ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.92 by dl, Tue Feb 22 10:50:51 2011 UTC vs.
Revision 1.136 by dl, Mon Oct 29 17:23:34 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 19 | Line 19 | import java.util.concurrent.Future;
19   import java.util.concurrent.RejectedExecutionException;
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.locks.LockSupport;
24 < import java.util.concurrent.locks.ReentrantLock;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 34 | Line 33 | import java.util.concurrent.locks.Condit
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A {@code ForkJoinPool} is constructed with a given target
46 < * parallelism level; by default, equal to the number of available
47 < * processors. The pool attempts to maintain enough active (or
48 < * available) threads by dynamically adding, suspending, or resuming
49 < * internal worker threads, even if some tasks are stalled waiting to
50 < * join others. However, no such adjustments are guaranteed in the
51 < * face of blocked IO or other unmanaged synchronization. The nested
52 < * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is used by any ForkJoinTask that
47 > * is not explicitly submitted to a specified pool. Using the common
48 > * pool normally reduces resource usage (its threads are slowly
49 > * reclaimed during periods of non-use, and reinstated upon subsequent
50 > * use).  The common pool is by default constructed with default
51 > * parameters, but these may be controlled by setting any or all of
52 > * the three properties {@code
53 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
54 > * threadFactory, exceptionHandler}}.
55 > *
56 > * <p>For applications that require separate or custom pools, a {@code
57 > * ForkJoinPool} may be constructed with a given target parallelism
58 > * level; by default, equal to the number of available processors. The
59 > * pool attempts to maintain enough active (or available) threads by
60 > * dynamically adding, suspending, or resuming internal worker
61 > * threads, even if some tasks are stalled waiting to join
62 > * others. However, no such adjustments are guaranteed in the face of
63 > * blocked IO or other unmanaged synchronization. The nested {@link
64 > * ManagedBlocker} interface enables extension of the kinds of
65   * synchronization accommodated.
66   *
67   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 72 | import java.util.concurrent.locks.Condit
72   * convenient form for informal monitoring.
73   *
74   * <p> As is the case with other ExecutorServices, there are three
75 < * main task execution methods summarized in the following
76 < * table. These are designed to be used by clients not already engaged
77 < * in fork/join computations in the current pool.  The main forms of
78 < * these methods accept instances of {@code ForkJoinTask}, but
79 < * overloaded forms also allow mixed execution of plain {@code
75 > * main task execution methods summarized in the following table.
76 > * These are designed to be used primarily by clients not already
77 > * engaged in fork/join computations in the current pool.  The main
78 > * forms of these methods accept instances of {@code ForkJoinTask},
79 > * but overloaded forms also allow mixed execution of plain {@code
80   * Runnable}- or {@code Callable}- based activities as well.  However,
81 < * tasks that are already executing in a pool should normally
82 < * <em>NOT</em> use these pool execution methods, but instead use the
83 < * within-computation forms listed in the table.
81 > * tasks that are already executing in a pool should normally instead
82 > * use the within-computation forms listed in the table unless using
83 > * async event-style tasks that are not usually joined, in which case
84 > * there is little difference among choice of methods.
85   *
86   * <table BORDER CELLPADDING=3 CELLSPACING=1>
87   *  <tr>
# Line 92 | Line 106 | import java.util.concurrent.locks.Condit
106   *  </tr>
107   * </table>
108   *
95 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 * used for all parallel task execution in a program or subsystem.
97 * Otherwise, use would not usually outweigh the construction and
98 * bookkeeping overhead of creating a large set of threads. For
99 * example, a common pool could be used for the {@code SortTasks}
100 * illustrated in {@link RecursiveAction}. Because {@code
101 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 * daemon} mode, there is typically no need to explicitly {@link
103 * #shutdown} such a pool upon program exit.
104 *
105 * <pre>
106 * static final ForkJoinPool mainPool = new ForkJoinPool();
107 * ...
108 * public void sort(long[] array) {
109 *   mainPool.invoke(new SortTask(array, 0, array.length));
110 * }
111 * </pre>
112 *
109   * <p><b>Implementation notes</b>: This implementation restricts the
110   * maximum number of running threads to 32767. Attempts to create
111   * pools with greater than the maximum number result in
# Line 127 | Line 123 | public class ForkJoinPool extends Abstra
123      /*
124       * Implementation Overview
125       *
126 <     * This class provides the central bookkeeping and control for a
127 <     * set of worker threads: Submissions from non-FJ threads enter
128 <     * into a submission queue. Workers take these tasks and typically
129 <     * split them into subtasks that may be stolen by other workers.
130 <     * Preference rules give first priority to processing tasks from
131 <     * their own queues (LIFO or FIFO, depending on mode), then to
132 <     * randomized FIFO steals of tasks in other worker queues, and
133 <     * lastly to new submissions.
126 >     * This class and its nested classes provide the main
127 >     * functionality and control for a set of worker threads:
128 >     * Submissions from non-FJ threads enter into submission queues.
129 >     * Workers take these tasks and typically split them into subtasks
130 >     * that may be stolen by other workers.  Preference rules give
131 >     * first priority to processing tasks from their own queues (LIFO
132 >     * or FIFO, depending on mode), then to randomized FIFO steals of
133 >     * tasks in other queues.
134 >     *
135 >     * WorkQueues
136 >     * ==========
137 >     *
138 >     * Most operations occur within work-stealing queues (in nested
139 >     * class WorkQueue).  These are special forms of Deques that
140 >     * support only three of the four possible end-operations -- push,
141 >     * pop, and poll (aka steal), under the further constraints that
142 >     * push and pop are called only from the owning thread (or, as
143 >     * extended here, under a lock), while poll may be called from
144 >     * other threads.  (If you are unfamiliar with them, you probably
145 >     * want to read Herlihy and Shavit's book "The Art of
146 >     * Multiprocessor programming", chapter 16 describing these in
147 >     * more detail before proceeding.)  The main work-stealing queue
148 >     * design is roughly similar to those in the papers "Dynamic
149 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150 >     * (http://research.sun.com/scalable/pubs/index.html) and
151 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 >     * The main differences ultimately stem from GC requirements that
154 >     * we null out taken slots as soon as we can, to maintain as small
155 >     * a footprint as possible even in programs generating huge
156 >     * numbers of tasks. To accomplish this, we shift the CAS
157 >     * arbitrating pop vs poll (steal) from being on the indices
158 >     * ("base" and "top") to the slots themselves.  So, both a
159 >     * successful pop and poll mainly entail a CAS of a slot from
160 >     * non-null to null.  Because we rely on CASes of references, we
161 >     * do not need tag bits on base or top.  They are simple ints as
162 >     * used in any circular array-based queue (see for example
163 >     * ArrayDeque).  Updates to the indices must still be ordered in a
164 >     * way that guarantees that top == base means the queue is empty,
165 >     * but otherwise may err on the side of possibly making the queue
166 >     * appear nonempty when a push, pop, or poll have not fully
167 >     * committed. Note that this means that the poll operation,
168 >     * considered individually, is not wait-free. One thief cannot
169 >     * successfully continue until another in-progress one (or, if
170 >     * previously empty, a push) completes.  However, in the
171 >     * aggregate, we ensure at least probabilistic non-blockingness.
172 >     * If an attempted steal fails, a thief always chooses a different
173 >     * random victim target to try next. So, in order for one thief to
174 >     * progress, it suffices for any in-progress poll or new push on
175 >     * any empty queue to complete. (This is why we normally use
176 >     * method pollAt and its variants that try once at the apparent
177 >     * base index, else consider alternative actions, rather than
178 >     * method poll.)
179 >     *
180 >     * This approach also enables support of a user mode in which local
181 >     * task processing is in FIFO, not LIFO order, simply by using
182 >     * poll rather than pop.  This can be useful in message-passing
183 >     * frameworks in which tasks are never joined.  However neither
184 >     * mode considers affinities, loads, cache localities, etc, so
185 >     * rarely provide the best possible performance on a given
186 >     * machine, but portably provide good throughput by averaging over
187 >     * these factors.  (Further, even if we did try to use such
188 >     * information, we do not usually have a basis for exploiting it.
189 >     * For example, some sets of tasks profit from cache affinities,
190 >     * but others are harmed by cache pollution effects.)
191 >     *
192 >     * WorkQueues are also used in a similar way for tasks submitted
193 >     * to the pool. We cannot mix these tasks in the same queues used
194 >     * for work-stealing (this would contaminate lifo/fifo
195 >     * processing). Instead, we loosely associate submission queues
196 >     * with submitting threads, using a form of hashing.  The
197 >     * ThreadLocal Submitter class contains a value initially used as
198 >     * a hash code for choosing existing queues, but may be randomly
199 >     * repositioned upon contention with other submitters.  In
200 >     * essence, submitters act like workers except that they never
201 >     * take tasks, and they are multiplexed on to a finite number of
202 >     * shared work queues. However, classes are set up so that future
203 >     * extensions could allow submitters to optionally help perform
204 >     * tasks as well. Insertion of tasks in shared mode requires a
205 >     * lock (mainly to protect in the case of resizing) but we use
206 >     * only a simple spinlock (using bits in field runState), because
207 >     * submitters encountering a busy queue move on to try or create
208 >     * other queues -- they block only when creating and registering
209 >     * new queues.
210 >     *
211 >     * Management
212 >     * ==========
213       *
214       * The main throughput advantages of work-stealing stem from
215       * decentralized control -- workers mostly take tasks from
216       * themselves or each other. We cannot negate this in the
217       * implementation of other management responsibilities. The main
218       * tactic for avoiding bottlenecks is packing nearly all
219 <     * essentially atomic control state into a single 64bit volatile
220 <     * variable ("ctl"). This variable is read on the order of 10-100
221 <     * times as often as it is modified (always via CAS). (There is
222 <     * some additional control state, for example variable "shutdown"
223 <     * for which we can cope with uncoordinated updates.)  This
224 <     * streamlines synchronization and control at the expense of messy
225 <     * constructions needed to repack status bits upon updates.
226 <     * Updates tend not to contend with each other except during
227 <     * bursts while submitted tasks begin or end.  In some cases when
228 <     * they do contend, threads can instead do something else
229 <     * (usually, scan for tesks) until contention subsides.
230 <     *
231 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
232 <     * (which is far in excess of normal operating range) to allow
233 <     * ids, counts, and their negations (used for thresholding) to fit
234 <     * into 16bit fields.
235 <     *
236 <     * Recording Workers.  Workers are recorded in the "workers" array
237 <     * that is created upon pool construction and expanded if (rarely)
238 <     * necessary.  This is an array as opposed to some other data
239 <     * structure to support index-based random steals by workers.
240 <     * Updates to the array recording new workers and unrecording
241 <     * terminated ones are protected from each other by a seqLock
242 <     * (scanGuard) but the array is otherwise concurrently readable,
243 <     * and accessed directly by workers. To simplify index-based
244 <     * operations, the array size is always a power of two, and all
245 <     * readers must tolerate null slots. To avoid flailing during
246 <     * start-up, the array is presized to hold twice #parallelism
247 <     * workers (which is unlikely to need further resizing during
248 <     * execution). But to avoid dealing with so many null slots,
249 <     * variable scanGuard includes a mask for the nearest power of two
250 <     * that contains all current workers.  All worker thread creation
251 <     * is on-demand, triggered by task submissions, replacement of
252 <     * terminated workers, and/or compensation for blocked
253 <     * workers. However, all other support code is set up to work with
254 <     * other policies.  To ensure that we do not hold on to worker
255 <     * references that would prevent GC, ALL accesses to workers are
256 <     * via indices into the workers array (which is one source of some
257 <     * of the messy code constructions here). In essence, the workers
258 <     * array serves as a weak reference mechanism. Thus for example
259 <     * the wait queue field of ctl stores worker indices, not worker
260 <     * references.  Access to the workers in associated methods (for
261 <     * example signalWork) must both index-check and null-check the
262 <     * IDs. All such accesses ignore bad IDs by returning out early
263 <     * from what they are doing, since this can only be associated
264 <     * with termination, in which case it is OK to give up.
265 <     *
266 <     * All uses of the workers array, as well as queue arrays, check
267 <     * that the array is non-null (even if previously non-null). This
268 <     * allows nulling during termination, which is currently not
269 <     * necessary, but remains an option for resource-revocation-based
270 <     * shutdown schemes.
271 <     *
272 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
273 <     * let workers spin indefinitely scanning for tasks when none are
274 <     * can be immediately found, and we cannot start/resume workers
275 <     * unless there appear to be tasks available.  On the other hand,
276 <     * we must quickly prod them into action when new tasks are
277 <     * submitted or generated.  We park/unpark workers after placing
278 <     * in an event wait queue when they cannot find work. This "queue"
279 <     * is actually a simple Treiber stack, headed by the "id" field of
280 <     * ctl, plus a 15bit counter value to both wake up waiters (by
281 <     * advancing their count) and avoid ABA effects. Successors are
282 <     * held in worker field "nextWait".  Queuing deals with several
283 <     * intrinsic races, mainly that a task-producing thread can miss
284 <     * seeing (and signalling) another thread that gave up looking for
285 <     * work but has not yet entered the wait queue. We solve this by
286 <     * requiring a full sweep of all workers both before (in scan())
287 <     * and after (in awaitWork()) a newly waiting worker is added to
288 <     * the wait queue. During a rescan, the worker might release some
289 <     * other queued worker rather than itself, which has the same net
290 <     * effect.
219 >     * essentially atomic control state into two volatile variables
220 >     * that are by far most often read (not written) as status and
221 >     * consistency checks.
222 >     *
223 >     * Field "ctl" contains 64 bits holding all the information needed
224 >     * to atomically decide to add, inactivate, enqueue (on an event
225 >     * queue), dequeue, and/or re-activate workers.  To enable this
226 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227 >     * far in excess of normal operating range) to allow ids, counts,
228 >     * and their negations (used for thresholding) to fit into 16bit
229 >     * fields.
230 >     *
231 >     * Field "runState" contains 32 bits needed to register and
232 >     * deregister WorkQueues, as well as to enable shutdown. It is
233 >     * only modified under a lock (normally briefly held, but
234 >     * occasionally protecting allocations and resizings) but even
235 >     * when locked remains available to check consistency.
236 >     *
237 >     * Recording WorkQueues.  WorkQueues are recorded in the
238 >     * "workQueues" array that is created upon first use and expanded
239 >     * if necessary.  Updates to the array while recording new workers
240 >     * and unrecording terminated ones are protected from each other
241 >     * by a lock but the array is otherwise concurrently readable, and
242 >     * accessed directly.  To simplify index-based operations, the
243 >     * array size is always a power of two, and all readers must
244 >     * tolerate null slots. Shared (submission) queues are at even
245 >     * indices, worker queues at odd indices. Grouping them together
246 >     * in this way simplifies and speeds up task scanning.
247 >     *
248 >     * All worker thread creation is on-demand, triggered by task
249 >     * submissions, replacement of terminated workers, and/or
250 >     * compensation for blocked workers. However, all other support
251 >     * code is set up to work with other policies.  To ensure that we
252 >     * do not hold on to worker references that would prevent GC, ALL
253 >     * accesses to workQueues are via indices into the workQueues
254 >     * array (which is one source of some of the messy code
255 >     * constructions here). In essence, the workQueues array serves as
256 >     * a weak reference mechanism. Thus for example the wait queue
257 >     * field of ctl stores indices, not references.  Access to the
258 >     * workQueues in associated methods (for example signalWork) must
259 >     * both index-check and null-check the IDs. All such accesses
260 >     * ignore bad IDs by returning out early from what they are doing,
261 >     * since this can only be associated with termination, in which
262 >     * case it is OK to give up.  All uses of the workQueues array
263 >     * also check that it is non-null (even if previously
264 >     * non-null). This allows nulling during termination, which is
265 >     * currently not necessary, but remains an option for
266 >     * resource-revocation-based shutdown schemes. It also helps
267 >     * reduce JIT issuance of uncommon-trap code, which tends to
268 >     * unnecessarily complicate control flow in some methods.
269 >     *
270 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 >     * let workers spin indefinitely scanning for tasks when none can
272 >     * be found immediately, and we cannot start/resume workers unless
273 >     * there appear to be tasks available.  On the other hand, we must
274 >     * quickly prod them into action when new tasks are submitted or
275 >     * generated. In many usages, ramp-up time to activate workers is
276 >     * the main limiting factor in overall performance (this is
277 >     * compounded at program start-up by JIT compilation and
278 >     * allocation). So we try to streamline this as much as possible.
279 >     * We park/unpark workers after placing in an event wait queue
280 >     * when they cannot find work. This "queue" is actually a simple
281 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282 >     * counter value (that reflects the number of times a worker has
283 >     * been inactivated) to avoid ABA effects (we need only as many
284 >     * version numbers as worker threads). Successors are held in
285 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
286 >     * races, mainly that a task-producing thread can miss seeing (and
287 >     * signalling) another thread that gave up looking for work but
288 >     * has not yet entered the wait queue. We solve this by requiring
289 >     * a full sweep of all workers (via repeated calls to method
290 >     * scan()) both before and after a newly waiting worker is added
291 >     * to the wait queue. During a rescan, the worker might release
292 >     * some other queued worker rather than itself, which has the same
293 >     * net effect. Because enqueued workers may actually be rescanning
294 >     * rather than waiting, we set and clear the "parker" field of
295 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
296 >     * requires a secondary recheck to avoid missed signals.)  Note
297 >     * the unusual conventions about Thread.interrupts surrounding
298 >     * parking and other blocking: Because interrupts are used solely
299 >     * to alert threads to check termination, which is checked anyway
300 >     * upon blocking, we clear status (using Thread.interrupted)
301 >     * before any call to park, so that park does not immediately
302 >     * return due to status being set via some other unrelated call to
303 >     * interrupt in user code.
304       *
305       * Signalling.  We create or wake up workers only when there
306       * appears to be at least one task they might be able to find and
307       * execute.  When a submission is added or another worker adds a
308 <     * task to a queue that previously had two or fewer tasks, they
308 >     * task to a queue that previously had fewer than two tasks, they
309       * signal waiting workers (or trigger creation of new ones if
310       * fewer than the given parallelism level -- see signalWork).
311 <     * These primary signals are buttressed by signals during rescans
312 <     * as well as those performed when a worker steals a task and
313 <     * notices that there are more tasks too; together these cover the
314 <     * signals needed in cases when more than two tasks are pushed
227 <     * but untaken.
311 >     * These primary signals are buttressed by signals during rescans;
312 >     * together these cover the signals needed in cases when more
313 >     * tasks are pushed but untaken, and improve performance compared
314 >     * to having one thread wake up all workers.
315       *
316       * Trimming workers. To release resources after periods of lack of
317       * use, a worker starting to wait when the pool is quiescent will
318 <     * time out and terminate if the pool has remained quiescent for
319 <     * SHRINK_RATE nanosecs.
318 >     * time out and terminate if the pool has remained quiescent for a
319 >     * given period -- a short period if there are more threads than
320 >     * parallelism, longer as the number of threads decreases. This
321 >     * will slowly propagate, eventually terminating all workers after
322 >     * periods of non-use.
323       *
324 <     * Submissions. External submissions are maintained in an
325 <     * array-based queue that is structured identically to
326 <     * ForkJoinWorkerThread queues (which see) except for the use of
327 <     * submissionLock in method addSubmission. Unlike worker queues,
328 <     * multiple external threads can add new submissions.
329 <     *
330 <     * Compensation. Beyond work-stealing support and lifecycle
331 <     * control, the main responsibility of this framework is to take
332 <     * actions when one worker is waiting to join a task stolen (or
333 <     * always held by) another.  Because we are multiplexing many
334 <     * tasks on to a pool of workers, we can't just let them block (as
335 <     * in Thread.join).  We also cannot just reassign the joiner's
336 <     * run-time stack with another and replace it later, which would
337 <     * be a form of "continuation", that even if possible is not
338 <     * necessarily a good idea since we sometimes need both an
339 <     * unblocked task and its continuation to progress. Instead we
340 <     * combine two tactics:
324 >     * Shutdown and Termination. A call to shutdownNow atomically sets
325 >     * a runState bit and then (non-atomically) sets each worker's
326 >     * runState status, cancels all unprocessed tasks, and wakes up
327 >     * all waiting workers.  Detecting whether termination should
328 >     * commence after a non-abrupt shutdown() call requires more work
329 >     * and bookkeeping. We need consensus about quiescence (i.e., that
330 >     * there is no more work). The active count provides a primary
331 >     * indication but non-abrupt shutdown still requires a rechecking
332 >     * scan for any workers that are inactive but not queued.
333 >     *
334 >     * Joining Tasks
335 >     * =============
336 >     *
337 >     * Any of several actions may be taken when one worker is waiting
338 >     * to join a task stolen (or always held) by another.  Because we
339 >     * are multiplexing many tasks on to a pool of workers, we can't
340 >     * just let them block (as in Thread.join).  We also cannot just
341 >     * reassign the joiner's run-time stack with another and replace
342 >     * it later, which would be a form of "continuation", that even if
343 >     * possible is not necessarily a good idea since we sometimes need
344 >     * both an unblocked task and its continuation to progress.
345 >     * Instead we combine two tactics:
346       *
347       *   Helping: Arranging for the joiner to execute some task that it
348 <     *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 <     *      links to try to find such a task.
348 >     *      would be running if the steal had not occurred.
349       *
350       *   Compensating: Unless there are already enough live threads,
351 <     *      method tryPreBlock() may create or re-activate a spare
352 <     *      thread to compensate for blocked joiners until they
353 <     *      unblock.
351 >     *      method tryCompensate() may create or re-activate a spare
352 >     *      thread to compensate for blocked joiners until they unblock.
353 >     *
354 >     * A third form (implemented in tryRemoveAndExec and
355 >     * tryPollForAndExec) amounts to helping a hypothetical
356 >     * compensator: If we can readily tell that a possible action of a
357 >     * compensator is to steal and execute the task being joined, the
358 >     * joining thread can do so directly, without the need for a
359 >     * compensation thread (although at the expense of larger run-time
360 >     * stacks, but the tradeoff is typically worthwhile).
361       *
362       * The ManagedBlocker extension API can't use helping so relies
363       * only on compensation in method awaitBlocker.
364       *
365 +     * The algorithm in tryHelpStealer entails a form of "linear"
366 +     * helping: Each worker records (in field currentSteal) the most
367 +     * recent task it stole from some other worker. Plus, it records
368 +     * (in field currentJoin) the task it is currently actively
369 +     * joining. Method tryHelpStealer uses these markers to try to
370 +     * find a worker to help (i.e., steal back a task from and execute
371 +     * it) that could hasten completion of the actively joined task.
372 +     * In essence, the joiner executes a task that would be on its own
373 +     * local deque had the to-be-joined task not been stolen. This may
374 +     * be seen as a conservative variant of the approach in Wagner &
375 +     * Calder "Leapfrogging: a portable technique for implementing
376 +     * efficient futures" SIGPLAN Notices, 1993
377 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378 +     * that: (1) We only maintain dependency links across workers upon
379 +     * steals, rather than use per-task bookkeeping.  This sometimes
380 +     * requires a linear scan of workQueues array to locate stealers,
381 +     * but often doesn't because stealers leave hints (that may become
382 +     * stale/wrong) of where to locate them.  A stealHint is only a
383 +     * hint because a worker might have had multiple steals and the
384 +     * hint records only one of them (usually the most current).
385 +     * Hinting isolates cost to when it is needed, rather than adding
386 +     * to per-task overhead.  (2) It is "shallow", ignoring nesting
387 +     * and potentially cyclic mutual steals.  (3) It is intentionally
388 +     * racy: field currentJoin is updated only while actively joining,
389 +     * which means that we miss links in the chain during long-lived
390 +     * tasks, GC stalls etc (which is OK since blocking in such cases
391 +     * is usually a good idea).  (4) We bound the number of attempts
392 +     * to find work (see MAX_HELP) and fall back to suspending the
393 +     * worker and if necessary replacing it with another.
394 +     *
395       * It is impossible to keep exactly the target parallelism number
396       * of threads running at any given time.  Determining the
397       * existence of conservatively safe helping targets, the
398       * availability of already-created spares, and the apparent need
399 <     * to create new spares are all racy and require heuristic
400 <     * guidance, so we rely on multiple retries of each.  Currently,
401 <     * in keeping with on-demand signalling policy, we compensate only
402 <     * if blocking would leave less than one active (non-waiting,
403 <     * non-blocked) worker. Additionally, to avoid some false alarms
404 <     * due to GC, lagging counters, system activity, etc, compensated
405 <     * blocking for joins is only attempted after a number of rechecks
406 <     * proportional to the current apparent deficit (where retries are
407 <     * interspersed with Thread.yield, for good citizenship).  The
408 <     * variable blockedCount, incremented before blocking and
409 <     * decremented after, is sometimes needed to distinguish cases of
410 <     * waiting for work vs blocking on joins or other managed sync,
411 <     * but both the cases are equivalent for most pool control, so we
412 <     * can update non-atomically. (Additionally, contention on
413 <     * blockedCount alleviates some contention on ctl).
414 <     *
415 <     * Shutdown and Termination. A call to shutdownNow atomically sets
416 <     * the ctl stop bit and then (non-atomically) sets each workers
417 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
418 <     * all waiting workers.  Detecting whether termination should
419 <     * commence after a non-abrupt shutdown() call requires more work
420 <     * and bookkeeping. We need consensus about quiesence (i.e., that
421 <     * there is no more work) which is reflected in active counts so
422 <     * long as there are no current blockers, as well as possible
423 <     * re-evaluations during independent changes in blocking or
424 <     * quiescing workers.
399 >     * to create new spares are all racy, so we rely on multiple
400 >     * retries of each.  Compensation in the apparent absence of
401 >     * helping opportunities is challenging to control on JVMs, where
402 >     * GC and other activities can stall progress of tasks that in
403 >     * turn stall out many other dependent tasks, without us being
404 >     * able to determine whether they will ever require compensation.
405 >     * Even though work-stealing otherwise encounters little
406 >     * degradation in the presence of more threads than cores,
407 >     * aggressively adding new threads in such cases entails risk of
408 >     * unwanted positive feedback control loops in which more threads
409 >     * cause more dependent stalls (as well as delayed progress of
410 >     * unblocked threads to the point that we know they are available)
411 >     * leading to more situations requiring more threads, and so
412 >     * on. This aspect of control can be seen as an (analytically
413 >     * intractable) game with an opponent that may choose the worst
414 >     * (for us) active thread to stall at any time.  We take several
415 >     * precautions to bound losses (and thus bound gains), mainly in
416 >     * methods tryCompensate and awaitJoin: (1) We only try
417 >     * compensation after attempting enough helping steps (measured
418 >     * via counting and timing) that we have already consumed the
419 >     * estimated cost of creating and activating a new thread.  (2) We
420 >     * allow up to 50% of threads to be blocked before initially
421 >     * adding any others, and unless completely saturated, check that
422 >     * some work is available for a new worker before adding. Also, we
423 >     * create up to only 50% more threads until entering a mode that
424 >     * only adds a thread if all others are possibly blocked.  All
425 >     * together, this means that we might be half as fast to react,
426 >     * and create half as many threads as possible in the ideal case,
427 >     * but present vastly fewer anomalies in all other cases compared
428 >     * to both more aggressive and more conservative alternatives.
429       *
430       * Style notes: There is a lot of representation-level coupling
431       * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
433 <     * data structures managed by ForkJoinPool, so are directly
434 <     * accessed.  Conversely we allow access to "workers" array by
435 <     * workers, and direct access to ForkJoinTask.status by both
436 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
437 <     * trying to reduce this, since any associated future changes in
438 <     * representations will need to be accompanied by algorithmic
439 <     * changes anyway. All together, these low-level implementation
440 <     * choices produce as much as a factor of 4 performance
441 <     * improvement compared to naive implementations, and enable the
442 <     * processing of billions of tasks per second, at the expense of
443 <     * some ugliness.
444 <     *
445 <     * Methods signalWork() and scan() are the main bottlenecks so are
446 <     * especially heavily micro-optimized/mangled.  There are lots of
447 <     * inline assignments (of form "while ((local = field) != 0)")
448 <     * which are usually the simplest way to ensure the required read
449 <     * orderings (which are sometimes critical). This leads to a
450 <     * "C"-like style of listing declarations of these locals at the
451 <     * heads of methods or blocks.  There are several occurrences of
452 <     * the unusual "do {} while (!cas...)"  which is the simplest way
453 <     * to force an update of a CAS'ed variable. There are also other
454 <     * coding oddities that help some methods perform reasonably even
455 <     * when interpreted (not compiled).
456 <     *
457 <     * The order of declarations in this file is: (1) declarations of
458 <     * statics (2) fields (along with constants used when unpacking
459 <     * some of them), listed in an order that tends to reduce
326 <     * contention among them a bit under most JVMs.  (3) internal
327 <     * control methods (4) callbacks and other support for
328 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 <     * methods (plus a few little helpers). (6) static block
330 <     * initializing all statics in a minimally dependent order.
432 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
433 >     * managed by ForkJoinPool, so are directly accessed.  There is
434 >     * little point trying to reduce this, since any associated future
435 >     * changes in representations will need to be accompanied by
436 >     * algorithmic changes anyway. Several methods intrinsically
437 >     * sprawl because they must accumulate sets of consistent reads of
438 >     * volatiles held in local variables.  Methods signalWork() and
439 >     * scan() are the main bottlenecks, so are especially heavily
440 >     * micro-optimized/mangled.  There are lots of inline assignments
441 >     * (of form "while ((local = field) != 0)") which are usually the
442 >     * simplest way to ensure the required read orderings (which are
443 >     * sometimes critical). This leads to a "C"-like style of listing
444 >     * declarations of these locals at the heads of methods or blocks.
445 >     * There are several occurrences of the unusual "do {} while
446 >     * (!cas...)"  which is the simplest way to force an update of a
447 >     * CAS'ed variable. There are also other coding oddities that help
448 >     * some methods perform reasonably even when interpreted (not
449 >     * compiled).
450 >     *
451 >     * The order of declarations in this file is:
452 >     * (1) Static utility functions
453 >     * (2) Nested (static) classes
454 >     * (3) Static fields
455 >     * (4) Fields, along with constants used when unpacking some of them
456 >     * (5) Internal control methods
457 >     * (6) Callbacks and other support for ForkJoinTask methods
458 >     * (7) Exported methods
459 >     * (8) Static block initializing statics in minimally dependent order
460       */
461  
462 +    // Static utilities
463 +
464 +    /**
465 +     * If there is a security manager, makes sure caller has
466 +     * permission to modify threads.
467 +     */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475 +
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
478       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 358 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
504 >     * Class for artificial tasks that are used to replace the target
505 >     * of local joins if they are removed from an interior queue slot
506 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507 >     * actually do anything beyond having a unique identity.
508 >     */
509 >    static final class EmptyTask extends ForkJoinTask<Void> {
510 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511 >        public final Void getRawResult() { return null; }
512 >        public final void setRawResult(Void x) {}
513 >        public final boolean exec() { return true; }
514 >    }
515 >
516 >    /**
517 >     * Queues supporting work-stealing as well as external task
518 >     * submission. See above for main rationale and algorithms.
519 >     * Implementation relies heavily on "Unsafe" intrinsics
520 >     * and selective use of "volatile":
521 >     *
522 >     * Field "base" is the index (mod array.length) of the least valid
523 >     * queue slot, which is always the next position to steal (poll)
524 >     * from if nonempty. Reads and writes require volatile orderings
525 >     * but not CAS, because updates are only performed after slot
526 >     * CASes.
527 >     *
528 >     * Field "top" is the index (mod array.length) of the next queue
529 >     * slot to push to or pop from. It is written only by owner thread
530 >     * for push, or under lock for trySharedPush, and accessed by
531 >     * other threads only after reading (volatile) base.  Both top and
532 >     * base are allowed to wrap around on overflow, but (top - base)
533 >     * (or more commonly -(base - top) to force volatile read of base
534 >     * before top) still estimates size.
535 >     *
536 >     * The array slots are read and written using the emulation of
537 >     * volatiles/atomics provided by Unsafe. Insertions must in
538 >     * general use putOrderedObject as a form of releasing store to
539 >     * ensure that all writes to the task object are ordered before
540 >     * its publication in the queue. (Although we can avoid one case
541 >     * of this when locked in trySharedPush.) All removals entail a
542 >     * CAS to null.  The array is always a power of two. To ensure
543 >     * safety of Unsafe array operations, all accesses perform
544 >     * explicit null checks and implicit bounds checks via
545 >     * power-of-two masking.
546 >     *
547 >     * In addition to basic queuing support, this class contains
548 >     * fields described elsewhere to control execution. It turns out
549 >     * to work better memory-layout-wise to include them in this
550 >     * class rather than a separate class.
551 >     *
552 >     * Performance on most platforms is very sensitive to placement of
553 >     * instances of both WorkQueues and their arrays -- we absolutely
554 >     * do not want multiple WorkQueue instances or multiple queue
555 >     * arrays sharing cache lines. (It would be best for queue objects
556 >     * and their arrays to share, but there is nothing available to
557 >     * help arrange that).  Unfortunately, because they are recorded
558 >     * in a common array, WorkQueue instances are often moved to be
559 >     * adjacent by garbage collectors. To reduce impact, we use field
560 >     * padding that works OK on common platforms; this effectively
561 >     * trades off slightly slower average field access for the sake of
562 >     * avoiding really bad worst-case access. (Until better JVM
563 >     * support is in place, this padding is dependent on transient
564 >     * properties of JVM field layout rules.)  We also take care in
565 >     * allocating, sizing and resizing the array. Non-shared queue
566 >     * arrays are initialized (via method growArray) by workers before
567 >     * use. Others are allocated on first use.
568       */
569 <    public static final ForkJoinWorkerThreadFactory
570 <        defaultForkJoinWorkerThreadFactory;
569 >    static final class WorkQueue {
570 >        /**
571 >         * Capacity of work-stealing queue array upon initialization.
572 >         * Must be a power of two; at least 4, but should be larger to
573 >         * reduce or eliminate cacheline sharing among queues.
574 >         * Currently, it is much larger, as a partial workaround for
575 >         * the fact that JVMs often place arrays in locations that
576 >         * share GC bookkeeping (especially cardmarks) such that
577 >         * per-write accesses encounter serious memory contention.
578 >         */
579 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580  
581 <    /**
582 <     * Permission required for callers of methods that may start or
583 <     * kill threads.
584 <     */
585 <    private static final RuntimePermission modifyThreadPermission;
581 >        /**
582 >         * Maximum size for queue arrays. Must be a power of two less
583 >         * than or equal to 1 << (31 - width of array entry) to ensure
584 >         * lack of wraparound of index calculations, but defined to a
585 >         * value a bit less than this to help users trap runaway
586 >         * programs before saturating systems.
587 >         */
588 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589 >
590 >        volatile long totalSteals; // cumulative number of steals
591 >        int seed;                  // for random scanning; initialize nonzero
592 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
593 >        int nextWait;              // encoded record of next event waiter
594 >        int rescans;               // remaining scans until block
595 >        int nsteals;               // top-level task executions since last idle
596 >        final int mode;            // lifo, fifo, or shared
597 >        int poolIndex;             // index of this queue in pool (or 0)
598 >        int stealHint;             // index of most recent known stealer
599 >        volatile int runState;     // 1: locked, -1: terminate; else 0
600 >        volatile int base;         // index of next slot for poll
601 >        int top;                   // index of next slot for push
602 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
603 >        final ForkJoinPool pool;   // the containing pool (may be null)
604 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
605 >        volatile Thread parker;    // == owner during call to park; else null
606 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
607 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
608 >        // Heuristic padding to ameliorate unfortunate memory placements
609 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
610 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 >
612 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613 >            this.mode = mode;
614 >            this.pool = pool;
615 >            this.owner = owner;
616 >            // Place indices in the center of array (that is not yet allocated)
617 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618 >        }
619 >
620 >        /**
621 >         * Returns the approximate number of tasks in the queue.
622 >         */
623 >        final int queueSize() {
624 >            int n = base - top;       // non-owner callers must read base first
625 >            return (n >= 0) ? 0 : -n; // ignore transient negative
626 >        }
627 >
628 >        /**
629 >         * Provides a more accurate estimate of whether this queue has
630 >         * any tasks than does queueSize, by checking whether a
631 >         * near-empty queue has at least one unclaimed task.
632 >         */
633 >        final boolean isEmpty() {
634 >            ForkJoinTask<?>[] a; int m, s;
635 >            int n = base - (s = top);
636 >            return (n >= 0 ||
637 >                    (n == -1 &&
638 >                     ((a = array) == null ||
639 >                      (m = a.length - 1) < 0 ||
640 >                      U.getObjectVolatile
641 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 >        }
643 >
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @throw RejectedExecutionException if array cannot be resized
649 >         */
650 >        final void push(ForkJoinTask<?> task) {
651 >            ForkJoinTask<?>[] a; ForkJoinPool p;
652 >            int s = top, m, n;
653 >            if ((a = array) != null) {    // ignore if queue removed
654 >                U.putOrderedObject
655 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656 >                if ((n = (top = s + 1) - base) <= 2) {
657 >                    if ((p = pool) != null)
658 >                        p.signalWork();
659 >                }
660 >                else if (n >= m)
661 >                    growArray(true);
662 >            }
663 >        }
664 >
665 >        /**
666 >         * Pushes a task if lock is free and array is either big
667 >         * enough or can be resized to be big enough.
668 >         *
669 >         * @param task the task. Caller must ensure non-null.
670 >         * @return true if submitted
671 >         */
672 >        final boolean trySharedPush(ForkJoinTask<?> task) {
673 >            boolean submitted = false;
674 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675 >                ForkJoinTask<?>[] a = array;
676 >                int s = top;
677 >                try {
678 >                    if ((a != null && a.length > s + 1 - base) ||
679 >                        (a = growArray(false)) != null) { // must presize
680 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
682 >                        top = s + 1;
683 >                        submitted = true;
684 >                    }
685 >                } finally {
686 >                    runState = 0;                         // unlock
687 >                }
688 >            }
689 >            return submitted;
690 >        }
691 >
692 >        /**
693 >         * Takes next task, if one exists, in LIFO order.  Call only
694 >         * by owner in unshared queues. (We do not have a shared
695 >         * version of this method because it is never needed.)
696 >         */
697 >        final ForkJoinTask<?> pop() {
698 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
699 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
700 >                for (int s; (s = top - 1) - base >= 0;) {
701 >                    long j = ((m & s) << ASHIFT) + ABASE;
702 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
703 >                        break;
704 >                    if (U.compareAndSwapObject(a, j, t, null)) {
705 >                        top = s;
706 >                        return t;
707 >                    }
708 >                }
709 >            }
710 >            return null;
711 >        }
712 >
713 >        /**
714 >         * Takes a task in FIFO order if b is base of queue and a task
715 >         * can be claimed without contention. Specialized versions
716 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
717 >         */
718 >        final ForkJoinTask<?> pollAt(int b) {
719 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
720 >            if ((a = array) != null) {
721 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
722 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
723 >                    base == b &&
724 >                    U.compareAndSwapObject(a, j, t, null)) {
725 >                    base = b + 1;
726 >                    return t;
727 >                }
728 >            }
729 >            return null;
730 >        }
731 >
732 >        /**
733 >         * Takes next task, if one exists, in FIFO order.
734 >         */
735 >        final ForkJoinTask<?> poll() {
736 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
737 >            while ((b = base) - top < 0 && (a = array) != null) {
738 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
739 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
740 >                if (t != null) {
741 >                    if (base == b &&
742 >                        U.compareAndSwapObject(a, j, t, null)) {
743 >                        base = b + 1;
744 >                        return t;
745 >                    }
746 >                }
747 >                else if (base == b) {
748 >                    if (b + 1 == top)
749 >                        break;
750 >                    Thread.yield(); // wait for lagging update
751 >                }
752 >            }
753 >            return null;
754 >        }
755 >
756 >        /**
757 >         * Takes next task, if one exists, in order specified by mode.
758 >         */
759 >        final ForkJoinTask<?> nextLocalTask() {
760 >            return mode == 0 ? pop() : poll();
761 >        }
762 >
763 >        /**
764 >         * Returns next task, if one exists, in order specified by mode.
765 >         */
766 >        final ForkJoinTask<?> peek() {
767 >            ForkJoinTask<?>[] a = array; int m;
768 >            if (a == null || (m = a.length - 1) < 0)
769 >                return null;
770 >            int i = mode == 0 ? top - 1 : base;
771 >            int j = ((i & m) << ASHIFT) + ABASE;
772 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
773 >        }
774 >
775 >        /**
776 >         * Pops the given task only if it is at the current top.
777 >         */
778 >        final boolean tryUnpush(ForkJoinTask<?> t) {
779 >            ForkJoinTask<?>[] a; int s;
780 >            if ((a = array) != null && (s = top) != base &&
781 >                U.compareAndSwapObject
782 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
783 >                top = s;
784 >                return true;
785 >            }
786 >            return false;
787 >        }
788 >
789 >        /**
790 >         * Version of tryUnpush for shared queues; called by non-FJ
791 >         * submitters after prechecking that task probably exists.
792 >         */
793 >        final boolean trySharedUnpush(ForkJoinTask<?> t) {
794 >            boolean success = false;
795 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
796 >                try {
797 >                    ForkJoinTask<?>[] a; int s;
798 >                    if ((a = array) != null && (s = top) != base &&
799 >                        U.compareAndSwapObject
800 >                        (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
801 >                        top = s;
802 >                        success = true;
803 >                    }
804 >                } finally {
805 >                    runState = 0;                         // unlock
806 >                }
807 >            }
808 >            return success;
809 >        }
810 >
811 >        /**
812 >         * Polls the given task only if it is at the current base.
813 >         */
814 >        final boolean pollFor(ForkJoinTask<?> task) {
815 >            ForkJoinTask<?>[] a; int b;
816 >            if ((b = base) - top < 0 && (a = array) != null) {
817 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
818 >                if (U.getObjectVolatile(a, j) == task && base == b &&
819 >                    U.compareAndSwapObject(a, j, task, null)) {
820 >                    base = b + 1;
821 >                    return true;
822 >                }
823 >            }
824 >            return false;
825 >        }
826 >
827 >        /**
828 >         * Initializes or doubles the capacity of array. Call either
829 >         * by owner or with lock held -- it is OK for base, but not
830 >         * top, to move while resizings are in progress.
831 >         *
832 >         * @param rejectOnFailure if true, throw exception if capacity
833 >         * exceeded (relayed ultimately to user); else return null.
834 >         */
835 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
836 >            ForkJoinTask<?>[] oldA = array;
837 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
838 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
839 >                int oldMask, t, b;
840 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
841 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
842 >                    (t = top) - (b = base) > 0) {
843 >                    int mask = size - 1;
844 >                    do {
845 >                        ForkJoinTask<?> x;
846 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
847 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
848 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
849 >                        if (x != null &&
850 >                            U.compareAndSwapObject(oldA, oldj, x, null))
851 >                            U.putObjectVolatile(a, j, x);
852 >                    } while (++b != t);
853 >                }
854 >                return a;
855 >            }
856 >            else if (!rejectOnFailure)
857 >                return null;
858 >            else
859 >                throw new RejectedExecutionException("Queue capacity exceeded");
860 >        }
861 >
862 >        /**
863 >         * Removes and cancels all known tasks, ignoring any exceptions.
864 >         */
865 >        final void cancelAll() {
866 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
867 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
868 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
869 >                ForkJoinTask.cancelIgnoringExceptions(t);
870 >        }
871 >
872 >        /**
873 >         * Computes next value for random probes.  Scans don't require
874 >         * a very high quality generator, but also not a crummy one.
875 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
876 >         * This is manually inlined in its usages in ForkJoinPool to
877 >         * avoid writes inside busy scan loops.
878 >         */
879 >        final int nextSeed() {
880 >            int r = seed;
881 >            r ^= r << 13;
882 >            r ^= r >>> 17;
883 >            return seed = r ^= r << 5;
884 >        }
885 >
886 >        // Execution methods
887 >
888 >        /**
889 >         * Pops and runs tasks until empty.
890 >         */
891 >        private void popAndExecAll() {
892 >            // A bit faster than repeated pop calls
893 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
894 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
895 >                   (s = top - 1) - base >= 0 &&
896 >                   (t = ((ForkJoinTask<?>)
897 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
898 >                   != null) {
899 >                if (U.compareAndSwapObject(a, j, t, null)) {
900 >                    top = s;
901 >                    t.doExec();
902 >                }
903 >            }
904 >        }
905 >
906 >        /**
907 >         * Polls and runs tasks until empty.
908 >         */
909 >        private void pollAndExecAll() {
910 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
911 >                t.doExec();
912 >        }
913 >
914 >        /**
915 >         * If present, removes from queue and executes the given task, or
916 >         * any other cancelled task. Returns (true) immediately on any CAS
917 >         * or consistency check failure so caller can retry.
918 >         *
919 >         * @return 0 if no progress can be made, else positive
920 >         * (this unusual convention simplifies use with tryHelpStealer.)
921 >         */
922 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
923 >            int stat = 1;
924 >            boolean removed = false, empty = true;
925 >            ForkJoinTask<?>[] a; int m, s, b, n;
926 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
927 >                (n = (s = top) - (b = base)) > 0) {
928 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
929 >                    int j = ((--s & m) << ASHIFT) + ABASE;
930 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
931 >                    if (t == null)                    // inconsistent length
932 >                        break;
933 >                    else if (t == task) {
934 >                        if (s + 1 == top) {           // pop
935 >                            if (!U.compareAndSwapObject(a, j, task, null))
936 >                                break;
937 >                            top = s;
938 >                            removed = true;
939 >                        }
940 >                        else if (base == b)           // replace with proxy
941 >                            removed = U.compareAndSwapObject(a, j, task,
942 >                                                             new EmptyTask());
943 >                        break;
944 >                    }
945 >                    else if (t.status >= 0)
946 >                        empty = false;
947 >                    else if (s + 1 == top) {          // pop and throw away
948 >                        if (U.compareAndSwapObject(a, j, t, null))
949 >                            top = s;
950 >                        break;
951 >                    }
952 >                    if (--n == 0) {
953 >                        if (!empty && base == b)
954 >                            stat = 0;
955 >                        break;
956 >                    }
957 >                }
958 >            }
959 >            if (removed)
960 >                task.doExec();
961 >            return stat;
962 >        }
963 >
964 >        /**
965 >         * Executes a top-level task and any local tasks remaining
966 >         * after execution.
967 >         */
968 >        final void runTask(ForkJoinTask<?> t) {
969 >            if (t != null) {
970 >                currentSteal = t;
971 >                t.doExec();
972 >                if (top != base) {       // process remaining local tasks
973 >                    if (mode == 0)
974 >                        popAndExecAll();
975 >                    else
976 >                        pollAndExecAll();
977 >                }
978 >                ++nsteals;
979 >                currentSteal = null;
980 >            }
981 >        }
982 >
983 >        /**
984 >         * Executes a non-top-level (stolen) task.
985 >         */
986 >        final void runSubtask(ForkJoinTask<?> t) {
987 >            if (t != null) {
988 >                ForkJoinTask<?> ps = currentSteal;
989 >                currentSteal = t;
990 >                t.doExec();
991 >                currentSteal = ps;
992 >            }
993 >        }
994 >
995 >        /**
996 >         * Returns true if owned and not known to be blocked.
997 >         */
998 >        final boolean isApparentlyUnblocked() {
999 >            Thread wt; Thread.State s;
1000 >            return (eventCount >= 0 &&
1001 >                    (wt = owner) != null &&
1002 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1003 >                    s != Thread.State.WAITING &&
1004 >                    s != Thread.State.TIMED_WAITING);
1005 >        }
1006 >
1007 >        /**
1008 >         * If this owned and is not already interrupted, try to
1009 >         * interrupt and/or unpark, ignoring exceptions.
1010 >         */
1011 >        final void interruptOwner() {
1012 >            Thread wt, p;
1013 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1014 >                try {
1015 >                    wt.interrupt();
1016 >                } catch (SecurityException ignore) {
1017 >                }
1018 >            }
1019 >            if ((p = parker) != null)
1020 >                U.unpark(p);
1021 >        }
1022 >
1023 >        // Unsafe mechanics
1024 >        private static final sun.misc.Unsafe U;
1025 >        private static final long RUNSTATE;
1026 >        private static final int ABASE;
1027 >        private static final int ASHIFT;
1028 >        static {
1029 >            int s;
1030 >            try {
1031 >                U = getUnsafe();
1032 >                Class<?> k = WorkQueue.class;
1033 >                Class<?> ak = ForkJoinTask[].class;
1034 >                RUNSTATE = U.objectFieldOffset
1035 >                    (k.getDeclaredField("runState"));
1036 >                ABASE = U.arrayBaseOffset(ak);
1037 >                s = U.arrayIndexScale(ak);
1038 >            } catch (Exception e) {
1039 >                throw new Error(e);
1040 >            }
1041 >            if ((s & (s-1)) != 0)
1042 >                throw new Error("data type scale not a power of two");
1043 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044 >        }
1045 >    }
1046  
1047      /**
1048 <     * If there is a security manager, makes sure caller has
1049 <     * permission to modify threads.
1048 >     * Per-thread records for threads that submit to pools. Currently
1049 >     * holds only pseudo-random seed / index that is used to choose
1050 >     * submission queues in method doSubmit. In the future, this may
1051 >     * also incorporate a means to implement different task rejection
1052 >     * and resubmission policies.
1053 >     *
1054 >     * Seeds for submitters and workers/workQueues work in basically
1055 >     * the same way but are initialized and updated using slightly
1056 >     * different mechanics. Both are initialized using the same
1057 >     * approach as in class ThreadLocal, where successive values are
1058 >     * unlikely to collide with previous values. This is done during
1059 >     * registration for workers, but requires a separate AtomicInteger
1060 >     * for submitters. Seeds are then randomly modified upon
1061 >     * collisions using xorshifts, which requires a non-zero seed.
1062       */
1063 <    private static void checkPermission() {
1064 <        SecurityManager security = System.getSecurityManager();
1065 <        if (security != null)
1066 <            security.checkPermission(modifyThreadPermission);
1063 >    static final class Submitter {
1064 >        int seed;
1065 >        Submitter() {
1066 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1067 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1068 >        }
1069 >    }
1070 >
1071 >    /** ThreadLocal class for Submitters */
1072 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1073 >        public Submitter initialValue() { return new Submitter(); }
1074      }
1075  
1076 +    // static fields (initialized in static initializer below)
1077 +
1078      /**
1079 <     * Generator for assigning sequence numbers as pool names.
1079 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1080 >     * overridden in ForkJoinPool constructors.
1081       */
1082 <    private static final AtomicInteger poolNumberGenerator;
1082 >    public static final ForkJoinWorkerThreadFactory
1083 >        defaultForkJoinWorkerThreadFactory;
1084 >
1085 >
1086 >    /** Property prefix for constructing common pool */
1087 >    private static final String propPrefix =
1088 >        "java.util.concurrent.ForkJoinPool.common.";
1089  
1090      /**
1091 <     * Generator for initial random seeds for worker victim
1092 <     * selection. This is used only to create initial seeds. Random
1093 <     * steals use a cheaper xorshift generator per steal attempt. We
392 <     * don't expect much contention on seedGenerator, so just use a
393 <     * plain Random.
1091 >     * Common (static) pool. Non-null for public use unless a static
1092 >     * construction exception, but internal usages must null-check on
1093 >     * use.
1094       */
1095 <    static final Random workerSeedGenerator;
1095 >    static final ForkJoinPool commonPool;
1096  
1097      /**
1098 <     * Array holding all worker threads in the pool.  Initialized upon
399 <     * construction. Array size must be a power of two.  Updates and
400 <     * replacements are protected by scanGuard, but the array is
401 <     * always kept in a consistent enough state to be randomly
402 <     * accessed without locking by workers performing work-stealing,
403 <     * as well as other traversal-based methods in this class, so long
404 <     * as reads memory-acquire by first reading ctl. All readers must
405 <     * tolerate that some array slots may be null.
1098 >     * Common pool parallelism. Must equal commonPool.parallelism.
1099       */
1100 <    ForkJoinWorkerThread[] workers;
1100 >    static final int commonPoolParallelism;
1101  
1102      /**
1103 <     * Initial size for submission queue array. Must be a power of
411 <     * two.  In many applications, these always stay small so we use a
412 <     * small initial cap.
1103 >     * Generator for assigning sequence numbers as pool names.
1104       */
1105 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
1105 >    private static final AtomicInteger poolNumberGenerator;
1106  
1107      /**
1108 <     * Maximum size for submission queue array. Must be a power of two
1109 <     * less than or equal to 1 << (31 - width of array entry) to
419 <     * ensure lack of index wraparound, but is capped at a lower
420 <     * value to help users trap runaway computations.
1108 >     * Generator for initial hashes/seeds for submitters. Accessed by
1109 >     * Submitter class constructor.
1110       */
1111 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1111 >    static final AtomicInteger nextSubmitterSeed;
1112  
1113      /**
1114 <     * Array serving as submission queue. Initialized upon construction.
1114 >     * Permission required for callers of methods that may start or
1115 >     * kill threads.
1116       */
1117 <    private ForkJoinTask<?>[] submissionQueue;
1117 >    private static final RuntimePermission modifyThreadPermission;
1118  
1119      /**
1120 <     * Lock protecting submissions array for addSubmission
1120 >     * Per-thread submission bookkeeping. Shared across all pools
1121 >     * to reduce ThreadLocal pollution and because random motion
1122 >     * to avoid contention in one pool is likely to hold for others.
1123       */
1124 <    private final ReentrantLock submissionLock;
1124 >    private static final ThreadSubmitter submitters;
1125 >
1126 >    // static constants
1127  
1128      /**
1129 <     * Condition for awaitTermination, using submissionLock for
1130 <     * convenience.
1129 >     * Initial timeout value (in nanoseconds) for the thread triggering
1130 >     * quiescence to park waiting for new work. On timeout, the thread
1131 >     * will instead try to shrink the number of workers.
1132       */
1133 <    private final Condition termination;
1133 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1134  
1135      /**
1136 <     * Creation factory for worker threads.
1136 >     * Timeout value when there are more threads than parallelism level
1137       */
1138 <    private final ForkJoinWorkerThreadFactory factory;
1138 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1139  
1140      /**
1141 <     * The uncaught exception handler used when any worker abruptly
1142 <     * terminates.
1141 >     * The maximum stolen->joining link depth allowed in method
1142 >     * tryHelpStealer.  Must be a power of two. This value also
1143 >     * controls the maximum number of times to try to help join a task
1144 >     * without any apparent progress or change in pool state before
1145 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1146 >     * chains are unbounded, but we use a fixed constant to avoid
1147 >     * (otherwise unchecked) cycles and to bound staleness of
1148 >     * traversal parameters at the expense of sometimes blocking when
1149 >     * we could be helping.
1150       */
1151 <    final Thread.UncaughtExceptionHandler ueh;
1151 >    private static final int MAX_HELP = 64;
1152  
1153      /**
1154 <     * Prefix for assigning names to worker threads
1154 >     * Secondary time-based bound (in nanosecs) for helping attempts
1155 >     * before trying compensated blocking in awaitJoin. Used in
1156 >     * conjunction with MAX_HELP to reduce variance due to different
1157 >     * polling rates associated with different helping options. The
1158 >     * value should roughly approximate the time required to create
1159 >     * and/or activate a worker thread.
1160       */
1161 <    private final String workerNamePrefix;
1161 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1162  
1163      /**
1164 <     * Sum of per-thread steal counts, updated only when threads are
1165 <     * idle or terminating.
1164 >     * Increment for seed generators. See class ThreadLocal for
1165 >     * explanation.
1166       */
1167 <    private volatile long stealCount;
1167 >    private static final int SEED_INCREMENT = 0x61c88647;
1168  
1169      /**
1170 <     * Main pool control -- a long packed with:
1170 >     * Bits and masks for control variables
1171 >     *
1172 >     * Field ctl is a long packed with:
1173       * AC: Number of active running workers minus target parallelism (16 bits)
1174 <     * TC: Number of total workers minus target parallelism (16bits)
1174 >     * TC: Number of total workers minus target parallelism (16 bits)
1175       * ST: true if pool is terminating (1 bit)
1176       * EC: the wait count of top waiting thread (15 bits)
1177 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1177 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1178       *
1179       * When convenient, we can extract the upper 32 bits of counts and
1180       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 474 | Line 1183 | public class ForkJoinPool extends Abstra
1183       * parallelism and the positionings of fields makes it possible to
1184       * perform the most common checks via sign tests of fields: When
1185       * ac is negative, there are not enough active workers, when tc is
1186 <     * negative, there are not enough total workers, when id is
478 <     * negative, there is at least one waiting worker, and when e is
1186 >     * negative, there are not enough total workers, and when e is
1187       * negative, the pool is terminating.  To deal with these possibly
1188       * negative fields, we use casts in and out of "short" and/or
1189 <     * signed shifts to maintain signedness.  Note: AC_SHIFT is
1190 <     * redundantly declared in ForkJoinWorkerThread in order to
1191 <     * integrate a surplus-threads check.
1189 >     * signed shifts to maintain signedness.
1190 >     *
1191 >     * When a thread is queued (inactivated), its eventCount field is
1192 >     * set negative, which is the only way to tell if a worker is
1193 >     * prevented from executing tasks, even though it must continue to
1194 >     * scan for them to avoid queuing races. Note however that
1195 >     * eventCount updates lag releases so usage requires care.
1196 >     *
1197 >     * Field runState is an int packed with:
1198 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1199 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1200 >     * INIT: set true after workQueues array construction (1 bit)
1201 >     *
1202 >     * The sequence number enables simple consistency checks:
1203 >     * Staleness of read-only operations on the workQueues array can
1204 >     * be checked by comparing runState before vs after the reads.
1205       */
485    volatile long ctl;
1206  
1207      // bit positions/shifts for fields
1208      private static final int  AC_SHIFT   = 48;
# Line 491 | Line 1211 | public class ForkJoinPool extends Abstra
1211      private static final int  EC_SHIFT   = 16;
1212  
1213      // bounds
1214 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1215 <    private static final int  SMASK      = 0xffff;  // mask short bits
1214 >    private static final int  SMASK      = 0xffff;  // short bits
1215 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1216 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1217      private static final int  SHORT_SIGN = 1 << 15;
1218      private static final int  INT_SIGN   = 1 << 31;
1219  
# Line 514 | Line 1235 | public class ForkJoinPool extends Abstra
1235      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1236  
1237      // masks and units for dealing with e = (int)ctl
1238 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1239 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
1238 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1239 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1240  
1241 <    /**
1242 <     * The target parallelism level.
522 <     */
523 <    final int parallelism;
1241 >    // runState bits
1242 >    private static final int SHUTDOWN    = 1 << 31;
1243  
1244 <    /**
1245 <     * Index (mod submission queue length) of next element to take
1246 <     * from submission queue.
1247 <     */
529 <    volatile int queueBase;
1244 >    // access mode for WorkQueue
1245 >    static final int LIFO_QUEUE          =  0;
1246 >    static final int FIFO_QUEUE          =  1;
1247 >    static final int SHARED_QUEUE        = -1;
1248  
1249 <    /**
532 <     * Index (mod submission queue length) of next element to add
533 <     * in submission queue.
534 <     */
535 <    int queueTop;
1249 >    // Instance fields
1250  
1251 <    /**
1252 <     * True when shutdown() has been called.
1253 <     */
1254 <    volatile boolean shutdown;
1251 >    /*
1252 >     * Field layout order in this class tends to matter more than one
1253 >     * would like. Runtime layout order is only loosely related to
1254 >     * declaration order and may differ across JVMs, but the following
1255 >     * empirically works OK on current JVMs.
1256 >     */
1257 >
1258 >    volatile long stealCount;                  // collects worker counts
1259 >    volatile long ctl;                         // main pool control
1260 >    final int parallelism;                     // parallelism level
1261 >    final int localMode;                       // per-worker scheduling mode
1262 >    volatile int nextWorkerNumber;             // to create worker name string
1263 >    final int submitMask;                      // submit queue index bound
1264 >    int nextSeed;                              // for initializing worker seeds
1265 >    volatile int mainLock;                     // spinlock for array updates
1266 >    volatile int runState;                     // shutdown status and seq
1267 >    WorkQueue[] workQueues;                    // main registry
1268 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1269 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1270 >    final String workerNamePrefix;             // to create worker name string
1271 >
1272 >    /*
1273 >     * Mechanics for main lock protecting worker array updates.  Uses
1274 >     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1275 >     * normal cases, but falling back to builtin lock when (rarely)
1276 >     * needed.  See internal ConcurrentHashMap documentation for
1277 >     * explanation.
1278 >     */
1279 >
1280 >    static final int LOCK_WAITING = 2; // bit to indicate need for signal
1281 >    static final int MAX_LOCK_SPINS = 1 << 8;
1282 >
1283 >    private void tryAwaitMainLock() {
1284 >        int spins = MAX_LOCK_SPINS, r = 0, h;
1285 >        while (((h = mainLock) & 1) != 0) {
1286 >            if (r == 0)
1287 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288 >            else if (spins >= 0) {
1289 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290 >                if (r >= 0)
1291 >                    --spins;
1292 >            }
1293 >            else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1294 >                synchronized (this) {
1295 >                    if ((mainLock & LOCK_WAITING) != 0) {
1296 >                        try {
1297 >                            wait();
1298 >                        } catch (InterruptedException ie) {
1299 >                            Thread.currentThread().interrupt();
1300 >                        }
1301 >                    }
1302 >                    else
1303 >                        notifyAll(); // possibly won race vs signaller
1304 >                }
1305 >                break;
1306 >            }
1307 >        }
1308 >    }
1309 >
1310 >    //  Creating, registering, and deregistering workers
1311  
1312      /**
1313 <     * True if use local fifo, not default lifo, for local polling
544 <     * Read by, and replicated by ForkJoinWorkerThreads
1313 >     * Tries to create and start a worker
1314       */
1315 <    final boolean locallyFifo;
1315 >    private void addWorker() {
1316 >        Throwable ex = null;
1317 >        ForkJoinWorkerThread wt = null;
1318 >        try {
1319 >            if ((wt = factory.newThread(this)) != null) {
1320 >                wt.start();
1321 >                return;
1322 >            }
1323 >        } catch (Throwable e) {
1324 >            ex = e;
1325 >        }
1326 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1327 >    }
1328  
1329      /**
1330 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
1331 <     * When non-zero, suppresses automatic shutdown when active
1332 <     * counts become zero.
1330 >     * Callback from ForkJoinWorkerThread constructor to assign a
1331 >     * public name. This must be separate from registerWorker because
1332 >     * it is called during the "super" constructor call in
1333 >     * ForkJoinWorkerThread.
1334       */
1335 <    volatile int quiescerCount;
1335 >    final String nextWorkerName() {
1336 >        int n;
1337 >        do {} while(!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1338 >                                         n = nextWorkerNumber, ++n));
1339 >        return workerNamePrefix.concat(Integer.toString(n));
1340 >    }
1341  
1342      /**
1343 <     * The number of threads blocked in join.
1343 >     * Callback from ForkJoinWorkerThread constructor to establish its
1344 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1345 >     * to packing entries in front of the workQueues array, we treat
1346 >     * the array as a simple power-of-two hash table using per-thread
1347 >     * seed as hash, expanding as needed.
1348 >     *
1349 >     * @param w the worker's queue
1350       */
1351 <    volatile int blockedCount;
1351 >    final void registerWorker(WorkQueue w) {
1352 >        while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1353 >            tryAwaitMainLock();
1354 >        try {
1355 >            WorkQueue[] ws;
1356 >            if ((ws = workQueues) == null)
1357 >                ws = workQueues = new WorkQueue[submitMask + 1];
1358 >            if (w != null) {
1359 >                int rs, n =  ws.length, m = n - 1;
1360 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1361 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1362 >                int r = (s << 1) | 1;               // use odd-numbered indices
1363 >                if (ws[r &= m] != null) {           // collision
1364 >                    int probes = 0;                 // step by approx half size
1365 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1366 >                    while (ws[r = (r + step) & m] != null) {
1367 >                        if (++probes >= n) {
1368 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369 >                            m = n - 1;
1370 >                            probes = 0;
1371 >                        }
1372 >                    }
1373 >                }
1374 >                w.eventCount = w.poolIndex = r;     // establish before recording
1375 >                ws[r] = w;                          // also update seq
1376 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1377 >            }
1378 >        } finally {
1379 >            if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1380 >                mainLock = 0;
1381 >                synchronized (this) { notifyAll(); };
1382 >            }
1383 >        }
1384 >
1385 >    }
1386  
1387      /**
1388 <     * Counter for worker Thread names (unrelated to their poolIndex)
1388 >     * Final callback from terminating worker, as well as upon failure
1389 >     * to construct or start a worker in addWorker.  Removes record of
1390 >     * worker from array, and adjusts counts. If pool is shutting
1391 >     * down, tries to complete termination.
1392 >     *
1393 >     * @param wt the worker thread or null if addWorker failed
1394 >     * @param ex the exception causing failure, or null if none
1395       */
1396 <    private volatile int nextWorkerNumber;
1396 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1397 >        WorkQueue w = null;
1398 >        if (wt != null && (w = wt.workQueue) != null) {
1399 >            w.runState = -1;                // ensure runState is set
1400 >            long steals = w.totalSteals + w.nsteals, sc;
1401 >            do {} while(!U.compareAndSwapLong(this, STEALCOUNT,
1402 >                                              sc = stealCount, sc + steals));
1403 >            int idx = w.poolIndex;
1404 >            while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1405 >                tryAwaitMainLock();
1406 >            try {
1407 >                WorkQueue[] ws = workQueues;
1408 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409 >                    ws[idx] = null;
1410 >            } finally {
1411 >                if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1412 >                    mainLock = 0;
1413 >                    synchronized (this) { notifyAll(); };
1414 >                }
1415 >            }
1416 >        }
1417 >
1418 >        long c;                             // adjust ctl counts
1419 >        do {} while (!U.compareAndSwapLong
1420 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1421 >                                           ((c - TC_UNIT) & TC_MASK) |
1422 >                                           (c & ~(AC_MASK|TC_MASK)))));
1423 >
1424 >        if (!tryTerminate(false, false) && w != null) {
1425 >            w.cancelAll();                  // cancel remaining tasks
1426 >            if (w.array != null)            // suppress signal if never ran
1427 >                signalWork();               // wake up or create replacement
1428 >            if (ex == null)                 // help clean refs on way out
1429 >                ForkJoinTask.helpExpungeStaleExceptions();
1430 >        }
1431 >
1432 >        if (ex != null)                     // rethrow
1433 >            U.throwException(ex);
1434 >    }
1435 >
1436 >    // Submissions
1437  
1438      /**
1439 <     * The index for the next created worker. Accessed under scanGuard.
1440 <     */
1441 <    private int nextWorkerIndex;
1439 >     * Unless shutting down, adds the given task to a submission queue
1440 >     * at submitter's current queue index (modulo submission
1441 >     * range). If no queue exists at the index, one is created.  If
1442 >     * the queue is busy, another index is randomly chosen. The
1443 >     * submitMask bounds the effective number of queues to the
1444 >     * (nearest power of two for) parallelism level.
1445 >     *
1446 >     * @param task the task. Caller must ensure non-null.
1447 >     */
1448 >    private void doSubmit(ForkJoinTask<?> task) {
1449 >        Submitter s = submitters.get();
1450 >        for (int r = s.seed, m = submitMask;;) {
1451 >            WorkQueue[] ws; WorkQueue q;
1452 >            int k = r & m & SQMASK;          // use only even indices
1453 >            if (runState < 0)
1454 >                throw new RejectedExecutionException(); // shutting down
1455 >            else if ((ws = workQueues) == null || ws.length <= k) {
1456 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1457 >                    tryAwaitMainLock();
1458 >                try {
1459 >                    if (workQueues == null)
1460 >                        workQueues = new WorkQueue[submitMask + 1];
1461 >                } finally {
1462 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1463 >                        mainLock = 0;
1464 >                        synchronized (this) { notifyAll(); };
1465 >                    }
1466 >                }
1467 >            }
1468 >            else if ((q = ws[k]) == null) {  // create new queue
1469 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1470 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1471 >                    tryAwaitMainLock();
1472 >                try {
1473 >                    int rs = runState;       // to update seq
1474 >                    if (ws == workQueues && ws[k] == null) {
1475 >                        ws[k] = nq;
1476 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1477 >                    }
1478 >                } finally {
1479 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1480 >                        mainLock = 0;
1481 >                        synchronized (this) { notifyAll(); };
1482 >                    }
1483 >                }
1484 >            }
1485 >            else if (q.trySharedPush(task)) {
1486 >                signalWork();
1487 >                return;
1488 >            }
1489 >            else if (m > 1) {                // move to a different index
1490 >                r ^= r << 13;                // same xorshift as WorkQueues
1491 >                r ^= r >>> 17;
1492 >                s.seed = r ^= r << 5;
1493 >            }
1494 >            else
1495 >                Thread.yield();              // yield if no alternatives
1496 >        }
1497 >    }
1498  
1499      /**
1500 <     * SeqLock and index masking for for updates to workers array.
572 <     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 <     * SG_UNIT. Staleness of read-only operations can be checked by
574 <     * comparing scanGuard to value before the reads. The low 16 bits
575 <     * (i.e, anding with SMASK) hold (the smallest power of two
576 <     * covering all worker indices, minus one, and is used to avoid
577 <     * dealing with large numbers of null slots when the workers array
578 <     * is overallocated.
1500 >     * Submits the given (non-null) task to the common pool, if possible.
1501       */
1502 <    volatile int scanGuard;
1503 <
1504 <    private static final int SG_UNIT = 1 << 16;
1502 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1503 >        ForkJoinPool p;
1504 >        if ((p = commonPool) == null)
1505 >            throw new RejectedExecutionException("Common Pool Unavailable");
1506 >        p.doSubmit(task);
1507 >    }
1508  
1509      /**
1510 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1511 <     * task when the pool is quiescent to instead try to shrink the
1512 <     * number of workers.  The exact value does not matter too
1513 <     * much. It must be short enough to release resources during
1514 <     * sustained periods of idleness, but not so short that threads
1515 <     * are continually re-created.
1510 >     * Returns true if the given task was submitted to common pool
1511 >     * and has not yet commenced execution, and is available for
1512 >     * removal according to execution policies; if so removing the
1513 >     * submission from the pool.
1514 >     *
1515 >     * @param task the task
1516 >     * @return true if successful
1517       */
1518 <    private static final long SHRINK_RATE =
1519 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1518 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1519 >        // Peek, looking for task and eligibility before
1520 >        // using trySharedUnpush to actually take it under lock
1521 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1522 >        ForkJoinTask<?>[] a; int t, s, n;
1523 >        int k = submitters.get().seed & SQMASK;
1524 >        return ((p = commonPool) != null &&
1525 >                (ws = p.workQueues) != null &&
1526 >                ws.length > (k &= p.submitMask) &&
1527 >                (q = ws[k]) != null &&
1528 >                (a = q.array) != null &&
1529 >                (n = (t = q.top) - q.base) > 0 &&
1530 >                (n > 1 || (int)(p.ctl >> AC_SHIFT) < 0) &&
1531 >                (s = t - 1) >= 0 && s < a.length && a[s] == task &&
1532 >                q.trySharedUnpush(task));
1533 >    }
1534 >
1535 >    // Maintaining ctl counts
1536  
1537      /**
1538 <     * Top-level loop for worker threads: On each step: if the
597 <     * previous step swept through all queues and found no tasks, or
598 <     * there are excess threads, then possibly blocks. Otherwise,
599 <     * scans for and, if found, executes a task. Returns when pool
600 <     * and/or worker terminate.
601 <     *
602 <     * @param w the worker
1538 >     * Increments active count; mainly called upon return from blocking.
1539       */
1540 <    final void work(ForkJoinWorkerThread w) {
605 <        boolean swept = false;                // true on empty scans
1540 >    final void incrementActiveCount() {
1541          long c;
1542 <        while (!w.terminate && (int)(c = ctl) >= 0) {
608 <            int a;                            // active count
609 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 <                swept = scan(w, a);
611 <            else if (tryAwaitWork(w, c))
612 <                swept = false;
613 <        }
1542 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1543      }
1544  
616    // Signalling
617
1545      /**
1546 <     * Wakes up or creates a worker.
1546 >     * Tries to create one or activate one or more workers if too few are active.
1547       */
1548      final void signalWork() {
1549 <        /*
1550 <         * The while condition is true if: (there is are too few total
1551 <         * workers OR there is at least one waiter) AND (there are too
1552 <         * few active workers OR the pool is terminating).  The value
1553 <         * of e distinguishes the remaining cases: zero (no waiters)
1554 <         * for create, negative if terminating (in which case do
1555 <         * nothing), else release a waiter. The secondary checks for
1556 <         * release (non-null array etc) can fail if the pool begins
1557 <         * terminating after the test, and don't impose any added cost
1558 <         * because JVMs must perform null and bounds checks anyway.
1559 <         */
1560 <        long c; int e, u;
1561 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1562 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1563 <            if (e > 0) {                         // release a waiting worker
1564 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 <                if ((ws = workers) == null ||
639 <                    (i = ~e & SMASK) >= ws.length ||
640 <                    (w = ws[i]) == null)
1549 >        long c; int u;
1550 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1551 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1552 >            if ((e = (int)c) > 0) {                     // at least one waiting
1553 >                if (ws != null && (i = e & SMASK) < ws.length &&
1554 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1555 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1556 >                               ((long)(u + UAC_UNIT) << 32));
1557 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1558 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1559 >                        if ((p = w.parker) != null)
1560 >                            U.unpark(p);                // activate and release
1561 >                        break;
1562 >                    }
1563 >                }
1564 >                else
1565                      break;
1566 <                long nc = (((long)(w.nextWait & E_MASK)) |
1567 <                           ((long)(u + UAC_UNIT) << 32));
1568 <                if (w.eventCount == e &&
1569 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1570 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1571 <                    if (w.parked)
648 <                        UNSAFE.unpark(w);
1566 >            }
1567 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1568 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1569 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1570 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1571 >                    addWorker();
1572                      break;
1573                  }
1574              }
1575 <            else if (UNSAFE.compareAndSwapLong
653 <                     (this, ctlOffset, c,
654 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 <                addWorker();
1575 >            else
1576                  break;
658            }
1577          }
1578      }
1579  
662    /**
663     * Variant of signalWork to help release waiters on rescans.
664     * Tries once to release a waiter if active count < 0.
665     *
666     * @return false if failed due to contention, else true
667     */
668    private boolean tryReleaseWaiter() {
669        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670        if ((e = (int)(c = ctl)) > 0 &&
671            (int)(c >> AC_SHIFT) < 0 &&
672            (ws = workers) != null &&
673            (i = ~e & SMASK) < ws.length &&
674            (w = ws[i]) != null) {
675            long nc = ((long)(w.nextWait & E_MASK) |
676                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677            if (w.eventCount != e ||
678                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679                return false;
680            w.eventCount = (e + EC_UNIT) & E_MASK;
681            if (w.parked)
682                UNSAFE.unpark(w);
683        }
684        return true;
685    }
686
1580      // Scanning for tasks
1581  
1582      /**
1583 <     * Scans for and, if found, executes one task. Scans start at a
1584 <     * random index of workers array, and randomly select the first
1585 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1586 <     * circular sweeps, which is necessary to check quiescence. and
1587 <     * taking a submission only if no stealable tasks were found.  The
1588 <     * steal code inside the loop is a specialized form of
1589 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1590 <     * helpJoinTask and signal propagation. The code for submission
1591 <     * queues is almost identical. On each steal, the worker completes
1592 <     * not only the task, but also all local tasks that this task may
1593 <     * have generated. On detecting staleness or contention when
1594 <     * trying to take a task, this method returns without finishing
1595 <     * sweep, which allows global state rechecks before retry.
1596 <     *
1597 <     * @param w the worker
1598 <     * @param a the number of active workers
1599 <     * @return true if swept all queues without finding a task
1600 <     */
1601 <    private boolean scan(ForkJoinWorkerThread w, int a) {
1602 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
1603 <        int m = parallelism == 1 - a? 0 : g & SMASK;
1604 <        ForkJoinWorkerThread[] ws = workers;
1605 <        if (ws == null || ws.length <= m)         // staleness check
1606 <            return false;
1607 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
1608 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1609 <            ForkJoinWorkerThread v = ws[k & m];
1610 <            if (v != null && (b = v.queueBase) != v.queueTop &&
1611 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
1612 <                long u = (i << ASHIFT) + ABASE;
1613 <                if ((t = q[i]) != null && v.queueBase == b &&
1614 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1615 <                    int d = (v.queueBase = b + 1) - v.queueTop;
1616 <                    v.stealHint = w.poolIndex;
1617 <                    if (d != 0)
1618 <                        signalWork();             // propagate if nonempty
1619 <                    w.execTask(t);
1583 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1584 >     */
1585 >    final void runWorker(WorkQueue w) {
1586 >        w.growArray(false);         // initialize queue array in this thread
1587 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1588 >    }
1589 >
1590 >    /**
1591 >     * Scans for and, if found, returns one task, else possibly
1592 >     * inactivates the worker. This method operates on single reads of
1593 >     * volatile state and is designed to be re-invoked continuously,
1594 >     * in part because it returns upon detecting inconsistencies,
1595 >     * contention, or state changes that indicate possible success on
1596 >     * re-invocation.
1597 >     *
1598 >     * The scan searches for tasks across a random permutation of
1599 >     * queues (starting at a random index and stepping by a random
1600 >     * relative prime, checking each at least once).  The scan
1601 >     * terminates upon either finding a non-empty queue, or completing
1602 >     * the sweep. If the worker is not inactivated, it takes and
1603 >     * returns a task from this queue.  On failure to find a task, we
1604 >     * take one of the following actions, after which the caller will
1605 >     * retry calling this method unless terminated.
1606 >     *
1607 >     * * If pool is terminating, terminate the worker.
1608 >     *
1609 >     * * If not a complete sweep, try to release a waiting worker.  If
1610 >     * the scan terminated because the worker is inactivated, then the
1611 >     * released worker will often be the calling worker, and it can
1612 >     * succeed obtaining a task on the next call. Or maybe it is
1613 >     * another worker, but with same net effect. Releasing in other
1614 >     * cases as well ensures that we have enough workers running.
1615 >     *
1616 >     * * If not already enqueued, try to inactivate and enqueue the
1617 >     * worker on wait queue. Or, if inactivating has caused the pool
1618 >     * to be quiescent, relay to idleAwaitWork to check for
1619 >     * termination and possibly shrink pool.
1620 >     *
1621 >     * * If already inactive, and the caller has run a task since the
1622 >     * last empty scan, return (to allow rescan) unless others are
1623 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1624 >     * scan to ensure eventual inactivation and blocking.
1625 >     *
1626 >     * * If already enqueued and none of the above apply, park
1627 >     * awaiting signal,
1628 >     *
1629 >     * @param w the worker (via its WorkQueue)
1630 >     * @return a task or null if none found
1631 >     */
1632 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1633 >        WorkQueue[] ws;                       // first update random seed
1634 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1635 >        int rs = runState, m;                 // volatile read order matters
1636 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1637 >            int ec = w.eventCount;            // ec is negative if inactive
1638 >            int step = (r >>> 16) | 1;        // relative prime
1639 >            for (int j = (m + 1) << 2; ; r += step) {
1640 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1641 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1642 >                    (a = q.array) != null) {  // probably nonempty
1643 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1644 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1645 >                    if (q.base == b && ec >= 0 && t != null &&
1646 >                        U.compareAndSwapObject(a, i, t, null)) {
1647 >                        if (q.top - (q.base = b + 1) > 0)
1648 >                            signalWork();    // help pushes signal
1649 >                        return t;
1650 >                    }
1651 >                    else if (ec < 0 || j <= m) {
1652 >                        rs = 0;               // mark scan as imcomplete
1653 >                        break;                // caller can retry after release
1654 >                    }
1655                  }
1656 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
1657 <                return false;                     // store next seed
730 <            }
731 <            else if (j < 0) {                     // xorshift
732 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1656 >                if (--j < 0)
1657 >                    break;
1658              }
1659 <            else
1660 <                ++k;
1661 <        }
1662 <        if (scanGuard != g)                       // staleness check
1663 <            return false;
1664 <        else {                                    // try to take submission
1665 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1666 <            if ((b = queueBase) != queueTop &&
1667 <                (q = submissionQueue) != null &&
1668 <                (i = (q.length - 1) & b) >= 0) {
1669 <                long u = (i << ASHIFT) + ABASE;
1670 <                if ((t = q[i]) != null && queueBase == b &&
1671 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1672 <                    queueBase = b + 1;
1673 <                    w.execTask(t);
1659 >
1660 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1661 >            if (e < 0)                        // decode ctl on empty scan
1662 >                w.runState = -1;              // pool is terminating
1663 >            else if (rs == 0 || rs != runState) { // incomplete scan
1664 >                WorkQueue v; Thread p;        // try to release a waiter
1665 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1666 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1667 >                    long nc = ((long)(v.nextWait & E_MASK) |
1668 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1669 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1670 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1671 >                        if ((p = v.parker) != null)
1672 >                            U.unpark(p);
1673 >                    }
1674                  }
750                return false;
1675              }
1676 <            return true;                         // all queues empty
1677 <        }
1678 <    }
1679 <
1680 <    /**
1681 <     * Tries to enqueue worker in wait queue and await change in
1682 <     * worker's eventCount.  Before blocking, rescans queues to avoid
1683 <     * missed signals.  If the pool is quiescent, possibly terminates
1684 <     * worker upon exit.
1685 <     *
1686 <     * @param w the calling worker
763 <     * @param c the ctl value on entry
764 <     * @return true if waited or another thread was released upon enq
765 <     */
766 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767 <        int v = w.eventCount;
768 <        w.nextWait = (int)c;                       // w's successor record
769 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771 <            long d = ctl; // return true if lost to a deq, to force rescan
772 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773 <        }
774 <        if (parallelism + (int)(c >> AC_SHIFT) == 1 &&
775 <            blockedCount == 0 && quiescerCount == 0)
776 <            idleAwaitWork(w, v);               // quiescent -- maybe shrink
777 <
778 <        boolean rescanned = false;
779 <        for (int sc;;) {
780 <            if (w.eventCount != v)
781 <                return true;
782 <            if ((sc = w.stealCount) != 0) {
783 <                long s = stealCount;               // accumulate stealCount
784 <                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
785 <                    w.stealCount = 0;
786 <            }
787 <            else if (!rescanned) {
788 <                int g = scanGuard, m = g & SMASK;
789 <                ForkJoinWorkerThread[] ws = workers;
790 <                if (ws != null && m < ws.length) {
791 <                    rescanned = true;
792 <                    for (int i = 0; i <= m; ++i) {
793 <                        ForkJoinWorkerThread u = ws[i];
794 <                        if (u != null) {
795 <                            if (u.queueBase != u.queueTop &&
796 <                                !tryReleaseWaiter())
797 <                                rescanned = false; // contended
798 <                            if (w.eventCount != v)
799 <                                return true;
800 <                        }
1676 >            else if (ec >= 0) {               // try to enqueue/inactivate
1677 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1678 >                w.nextWait = e;
1679 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1680 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1681 >                    w.eventCount = ec;        // unmark on CAS failure
1682 >                else {
1683 >                    if ((ns = w.nsteals) != 0) {
1684 >                        w.nsteals = 0;        // set rescans if ran task
1685 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1686 >                        w.totalSteals += ns;
1687                      }
1688 +                    if (a == 1 - parallelism) // quiescent
1689 +                        idleAwaitWork(w, nc, c);
1690                  }
803                if (scanGuard != g ||              // stale
804                    (queueBase != queueTop && !tryReleaseWaiter()))
805                    rescanned = false;
806                if (!rescanned)
807                    Thread.yield();                // reduce contention
808                else
809                    Thread.interrupted();          // clear before park
1691              }
1692 <            else {
1693 <                w.parked = true;                   // must recheck
1694 <                if (w.eventCount != v) {
1695 <                    w.parked = false;
1696 <                    return true;
1692 >            else if (w.eventCount < 0) {      // already queued
1693 >                int ac = a + parallelism;
1694 >                if ((nr = w.rescans) > 0)     // continue rescanning
1695 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1696 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1697 >                    Thread.interrupted();     // clear status
1698 >                    Thread wt = Thread.currentThread();
1699 >                    U.putObject(wt, PARKBLOCKER, this);
1700 >                    w.parker = wt;            // emulate LockSupport.park
1701 >                    if (w.eventCount < 0)     // recheck
1702 >                        U.park(false, 0L);
1703 >                    w.parker = null;
1704 >                    U.putObject(wt, PARKBLOCKER, null);
1705                  }
817                LockSupport.park(this);
818                rescanned = w.parked = false;
1706              }
1707          }
1708 +        return null;
1709      }
1710  
1711      /**
1712 <     * If pool is quiescent, checks for termination, and waits for
1713 <     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
1714 <     * has not changed, terminates the worker. Upon its termination
1715 <     * (see deregisterWorker), it may wake up another worker to
1716 <     * possibly repeat this process.
1712 >     * If inactivating worker w has caused the pool to become
1713 >     * quiescent, checks for pool termination, and, so long as this is
1714 >     * not the only worker, waits for event for up to a given
1715 >     * duration.  On timeout, if ctl has not changed, terminates the
1716 >     * worker, which will in turn wake up another worker to possibly
1717 >     * repeat this process.
1718       *
1719       * @param w the calling worker
1720 <     * @param v the eventCount w must wait until changed
1720 >     * @param currentCtl the ctl value triggering possible quiescence
1721 >     * @param prevCtl the ctl value to restore if thread is terminated
1722       */
1723 <    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
1724 <        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1725 <        if (shutdown)
1726 <            tryTerminate(false);
1727 <        long c = ctl;
1728 <        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
1729 <                   (long)(w.nextWait & E_MASK)); // ctl value to release w
1730 <        if (w.eventCount == v &&
1731 <            parallelism + (int)(c >> AC_SHIFT) == 0 &&
1732 <            blockedCount == 0 && quiescerCount == 0) {
1733 <            long startTime = System.nanoTime();
1734 <            Thread.interrupted();
1735 <            if (w.eventCount == v) {
1736 <                w.parked = true;
1737 <                if (w.eventCount == v)
1738 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1739 <                w.parked = false;
1740 <                if (w.eventCount == v && ctl == c &&
1741 <                    System.nanoTime() - startTime >= SHRINK_RATE &&
1742 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1743 <                    w.terminate = true;
1744 <                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
1723 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1724 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1725 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1726 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1727 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1728 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1729 >            Thread wt = Thread.currentThread();
1730 >            while (ctl == currentCtl) {
1731 >                Thread.interrupted();  // timed variant of version in scan()
1732 >                U.putObject(wt, PARKBLOCKER, this);
1733 >                w.parker = wt;
1734 >                if (ctl == currentCtl)
1735 >                    U.park(false, parkTime);
1736 >                w.parker = null;
1737 >                U.putObject(wt, PARKBLOCKER, null);
1738 >                if (ctl != currentCtl)
1739 >                    break;
1740 >                if (deadline - System.nanoTime() <= 0L &&
1741 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1742 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1743 >                    w.runState = -1;   // shrink
1744 >                    break;
1745                  }
1746              }
1747          }
1748      }
1749  
860    // Submissions
861
1750      /**
1751 <     * Enqueues the given task in the submissionQueue.  Same idea as
1752 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1753 <     *
1754 <     * @param t the task
1755 <     */
1756 <    private void addSubmission(ForkJoinTask<?> t) {
1757 <        final ReentrantLock lock = this.submissionLock;
1758 <        lock.lock();
1759 <        try {
1760 <            ForkJoinTask<?>[] q; int s, m;
1761 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1762 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1763 <                UNSAFE.putOrderedObject(q, u, t);
1764 <                queueTop = s + 1;
1765 <                if (s - queueBase == m)
1766 <                    growSubmissionQueue();
1751 >     * Tries to locate and execute tasks for a stealer of the given
1752 >     * task, or in turn one of its stealers, Traces currentSteal ->
1753 >     * currentJoin links looking for a thread working on a descendant
1754 >     * of the given task and with a non-empty queue to steal back and
1755 >     * execute tasks from. The first call to this method upon a
1756 >     * waiting join will often entail scanning/search, (which is OK
1757 >     * because the joiner has nothing better to do), but this method
1758 >     * leaves hints in workers to speed up subsequent calls. The
1759 >     * implementation is very branchy to cope with potential
1760 >     * inconsistencies or loops encountering chains that are stale,
1761 >     * unknown, or so long that they are likely cyclic.
1762 >     *
1763 >     * @param joiner the joining worker
1764 >     * @param task the task to join
1765 >     * @return 0 if no progress can be made, negative if task
1766 >     * known complete, else positive
1767 >     */
1768 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1769 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1770 >        if (joiner != null && task != null) {       // hoist null checks
1771 >            restart: for (;;) {
1772 >                ForkJoinTask<?> subtask = task;     // current target
1773 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1774 >                    WorkQueue[] ws; int m, s, h;
1775 >                    if ((s = task.status) < 0) {
1776 >                        stat = s;
1777 >                        break restart;
1778 >                    }
1779 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1780 >                        break restart;              // shutting down
1781 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1782 >                        v.currentSteal != subtask) {
1783 >                        for (int origin = h;;) {    // find stealer
1784 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1785 >                                (subtask.status < 0 || j.currentJoin != subtask))
1786 >                                continue restart;   // occasional staleness check
1787 >                            if ((v = ws[h]) != null &&
1788 >                                v.currentSteal == subtask) {
1789 >                                j.stealHint = h;    // save hint
1790 >                                break;
1791 >                            }
1792 >                            if (h == origin)
1793 >                                break restart;      // cannot find stealer
1794 >                        }
1795 >                    }
1796 >                    for (;;) { // help stealer or descend to its stealer
1797 >                        ForkJoinTask[] a;  int b;
1798 >                        if (subtask.status < 0)     // surround probes with
1799 >                            continue restart;       //   consistency checks
1800 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1801 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1802 >                            ForkJoinTask<?> t =
1803 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1804 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1805 >                                v.currentSteal != subtask)
1806 >                                continue restart;   // stale
1807 >                            stat = 1;               // apparent progress
1808 >                            if (t != null && v.base == b &&
1809 >                                U.compareAndSwapObject(a, i, t, null)) {
1810 >                                v.base = b + 1;     // help stealer
1811 >                                joiner.runSubtask(t);
1812 >                            }
1813 >                            else if (v.base == b && ++steps == MAX_HELP)
1814 >                                break restart;      // v apparently stalled
1815 >                        }
1816 >                        else {                      // empty -- try to descend
1817 >                            ForkJoinTask<?> next = v.currentJoin;
1818 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1819 >                                v.currentSteal != subtask)
1820 >                                continue restart;   // stale
1821 >                            else if (next == null || ++steps == MAX_HELP)
1822 >                                break restart;      // dead-end or maybe cyclic
1823 >                            else {
1824 >                                subtask = next;
1825 >                                j = v;
1826 >                                break;
1827 >                            }
1828 >                        }
1829 >                    }
1830 >                }
1831              }
880        } finally {
881            lock.unlock();
1832          }
1833 <        signalWork();
1833 >        return stat;
1834      }
1835  
886    //  (pollSubmission is defined below with exported methods)
887
1836      /**
1837 <     * Creates or doubles submissionQueue array.
1838 <     * Basically identical to ForkJoinWorkerThread version
1837 >     * If task is at base of some steal queue, steals and executes it.
1838 >     *
1839 >     * @param joiner the joining worker
1840 >     * @param task the task
1841       */
1842 <    private void growSubmissionQueue() {
1843 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1844 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1845 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1846 <            throw new RejectedExecutionException("Queue capacity exceeded");
1847 <        if (size < INITIAL_QUEUE_CAPACITY)
1848 <            size = INITIAL_QUEUE_CAPACITY;
1849 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1850 <        int mask = size - 1;
901 <        int top = queueTop;
902 <        int oldMask;
903 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
904 <            for (int b = queueBase; b != top; ++b) {
905 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
906 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
907 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
908 <                    UNSAFE.putObjectVolatile
909 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1842 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1843 >        WorkQueue[] ws;
1844 >        if ((ws = workQueues) != null) {
1845 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1846 >                WorkQueue q = ws[j];
1847 >                if (q != null && q.pollFor(task)) {
1848 >                    joiner.runSubtask(task);
1849 >                    break;
1850 >                }
1851              }
1852          }
1853      }
1854  
914    // Blocking support
915
1855      /**
1856 <     * Tries to increment blockedCount, decrement active count
1857 <     * (sometimes implicitly) and possibly release or create a
1858 <     * compensating worker in preparation for blocking. Fails
1859 <     * on contention or termination.
1856 >     * Tries to decrement active count (sometimes implicitly) and
1857 >     * possibly release or create a compensating worker in preparation
1858 >     * for blocking. Fails on contention or termination. Otherwise,
1859 >     * adds a new thread if no idle workers are available and either
1860 >     * pool would become completely starved or: (at least half
1861 >     * starved, and fewer than 50% spares exist, and there is at least
1862 >     * one task apparently available). Even though the availability
1863 >     * check requires a full scan, it is worthwhile in reducing false
1864 >     * alarms.
1865       *
1866 +     * @param task if non-null, a task being waited for
1867 +     * @param blocker if non-null, a blocker being waited for
1868       * @return true if the caller can block, else should recheck and retry
1869       */
1870 <    private boolean tryPreBlock() {
1871 <        int b = blockedCount;
1872 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1873 <            int pc = parallelism;
1874 <            do {
1875 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1876 <                int e, ac, tc, rc, i;
1877 <                long c = ctl;
1878 <                int u = (int)(c >>> 32);
1879 <                if ((e = (int)c) < 0) {
1880 <                                                 // skip -- terminating
1881 <                }
1882 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
1883 <                         (ws = workers) != null &&
1884 <                         (i = ~e & SMASK) < ws.length &&
1885 <                         (w = ws[i]) != null) {
1886 <                    long nc = ((long)(w.nextWait & E_MASK) |
1887 <                               (c & (AC_MASK|TC_MASK)));
1888 <                    if (w.eventCount == e &&
943 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
944 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
945 <                        if (w.parked)
946 <                            UNSAFE.unpark(w);
947 <                        return true;             // release an idle worker
1870 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1871 >        int pc = parallelism, e;
1872 >        long c = ctl;
1873 >        WorkQueue[] ws = workQueues;
1874 >        if ((e = (int)c) >= 0 && ws != null) {
1875 >            int u, a, ac, hc;
1876 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1877 >            boolean replace = false;
1878 >            if ((a = u >> UAC_SHIFT) <= 0) {
1879 >                if ((ac = a + pc) <= 1)
1880 >                    replace = true;
1881 >                else if ((e > 0 || (task != null &&
1882 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1883 >                    WorkQueue w;
1884 >                    for (int j = 0; j < ws.length; ++j) {
1885 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1886 >                            replace = true;
1887 >                            break;   // in compensation range and tasks available
1888 >                        }
1889                      }
1890                  }
1891 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1891 >            }
1892 >            if ((task == null || task.status >= 0) && // recheck need to block
1893 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1894 >                if (!replace) {          // no compensation
1895                      long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1896 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
1897 <                        return true;             // no compensation needed
1896 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1897 >                        return true;
1898                  }
1899 <                else if (tc + pc < MAX_ID) {
1899 >                else if (e != 0) {       // release an idle worker
1900 >                    WorkQueue w; Thread p; int i;
1901 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1902 >                        long nc = ((long)(w.nextWait & E_MASK) |
1903 >                                   (c & (AC_MASK|TC_MASK)));
1904 >                        if (w.eventCount == (e | INT_SIGN) &&
1905 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1906 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1907 >                            if ((p = w.parker) != null)
1908 >                                U.unpark(p);
1909 >                            return true;
1910 >                        }
1911 >                    }
1912 >                }
1913 >                else if (tc < MAX_CAP) { // create replacement
1914                      long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1915 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1915 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1916                          addWorker();
1917 <                        return true;            // create a replacement
1917 >                        return true;
1918                      }
1919                  }
1920 <                // try to back out on any failure and let caller retry
963 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
964 <                                               b = blockedCount, b - 1));
1920 >            }
1921          }
1922          return false;
1923      }
1924  
1925      /**
1926 <     * Decrements blockedCount and increments active count
971 <     */
972 <    private void postBlock() {
973 <        long c;
974 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
975 <                                                c = ctl, c + AC_UNIT));
976 <        int b;
977 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
978 <                                              b = blockedCount, b - 1));
979 <    }
980 <
981 <    /**
982 <     * Possibly blocks waiting for the given task to complete, or
983 <     * cancels the task if terminating.  Fails to wait if contended.
1926 >     * Helps and/or blocks until the given task is done.
1927       *
1928 <     * @param joinMe the task
1928 >     * @param joiner the joining worker
1929 >     * @param task the task
1930 >     * @return task status on exit
1931       */
1932 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1932 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1933          int s;
1934 <        Thread.interrupted(); // clear interrupts before checking termination
1935 <        if (joinMe.status >= 0) {
1936 <            if (tryPreBlock()) {
1937 <                joinMe.tryAwaitDone(0L);
1938 <                postBlock();
1934 >        if ((s = task.status) >= 0) {
1935 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1936 >            joiner.currentJoin = task;
1937 >            long startTime = 0L;
1938 >            for (int k = 0;;) {
1939 >                if ((s = (joiner.isEmpty() ?           // try to help
1940 >                          tryHelpStealer(joiner, task) :
1941 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1942 >                    (s = task.status) >= 0) {
1943 >                    if (k == 0) {
1944 >                        startTime = System.nanoTime();
1945 >                        tryPollForAndExec(joiner, task); // check uncommon case
1946 >                    }
1947 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1948 >                             System.nanoTime() - startTime >=
1949 >                             COMPENSATION_DELAY &&
1950 >                             tryCompensate(task, null)) {
1951 >                        if (task.trySetSignal()) {
1952 >                            synchronized (task) {
1953 >                                if (task.status >= 0) {
1954 >                                    try {                // see ForkJoinTask
1955 >                                        task.wait();     //  for explanation
1956 >                                    } catch (InterruptedException ie) {
1957 >                                    }
1958 >                                }
1959 >                                else
1960 >                                    task.notifyAll();
1961 >                            }
1962 >                        }
1963 >                        long c;                          // re-activate
1964 >                        do {} while (!U.compareAndSwapLong
1965 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1966 >                    }
1967 >                }
1968 >                if (s < 0 || (s = task.status) < 0) {
1969 >                    joiner.currentJoin = prevJoin;
1970 >                    break;
1971 >                }
1972 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1973 >                    Thread.yield();                     // for politeness
1974              }
995            if ((ctl & STOP_BIT) != 0L)
996                joinMe.cancelIgnoringExceptions();
1975          }
1976 +        return s;
1977      }
1978  
1979      /**
1980 <     * Possibly blocks the given worker waiting for joinMe to
1981 <     * complete or timeout
1980 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1981 >     * to help join only while there is continuous progress. (Caller
1982 >     * will then enter a timed wait.)
1983       *
1984 <     * @param joinMe the task
1985 <     * @param millis the wait time for underlying Object.wait
1984 >     * @param joiner the joining worker
1985 >     * @param task the task
1986 >     * @return task status on exit
1987       */
1988 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1989 <        while (joinMe.status >= 0) {
1990 <            Thread.interrupted();
1991 <            if ((ctl & STOP_BIT) != 0L) {
1992 <                joinMe.cancelIgnoringExceptions();
1993 <                break;
1994 <            }
1995 <            if (tryPreBlock()) {
1015 <                long last = System.nanoTime();
1016 <                while (joinMe.status >= 0) {
1017 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1018 <                    if (millis <= 0)
1019 <                        break;
1020 <                    joinMe.tryAwaitDone(millis);
1021 <                    if (joinMe.status < 0)
1022 <                        break;
1023 <                    if ((ctl & STOP_BIT) != 0L) {
1024 <                        joinMe.cancelIgnoringExceptions();
1025 <                        break;
1026 <                    }
1027 <                    long now = System.nanoTime();
1028 <                    nanos -= now - last;
1029 <                    last = now;
1030 <                }
1031 <                postBlock();
1032 <                break;
1033 <            }
1034 <        }
1988 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1989 >        int s;
1990 >        while ((s = task.status) >= 0 &&
1991 >               (joiner.isEmpty() ?
1992 >                tryHelpStealer(joiner, task) :
1993 >                joiner.tryRemoveAndExec(task)) != 0)
1994 >            ;
1995 >        return s;
1996      }
1997  
1998      /**
1999 <     * If necessary, compensates for blocker, and blocks
2000 <     */
2001 <    private void awaitBlocker(ManagedBlocker blocker)
2002 <        throws InterruptedException {
2003 <        while (!blocker.isReleasable()) {
2004 <            if (tryPreBlock()) {
2005 <                try {
2006 <                    do {} while (!blocker.isReleasable() && !blocker.block());
2007 <                } finally {
2008 <                    postBlock();
1999 >     * Returns a (probably) non-empty steal queue, if one is found
2000 >     * during a random, then cyclic scan, else null.  This method must
2001 >     * be retried by caller if, by the time it tries to use the queue,
2002 >     * it is empty.
2003 >     */
2004 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2005 >        // Similar to loop in scan(), but ignoring submissions
2006 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2007 >        int step = (r >>> 16) | 1;
2008 >        for (WorkQueue[] ws;;) {
2009 >            int rs = runState, m;
2010 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2011 >                return null;
2012 >            for (int j = (m + 1) << 2; ; r += step) {
2013 >                WorkQueue q = ws[((r << 1) | 1) & m];
2014 >                if (q != null && !q.isEmpty())
2015 >                    return q;
2016 >                else if (--j < 0) {
2017 >                    if (runState == rs)
2018 >                        return null;
2019 >                    break;
2020                  }
1049                break;
2021              }
2022          }
2023      }
2024  
1054    // Creating, registering and deregistring workers
1055
2025      /**
2026 <     * Tries to create and start a worker; minimally rolls back counts
2027 <     * on failure.
2028 <     */
2029 <    private void addWorker() {
2030 <        Throwable ex = null;
2031 <        ForkJoinWorkerThread t = null;
2032 <        try {
2033 <            t = factory.newThread(this);
2034 <        } catch (Throwable e) {
2035 <            ex = e;
2036 <        }
2037 <        if (t == null) {  // null or exceptional factory return
2038 <            long c;       // adjust counts
2039 <            do {} while (!UNSAFE.compareAndSwapLong
2040 <                         (this, ctlOffset, c = ctl,
2041 <                          (((c - AC_UNIT) & AC_MASK) |
2042 <                           ((c - TC_UNIT) & TC_MASK) |
2043 <                           (c & ~(AC_MASK|TC_MASK)))));
2044 <            // Propagate exception if originating from an external caller
2045 <            if (!tryTerminate(false) && ex != null &&
2046 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
2047 <                UNSAFE.throwException(ex);
2026 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2027 >     * active count ctl maintenance, but rather than blocking
2028 >     * when tasks cannot be found, we rescan until all others cannot
2029 >     * find tasks either.
2030 >     */
2031 >    final void helpQuiescePool(WorkQueue w) {
2032 >        for (boolean active = true;;) {
2033 >            ForkJoinTask<?> localTask; // exhaust local queue
2034 >            while ((localTask = w.nextLocalTask()) != null)
2035 >                localTask.doExec();
2036 >            WorkQueue q = findNonEmptyStealQueue(w);
2037 >            if (q != null) {
2038 >                ForkJoinTask<?> t; int b;
2039 >                if (!active) {      // re-establish active count
2040 >                    long c;
2041 >                    active = true;
2042 >                    do {} while (!U.compareAndSwapLong
2043 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2044 >                }
2045 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2046 >                    w.runSubtask(t);
2047 >            }
2048 >            else {
2049 >                long c;
2050 >                if (active) {       // decrement active count without queuing
2051 >                    active = false;
2052 >                    do {} while (!U.compareAndSwapLong
2053 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2054 >                }
2055 >                else
2056 >                    c = ctl;        // re-increment on exit
2057 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2058 >                    do {} while (!U.compareAndSwapLong
2059 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2060 >                    break;
2061 >                }
2062 >            }
2063          }
1080        else
1081            t.start();
2064      }
2065  
2066      /**
2067 <     * Callback from ForkJoinWorkerThread constructor to assign a
1086 <     * public name
2067 >     * Restricted version of helpQuiescePool for non-FJ callers
2068       */
2069 <    final String nextWorkerName() {
2070 <        for (int n;;) {
2071 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
2072 <                                         n = nextWorkerNumber, ++n))
2073 <                return workerNamePrefix + n;
2074 <        }
2069 >    static void externalHelpQuiescePool() {
2070 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2071 >        ForkJoinTask<?> t; int b;
2072 >        int k = submitters.get().seed & SQMASK;
2073 >        if ((p = commonPool) != null &&
2074 >            (ws = p.workQueues) != null &&
2075 >            ws.length > (k &= p.submitMask) &&
2076 >            (w = ws[k]) != null &&
2077 >            (q = p.findNonEmptyStealQueue(w)) != null &&
2078 >            (b = q.base) - q.top < 0 &&
2079 >            (t = q.pollAt(b)) != null)
2080 >            t.doExec();
2081      }
2082  
2083      /**
2084 <     * Callback from ForkJoinWorkerThread constructor to
2085 <     * determine its poolIndex and record in workers array.
2086 <     *
2087 <     * @param w the worker
2088 <     * @return the worker's pool index
2089 <     */
2090 <    final int registerWorker(ForkJoinWorkerThread w) {
2091 <        /*
2092 <         * In the typical case, a new worker acquires the lock, uses
2093 <         * next available index and returns quickly.  Since we should
2094 <         * not block callers (ultimately from signalWork or
2095 <         * tryPreBlock) waiting for the lock needed to do this, we
2096 <         * instead help release other workers while waiting for the
1110 <         * lock.
1111 <         */
1112 <        for (int g;;) {
1113 <            ForkJoinWorkerThread[] ws;
1114 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
1115 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1116 <                                         g, g | SG_UNIT)) {
1117 <                int k = nextWorkerIndex;
1118 <                try {
1119 <                    if ((ws = workers) != null) { // ignore on shutdown
1120 <                        int n = ws.length;
1121 <                        if (k < 0 || k >= n || ws[k] != null) {
1122 <                            for (k = 0; k < n && ws[k] != null; ++k)
1123 <                                ;
1124 <                            if (k == n)
1125 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1126 <                        }
1127 <                        ws[k] = w;
1128 <                        nextWorkerIndex = k + 1;
1129 <                        int m = g & SMASK;
1130 <                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1131 <                    }
1132 <                } finally {
1133 <                    scanGuard = g;
1134 <                }
1135 <                return k;
1136 <            }
1137 <            else if ((ws = workers) != null) { // help release others
1138 <                for (ForkJoinWorkerThread u : ws) {
1139 <                    if (u != null && u.queueBase != u.queueTop) {
1140 <                        if (tryReleaseWaiter())
1141 <                            break;
1142 <                    }
1143 <                }
1144 <            }
2084 >     * Gets and removes a local or stolen task for the given worker.
2085 >     *
2086 >     * @return a task, if available
2087 >     */
2088 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2089 >        for (ForkJoinTask<?> t;;) {
2090 >            WorkQueue q; int b;
2091 >            if ((t = w.nextLocalTask()) != null)
2092 >                return t;
2093 >            if ((q = findNonEmptyStealQueue(w)) == null)
2094 >                return null;
2095 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2096 >                return t;
2097          }
2098      }
2099  
2100      /**
2101 <     * Final callback from terminating worker.  Removes record of
2102 <     * worker from array, and adjusts counts. If pool is shutting
2103 <     * down, tries to complete termination.
1152 <     *
1153 <     * @param w the worker
2101 >     * Returns the approximate (non-atomic) number of idle threads per
2102 >     * active thread to offset steal queue size for method
2103 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2104       */
2105 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
2106 <        int idx = w.poolIndex;
2107 <        int sc = w.stealCount;
2108 <        int steps = 0;
2109 <        // Remove from array, adjust worker counts and collect steal count.
2110 <        // We can intermix failed removes or adjusts with steal updates
2111 <        do {
2112 <            long s, c;
2113 <            int g;
1164 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1165 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1166 <                                         g, g |= SG_UNIT)) {
1167 <                ForkJoinWorkerThread[] ws = workers;
1168 <                if (ws != null && idx >= 0 &&
1169 <                    idx < ws.length && ws[idx] == w)
1170 <                    ws[idx] = null;    // verify
1171 <                nextWorkerIndex = idx;
1172 <                scanGuard = g + SG_UNIT;
1173 <                steps = 1;
1174 <            }
1175 <            if (steps == 1 &&
1176 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1177 <                                          (((c - AC_UNIT) & AC_MASK) |
1178 <                                           ((c - TC_UNIT) & TC_MASK) |
1179 <                                           (c & ~(AC_MASK|TC_MASK)))))
1180 <                steps = 2;
1181 <            if (sc != 0 &&
1182 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1183 <                                          s = stealCount, s + sc))
1184 <                sc = 0;
1185 <        } while (steps != 2 || sc != 0);
1186 <        if (!tryTerminate(false)) {
1187 <            if (ex != null)   // possibly replace if died abnormally
1188 <                signalWork();
1189 <            else
1190 <                tryReleaseWaiter();
1191 <        }
2105 >    final int idlePerActive() {
2106 >        // Approximate at powers of two for small values, saturate past 4
2107 >        int p = parallelism;
2108 >        int a = p + (int)(ctl >> AC_SHIFT);
2109 >        return (a > (p >>>= 1) ? 0 :
2110 >                a > (p >>>= 1) ? 1 :
2111 >                a > (p >>>= 1) ? 2 :
2112 >                a > (p >>>= 1) ? 4 :
2113 >                8);
2114      }
2115  
1194    // Shutdown and termination
1195
2116      /**
2117 <     * Possibly initiates and/or completes termination.
2117 >     * Returns approximate submission queue length for the given caller
2118 >     */
2119 >    static int getEstimatedSubmitterQueueLength() {
2120 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2121 >        int k = submitters.get().seed & SQMASK;
2122 >        return ((p = commonPool) != null &&
2123 >                p.runState >= 0 &&
2124 >                (ws = p.workQueues) != null &&
2125 >                ws.length > (k &= p.submitMask) &&
2126 >                (q = ws[k]) != null) ?
2127 >            q.queueSize() : 0;
2128 >    }
2129 >
2130 >    //  Termination
2131 >
2132 >    /**
2133 >     * Possibly initiates and/or completes termination.  The caller
2134 >     * triggering termination runs three passes through workQueues:
2135 >     * (0) Setting termination status, followed by wakeups of queued
2136 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2137 >     * threads (likely in external tasks, but possibly also blocked in
2138 >     * joins).  Each pass repeats previous steps because of potential
2139 >     * lagging thread creation.
2140       *
2141       * @param now if true, unconditionally terminate, else only
2142 <     * if shutdown and empty queue and no active workers
2142 >     * if no work and no active workers
2143 >     * @param enable if true, enable shutdown when next possible
2144       * @return true if now terminating or terminated
2145       */
2146 <    private boolean tryTerminate(boolean now) {
2147 <        long c;
2148 <        while (((c = ctl) & STOP_BIT) == 0) {
2149 <            if (!now) {
2150 <                if ((int)(c >> AC_SHIFT) != -parallelism)
2151 <                    return false;
1209 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1210 <                    queueTop - queueBase > 0) {
1211 <                    if (ctl == c) // staleness check
1212 <                        return false;
1213 <                    continue;
1214 <                }
1215 <            }
1216 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1217 <                startTerminating();
1218 <        }
1219 <        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1220 <            submissionLock.lock();
1221 <            termination.signalAll();
1222 <            submissionLock.unlock();
1223 <        }
1224 <        return true;
1225 <    }
1226 <
1227 <    /**
1228 <     * Runs up to three passes through workers: (0) Setting
1229 <     * termination status for each worker, followed by wakeups up
1230 <     * queued workers (1) helping cancel tasks (2) interrupting
1231 <     * lagging threads (likely in external tasks, but possibly also
1232 <     * blocked in joins).  Each pass repeats previous steps because of
1233 <     * potential lagging thread creation.
1234 <     */
1235 <    private void startTerminating() {
1236 <        cancelSubmissions();
1237 <        for (int pass = 0; pass < 3; ++pass) {
1238 <            ForkJoinWorkerThread[] ws = workers;
1239 <            if (ws != null) {
1240 <                for (ForkJoinWorkerThread w : ws) {
1241 <                    if (w != null) {
1242 <                        w.terminate = true;
1243 <                        if (pass > 0) {
1244 <                            w.cancelTasks();
1245 <                            if (pass > 1 && !w.isInterrupted()) {
1246 <                                try {
1247 <                                    w.interrupt();
1248 <                                } catch (SecurityException ignore) {
1249 <                                }
1250 <                            }
1251 <                        }
2146 >    private boolean tryTerminate(boolean now, boolean enable) {
2147 >        for (long c;;) {
2148 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2149 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2150 >                    synchronized(this) {
2151 >                        notifyAll();                // signal when 0 workers
2152                      }
2153                  }
2154 <                terminateWaiters();
2154 >                return true;
2155              }
2156 <        }
2157 <    }
2158 <
2159 <    /**
2160 <     * Polls and cancels all submissions. Called only during termination.
1261 <     */
1262 <    private void cancelSubmissions() {
1263 <        while (queueBase != queueTop) {
1264 <            ForkJoinTask<?> task = pollSubmission();
1265 <            if (task != null) {
2156 >            if (runState >= 0) {                    // not yet enabled
2157 >                if (!enable)
2158 >                    return false;
2159 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2160 >                    tryAwaitMainLock();
2161                  try {
2162 <                    task.cancel(false);
2163 <                } catch (Throwable ignore) {
2162 >                    runState |= SHUTDOWN;
2163 >                } finally {
2164 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2165 >                        mainLock = 0;
2166 >                        synchronized (this) { notifyAll(); };
2167 >                    }
2168                  }
2169              }
2170 <        }
2171 <    }
2172 <
2173 <    /**
2174 <     * Tries to set the termination status of waiting workers, and
2175 <     * then wake them up (after which they will terminate).
2176 <     */
2177 <    private void terminateWaiters() {
2178 <        ForkJoinWorkerThread[] ws = workers;
2179 <        if (ws != null) {
2180 <            ForkJoinWorkerThread w; long c; int i, e;
2181 <            int n = ws.length;
2182 <            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
2183 <                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
2184 <                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
2185 <                                              (long)(w.nextWait & E_MASK) |
2186 <                                              ((c + AC_UNIT) & AC_MASK) |
2187 <                                              (c & (TC_MASK|STOP_BIT)))) {
2188 <                    w.terminate = true;
2189 <                    w.eventCount = e + EC_UNIT;
2190 <                    if (w.parked)
2191 <                        UNSAFE.unpark(w);
2170 >            if (!now) {                             // check if idle & no tasks
2171 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2172 >                    hasQueuedSubmissions())
2173 >                    return false;
2174 >                // Check for unqueued inactive workers. One pass suffices.
2175 >                WorkQueue[] ws = workQueues; WorkQueue w;
2176 >                if (ws != null) {
2177 >                    for (int i = 1; i < ws.length; i += 2) {
2178 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2179 >                            return false;
2180 >                    }
2181 >                }
2182 >            }
2183 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2184 >                for (int pass = 0; pass < 3; ++pass) {
2185 >                    WorkQueue[] ws = workQueues;
2186 >                    if (ws != null) {
2187 >                        WorkQueue w;
2188 >                        int n = ws.length;
2189 >                        for (int i = 0; i < n; ++i) {
2190 >                            if ((w = ws[i]) != null) {
2191 >                                w.runState = -1;
2192 >                                if (pass > 0) {
2193 >                                    w.cancelAll();
2194 >                                    if (pass > 1)
2195 >                                        w.interruptOwner();
2196 >                                }
2197 >                            }
2198 >                        }
2199 >                        // Wake up workers parked on event queue
2200 >                        int i, e; long cc; Thread p;
2201 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2202 >                               (i = e & SMASK) < n &&
2203 >                               (w = ws[i]) != null) {
2204 >                            long nc = ((long)(w.nextWait & E_MASK) |
2205 >                                       ((cc + AC_UNIT) & AC_MASK) |
2206 >                                       (cc & (TC_MASK|STOP_BIT)));
2207 >                            if (w.eventCount == (e | INT_SIGN) &&
2208 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2209 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2210 >                                w.runState = -1;
2211 >                                if ((p = w.parker) != null)
2212 >                                    U.unpark(p);
2213 >                            }
2214 >                        }
2215 >                    }
2216                  }
2217              }
2218          }
2219      }
2220  
1298    // misc ForkJoinWorkerThread support
1299
1300    /**
1301     * Increment or decrement quiescerCount. Needed only to prevent
1302     * triggering shutdown if a worker is transiently inactive while
1303     * checking quiescence.
1304     *
1305     * @param delta 1 for increment, -1 for decrement
1306     */
1307    final void addQuiescerCount(int delta) {
1308        int c;
1309        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1310                                              c = quiescerCount, c + delta));
1311    }
1312
1313    /**
1314     * Directly increment or decrement active count without
1315     * queuing. This method is used to transiently assert inactivation
1316     * while checking quiescence.
1317     *
1318     * @param delta 1 for increment, -1 for decrement
1319     */
1320    final void addActiveCount(int delta) {
1321        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1322        long c;
1323        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1324                                                ((c + d) & AC_MASK) |
1325                                                (c & ~AC_MASK)));
1326    }
1327
1328    /**
1329     * Returns the approximate (non-atomic) number of idle threads per
1330     * active thread.
1331     */
1332    final int idlePerActive() {
1333        // Approximate at powers of two for small values, saturate past 4
1334        int p = parallelism;
1335        int a = p + (int)(ctl >> AC_SHIFT);
1336        return (a > (p >>>= 1) ? 0 :
1337                a > (p >>>= 1) ? 1 :
1338                a > (p >>>= 1) ? 2 :
1339                a > (p >>>= 1) ? 4 :
1340                8);
1341    }
1342
2221      // Exported methods
2222  
2223      // Constructors
# Line 1409 | Line 2287 | public class ForkJoinPool extends Abstra
2287          checkPermission();
2288          if (factory == null)
2289              throw new NullPointerException();
2290 <        if (parallelism <= 0 || parallelism > MAX_ID)
2290 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2291              throw new IllegalArgumentException();
2292          this.parallelism = parallelism;
2293          this.factory = factory;
2294          this.ueh = handler;
2295 <        this.locallyFifo = asyncMode;
2295 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2296          long np = (long)(-parallelism); // offset ctl counts
2297          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2298 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
2299 <        // initialize workers array with room for 2*parallelism if possible
2300 <        int n = parallelism << 1;
2301 <        if (n >= MAX_ID)
2302 <            n = MAX_ID;
1425 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1426 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1427 <        }
1428 <        workers = new ForkJoinWorkerThread[n + 1];
1429 <        this.submissionLock = new ReentrantLock();
1430 <        this.termination = submissionLock.newCondition();
2298 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2299 >        int n = parallelism - 1;
2300 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2301 >        this.submitMask = ((n + 1) << 1) - 1;
2302 >        int pn = poolNumberGenerator.incrementAndGet();
2303          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2304 <        sb.append(poolNumberGenerator.incrementAndGet());
2304 >        sb.append(Integer.toString(pn));
2305          sb.append("-worker-");
2306          this.workerNamePrefix = sb.toString();
2307 +        this.runState = 1;              // set init flag
2308 +    }
2309 +
2310 +    /**
2311 +     * Constructor for common pool, suitable only for static initialization.
2312 +     * Basically the same as above, but uses smallest possible initial footprint.
2313 +     */
2314 +    ForkJoinPool(int parallelism, int submitMask,
2315 +                 ForkJoinWorkerThreadFactory factory,
2316 +                 Thread.UncaughtExceptionHandler handler) {
2317 +        this.factory = factory;
2318 +        this.ueh = handler;
2319 +        this.submitMask = submitMask;
2320 +        this.parallelism = parallelism;
2321 +        long np = (long)(-parallelism);
2322 +        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2323 +        this.localMode = LIFO_QUEUE;
2324 +        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2325 +        this.runState = 1;
2326 +    }
2327 +
2328 +    /**
2329 +     * Returns the common pool instance.
2330 +     *
2331 +     * @return the common pool instance
2332 +     */
2333 +    public static ForkJoinPool commonPool() {
2334 +        ForkJoinPool p;
2335 +        if ((p = commonPool) == null)
2336 +            throw new Error("Common Pool Unavailable");
2337 +        return p;
2338      }
2339  
2340      // Execution methods
# Line 1453 | Line 2356 | public class ForkJoinPool extends Abstra
2356       *         scheduled for execution
2357       */
2358      public <T> T invoke(ForkJoinTask<T> task) {
1456        Thread t = Thread.currentThread();
2359          if (task == null)
2360              throw new NullPointerException();
2361 <        if (shutdown)
2362 <            throw new RejectedExecutionException();
1461 <        if ((t instanceof ForkJoinWorkerThread) &&
1462 <            ((ForkJoinWorkerThread)t).pool == this)
1463 <            return task.invoke();  // bypass submit if in same pool
1464 <        else {
1465 <            addSubmission(task);
1466 <            return task.join();
1467 <        }
1468 <    }
1469 <
1470 <    /**
1471 <     * Unless terminating, forks task if within an ongoing FJ
1472 <     * computation in the current pool, else submits as external task.
1473 <     */
1474 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1475 <        ForkJoinWorkerThread w;
1476 <        Thread t = Thread.currentThread();
1477 <        if (shutdown)
1478 <            throw new RejectedExecutionException();
1479 <        if ((t instanceof ForkJoinWorkerThread) &&
1480 <            (w = (ForkJoinWorkerThread)t).pool == this)
1481 <            w.pushTask(task);
1482 <        else
1483 <            addSubmission(task);
2361 >        doSubmit(task);
2362 >        return task.join();
2363      }
2364  
2365      /**
# Line 1494 | Line 2373 | public class ForkJoinPool extends Abstra
2373      public void execute(ForkJoinTask<?> task) {
2374          if (task == null)
2375              throw new NullPointerException();
2376 <        forkOrSubmit(task);
2376 >        doSubmit(task);
2377      }
2378  
2379      // AbstractExecutorService methods
# Line 1511 | Line 2390 | public class ForkJoinPool extends Abstra
2390          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2391              job = (ForkJoinTask<?>) task;
2392          else
2393 <            job = ForkJoinTask.adapt(task, null);
2394 <        forkOrSubmit(job);
2393 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2394 >        doSubmit(job);
2395      }
2396  
2397      /**
# Line 1527 | Line 2406 | public class ForkJoinPool extends Abstra
2406      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2407          if (task == null)
2408              throw new NullPointerException();
2409 <        forkOrSubmit(task);
2409 >        doSubmit(task);
2410          return task;
2411      }
2412  
# Line 1537 | Line 2416 | public class ForkJoinPool extends Abstra
2416       *         scheduled for execution
2417       */
2418      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2419 <        if (task == null)
2420 <            throw new NullPointerException();
1542 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1543 <        forkOrSubmit(job);
2419 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2420 >        doSubmit(job);
2421          return job;
2422      }
2423  
# Line 1550 | Line 2427 | public class ForkJoinPool extends Abstra
2427       *         scheduled for execution
2428       */
2429      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2430 <        if (task == null)
2431 <            throw new NullPointerException();
1555 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1556 <        forkOrSubmit(job);
2430 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2431 >        doSubmit(job);
2432          return job;
2433      }
2434  
# Line 1569 | Line 2444 | public class ForkJoinPool extends Abstra
2444          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2445              job = (ForkJoinTask<?>) task;
2446          else
2447 <            job = ForkJoinTask.adapt(task, null);
2448 <        forkOrSubmit(job);
2447 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2448 >        doSubmit(job);
2449          return job;
2450      }
2451  
# Line 1579 | Line 2454 | public class ForkJoinPool extends Abstra
2454       * @throws RejectedExecutionException {@inheritDoc}
2455       */
2456      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2457 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2458 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2459 <        for (Callable<T> task : tasks)
2460 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2461 <        invoke(new InvokeAll<T>(forkJoinTasks));
2462 <
2457 >        // In previous versions of this class, this method constructed
2458 >        // a task to run ForkJoinTask.invokeAll, but now external
2459 >        // invocation of multiple tasks is at least as efficient.
2460 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2461 >        // Workaround needed because method wasn't declared with
2462 >        // wildcards in return type but should have been.
2463          @SuppressWarnings({"unchecked", "rawtypes"})
2464 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1590 <        return futures;
1591 <    }
2464 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2465  
2466 <    static final class InvokeAll<T> extends RecursiveAction {
2467 <        final ArrayList<ForkJoinTask<T>> tasks;
2468 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2469 <        public void compute() {
2470 <            try { invokeAll(tasks); }
2471 <            catch (Exception ignore) {}
2466 >        boolean done = false;
2467 >        try {
2468 >            for (Callable<T> t : tasks) {
2469 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2470 >                doSubmit(f);
2471 >                fs.add(f);
2472 >            }
2473 >            for (ForkJoinTask<T> f : fs)
2474 >                f.quietlyJoin();
2475 >            done = true;
2476 >            return futures;
2477 >        } finally {
2478 >            if (!done)
2479 >                for (ForkJoinTask<T> f : fs)
2480 >                    f.cancel(false);
2481          }
1600        private static final long serialVersionUID = -7914297376763021607L;
2482      }
2483  
2484      /**
# Line 1629 | Line 2510 | public class ForkJoinPool extends Abstra
2510      }
2511  
2512      /**
2513 +     * Returns the targeted parallelism level of the common pool.
2514 +     *
2515 +     * @return the targeted parallelism level of the common pool
2516 +     */
2517 +    public static int getCommonPoolParallelism() {
2518 +        return commonPoolParallelism;
2519 +    }
2520 +
2521 +    /**
2522       * Returns the number of worker threads that have started but not
2523       * yet terminated.  The result returned by this method may differ
2524       * from {@link #getParallelism} when threads are created to
# Line 1647 | Line 2537 | public class ForkJoinPool extends Abstra
2537       * @return {@code true} if this pool uses async mode
2538       */
2539      public boolean getAsyncMode() {
2540 <        return locallyFifo;
2540 >        return localMode != 0;
2541      }
2542  
2543      /**
# Line 1659 | Line 2549 | public class ForkJoinPool extends Abstra
2549       * @return the number of worker threads
2550       */
2551      public int getRunningThreadCount() {
2552 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2553 <        return r <= 0? 0 : r; // suppress momentarily negative values
2552 >        int rc = 0;
2553 >        WorkQueue[] ws; WorkQueue w;
2554 >        if ((ws = workQueues) != null) {
2555 >            for (int i = 1; i < ws.length; i += 2) {
2556 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2557 >                    ++rc;
2558 >            }
2559 >        }
2560 >        return rc;
2561      }
2562  
2563      /**
# Line 1671 | Line 2568 | public class ForkJoinPool extends Abstra
2568       * @return the number of active threads
2569       */
2570      public int getActiveThreadCount() {
2571 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2572 <        return r <= 0? 0 : r; // suppress momentarily negative values
2571 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2572 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2573      }
2574  
2575      /**
# Line 1687 | Line 2584 | public class ForkJoinPool extends Abstra
2584       * @return {@code true} if all threads are currently idle
2585       */
2586      public boolean isQuiescent() {
2587 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2587 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2588      }
2589  
2590      /**
# Line 1702 | Line 2599 | public class ForkJoinPool extends Abstra
2599       * @return the number of steals
2600       */
2601      public long getStealCount() {
2602 <        return stealCount;
2602 >        long count = stealCount;
2603 >        WorkQueue[] ws; WorkQueue w;
2604 >        if ((ws = workQueues) != null) {
2605 >            for (int i = 1; i < ws.length; i += 2) {
2606 >                if ((w = ws[i]) != null)
2607 >                    count += w.totalSteals;
2608 >            }
2609 >        }
2610 >        return count;
2611      }
2612  
2613      /**
# Line 1717 | Line 2622 | public class ForkJoinPool extends Abstra
2622       */
2623      public long getQueuedTaskCount() {
2624          long count = 0;
2625 <        ForkJoinWorkerThread[] ws;
2626 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2627 <            (ws = workers) != null) {
2628 <            for (ForkJoinWorkerThread w : ws)
2629 <                if (w != null)
2630 <                    count -= w.queueBase - w.queueTop; // must read base first
2625 >        WorkQueue[] ws; WorkQueue w;
2626 >        if ((ws = workQueues) != null) {
2627 >            for (int i = 1; i < ws.length; i += 2) {
2628 >                if ((w = ws[i]) != null)
2629 >                    count += w.queueSize();
2630 >            }
2631          }
2632          return count;
2633      }
2634  
2635      /**
2636       * Returns an estimate of the number of tasks submitted to this
2637 <     * pool that have not yet begun executing.  This meThod may take
2637 >     * pool that have not yet begun executing.  This method may take
2638       * time proportional to the number of submissions.
2639       *
2640       * @return the number of queued submissions
2641       */
2642      public int getQueuedSubmissionCount() {
2643 <        return -queueBase + queueTop;
2643 >        int count = 0;
2644 >        WorkQueue[] ws; WorkQueue w;
2645 >        if ((ws = workQueues) != null) {
2646 >            for (int i = 0; i < ws.length; i += 2) {
2647 >                if ((w = ws[i]) != null)
2648 >                    count += w.queueSize();
2649 >            }
2650 >        }
2651 >        return count;
2652      }
2653  
2654      /**
# Line 1745 | Line 2658 | public class ForkJoinPool extends Abstra
2658       * @return {@code true} if there are any queued submissions
2659       */
2660      public boolean hasQueuedSubmissions() {
2661 <        return queueBase != queueTop;
2661 >        WorkQueue[] ws; WorkQueue w;
2662 >        if ((ws = workQueues) != null) {
2663 >            for (int i = 0; i < ws.length; i += 2) {
2664 >                if ((w = ws[i]) != null && !w.isEmpty())
2665 >                    return true;
2666 >            }
2667 >        }
2668 >        return false;
2669      }
2670  
2671      /**
# Line 1756 | Line 2676 | public class ForkJoinPool extends Abstra
2676       * @return the next submission, or {@code null} if none
2677       */
2678      protected ForkJoinTask<?> pollSubmission() {
2679 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2680 <        while ((b = queueBase) != queueTop &&
2681 <               (q = submissionQueue) != null &&
2682 <               (i = (q.length - 1) & b) >= 0) {
2683 <            long u = (i << ASHIFT) + ABASE;
1764 <            if ((t = q[i]) != null &&
1765 <                queueBase == b &&
1766 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1767 <                queueBase = b + 1;
1768 <                return t;
2679 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2680 >        if ((ws = workQueues) != null) {
2681 >            for (int i = 0; i < ws.length; i += 2) {
2682 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2683 >                    return t;
2684              }
2685          }
2686          return null;
# Line 1790 | Line 2705 | public class ForkJoinPool extends Abstra
2705       */
2706      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2707          int count = 0;
2708 <        while (queueBase != queueTop) {
2709 <            ForkJoinTask<?> t = pollSubmission();
2710 <            if (t != null) {
2711 <                c.add(t);
2712 <                ++count;
2708 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2709 >        if ((ws = workQueues) != null) {
2710 >            for (int i = 0; i < ws.length; ++i) {
2711 >                if ((w = ws[i]) != null) {
2712 >                    while ((t = w.poll()) != null) {
2713 >                        c.add(t);
2714 >                        ++count;
2715 >                    }
2716 >                }
2717              }
2718          }
1800        ForkJoinWorkerThread[] ws;
1801        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1802            (ws = workers) != null) {
1803            for (ForkJoinWorkerThread w : ws)
1804                if (w != null)
1805                    count += w.drainTasksTo(c);
1806        }
2719          return count;
2720      }
2721  
# Line 1815 | Line 2727 | public class ForkJoinPool extends Abstra
2727       * @return a string identifying this pool, as well as its state
2728       */
2729      public String toString() {
2730 <        long st = getStealCount();
2731 <        long qt = getQueuedTaskCount();
2732 <        long qs = getQueuedSubmissionCount();
1821 <        int pc = parallelism;
2730 >        // Use a single pass through workQueues to collect counts
2731 >        long qt = 0L, qs = 0L; int rc = 0;
2732 >        long st = stealCount;
2733          long c = ctl;
2734 +        WorkQueue[] ws; WorkQueue w;
2735 +        if ((ws = workQueues) != null) {
2736 +            for (int i = 0; i < ws.length; ++i) {
2737 +                if ((w = ws[i]) != null) {
2738 +                    int size = w.queueSize();
2739 +                    if ((i & 1) == 0)
2740 +                        qs += size;
2741 +                    else {
2742 +                        qt += size;
2743 +                        st += w.totalSteals;
2744 +                        if (w.isApparentlyUnblocked())
2745 +                            ++rc;
2746 +                    }
2747 +                }
2748 +            }
2749 +        }
2750 +        int pc = parallelism;
2751          int tc = pc + (short)(c >>> TC_SHIFT);
2752 <        int rc = pc + (int)(c >> AC_SHIFT);
2753 <        if (rc < 0) // ignore transient negative
2754 <            rc = 0;
1827 <        int ac = rc + blockedCount;
2752 >        int ac = pc + (int)(c >> AC_SHIFT);
2753 >        if (ac < 0) // ignore transient negative
2754 >            ac = 0;
2755          String level;
2756          if ((c & STOP_BIT) != 0)
2757 <            level = (tc == 0)? "Terminated" : "Terminating";
2757 >            level = (tc == 0) ? "Terminated" : "Terminating";
2758          else
2759 <            level = shutdown? "Shutting down" : "Running";
2759 >            level = runState < 0 ? "Shutting down" : "Running";
2760          return super.toString() +
2761              "[" + level +
2762              ", parallelism = " + pc +
# Line 1843 | Line 2770 | public class ForkJoinPool extends Abstra
2770      }
2771  
2772      /**
2773 <     * Initiates an orderly shutdown in which previously submitted
2774 <     * tasks are executed, but no new tasks will be accepted.
2775 <     * Invocation has no additional effect if already shut down.
2776 <     * Tasks that are in the process of being submitted concurrently
2777 <     * during the course of this method may or may not be rejected.
2773 >     * Possibly initiates an orderly shutdown in which previously
2774 >     * submitted tasks are executed, but no new tasks will be
2775 >     * accepted. Invocation has no effect on execution state if this
2776 >     * is the {@link #commonPool}, and no additional effect if
2777 >     * already shut down.  Tasks that are in the process of being
2778 >     * submitted concurrently during the course of this method may or
2779 >     * may not be rejected.
2780       *
2781       * @throws SecurityException if a security manager exists and
2782       *         the caller is not permitted to modify threads
# Line 1856 | Line 2785 | public class ForkJoinPool extends Abstra
2785       */
2786      public void shutdown() {
2787          checkPermission();
2788 <        shutdown = true;
2789 <        tryTerminate(false);
2788 >        if (this != commonPool)
2789 >            tryTerminate(false, true);
2790      }
2791  
2792      /**
2793 <     * Attempts to cancel and/or stop all tasks, and reject all
2794 <     * subsequently submitted tasks.  Tasks that are in the process of
2795 <     * being submitted or executed concurrently during the course of
2796 <     * this method may or may not be rejected. This method cancels
2797 <     * both existing and unexecuted tasks, in order to permit
2798 <     * termination in the presence of task dependencies. So the method
2799 <     * always returns an empty list (unlike the case for some other
2800 <     * Executors).
2793 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2794 >     * all subsequently submitted tasks.  Invocation has no effect on
2795 >     * execution state if this is the {@link #commonPool}, and no
2796 >     * additional effect if already shut down. Otherwise, tasks that
2797 >     * are in the process of being submitted or executed concurrently
2798 >     * during the course of this method may or may not be
2799 >     * rejected. This method cancels both existing and unexecuted
2800 >     * tasks, in order to permit termination in the presence of task
2801 >     * dependencies. So the method always returns an empty list
2802 >     * (unlike the case for some other Executors).
2803       *
2804       * @return an empty list
2805       * @throws SecurityException if a security manager exists and
# Line 1878 | Line 2809 | public class ForkJoinPool extends Abstra
2809       */
2810      public List<Runnable> shutdownNow() {
2811          checkPermission();
2812 <        shutdown = true;
2813 <        tryTerminate(true);
2812 >        if (this != commonPool)
2813 >            tryTerminate(true, true);
2814          return Collections.emptyList();
2815      }
2816  
# Line 1914 | Line 2845 | public class ForkJoinPool extends Abstra
2845      }
2846  
2847      /**
1917     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1918     */
1919    final boolean isAtLeastTerminating() {
1920        return (ctl & STOP_BIT) != 0L;
1921    }
1922
1923    /**
2848       * Returns {@code true} if this pool has been shut down.
2849       *
2850       * @return {@code true} if this pool has been shut down
2851       */
2852      public boolean isShutdown() {
2853 <        return shutdown;
2853 >        return runState < 0;
2854      }
2855  
2856      /**
# Line 1943 | Line 2867 | public class ForkJoinPool extends Abstra
2867      public boolean awaitTermination(long timeout, TimeUnit unit)
2868          throws InterruptedException {
2869          long nanos = unit.toNanos(timeout);
2870 <        final ReentrantLock lock = this.submissionLock;
2871 <        lock.lock();
2872 <        try {
2873 <            for (;;) {
2874 <                if (isTerminated())
2875 <                    return true;
2876 <                if (nanos <= 0)
2877 <                    return false;
2878 <                nanos = termination.awaitNanos(nanos);
2870 >        if (isTerminated())
2871 >            return true;
2872 >        long startTime = System.nanoTime();
2873 >        boolean terminated = false;
2874 >        synchronized(this) {
2875 >            for (long waitTime = nanos, millis = 0L;;) {
2876 >                if (terminated = isTerminated() ||
2877 >                    waitTime <= 0L ||
2878 >                    (millis = unit.toMillis(waitTime)) <= 0L)
2879 >                    break;
2880 >                wait(millis);
2881 >                waitTime = nanos - (System.nanoTime() - startTime);
2882              }
1956        } finally {
1957            lock.unlock();
2883          }
2884 +        return terminated;
2885      }
2886  
2887      /**
# Line 1966 | Line 2892 | public class ForkJoinPool extends Abstra
2892       * {@code isReleasable} must return {@code true} if blocking is
2893       * not necessary. Method {@code block} blocks the current thread
2894       * if necessary (perhaps internally invoking {@code isReleasable}
2895 <     * before actually blocking). The unusual methods in this API
2896 <     * accommodate synchronizers that may, but don't usually, block
2897 <     * for long periods. Similarly, they allow more efficient internal
2898 <     * handling of cases in which additional workers may be, but
2899 <     * usually are not, needed to ensure sufficient parallelism.
2900 <     * Toward this end, implementations of method {@code isReleasable}
2901 <     * must be amenable to repeated invocation.
2895 >     * before actually blocking). These actions are performed by any
2896 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2897 >     * unusual methods in this API accommodate synchronizers that may,
2898 >     * but don't usually, block for long periods. Similarly, they
2899 >     * allow more efficient internal handling of cases in which
2900 >     * additional workers may be, but usually are not, needed to
2901 >     * ensure sufficient parallelism.  Toward this end,
2902 >     * implementations of method {@code isReleasable} must be amenable
2903 >     * to repeated invocation.
2904       *
2905       * <p>For example, here is a ManagedBlocker based on a
2906       * ReentrantLock:
# Line 2052 | Line 2980 | public class ForkJoinPool extends Abstra
2980      public static void managedBlock(ManagedBlocker blocker)
2981          throws InterruptedException {
2982          Thread t = Thread.currentThread();
2983 <        if (t instanceof ForkJoinWorkerThread) {
2984 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2985 <            w.pool.awaitBlocker(blocker);
2986 <        }
2987 <        else {
2988 <            do {} while (!blocker.isReleasable() && !blocker.block());
2983 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2984 >                          ((ForkJoinWorkerThread)t).pool : null);
2985 >        while (!blocker.isReleasable()) {
2986 >            if (p == null || p.tryCompensate(null, blocker)) {
2987 >                try {
2988 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2989 >                } finally {
2990 >                    if (p != null)
2991 >                        p.incrementActiveCount();
2992 >                }
2993 >                break;
2994 >            }
2995          }
2996      }
2997  
# Line 2066 | Line 3000 | public class ForkJoinPool extends Abstra
3000      // implement RunnableFuture.
3001  
3002      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3003 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3003 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3004      }
3005  
3006      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3007 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3007 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3008      }
3009  
3010      // Unsafe mechanics
3011 <    private static final sun.misc.Unsafe UNSAFE;
3012 <    private static final long ctlOffset;
3013 <    private static final long stealCountOffset;
3014 <    private static final long blockedCountOffset;
2081 <    private static final long quiescerCountOffset;
2082 <    private static final long scanGuardOffset;
2083 <    private static final long nextWorkerNumberOffset;
2084 <    private static final long ABASE;
3011 >    private static final sun.misc.Unsafe U;
3012 >    private static final long CTL;
3013 >    private static final long PARKBLOCKER;
3014 >    private static final int ABASE;
3015      private static final int ASHIFT;
3016 +    private static final long NEXTWORKERNUMBER;
3017 +    private static final long STEALCOUNT;
3018 +    private static final long MAINLOCK;
3019  
3020      static {
3021          poolNumberGenerator = new AtomicInteger();
3022 <        workerSeedGenerator = new Random();
3022 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
3023          modifyThreadPermission = new RuntimePermission("modifyThread");
3024          defaultForkJoinWorkerThreadFactory =
3025              new DefaultForkJoinWorkerThreadFactory();
3026 +        submitters = new ThreadSubmitter();
3027          int s;
3028          try {
3029 <            UNSAFE = getUnsafe();
3030 <            Class k = ForkJoinPool.class;
3031 <            ctlOffset = UNSAFE.objectFieldOffset
3029 >            U = getUnsafe();
3030 >            Class<?> k = ForkJoinPool.class;
3031 >            Class<?> ak = ForkJoinTask[].class;
3032 >            CTL = U.objectFieldOffset
3033                  (k.getDeclaredField("ctl"));
3034 <            stealCountOffset = UNSAFE.objectFieldOffset
2100 <                (k.getDeclaredField("stealCount"));
2101 <            blockedCountOffset = UNSAFE.objectFieldOffset
2102 <                (k.getDeclaredField("blockedCount"));
2103 <            quiescerCountOffset = UNSAFE.objectFieldOffset
2104 <                (k.getDeclaredField("quiescerCount"));
2105 <            scanGuardOffset = UNSAFE.objectFieldOffset
2106 <                (k.getDeclaredField("scanGuard"));
2107 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
3034 >            NEXTWORKERNUMBER = U.objectFieldOffset
3035                  (k.getDeclaredField("nextWorkerNumber"));
3036 <            Class a = ForkJoinTask[].class;
3037 <            ABASE = UNSAFE.arrayBaseOffset(a);
3038 <            s = UNSAFE.arrayIndexScale(a);
3036 >            STEALCOUNT = U.objectFieldOffset
3037 >                (k.getDeclaredField("stealCount"));
3038 >            MAINLOCK = U.objectFieldOffset
3039 >                (k.getDeclaredField("mainLock"));
3040 >            Class<?> tk = Thread.class;
3041 >            PARKBLOCKER = U.objectFieldOffset
3042 >                (tk.getDeclaredField("parkBlocker"));
3043 >            ABASE = U.arrayBaseOffset(ak);
3044 >            s = U.arrayIndexScale(ak);
3045 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3046          } catch (Exception e) {
3047              throw new Error(e);
3048          }
3049          if ((s & (s-1)) != 0)
3050              throw new Error("data type scale not a power of two");
3051 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3051 >        try { // Establish common pool
3052 >            String pp = System.getProperty(propPrefix + "parallelism");
3053 >            String fp = System.getProperty(propPrefix + "threadFactory");
3054 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3055 >            ForkJoinWorkerThreadFactory fac = (fp == null) ?
3056 >                defaultForkJoinWorkerThreadFactory :
3057 >                ((ForkJoinWorkerThreadFactory)ClassLoader.
3058 >                 getSystemClassLoader().loadClass(fp).newInstance());
3059 >            Thread.UncaughtExceptionHandler ueh = (up == null)? null :
3060 >                ((Thread.UncaughtExceptionHandler)ClassLoader.
3061 >                 getSystemClassLoader().loadClass(up).newInstance());
3062 >            int par;
3063 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3064 >                par = Runtime.getRuntime().availableProcessors();
3065 >            if (par > MAX_CAP)
3066 >                par = MAX_CAP;
3067 >            commonPoolParallelism = par;
3068 >            int n = par - 1; // precompute submit mask
3069 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3070 >            n |= n >>> 8; n |= n >>> 16;
3071 >            int mask = ((n + 1) << 1) - 1;
3072 >            commonPool = new ForkJoinPool(par, mask, fac, ueh);
3073 >        } catch (Exception e) {
3074 >            throw new Error(e);
3075 >        }
3076      }
3077  
3078      /**
# Line 2144 | Line 3102 | public class ForkJoinPool extends Abstra
3102              }
3103          }
3104      }
3105 +
3106   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines