
1716       */
1717      public long getQueuedTaskCount() {
1718          long count = 0;
1719 <        for (ForkJoinWorkerThread w : workers)
1720 <            if (w != null)
1721 <                count += w.getQueueSize();
1719 >        ForkJoinWorkerThread[] ws;
1720 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1721 >            (ws = workers) != null) {
1722 >            for (ForkJoinWorkerThread w : ws)
1723 >                if (w != null)
1724 >                    count -= w.queueBase - w.queueTop; // must read base first
1725 >        }
1726          return count;
1727      }
1728  
1729      /**
1730       * Returns an estimate of the number of tasks submitted to this
1731 <     * pool that have not yet begun executing.  This method takes time
1732 <     * proportional to the number of submissions.
1731 >     * pool that have not yet begun executing.  This meThod may take
1732 >     * time proportional to the number of submissions.
1733       *
1734       * @return the number of queued submissions
1735       */
1736      public int getQueuedSubmissionCount() {
1737 <        return submissionQueue.size();
1737 >        return -queueBase + queueTop;
1738      }
1739  
1740      /**
# Line 1644 | Line 1744 | public class ForkJoinPool extends Abstra
1744       * @return {@code true} if there are any queued submissions
1745       */
1746      public boolean hasQueuedSubmissions() {
1747 <        return !submissionQueue.isEmpty();
1747 >        return queueBase != queueTop;
1748      }
1749  
1750      /**
# Line 1655 | Line 1755 | public class ForkJoinPool extends Abstra
1755       * @return the next submission, or {@code null} if none
1756       */
1757      protected ForkJoinTask<?> pollSubmission() {
1758 <        return submissionQueue.poll();
1758 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1759 >        while ((b = queueBase) != queueTop &&
1760 >               (q = submissionQueue) != null &&
1761 >               (i = (q.length - 1) & b) >= 0) {
1762 >            long u = (i << ASHIFT) + ABASE;
1763 >            if ((t = q[i]) != null &&
1764 >                queueBase == b &&
1765 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1766 >                queueBase = b + 1;
1767 >                return t;
1768 >            }
1769 >        }
1770 >        return null;
1771      }
1772  
1773      /**
# Line 1676 | Line 1788 | public class ForkJoinPool extends Abstra
1788       * @return the number of elements transferred
1789       */
1790      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1791 <        int count = submissionQueue.drainTo(c);
1792 <        for (ForkJoinWorkerThread w : workers)
1793 <            if (w != null)
1794 <                count += w.drainTasksTo(c);
1791 >        int count = 0;
1792 >        while (queueBase != queueTop) {
1793 >            ForkJoinTask<?> t = pollSubmission();
1794 >            if (t != null) {
1795 >                c.add(t);
1796 >                ++count;
1797 >            }
1798 >        }
1799 >        ForkJoinWorkerThread[] ws;
1800 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1801 >            (ws = workers) != null) {
1802 >            for (ForkJoinWorkerThread w : ws)
1803 >                if (w != null)
1804 >                    count += w.drainTasksTo(c);
1805 >        }
1806          return count;
1807      }
1808  
# Line 1694 | Line 1817 | public class ForkJoinPool extends Abstra
1817          long st = getStealCount();
1818          long qt = getQueuedTaskCount();
1819          long qs = getQueuedSubmissionCount();
1697        int wc = workerCounts;
1698        int tc = wc >>> TOTAL_COUNT_SHIFT;
1699        int rc = wc & RUNNING_COUNT_MASK;
1820          int pc = parallelism;
1821 <        int rs = runState;
1822 <        int ac = rs & ACTIVE_COUNT_MASK;
1821 >        long c = ctl;
1822 >        int tc = pc + (short)(c >>> TC_SHIFT);
1823 >        int rc = pc + (int)(c >> AC_SHIFT);
1824 >        if (rc < 0) // ignore transient negative
1825 >            rc = 0;
1826 >        int ac = rc + blockedCount;
1827 >        String level;
1828 >        if ((c & STOP_BIT) != 0)
1829 >            level = (tc == 0)? "Terminated" : "Terminating";
1830 >        else
1831 >            level = shutdown? "Shutting down" : "Running";
1832          return super.toString() +
1833 <            "[" + runLevelToString(rs) +
1833 >            "[" + level +
1834              ", parallelism = " + pc +
1835              ", size = " + tc +
1836              ", active = " + ac +
# Line 1712 | Line 1841 | public class ForkJoinPool extends Abstra
1841              "]";
1842      }
1843  
1715    private static String runLevelToString(int s) {
1716        return ((s & TERMINATED) != 0 ? "Terminated" :
1717                ((s & TERMINATING) != 0 ? "Terminating" :
1718                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1719                  "Running")));
1720    }
1721
1844      /**
1845       * Initiates an orderly shutdown in which previously submitted
1846       * tasks are executed, but no new tasks will be accepted.
# Line 1733 | Line 1855 | public class ForkJoinPool extends Abstra
1855       */
1856      public void shutdown() {
1857          checkPermission();
1858 <        advanceRunLevel(SHUTDOWN);
1858 >        shutdown = true;
1859          tryTerminate(false);
1860      }
1861  
# Line 1755 | Line 1877 | public class ForkJoinPool extends Abstra
1877       */
1878      public List<Runnable> shutdownNow() {
1879          checkPermission();
1880 +        shutdown = true;
1881          tryTerminate(true);
1882          return Collections.emptyList();
1883      }
# Line 1765 | Line 1888 | public class ForkJoinPool extends Abstra
1888       * @return {@code true} if all tasks have completed following shut down
1889       */
1890      public boolean isTerminated() {
1891 <        return runState >= TERMINATED;
1891 >        long c = ctl;
1892 >        return ((c & STOP_BIT) != 0L &&
1893 >                (short)(c >>> TC_SHIFT) == -parallelism);
1894      }
1895  
1896      /**
# Line 1782 | Line 1907 | public class ForkJoinPool extends Abstra
1907       * @return {@code true} if terminating but not yet terminated
1908       */
1909      public boolean isTerminating() {
1910 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1910 >        long c = ctl;
1911 >        return ((c & STOP_BIT) != 0L &&
1912 >                (short)(c >>> TC_SHIFT) != -parallelism);
1913      }
1914  
1915      /**
1916       * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1917       */
1918      final boolean isAtLeastTerminating() {
1919 <        return runState >= TERMINATING;
1919 >        return (ctl & STOP_BIT) != 0L;
1920      }
1921  
1922      /**
# Line 1798 | Line 1925 | public class ForkJoinPool extends Abstra
1925       * @return {@code true} if this pool has been shut down
1926       */
1927      public boolean isShutdown() {
1928 <        return runState >= SHUTDOWN;
1928 >        return shutdown;
1929      }
1930  
1931      /**
# Line 1814 | Line 1941 | public class ForkJoinPool extends Abstra
1941       */
1942      public boolean awaitTermination(long timeout, TimeUnit unit)
1943          throws InterruptedException {
1944 +        long nanos = unit.toNanos(timeout);
1945 +        final ReentrantLock lock = this.submissionLock;
1946 +        lock.lock();
1947          try {
1948 <            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1949 <        } catch (TimeoutException ex) {
1950 <            return false;
1948 >            for (;;) {
1949 >                if (isTerminated())
1950 >                    return true;
1951 >                if (nanos <= 0)
1952 >                    return false;
1953 >                nanos = termination.awaitNanos(nanos);
1954 >            }
1955 >        } finally {
1956 >            lock.unlock();
1957          }
1822        return true;
1958      }
1959  
1960      /**
# Line 1938 | Line 2073 | public class ForkJoinPool extends Abstra
2073      }
2074  
2075      // Unsafe mechanics
2076 <
2077 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2078 <    private static final long workerCountsOffset =
2079 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2080 <    private static final long runStateOffset =
2081 <        objectFieldOffset("runState", ForkJoinPool.class);
2082 <    private static final long eventCountOffset =
2083 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2084 <    private static final long eventWaitersOffset =
2085 <        objectFieldOffset("eventWaiters", ForkJoinPool.class);
2086 <    private static final long stealCountOffset =
2087 <        objectFieldOffset("stealCount", ForkJoinPool.class);
2088 <    private static final long spareWaitersOffset =
2089 <        objectFieldOffset("spareWaiters", ForkJoinPool.class);
2090 <
2091 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2076 >    private static final sun.misc.Unsafe UNSAFE;
2077 >    private static final long ctlOffset;
2078 >    private static final long stealCountOffset;
2079 >    private static final long blockedCountOffset;
2080 >    private static final long quiescerCountOffset;
2081 >    private static final long scanGuardOffset;
2082 >    private static final long nextWorkerNumberOffset;
2083 >    private static final long ABASE;
2084 >    private static final int ASHIFT;
2085 >
2086 >    static {
2087 >        poolNumberGenerator = new AtomicInteger();
2088 >        workerSeedGenerator = new Random();
2089 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2090 >        defaultForkJoinWorkerThreadFactory =
2091 >            new DefaultForkJoinWorkerThreadFactory();
2092 >        int s;
2093          try {
2094 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2095 <        } catch (NoSuchFieldException e) {
2096 <            // Convert Exception to corresponding Error
2097 <            NoSuchFieldError error = new NoSuchFieldError(field);
2098 <            error.initCause(e);
2099 <            throw error;
2100 <        }
2094 >            UNSAFE = getUnsafe();
2095 >            Class k = ForkJoinPool.class;
2096 >            ctlOffset = UNSAFE.objectFieldOffset
2097 >                (k.getDeclaredField("ctl"));
2098 >            stealCountOffset = UNSAFE.objectFieldOffset
2099 >                (k.getDeclaredField("stealCount"));
2100 >            blockedCountOffset = UNSAFE.objectFieldOffset
2101 >                (k.getDeclaredField("blockedCount"));
2102 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2103 >                (k.getDeclaredField("quiescerCount"));
2104 >            scanGuardOffset = UNSAFE.objectFieldOffset
2105 >                (k.getDeclaredField("scanGuard"));
2106 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2107 >                (k.getDeclaredField("nextWorkerNumber"));
2108 >            Class a = ForkJoinTask[].class;
2109 >            ABASE = UNSAFE.arrayBaseOffset(a);
2110 >            s = UNSAFE.arrayIndexScale(a);
2111 >        } catch (Exception e) {
2112 >            throw new Error(e);
2113 >        }
2114 >        if ((s & (s-1)) != 0)
2115 >            throw new Error("data type scale not a power of two");
2116 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2117      }
2118  
2119      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines