ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.91 by dl, Tue Feb 22 00:39:31 2011 UTC vs.
Revision 1.135 by dl, Sun Oct 28 22:36:01 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 19 | Line 19 | import java.util.concurrent.Future;
19   import java.util.concurrent.RejectedExecutionException;
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.locks.LockSupport;
24 < import java.util.concurrent.locks.ReentrantLock;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 34 | Line 33 | import java.util.concurrent.locks.Condit
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A {@code ForkJoinPool} is constructed with a given target
46 < * parallelism level; by default, equal to the number of available
47 < * processors. The pool attempts to maintain enough active (or
48 < * available) threads by dynamically adding, suspending, or resuming
49 < * internal worker threads, even if some tasks are stalled waiting to
50 < * join others. However, no such adjustments are guaranteed in the
51 < * face of blocked IO or other unmanaged synchronization. The nested
52 < * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is constructed upon first
47 > * access, or upon usage by any ForkJoinTask that is not explictly
48 > * submitted to a specified pool. Using the common pool normally
49 > * reduces resource usage (its threads are slowly reclaimed during
50 > * periods of non-use, and reinstated upon subsequent use).  The
51 > * common pool is by default constructed with default parameters, but
52 > * these may be controlled by setting any or all of the three
53 > * properties {@code
54 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
55 > * threadFactory, exceptionHandler}}.
56 > *
57 > * <p>For applications that require separate or custom pools, a {@code
58 > * ForkJoinPool} may be constructed with a given target parallelism
59 > * level; by default, equal to the number of available processors. The
60 > * pool attempts to maintain enough active (or available) threads by
61 > * dynamically adding, suspending, or resuming internal worker
62 > * threads, even if some tasks are stalled waiting to join
63 > * others. However, no such adjustments are guaranteed in the face of
64 > * blocked IO or other unmanaged synchronization. The nested {@link
65 > * ManagedBlocker} interface enables extension of the kinds of
66   * synchronization accommodated.
67   *
68   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 73 | import java.util.concurrent.locks.Condit
73   * convenient form for informal monitoring.
74   *
75   * <p> As is the case with other ExecutorServices, there are three
76 < * main task execution methods summarized in the following
77 < * table. These are designed to be used by clients not already engaged
78 < * in fork/join computations in the current pool.  The main forms of
79 < * these methods accept instances of {@code ForkJoinTask}, but
80 < * overloaded forms also allow mixed execution of plain {@code
76 > * main task execution methods summarized in the following table.
77 > * These are designed to be used primarily by clients not already
78 > * engaged in fork/join computations in the current pool.  The main
79 > * forms of these methods accept instances of {@code ForkJoinTask},
80 > * but overloaded forms also allow mixed execution of plain {@code
81   * Runnable}- or {@code Callable}- based activities as well.  However,
82 < * tasks that are already executing in a pool should normally
83 < * <em>NOT</em> use these pool execution methods, but instead use the
84 < * within-computation forms listed in the table.
82 > * tasks that are already executing in a pool should normally instead
83 > * use the within-computation forms listed in the table unless using
84 > * async event-style tasks that are not usually joined, in which case
85 > * there is little difference among choice of methods.
86   *
87   * <table BORDER CELLPADDING=3 CELLSPACING=1>
88   *  <tr>
# Line 92 | Line 107 | import java.util.concurrent.locks.Condit
107   *  </tr>
108   * </table>
109   *
95 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 * used for all parallel task execution in a program or subsystem.
97 * Otherwise, use would not usually outweigh the construction and
98 * bookkeeping overhead of creating a large set of threads. For
99 * example, a common pool could be used for the {@code SortTasks}
100 * illustrated in {@link RecursiveAction}. Because {@code
101 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 * daemon} mode, there is typically no need to explicitly {@link
103 * #shutdown} such a pool upon program exit.
104 *
105 * <pre>
106 * static final ForkJoinPool mainPool = new ForkJoinPool();
107 * ...
108 * public void sort(long[] array) {
109 *   mainPool.invoke(new SortTask(array, 0, array.length));
110 * }
111 * </pre>
112 *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
112   * pools with greater than the maximum number result in
# Line 127 | Line 124 | public class ForkJoinPool extends Abstra
124      /*
125       * Implementation Overview
126       *
127 <     * This class provides the central bookkeeping and control for a
128 <     * set of worker threads: Submissions from non-FJ threads enter
129 <     * into a submission queue. Workers take these tasks and typically
130 <     * split them into subtasks that may be stolen by other workers.
131 <     * Preference rules give first priority to processing tasks from
132 <     * their own queues (LIFO or FIFO, depending on mode), then to
133 <     * randomized FIFO steals of tasks in other worker queues, and
134 <     * lastly to new submissions.
127 >     * This class and its nested classes provide the main
128 >     * functionality and control for a set of worker threads:
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135 >     *
136 >     * WorkQueues
137 >     * ==========
138 >     *
139 >     * Most operations occur within work-stealing queues (in nested
140 >     * class WorkQueue).  These are special forms of Deques that
141 >     * support only three of the four possible end-operations -- push,
142 >     * pop, and poll (aka steal), under the further constraints that
143 >     * push and pop are called only from the owning thread (or, as
144 >     * extended here, under a lock), while poll may be called from
145 >     * other threads.  (If you are unfamiliar with them, you probably
146 >     * want to read Herlihy and Shavit's book "The Art of
147 >     * Multiprocessor programming", chapter 16 describing these in
148 >     * more detail before proceeding.)  The main work-stealing queue
149 >     * design is roughly similar to those in the papers "Dynamic
150 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151 >     * (http://research.sun.com/scalable/pubs/index.html) and
152 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 >     * The main differences ultimately stem from GC requirements that
155 >     * we null out taken slots as soon as we can, to maintain as small
156 >     * a footprint as possible even in programs generating huge
157 >     * numbers of tasks. To accomplish this, we shift the CAS
158 >     * arbitrating pop vs poll (steal) from being on the indices
159 >     * ("base" and "top") to the slots themselves.  So, both a
160 >     * successful pop and poll mainly entail a CAS of a slot from
161 >     * non-null to null.  Because we rely on CASes of references, we
162 >     * do not need tag bits on base or top.  They are simple ints as
163 >     * used in any circular array-based queue (see for example
164 >     * ArrayDeque).  Updates to the indices must still be ordered in a
165 >     * way that guarantees that top == base means the queue is empty,
166 >     * but otherwise may err on the side of possibly making the queue
167 >     * appear nonempty when a push, pop, or poll have not fully
168 >     * committed. Note that this means that the poll operation,
169 >     * considered individually, is not wait-free. One thief cannot
170 >     * successfully continue until another in-progress one (or, if
171 >     * previously empty, a push) completes.  However, in the
172 >     * aggregate, we ensure at least probabilistic non-blockingness.
173 >     * If an attempted steal fails, a thief always chooses a different
174 >     * random victim target to try next. So, in order for one thief to
175 >     * progress, it suffices for any in-progress poll or new push on
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180 >     *
181 >     * This approach also enables support of a user mode in which local
182 >     * task processing is in FIFO, not LIFO order, simply by using
183 >     * poll rather than pop.  This can be useful in message-passing
184 >     * frameworks in which tasks are never joined.  However neither
185 >     * mode considers affinities, loads, cache localities, etc, so
186 >     * rarely provide the best possible performance on a given
187 >     * machine, but portably provide good throughput by averaging over
188 >     * these factors.  (Further, even if we did try to use such
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192 >     *
193 >     * WorkQueues are also used in a similar way for tasks submitted
194 >     * to the pool. We cannot mix these tasks in the same queues used
195 >     * for work-stealing (this would contaminate lifo/fifo
196 >     * processing). Instead, we loosely associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they never
202 >     * take tasks, and they are multiplexed on to a finite number of
203 >     * shared work queues. However, classes are set up so that future
204 >     * extensions could allow submitters to optionally help perform
205 >     * tasks as well. Insertion of tasks in shared mode requires a
206 >     * lock (mainly to protect in the case of resizing) but we use
207 >     * only a simple spinlock (using bits in field runState), because
208 >     * submitters encountering a busy queue move on to try or create
209 >     * other queues -- they block only when creating and registering
210 >     * new queues.
211 >     *
212 >     * Management
213 >     * ==========
214       *
215       * The main throughput advantages of work-stealing stem from
216       * decentralized control -- workers mostly take tasks from
217       * themselves or each other. We cannot negate this in the
218       * implementation of other management responsibilities. The main
219       * tactic for avoiding bottlenecks is packing nearly all
220 <     * essentially atomic control state into a single 64bit volatile
221 <     * variable ("ctl"). This variable is read on the order of 10-100
222 <     * times as often as it is modified (always via CAS). (There is
223 <     * some additional control state, for example variable "shutdown"
224 <     * for which we can cope with uncoordinated updates.)  This
225 <     * streamlines synchronization and control at the expense of messy
226 <     * constructions needed to repack status bits upon updates.
227 <     * Updates tend not to contend with each other except during
228 <     * bursts while submitted tasks begin or end.  In some cases when
229 <     * they do contend, threads can instead do something else
230 <     * (usually, scan for tesks) until contention subsides.
231 <     *
232 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
233 <     * (which is far in excess of normal operating range) to allow
234 <     * ids, counts, and their negations (used for thresholding) to fit
235 <     * into 16bit fields.
236 <     *
237 <     * Recording Workers.  Workers are recorded in the "workers" array
238 <     * that is created upon pool construction and expanded if (rarely)
239 <     * necessary.  This is an array as opposed to some other data
240 <     * structure to support index-based random steals by workers.
241 <     * Updates to the array recording new workers and unrecording
242 <     * terminated ones are protected from each other by a seqLock
243 <     * (scanGuard) but the array is otherwise concurrently readable,
168 <     * and accessed directly by workers. To simplify index-based
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency.
237 >     *
238 >     * Recording WorkQueues.  WorkQueues are recorded in the
239 >     * "workQueues" array that is created upon pool construction and
240 >     * expanded if necessary.  Updates to the array while recording
241 >     * new workers and unrecording terminated ones are protected from
242 >     * each other by a lock but the array is otherwise concurrently
243 >     * readable, and accessed directly.  To simplify index-based
244       * operations, the array size is always a power of two, and all
245 <     * readers must tolerate null slots. To avoid flailing during
246 <     * start-up, the array is presized to hold twice #parallelism
247 <     * workers (which is unlikely to need further resizing during
248 <     * execution). But to avoid dealing with so many null slots,
249 <     * variable scanGuard includes a mask for the nearest power of two
250 <     * that contains all current workers.  All worker thread creation
251 <     * is on-demand, triggered by task submissions, replacement of
252 <     * terminated workers, and/or compensation for blocked
253 <     * workers. However, all other support code is set up to work with
254 <     * other policies.  To ensure that we do not hold on to worker
255 <     * references that would prevent GC, ALL accesses to workers are
256 <     * via indices into the workers array (which is one source of some
257 <     * of the messy code constructions here). In essence, the workers
258 <     * array serves as a weak reference mechanism. Thus for example
259 <     * the wait queue field of ctl stores worker indices, not worker
260 <     * references.  Access to the workers in associated methods (for
261 <     * example signalWork) must both index-check and null-check the
262 <     * IDs. All such accesses ignore bad IDs by returning out early
263 <     * from what they are doing, since this can only be associated
264 <     * with termination, in which case it is OK to give up.
265 <     *
266 <     * All uses of the workers array, as well as queue arrays, check
267 <     * that the array is non-null (even if previously non-null). This
268 <     * allows nulling during termination, which is currently not
269 <     * necessary, but remains an option for resource-revocation-based
270 <     * shutdown schemes.
271 <     *
272 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
273 <     * let workers spin indefinitely scanning for tasks when none are
274 <     * can be immediately found, and we cannot start/resume workers
275 <     * unless there appear to be tasks available.  On the other hand,
276 <     * we must quickly prod them into action when new tasks are
277 <     * submitted or generated.  We park/unpark workers after placing
278 <     * in an event wait queue when they cannot find work. This "queue"
279 <     * is actually a simple Treiber stack, headed by the "id" field of
280 <     * ctl, plus a 15bit counter value to both wake up waiters (by
281 <     * advancing their count) and avoid ABA effects. Successors are
282 <     * held in worker field "nextWait".  Queuing deals with several
283 <     * intrinsic races, mainly that a task-producing thread can miss
284 <     * seeing (and signalling) another thread that gave up looking for
285 <     * work but has not yet entered the wait queue. We solve this by
286 <     * requiring a full sweep of all workers both before (in scan())
287 <     * and after (in awaitWork()) a newly waiting worker is added to
288 <     * the wait queue. During a rescan, the worker might release some
289 <     * other queued worker rather than itself, which has the same net
290 <     * effect.
245 >     * readers must tolerate null slots. Shared (submission) queues
246 >     * are at even indices, worker queues at odd indices. Grouping
247 >     * them together in this way simplifies and speeds up task
248 >     * scanning.
249 >     *
250 >     * All worker thread creation is on-demand, triggered by task
251 >     * submissions, replacement of terminated workers, and/or
252 >     * compensation for blocked workers. However, all other support
253 >     * code is set up to work with other policies.  To ensure that we
254 >     * do not hold on to worker references that would prevent GC, ALL
255 >     * accesses to workQueues are via indices into the workQueues
256 >     * array (which is one source of some of the messy code
257 >     * constructions here). In essence, the workQueues array serves as
258 >     * a weak reference mechanism. Thus for example the wait queue
259 >     * field of ctl stores indices, not references.  Access to the
260 >     * workQueues in associated methods (for example signalWork) must
261 >     * both index-check and null-check the IDs. All such accesses
262 >     * ignore bad IDs by returning out early from what they are doing,
263 >     * since this can only be associated with termination, in which
264 >     * case it is OK to give up.  All uses of the workQueues array
265 >     * also check that it is non-null (even if previously
266 >     * non-null). This allows nulling during termination, which is
267 >     * currently not necessary, but remains an option for
268 >     * resource-revocation-based shutdown schemes. It also helps
269 >     * reduce JIT issuance of uncommon-trap code, which tends to
270 >     * unnecessarily complicate control flow in some methods.
271 >     *
272 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
273 >     * let workers spin indefinitely scanning for tasks when none can
274 >     * be found immediately, and we cannot start/resume workers unless
275 >     * there appear to be tasks available.  On the other hand, we must
276 >     * quickly prod them into action when new tasks are submitted or
277 >     * generated. In many usages, ramp-up time to activate workers is
278 >     * the main limiting factor in overall performance (this is
279 >     * compounded at program start-up by JIT compilation and
280 >     * allocation). So we try to streamline this as much as possible.
281 >     * We park/unpark workers after placing in an event wait queue
282 >     * when they cannot find work. This "queue" is actually a simple
283 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
284 >     * counter value (that reflects the number of times a worker has
285 >     * been inactivated) to avoid ABA effects (we need only as many
286 >     * version numbers as worker threads). Successors are held in
287 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
288 >     * races, mainly that a task-producing thread can miss seeing (and
289 >     * signalling) another thread that gave up looking for work but
290 >     * has not yet entered the wait queue. We solve this by requiring
291 >     * a full sweep of all workers (via repeated calls to method
292 >     * scan()) both before and after a newly waiting worker is added
293 >     * to the wait queue. During a rescan, the worker might release
294 >     * some other queued worker rather than itself, which has the same
295 >     * net effect. Because enqueued workers may actually be rescanning
296 >     * rather than waiting, we set and clear the "parker" field of
297 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
298 >     * requires a secondary recheck to avoid missed signals.)  Note
299 >     * the unusual conventions about Thread.interrupts surrounding
300 >     * parking and other blocking: Because interrupts are used solely
301 >     * to alert threads to check termination, which is checked anyway
302 >     * upon blocking, we clear status (using Thread.interrupted)
303 >     * before any call to park, so that park does not immediately
304 >     * return due to status being set via some other unrelated call to
305 >     * interrupt in user code.
306       *
307       * Signalling.  We create or wake up workers only when there
308       * appears to be at least one task they might be able to find and
309       * execute.  When a submission is added or another worker adds a
310 <     * task to a queue that previously had two or fewer tasks, they
310 >     * task to a queue that previously had fewer than two tasks, they
311       * signal waiting workers (or trigger creation of new ones if
312       * fewer than the given parallelism level -- see signalWork).
313 <     * These primary signals are buttressed by signals during rescans
314 <     * as well as those performed when a worker steals a task and
315 <     * notices that there are more tasks too; together these cover the
316 <     * signals needed in cases when more than two tasks are pushed
227 <     * but untaken.
313 >     * These primary signals are buttressed by signals during rescans;
314 >     * together these cover the signals needed in cases when more
315 >     * tasks are pushed but untaken, and improve performance compared
316 >     * to having one thread wake up all workers.
317       *
318       * Trimming workers. To release resources after periods of lack of
319       * use, a worker starting to wait when the pool is quiescent will
320 <     * time out and terminate if the pool has remained quiescent for
321 <     * SHRINK_RATE nanosecs.
320 >     * time out and terminate if the pool has remained quiescent for a
321 >     * given period -- a short period if there are more threads than
322 >     * parallelism, longer as the number of threads decreases. This
323 >     * will slowly propagate, eventually terminating all workers after
324 >     * periods of non-use.
325       *
326 <     * Submissions. External submissions are maintained in an
327 <     * array-based queue that is structured identically to
328 <     * ForkJoinWorkerThread queues (which see) except for the use of
329 <     * submissionLock in method addSubmission. Unlike worker queues,
330 <     * multiple external threads can add new submissions.
331 <     *
332 <     * Compensation. Beyond work-stealing support and lifecycle
333 <     * control, the main responsibility of this framework is to take
334 <     * actions when one worker is waiting to join a task stolen (or
335 <     * always held by) another.  Because we are multiplexing many
336 <     * tasks on to a pool of workers, we can't just let them block (as
337 <     * in Thread.join).  We also cannot just reassign the joiner's
338 <     * run-time stack with another and replace it later, which would
339 <     * be a form of "continuation", that even if possible is not
340 <     * necessarily a good idea since we sometimes need both an
341 <     * unblocked task and its continuation to progress. Instead we
342 <     * combine two tactics:
326 >     * Shutdown and Termination. A call to shutdownNow atomically sets
327 >     * a runState bit and then (non-atomically) sets each worker's
328 >     * runState status, cancels all unprocessed tasks, and wakes up
329 >     * all waiting workers.  Detecting whether termination should
330 >     * commence after a non-abrupt shutdown() call requires more work
331 >     * and bookkeeping. We need consensus about quiescence (i.e., that
332 >     * there is no more work). The active count provides a primary
333 >     * indication but non-abrupt shutdown still requires a rechecking
334 >     * scan for any workers that are inactive but not queued.
335 >     *
336 >     * Joining Tasks
337 >     * =============
338 >     *
339 >     * Any of several actions may be taken when one worker is waiting
340 >     * to join a task stolen (or always held) by another.  Because we
341 >     * are multiplexing many tasks on to a pool of workers, we can't
342 >     * just let them block (as in Thread.join).  We also cannot just
343 >     * reassign the joiner's run-time stack with another and replace
344 >     * it later, which would be a form of "continuation", that even if
345 >     * possible is not necessarily a good idea since we sometimes need
346 >     * both an unblocked task and its continuation to progress.
347 >     * Instead we combine two tactics:
348       *
349       *   Helping: Arranging for the joiner to execute some task that it
350 <     *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 <     *      links to try to find such a task.
350 >     *      would be running if the steal had not occurred.
351       *
352       *   Compensating: Unless there are already enough live threads,
353 <     *      method tryPreBlock() may create or re-activate a spare
354 <     *      thread to compensate for blocked joiners until they
355 <     *      unblock.
353 >     *      method tryCompensate() may create or re-activate a spare
354 >     *      thread to compensate for blocked joiners until they unblock.
355 >     *
356 >     * A third form (implemented in tryRemoveAndExec and
357 >     * tryPollForAndExec) amounts to helping a hypothetical
358 >     * compensator: If we can readily tell that a possible action of a
359 >     * compensator is to steal and execute the task being joined, the
360 >     * joining thread can do so directly, without the need for a
361 >     * compensation thread (although at the expense of larger run-time
362 >     * stacks, but the tradeoff is typically worthwhile).
363       *
364       * The ManagedBlocker extension API can't use helping so relies
365       * only on compensation in method awaitBlocker.
366       *
367 +     * The algorithm in tryHelpStealer entails a form of "linear"
368 +     * helping: Each worker records (in field currentSteal) the most
369 +     * recent task it stole from some other worker. Plus, it records
370 +     * (in field currentJoin) the task it is currently actively
371 +     * joining. Method tryHelpStealer uses these markers to try to
372 +     * find a worker to help (i.e., steal back a task from and execute
373 +     * it) that could hasten completion of the actively joined task.
374 +     * In essence, the joiner executes a task that would be on its own
375 +     * local deque had the to-be-joined task not been stolen. This may
376 +     * be seen as a conservative variant of the approach in Wagner &
377 +     * Calder "Leapfrogging: a portable technique for implementing
378 +     * efficient futures" SIGPLAN Notices, 1993
379 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
380 +     * that: (1) We only maintain dependency links across workers upon
381 +     * steals, rather than use per-task bookkeeping.  This sometimes
382 +     * requires a linear scan of workQueues array to locate stealers,
383 +     * but often doesn't because stealers leave hints (that may become
384 +     * stale/wrong) of where to locate them.  A stealHint is only a
385 +     * hint because a worker might have had multiple steals and the
386 +     * hint records only one of them (usually the most current).
387 +     * Hinting isolates cost to when it is needed, rather than adding
388 +     * to per-task overhead.  (2) It is "shallow", ignoring nesting
389 +     * and potentially cyclic mutual steals.  (3) It is intentionally
390 +     * racy: field currentJoin is updated only while actively joining,
391 +     * which means that we miss links in the chain during long-lived
392 +     * tasks, GC stalls etc (which is OK since blocking in such cases
393 +     * is usually a good idea).  (4) We bound the number of attempts
394 +     * to find work (see MAX_HELP) and fall back to suspending the
395 +     * worker and if necessary replacing it with another.
396 +     *
397       * It is impossible to keep exactly the target parallelism number
398       * of threads running at any given time.  Determining the
399       * existence of conservatively safe helping targets, the
400       * availability of already-created spares, and the apparent need
401 <     * to create new spares are all racy and require heuristic
402 <     * guidance, so we rely on multiple retries of each.  Currently,
403 <     * in keeping with on-demand signalling policy, we compensate only
404 <     * if blocking would leave less than one active (non-waiting,
405 <     * non-blocked) worker. Additionally, to avoid some false alarms
406 <     * due to GC, lagging counters, system activity, etc, compensated
407 <     * blocking for joins is only attempted after a number of rechecks
408 <     * proportional to the current apparent deficit (where retries are
409 <     * interspersed with Thread.yield, for good citizenship).  The
410 <     * variable blockedCount, incremented before blocking and
411 <     * decremented after, is sometimes needed to distinguish cases of
412 <     * waiting for work vs blocking on joins or other managed sync,
413 <     * but both the cases are equivalent for most pool control, so we
414 <     * can update non-atomically. (Additionally, contention on
415 <     * blockedCount alleviates some contention on ctl).
416 <     *
417 <     * Shutdown and Termination. A call to shutdownNow atomically sets
418 <     * the ctl stop bit and then (non-atomically) sets each workers
419 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
420 <     * all waiting workers.  Detecting whether termination should
421 <     * commence after a non-abrupt shutdown() call requires more work
422 <     * and bookkeeping. We need consensus about quiesence (i.e., that
423 <     * there is no more work) which is reflected in active counts so
424 <     * long as there are no current blockers, as well as possible
425 <     * re-evaluations during independent changes in blocking or
426 <     * quiescing workers.
401 >     * to create new spares are all racy, so we rely on multiple
402 >     * retries of each.  Compensation in the apparent absence of
403 >     * helping opportunities is challenging to control on JVMs, where
404 >     * GC and other activities can stall progress of tasks that in
405 >     * turn stall out many other dependent tasks, without us being
406 >     * able to determine whether they will ever require compensation.
407 >     * Even though work-stealing otherwise encounters little
408 >     * degradation in the presence of more threads than cores,
409 >     * aggressively adding new threads in such cases entails risk of
410 >     * unwanted positive feedback control loops in which more threads
411 >     * cause more dependent stalls (as well as delayed progress of
412 >     * unblocked threads to the point that we know they are available)
413 >     * leading to more situations requiring more threads, and so
414 >     * on. This aspect of control can be seen as an (analytically
415 >     * intractable) game with an opponent that may choose the worst
416 >     * (for us) active thread to stall at any time.  We take several
417 >     * precautions to bound losses (and thus bound gains), mainly in
418 >     * methods tryCompensate and awaitJoin: (1) We only try
419 >     * compensation after attempting enough helping steps (measured
420 >     * via counting and timing) that we have already consumed the
421 >     * estimated cost of creating and activating a new thread.  (2) We
422 >     * allow up to 50% of threads to be blocked before initially
423 >     * adding any others, and unless completely saturated, check that
424 >     * some work is available for a new worker before adding. Also, we
425 >     * create up to only 50% more threads until entering a mode that
426 >     * only adds a thread if all others are possibly blocked.  All
427 >     * together, this means that we might be half as fast to react,
428 >     * and create half as many threads as possible in the ideal case,
429 >     * but present vastly fewer anomalies in all other cases compared
430 >     * to both more aggressive and more conservative alternatives.
431       *
432       * Style notes: There is a lot of representation-level coupling
433       * among classes ForkJoinPool, ForkJoinWorkerThread, and
434 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
435 <     * data structures managed by ForkJoinPool, so are directly
436 <     * accessed.  Conversely we allow access to "workers" array by
437 <     * workers, and direct access to ForkJoinTask.status by both
438 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
439 <     * trying to reduce this, since any associated future changes in
440 <     * representations will need to be accompanied by algorithmic
441 <     * changes anyway. All together, these low-level implementation
442 <     * choices produce as much as a factor of 4 performance
443 <     * improvement compared to naive implementations, and enable the
444 <     * processing of billions of tasks per second, at the expense of
445 <     * some ugliness.
446 <     *
447 <     * Methods signalWork() and scan() are the main bottlenecks so are
448 <     * especially heavily micro-optimized/mangled.  There are lots of
449 <     * inline assignments (of form "while ((local = field) != 0)")
450 <     * which are usually the simplest way to ensure the required read
451 <     * orderings (which are sometimes critical). This leads to a
452 <     * "C"-like style of listing declarations of these locals at the
453 <     * heads of methods or blocks.  There are several occurrences of
454 <     * the unusual "do {} while (!cas...)"  which is the simplest way
455 <     * to force an update of a CAS'ed variable. There are also other
456 <     * coding oddities that help some methods perform reasonably even
457 <     * when interpreted (not compiled).
458 <     *
459 <     * The order of declarations in this file is: (1) declarations of
460 <     * statics (2) fields (along with constants used when unpacking
461 <     * some of them), listed in an order that tends to reduce
462 <     * contention among them a bit under most JVMs.  (3) internal
463 <     * control methods (4) callbacks and other support for
464 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
465 <     * methods (plus a few little helpers). (6) static block
466 <     * initializing all statics in a minimally dependent order.
434 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
435 >     * managed by ForkJoinPool, so are directly accessed.  There is
436 >     * little point trying to reduce this, since any associated future
437 >     * changes in representations will need to be accompanied by
438 >     * algorithmic changes anyway. Several methods intrinsically
439 >     * sprawl because they must accumulate sets of consistent reads of
440 >     * volatiles held in local variables.  Methods signalWork() and
441 >     * scan() are the main bottlenecks, so are especially heavily
442 >     * micro-optimized/mangled.  There are lots of inline assignments
443 >     * (of form "while ((local = field) != 0)") which are usually the
444 >     * simplest way to ensure the required read orderings (which are
445 >     * sometimes critical). This leads to a "C"-like style of listing
446 >     * declarations of these locals at the heads of methods or blocks.
447 >     * There are several occurrences of the unusual "do {} while
448 >     * (!cas...)"  which is the simplest way to force an update of a
449 >     * CAS'ed variable. There are also other coding oddities that help
450 >     * some methods perform reasonably even when interpreted (not
451 >     * compiled).
452 >     *
453 >     * The order of declarations in this file is:
454 >     * (1) Static utility functions
455 >     * (2) Nested (static) classes
456 >     * (3) Static fields
457 >     * (4) Fields, along with constants used when unpacking some of them
458 >     * (5) Internal control methods
459 >     * (6) Callbacks and other support for ForkJoinTask methods
460 >     * (7) Exported methods
461 >     * (8) Static block initializing statics in minimally dependent order
462 >     */
463 >
464 >    // Static utilities
465 >
466 >    /**
467 >     * If there is a security manager, makes sure caller has
468 >     * permission to modify threads.
469       */
470 +    private static void checkPermission() {
471 +        SecurityManager security = System.getSecurityManager();
472 +        if (security != null)
473 +            security.checkPermission(modifyThreadPermission);
474 +    }
475 +
476 +    // Nested classes
477  
478      /**
479       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 358 | Line 503 | public class ForkJoinPool extends Abstra
503      }
504  
505      /**
506 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
507 <     * overridden in ForkJoinPool constructors.
506 >     * A simple non-reentrant lock used for exclusion when managing
507 >     * queues and workers. We use a custom lock so that we can readily
508 >     * probe lock state in constructions that check among alternative
509 >     * actions. The lock is normally only very briefly held, and
510 >     * sometimes treated as a spinlock, but other usages block to
511 >     * reduce overall contention in those cases where locked code
512 >     * bodies perform allocation/resizing.
513 >     */
514 >    static final class Mutex extends AbstractQueuedSynchronizer {
515 >        public final boolean tryAcquire(int ignore) {
516 >            return compareAndSetState(0, 1);
517 >        }
518 >        public final boolean tryRelease(int ignore) {
519 >            setState(0);
520 >            return true;
521 >        }
522 >        public final void lock() { acquire(0); }
523 >        public final void unlock() { release(0); }
524 >        public final boolean isHeldExclusively() { return getState() == 1; }
525 >        public final Condition newCondition() { return new ConditionObject(); }
526 >    }
527 >
528 >    /**
529 >     * Class for artificial tasks that are used to replace the target
530 >     * of local joins if they are removed from an interior queue slot
531 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
532 >     * actually do anything beyond having a unique identity.
533 >     */
534 >    static final class EmptyTask extends ForkJoinTask<Void> {
535 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
536 >        public final Void getRawResult() { return null; }
537 >        public final void setRawResult(Void x) {}
538 >        public final boolean exec() { return true; }
539 >    }
540 >
541 >    /**
542 >     * Queues supporting work-stealing as well as external task
543 >     * submission. See above for main rationale and algorithms.
544 >     * Implementation relies heavily on "Unsafe" intrinsics
545 >     * and selective use of "volatile":
546 >     *
547 >     * Field "base" is the index (mod array.length) of the least valid
548 >     * queue slot, which is always the next position to steal (poll)
549 >     * from if nonempty. Reads and writes require volatile orderings
550 >     * but not CAS, because updates are only performed after slot
551 >     * CASes.
552 >     *
553 >     * Field "top" is the index (mod array.length) of the next queue
554 >     * slot to push to or pop from. It is written only by owner thread
555 >     * for push, or under lock for trySharedPush, and accessed by
556 >     * other threads only after reading (volatile) base.  Both top and
557 >     * base are allowed to wrap around on overflow, but (top - base)
558 >     * (or more commonly -(base - top) to force volatile read of base
559 >     * before top) still estimates size.
560 >     *
561 >     * The array slots are read and written using the emulation of
562 >     * volatiles/atomics provided by Unsafe. Insertions must in
563 >     * general use putOrderedObject as a form of releasing store to
564 >     * ensure that all writes to the task object are ordered before
565 >     * its publication in the queue. (Although we can avoid one case
566 >     * of this when locked in trySharedPush.) All removals entail a
567 >     * CAS to null.  The array is always a power of two. To ensure
568 >     * safety of Unsafe array operations, all accesses perform
569 >     * explicit null checks and implicit bounds checks via
570 >     * power-of-two masking.
571 >     *
572 >     * In addition to basic queuing support, this class contains
573 >     * fields described elsewhere to control execution. It turns out
574 >     * to work better memory-layout-wise to include them in this
575 >     * class rather than a separate class.
576 >     *
577 >     * Performance on most platforms is very sensitive to placement of
578 >     * instances of both WorkQueues and their arrays -- we absolutely
579 >     * do not want multiple WorkQueue instances or multiple queue
580 >     * arrays sharing cache lines. (It would be best for queue objects
581 >     * and their arrays to share, but there is nothing available to
582 >     * help arrange that).  Unfortunately, because they are recorded
583 >     * in a common array, WorkQueue instances are often moved to be
584 >     * adjacent by garbage collectors. To reduce impact, we use field
585 >     * padding that works OK on common platforms; this effectively
586 >     * trades off slightly slower average field access for the sake of
587 >     * avoiding really bad worst-case access. (Until better JVM
588 >     * support is in place, this padding is dependent on transient
589 >     * properties of JVM field layout rules.)  We also take care in
590 >     * allocating, sizing and resizing the array. Non-shared queue
591 >     * arrays are initialized (via method growArray) by workers before
592 >     * use. Others are allocated on first use.
593       */
594 <    public static final ForkJoinWorkerThreadFactory
595 <        defaultForkJoinWorkerThreadFactory;
594 >    static final class WorkQueue {
595 >        /**
596 >         * Capacity of work-stealing queue array upon initialization.
597 >         * Must be a power of two; at least 4, but should be larger to
598 >         * reduce or eliminate cacheline sharing among queues.
599 >         * Currently, it is much larger, as a partial workaround for
600 >         * the fact that JVMs often place arrays in locations that
601 >         * share GC bookkeeping (especially cardmarks) such that
602 >         * per-write accesses encounter serious memory contention.
603 >         */
604 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
605 >
606 >        /**
607 >         * Maximum size for queue arrays. Must be a power of two less
608 >         * than or equal to 1 << (31 - width of array entry) to ensure
609 >         * lack of wraparound of index calculations, but defined to a
610 >         * value a bit less than this to help users trap runaway
611 >         * programs before saturating systems.
612 >         */
613 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
614 >
615 >        volatile long totalSteals; // cumulative number of steals
616 >        int seed;                  // for random scanning; initialize nonzero
617 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
618 >        int nextWait;              // encoded record of next event waiter
619 >        int rescans;               // remaining scans until block
620 >        int nsteals;               // top-level task executions since last idle
621 >        final int mode;            // lifo, fifo, or shared
622 >        int poolIndex;             // index of this queue in pool (or 0)
623 >        int stealHint;             // index of most recent known stealer
624 >        volatile int runState;     // 1: locked, -1: terminate; else 0
625 >        volatile int base;         // index of next slot for poll
626 >        int top;                   // index of next slot for push
627 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
628 >        final ForkJoinPool pool;   // the containing pool (may be null)
629 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
630 >        volatile Thread parker;    // == owner during call to park; else null
631 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
632 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
633 >        // Heuristic padding to ameliorate unfortunate memory placements
634 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
635 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
636 >
637 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
638 >            this.mode = mode;
639 >            this.pool = pool;
640 >            this.owner = owner;
641 >            // Place indices in the center of array (that is not yet allocated)
642 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
643 >        }
644 >
645 >        /**
646 >         * Returns the approximate number of tasks in the queue.
647 >         */
648 >        final int queueSize() {
649 >            int n = base - top;       // non-owner callers must read base first
650 >            return (n >= 0) ? 0 : -n; // ignore transient negative
651 >        }
652 >
653 >        /**
654 >         * Provides a more accurate estimate of whether this queue has
655 >         * any tasks than does queueSize, by checking whether a
656 >         * near-empty queue has at least one unclaimed task.
657 >         */
658 >        final boolean isEmpty() {
659 >            ForkJoinTask<?>[] a; int m, s;
660 >            int n = base - (s = top);
661 >            return (n >= 0 ||
662 >                    (n == -1 &&
663 >                     ((a = array) == null ||
664 >                      (m = a.length - 1) < 0 ||
665 >                      U.getObjectVolatile
666 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
667 >        }
668 >
669 >        /**
670 >         * Pushes a task. Call only by owner in unshared queues.
671 >         *
672 >         * @param task the task. Caller must ensure non-null.
673 >         * @throw RejectedExecutionException if array cannot be resized
674 >         */
675 >        final void push(ForkJoinTask<?> task) {
676 >            ForkJoinTask<?>[] a; ForkJoinPool p;
677 >            int s = top, m, n;
678 >            if ((a = array) != null) {    // ignore if queue removed
679 >                U.putOrderedObject
680 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
681 >                if ((n = (top = s + 1) - base) <= 2) {
682 >                    if ((p = pool) != null)
683 >                        p.signalWork();
684 >                }
685 >                else if (n >= m)
686 >                    growArray(true);
687 >            }
688 >        }
689 >
690 >        /**
691 >         * Pushes a task if lock is free and array is either big
692 >         * enough or can be resized to be big enough.
693 >         *
694 >         * @param task the task. Caller must ensure non-null.
695 >         * @return true if submitted
696 >         */
697 >        final boolean trySharedPush(ForkJoinTask<?> task) {
698 >            boolean submitted = false;
699 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
700 >                ForkJoinTask<?>[] a = array;
701 >                int s = top;
702 >                try {
703 >                    if ((a != null && a.length > s + 1 - base) ||
704 >                        (a = growArray(false)) != null) { // must presize
705 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
706 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
707 >                        top = s + 1;
708 >                        submitted = true;
709 >                    }
710 >                } finally {
711 >                    runState = 0;                         // unlock
712 >                }
713 >            }
714 >            return submitted;
715 >        }
716 >
717 >        /**
718 >         * Takes next task, if one exists, in LIFO order.  Call only
719 >         * by owner in unshared queues. (We do not have a shared
720 >         * version of this method because it is never needed.)
721 >         */
722 >        final ForkJoinTask<?> pop() {
723 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
724 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
725 >                for (int s; (s = top - 1) - base >= 0;) {
726 >                    long j = ((m & s) << ASHIFT) + ABASE;
727 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
728 >                        break;
729 >                    if (U.compareAndSwapObject(a, j, t, null)) {
730 >                        top = s;
731 >                        return t;
732 >                    }
733 >                }
734 >            }
735 >            return null;
736 >        }
737 >
738 >        /**
739 >         * Takes a task in FIFO order if b is base of queue and a task
740 >         * can be claimed without contention. Specialized versions
741 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
742 >         */
743 >        final ForkJoinTask<?> pollAt(int b) {
744 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
745 >            if ((a = array) != null) {
746 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
747 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
748 >                    base == b &&
749 >                    U.compareAndSwapObject(a, j, t, null)) {
750 >                    base = b + 1;
751 >                    return t;
752 >                }
753 >            }
754 >            return null;
755 >        }
756 >
757 >        /**
758 >         * Takes next task, if one exists, in FIFO order.
759 >         */
760 >        final ForkJoinTask<?> poll() {
761 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
762 >            while ((b = base) - top < 0 && (a = array) != null) {
763 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
765 >                if (t != null) {
766 >                    if (base == b &&
767 >                        U.compareAndSwapObject(a, j, t, null)) {
768 >                        base = b + 1;
769 >                        return t;
770 >                    }
771 >                }
772 >                else if (base == b) {
773 >                    if (b + 1 == top)
774 >                        break;
775 >                    Thread.yield(); // wait for lagging update
776 >                }
777 >            }
778 >            return null;
779 >        }
780 >
781 >        /**
782 >         * Takes next task, if one exists, in order specified by mode.
783 >         */
784 >        final ForkJoinTask<?> nextLocalTask() {
785 >            return mode == 0 ? pop() : poll();
786 >        }
787 >
788 >        /**
789 >         * Returns next task, if one exists, in order specified by mode.
790 >         */
791 >        final ForkJoinTask<?> peek() {
792 >            ForkJoinTask<?>[] a = array; int m;
793 >            if (a == null || (m = a.length - 1) < 0)
794 >                return null;
795 >            int i = mode == 0 ? top - 1 : base;
796 >            int j = ((i & m) << ASHIFT) + ABASE;
797 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
798 >        }
799 >
800 >        /**
801 >         * Pops the given task only if it is at the current top.
802 >         */
803 >        final boolean tryUnpush(ForkJoinTask<?> t) {
804 >            ForkJoinTask<?>[] a; int s;
805 >            if ((a = array) != null && (s = top) != base &&
806 >                U.compareAndSwapObject
807 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
808 >                top = s;
809 >                return true;
810 >            }
811 >            return false;
812 >        }
813 >
814 >        /**
815 >         * Version of tryUnpush for shared queues; called by non-FJ
816 >         * submitters. Conservatively fails to unpush if all workers
817 >         * are active unless there are multiple tasks in queue.
818 >         */
819 >        final boolean trySharedUnpush(ForkJoinTask<?> task, ForkJoinPool p) {
820 >            boolean success = false;
821 >            if (task != null && top != base && runState == 0 &&
822 >                U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823 >                try {
824 >                    ForkJoinTask<?>[] a; int n, s;
825 >                    if ((a = array) != null && (n = (s = top) - base) > 0 &&
826 >                        (n > 1 || p == null || (int)(p.ctl >> AC_SHIFT) < 0)) {
827 >                        int j = (((a.length - 1) & --s) << ASHIFT) + ABASE;
828 >                        if (U.getObjectVolatile(a, j) == task &&
829 >                            U.compareAndSwapObject(a, j, task, null)) {
830 >                            top = s;
831 >                            success = true;
832 >                        }
833 >                    }
834 >                } finally {
835 >                    runState = 0;                         // unlock
836 >                }
837 >            }
838 >            return success;
839 >        }
840 >
841 >        /**
842 >         * Polls the given task only if it is at the current base.
843 >         */
844 >        final boolean pollFor(ForkJoinTask<?> task) {
845 >            ForkJoinTask<?>[] a; int b;
846 >            if ((b = base) - top < 0 && (a = array) != null) {
847 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
848 >                if (U.getObjectVolatile(a, j) == task && base == b &&
849 >                    U.compareAndSwapObject(a, j, task, null)) {
850 >                    base = b + 1;
851 >                    return true;
852 >                }
853 >            }
854 >            return false;
855 >        }
856 >
857 >        /**
858 >         * Initializes or doubles the capacity of array. Call either
859 >         * by owner or with lock held -- it is OK for base, but not
860 >         * top, to move while resizings are in progress.
861 >         *
862 >         * @param rejectOnFailure if true, throw exception if capacity
863 >         * exceeded (relayed ultimately to user); else return null.
864 >         */
865 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
866 >            ForkJoinTask<?>[] oldA = array;
867 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
868 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
869 >                int oldMask, t, b;
870 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
871 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
872 >                    (t = top) - (b = base) > 0) {
873 >                    int mask = size - 1;
874 >                    do {
875 >                        ForkJoinTask<?> x;
876 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
877 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
878 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
879 >                        if (x != null &&
880 >                            U.compareAndSwapObject(oldA, oldj, x, null))
881 >                            U.putObjectVolatile(a, j, x);
882 >                    } while (++b != t);
883 >                }
884 >                return a;
885 >            }
886 >            else if (!rejectOnFailure)
887 >                return null;
888 >            else
889 >                throw new RejectedExecutionException("Queue capacity exceeded");
890 >        }
891 >
892 >        /**
893 >         * Removes and cancels all known tasks, ignoring any exceptions.
894 >         */
895 >        final void cancelAll() {
896 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
897 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
898 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
899 >                ForkJoinTask.cancelIgnoringExceptions(t);
900 >        }
901 >
902 >        /**
903 >         * Computes next value for random probes.  Scans don't require
904 >         * a very high quality generator, but also not a crummy one.
905 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
906 >         * This is manually inlined in its usages in ForkJoinPool to
907 >         * avoid writes inside busy scan loops.
908 >         */
909 >        final int nextSeed() {
910 >            int r = seed;
911 >            r ^= r << 13;
912 >            r ^= r >>> 17;
913 >            return seed = r ^= r << 5;
914 >        }
915 >
916 >        // Execution methods
917 >
918 >        /**
919 >         * Pops and runs tasks until empty.
920 >         */
921 >        private void popAndExecAll() {
922 >            // A bit faster than repeated pop calls
923 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
924 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
925 >                   (s = top - 1) - base >= 0 &&
926 >                   (t = ((ForkJoinTask<?>)
927 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
928 >                   != null) {
929 >                if (U.compareAndSwapObject(a, j, t, null)) {
930 >                    top = s;
931 >                    t.doExec();
932 >                }
933 >            }
934 >        }
935 >
936 >        /**
937 >         * Polls and runs tasks until empty.
938 >         */
939 >        private void pollAndExecAll() {
940 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
941 >                t.doExec();
942 >        }
943 >
944 >        /**
945 >         * If present, removes from queue and executes the given task, or
946 >         * any other cancelled task. Returns (true) immediately on any CAS
947 >         * or consistency check failure so caller can retry.
948 >         *
949 >         * @return 0 if no progress can be made, else positive
950 >         * (this unusual convention simplifies use with tryHelpStealer.)
951 >         */
952 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
953 >            int stat = 1;
954 >            boolean removed = false, empty = true;
955 >            ForkJoinTask<?>[] a; int m, s, b, n;
956 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
957 >                (n = (s = top) - (b = base)) > 0) {
958 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
959 >                    int j = ((--s & m) << ASHIFT) + ABASE;
960 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
961 >                    if (t == null)                    // inconsistent length
962 >                        break;
963 >                    else if (t == task) {
964 >                        if (s + 1 == top) {           // pop
965 >                            if (!U.compareAndSwapObject(a, j, task, null))
966 >                                break;
967 >                            top = s;
968 >                            removed = true;
969 >                        }
970 >                        else if (base == b)           // replace with proxy
971 >                            removed = U.compareAndSwapObject(a, j, task,
972 >                                                             new EmptyTask());
973 >                        break;
974 >                    }
975 >                    else if (t.status >= 0)
976 >                        empty = false;
977 >                    else if (s + 1 == top) {          // pop and throw away
978 >                        if (U.compareAndSwapObject(a, j, t, null))
979 >                            top = s;
980 >                        break;
981 >                    }
982 >                    if (--n == 0) {
983 >                        if (!empty && base == b)
984 >                            stat = 0;
985 >                        break;
986 >                    }
987 >                }
988 >            }
989 >            if (removed)
990 >                task.doExec();
991 >            return stat;
992 >        }
993 >
994 >        /**
995 >         * Executes a top-level task and any local tasks remaining
996 >         * after execution.
997 >         */
998 >        final void runTask(ForkJoinTask<?> t) {
999 >            if (t != null) {
1000 >                currentSteal = t;
1001 >                t.doExec();
1002 >                if (top != base) {       // process remaining local tasks
1003 >                    if (mode == 0)
1004 >                        popAndExecAll();
1005 >                    else
1006 >                        pollAndExecAll();
1007 >                }
1008 >                ++nsteals;
1009 >                currentSteal = null;
1010 >            }
1011 >        }
1012 >
1013 >        /**
1014 >         * Executes a non-top-level (stolen) task.
1015 >         */
1016 >        final void runSubtask(ForkJoinTask<?> t) {
1017 >            if (t != null) {
1018 >                ForkJoinTask<?> ps = currentSteal;
1019 >                currentSteal = t;
1020 >                t.doExec();
1021 >                currentSteal = ps;
1022 >            }
1023 >        }
1024 >
1025 >        /**
1026 >         * Returns true if owned and not known to be blocked.
1027 >         */
1028 >        final boolean isApparentlyUnblocked() {
1029 >            Thread wt; Thread.State s;
1030 >            return (eventCount >= 0 &&
1031 >                    (wt = owner) != null &&
1032 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1033 >                    s != Thread.State.WAITING &&
1034 >                    s != Thread.State.TIMED_WAITING);
1035 >        }
1036 >
1037 >        /**
1038 >         * If this owned and is not already interrupted, try to
1039 >         * interrupt and/or unpark, ignoring exceptions.
1040 >         */
1041 >        final void interruptOwner() {
1042 >            Thread wt, p;
1043 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1044 >                try {
1045 >                    wt.interrupt();
1046 >                } catch (SecurityException ignore) {
1047 >                }
1048 >            }
1049 >            if ((p = parker) != null)
1050 >                U.unpark(p);
1051 >        }
1052 >
1053 >        // Unsafe mechanics
1054 >        private static final sun.misc.Unsafe U;
1055 >        private static final long RUNSTATE;
1056 >        private static final int ABASE;
1057 >        private static final int ASHIFT;
1058 >        static {
1059 >            int s;
1060 >            try {
1061 >                U = getUnsafe();
1062 >                Class<?> k = WorkQueue.class;
1063 >                Class<?> ak = ForkJoinTask[].class;
1064 >                RUNSTATE = U.objectFieldOffset
1065 >                    (k.getDeclaredField("runState"));
1066 >                ABASE = U.arrayBaseOffset(ak);
1067 >                s = U.arrayIndexScale(ak);
1068 >            } catch (Exception e) {
1069 >                throw new Error(e);
1070 >            }
1071 >            if ((s & (s-1)) != 0)
1072 >                throw new Error("data type scale not a power of two");
1073 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1074 >        }
1075 >    }
1076  
1077      /**
1078 <     * Permission required for callers of methods that may start or
1079 <     * kill threads.
1078 >     * Per-thread records for threads that submit to pools. Currently
1079 >     * holds only pseudo-random seed / index that is used to choose
1080 >     * submission queues in method doSubmit. In the future, this may
1081 >     * also incorporate a means to implement different task rejection
1082 >     * and resubmission policies.
1083 >     *
1084 >     * Seeds for submitters and workers/workQueues work in basically
1085 >     * the same way but are initialized and updated using slightly
1086 >     * different mechanics. Both are initialized using the same
1087 >     * approach as in class ThreadLocal, where successive values are
1088 >     * unlikely to collide with previous values. This is done during
1089 >     * registration for workers, but requires a separate AtomicInteger
1090 >     * for submitters. Seeds are then randomly modified upon
1091 >     * collisions using xorshifts, which requires a non-zero seed.
1092       */
1093 <    private static final RuntimePermission modifyThreadPermission;
1093 >    static final class Submitter {
1094 >        int seed;
1095 >        Submitter() {
1096 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1097 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1098 >        }
1099 >    }
1100 >
1101 >    /** ThreadLocal class for Submitters */
1102 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103 >        public Submitter initialValue() { return new Submitter(); }
1104 >    }
1105 >
1106 >    // static fields (initialized in static initializer below)
1107  
1108      /**
1109 <     * If there is a security manager, makes sure caller has
1110 <     * permission to modify threads.
1109 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1110 >     * overridden in ForkJoinPool constructors.
1111       */
1112 <    private static void checkPermission() {
1113 <        SecurityManager security = System.getSecurityManager();
379 <        if (security != null)
380 <            security.checkPermission(modifyThreadPermission);
381 <    }
1112 >    public static final ForkJoinWorkerThreadFactory
1113 >        defaultForkJoinWorkerThreadFactory;
1114  
1115      /**
1116       * Generator for assigning sequence numbers as pool names.
# Line 386 | Line 1118 | public class ForkJoinPool extends Abstra
1118      private static final AtomicInteger poolNumberGenerator;
1119  
1120      /**
1121 <     * Generator for initial random seeds for worker victim
1122 <     * selection. This is used only to create initial seeds. Random
391 <     * steals use a cheaper xorshift generator per steal attempt. We
392 <     * don't expect much contention on seedGenerator, so just use a
393 <     * plain Random.
1121 >     * Generator for initial hashes/seeds for submitters. Accessed by
1122 >     * Submitter class constructor.
1123       */
1124 <    static final Random workerSeedGenerator;
1124 >    static final AtomicInteger nextSubmitterSeed;
1125  
1126      /**
1127 <     * Array holding all worker threads in the pool.  Initialized upon
1128 <     * construction. Array size must be a power of two.  Updates and
400 <     * replacements are protected by scanGuard, but the array is
401 <     * always kept in a consistent enough state to be randomly
402 <     * accessed without locking by workers performing work-stealing,
403 <     * as well as other traversal-based methods in this class, so long
404 <     * as reads memory-acquire by first reading ctl. All readers must
405 <     * tolerate that some array slots may be null.
1127 >     * Permission required for callers of methods that may start or
1128 >     * kill threads.
1129       */
1130 <    ForkJoinWorkerThread[] workers;
1130 >    private static final RuntimePermission modifyThreadPermission;
1131  
1132      /**
1133 <     * Initial size for submission queue array. Must be a power of
1134 <     * two.  In many applications, these always stay small so we use a
1135 <     * small initial cap.
1133 >     * Per-thread submission bookkeeping. Shared across all pools
1134 >     * to reduce ThreadLocal pollution and because random motion
1135 >     * to avoid contention in one pool is likely to hold for others.
1136       */
1137 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
1137 >    private static final ThreadSubmitter submitters;
1138  
1139 <    /**
1140 <     * Maximum size for submission queue array. Must be a power of two
418 <     * less than or equal to 1 << (31 - width of array entry) to
419 <     * ensure lack of index wraparound, but is capped at a lower
420 <     * value to help users trap runaway computations.
421 <     */
422 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1139 >    /** Common default pool */
1140 >    static volatile ForkJoinPool commonPool;
1141  
1142 <    /**
1143 <     * Array serving as submission queue. Initialized upon construction.
1144 <     */
1145 <    private ForkJoinTask<?>[] submissionQueue;
1142 >    // commonPool construction parameters
1143 >    private static final String propPrefix =
1144 >        "java.util.concurrent.ForkJoinPool.common.";
1145 >    private static final Thread.UncaughtExceptionHandler commonPoolUEH;
1146 >    private static final ForkJoinWorkerThreadFactory commonPoolFactory;
1147 >    static final int commonPoolParallelism;
1148  
1149 <    /**
1150 <     * Lock protecting submissions array for addSubmission
1151 <     */
1152 <    private final ReentrantLock submissionLock;
1149 >    /** Static initialization lock */
1150 >    private static final Mutex initializationLock;
1151 >
1152 >    // static constants
1153  
1154      /**
1155 <     * Condition for awaitTermination, using submissionLock for
1156 <     * convenience.
1155 >     * Initial timeout value (in nanoseconds) for the tread triggering
1156 >     * quiescence to park waiting for new work. On timeout, the thread
1157 >     * will instead try to shrink the number of workers.
1158       */
1159 <    private final Condition termination;
1159 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1160  
1161      /**
1162 <     * Creation factory for worker threads.
1162 >     * Timeout value when there are more threads than parallelism level
1163       */
1164 <    private final ForkJoinWorkerThreadFactory factory;
1164 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1165  
1166      /**
1167 <     * The uncaught exception handler used when any worker abruptly
1168 <     * terminates.
1167 >     * The maximum stolen->joining link depth allowed in method
1168 >     * tryHelpStealer.  Must be a power of two. This value also
1169 >     * controls the maximum number of times to try to help join a task
1170 >     * without any apparent progress or change in pool state before
1171 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1172 >     * chains are unbounded, but we use a fixed constant to avoid
1173 >     * (otherwise unchecked) cycles and to bound staleness of
1174 >     * traversal parameters at the expense of sometimes blocking when
1175 >     * we could be helping.
1176       */
1177 <    final Thread.UncaughtExceptionHandler ueh;
1177 >    private static final int MAX_HELP = 64;
1178  
1179      /**
1180 <     * Prefix for assigning names to worker threads
1180 >     * Secondary time-based bound (in nanosecs) for helping attempts
1181 >     * before trying compensated blocking in awaitJoin. Used in
1182 >     * conjunction with MAX_HELP to reduce variance due to different
1183 >     * polling rates associated with different helping options. The
1184 >     * value should roughly approximate the time required to create
1185 >     * and/or activate a worker thread.
1186       */
1187 <    private final String workerNamePrefix;
1187 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1188  
1189      /**
1190 <     * Sum of per-thread steal counts, updated only when threads are
1191 <     * idle or terminating.
1190 >     * Increment for seed generators. See class ThreadLocal for
1191 >     * explanation.
1192       */
1193 <    private volatile long stealCount;
1193 >    private static final int SEED_INCREMENT = 0x61c88647;
1194  
1195      /**
1196 <     * Main pool control -- a long packed with:
1196 >     * Bits and masks for control variables
1197 >     *
1198 >     * Field ctl is a long packed with:
1199       * AC: Number of active running workers minus target parallelism (16 bits)
1200 <     * TC: Number of total workers minus target parallelism (16bits)
1200 >     * TC: Number of total workers minus target parallelism (16 bits)
1201       * ST: true if pool is terminating (1 bit)
1202       * EC: the wait count of top waiting thread (15 bits)
1203 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1203 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1204       *
1205       * When convenient, we can extract the upper 32 bits of counts and
1206       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 474 | Line 1209 | public class ForkJoinPool extends Abstra
1209       * parallelism and the positionings of fields makes it possible to
1210       * perform the most common checks via sign tests of fields: When
1211       * ac is negative, there are not enough active workers, when tc is
1212 <     * negative, there are not enough total workers, when id is
478 <     * negative, there is at least one waiting worker, and when e is
1212 >     * negative, there are not enough total workers, and when e is
1213       * negative, the pool is terminating.  To deal with these possibly
1214       * negative fields, we use casts in and out of "short" and/or
1215 <     * signed shifts to maintain signedness.  Note: AC_SHIFT is
1216 <     * redundantly declared in ForkJoinWorkerThread in order to
1217 <     * integrate a surplus-threads check.
1215 >     * signed shifts to maintain signedness.
1216 >     *
1217 >     * When a thread is queued (inactivated), its eventCount field is
1218 >     * set negative, which is the only way to tell if a worker is
1219 >     * prevented from executing tasks, even though it must continue to
1220 >     * scan for them to avoid queuing races. Note however that
1221 >     * eventCount updates lag releases so usage requires care.
1222 >     *
1223 >     * Field runState is an int packed with:
1224 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1225 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1226 >     * INIT: set true after workQueues array construction (1 bit)
1227 >     *
1228 >     * The sequence number enables simple consistency checks:
1229 >     * Staleness of read-only operations on the workQueues array can
1230 >     * be checked by comparing runState before vs after the reads.
1231       */
485    volatile long ctl;
1232  
1233      // bit positions/shifts for fields
1234      private static final int  AC_SHIFT   = 48;
# Line 491 | Line 1237 | public class ForkJoinPool extends Abstra
1237      private static final int  EC_SHIFT   = 16;
1238  
1239      // bounds
1240 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1241 <    private static final int  SMASK      = 0xffff;  // mask short bits
1240 >    private static final int  SMASK      = 0xffff;  // short bits
1241 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1242 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1243      private static final int  SHORT_SIGN = 1 << 15;
1244      private static final int  INT_SIGN   = 1 << 31;
1245  
# Line 514 | Line 1261 | public class ForkJoinPool extends Abstra
1261      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1262  
1263      // masks and units for dealing with e = (int)ctl
1264 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1265 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
1264 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1265 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1266  
1267 <    /**
1268 <     * The target parallelism level.
522 <     */
523 <    final int parallelism;
1267 >    // runState bits
1268 >    private static final int SHUTDOWN    = 1 << 31;
1269  
1270 <    /**
1271 <     * Index (mod submission queue length) of next element to take
1272 <     * from submission queue.
1273 <     */
529 <    volatile int queueBase;
1270 >    // access mode for WorkQueue
1271 >    static final int LIFO_QUEUE          =  0;
1272 >    static final int FIFO_QUEUE          =  1;
1273 >    static final int SHARED_QUEUE        = -1;
1274  
1275 <    /**
532 <     * Index (mod submission queue length) of next element to add
533 <     * in submission queue.
534 <     */
535 <    int queueTop;
1275 >    // Instance fields
1276  
1277 <    /**
1278 <     * True when shutdown() has been called.
1279 <     */
1280 <    volatile boolean shutdown;
1277 >    /*
1278 >     * Field layout order in this class tends to matter more than one
1279 >     * would like. Runtime layout order is only loosely related to
1280 >     * declaration order and may differ across JVMs, but the following
1281 >     * empirically works OK on current JVMs.
1282 >     */
1283 >
1284 >    volatile long ctl;                         // main pool control
1285 >    final int parallelism;                     // parallelism level
1286 >    final int localMode;                       // per-worker scheduling mode
1287 >    final int submitMask;                      // submit queue index bound
1288 >    int nextSeed;                              // for initializing worker seeds
1289 >    volatile int runState;                     // shutdown status and seq
1290 >    WorkQueue[] workQueues;                    // main registry
1291 >    final Mutex lock;                          // for registration
1292 >    final Condition termination;               // for awaitTermination
1293 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1294 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1295 >    final AtomicLong stealCount;               // collect counts when terminated
1296 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1297 >    String workerNamePrefix;                   // to create worker name string
1298 >
1299 >    //  Creating, registering, and deregistering workers
1300  
1301      /**
1302 <     * True if use local fifo, not default lifo, for local polling
544 <     * Read by, and replicated by ForkJoinWorkerThreads
1302 >     * Tries to create and start a worker
1303       */
1304 <    final boolean locallyFifo;
1304 >    private void addWorker() {
1305 >        Throwable ex = null;
1306 >        ForkJoinWorkerThread wt = null;
1307 >        try {
1308 >            if ((wt = factory.newThread(this)) != null) {
1309 >                wt.start();
1310 >                return;
1311 >            }
1312 >        } catch (Throwable e) {
1313 >            ex = e;
1314 >        }
1315 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1316 >    }
1317  
1318      /**
1319 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
1320 <     * When non-zero, suppresses automatic shutdown when active
1321 <     * counts become zero.
1319 >     * Callback from ForkJoinWorkerThread constructor to assign a
1320 >     * public name. This must be separate from registerWorker because
1321 >     * it is called during the "super" constructor call in
1322 >     * ForkJoinWorkerThread.
1323       */
1324 <    volatile int quiescerCount;
1324 >    final String nextWorkerName() {
1325 >        return workerNamePrefix.concat
1326 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1327 >    }
1328  
1329      /**
1330 <     * The number of threads blocked in join.
1330 >     * Callback from ForkJoinWorkerThread constructor to establish its
1331 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1332 >     * to packing entries in front of the workQueues array, we treat
1333 >     * the array as a simple power-of-two hash table using per-thread
1334 >     * seed as hash, expanding as needed.
1335 >     *
1336 >     * @param w the worker's queue
1337       */
1338 <    volatile int blockedCount;
1338 >    final void registerWorker(WorkQueue w) {
1339 >        Mutex lock = this.lock;
1340 >        lock.lock();
1341 >        try {
1342 >            WorkQueue[] ws = workQueues;
1343 >            if (w != null && ws != null) {          // skip on shutdown/failure
1344 >                int rs, n = ws.length, m = n - 1;
1345 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1346 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1347 >                int r = (s << 1) | 1;               // use odd-numbered indices
1348 >                if (ws[r &= m] != null) {           // collision
1349 >                    int probes = 0;                 // step by approx half size
1350 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1351 >                    while (ws[r = (r + step) & m] != null) {
1352 >                        if (++probes >= n) {
1353 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1354 >                            m = n - 1;
1355 >                            probes = 0;
1356 >                        }
1357 >                    }
1358 >                }
1359 >                w.eventCount = w.poolIndex = r;     // establish before recording
1360 >                ws[r] = w;                          // also update seq
1361 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362 >            }
1363 >        } finally {
1364 >            lock.unlock();
1365 >        }
1366 >    }
1367  
1368      /**
1369 <     * Counter for worker Thread names (unrelated to their poolIndex)
1369 >     * Final callback from terminating worker, as well as upon failure
1370 >     * to construct or start a worker in addWorker.  Removes record of
1371 >     * worker from array, and adjusts counts. If pool is shutting
1372 >     * down, tries to complete termination.
1373 >     *
1374 >     * @param wt the worker thread or null if addWorker failed
1375 >     * @param ex the exception causing failure, or null if none
1376       */
1377 <    private volatile int nextWorkerNumber;
1377 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378 >        Mutex lock = this.lock;
1379 >        WorkQueue w = null;
1380 >        if (wt != null && (w = wt.workQueue) != null) {
1381 >            w.runState = -1;                // ensure runState is set
1382 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1383 >            int idx = w.poolIndex;
1384 >            lock.lock();
1385 >            try {                           // remove record from array
1386 >                WorkQueue[] ws = workQueues;
1387 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1388 >                    ws[idx] = null;
1389 >            } finally {
1390 >                lock.unlock();
1391 >            }
1392 >        }
1393 >
1394 >        long c;                             // adjust ctl counts
1395 >        do {} while (!U.compareAndSwapLong
1396 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1397 >                                           ((c - TC_UNIT) & TC_MASK) |
1398 >                                           (c & ~(AC_MASK|TC_MASK)))));
1399 >
1400 >        if (!tryTerminate(false, false) && w != null) {
1401 >            w.cancelAll();                  // cancel remaining tasks
1402 >            if (w.array != null)            // suppress signal if never ran
1403 >                signalWork();               // wake up or create replacement
1404 >            if (ex == null)                 // help clean refs on way out
1405 >                ForkJoinTask.helpExpungeStaleExceptions();
1406 >        }
1407 >
1408 >        if (ex != null)                     // rethrow
1409 >            U.throwException(ex);
1410 >    }
1411 >
1412 >    // Submissions
1413  
1414      /**
1415 <     * The index for the next created worker. Accessed under scanGuard.
1416 <     */
1417 <    private int nextWorkerIndex;
1415 >     * Unless shutting down, adds the given task to a submission queue
1416 >     * at submitter's current queue index (modulo submission
1417 >     * range). If no queue exists at the index, one is created.  If
1418 >     * the queue is busy, another index is randomly chosen. The
1419 >     * submitMask bounds the effective number of queues to the
1420 >     * (nearest power of two for) parallelism level.
1421 >     *
1422 >     * @param task the task. Caller must ensure non-null.
1423 >     */
1424 >    private void doSubmit(ForkJoinTask<?> task) {
1425 >        Submitter s = submitters.get();
1426 >        for (int r = s.seed, m = submitMask;;) {
1427 >            WorkQueue[] ws; WorkQueue q;
1428 >            int k = r & m & SQMASK;          // use only even indices
1429 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1430 >                throw new RejectedExecutionException(); // shutting down
1431 >            else if ((q = ws[k]) == null) {  // create new queue
1432 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1433 >                Mutex lock = this.lock;      // construct outside lock
1434 >                lock.lock();
1435 >                try {                        // recheck under lock
1436 >                    int rs = runState;       // to update seq
1437 >                    if (ws == workQueues && ws[k] == null) {
1438 >                        ws[k] = nq;
1439 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1440 >                    }
1441 >                } finally {
1442 >                    lock.unlock();
1443 >                }
1444 >            }
1445 >            else if (q.trySharedPush(task)) {
1446 >                signalWork();
1447 >                return;
1448 >            }
1449 >            else if (m > 1) {                // move to a different index
1450 >                r ^= r << 13;                // same xorshift as WorkQueues
1451 >                r ^= r >>> 17;
1452 >                s.seed = r ^= r << 5;
1453 >            }
1454 >            else
1455 >                Thread.yield();              // yield if no alternatives
1456 >        }
1457 >    }
1458  
1459      /**
1460 <     * SeqLock and index masking for for updates to workers array.
572 <     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 <     * SG_UNIT. Staleness of read-only operations can be checked by
574 <     * comparing scanGuard to value before the reads. The low 16 bits
575 <     * (i.e, anding with SMASK) hold (the smallest power of two
576 <     * covering all worker indices, minus one, and is used to avoid
577 <     * dealing with large numbers of null slots when the workers array
578 <     * is overallocated.
1460 >     * Submits the given (non-null) task to the common pool, if possible.
1461       */
1462 <    volatile int scanGuard;
1463 <
1464 <    private static final int SG_UNIT = 1 << 16;
1462 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1463 >        ForkJoinPool p;
1464 >        if ((p = commonPool) == null)
1465 >            p = ensureCommonPool();
1466 >        p.doSubmit(task);
1467 >    }
1468  
1469      /**
1470 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1471 <     * task when the pool is quiescent to instead try to shrink the
1472 <     * number of workers.  The exact value does not matter too
1473 <     * much. It must be short enough to release resources during
1474 <     * sustained periods of idleness, but not so short that threads
1475 <     * are continually re-created.
1470 >     * Returns true if the given task was submitted to common pool
1471 >     * and has not yet commenced execution, and is available for
1472 >     * removal according to execution policies; if so removing the
1473 >     * submission from the pool.
1474 >     *
1475 >     * @param task the task
1476 >     * @return true if successful
1477       */
1478 <    private static final long SHRINK_RATE =
1479 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1478 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1479 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1480 >        int k = submitters.get().seed & SQMASK;
1481 >        return ((p = commonPool) != null &&
1482 >                (ws = p.workQueues) != null &&
1483 >                ws.length > (k &= p.submitMask) &&
1484 >                (q = ws[k]) != null &&
1485 >                q.trySharedUnpush(task, p));
1486 >    }
1487 >
1488 >    // Maintaining ctl counts
1489  
1490      /**
1491 <     * Top-level loop for worker threads: On each step: if the
597 <     * previous step swept through all queues and found no tasks, or
598 <     * there are excess threads, then possibly blocks. Otherwise,
599 <     * scans for and, if found, executes a task. Returns when pool
600 <     * and/or worker terminate.
601 <     *
602 <     * @param w the worker
1491 >     * Increments active count; mainly called upon return from blocking.
1492       */
1493 <    final void work(ForkJoinWorkerThread w) {
605 <        boolean swept = false;                // true on empty scans
1493 >    final void incrementActiveCount() {
1494          long c;
1495 <        while (!w.terminate && (int)(c = ctl) >= 0) {
608 <            int a;                            // active count
609 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 <                swept = scan(w, a);
611 <            else if (tryAwaitWork(w, c))
612 <                swept = false;
613 <        }
1495 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1496      }
1497  
616    // Signalling
617
1498      /**
1499 <     * Wakes up or creates a worker.
1499 >     * Tries to create one or activate one or more workers if too few are active.
1500       */
1501      final void signalWork() {
1502 <        /*
1503 <         * The while condition is true if: (there is are too few total
1504 <         * workers OR there is at least one waiter) AND (there are too
1505 <         * few active workers OR the pool is terminating).  The value
1506 <         * of e distinguishes the remaining cases: zero (no waiters)
1507 <         * for create, negative if terminating (in which case do
1508 <         * nothing), else release a waiter. The secondary checks for
1509 <         * release (non-null array etc) can fail if the pool begins
1510 <         * terminating after the test, and don't impose any added cost
1511 <         * because JVMs must perform null and bounds checks anyway.
1512 <         */
1513 <        long c; int e, u;
1514 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1515 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1516 <            if (e > 0) {                         // release a waiting worker
1517 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 <                if ((ws = workers) == null ||
639 <                    (i = ~e & SMASK) >= ws.length ||
640 <                    (w = ws[i]) == null)
1502 >        long c; int u;
1503 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1504 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1505 >            if ((e = (int)c) > 0) {                     // at least one waiting
1506 >                if (ws != null && (i = e & SMASK) < ws.length &&
1507 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1508 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1509 >                               ((long)(u + UAC_UNIT) << 32));
1510 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1511 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1512 >                        if ((p = w.parker) != null)
1513 >                            U.unpark(p);                // activate and release
1514 >                        break;
1515 >                    }
1516 >                }
1517 >                else
1518                      break;
1519 <                long nc = (((long)(w.nextWait & E_MASK)) |
1520 <                           ((long)(u + UAC_UNIT) << 32));
1521 <                if (w.eventCount == e &&
1522 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1523 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1524 <                    if (w.parked)
648 <                        UNSAFE.unpark(w);
1519 >            }
1520 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1521 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1522 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1523 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1524 >                    addWorker();
1525                      break;
1526                  }
1527              }
1528 <            else if (UNSAFE.compareAndSwapLong
653 <                     (this, ctlOffset, c,
654 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 <                addWorker();
1528 >            else
1529                  break;
658            }
659        }
660    }
661
662    /**
663     * Variant of signalWork to help release waiters on rescans.
664     * Tries once to release a waiter if active count < 0.
665     *
666     * @return false if failed due to contention, else true
667     */
668    private boolean tryReleaseWaiter() {
669        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670        if ((e = (int)(c = ctl)) > 0 &&
671            (int)(c >> AC_SHIFT) < 0 &&
672            (ws = workers) != null &&
673            (i = ~e & SMASK) < ws.length &&
674            (w = ws[i]) != null) {
675            long nc = ((long)(w.nextWait & E_MASK) |
676                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677            if (w.eventCount != e ||
678                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679                return false;
680            w.eventCount = (e + EC_UNIT) & E_MASK;
681            if (w.parked)
682                UNSAFE.unpark(w);
1530          }
684        return true;
1531      }
1532  
1533      // Scanning for tasks
1534  
1535      /**
1536 <     * Scans for and, if found, executes one task. Scans start at a
1537 <     * random index of workers array, and randomly select the first
1538 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1539 <     * circular sweeps, which is necessary to check quiescence. and
1540 <     * taking a submission only if no stealable tasks were found.  The
1541 <     * steal code inside the loop is a specialized form of
1542 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1543 <     * helpJoinTask and signal propagation. The code for submission
1544 <     * queues is almost identical. On each steal, the worker completes
1545 <     * not only the task, but also all local tasks that this task may
1546 <     * have generated. On detecting staleness or contention when
1547 <     * trying to take a task, this method returns without finishing
1548 <     * sweep, which allows global state rechecks before retry.
1549 <     *
1550 <     * @param w the worker
1551 <     * @param a the number of active workers
1552 <     * @return true if swept all queues without finding a task
1553 <     */
1554 <    private boolean scan(ForkJoinWorkerThread w, int a) {
1555 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
1556 <        int m = parallelism == 1 - a? 0 : g & SMASK;
1557 <        ForkJoinWorkerThread[] ws = workers;
1558 <        if (ws == null || ws.length <= m)         // staleness check
1559 <            return false;
1560 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
1561 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1562 <            ForkJoinWorkerThread v = ws[k & m];
1563 <            if (v != null && (b = v.queueBase) != v.queueTop &&
1564 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
1565 <                long u = (i << ASHIFT) + ABASE;
1566 <                if ((t = q[i]) != null && v.queueBase == b &&
1567 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1568 <                    int d = (v.queueBase = b + 1) - v.queueTop;
1569 <                    v.stealHint = w.poolIndex;
1570 <                    if (d != 0)
1571 <                        signalWork();             // propagate if nonempty
1572 <                    w.execTask(t);
1536 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1537 >     */
1538 >    final void runWorker(WorkQueue w) {
1539 >        w.growArray(false);         // initialize queue array in this thread
1540 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1541 >    }
1542 >
1543 >    /**
1544 >     * Scans for and, if found, returns one task, else possibly
1545 >     * inactivates the worker. This method operates on single reads of
1546 >     * volatile state and is designed to be re-invoked continuously,
1547 >     * in part because it returns upon detecting inconsistencies,
1548 >     * contention, or state changes that indicate possible success on
1549 >     * re-invocation.
1550 >     *
1551 >     * The scan searches for tasks across a random permutation of
1552 >     * queues (starting at a random index and stepping by a random
1553 >     * relative prime, checking each at least once).  The scan
1554 >     * terminates upon either finding a non-empty queue, or completing
1555 >     * the sweep. If the worker is not inactivated, it takes and
1556 >     * returns a task from this queue.  On failure to find a task, we
1557 >     * take one of the following actions, after which the caller will
1558 >     * retry calling this method unless terminated.
1559 >     *
1560 >     * * If pool is terminating, terminate the worker.
1561 >     *
1562 >     * * If not a complete sweep, try to release a waiting worker.  If
1563 >     * the scan terminated because the worker is inactivated, then the
1564 >     * released worker will often be the calling worker, and it can
1565 >     * succeed obtaining a task on the next call. Or maybe it is
1566 >     * another worker, but with same net effect. Releasing in other
1567 >     * cases as well ensures that we have enough workers running.
1568 >     *
1569 >     * * If not already enqueued, try to inactivate and enqueue the
1570 >     * worker on wait queue. Or, if inactivating has caused the pool
1571 >     * to be quiescent, relay to idleAwaitWork to check for
1572 >     * termination and possibly shrink pool.
1573 >     *
1574 >     * * If already inactive, and the caller has run a task since the
1575 >     * last empty scan, return (to allow rescan) unless others are
1576 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1577 >     * scan to ensure eventual inactivation and blocking.
1578 >     *
1579 >     * * If already enqueued and none of the above apply, park
1580 >     * awaiting signal,
1581 >     *
1582 >     * @param w the worker (via its WorkQueue)
1583 >     * @return a task or null if none found
1584 >     */
1585 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1586 >        WorkQueue[] ws;                       // first update random seed
1587 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1588 >        int rs = runState, m;                 // volatile read order matters
1589 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1590 >            int ec = w.eventCount;            // ec is negative if inactive
1591 >            int step = (r >>> 16) | 1;        // relative prime
1592 >            for (int j = (m + 1) << 2; ; r += step) {
1593 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1594 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1595 >                    (a = q.array) != null) {  // probably nonempty
1596 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1597 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1598 >                    if (q.base == b && ec >= 0 && t != null &&
1599 >                        U.compareAndSwapObject(a, i, t, null)) {
1600 >                        if (q.top - (q.base = b + 1) > 0)
1601 >                            signalWork();    // help pushes signal
1602 >                        return t;
1603 >                    }
1604 >                    else if (ec < 0 || j <= m) {
1605 >                        rs = 0;               // mark scan as imcomplete
1606 >                        break;                // caller can retry after release
1607 >                    }
1608                  }
1609 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
1610 <                return false;                     // store next seed
730 <            }
731 <            else if (j < 0) {                     // xorshift
732 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1609 >                if (--j < 0)
1610 >                    break;
1611              }
1612 <            else
1613 <                ++k;
1614 <        }
1615 <        if (scanGuard != g)                       // staleness check
1616 <            return false;
1617 <        else {                                    // try to take submission
1618 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1619 <            if ((b = queueBase) != queueTop &&
1620 <                (q = submissionQueue) != null &&
1621 <                (i = (q.length - 1) & b) >= 0) {
1622 <                long u = (i << ASHIFT) + ABASE;
1623 <                if ((t = q[i]) != null && queueBase == b &&
1624 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1625 <                    queueBase = b + 1;
1626 <                    w.execTask(t);
1612 >
1613 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1614 >            if (e < 0)                        // decode ctl on empty scan
1615 >                w.runState = -1;              // pool is terminating
1616 >            else if (rs == 0 || rs != runState) { // incomplete scan
1617 >                WorkQueue v; Thread p;        // try to release a waiter
1618 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1619 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1620 >                    long nc = ((long)(v.nextWait & E_MASK) |
1621 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1622 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1623 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1624 >                        if ((p = v.parker) != null)
1625 >                            U.unpark(p);
1626 >                    }
1627                  }
750                return false;
1628              }
1629 <            return true;                         // all queues empty
1630 <        }
1631 <    }
1632 <
1633 <    /**
1634 <     * Tries to enqueue worker in wait queue and await change in
1635 <     * worker's eventCount.  Before blocking, rescans queues to avoid
1636 <     * missed signals.  If the pool is quiescent, possibly terminates
1637 <     * worker upon exit.
1638 <     *
1639 <     * @param w the calling worker
763 <     * @param c the ctl value on entry
764 <     * @return true if waited or another thread was released upon enq
765 <     */
766 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767 <        int v = w.eventCount;
768 <        w.nextWait = (int)c;                       // w's successor record
769 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771 <            long d = ctl; // return true if lost to a deq, to force rescan
772 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773 <        }
774 <        boolean rescanned = false;
775 <        for (int sc;;) {
776 <            if (w.eventCount != v)
777 <                return true;
778 <            if ((sc = w.stealCount) != 0) {
779 <                long s = stealCount;               // accumulate stealCount
780 <                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
781 <                    w.stealCount = 0;
782 <            }
783 <            else if (!rescanned) {
784 <                int g = scanGuard, m = g & SMASK;
785 <                ForkJoinWorkerThread[] ws = workers;
786 <                if (ws != null && m < ws.length) {
787 <                    rescanned = true;
788 <                    for (int i = 0; i <= m; ++i) {
789 <                        ForkJoinWorkerThread u = ws[i];
790 <                        if (u != null) {
791 <                            if (u.queueBase != u.queueTop &&
792 <                                !tryReleaseWaiter())
793 <                                rescanned = false; // contended
794 <                            if (w.eventCount != v)
795 <                                return true;
796 <                        }
1629 >            else if (ec >= 0) {               // try to enqueue/inactivate
1630 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1631 >                w.nextWait = e;
1632 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1633 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1634 >                    w.eventCount = ec;        // unmark on CAS failure
1635 >                else {
1636 >                    if ((ns = w.nsteals) != 0) {
1637 >                        w.nsteals = 0;        // set rescans if ran task
1638 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1639 >                        w.totalSteals += ns;
1640                      }
1641 +                    if (a == 1 - parallelism) // quiescent
1642 +                        idleAwaitWork(w, nc, c);
1643                  }
799                if (scanGuard != g ||              // stale
800                    (queueBase != queueTop && !tryReleaseWaiter()))
801                    rescanned = false;
802                if (!rescanned)
803                    Thread.yield();                // reduce contention
804                else
805                    Thread.interrupted();          // clear before park
1644              }
1645 <            else if (parallelism + (int)(ctl >> AC_SHIFT) == 0 &&
1646 <                     blockedCount == 0 && quiescerCount == 0)
1647 <                idleAwaitWork(w, v);               // quiescent -- maybe shrink
1648 <            else {
1649 <                w.parked = true;                   // must recheck
1650 <                if (w.eventCount != v) {
1651 <                    w.parked = false;
1652 <                    return true;
1645 >            else if (w.eventCount < 0) {      // already queued
1646 >                int ac = a + parallelism;
1647 >                if ((nr = w.rescans) > 0)     // continue rescanning
1648 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1649 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1650 >                    Thread.interrupted();     // clear status
1651 >                    Thread wt = Thread.currentThread();
1652 >                    U.putObject(wt, PARKBLOCKER, this);
1653 >                    w.parker = wt;            // emulate LockSupport.park
1654 >                    if (w.eventCount < 0)     // recheck
1655 >                        U.park(false, 0L);
1656 >                    w.parker = null;
1657 >                    U.putObject(wt, PARKBLOCKER, null);
1658                  }
816                LockSupport.park(this);
817                rescanned = w.parked = false;
1659              }
1660          }
1661 +        return null;
1662      }
1663  
1664      /**
1665 <     * If pool is quiescent, checks for termination, and waits for
1666 <     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
1667 <     * has not changed, terminates the worker. Upon its termination
1668 <     * (see deregisterWorker), it may wake up another worker to
1669 <     * possibly repeat this process.
1665 >     * If inactivating worker w has caused the pool to become
1666 >     * quiescent, checks for pool termination, and, so long as this is
1667 >     * not the only worker, waits for event for up to a given
1668 >     * duration.  On timeout, if ctl has not changed, terminates the
1669 >     * worker, which will in turn wake up another worker to possibly
1670 >     * repeat this process.
1671       *
1672       * @param w the calling worker
1673 <     * @param v the eventCount w must wait until changed
1673 >     * @param currentCtl the ctl value triggering possible quiescence
1674 >     * @param prevCtl the ctl value to restore if thread is terminated
1675       */
1676 <    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
1677 <        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1678 <        if (shutdown)
1679 <            tryTerminate(false);
1680 <        long c = ctl;
1681 <        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
1682 <                   (long)(w.nextWait & E_MASK)); // ctl value to release w
1683 <        if (w.eventCount == v &&
1684 <            parallelism + (int)(c >> AC_SHIFT) == 0 &&
1685 <            blockedCount == 0 && quiescerCount == 0) {
1686 <            long startTime = System.nanoTime();
1687 <            Thread.interrupted();
1688 <            if (w.eventCount == v) {
1689 <                w.parked = true;
1690 <                if (w.eventCount == v)
1691 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1692 <                w.parked = false;
1693 <                if (w.eventCount == v && ctl == c &&
1694 <                    System.nanoTime() - startTime >= SHRINK_RATE &&
1695 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1696 <                    w.terminate = true;
1697 <                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
1676 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1677 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1678 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1679 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1680 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1681 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1682 >            Thread wt = Thread.currentThread();
1683 >            while (ctl == currentCtl) {
1684 >                Thread.interrupted();  // timed variant of version in scan()
1685 >                U.putObject(wt, PARKBLOCKER, this);
1686 >                w.parker = wt;
1687 >                if (ctl == currentCtl)
1688 >                    U.park(false, parkTime);
1689 >                w.parker = null;
1690 >                U.putObject(wt, PARKBLOCKER, null);
1691 >                if (ctl != currentCtl)
1692 >                    break;
1693 >                if (deadline - System.nanoTime() <= 0L &&
1694 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1695 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1696 >                    w.runState = -1;   // shrink
1697 >                    break;
1698                  }
1699              }
1700          }
1701      }
1702  
859    // Submissions
860
1703      /**
1704 <     * Enqueues the given task in the submissionQueue.  Same idea as
1705 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1706 <     *
1707 <     * @param t the task
1708 <     */
1709 <    private void addSubmission(ForkJoinTask<?> t) {
1710 <        final ReentrantLock lock = this.submissionLock;
1711 <        lock.lock();
1712 <        try {
1713 <            ForkJoinTask<?>[] q; int s, m;
1714 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1715 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1716 <                UNSAFE.putOrderedObject(q, u, t);
1717 <                queueTop = s + 1;
1718 <                if (s - queueBase == m)
1719 <                    growSubmissionQueue();
1704 >     * Tries to locate and execute tasks for a stealer of the given
1705 >     * task, or in turn one of its stealers, Traces currentSteal ->
1706 >     * currentJoin links looking for a thread working on a descendant
1707 >     * of the given task and with a non-empty queue to steal back and
1708 >     * execute tasks from. The first call to this method upon a
1709 >     * waiting join will often entail scanning/search, (which is OK
1710 >     * because the joiner has nothing better to do), but this method
1711 >     * leaves hints in workers to speed up subsequent calls. The
1712 >     * implementation is very branchy to cope with potential
1713 >     * inconsistencies or loops encountering chains that are stale,
1714 >     * unknown, or so long that they are likely cyclic.
1715 >     *
1716 >     * @param joiner the joining worker
1717 >     * @param task the task to join
1718 >     * @return 0 if no progress can be made, negative if task
1719 >     * known complete, else positive
1720 >     */
1721 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1723 >        if (joiner != null && task != null) {       // hoist null checks
1724 >            restart: for (;;) {
1725 >                ForkJoinTask<?> subtask = task;     // current target
1726 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1727 >                    WorkQueue[] ws; int m, s, h;
1728 >                    if ((s = task.status) < 0) {
1729 >                        stat = s;
1730 >                        break restart;
1731 >                    }
1732 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1733 >                        break restart;              // shutting down
1734 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1735 >                        v.currentSteal != subtask) {
1736 >                        for (int origin = h;;) {    // find stealer
1737 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1738 >                                (subtask.status < 0 || j.currentJoin != subtask))
1739 >                                continue restart;   // occasional staleness check
1740 >                            if ((v = ws[h]) != null &&
1741 >                                v.currentSteal == subtask) {
1742 >                                j.stealHint = h;    // save hint
1743 >                                break;
1744 >                            }
1745 >                            if (h == origin)
1746 >                                break restart;      // cannot find stealer
1747 >                        }
1748 >                    }
1749 >                    for (;;) { // help stealer or descend to its stealer
1750 >                        ForkJoinTask[] a;  int b;
1751 >                        if (subtask.status < 0)     // surround probes with
1752 >                            continue restart;       //   consistency checks
1753 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1754 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1755 >                            ForkJoinTask<?> t =
1756 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1757 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1758 >                                v.currentSteal != subtask)
1759 >                                continue restart;   // stale
1760 >                            stat = 1;               // apparent progress
1761 >                            if (t != null && v.base == b &&
1762 >                                U.compareAndSwapObject(a, i, t, null)) {
1763 >                                v.base = b + 1;     // help stealer
1764 >                                joiner.runSubtask(t);
1765 >                            }
1766 >                            else if (v.base == b && ++steps == MAX_HELP)
1767 >                                break restart;      // v apparently stalled
1768 >                        }
1769 >                        else {                      // empty -- try to descend
1770 >                            ForkJoinTask<?> next = v.currentJoin;
1771 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1772 >                                v.currentSteal != subtask)
1773 >                                continue restart;   // stale
1774 >                            else if (next == null || ++steps == MAX_HELP)
1775 >                                break restart;      // dead-end or maybe cyclic
1776 >                            else {
1777 >                                subtask = next;
1778 >                                j = v;
1779 >                                break;
1780 >                            }
1781 >                        }
1782 >                    }
1783 >                }
1784              }
879        } finally {
880            lock.unlock();
1785          }
1786 <        signalWork();
1786 >        return stat;
1787      }
1788  
885    //  (pollSubmission is defined below with exported methods)
886
1789      /**
1790 <     * Creates or doubles submissionQueue array.
1791 <     * Basically identical to ForkJoinWorkerThread version
1790 >     * If task is at base of some steal queue, steals and executes it.
1791 >     *
1792 >     * @param joiner the joining worker
1793 >     * @param task the task
1794       */
1795 <    private void growSubmissionQueue() {
1796 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1797 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1798 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1799 <            throw new RejectedExecutionException("Queue capacity exceeded");
1800 <        if (size < INITIAL_QUEUE_CAPACITY)
1801 <            size = INITIAL_QUEUE_CAPACITY;
1802 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1803 <        int mask = size - 1;
900 <        int top = queueTop;
901 <        int oldMask;
902 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
903 <            for (int b = queueBase; b != top; ++b) {
904 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
905 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
906 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
907 <                    UNSAFE.putObjectVolatile
908 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1795 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1796 >        WorkQueue[] ws;
1797 >        if ((ws = workQueues) != null) {
1798 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1799 >                WorkQueue q = ws[j];
1800 >                if (q != null && q.pollFor(task)) {
1801 >                    joiner.runSubtask(task);
1802 >                    break;
1803 >                }
1804              }
1805          }
1806      }
1807  
913    // Blocking support
914
1808      /**
1809 <     * Tries to increment blockedCount, decrement active count
1810 <     * (sometimes implicitly) and possibly release or create a
1811 <     * compensating worker in preparation for blocking. Fails
1812 <     * on contention or termination.
1809 >     * Tries to decrement active count (sometimes implicitly) and
1810 >     * possibly release or create a compensating worker in preparation
1811 >     * for blocking. Fails on contention or termination. Otherwise,
1812 >     * adds a new thread if no idle workers are available and either
1813 >     * pool would become completely starved or: (at least half
1814 >     * starved, and fewer than 50% spares exist, and there is at least
1815 >     * one task apparently available). Even though the availability
1816 >     * check requires a full scan, it is worthwhile in reducing false
1817 >     * alarms.
1818       *
1819 +     * @param task if non-null, a task being waited for
1820 +     * @param blocker if non-null, a blocker being waited for
1821       * @return true if the caller can block, else should recheck and retry
1822       */
1823 <    private boolean tryPreBlock() {
1824 <        int b = blockedCount;
1825 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1826 <            int pc = parallelism;
1827 <            do {
1828 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1829 <                int e, ac, tc, rc, i;
1830 <                long c = ctl;
1831 <                int u = (int)(c >>> 32);
1832 <                if ((e = (int)c) < 0) {
1833 <                                                 // skip -- terminating
1834 <                }
1835 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
1836 <                         (ws = workers) != null &&
1837 <                         (i = ~e & SMASK) < ws.length &&
1838 <                         (w = ws[i]) != null) {
1839 <                    long nc = ((long)(w.nextWait & E_MASK) |
1840 <                               (c & (AC_MASK|TC_MASK)));
1841 <                    if (w.eventCount == e &&
942 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
943 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
944 <                        if (w.parked)
945 <                            UNSAFE.unpark(w);
946 <                        return true;             // release an idle worker
1823 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1824 >        int pc = parallelism, e;
1825 >        long c = ctl;
1826 >        WorkQueue[] ws = workQueues;
1827 >        if ((e = (int)c) >= 0 && ws != null) {
1828 >            int u, a, ac, hc;
1829 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1830 >            boolean replace = false;
1831 >            if ((a = u >> UAC_SHIFT) <= 0) {
1832 >                if ((ac = a + pc) <= 1)
1833 >                    replace = true;
1834 >                else if ((e > 0 || (task != null &&
1835 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1836 >                    WorkQueue w;
1837 >                    for (int j = 0; j < ws.length; ++j) {
1838 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1839 >                            replace = true;
1840 >                            break;   // in compensation range and tasks available
1841 >                        }
1842                      }
1843                  }
1844 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1844 >            }
1845 >            if ((task == null || task.status >= 0) && // recheck need to block
1846 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1847 >                if (!replace) {          // no compensation
1848                      long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1849 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
1850 <                        return true;             // no compensation needed
1849 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1850 >                        return true;
1851 >                }
1852 >                else if (e != 0) {       // release an idle worker
1853 >                    WorkQueue w; Thread p; int i;
1854 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1855 >                        long nc = ((long)(w.nextWait & E_MASK) |
1856 >                                   (c & (AC_MASK|TC_MASK)));
1857 >                        if (w.eventCount == (e | INT_SIGN) &&
1858 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1859 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1860 >                            if ((p = w.parker) != null)
1861 >                                U.unpark(p);
1862 >                            return true;
1863 >                        }
1864 >                    }
1865                  }
1866 <                else if (tc + pc < MAX_ID) {
1866 >                else if (tc < MAX_CAP) { // create replacement
1867                      long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1868 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1868 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1869                          addWorker();
1870 <                        return true;            // create a replacement
1870 >                        return true;
1871                      }
1872                  }
1873 <                // try to back out on any failure and let caller retry
962 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
963 <                                               b = blockedCount, b - 1));
1873 >            }
1874          }
1875          return false;
1876      }
1877  
1878      /**
1879 <     * Decrements blockedCount and increments active count
970 <     */
971 <    private void postBlock() {
972 <        long c;
973 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
974 <                                                c = ctl, c + AC_UNIT));
975 <        int b;
976 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
977 <                                              b = blockedCount, b - 1));
978 <    }
979 <
980 <    /**
981 <     * Possibly blocks waiting for the given task to complete, or
982 <     * cancels the task if terminating.  Fails to wait if contended.
1879 >     * Helps and/or blocks until the given task is done.
1880       *
1881 <     * @param joinMe the task
1881 >     * @param joiner the joining worker
1882 >     * @param task the task
1883 >     * @return task status on exit
1884       */
1885 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1885 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1886          int s;
1887 <        Thread.interrupted(); // clear interrupts before checking termination
1888 <        if (joinMe.status >= 0) {
1889 <            if (tryPreBlock()) {
1890 <                joinMe.tryAwaitDone(0L);
1891 <                postBlock();
1887 >        if ((s = task.status) >= 0) {
1888 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1889 >            joiner.currentJoin = task;
1890 >            long startTime = 0L;
1891 >            for (int k = 0;;) {
1892 >                if ((s = (joiner.isEmpty() ?           // try to help
1893 >                          tryHelpStealer(joiner, task) :
1894 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1895 >                    (s = task.status) >= 0) {
1896 >                    if (k == 0) {
1897 >                        startTime = System.nanoTime();
1898 >                        tryPollForAndExec(joiner, task); // check uncommon case
1899 >                    }
1900 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1901 >                             System.nanoTime() - startTime >=
1902 >                             COMPENSATION_DELAY &&
1903 >                             tryCompensate(task, null)) {
1904 >                        if (task.trySetSignal()) {
1905 >                            synchronized (task) {
1906 >                                if (task.status >= 0) {
1907 >                                    try {                // see ForkJoinTask
1908 >                                        task.wait();     //  for explanation
1909 >                                    } catch (InterruptedException ie) {
1910 >                                    }
1911 >                                }
1912 >                                else
1913 >                                    task.notifyAll();
1914 >                            }
1915 >                        }
1916 >                        long c;                          // re-activate
1917 >                        do {} while (!U.compareAndSwapLong
1918 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1919 >                    }
1920 >                }
1921 >                if (s < 0 || (s = task.status) < 0) {
1922 >                    joiner.currentJoin = prevJoin;
1923 >                    break;
1924 >                }
1925 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1926 >                    Thread.yield();                     // for politeness
1927              }
994            if ((ctl & STOP_BIT) != 0L)
995                joinMe.cancelIgnoringExceptions();
1928          }
1929 +        return s;
1930      }
1931  
1932      /**
1933 <     * Possibly blocks the given worker waiting for joinMe to
1934 <     * complete or timeout
1933 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1934 >     * to help join only while there is continuous progress. (Caller
1935 >     * will then enter a timed wait.)
1936       *
1937 <     * @param joinMe the task
1938 <     * @param millis the wait time for underlying Object.wait
1937 >     * @param joiner the joining worker
1938 >     * @param task the task
1939 >     * @return task status on exit
1940       */
1941 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1942 <        while (joinMe.status >= 0) {
1943 <            Thread.interrupted();
1944 <            if ((ctl & STOP_BIT) != 0L) {
1945 <                joinMe.cancelIgnoringExceptions();
1946 <                break;
1947 <            }
1948 <            if (tryPreBlock()) {
1014 <                long last = System.nanoTime();
1015 <                while (joinMe.status >= 0) {
1016 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1017 <                    if (millis <= 0)
1018 <                        break;
1019 <                    joinMe.tryAwaitDone(millis);
1020 <                    if (joinMe.status < 0)
1021 <                        break;
1022 <                    if ((ctl & STOP_BIT) != 0L) {
1023 <                        joinMe.cancelIgnoringExceptions();
1024 <                        break;
1025 <                    }
1026 <                    long now = System.nanoTime();
1027 <                    nanos -= now - last;
1028 <                    last = now;
1029 <                }
1030 <                postBlock();
1031 <                break;
1032 <            }
1033 <        }
1941 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1942 >        int s;
1943 >        while ((s = task.status) >= 0 &&
1944 >               (joiner.isEmpty() ?
1945 >                tryHelpStealer(joiner, task) :
1946 >                joiner.tryRemoveAndExec(task)) != 0)
1947 >            ;
1948 >        return s;
1949      }
1950  
1951      /**
1952 <     * If necessary, compensates for blocker, and blocks
1953 <     */
1954 <    private void awaitBlocker(ManagedBlocker blocker)
1955 <        throws InterruptedException {
1956 <        while (!blocker.isReleasable()) {
1957 <            if (tryPreBlock()) {
1958 <                try {
1959 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1960 <                } finally {
1961 <                    postBlock();
1952 >     * Returns a (probably) non-empty steal queue, if one is found
1953 >     * during a random, then cyclic scan, else null.  This method must
1954 >     * be retried by caller if, by the time it tries to use the queue,
1955 >     * it is empty.
1956 >     */
1957 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1958 >        // Similar to loop in scan(), but ignoring submissions
1959 >        int r;
1960 >        if (w == null) // allow external callers
1961 >            r = ThreadLocalRandom.current().nextInt();
1962 >        else {
1963 >            r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1964 >        }
1965 >        int step = (r >>> 16) | 1;
1966 >        for (WorkQueue[] ws;;) {
1967 >            int rs = runState, m;
1968 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1969 >                return null;
1970 >            for (int j = (m + 1) << 2; ; r += step) {
1971 >                WorkQueue q = ws[((r << 1) | 1) & m];
1972 >                if (q != null && !q.isEmpty())
1973 >                    return q;
1974 >                else if (--j < 0) {
1975 >                    if (runState == rs)
1976 >                        return null;
1977 >                    break;
1978                  }
1048                break;
1979              }
1980          }
1981      }
1982  
1053    // Creating, registering and deregistring workers
1054
1983      /**
1984 <     * Tries to create and start a worker; minimally rolls back counts
1985 <     * on failure.
1986 <     */
1987 <    private void addWorker() {
1988 <        Throwable ex = null;
1989 <        ForkJoinWorkerThread t = null;
1990 <        try {
1991 <            t = factory.newThread(this);
1992 <        } catch (Throwable e) {
1993 <            ex = e;
1994 <        }
1995 <        if (t == null) {  // null or exceptional factory return
1996 <            long c;       // adjust counts
1997 <            do {} while (!UNSAFE.compareAndSwapLong
1998 <                         (this, ctlOffset, c = ctl,
1999 <                          (((c - AC_UNIT) & AC_MASK) |
2000 <                           ((c - TC_UNIT) & TC_MASK) |
2001 <                           (c & ~(AC_MASK|TC_MASK)))));
2002 <            // Propagate exception if originating from an external caller
2003 <            if (!tryTerminate(false) && ex != null &&
2004 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
2005 <                UNSAFE.throwException(ex);
1984 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1985 >     * active count ctl maintenance, but rather than blocking
1986 >     * when tasks cannot be found, we rescan until all others cannot
1987 >     * find tasks either.
1988 >     */
1989 >    final void helpQuiescePool(WorkQueue w) {
1990 >        for (boolean active = true;;) {
1991 >            ForkJoinTask<?> localTask; // exhaust local queue
1992 >            while ((localTask = w.nextLocalTask()) != null)
1993 >                localTask.doExec();
1994 >            WorkQueue q = findNonEmptyStealQueue(w);
1995 >            if (q != null) {
1996 >                ForkJoinTask<?> t; int b;
1997 >                if (!active) {      // re-establish active count
1998 >                    long c;
1999 >                    active = true;
2000 >                    do {} while (!U.compareAndSwapLong
2001 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2002 >                }
2003 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2004 >                    w.runSubtask(t);
2005 >            }
2006 >            else {
2007 >                long c;
2008 >                if (active) {       // decrement active count without queuing
2009 >                    active = false;
2010 >                    do {} while (!U.compareAndSwapLong
2011 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2012 >                }
2013 >                else
2014 >                    c = ctl;        // re-increment on exit
2015 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2016 >                    do {} while (!U.compareAndSwapLong
2017 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2018 >                    break;
2019 >                }
2020 >            }
2021          }
1079        else
1080            t.start();
2022      }
2023  
2024      /**
2025 <     * Callback from ForkJoinWorkerThread constructor to assign a
1085 <     * public name
2025 >     * Restricted version of helpQuiescePool for non-FJ callers
2026       */
2027 <    final String nextWorkerName() {
2028 <        for (int n;;) {
2029 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
2030 <                                         n = nextWorkerNumber, ++n))
2031 <                return workerNamePrefix + n;
2032 <        }
2027 >    static void externalHelpQuiescePool() {
2028 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2029 >        ForkJoinTask<?> t; int b;
2030 >        int k = submitters.get().seed & SQMASK;
2031 >        if ((p = commonPool) != null &&
2032 >            (ws = p.workQueues) != null &&
2033 >            ws.length > (k &= p.submitMask) &&
2034 >            (w = ws[k]) != null &&
2035 >            (q = p.findNonEmptyStealQueue(w)) != null &&
2036 >            (b = q.base) - q.top < 0 &&
2037 >            (t = q.pollAt(b)) != null)
2038 >            t.doExec();
2039      }
2040  
2041      /**
2042 <     * Callback from ForkJoinWorkerThread constructor to
2043 <     * determine its poolIndex and record in workers array.
2044 <     *
2045 <     * @param w the worker
2046 <     * @return the worker's pool index
2047 <     */
2048 <    final int registerWorker(ForkJoinWorkerThread w) {
2049 <        /*
2050 <         * In the typical case, a new worker acquires the lock, uses
2051 <         * next available index and returns quickly.  Since we should
2052 <         * not block callers (ultimately from signalWork or
2053 <         * tryPreBlock) waiting for the lock needed to do this, we
2054 <         * instead help release other workers while waiting for the
1109 <         * lock.
1110 <         */
1111 <        for (int g;;) {
1112 <            ForkJoinWorkerThread[] ws;
1113 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
1114 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1115 <                                         g, g | SG_UNIT)) {
1116 <                int k = nextWorkerIndex;
1117 <                try {
1118 <                    if ((ws = workers) != null) { // ignore on shutdown
1119 <                        int n = ws.length;
1120 <                        if (k < 0 || k >= n || ws[k] != null) {
1121 <                            for (k = 0; k < n && ws[k] != null; ++k)
1122 <                                ;
1123 <                            if (k == n)
1124 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1125 <                        }
1126 <                        ws[k] = w;
1127 <                        nextWorkerIndex = k + 1;
1128 <                        int m = g & SMASK;
1129 <                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1130 <                    }
1131 <                } finally {
1132 <                    scanGuard = g;
1133 <                }
1134 <                return k;
1135 <            }
1136 <            else if ((ws = workers) != null) { // help release others
1137 <                for (ForkJoinWorkerThread u : ws) {
1138 <                    if (u != null && u.queueBase != u.queueTop) {
1139 <                        if (tryReleaseWaiter())
1140 <                            break;
1141 <                    }
1142 <                }
1143 <            }
2042 >     * Gets and removes a local or stolen task for the given worker.
2043 >     *
2044 >     * @return a task, if available
2045 >     */
2046 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2047 >        for (ForkJoinTask<?> t;;) {
2048 >            WorkQueue q; int b;
2049 >            if ((t = w.nextLocalTask()) != null)
2050 >                return t;
2051 >            if ((q = findNonEmptyStealQueue(w)) == null)
2052 >                return null;
2053 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2054 >                return t;
2055          }
2056      }
2057  
2058      /**
2059 <     * Final callback from terminating worker.  Removes record of
2060 <     * worker from array, and adjusts counts. If pool is shutting
2061 <     * down, tries to complete termination.
1151 <     *
1152 <     * @param w the worker
2059 >     * Returns the approximate (non-atomic) number of idle threads per
2060 >     * active thread to offset steal queue size for method
2061 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2062       */
2063 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
2064 <        int idx = w.poolIndex;
2065 <        int sc = w.stealCount;
2066 <        int steps = 0;
2067 <        // Remove from array, adjust worker counts and collect steal count.
2068 <        // We can intermix failed removes or adjusts with steal updates
2069 <        do {
2070 <            long s, c;
2071 <            int g;
1163 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1164 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1165 <                                         g, g |= SG_UNIT)) {
1166 <                ForkJoinWorkerThread[] ws = workers;
1167 <                if (ws != null && idx >= 0 &&
1168 <                    idx < ws.length && ws[idx] == w)
1169 <                    ws[idx] = null;    // verify
1170 <                nextWorkerIndex = idx;
1171 <                scanGuard = g + SG_UNIT;
1172 <                steps = 1;
1173 <            }
1174 <            if (steps == 1 &&
1175 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1176 <                                          (((c - AC_UNIT) & AC_MASK) |
1177 <                                           ((c - TC_UNIT) & TC_MASK) |
1178 <                                           (c & ~(AC_MASK|TC_MASK)))))
1179 <                steps = 2;
1180 <            if (sc != 0 &&
1181 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1182 <                                          s = stealCount, s + sc))
1183 <                sc = 0;
1184 <        } while (steps != 2 || sc != 0);
1185 <        if (!tryTerminate(false)) {
1186 <            if (ex != null)   // possibly replace if died abnormally
1187 <                signalWork();
1188 <            else
1189 <                tryReleaseWaiter();
1190 <        }
2063 >    final int idlePerActive() {
2064 >        // Approximate at powers of two for small values, saturate past 4
2065 >        int p = parallelism;
2066 >        int a = p + (int)(ctl >> AC_SHIFT);
2067 >        return (a > (p >>>= 1) ? 0 :
2068 >                a > (p >>>= 1) ? 1 :
2069 >                a > (p >>>= 1) ? 2 :
2070 >                a > (p >>>= 1) ? 4 :
2071 >                8);
2072      }
2073  
1193    // Shutdown and termination
1194
2074      /**
2075 <     * Possibly initiates and/or completes termination.
2075 >     * Returns approximate submission queue length for the given caller
2076 >     */
2077 >    static int getEstimatedSubmitterQueueLength() {
2078 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2079 >        int k = submitters.get().seed & SQMASK;
2080 >        return ((p = commonPool) != null &&
2081 >                p.runState >= 0 &&
2082 >                (ws = p.workQueues) != null &&
2083 >                ws.length > (k &= p.submitMask) &&
2084 >                (q = ws[k]) != null) ?
2085 >            q.queueSize() : 0;
2086 >    }
2087 >
2088 >    //  Termination
2089 >
2090 >    /**
2091 >     * Possibly initiates and/or completes termination.  The caller
2092 >     * triggering termination runs three passes through workQueues:
2093 >     * (0) Setting termination status, followed by wakeups of queued
2094 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2095 >     * threads (likely in external tasks, but possibly also blocked in
2096 >     * joins).  Each pass repeats previous steps because of potential
2097 >     * lagging thread creation.
2098       *
2099       * @param now if true, unconditionally terminate, else only
2100 <     * if shutdown and empty queue and no active workers
2100 >     * if no work and no active workers
2101 >     * @param enable if true, enable shutdown when next possible
2102       * @return true if now terminating or terminated
2103       */
2104 <    private boolean tryTerminate(boolean now) {
2105 <        long c;
2106 <        while (((c = ctl) & STOP_BIT) == 0) {
2107 <            if (!now) {
2108 <                if ((int)(c >> AC_SHIFT) != -parallelism)
2104 >    private boolean tryTerminate(boolean now, boolean enable) {
2105 >        Mutex lock = this.lock;
2106 >        for (long c;;) {
2107 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2108 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2109 >                    lock.lock();                    // don't need try/finally
2110 >                    termination.signalAll();        // signal when 0 workers
2111 >                    lock.unlock();
2112 >                }
2113 >                return true;
2114 >            }
2115 >            if (runState >= 0) {                    // not yet enabled
2116 >                if (!enable)
2117                      return false;
2118 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
2119 <                    queueTop - queueBase > 0) {
2120 <                    if (ctl == c) // staleness check
2121 <                        return false;
2122 <                    continue;
2123 <                }
2124 <            }
2125 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
2126 <                startTerminating();
2127 <        }
2128 <        if ((short)(c >>> TC_SHIFT) == -parallelism) {
2129 <            submissionLock.lock();
2130 <            termination.signalAll();
2131 <            submissionLock.unlock();
2132 <        }
2133 <        return true;
2134 <    }
2135 <
2136 <    /**
2137 <     * Runs up to three passes through workers: (0) Setting
2138 <     * termination status for each worker, followed by wakeups up
2139 <     * queued workers (1) helping cancel tasks (2) interrupting
2140 <     * lagging threads (likely in external tasks, but possibly also
2141 <     * blocked in joins).  Each pass repeats previous steps because of
2142 <     * potential lagging thread creation.
2143 <     */
2144 <    private void startTerminating() {
2145 <        cancelSubmissions();
2146 <        for (int pass = 0; pass < 3; ++pass) {
2147 <            ForkJoinWorkerThread[] ws = workers;
1238 <            if (ws != null) {
1239 <                for (ForkJoinWorkerThread w : ws) {
1240 <                    if (w != null) {
1241 <                        w.terminate = true;
1242 <                        if (pass > 0) {
1243 <                            w.cancelTasks();
1244 <                            if (pass > 1 && !w.isInterrupted()) {
1245 <                                try {
1246 <                                    w.interrupt();
1247 <                                } catch (SecurityException ignore) {
2118 >                lock.lock();
2119 >                runState |= SHUTDOWN;
2120 >                lock.unlock();
2121 >            }
2122 >            if (!now) {                             // check if idle & no tasks
2123 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2124 >                    hasQueuedSubmissions())
2125 >                    return false;
2126 >                // Check for unqueued inactive workers. One pass suffices.
2127 >                WorkQueue[] ws = workQueues; WorkQueue w;
2128 >                if (ws != null) {
2129 >                    for (int i = 1; i < ws.length; i += 2) {
2130 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2131 >                            return false;
2132 >                    }
2133 >                }
2134 >            }
2135 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2136 >                for (int pass = 0; pass < 3; ++pass) {
2137 >                    WorkQueue[] ws = workQueues;
2138 >                    if (ws != null) {
2139 >                        WorkQueue w;
2140 >                        int n = ws.length;
2141 >                        for (int i = 0; i < n; ++i) {
2142 >                            if ((w = ws[i]) != null) {
2143 >                                w.runState = -1;
2144 >                                if (pass > 0) {
2145 >                                    w.cancelAll();
2146 >                                    if (pass > 1)
2147 >                                        w.interruptOwner();
2148                                  }
2149                              }
2150                          }
2151 +                        // Wake up workers parked on event queue
2152 +                        int i, e; long cc; Thread p;
2153 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2154 +                               (i = e & SMASK) < n &&
2155 +                               (w = ws[i]) != null) {
2156 +                            long nc = ((long)(w.nextWait & E_MASK) |
2157 +                                       ((cc + AC_UNIT) & AC_MASK) |
2158 +                                       (cc & (TC_MASK|STOP_BIT)));
2159 +                            if (w.eventCount == (e | INT_SIGN) &&
2160 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2161 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2162 +                                w.runState = -1;
2163 +                                if ((p = w.parker) != null)
2164 +                                    U.unpark(p);
2165 +                            }
2166 +                        }
2167                      }
2168                  }
1253                terminateWaiters();
1254            }
1255        }
1256    }
1257
1258    /**
1259     * Polls and cancels all submissions. Called only during termination.
1260     */
1261    private void cancelSubmissions() {
1262        while (queueBase != queueTop) {
1263            ForkJoinTask<?> task = pollSubmission();
1264            if (task != null) {
1265                try {
1266                    task.cancel(false);
1267                } catch (Throwable ignore) {
1268                }
2169              }
2170          }
2171      }
2172  
1273    /**
1274     * Tries to set the termination status of waiting workers, and
1275     * then wake them up (after which they will terminate).
1276     */
1277    private void terminateWaiters() {
1278        ForkJoinWorkerThread[] ws = workers;
1279        if (ws != null) {
1280            ForkJoinWorkerThread w; long c; int i, e;
1281            int n = ws.length;
1282            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1283                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1284                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1285                                              (long)(w.nextWait & E_MASK) |
1286                                              ((c + AC_UNIT) & AC_MASK) |
1287                                              (c & (TC_MASK|STOP_BIT)))) {
1288                    w.terminate = true;
1289                    w.eventCount = e + EC_UNIT;
1290                    if (w.parked)
1291                        UNSAFE.unpark(w);
1292                }
1293            }
1294        }
1295    }
1296
1297    // misc ForkJoinWorkerThread support
1298
1299    /**
1300     * Increment or decrement quiescerCount. Needed only to prevent
1301     * triggering shutdown if a worker is transiently inactive while
1302     * checking quiescence.
1303     *
1304     * @param delta 1 for increment, -1 for decrement
1305     */
1306    final void addQuiescerCount(int delta) {
1307        int c;
1308        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1309                                              c = quiescerCount, c + delta));
1310    }
1311
1312    /**
1313     * Directly increment or decrement active count without
1314     * queuing. This method is used to transiently assert inactivation
1315     * while checking quiescence.
1316     *
1317     * @param delta 1 for increment, -1 for decrement
1318     */
1319    final void addActiveCount(int delta) {
1320        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1321        long c;
1322        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1323                                                ((c + d) & AC_MASK) |
1324                                                (c & ~AC_MASK)));
1325    }
1326
1327    /**
1328     * Returns the approximate (non-atomic) number of idle threads per
1329     * active thread.
1330     */
1331    final int idlePerActive() {
1332        // Approximate at powers of two for small values, saturate past 4
1333        int p = parallelism;
1334        int a = p + (int)(ctl >> AC_SHIFT);
1335        return (a > (p >>>= 1) ? 0 :
1336                a > (p >>>= 1) ? 1 :
1337                a > (p >>>= 1) ? 2 :
1338                a > (p >>>= 1) ? 4 :
1339                8);
1340    }
1341
2173      // Exported methods
2174  
2175      // Constructors
# Line 1408 | Line 2239 | public class ForkJoinPool extends Abstra
2239          checkPermission();
2240          if (factory == null)
2241              throw new NullPointerException();
2242 <        if (parallelism <= 0 || parallelism > MAX_ID)
2242 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2243              throw new IllegalArgumentException();
2244          this.parallelism = parallelism;
2245          this.factory = factory;
2246          this.ueh = handler;
2247 <        this.locallyFifo = asyncMode;
2247 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2248          long np = (long)(-parallelism); // offset ctl counts
2249          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2250 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
2251 <        // initialize workers array with room for 2*parallelism if possible
2252 <        int n = parallelism << 1;
2253 <        if (n >= MAX_ID)
2254 <            n = MAX_ID;
2255 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
2256 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
2257 <        }
2258 <        workers = new ForkJoinWorkerThread[n + 1];
2259 <        this.submissionLock = new ReentrantLock();
1429 <        this.termination = submissionLock.newCondition();
2250 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2251 >        int n = parallelism - 1;
2252 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2253 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2254 >        this.submitMask = size - 1;     // room for max # of submit queues
2255 >        this.workQueues = new WorkQueue[size];
2256 >        this.termination = (this.lock = new Mutex()).newCondition();
2257 >        this.stealCount = new AtomicLong();
2258 >        this.nextWorkerNumber = new AtomicInteger();
2259 >        int pn = poolNumberGenerator.incrementAndGet();
2260          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2261 <        sb.append(poolNumberGenerator.incrementAndGet());
2261 >        sb.append(Integer.toString(pn));
2262          sb.append("-worker-");
2263          this.workerNamePrefix = sb.toString();
2264 +        lock.lock();
2265 +        this.runState = 1;              // set init flag
2266 +        lock.unlock();
2267 +    }
2268 +
2269 +    /**
2270 +     * Returns the common pool instance
2271 +     *
2272 +     * @return the common pool instance
2273 +     */
2274 +    public static ForkJoinPool commonPool() {
2275 +        ForkJoinPool p;
2276 +        return (p = commonPool) != null? p : ensureCommonPool();
2277 +    }
2278 +
2279 +    private static ForkJoinPool ensureCommonPool() {
2280 +        ForkJoinPool p;
2281 +        if ((p = commonPool) == null) {
2282 +            final Mutex lock = initializationLock;
2283 +            lock.lock();
2284 +            try {
2285 +                if ((p = commonPool) == null) {
2286 +                    p = commonPool = new ForkJoinPool(commonPoolParallelism,
2287 +                                                      commonPoolFactory,
2288 +                                                      commonPoolUEH, false);
2289 +                    // use a more informative name string for workers
2290 +                    p.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2291 +                }
2292 +            } finally {
2293 +                lock.unlock();
2294 +            }
2295 +        }
2296 +        return p;
2297      }
2298  
2299      // Execution methods
# Line 1452 | Line 2315 | public class ForkJoinPool extends Abstra
2315       *         scheduled for execution
2316       */
2317      public <T> T invoke(ForkJoinTask<T> task) {
1455        Thread t = Thread.currentThread();
2318          if (task == null)
2319              throw new NullPointerException();
2320 <        if (shutdown)
2321 <            throw new RejectedExecutionException();
1460 <        if ((t instanceof ForkJoinWorkerThread) &&
1461 <            ((ForkJoinWorkerThread)t).pool == this)
1462 <            return task.invoke();  // bypass submit if in same pool
1463 <        else {
1464 <            addSubmission(task);
1465 <            return task.join();
1466 <        }
1467 <    }
1468 <
1469 <    /**
1470 <     * Unless terminating, forks task if within an ongoing FJ
1471 <     * computation in the current pool, else submits as external task.
1472 <     */
1473 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1474 <        ForkJoinWorkerThread w;
1475 <        Thread t = Thread.currentThread();
1476 <        if (shutdown)
1477 <            throw new RejectedExecutionException();
1478 <        if ((t instanceof ForkJoinWorkerThread) &&
1479 <            (w = (ForkJoinWorkerThread)t).pool == this)
1480 <            w.pushTask(task);
1481 <        else
1482 <            addSubmission(task);
2320 >        doSubmit(task);
2321 >        return task.join();
2322      }
2323  
2324      /**
# Line 1493 | Line 2332 | public class ForkJoinPool extends Abstra
2332      public void execute(ForkJoinTask<?> task) {
2333          if (task == null)
2334              throw new NullPointerException();
2335 <        forkOrSubmit(task);
2335 >        doSubmit(task);
2336      }
2337  
2338      // AbstractExecutorService methods
# Line 1510 | Line 2349 | public class ForkJoinPool extends Abstra
2349          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2350              job = (ForkJoinTask<?>) task;
2351          else
2352 <            job = ForkJoinTask.adapt(task, null);
2353 <        forkOrSubmit(job);
2352 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2353 >        doSubmit(job);
2354      }
2355  
2356      /**
# Line 1526 | Line 2365 | public class ForkJoinPool extends Abstra
2365      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2366          if (task == null)
2367              throw new NullPointerException();
2368 <        forkOrSubmit(task);
2368 >        doSubmit(task);
2369          return task;
2370      }
2371  
# Line 1536 | Line 2375 | public class ForkJoinPool extends Abstra
2375       *         scheduled for execution
2376       */
2377      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2378 <        if (task == null)
2379 <            throw new NullPointerException();
1541 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1542 <        forkOrSubmit(job);
2378 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2379 >        doSubmit(job);
2380          return job;
2381      }
2382  
# Line 1549 | Line 2386 | public class ForkJoinPool extends Abstra
2386       *         scheduled for execution
2387       */
2388      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2389 <        if (task == null)
2390 <            throw new NullPointerException();
1554 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1555 <        forkOrSubmit(job);
2389 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2390 >        doSubmit(job);
2391          return job;
2392      }
2393  
# Line 1568 | Line 2403 | public class ForkJoinPool extends Abstra
2403          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2404              job = (ForkJoinTask<?>) task;
2405          else
2406 <            job = ForkJoinTask.adapt(task, null);
2407 <        forkOrSubmit(job);
2406 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2407 >        doSubmit(job);
2408          return job;
2409      }
2410  
# Line 1578 | Line 2413 | public class ForkJoinPool extends Abstra
2413       * @throws RejectedExecutionException {@inheritDoc}
2414       */
2415      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2416 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2417 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2418 <        for (Callable<T> task : tasks)
2419 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2420 <        invoke(new InvokeAll<T>(forkJoinTasks));
2421 <
2416 >        // In previous versions of this class, this method constructed
2417 >        // a task to run ForkJoinTask.invokeAll, but now external
2418 >        // invocation of multiple tasks is at least as efficient.
2419 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2420 >        // Workaround needed because method wasn't declared with
2421 >        // wildcards in return type but should have been.
2422          @SuppressWarnings({"unchecked", "rawtypes"})
2423 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1589 <        return futures;
1590 <    }
2423 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2424  
2425 <    static final class InvokeAll<T> extends RecursiveAction {
2426 <        final ArrayList<ForkJoinTask<T>> tasks;
2427 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2428 <        public void compute() {
2429 <            try { invokeAll(tasks); }
2430 <            catch (Exception ignore) {}
2425 >        boolean done = false;
2426 >        try {
2427 >            for (Callable<T> t : tasks) {
2428 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2429 >                doSubmit(f);
2430 >                fs.add(f);
2431 >            }
2432 >            for (ForkJoinTask<T> f : fs)
2433 >                f.quietlyJoin();
2434 >            done = true;
2435 >            return futures;
2436 >        } finally {
2437 >            if (!done)
2438 >                for (ForkJoinTask<T> f : fs)
2439 >                    f.cancel(false);
2440          }
1599        private static final long serialVersionUID = -7914297376763021607L;
2441      }
2442  
2443      /**
# Line 1628 | Line 2469 | public class ForkJoinPool extends Abstra
2469      }
2470  
2471      /**
2472 +     * Returns the targeted parallelism level of the common pool.
2473 +     *
2474 +     * @return the targeted parallelism level of the common pool
2475 +     */
2476 +    public static int getCommonPoolParallelism() {
2477 +        return commonPoolParallelism;
2478 +    }
2479 +
2480 +    /**
2481       * Returns the number of worker threads that have started but not
2482       * yet terminated.  The result returned by this method may differ
2483       * from {@link #getParallelism} when threads are created to
# Line 1646 | Line 2496 | public class ForkJoinPool extends Abstra
2496       * @return {@code true} if this pool uses async mode
2497       */
2498      public boolean getAsyncMode() {
2499 <        return locallyFifo;
2499 >        return localMode != 0;
2500      }
2501  
2502      /**
# Line 1658 | Line 2508 | public class ForkJoinPool extends Abstra
2508       * @return the number of worker threads
2509       */
2510      public int getRunningThreadCount() {
2511 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2512 <        return r <= 0? 0 : r; // suppress momentarily negative values
2511 >        int rc = 0;
2512 >        WorkQueue[] ws; WorkQueue w;
2513 >        if ((ws = workQueues) != null) {
2514 >            for (int i = 1; i < ws.length; i += 2) {
2515 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2516 >                    ++rc;
2517 >            }
2518 >        }
2519 >        return rc;
2520      }
2521  
2522      /**
# Line 1670 | Line 2527 | public class ForkJoinPool extends Abstra
2527       * @return the number of active threads
2528       */
2529      public int getActiveThreadCount() {
2530 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2531 <        return r <= 0? 0 : r; // suppress momentarily negative values
2530 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2531 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2532      }
2533  
2534      /**
# Line 1686 | Line 2543 | public class ForkJoinPool extends Abstra
2543       * @return {@code true} if all threads are currently idle
2544       */
2545      public boolean isQuiescent() {
2546 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2546 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2547      }
2548  
2549      /**
# Line 1701 | Line 2558 | public class ForkJoinPool extends Abstra
2558       * @return the number of steals
2559       */
2560      public long getStealCount() {
2561 <        return stealCount;
2561 >        long count = stealCount.get();
2562 >        WorkQueue[] ws; WorkQueue w;
2563 >        if ((ws = workQueues) != null) {
2564 >            for (int i = 1; i < ws.length; i += 2) {
2565 >                if ((w = ws[i]) != null)
2566 >                    count += w.totalSteals;
2567 >            }
2568 >        }
2569 >        return count;
2570      }
2571  
2572      /**
# Line 1716 | Line 2581 | public class ForkJoinPool extends Abstra
2581       */
2582      public long getQueuedTaskCount() {
2583          long count = 0;
2584 <        ForkJoinWorkerThread[] ws;
2585 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2586 <            (ws = workers) != null) {
2587 <            for (ForkJoinWorkerThread w : ws)
2588 <                if (w != null)
2589 <                    count -= w.queueBase - w.queueTop; // must read base first
2584 >        WorkQueue[] ws; WorkQueue w;
2585 >        if ((ws = workQueues) != null) {
2586 >            for (int i = 1; i < ws.length; i += 2) {
2587 >                if ((w = ws[i]) != null)
2588 >                    count += w.queueSize();
2589 >            }
2590          }
2591          return count;
2592      }
2593  
2594      /**
2595       * Returns an estimate of the number of tasks submitted to this
2596 <     * pool that have not yet begun executing.  This meThod may take
2596 >     * pool that have not yet begun executing.  This method may take
2597       * time proportional to the number of submissions.
2598       *
2599       * @return the number of queued submissions
2600       */
2601      public int getQueuedSubmissionCount() {
2602 <        return -queueBase + queueTop;
2602 >        int count = 0;
2603 >        WorkQueue[] ws; WorkQueue w;
2604 >        if ((ws = workQueues) != null) {
2605 >            for (int i = 0; i < ws.length; i += 2) {
2606 >                if ((w = ws[i]) != null)
2607 >                    count += w.queueSize();
2608 >            }
2609 >        }
2610 >        return count;
2611      }
2612  
2613      /**
# Line 1744 | Line 2617 | public class ForkJoinPool extends Abstra
2617       * @return {@code true} if there are any queued submissions
2618       */
2619      public boolean hasQueuedSubmissions() {
2620 <        return queueBase != queueTop;
2620 >        WorkQueue[] ws; WorkQueue w;
2621 >        if ((ws = workQueues) != null) {
2622 >            for (int i = 0; i < ws.length; i += 2) {
2623 >                if ((w = ws[i]) != null && !w.isEmpty())
2624 >                    return true;
2625 >            }
2626 >        }
2627 >        return false;
2628      }
2629  
2630      /**
# Line 1755 | Line 2635 | public class ForkJoinPool extends Abstra
2635       * @return the next submission, or {@code null} if none
2636       */
2637      protected ForkJoinTask<?> pollSubmission() {
2638 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2639 <        while ((b = queueBase) != queueTop &&
2640 <               (q = submissionQueue) != null &&
2641 <               (i = (q.length - 1) & b) >= 0) {
2642 <            long u = (i << ASHIFT) + ABASE;
1763 <            if ((t = q[i]) != null &&
1764 <                queueBase == b &&
1765 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1766 <                queueBase = b + 1;
1767 <                return t;
2638 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2639 >        if ((ws = workQueues) != null) {
2640 >            for (int i = 0; i < ws.length; i += 2) {
2641 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2642 >                    return t;
2643              }
2644          }
2645          return null;
# Line 1789 | Line 2664 | public class ForkJoinPool extends Abstra
2664       */
2665      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2666          int count = 0;
2667 <        while (queueBase != queueTop) {
2668 <            ForkJoinTask<?> t = pollSubmission();
2669 <            if (t != null) {
2670 <                c.add(t);
2671 <                ++count;
2667 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2668 >        if ((ws = workQueues) != null) {
2669 >            for (int i = 0; i < ws.length; ++i) {
2670 >                if ((w = ws[i]) != null) {
2671 >                    while ((t = w.poll()) != null) {
2672 >                        c.add(t);
2673 >                        ++count;
2674 >                    }
2675 >                }
2676              }
2677          }
1799        ForkJoinWorkerThread[] ws;
1800        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1801            (ws = workers) != null) {
1802            for (ForkJoinWorkerThread w : ws)
1803                if (w != null)
1804                    count += w.drainTasksTo(c);
1805        }
2678          return count;
2679      }
2680  
# Line 1814 | Line 2686 | public class ForkJoinPool extends Abstra
2686       * @return a string identifying this pool, as well as its state
2687       */
2688      public String toString() {
2689 <        long st = getStealCount();
2690 <        long qt = getQueuedTaskCount();
2691 <        long qs = getQueuedSubmissionCount();
1820 <        int pc = parallelism;
2689 >        // Use a single pass through workQueues to collect counts
2690 >        long qt = 0L, qs = 0L; int rc = 0;
2691 >        long st = stealCount.get();
2692          long c = ctl;
2693 +        WorkQueue[] ws; WorkQueue w;
2694 +        if ((ws = workQueues) != null) {
2695 +            for (int i = 0; i < ws.length; ++i) {
2696 +                if ((w = ws[i]) != null) {
2697 +                    int size = w.queueSize();
2698 +                    if ((i & 1) == 0)
2699 +                        qs += size;
2700 +                    else {
2701 +                        qt += size;
2702 +                        st += w.totalSteals;
2703 +                        if (w.isApparentlyUnblocked())
2704 +                            ++rc;
2705 +                    }
2706 +                }
2707 +            }
2708 +        }
2709 +        int pc = parallelism;
2710          int tc = pc + (short)(c >>> TC_SHIFT);
2711 <        int rc = pc + (int)(c >> AC_SHIFT);
2712 <        if (rc < 0) // ignore transient negative
2713 <            rc = 0;
1826 <        int ac = rc + blockedCount;
2711 >        int ac = pc + (int)(c >> AC_SHIFT);
2712 >        if (ac < 0) // ignore transient negative
2713 >            ac = 0;
2714          String level;
2715          if ((c & STOP_BIT) != 0)
2716 <            level = (tc == 0)? "Terminated" : "Terminating";
2716 >            level = (tc == 0) ? "Terminated" : "Terminating";
2717          else
2718 <            level = shutdown? "Shutting down" : "Running";
2718 >            level = runState < 0 ? "Shutting down" : "Running";
2719          return super.toString() +
2720              "[" + level +
2721              ", parallelism = " + pc +
# Line 1842 | Line 2729 | public class ForkJoinPool extends Abstra
2729      }
2730  
2731      /**
2732 <     * Initiates an orderly shutdown in which previously submitted
2733 <     * tasks are executed, but no new tasks will be accepted.
2734 <     * Invocation has no additional effect if already shut down.
2735 <     * Tasks that are in the process of being submitted concurrently
2736 <     * during the course of this method may or may not be rejected.
2732 >     * Possibly initiates an orderly shutdown in which previously
2733 >     * submitted tasks are executed, but no new tasks will be
2734 >     * accepted. Invocation has no effect on execution state if this
2735 >     * is the {@link #commonPool}, and no additional effect if
2736 >     * already shut down.  Tasks that are in the process of being
2737 >     * submitted concurrently during the course of this method may or
2738 >     * may not be rejected.
2739       *
2740       * @throws SecurityException if a security manager exists and
2741       *         the caller is not permitted to modify threads
# Line 1855 | Line 2744 | public class ForkJoinPool extends Abstra
2744       */
2745      public void shutdown() {
2746          checkPermission();
2747 <        shutdown = true;
2748 <        tryTerminate(false);
2747 >        if (this != commonPool)
2748 >            tryTerminate(false, true);
2749      }
2750  
2751      /**
2752 <     * Attempts to cancel and/or stop all tasks, and reject all
2753 <     * subsequently submitted tasks.  Tasks that are in the process of
2754 <     * being submitted or executed concurrently during the course of
2755 <     * this method may or may not be rejected. This method cancels
2756 <     * both existing and unexecuted tasks, in order to permit
2757 <     * termination in the presence of task dependencies. So the method
2758 <     * always returns an empty list (unlike the case for some other
2759 <     * Executors).
2752 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2753 >     * all subsequently submitted tasks.  Invocation has no effect on
2754 >     * execution state if this is the {@link #commonPool}, and no
2755 >     * additional effect if already shut down. Otherwise, tasks that
2756 >     * are in the process of being submitted or executed concurrently
2757 >     * during the course of this method may or may not be
2758 >     * rejected. This method cancels both existing and unexecuted
2759 >     * tasks, in order to permit termination in the presence of task
2760 >     * dependencies. So the method always returns an empty list
2761 >     * (unlike the case for some other Executors).
2762       *
2763       * @return an empty list
2764       * @throws SecurityException if a security manager exists and
# Line 1877 | Line 2768 | public class ForkJoinPool extends Abstra
2768       */
2769      public List<Runnable> shutdownNow() {
2770          checkPermission();
2771 <        shutdown = true;
2772 <        tryTerminate(true);
2771 >        if (this != commonPool)
2772 >            tryTerminate(true, true);
2773          return Collections.emptyList();
2774      }
2775  
# Line 1913 | Line 2804 | public class ForkJoinPool extends Abstra
2804      }
2805  
2806      /**
1916     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1917     */
1918    final boolean isAtLeastTerminating() {
1919        return (ctl & STOP_BIT) != 0L;
1920    }
1921
1922    /**
2807       * Returns {@code true} if this pool has been shut down.
2808       *
2809       * @return {@code true} if this pool has been shut down
2810       */
2811      public boolean isShutdown() {
2812 <        return shutdown;
2812 >        return runState < 0;
2813      }
2814  
2815      /**
# Line 1942 | Line 2826 | public class ForkJoinPool extends Abstra
2826      public boolean awaitTermination(long timeout, TimeUnit unit)
2827          throws InterruptedException {
2828          long nanos = unit.toNanos(timeout);
2829 <        final ReentrantLock lock = this.submissionLock;
2829 >        final Mutex lock = this.lock;
2830          lock.lock();
2831          try {
2832              for (;;) {
# Line 1965 | Line 2849 | public class ForkJoinPool extends Abstra
2849       * {@code isReleasable} must return {@code true} if blocking is
2850       * not necessary. Method {@code block} blocks the current thread
2851       * if necessary (perhaps internally invoking {@code isReleasable}
2852 <     * before actually blocking). The unusual methods in this API
2853 <     * accommodate synchronizers that may, but don't usually, block
2854 <     * for long periods. Similarly, they allow more efficient internal
2855 <     * handling of cases in which additional workers may be, but
2856 <     * usually are not, needed to ensure sufficient parallelism.
2857 <     * Toward this end, implementations of method {@code isReleasable}
2858 <     * must be amenable to repeated invocation.
2852 >     * before actually blocking). These actions are performed by any
2853 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2854 >     * unusual methods in this API accommodate synchronizers that may,
2855 >     * but don't usually, block for long periods. Similarly, they
2856 >     * allow more efficient internal handling of cases in which
2857 >     * additional workers may be, but usually are not, needed to
2858 >     * ensure sufficient parallelism.  Toward this end,
2859 >     * implementations of method {@code isReleasable} must be amenable
2860 >     * to repeated invocation.
2861       *
2862       * <p>For example, here is a ManagedBlocker based on a
2863       * ReentrantLock:
# Line 2051 | Line 2937 | public class ForkJoinPool extends Abstra
2937      public static void managedBlock(ManagedBlocker blocker)
2938          throws InterruptedException {
2939          Thread t = Thread.currentThread();
2940 <        if (t instanceof ForkJoinWorkerThread) {
2941 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2942 <            w.pool.awaitBlocker(blocker);
2943 <        }
2944 <        else {
2945 <            do {} while (!blocker.isReleasable() && !blocker.block());
2940 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2941 >                          ((ForkJoinWorkerThread)t).pool : null);
2942 >        while (!blocker.isReleasable()) {
2943 >            if (p == null || p.tryCompensate(null, blocker)) {
2944 >                try {
2945 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2946 >                } finally {
2947 >                    if (p != null)
2948 >                        p.incrementActiveCount();
2949 >                }
2950 >                break;
2951 >            }
2952          }
2953      }
2954  
# Line 2065 | Line 2957 | public class ForkJoinPool extends Abstra
2957      // implement RunnableFuture.
2958  
2959      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2960 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2960 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2961      }
2962  
2963      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2964 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2964 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2965      }
2966  
2967      // Unsafe mechanics
2968 <    private static final sun.misc.Unsafe UNSAFE;
2969 <    private static final long ctlOffset;
2970 <    private static final long stealCountOffset;
2971 <    private static final long blockedCountOffset;
2080 <    private static final long quiescerCountOffset;
2081 <    private static final long scanGuardOffset;
2082 <    private static final long nextWorkerNumberOffset;
2083 <    private static final long ABASE;
2968 >    private static final sun.misc.Unsafe U;
2969 >    private static final long CTL;
2970 >    private static final long PARKBLOCKER;
2971 >    private static final int ABASE;
2972      private static final int ASHIFT;
2973  
2974      static {
2975          poolNumberGenerator = new AtomicInteger();
2976 <        workerSeedGenerator = new Random();
2976 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
2977          modifyThreadPermission = new RuntimePermission("modifyThread");
2978          defaultForkJoinWorkerThreadFactory =
2979              new DefaultForkJoinWorkerThreadFactory();
2980 +        submitters = new ThreadSubmitter();
2981 +        initializationLock = new Mutex();
2982          int s;
2983          try {
2984 <            UNSAFE = getUnsafe();
2985 <            Class k = ForkJoinPool.class;
2986 <            ctlOffset = UNSAFE.objectFieldOffset
2984 >            U = getUnsafe();
2985 >            Class<?> k = ForkJoinPool.class;
2986 >            Class<?> ak = ForkJoinTask[].class;
2987 >            CTL = U.objectFieldOffset
2988                  (k.getDeclaredField("ctl"));
2989 <            stealCountOffset = UNSAFE.objectFieldOffset
2990 <                (k.getDeclaredField("stealCount"));
2991 <            blockedCountOffset = UNSAFE.objectFieldOffset
2992 <                (k.getDeclaredField("blockedCount"));
2993 <            quiescerCountOffset = UNSAFE.objectFieldOffset
2103 <                (k.getDeclaredField("quiescerCount"));
2104 <            scanGuardOffset = UNSAFE.objectFieldOffset
2105 <                (k.getDeclaredField("scanGuard"));
2106 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2107 <                (k.getDeclaredField("nextWorkerNumber"));
2108 <            Class a = ForkJoinTask[].class;
2109 <            ABASE = UNSAFE.arrayBaseOffset(a);
2110 <            s = UNSAFE.arrayIndexScale(a);
2989 >            Class<?> tk = Thread.class;
2990 >            PARKBLOCKER = U.objectFieldOffset
2991 >                (tk.getDeclaredField("parkBlocker"));
2992 >            ABASE = U.arrayBaseOffset(ak);
2993 >            s = U.arrayIndexScale(ak);
2994          } catch (Exception e) {
2995              throw new Error(e);
2996          }
2997          if ((s & (s-1)) != 0)
2998              throw new Error("data type scale not a power of two");
2999          ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3000 +
3001 +        // Establish configuration for default pool
3002 +        try {
3003 +            String pp = System.getProperty(propPrefix + "parallelism");
3004 +            String fp = System.getProperty(propPrefix + "threadFactory");
3005 +            String up = System.getProperty(propPrefix + "exceptionHandler");
3006 +            int par;
3007 +            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3008 +                par = Runtime.getRuntime().availableProcessors();
3009 +            commonPoolParallelism = par;
3010 +            if (fp != null)
3011 +                commonPoolFactory = (ForkJoinWorkerThreadFactory)
3012 +                    ClassLoader.getSystemClassLoader().loadClass(fp).newInstance();
3013 +            else
3014 +                commonPoolFactory = defaultForkJoinWorkerThreadFactory;
3015 +            if (up != null)
3016 +                commonPoolUEH = (Thread.UncaughtExceptionHandler)
3017 +                    ClassLoader.getSystemClassLoader().loadClass(up).newInstance();
3018 +            else
3019 +                commonPoolUEH = null;
3020 +        } catch (Exception e) {
3021 +            throw new Error(e);
3022 +        }
3023      }
3024  
3025      /**
# Line 2143 | Line 3049 | public class ForkJoinPool extends Abstra
3049              }
3050          }
3051      }
3052 +
3053   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines