ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.55 by dl, Sun Apr 18 13:59:57 2010 UTC vs.
Revision 1.92 by dl, Tue Feb 22 10:50:51 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15 + import java.util.concurrent.AbstractExecutorService;
16 + import java.util.concurrent.Callable;
17 + import java.util.concurrent.ExecutorService;
18 + import java.util.concurrent.Future;
19 + import java.util.concurrent.RejectedExecutionException;
20 + import java.util.concurrent.RunnableFuture;
21 + import java.util.concurrent.TimeUnit;
22 + import java.util.concurrent.TimeoutException;
23 + import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.CountDownLatch;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32   * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 37 | import java.util.concurrent.CountDownLat
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are stalled waiting to join others. However, no such adjustments
51 < * are performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 65 | Line 58 | import java.util.concurrent.CountDownLat
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 116 | import java.util.concurrent.CountDownLat
116   * {@code IllegalArgumentException}.
117   *
118   * <p>This implementation rejects submitted tasks (that is, by throwing
119 < * {@link RejectedExecutionException}) only when the pool is shut down.
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 103 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
110 <     * lastly to new submissions. These mechanics do not consider
111 <     * affinities, loads, cache localities, etc, so rarely provide the
112 <     * best possible performance on a given machine, but portably
113 <     * provide good throughput by averaging over these factors.
114 <     * (Further, even if we did try to use such information, we do not
115 <     * usually have a basis for exploiting it. For example, some sets
116 <     * of tasks profit from cache affinities, but others are harmed by
117 <     * cache pollution effects.)
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138       *
139       * The main throughput advantages of work-stealing stem from
140 <     * decentralized control -- workers mostly steal tasks from each
141 <     * other. We do not want to negate this by creating bottlenecks
142 <     * implementing the management responsibilities of this class. So
143 <     * we use a collection of techniques that avoid, reduce, or cope
144 <     * well with contention. These entail several instances of
145 <     * bit-packing into CASable fields to maintain only the minimally
146 <     * required atomicity. To enable such packing, we restrict maximum
147 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
148 <     * bit field), which is far in excess of normal operating range.
149 <     * Even though updates to some of these bookkeeping fields do
150 <     * sometimes contend with each other, they don't normally
151 <     * cache-contend with updates to others enough to warrant memory
152 <     * padding or isolation. So they are all held as fields of
153 <     * ForkJoinPool objects.  The main capabilities are as follows:
154 <     *
155 <     * 1. Creating and removing workers. Workers are recorded in the
156 <     * "workers" array. This is an array as opposed to some other data
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164       * structure to support index-based random steals by workers.
165       * Updates to the array recording new workers and unrecording
166 <     * terminated ones are protected from each other by a lock
167 <     * (workerLock) but the array is otherwise concurrently readable,
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168       * and accessed directly by workers. To simplify index-based
169       * operations, the array size is always a power of two, and all
170 <     * readers must tolerate null slots. Currently, all but the first
171 <     * worker thread creation is on-demand, triggered by task
172 <     * submissions, replacement of terminated workers, and/or
173 <     * compensation for blocked workers. However, all other support
174 <     * code is set up to work with other policies.
175 <     *
176 <     * 2. Bookkeeping for dynamically adding and removing workers. We
177 <     * maintain a given level of parallelism (or, if
178 <     * maintainsParallelism is false, at least avoid starvation). When
179 <     * some workers are known to be blocked (on joins or via
180 <     * ManagedBlocker), we may create or resume others to take their
181 <     * place until they unblock (see below). Implementing this
182 <     * requires counts of the number of "running" threads (i.e., those
183 <     * that are neither blocked nor artifically suspended) as well as
184 <     * the total number.  These two values are packed into one field,
185 <     * "workerCounts" because we need accurate snapshots when deciding
186 <     * to create, resume or suspend.  To support these decisions,
187 <     * updates must be prospective (not retrospective).  For example,
188 <     * the running count is decremented before blocking by a thread
189 <     * about to block, but incremented by the thread about to unblock
190 <     * it. (In a few cases, these prospective updates may need to be
191 <     * rolled back, for example when deciding to create a new worker
192 <     * but the thread factory fails or returns null. In these cases,
193 <     * we are no worse off wrt other decisions than we would be
194 <     * otherwise.)  Updates to the workerCounts field sometimes
195 <     * transiently encounter a fair amount of contention when join
196 <     * dependencies are such that many threads block or unblock at
197 <     * about the same time. We alleviate this by sometimes bundling
198 <     * updates (for example blocking one thread on join and resuming a
199 <     * spare cancel each other out), and in most other cases
200 <     * performing an alternative action (like releasing waiters and
201 <     * finding spares; see below) as a more productive form of
202 <     * backoff.
203 <     *
204 <     * 3. Maintaining global run state. The run state of the pool
205 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
206 <     * those in other Executor implementations, as well as a count of
207 <     * "active" workers -- those that are, or soon will be, or
208 <     * recently were executing tasks. The runLevel and active count
209 <     * are packed together in order to correctly trigger shutdown and
210 <     * termination. Without care, active counts can be subject to very
211 <     * high contention.  We substantially reduce this contention by
212 <     * relaxing update rules.  A worker must claim active status
213 <     * prospectively, by activating if it sees that a submitted or
214 <     * stealable task exists (it may find after activating that the
215 <     * task no longer exists). It stays active while processing this
216 <     * task (if it exists) and any other local subtasks it produces,
217 <     * until it cannot find any other tasks. It then tries
218 <     * inactivating (see method preStep), but upon update contention
219 <     * instead scans for more tasks, later retrying inactivation if it
220 <     * doesn't find any.
221 <     *
222 <     * 4. Managing idle workers waiting for tasks. We cannot let
223 <     * workers spin indefinitely scanning for tasks when none are
224 <     * available. On the other hand, we must quickly prod them into
225 <     * action when new tasks are submitted or generated.  We
226 <     * park/unpark these idle workers using an event-count scheme.
227 <     * Field eventCount is incremented upon events that may enable
228 <     * workers that previously could not find a task to now find one:
229 <     * Submission of a new task to the pool, or another worker pushing
230 <     * a task onto a previously empty queue.  (We also use this
231 <     * mechanism for termination and reconfiguration actions that
232 <     * require wakeups of idle workers).  Each worker maintains its
233 <     * last known event count, and blocks when a scan for work did not
234 <     * find a task AND its lastEventCount matches the current
235 <     * eventCount. Waiting idle workers are recorded in a variant of
236 <     * Treiber stack headed by field eventWaiters which, when nonzero,
237 <     * encodes the thread index and count awaited for by the worker
238 <     * thread most recently calling eventSync. This thread in turn has
239 <     * a record (field nextEventWaiter) for the next waiting worker.
240 <     * In addition to allowing simpler decisions about need for
241 <     * wakeup, the event count bits in eventWaiters serve the role of
242 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
243 <     * in task diffusion, workers not otherwise occupied may invoke
244 <     * method releaseWaiters, that removes and signals (unparks)
245 <     * workers not waiting on current count. To minimize task
246 <     * production stalls associate with signalling, any worker pushing
247 <     * a task on an empty queue invokes the weaker method signalWork,
248 <     * that only releases idle workers until it detects interference
249 <     * by other threads trying to release, and lets them take
250 <     * over. The net effect is a tree-like diffusion of signals, where
251 <     * released threads and possibly others) help with unparks.  To
252 <     * further reduce contention effects a bit, failed CASes to
253 <     * increment field eventCount are tolerated without retries.
254 <     * Conceptually they are merged into the same event, which is OK
255 <     * when their only purpose is to enable workers to scan for work.
256 <     *
257 <     * 5. Managing suspension of extra workers. When a worker is about
258 <     * to block waiting for a join (or via ManagedBlockers), we may
259 <     * create a new thread to maintain parallelism level, or at least
260 <     * avoid starvation (see below). Usually, extra threads are needed
261 <     * for only very short periods, yet join dependencies are such
262 <     * that we sometimes need them in bursts. Rather than create new
263 <     * threads each time this happens, we suspend no-longer-needed
264 <     * extra ones as "spares". For most purposes, we don't distinguish
265 <     * "extra" spare threads from normal "core" threads: On each call
266 <     * to preStep (the only point at which we can do this) a worker
267 <     * checks to see if there are now too many running workers, and if
268 <     * so, suspends itself.  Methods preJoin and doBlock look for
269 <     * suspended threads to resume before considering creating a new
270 <     * replacement. We don't need a special data structure to maintain
271 <     * spares; simply scanning the workers array looking for
272 <     * worker.isSuspended() is fine because the calling thread is
273 <     * otherwise not doing anything useful anyway; we are at least as
274 <     * happy if after locating a spare, the caller doesn't actually
275 <     * block because the join is ready before we try to adjust and
276 <     * compensate.  Note that this is intrinsically racy.  One thread
277 <     * may become a spare at about the same time as another is
278 <     * needlessly being created. We counteract this and related slop
279 <     * in part by requiring resumed spares to immediately recheck (in
280 <     * preStep) to see whether they they should re-suspend. The only
281 <     * effective difference between "extra" and "core" threads is that
282 <     * we allow the "extra" ones to time out and die if they are not
283 <     * resumed within a keep-alive interval of a few seconds. This is
284 <     * implemented mainly within ForkJoinWorkerThread, but requires
285 <     * some coordination (isTrimmed() -- meaning killed while
286 <     * suspended) to correctly maintain pool counts.
287 <     *
288 <     * 6. Deciding when to create new workers. The main dynamic
289 <     * control in this class is deciding when to create extra threads,
290 <     * in methods preJoin and doBlock. We always need to create one
291 <     * when the number of running threads becomes zero. But because
292 <     * blocked joins are typically dependent, we don't necessarily
293 <     * need or want one-to-one replacement. Using a one-to-one
294 <     * compensation rule often leads to enough useless overhead
268 <     * creating, suspending, resuming, and/or killing threads to
269 <     * signficantly degrade throughput.  We use a rule reflecting the
270 <     * idea that, the more spare threads you already have, the more
271 <     * evidence you need to create another one; where "evidence" is
272 <     * expressed as the current deficit -- target minus running
273 <     * threads. To reduce flickering and drift around target values,
274 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 <     * (where dc is deficit, sc is number of spare threads and pc is
276 <     * target parallelism.)  This effectively reduces churn at the
277 <     * price of systematically undershooting target parallelism when
278 <     * many threads are blocked.  However, biasing toward undeshooting
279 <     * partially compensates for the above mechanics to suspend extra
280 <     * threads, that normally lead to overshoot because we can only
281 <     * suspend workers in-between top-level actions. It also better
282 <     * copes with the fact that some of the methods in this class tend
283 <     * to never become compiled (but are interpreted), so some
284 <     * components of the entire set of controls might execute many
285 <     * times faster than others. And similarly for cases where the
286 <     * apparent lack of work is just due to GC stalls and other
287 <     * transient system activity.
288 <     *
289 <     * 7. Maintaining other configuration parameters and monitoring
290 <     * statistics. Updates to fields controlling parallelism level,
291 <     * max size, etc can only meaningfully take effect for individual
292 <     * threads upon their next top-level actions; i.e., between
293 <     * stealing/running tasks/submission, which are separated by calls
294 <     * to preStep.  Memory ordering for these (assumed infrequent)
295 <     * reconfiguration calls is ensured by using reads and writes to
296 <     * volatile field workerCounts (that must be read in preStep anyway)
297 <     * as "fences" -- user-level reads are preceded by reads of
298 <     * workCounts, and writes are followed by no-op CAS to
299 <     * workerCounts. The values reported by other management and
300 <     * monitoring methods are either computed on demand, or are kept
301 <     * in fields that are only updated when threads are otherwise
302 <     * idle.
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250 >     * combine two tactics:
251 >     *
252 >     *   Helping: Arranging for the joiner to execute some task that it
253 >     *      would be running if the steal had not occurred.  Method
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 >     *      links to try to find such a task.
256 >     *
257 >     *   Compensating: Unless there are already enough live threads,
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261 >     *
262 >     * The ManagedBlocker extension API can't use helping so relies
263 >     * only on compensation in method awaitBlocker.
264 >     *
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295       *
296 <     * Beware that there is a lot of representation-level coupling
296 >     * Style notes: There is a lot of representation-level coupling
297       * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 <     * ForkJoinTask.  For example, direct access to "workers" array by
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301       * workers, and direct access to ForkJoinTask.status by both
302       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303       * trying to reduce this, since any associated future changes in
304       * representations will need to be accompanied by algorithmic
305 <     * changes anyway.
306 <     *
307 <     * Style notes: There are lots of inline assignments (of form
308 <     * "while ((local = field) != 0)") which are usually the simplest
309 <     * way to ensure read orderings. Also several occurrences of the
310 <     * unusual "do {} while(!cas...)" which is the simplest way to
311 <     * force an update of a CAS'ed variable. There are also a few
312 <     * other coding oddities that help some methods perform reasonably
313 <     * even when interpreted (not compiled).
314 <     *
315 <     * The order of declarations in this file is: (1) statics (2)
316 <     * fields (along with constants used when unpacking some of them)
317 <     * (3) internal control methods (4) callbacks and other support
318 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
319 <     * methods (plus a few little helpers).
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
333      /**
# Line 345 | Line 350 | public class ForkJoinPool extends Abstra
350       * Default ForkJoinWorkerThreadFactory implementation; creates a
351       * new ForkJoinWorkerThread.
352       */
353 <    static class  DefaultForkJoinWorkerThreadFactory
353 >    static class DefaultForkJoinWorkerThreadFactory
354          implements ForkJoinWorkerThreadFactory {
355          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
356              return new ForkJoinWorkerThread(pool);
# Line 357 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
361 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
368 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 380 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
387 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387 >
388 >    /**
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394 >     */
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * Absolute bound for parallelism level. Twice this number must
399 <     * fit into a 16bit field to enable word-packing for some counts.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private static final int MAX_THREADS = 0x7fff;
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Array holding all worker threads in the pool.  Array size must
411 <     * be a power of two.  Updates and replacements are protected by
412 <     * workerLock, but the array is always kept in a consistent enough
396 <     * state to be randomly accessed without locking by workers
397 <     * performing work-stealing, as well as other traversal-based
398 <     * methods in this class. All readers must tolerate that some
399 <     * array slots may be null.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    volatile ForkJoinWorkerThread[] workers;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415  
416      /**
417 <     * Queue for external submissions.
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421       */
422 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * Lock protecting updates to workers array.
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private final ReentrantLock workerLock;
427 >    private ForkJoinTask<?>[] submissionQueue;
428  
429      /**
430 <     * Latch released upon termination.
430 >     * Lock protecting submissions array for addSubmission
431       */
432 <    private final CountDownLatch terminationLatch;
432 >    private final ReentrantLock submissionLock;
433 >
434 >    /**
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437 >     */
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 421 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 +     * The uncaught exception handler used when any worker abruptly
447 +     * terminates.
448 +     */
449 +    final Thread.UncaughtExceptionHandler ueh;
450 +
451 +    /**
452 +     * Prefix for assigning names to worker threads
453 +     */
454 +    private final String workerNamePrefix;
455 +
456 +    /**
457       * Sum of per-thread steal counts, updated only when threads are
458       * idle or terminating.
459       */
460      private volatile long stealCount;
461  
462      /**
463 <     * Encoded record of top of treiber stack of threads waiting for
464 <     * events. The top 32 bits contain the count being waited for. The
465 <     * bottom word contains one plus the pool index of waiting worker
466 <     * thread.
467 <     */
468 <    private volatile long eventWaiters;
469 <
470 <    private static final int  EVENT_COUNT_SHIFT = 32;
471 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
472 <
473 <    /**
474 <     * A counter for events that may wake up worker threads:
475 <     *   - Submission of a new task to the pool
476 <     *   - A worker pushing a task on an empty queue
477 <     *   - termination and reconfiguration
478 <     */
479 <    private volatile int eventCount;
480 <
481 <    /**
482 <     * Lifecycle control. The low word contains the number of workers
483 <     * that are (probably) executing tasks. This value is atomically
484 <     * incremented before a worker gets a task to run, and decremented
485 <     * when worker has no tasks and cannot find any.  Bits 16-18
486 <     * contain runLevel value. When all are zero, the pool is
487 <     * running. Level transitions are monotonic (running -> shutdown
488 <     * -> terminating -> terminated) so each transition adds a bit.
489 <     * These are bundled together to ensure consistent read for
490 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
491 <     * and active threads is zero).
492 <     */
493 <    private volatile int runState;
494 <
495 <    // Note: The order among run level values matters.
496 <    private static final int RUNLEVEL_SHIFT     = 16;
497 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
498 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
499 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
500 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
501 <    private static final int ONE_ACTIVE         = 1; // active update delta
502 <
503 <    /**
504 <     * Holds number of total (i.e., created and not yet terminated)
505 <     * and running (i.e., not blocked on joins or other managed sync)
506 <     * threads, packed together to ensure consistent snapshot when
507 <     * making decisions about creating and suspending spare
508 <     * threads. Updated only by CAS. Note that adding a new worker
509 <     * requires incrementing both counts, since workers start off in
510 <     * running state.  This field is also used for memory-fencing
511 <     * configuration parameters.
512 <     */
513 <    private volatile int workerCounts;
514 <
515 <    private static final int TOTAL_COUNT_SHIFT  = 16;
516 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
517 <    private static final int ONE_RUNNING        = 1;
518 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
486 <
487 <    /*
488 <     * Fields parallelism. maxPoolSize, locallyFifo,
489 <     * maintainsParallelism, and ueh are non-volatile, but external
490 <     * reads/writes use workerCount fences to ensure visability.
491 <     */
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.  Note: AC_SHIFT is
482 >     * redundantly declared in ForkJoinWorkerThread in order to
483 >     * integrate a surplus-threads check.
484 >     */
485 >    volatile long ctl;
486 >
487 >    // bit positions/shifts for fields
488 >    private static final int  AC_SHIFT   = 48;
489 >    private static final int  TC_SHIFT   = 32;
490 >    private static final int  ST_SHIFT   = 31;
491 >    private static final int  EC_SHIFT   = 16;
492 >
493 >    // bounds
494 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
495 >    private static final int  SMASK      = 0xffff;  // mask short bits
496 >    private static final int  SHORT_SIGN = 1 << 15;
497 >    private static final int  INT_SIGN   = 1 << 31;
498 >
499 >    // masks
500 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
501 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
502 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
503 >
504 >    // units for incrementing and decrementing
505 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
506 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
507 >
508 >    // masks and units for dealing with u = (int)(ctl >>> 32)
509 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
510 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
511 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
512 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
513 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
514 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
515 >
516 >    // masks and units for dealing with e = (int)ctl
517 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
518 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
519  
520      /**
521       * The target parallelism level.
522       */
523 <    private int parallelism;
523 >    final int parallelism;
524  
525      /**
526 <     * The maximum allowed pool size.
526 >     * Index (mod submission queue length) of next element to take
527 >     * from submission queue.
528       */
529 <    private int maxPoolSize;
529 >    volatile int queueBase;
530  
531      /**
532 <     * True if use local fifo, not default lifo, for local polling
533 <     * Replicated by ForkJoinWorkerThreads
532 >     * Index (mod submission queue length) of next element to add
533 >     * in submission queue.
534       */
535 <    private boolean locallyFifo;
535 >    int queueTop;
536  
537      /**
538 <     * Controls whether to add spares to maintain parallelism
538 >     * True when shutdown() has been called.
539       */
540 <    private boolean maintainsParallelism;
540 >    volatile boolean shutdown;
541  
542      /**
543 <     * The uncaught exception handler used when any worker
544 <     * abruptly terminates
543 >     * True if use local fifo, not default lifo, for local polling
544 >     * Read by, and replicated by ForkJoinWorkerThreads
545       */
546 <    private Thread.UncaughtExceptionHandler ueh;
546 >    final boolean locallyFifo;
547  
548      /**
549 <     * Pool number, just for assigning useful names to worker threads
549 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 >     * When non-zero, suppresses automatic shutdown when active
551 >     * counts become zero.
552       */
553 <    private final int poolNumber;
524 <
525 <    // utilities for updating fields
553 >    volatile int quiescerCount;
554  
555      /**
556 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 <     *
530 <     * @param delta the number to add
556 >     * The number of threads blocked in join.
557       */
558 <    final void updateRunningCount(int delta) {
533 <        int wc;
534 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 <                                               wc = workerCounts,
536 <                                               wc + delta));
537 <    }
558 >    volatile int blockedCount;
559  
560      /**
561 <     * Write fence for user modifications of pool parameters
541 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
561 >     * Counter for worker Thread names (unrelated to their poolIndex)
562       */
563 <    private void workerCountWriteFence() {
544 <        int wc;
545 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                 wc = workerCounts, wc);
547 <    }
563 >    private volatile int nextWorkerNumber;
564  
565      /**
566 <     * Read fence for external reads of pool parameters
551 <     * (parallelism. maxPoolSize, etc).
566 >     * The index for the next created worker. Accessed under scanGuard.
567       */
568 <    private void workerCountReadFence() {
554 <        int ignore = workerCounts;
555 <    }
568 >    private int nextWorkerIndex;
569  
570      /**
571 <     * Tries incrementing active count; fails on contention.
572 <     * Called by workers before executing tasks.
573 <     *
574 <     * @return true on success
571 >     * SeqLock and index masking for for updates to workers array.
572 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 >     * SG_UNIT. Staleness of read-only operations can be checked by
574 >     * comparing scanGuard to value before the reads. The low 16 bits
575 >     * (i.e, anding with SMASK) hold (the smallest power of two
576 >     * covering all worker indices, minus one, and is used to avoid
577 >     * dealing with large numbers of null slots when the workers array
578 >     * is overallocated.
579       */
580 <    final boolean tryIncrementActiveCount() {
581 <        int c;
582 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 <                                        c = runState, c + ONE_ACTIVE);
567 <    }
580 >    volatile int scanGuard;
581 >
582 >    private static final int SG_UNIT = 1 << 16;
583  
584      /**
585 <     * Tries decrementing active count; fails on contention.
586 <     * Called when workers cannot find tasks to run.
585 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
586 >     * task when the pool is quiescent to instead try to shrink the
587 >     * number of workers.  The exact value does not matter too
588 >     * much. It must be short enough to release resources during
589 >     * sustained periods of idleness, but not so short that threads
590 >     * are continually re-created.
591       */
592 <    final boolean tryDecrementActiveCount() {
593 <        int c;
575 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 <                                        c = runState, c - ONE_ACTIVE);
577 <    }
592 >    private static final long SHRINK_RATE =
593 >        4L * 1000L * 1000L * 1000L; // 4 seconds
594  
595      /**
596 <     * Advances to at least the given level. Returns true if not
597 <     * already in at least the given level.
596 >     * Top-level loop for worker threads: On each step: if the
597 >     * previous step swept through all queues and found no tasks, or
598 >     * there are excess threads, then possibly blocks. Otherwise,
599 >     * scans for and, if found, executes a task. Returns when pool
600 >     * and/or worker terminate.
601 >     *
602 >     * @param w the worker
603       */
604 <    private boolean advanceRunLevel(int level) {
605 <        for (;;) {
606 <            int s = runState;
607 <            if ((s & level) != 0)
608 <                return false;
609 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
610 <                return true;
604 >    final void work(ForkJoinWorkerThread w) {
605 >        boolean swept = false;                // true on empty scans
606 >        long c;
607 >        while (!w.terminate && (int)(c = ctl) >= 0) {
608 >            int a;                            // active count
609 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 >                swept = scan(w, a);
611 >            else if (tryAwaitWork(w, c))
612 >                swept = false;
613          }
614      }
615  
616 <    // workers array maintenance
616 >    // Signalling
617  
618      /**
619 <     * Records and returns a workers array index for new worker.
619 >     * Wakes up or creates a worker.
620       */
621 <    private int recordWorker(ForkJoinWorkerThread w) {
622 <        // Try using slot totalCount-1. If not available, scan and/or resize
623 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
624 <        final ReentrantLock lock = this.workerLock;
625 <        lock.lock();
626 <        try {
627 <            ForkJoinWorkerThread[] ws = workers;
628 <            int len = ws.length;
629 <            if (k < 0 || k >= len || ws[k] != null) {
630 <                for (k = 0; k < len && ws[k] != null; ++k)
631 <                    ;
632 <                if (k == len)
633 <                    ws = Arrays.copyOf(ws, len << 1);
621 >    final void signalWork() {
622 >        /*
623 >         * The while condition is true if: (there is are too few total
624 >         * workers OR there is at least one waiter) AND (there are too
625 >         * few active workers OR the pool is terminating).  The value
626 >         * of e distinguishes the remaining cases: zero (no waiters)
627 >         * for create, negative if terminating (in which case do
628 >         * nothing), else release a waiter. The secondary checks for
629 >         * release (non-null array etc) can fail if the pool begins
630 >         * terminating after the test, and don't impose any added cost
631 >         * because JVMs must perform null and bounds checks anyway.
632 >         */
633 >        long c; int e, u;
634 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636 >            if (e > 0) {                         // release a waiting worker
637 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 >                if ((ws = workers) == null ||
639 >                    (i = ~e & SMASK) >= ws.length ||
640 >                    (w = ws[i]) == null)
641 >                    break;
642 >                long nc = (((long)(w.nextWait & E_MASK)) |
643 >                           ((long)(u + UAC_UNIT) << 32));
644 >                if (w.eventCount == e &&
645 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
647 >                    if (w.parked)
648 >                        UNSAFE.unpark(w);
649 >                    break;
650 >                }
651 >            }
652 >            else if (UNSAFE.compareAndSwapLong
653 >                     (this, ctlOffset, c,
654 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 >                addWorker();
657 >                break;
658              }
612            ws[k] = w;
613            workers = ws; // volatile array write ensures slot visibility
614        } finally {
615            lock.unlock();
659          }
617        return k;
660      }
661  
662      /**
663 <     * Nulls out record of worker in workers array
663 >     * Variant of signalWork to help release waiters on rescans.
664 >     * Tries once to release a waiter if active count < 0.
665 >     *
666 >     * @return false if failed due to contention, else true
667       */
668 <    private void forgetWorker(ForkJoinWorkerThread w) {
669 <        int idx = w.poolIndex;
670 <        // Locking helps method recordWorker avoid unecessary expansion
671 <        final ReentrantLock lock = this.workerLock;
672 <        lock.lock();
673 <        try {
674 <            ForkJoinWorkerThread[] ws = workers;
675 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
676 <                ws[idx] = null;
677 <        } finally {
678 <            lock.unlock();
668 >    private boolean tryReleaseWaiter() {
669 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670 >        if ((e = (int)(c = ctl)) > 0 &&
671 >            (int)(c >> AC_SHIFT) < 0 &&
672 >            (ws = workers) != null &&
673 >            (i = ~e & SMASK) < ws.length &&
674 >            (w = ws[i]) != null) {
675 >            long nc = ((long)(w.nextWait & E_MASK) |
676 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 >            if (w.eventCount != e ||
678 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 >                return false;
680 >            w.eventCount = (e + EC_UNIT) & E_MASK;
681 >            if (w.parked)
682 >                UNSAFE.unpark(w);
683          }
684 +        return true;
685      }
686  
687 <    // adding and removing workers
687 >    // Scanning for tasks
688  
689      /**
690 <     * Tries to create and add new worker. Assumes that worker counts
691 <     * are already updated to accommodate the worker, so adjusts on
692 <     * failure.
690 >     * Scans for and, if found, executes one task. Scans start at a
691 >     * random index of workers array, and randomly select the first
692 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693 >     * circular sweeps, which is necessary to check quiescence. and
694 >     * taking a submission only if no stealable tasks were found.  The
695 >     * steal code inside the loop is a specialized form of
696 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697 >     * helpJoinTask and signal propagation. The code for submission
698 >     * queues is almost identical. On each steal, the worker completes
699 >     * not only the task, but also all local tasks that this task may
700 >     * have generated. On detecting staleness or contention when
701 >     * trying to take a task, this method returns without finishing
702 >     * sweep, which allows global state rechecks before retry.
703       *
704 <     * @return new worker or null if creation failed
704 >     * @param w the worker
705 >     * @param a the number of active workers
706 >     * @return true if swept all queues without finding a task
707       */
708 <    private ForkJoinWorkerThread addWorker() {
709 <        ForkJoinWorkerThread w = null;
710 <        try {
711 <            w = factory.newThread(this);
712 <        } finally { // Adjust on either null or exceptional factory return
713 <            if (w == null) {
714 <                onWorkerCreationFailure();
715 <                return null;
708 >    private boolean scan(ForkJoinWorkerThread w, int a) {
709 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
710 >        int m = parallelism == 1 - a? 0 : g & SMASK;
711 >        ForkJoinWorkerThread[] ws = workers;
712 >        if (ws == null || ws.length <= m)         // staleness check
713 >            return false;
714 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716 >            ForkJoinWorkerThread v = ws[k & m];
717 >            if (v != null && (b = v.queueBase) != v.queueTop &&
718 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719 >                long u = (i << ASHIFT) + ABASE;
720 >                if ((t = q[i]) != null && v.queueBase == b &&
721 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 >                    int d = (v.queueBase = b + 1) - v.queueTop;
723 >                    v.stealHint = w.poolIndex;
724 >                    if (d != 0)
725 >                        signalWork();             // propagate if nonempty
726 >                    w.execTask(t);
727 >                }
728 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729 >                return false;                     // store next seed
730 >            }
731 >            else if (j < 0) {                     // xorshift
732 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733 >            }
734 >            else
735 >                ++k;
736 >        }
737 >        if (scanGuard != g)                       // staleness check
738 >            return false;
739 >        else {                                    // try to take submission
740 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 >            if ((b = queueBase) != queueTop &&
742 >                (q = submissionQueue) != null &&
743 >                (i = (q.length - 1) & b) >= 0) {
744 >                long u = (i << ASHIFT) + ABASE;
745 >                if ((t = q[i]) != null && queueBase == b &&
746 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 >                    queueBase = b + 1;
748 >                    w.execTask(t);
749 >                }
750 >                return false;
751              }
752 +            return true;                         // all queues empty
753          }
656        w.start(recordWorker(w), locallyFifo, ueh);
657        return w;
754      }
755  
756      /**
757 <     * Adjusts counts upon failure to create worker
757 >     * Tries to enqueue worker in wait queue and await change in
758 >     * worker's eventCount.  Before blocking, rescans queues to avoid
759 >     * missed signals.  If the pool is quiescent, possibly terminates
760 >     * worker upon exit.
761 >     *
762 >     * @param w the calling worker
763 >     * @param c the ctl value on entry
764 >     * @return true if waited or another thread was released upon enq
765       */
766 <    private void onWorkerCreationFailure() {
767 <        int c;
768 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
769 <                                               c = workerCounts,
770 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
771 <        tryTerminate(false); // in case of failure during shutdown
772 <    }
766 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767 >        int v = w.eventCount;
768 >        w.nextWait = (int)c;                       // w's successor record
769 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771 >            long d = ctl; // return true if lost to a deq, to force rescan
772 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773 >        }
774 >        if (parallelism + (int)(c >> AC_SHIFT) == 1 &&
775 >            blockedCount == 0 && quiescerCount == 0)
776 >            idleAwaitWork(w, v);               // quiescent -- maybe shrink
777  
778 <    /**
779 <     * Create enough total workers to establish target parallelism,
780 <     * giving up if terminating or addWorker fails
781 <     */
782 <    private void ensureEnoughTotalWorkers() {
783 <        int wc;
784 <        while (runState < TERMINATING &&
785 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
786 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
787 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
788 <                 addWorker() == null))
789 <                break;
778 >        boolean rescanned = false;
779 >        for (int sc;;) {
780 >            if (w.eventCount != v)
781 >                return true;
782 >            if ((sc = w.stealCount) != 0) {
783 >                long s = stealCount;               // accumulate stealCount
784 >                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
785 >                    w.stealCount = 0;
786 >            }
787 >            else if (!rescanned) {
788 >                int g = scanGuard, m = g & SMASK;
789 >                ForkJoinWorkerThread[] ws = workers;
790 >                if (ws != null && m < ws.length) {
791 >                    rescanned = true;
792 >                    for (int i = 0; i <= m; ++i) {
793 >                        ForkJoinWorkerThread u = ws[i];
794 >                        if (u != null) {
795 >                            if (u.queueBase != u.queueTop &&
796 >                                !tryReleaseWaiter())
797 >                                rescanned = false; // contended
798 >                            if (w.eventCount != v)
799 >                                return true;
800 >                        }
801 >                    }
802 >                }
803 >                if (scanGuard != g ||              // stale
804 >                    (queueBase != queueTop && !tryReleaseWaiter()))
805 >                    rescanned = false;
806 >                if (!rescanned)
807 >                    Thread.yield();                // reduce contention
808 >                else
809 >                    Thread.interrupted();          // clear before park
810 >            }
811 >            else {
812 >                w.parked = true;                   // must recheck
813 >                if (w.eventCount != v) {
814 >                    w.parked = false;
815 >                    return true;
816 >                }
817 >                LockSupport.park(this);
818 >                rescanned = w.parked = false;
819 >            }
820          }
821      }
822  
823      /**
824 <     * Final callback from terminating worker.  Removes record of
825 <     * worker from array, and adjusts counts. If pool is shutting
826 <     * down, tries to complete terminatation, else possibly replaces
827 <     * the worker.
828 <     *
829 <     * @param w the worker
830 <     */
831 <    final void workerTerminated(ForkJoinWorkerThread w) {
832 <        if (w.active) { // force inactive
833 <            w.active = false;
834 <            do {} while (!tryDecrementActiveCount());
824 >     * If pool is quiescent, checks for termination, and waits for
825 >     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
826 >     * has not changed, terminates the worker. Upon its termination
827 >     * (see deregisterWorker), it may wake up another worker to
828 >     * possibly repeat this process.
829 >     *
830 >     * @param w the calling worker
831 >     * @param v the eventCount w must wait until changed
832 >     */
833 >    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
834 >        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
835 >        if (shutdown)
836 >            tryTerminate(false);
837 >        long c = ctl;
838 >        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
839 >                   (long)(w.nextWait & E_MASK)); // ctl value to release w
840 >        if (w.eventCount == v &&
841 >            parallelism + (int)(c >> AC_SHIFT) == 0 &&
842 >            blockedCount == 0 && quiescerCount == 0) {
843 >            long startTime = System.nanoTime();
844 >            Thread.interrupted();
845 >            if (w.eventCount == v) {
846 >                w.parked = true;
847 >                if (w.eventCount == v)
848 >                    LockSupport.parkNanos(this, SHRINK_RATE);
849 >                w.parked = false;
850 >                if (w.eventCount == v && ctl == c &&
851 >                    System.nanoTime() - startTime >= SHRINK_RATE &&
852 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
853 >                    w.terminate = true;
854 >                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
855 >                }
856 >            }
857          }
699        forgetWorker(w);
700
701        // decrement total count, and if was running, running count
702        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703        int wc;
704        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705                                               wc = workerCounts, wc - unit));
706
707        accumulateStealCount(w); // collect final count
708        if (!tryTerminate(false))
709            ensureEnoughTotalWorkers();
858      }
859  
860 <    // Waiting for and signalling events
860 >    // Submissions
861  
862      /**
863 <     * Ensures eventCount on exit is different (mod 2^32) than on
864 <     * entry.  CAS failures are OK -- any change in count suffices.
863 >     * Enqueues the given task in the submissionQueue.  Same idea as
864 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
865 >     *
866 >     * @param t the task
867       */
868 <    private void advanceEventCount() {
869 <        int c;
870 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
868 >    private void addSubmission(ForkJoinTask<?> t) {
869 >        final ReentrantLock lock = this.submissionLock;
870 >        lock.lock();
871 >        try {
872 >            ForkJoinTask<?>[] q; int s, m;
873 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
874 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
875 >                UNSAFE.putOrderedObject(q, u, t);
876 >                queueTop = s + 1;
877 >                if (s - queueBase == m)
878 >                    growSubmissionQueue();
879 >            }
880 >        } finally {
881 >            lock.unlock();
882 >        }
883 >        signalWork();
884      }
885  
886 +    //  (pollSubmission is defined below with exported methods)
887 +
888      /**
889 <     * Releases workers blocked on a count not equal to current count.
889 >     * Creates or doubles submissionQueue array.
890 >     * Basically identical to ForkJoinWorkerThread version
891       */
892 <    final void releaseWaiters() {
893 <        long top;
894 <        int id;
895 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
896 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
897 <            ForkJoinWorkerThread[] ws = workers;
898 <            ForkJoinWorkerThread w;
899 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
900 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
901 <                                          top, w.nextWaiter))
902 <                LockSupport.unpark(w);
892 >    private void growSubmissionQueue() {
893 >        ForkJoinTask<?>[] oldQ = submissionQueue;
894 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
895 >        if (size > MAXIMUM_QUEUE_CAPACITY)
896 >            throw new RejectedExecutionException("Queue capacity exceeded");
897 >        if (size < INITIAL_QUEUE_CAPACITY)
898 >            size = INITIAL_QUEUE_CAPACITY;
899 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
900 >        int mask = size - 1;
901 >        int top = queueTop;
902 >        int oldMask;
903 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
904 >            for (int b = queueBase; b != top; ++b) {
905 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
906 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
907 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
908 >                    UNSAFE.putObjectVolatile
909 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
910 >            }
911          }
912      }
913  
914 +    // Blocking support
915 +
916      /**
917 <     * Advances eventCount and releases waiters until interference by
918 <     * other releasing threads is detected.
917 >     * Tries to increment blockedCount, decrement active count
918 >     * (sometimes implicitly) and possibly release or create a
919 >     * compensating worker in preparation for blocking. Fails
920 >     * on contention or termination.
921 >     *
922 >     * @return true if the caller can block, else should recheck and retry
923       */
924 <    final void signalWork() {
925 <        int ec;
926 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
927 <        outer:for (;;) {
928 <            long top = eventWaiters;
749 <            ec = eventCount;
750 <            for (;;) {
924 >    private boolean tryPreBlock() {
925 >        int b = blockedCount;
926 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
927 >            int pc = parallelism;
928 >            do {
929                  ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
930 <                int id = (int)(top & WAITER_INDEX_MASK);
931 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
932 <                    return;
933 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
934 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
935 <                                               top, top = w.nextWaiter))
936 <                    continue outer;      // possibly stale; reread
937 <                LockSupport.unpark(w);
938 <                if (top != eventWaiters) // let someone else take over
939 <                    return;
940 <            }
930 >                int e, ac, tc, rc, i;
931 >                long c = ctl;
932 >                int u = (int)(c >>> 32);
933 >                if ((e = (int)c) < 0) {
934 >                                                 // skip -- terminating
935 >                }
936 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
937 >                         (ws = workers) != null &&
938 >                         (i = ~e & SMASK) < ws.length &&
939 >                         (w = ws[i]) != null) {
940 >                    long nc = ((long)(w.nextWait & E_MASK) |
941 >                               (c & (AC_MASK|TC_MASK)));
942 >                    if (w.eventCount == e &&
943 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
944 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
945 >                        if (w.parked)
946 >                            UNSAFE.unpark(w);
947 >                        return true;             // release an idle worker
948 >                    }
949 >                }
950 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
951 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
952 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
953 >                        return true;             // no compensation needed
954 >                }
955 >                else if (tc + pc < MAX_ID) {
956 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
957 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
958 >                        addWorker();
959 >                        return true;            // create a replacement
960 >                    }
961 >                }
962 >                // try to back out on any failure and let caller retry
963 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
964 >                                               b = blockedCount, b - 1));
965          }
966 +        return false;
967      }
968  
969      /**
970 <     * If worker is inactive, blocks until terminating or event count
971 <     * advances from last value held by worker; in any case helps
972 <     * release others.
973 <     *
974 <     * @param w the calling worker thread
975 <     */
976 <    private void eventSync(ForkJoinWorkerThread w) {
977 <        if (!w.active) {
978 <            int prev = w.lastEventCount;
776 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 <                            ((long)(w.poolIndex + 1)));
778 <            long top;
779 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 <                   eventCount == prev) {
783 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 <                                              w.nextWaiter = top, nextTop)) {
785 <                    accumulateStealCount(w); // transfer steals while idle
786 <                    Thread.interrupted();    // clear/ignore interrupt
787 <                    while (eventCount == prev)
788 <                        w.doPark();
789 <                    break;
790 <                }
791 <            }
792 <            w.lastEventCount = eventCount;
793 <        }
794 <        releaseWaiters();
970 >     * Decrements blockedCount and increments active count
971 >     */
972 >    private void postBlock() {
973 >        long c;
974 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
975 >                                                c = ctl, c + AC_UNIT));
976 >        int b;
977 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
978 >                                              b = blockedCount, b - 1));
979      }
980  
981      /**
982 <     * Callback from workers invoked upon each top-level action (i.e.,
983 <     * stealing a task or taking a submission and running
800 <     * it). Performs one or both of the following:
801 <     *
802 <     * * If the worker cannot find work, updates its active status to
803 <     * inactive and updates activeCount unless there is contention, in
804 <     * which case it may try again (either in this or a subsequent
805 <     * call).  Additionally, awaits the next task event and/or helps
806 <     * wake up other releasable waiters.
807 <     *
808 <     * * If there are too many running threads, suspends this worker
809 <     * (first forcing inactivation if necessary).  If it is not
810 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 <     * -- killed while suspended within suspendAsSpare. Otherwise,
812 <     * upon resume it rechecks to make sure that it is still needed.
982 >     * Possibly blocks waiting for the given task to complete, or
983 >     * cancels the task if terminating.  Fails to wait if contended.
984       *
985 <     * @param w the worker
815 <     * @param worked false if the worker scanned for work but didn't
816 <     * find any (in which case it may block waiting for work).
985 >     * @param joinMe the task
986       */
987 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
988 <        boolean active = w.active;
989 <        boolean inactivate = !worked & active;
990 <        for (;;) {
991 <            if (inactivate) {
992 <                int c = runState;
993 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
994 <                                             c, c - ONE_ACTIVE))
995 <                    inactivate = active = w.active = false;
996 <            }
828 <            int wc = workerCounts;
829 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830 <                if (!worked)
831 <                    eventSync(w);
832 <                return;
833 <            }
834 <            if (!(inactivate |= active) &&  // must inactivate to suspend
835 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836 <                                         wc, wc - ONE_RUNNING) &&
837 <                !w.suspendAsSpare())        // false if trimmed
838 <                return;
987 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
988 >        int s;
989 >        Thread.interrupted(); // clear interrupts before checking termination
990 >        if (joinMe.status >= 0) {
991 >            if (tryPreBlock()) {
992 >                joinMe.tryAwaitDone(0L);
993 >                postBlock();
994 >            }
995 >            if ((ctl & STOP_BIT) != 0L)
996 >                joinMe.cancelIgnoringExceptions();
997          }
998      }
999  
1000      /**
1001 <     * Adjusts counts and creates or resumes compensating threads for
1002 <     * a worker about to block on task joinMe, returning early if
1003 <     * joinMe becomes ready. First tries resuming an existing spare
1004 <     * (which usually also avoids any count adjustment), but must then
1005 <     * decrement running count to determine whether a new thread is
1006 <     * needed. See above for fuller explanation.
1007 <     */
1008 <    final void preJoin(ForkJoinTask<?> joinMe) {
1009 <        boolean dec = false;       // true when running count decremented
1010 <        for (;;) {
1011 <            releaseWaiters();      // help other threads progress
1012 <
855 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
861 <                    break;
862 <                }
1001 >     * Possibly blocks the given worker waiting for joinMe to
1002 >     * complete or timeout
1003 >     *
1004 >     * @param joinMe the task
1005 >     * @param millis the wait time for underlying Object.wait
1006 >     */
1007 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1008 >        while (joinMe.status >= 0) {
1009 >            Thread.interrupted();
1010 >            if ((ctl & STOP_BIT) != 0L) {
1011 >                joinMe.cancelIgnoringExceptions();
1012 >                break;
1013              }
1014 <            if (joinMe.status < 0)
1015 <                return;
1016 <
1017 <            if (spare != null && spare.tryUnsuspend()) {
1018 <                if (dec || joinMe.requestSignal() < 0) {
1019 <                    int c;
1020 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
1021 <                                                           workerCountsOffset,
1022 <                                                           c = workerCounts,
1023 <                                                           c + ONE_RUNNING));
1024 <                } // else no net count change
1025 <                LockSupport.unpark(spare);
1026 <                return;
1027 <            }
1028 <
1029 <            int wc = workerCounts; // decrement running count
880 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 <                                                wc, wc -= ONE_RUNNING)) &&
883 <                joinMe.requestSignal() < 0) { // cannot block
884 <                int c;                        // back out
885 <                do {} while (!UNSAFE.compareAndSwapInt(this,
886 <                                                       workerCountsOffset,
887 <                                                       c = workerCounts,
888 <                                                       c + ONE_RUNNING));
889 <                return;
890 <            }
891 <
892 <            if (dec) {
893 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 <                int pc = parallelism;
895 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 <                                 !maintainsParallelism)) ||
898 <                    tc >= maxPoolSize) // cannot add
899 <                    return;
900 <                if (spare == null &&
901 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 <                    addWorker();
904 <                    return;
1014 >            if (tryPreBlock()) {
1015 >                long last = System.nanoTime();
1016 >                while (joinMe.status >= 0) {
1017 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1018 >                    if (millis <= 0)
1019 >                        break;
1020 >                    joinMe.tryAwaitDone(millis);
1021 >                    if (joinMe.status < 0)
1022 >                        break;
1023 >                    if ((ctl & STOP_BIT) != 0L) {
1024 >                        joinMe.cancelIgnoringExceptions();
1025 >                        break;
1026 >                    }
1027 >                    long now = System.nanoTime();
1028 >                    nanos -= now - last;
1029 >                    last = now;
1030                  }
1031 +                postBlock();
1032 +                break;
1033              }
1034          }
1035      }
1036  
1037      /**
1038 <     * Same idea as preJoin but with too many differing details to
912 <     * integrate: There are no task-based signal counts, and only one
913 <     * way to do the actual blocking. So for simplicity it is directly
914 <     * incorporated into this method.
1038 >     * If necessary, compensates for blocker, and blocks
1039       */
1040 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1040 >    private void awaitBlocker(ManagedBlocker blocker)
1041          throws InterruptedException {
1042 <        maintainPar &= maintainsParallelism; // override
1043 <        boolean dec = false;
1044 <        boolean done = false;
1045 <        for (;;) {
1046 <            releaseWaiters();
1047 <            if (done = blocker.isReleasable())
924 <                break;
925 <            ForkJoinWorkerThread spare = null;
926 <            for (ForkJoinWorkerThread w : workers) {
927 <                if (w != null && w.isSuspended()) {
928 <                    spare = w;
929 <                    break;
930 <                }
931 <            }
932 <            if (done = blocker.isReleasable())
933 <                break;
934 <            if (spare != null && spare.tryUnsuspend()) {
935 <                if (dec) {
936 <                    int c;
937 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 <                                                           workerCountsOffset,
939 <                                                           c = workerCounts,
940 <                                                           c + ONE_RUNNING));
1042 >        while (!blocker.isReleasable()) {
1043 >            if (tryPreBlock()) {
1044 >                try {
1045 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1046 >                } finally {
1047 >                    postBlock();
1048                  }
942                LockSupport.unpark(spare);
1049                  break;
1050              }
945            int wc = workerCounts;
946            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948                                               wc, wc -= ONE_RUNNING);
949            if (dec) {
950                int tc = wc >>> TOTAL_COUNT_SHIFT;
951                int pc = parallelism;
952                int dc = pc - (wc & RUNNING_COUNT_MASK);
953                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954                                 !maintainPar)) ||
955                    tc >= maxPoolSize)
956                    break;
957                if (spare == null &&
958                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960                    addWorker();
961                    break;
962                }
963            }
1051          }
1052 +    }
1053 +
1054 +    // Creating, registering and deregistring workers
1055  
1056 +    /**
1057 +     * Tries to create and start a worker; minimally rolls back counts
1058 +     * on failure.
1059 +     */
1060 +    private void addWorker() {
1061 +        Throwable ex = null;
1062 +        ForkJoinWorkerThread t = null;
1063          try {
1064 <            if (!done)
1065 <                do {} while (!blocker.isReleasable() && !blocker.block());
1066 <        } finally {
1067 <            if (dec) {
1068 <                int c;
1069 <                do {} while (!UNSAFE.compareAndSwapInt(this,
1070 <                                                       workerCountsOffset,
1071 <                                                       c = workerCounts,
1072 <                                                       c + ONE_RUNNING));
1073 <            }
1064 >            t = factory.newThread(this);
1065 >        } catch (Throwable e) {
1066 >            ex = e;
1067 >        }
1068 >        if (t == null) {  // null or exceptional factory return
1069 >            long c;       // adjust counts
1070 >            do {} while (!UNSAFE.compareAndSwapLong
1071 >                         (this, ctlOffset, c = ctl,
1072 >                          (((c - AC_UNIT) & AC_MASK) |
1073 >                           ((c - TC_UNIT) & TC_MASK) |
1074 >                           (c & ~(AC_MASK|TC_MASK)))));
1075 >            // Propagate exception if originating from an external caller
1076 >            if (!tryTerminate(false) && ex != null &&
1077 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1078 >                UNSAFE.throwException(ex);
1079          }
1080 +        else
1081 +            t.start();
1082      }
1083  
1084      /**
1085 <     * Unless there are not enough other running threads, adjusts
1086 <     * counts for a a worker in performing helpJoin that cannot find
983 <     * any work, so that this worker can now block.
984 <     *
985 <     * @return true if worker may block
1085 >     * Callback from ForkJoinWorkerThread constructor to assign a
1086 >     * public name
1087       */
1088 <    final boolean preBlockHelpingJoin(ForkJoinTask<?> joinMe) {
1089 <        while (joinMe.status >= 0) {
1090 <            releaseWaiters(); // help other threads progress
1088 >    final String nextWorkerName() {
1089 >        for (int n;;) {
1090 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1091 >                                         n = nextWorkerNumber, ++n))
1092 >                return workerNamePrefix + n;
1093 >        }
1094 >    }
1095  
1096 <            // if a spare exists, resume it to maintain parallelism level
1097 <            if ((workerCounts & RUNNING_COUNT_MASK) <= parallelism) {
1098 <                ForkJoinWorkerThread spare = null;
1099 <                for (ForkJoinWorkerThread w : workers) {
1100 <                    if (w != null && w.isSuspended()) {
1101 <                        spare = w;
1102 <                        break;
1096 >    /**
1097 >     * Callback from ForkJoinWorkerThread constructor to
1098 >     * determine its poolIndex and record in workers array.
1099 >     *
1100 >     * @param w the worker
1101 >     * @return the worker's pool index
1102 >     */
1103 >    final int registerWorker(ForkJoinWorkerThread w) {
1104 >        /*
1105 >         * In the typical case, a new worker acquires the lock, uses
1106 >         * next available index and returns quickly.  Since we should
1107 >         * not block callers (ultimately from signalWork or
1108 >         * tryPreBlock) waiting for the lock needed to do this, we
1109 >         * instead help release other workers while waiting for the
1110 >         * lock.
1111 >         */
1112 >        for (int g;;) {
1113 >            ForkJoinWorkerThread[] ws;
1114 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1115 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1116 >                                         g, g | SG_UNIT)) {
1117 >                int k = nextWorkerIndex;
1118 >                try {
1119 >                    if ((ws = workers) != null) { // ignore on shutdown
1120 >                        int n = ws.length;
1121 >                        if (k < 0 || k >= n || ws[k] != null) {
1122 >                            for (k = 0; k < n && ws[k] != null; ++k)
1123 >                                ;
1124 >                            if (k == n)
1125 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1126 >                        }
1127 >                        ws[k] = w;
1128 >                        nextWorkerIndex = k + 1;
1129 >                        int m = g & SMASK;
1130 >                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1131                      }
1132 +                } finally {
1133 +                    scanGuard = g;
1134                  }
1135 <                if (joinMe.status < 0)
1136 <                    break;
1137 <                if (spare != null) {
1138 <                    if (spare.tryUnsuspend()) {
1139 <                        boolean canBlock = true;
1140 <                        if (joinMe.requestSignal() < 0) {
1141 <                            canBlock = false; // already done
1007 <                            int c;
1008 <                            do {} while (!UNSAFE.compareAndSwapInt
1009 <                                         (this, workerCountsOffset,
1010 <                                          c = workerCounts, c + ONE_RUNNING));
1011 <                        }
1012 <                        LockSupport.unpark(spare);
1013 <                        return canBlock;
1135 >                return k;
1136 >            }
1137 >            else if ((ws = workers) != null) { // help release others
1138 >                for (ForkJoinWorkerThread u : ws) {
1139 >                    if (u != null && u.queueBase != u.queueTop) {
1140 >                        if (tryReleaseWaiter())
1141 >                            break;
1142                      }
1015                    continue; // recheck -- another spare may exist
1143                  }
1144              }
1145 +        }
1146 +    }
1147  
1148 <            int wc = workerCounts; // reread to shorten CAS window
1149 <            int rc = wc & RUNNING_COUNT_MASK;
1150 <            if (rc <= 2) // keep this and at most one other thread alive
1151 <                break;
1152 <
1153 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1154 <                                         wc, wc - ONE_RUNNING)) {
1155 <                if (joinMe.requestSignal() >= 0)
1156 <                    return true;
1157 <                int c;                        // back out
1158 <                do {} while (!UNSAFE.compareAndSwapInt
1159 <                             (this, workerCountsOffset,
1160 <                              c = workerCounts, c + ONE_RUNNING));
1161 <                break;
1162 <            }
1148 >    /**
1149 >     * Final callback from terminating worker.  Removes record of
1150 >     * worker from array, and adjusts counts. If pool is shutting
1151 >     * down, tries to complete termination.
1152 >     *
1153 >     * @param w the worker
1154 >     */
1155 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1156 >        int idx = w.poolIndex;
1157 >        int sc = w.stealCount;
1158 >        int steps = 0;
1159 >        // Remove from array, adjust worker counts and collect steal count.
1160 >        // We can intermix failed removes or adjusts with steal updates
1161 >        do {
1162 >            long s, c;
1163 >            int g;
1164 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1165 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1166 >                                         g, g |= SG_UNIT)) {
1167 >                ForkJoinWorkerThread[] ws = workers;
1168 >                if (ws != null && idx >= 0 &&
1169 >                    idx < ws.length && ws[idx] == w)
1170 >                    ws[idx] = null;    // verify
1171 >                nextWorkerIndex = idx;
1172 >                scanGuard = g + SG_UNIT;
1173 >                steps = 1;
1174 >            }
1175 >            if (steps == 1 &&
1176 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1177 >                                          (((c - AC_UNIT) & AC_MASK) |
1178 >                                           ((c - TC_UNIT) & TC_MASK) |
1179 >                                           (c & ~(AC_MASK|TC_MASK)))))
1180 >                steps = 2;
1181 >            if (sc != 0 &&
1182 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1183 >                                          s = stealCount, s + sc))
1184 >                sc = 0;
1185 >        } while (steps != 2 || sc != 0);
1186 >        if (!tryTerminate(false)) {
1187 >            if (ex != null)   // possibly replace if died abnormally
1188 >                signalWork();
1189 >            else
1190 >                tryReleaseWaiter();
1191          }
1035        return false;
1192      }
1193  
1194 +    // Shutdown and termination
1195 +
1196      /**
1197       * Possibly initiates and/or completes termination.
1198       *
# Line 1043 | Line 1201 | public class ForkJoinPool extends Abstra
1201       * @return true if now terminating or terminated
1202       */
1203      private boolean tryTerminate(boolean now) {
1204 <        if (now)
1205 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1206 <        else if (runState < SHUTDOWN ||
1207 <                 !submissionQueue.isEmpty() ||
1208 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1209 <            return false;
1210 <
1211 <        if (advanceRunLevel(TERMINATING))
1212 <            startTerminating();
1213 <
1214 <        // Finish now if all threads terminated; else in some subsequent call
1215 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1216 <            advanceRunLevel(TERMINATED);
1217 <            terminationLatch.countDown();
1204 >        long c;
1205 >        while (((c = ctl) & STOP_BIT) == 0) {
1206 >            if (!now) {
1207 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1208 >                    return false;
1209 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1210 >                    queueTop - queueBase > 0) {
1211 >                    if (ctl == c) // staleness check
1212 >                        return false;
1213 >                    continue;
1214 >                }
1215 >            }
1216 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1217 >                startTerminating();
1218 >        }
1219 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1220 >            submissionLock.lock();
1221 >            termination.signalAll();
1222 >            submissionLock.unlock();
1223          }
1224          return true;
1225      }
1226  
1227      /**
1228 <     * Actions on transition to TERMINATING
1228 >     * Runs up to three passes through workers: (0) Setting
1229 >     * termination status for each worker, followed by wakeups up
1230 >     * queued workers (1) helping cancel tasks (2) interrupting
1231 >     * lagging threads (likely in external tasks, but possibly also
1232 >     * blocked in joins).  Each pass repeats previous steps because of
1233 >     * potential lagging thread creation.
1234       */
1235      private void startTerminating() {
1236 <        // Clear out and cancel submissions, ignoring exceptions
1237 <        ForkJoinTask<?> task;
1238 <        while ((task = submissionQueue.poll()) != null) {
1239 <            try {
1240 <                task.cancel(false);
1241 <            } catch (Throwable ignore) {
1242 <            }
1243 <        }
1244 <        // Propagate run level
1245 <        for (ForkJoinWorkerThread w : workers) {
1246 <            if (w != null)
1247 <                w.shutdown();    // also resumes suspended workers
1248 <        }
1249 <        // Ensure no straggling local tasks
1250 <        for (ForkJoinWorkerThread w : workers) {
1251 <            if (w != null)
1252 <                w.cancelTasks();
1253 <        }
1254 <        // Wake up idle workers
1255 <        advanceEventCount();
1256 <        releaseWaiters();
1257 <        // Unstick pending joins
1258 <        for (ForkJoinWorkerThread w : workers) {
1259 <            if (w != null && !w.isTerminated()) {
1236 >        cancelSubmissions();
1237 >        for (int pass = 0; pass < 3; ++pass) {
1238 >            ForkJoinWorkerThread[] ws = workers;
1239 >            if (ws != null) {
1240 >                for (ForkJoinWorkerThread w : ws) {
1241 >                    if (w != null) {
1242 >                        w.terminate = true;
1243 >                        if (pass > 0) {
1244 >                            w.cancelTasks();
1245 >                            if (pass > 1 && !w.isInterrupted()) {
1246 >                                try {
1247 >                                    w.interrupt();
1248 >                                } catch (SecurityException ignore) {
1249 >                                }
1250 >                            }
1251 >                        }
1252 >                    }
1253 >                }
1254 >                terminateWaiters();
1255 >            }
1256 >        }
1257 >    }
1258 >
1259 >    /**
1260 >     * Polls and cancels all submissions. Called only during termination.
1261 >     */
1262 >    private void cancelSubmissions() {
1263 >        while (queueBase != queueTop) {
1264 >            ForkJoinTask<?> task = pollSubmission();
1265 >            if (task != null) {
1266                  try {
1267 <                    w.interrupt();
1268 <                } catch (SecurityException ignore) {
1267 >                    task.cancel(false);
1268 >                } catch (Throwable ignore) {
1269                  }
1270              }
1271          }
1272      }
1273  
1274 <    // misc support for ForkJoinWorkerThread
1274 >    /**
1275 >     * Tries to set the termination status of waiting workers, and
1276 >     * then wake them up (after which they will terminate).
1277 >     */
1278 >    private void terminateWaiters() {
1279 >        ForkJoinWorkerThread[] ws = workers;
1280 >        if (ws != null) {
1281 >            ForkJoinWorkerThread w; long c; int i, e;
1282 >            int n = ws.length;
1283 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1284 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1285 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1286 >                                              (long)(w.nextWait & E_MASK) |
1287 >                                              ((c + AC_UNIT) & AC_MASK) |
1288 >                                              (c & (TC_MASK|STOP_BIT)))) {
1289 >                    w.terminate = true;
1290 >                    w.eventCount = e + EC_UNIT;
1291 >                    if (w.parked)
1292 >                        UNSAFE.unpark(w);
1293 >                }
1294 >            }
1295 >        }
1296 >    }
1297 >
1298 >    // misc ForkJoinWorkerThread support
1299  
1300      /**
1301 <     * Returns pool number
1301 >     * Increment or decrement quiescerCount. Needed only to prevent
1302 >     * triggering shutdown if a worker is transiently inactive while
1303 >     * checking quiescence.
1304 >     *
1305 >     * @param delta 1 for increment, -1 for decrement
1306       */
1307 <    final int getPoolNumber() {
1308 <        return poolNumber;
1307 >    final void addQuiescerCount(int delta) {
1308 >        int c;
1309 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1310 >                                              c = quiescerCount, c + delta));
1311      }
1312  
1313      /**
1314 <     * Accumulates steal count from a worker, clearing
1315 <     * the worker's value
1314 >     * Directly increment or decrement active count without
1315 >     * queuing. This method is used to transiently assert inactivation
1316 >     * while checking quiescence.
1317 >     *
1318 >     * @param delta 1 for increment, -1 for decrement
1319       */
1320 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1321 <        int sc = w.stealCount;
1322 <        if (sc != 0) {
1323 <            long c;
1324 <            w.stealCount = 0;
1325 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1119 <                                                    c = stealCount, c + sc));
1120 <        }
1320 >    final void addActiveCount(int delta) {
1321 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1322 >        long c;
1323 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1324 >                                                ((c + d) & AC_MASK) |
1325 >                                                (c & ~AC_MASK)));
1326      }
1327  
1328      /**
# Line 1125 | Line 1330 | public class ForkJoinPool extends Abstra
1330       * active thread.
1331       */
1332      final int idlePerActive() {
1333 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1334 <        int pc = parallelism; // use targeted parallelism, not rc
1335 <        // Use exact results for small values, saturate past 4
1336 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1333 >        // Approximate at powers of two for small values, saturate past 4
1334 >        int p = parallelism;
1335 >        int a = p + (int)(ctl >> AC_SHIFT);
1336 >        return (a > (p >>>= 1) ? 0 :
1337 >                a > (p >>>= 1) ? 1 :
1338 >                a > (p >>>= 1) ? 2 :
1339 >                a > (p >>>= 1) ? 4 :
1340 >                8);
1341      }
1342  
1343 <    // Public and protected methods
1343 >    // Exported methods
1344  
1345      // Constructors
1346  
1347      /**
1348       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1349 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1350 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1349 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1350 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1351 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1352       *
1353       * @throws SecurityException if a security manager exists and
1354       *         the caller is not permitted to modify threads
# Line 1147 | Line 1357 | public class ForkJoinPool extends Abstra
1357       */
1358      public ForkJoinPool() {
1359          this(Runtime.getRuntime().availableProcessors(),
1360 <             defaultForkJoinWorkerThreadFactory);
1360 >             defaultForkJoinWorkerThreadFactory, null, false);
1361      }
1362  
1363      /**
1364       * Creates a {@code ForkJoinPool} with the indicated parallelism
1365 <     * level and using the {@linkplain
1366 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1365 >     * level, the {@linkplain
1366 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1367 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1368       *
1369       * @param parallelism the parallelism level
1370       * @throws IllegalArgumentException if parallelism less than or
# Line 1164 | Line 1375 | public class ForkJoinPool extends Abstra
1375       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1376       */
1377      public ForkJoinPool(int parallelism) {
1378 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1378 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1379      }
1380  
1381      /**
1382 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1172 <     * java.lang.Runtime#availableProcessors}, and using the given
1173 <     * thread factory.
1382 >     * Creates a {@code ForkJoinPool} with the given parameters.
1383       *
1384 <     * @param factory the factory for creating new threads
1385 <     * @throws NullPointerException if the factory is null
1386 <     * @throws SecurityException if a security manager exists and
1387 <     *         the caller is not permitted to modify threads
1388 <     *         because it does not hold {@link
1389 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1390 <     */
1391 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1392 <        this(Runtime.getRuntime().availableProcessors(), factory);
1393 <    }
1394 <
1395 <    /**
1396 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1188 <     * thread factory.
1189 <     *
1190 <     * @param parallelism the parallelism level
1191 <     * @param factory the factory for creating new threads
1384 >     * @param parallelism the parallelism level. For default value,
1385 >     * use {@link java.lang.Runtime#availableProcessors}.
1386 >     * @param factory the factory for creating new threads. For default value,
1387 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1388 >     * @param handler the handler for internal worker threads that
1389 >     * terminate due to unrecoverable errors encountered while executing
1390 >     * tasks. For default value, use {@code null}.
1391 >     * @param asyncMode if true,
1392 >     * establishes local first-in-first-out scheduling mode for forked
1393 >     * tasks that are never joined. This mode may be more appropriate
1394 >     * than default locally stack-based mode in applications in which
1395 >     * worker threads only process event-style asynchronous tasks.
1396 >     * For default value, use {@code false}.
1397       * @throws IllegalArgumentException if parallelism less than or
1398       *         equal to zero, or greater than implementation limit
1399       * @throws NullPointerException if the factory is null
# Line 1197 | Line 1402 | public class ForkJoinPool extends Abstra
1402       *         because it does not hold {@link
1403       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1404       */
1405 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1405 >    public ForkJoinPool(int parallelism,
1406 >                        ForkJoinWorkerThreadFactory factory,
1407 >                        Thread.UncaughtExceptionHandler handler,
1408 >                        boolean asyncMode) {
1409          checkPermission();
1410          if (factory == null)
1411              throw new NullPointerException();
1412 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1412 >        if (parallelism <= 0 || parallelism > MAX_ID)
1413              throw new IllegalArgumentException();
1206        this.poolNumber = poolNumberGenerator.incrementAndGet();
1207        int arraySize = initialArraySizeFor(parallelism);
1414          this.parallelism = parallelism;
1415          this.factory = factory;
1416 <        this.maxPoolSize = MAX_THREADS;
1417 <        this.maintainsParallelism = true;
1418 <        this.workers = new ForkJoinWorkerThread[arraySize];
1419 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1420 <        this.workerLock = new ReentrantLock();
1421 <        this.terminationLatch = new CountDownLatch(1);
1422 <        // Start first worker; remaining workers added upon first submission
1423 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
1424 <        addWorker();
1425 <    }
1426 <
1427 <    /**
1428 <     * Returns initial power of two size for workers array.
1429 <     * @param pc the initial parallelism level
1430 <     */
1431 <    private static int initialArraySizeFor(int pc) {
1432 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1433 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1434 <        size |= size >>> 1;
1229 <        size |= size >>> 2;
1230 <        size |= size >>> 4;
1231 <        size |= size >>> 8;
1232 <        return size + 1;
1416 >        this.ueh = handler;
1417 >        this.locallyFifo = asyncMode;
1418 >        long np = (long)(-parallelism); // offset ctl counts
1419 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1420 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1421 >        // initialize workers array with room for 2*parallelism if possible
1422 >        int n = parallelism << 1;
1423 >        if (n >= MAX_ID)
1424 >            n = MAX_ID;
1425 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1426 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1427 >        }
1428 >        workers = new ForkJoinWorkerThread[n + 1];
1429 >        this.submissionLock = new ReentrantLock();
1430 >        this.termination = submissionLock.newCondition();
1431 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1432 >        sb.append(poolNumberGenerator.incrementAndGet());
1433 >        sb.append("-worker-");
1434 >        this.workerNamePrefix = sb.toString();
1435      }
1436  
1437      // Execution methods
1438  
1439      /**
1238     * Common code for execute, invoke and submit
1239     */
1240    private <T> void doSubmit(ForkJoinTask<T> task) {
1241        if (task == null)
1242            throw new NullPointerException();
1243        if (runState >= SHUTDOWN)
1244            throw new RejectedExecutionException();
1245        submissionQueue.offer(task);
1246        advanceEventCount();
1247        releaseWaiters();
1248        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1249            ensureEnoughTotalWorkers();
1250    }
1251
1252    /**
1440       * Performs the given task, returning its result upon completion.
1441 +     * If the computation encounters an unchecked Exception or Error,
1442 +     * it is rethrown as the outcome of this invocation.  Rethrown
1443 +     * exceptions behave in the same way as regular exceptions, but,
1444 +     * when possible, contain stack traces (as displayed for example
1445 +     * using {@code ex.printStackTrace()}) of both the current thread
1446 +     * as well as the thread actually encountering the exception;
1447 +     * minimally only the latter.
1448       *
1449       * @param task the task
1450       * @return the task's result
# Line 1259 | Line 1453 | public class ForkJoinPool extends Abstra
1453       *         scheduled for execution
1454       */
1455      public <T> T invoke(ForkJoinTask<T> task) {
1456 <        doSubmit(task);
1457 <        return task.join();
1456 >        Thread t = Thread.currentThread();
1457 >        if (task == null)
1458 >            throw new NullPointerException();
1459 >        if (shutdown)
1460 >            throw new RejectedExecutionException();
1461 >        if ((t instanceof ForkJoinWorkerThread) &&
1462 >            ((ForkJoinWorkerThread)t).pool == this)
1463 >            return task.invoke();  // bypass submit if in same pool
1464 >        else {
1465 >            addSubmission(task);
1466 >            return task.join();
1467 >        }
1468 >    }
1469 >
1470 >    /**
1471 >     * Unless terminating, forks task if within an ongoing FJ
1472 >     * computation in the current pool, else submits as external task.
1473 >     */
1474 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1475 >        ForkJoinWorkerThread w;
1476 >        Thread t = Thread.currentThread();
1477 >        if (shutdown)
1478 >            throw new RejectedExecutionException();
1479 >        if ((t instanceof ForkJoinWorkerThread) &&
1480 >            (w = (ForkJoinWorkerThread)t).pool == this)
1481 >            w.pushTask(task);
1482 >        else
1483 >            addSubmission(task);
1484      }
1485  
1486      /**
# Line 1272 | Line 1492 | public class ForkJoinPool extends Abstra
1492       *         scheduled for execution
1493       */
1494      public void execute(ForkJoinTask<?> task) {
1495 <        doSubmit(task);
1495 >        if (task == null)
1496 >            throw new NullPointerException();
1497 >        forkOrSubmit(task);
1498      }
1499  
1500      // AbstractExecutorService methods
# Line 1283 | Line 1505 | public class ForkJoinPool extends Abstra
1505       *         scheduled for execution
1506       */
1507      public void execute(Runnable task) {
1508 +        if (task == null)
1509 +            throw new NullPointerException();
1510          ForkJoinTask<?> job;
1511          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1512              job = (ForkJoinTask<?>) task;
1513          else
1514              job = ForkJoinTask.adapt(task, null);
1515 <        doSubmit(job);
1515 >        forkOrSubmit(job);
1516 >    }
1517 >
1518 >    /**
1519 >     * Submits a ForkJoinTask for execution.
1520 >     *
1521 >     * @param task the task to submit
1522 >     * @return the task
1523 >     * @throws NullPointerException if the task is null
1524 >     * @throws RejectedExecutionException if the task cannot be
1525 >     *         scheduled for execution
1526 >     */
1527 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1528 >        if (task == null)
1529 >            throw new NullPointerException();
1530 >        forkOrSubmit(task);
1531 >        return task;
1532      }
1533  
1534      /**
# Line 1297 | Line 1537 | public class ForkJoinPool extends Abstra
1537       *         scheduled for execution
1538       */
1539      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1540 +        if (task == null)
1541 +            throw new NullPointerException();
1542          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1543 <        doSubmit(job);
1543 >        forkOrSubmit(job);
1544          return job;
1545      }
1546  
# Line 1308 | Line 1550 | public class ForkJoinPool extends Abstra
1550       *         scheduled for execution
1551       */
1552      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1553 +        if (task == null)
1554 +            throw new NullPointerException();
1555          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1556 <        doSubmit(job);
1556 >        forkOrSubmit(job);
1557          return job;
1558      }
1559  
# Line 1319 | Line 1563 | public class ForkJoinPool extends Abstra
1563       *         scheduled for execution
1564       */
1565      public ForkJoinTask<?> submit(Runnable task) {
1566 +        if (task == null)
1567 +            throw new NullPointerException();
1568          ForkJoinTask<?> job;
1569          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1570              job = (ForkJoinTask<?>) task;
1571          else
1572              job = ForkJoinTask.adapt(task, null);
1573 <        doSubmit(job);
1573 >        forkOrSubmit(job);
1574          return job;
1575      }
1576  
1577      /**
1332     * Submits a ForkJoinTask for execution.
1333     *
1334     * @param task the task to submit
1335     * @return the task
1336     * @throws NullPointerException if the task is null
1337     * @throws RejectedExecutionException if the task cannot be
1338     *         scheduled for execution
1339     */
1340    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1341        doSubmit(task);
1342        return task;
1343    }
1344
1345    /**
1578       * @throws NullPointerException       {@inheritDoc}
1579       * @throws RejectedExecutionException {@inheritDoc}
1580       */
# Line 1384 | Line 1616 | public class ForkJoinPool extends Abstra
1616       * @return the handler, or {@code null} if none
1617       */
1618      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1387        workerCountReadFence();
1619          return ueh;
1620      }
1621  
1622      /**
1392     * Sets the handler for internal worker threads that terminate due
1393     * to unrecoverable errors encountered while executing tasks.
1394     * Unless set, the current default or ThreadGroup handler is used
1395     * as handler.
1396     *
1397     * @param h the new handler
1398     * @return the old handler, or {@code null} if none
1399     * @throws SecurityException if a security manager exists and
1400     *         the caller is not permitted to modify threads
1401     *         because it does not hold {@link
1402     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1403     */
1404    public Thread.UncaughtExceptionHandler
1405        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1406        checkPermission();
1407        workerCountReadFence();
1408        Thread.UncaughtExceptionHandler old = ueh;
1409        if (h != old) {
1410            ueh = h;
1411            workerCountWriteFence();
1412            for (ForkJoinWorkerThread w : workers) {
1413                if (w != null)
1414                    w.setUncaughtExceptionHandler(h);
1415            }
1416        }
1417        return old;
1418    }
1419
1420    /**
1421     * Sets the target parallelism level of this pool.
1422     *
1423     * @param parallelism the target parallelism
1424     * @throws IllegalArgumentException if parallelism less than or
1425     * equal to zero or greater than maximum size bounds
1426     * @throws SecurityException if a security manager exists and
1427     *         the caller is not permitted to modify threads
1428     *         because it does not hold {@link
1429     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1430     */
1431    public void setParallelism(int parallelism) {
1432        checkPermission();
1433        if (parallelism <= 0 || parallelism > maxPoolSize)
1434            throw new IllegalArgumentException();
1435        workerCountReadFence();
1436        int pc = this.parallelism;
1437        if (pc != parallelism) {
1438            this.parallelism = parallelism;
1439            workerCountWriteFence();
1440            // Release spares. If too many, some will die after re-suspend
1441            for (ForkJoinWorkerThread w : workers) {
1442                if (w != null && w.tryUnsuspend()) {
1443                    updateRunningCount(1);
1444                    LockSupport.unpark(w);
1445                }
1446            }
1447            ensureEnoughTotalWorkers();
1448            advanceEventCount();
1449            releaseWaiters(); // force config recheck by existing workers
1450        }
1451    }
1452
1453    /**
1623       * Returns the targeted parallelism level of this pool.
1624       *
1625       * @return the targeted parallelism level of this pool
1626       */
1627      public int getParallelism() {
1459        //        workerCountReadFence(); // inlined below
1460        int ignore = workerCounts;
1628          return parallelism;
1629      }
1630  
1631      /**
1632       * Returns the number of worker threads that have started but not
1633 <     * yet terminated.  This result returned by this method may differ
1633 >     * yet terminated.  The result returned by this method may differ
1634       * from {@link #getParallelism} when threads are created to
1635       * maintain parallelism when others are cooperatively blocked.
1636       *
1637       * @return the number of worker threads
1638       */
1639      public int getPoolSize() {
1640 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1474 <    }
1475 <
1476 <    /**
1477 <     * Returns the maximum number of threads allowed to exist in the
1478 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
1479 <     * maximum is an implementation-defined value designed only to
1480 <     * prevent runaway growth.
1481 <     *
1482 <     * @return the maximum
1483 <     */
1484 <    public int getMaximumPoolSize() {
1485 <        workerCountReadFence();
1486 <        return maxPoolSize;
1487 <    }
1488 <
1489 <    /**
1490 <     * Sets the maximum number of threads allowed to exist in the
1491 <     * pool. The given value should normally be greater than or equal
1492 <     * to the {@link #getParallelism parallelism} level. Setting this
1493 <     * value has no effect on current pool size. It controls
1494 <     * construction of new threads. The use of this method may cause
1495 <     * tasks that intrinsically require extra threads for dependent
1496 <     * computations to indefinitely stall. If you are instead trying
1497 <     * to minimize internal thread creation, consider setting {@link
1498 <     * #setMaintainsParallelism} as false.
1499 <     *
1500 <     * @throws IllegalArgumentException if negative or greater than
1501 <     * internal implementation limit
1502 <     */
1503 <    public void setMaximumPoolSize(int newMax) {
1504 <        if (newMax < 0 || newMax > MAX_THREADS)
1505 <            throw new IllegalArgumentException();
1506 <        maxPoolSize = newMax;
1507 <        workerCountWriteFence();
1508 <    }
1509 <
1510 <    /**
1511 <     * Returns {@code true} if this pool dynamically maintains its
1512 <     * target parallelism level. If false, new threads are added only
1513 <     * to avoid possible starvation.  This setting is by default true.
1514 <     *
1515 <     * @return {@code true} if maintains parallelism
1516 <     */
1517 <    public boolean getMaintainsParallelism() {
1518 <        workerCountReadFence();
1519 <        return maintainsParallelism;
1520 <    }
1521 <
1522 <    /**
1523 <     * Sets whether this pool dynamically maintains its target
1524 <     * parallelism level. If false, new threads are added only to
1525 <     * avoid possible starvation.
1526 <     *
1527 <     * @param enable {@code true} to maintain parallelism
1528 <     */
1529 <    public void setMaintainsParallelism(boolean enable) {
1530 <        maintainsParallelism = enable;
1531 <        workerCountWriteFence();
1532 <    }
1533 <
1534 <    /**
1535 <     * Establishes local first-in-first-out scheduling mode for forked
1536 <     * tasks that are never joined. This mode may be more appropriate
1537 <     * than default locally stack-based mode in applications in which
1538 <     * worker threads only process asynchronous tasks.  This method is
1539 <     * designed to be invoked only when the pool is quiescent, and
1540 <     * typically only before any tasks are submitted. The effects of
1541 <     * invocations at other times may be unpredictable.
1542 <     *
1543 <     * @param async if {@code true}, use locally FIFO scheduling
1544 <     * @return the previous mode
1545 <     * @see #getAsyncMode
1546 <     */
1547 <    public boolean setAsyncMode(boolean async) {
1548 <        workerCountReadFence();
1549 <        boolean oldMode = locallyFifo;
1550 <        if (oldMode != async) {
1551 <            locallyFifo = async;
1552 <            workerCountWriteFence();
1553 <            for (ForkJoinWorkerThread w : workers) {
1554 <                if (w != null)
1555 <                    w.setAsyncMode(async);
1556 <            }
1557 <        }
1558 <        return oldMode;
1640 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1641      }
1642  
1643      /**
# Line 1563 | Line 1645 | public class ForkJoinPool extends Abstra
1645       * scheduling mode for forked tasks that are never joined.
1646       *
1647       * @return {@code true} if this pool uses async mode
1566     * @see #setAsyncMode
1648       */
1649      public boolean getAsyncMode() {
1569        workerCountReadFence();
1650          return locallyFifo;
1651      }
1652  
# Line 1579 | Line 1659 | public class ForkJoinPool extends Abstra
1659       * @return the number of worker threads
1660       */
1661      public int getRunningThreadCount() {
1662 <        return workerCounts & RUNNING_COUNT_MASK;
1662 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1663 >        return r <= 0? 0 : r; // suppress momentarily negative values
1664      }
1665  
1666      /**
# Line 1590 | Line 1671 | public class ForkJoinPool extends Abstra
1671       * @return the number of active threads
1672       */
1673      public int getActiveThreadCount() {
1674 <        return runState & ACTIVE_COUNT_MASK;
1674 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1675 >        return r <= 0? 0 : r; // suppress momentarily negative values
1676      }
1677  
1678      /**
# Line 1605 | Line 1687 | public class ForkJoinPool extends Abstra
1687       * @return {@code true} if all threads are currently idle
1688       */
1689      public boolean isQuiescent() {
1690 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1690 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1691      }
1692  
1693      /**
# Line 1635 | Line 1717 | public class ForkJoinPool extends Abstra
1717       */
1718      public long getQueuedTaskCount() {
1719          long count = 0;
1720 <        for (ForkJoinWorkerThread w : workers) {
1721 <            if (w != null)
1722 <                count += w.getQueueSize();
1720 >        ForkJoinWorkerThread[] ws;
1721 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1722 >            (ws = workers) != null) {
1723 >            for (ForkJoinWorkerThread w : ws)
1724 >                if (w != null)
1725 >                    count -= w.queueBase - w.queueTop; // must read base first
1726          }
1727          return count;
1728      }
1729  
1730      /**
1731       * Returns an estimate of the number of tasks submitted to this
1732 <     * pool that have not yet begun executing.  This method takes time
1733 <     * proportional to the number of submissions.
1732 >     * pool that have not yet begun executing.  This meThod may take
1733 >     * time proportional to the number of submissions.
1734       *
1735       * @return the number of queued submissions
1736       */
1737      public int getQueuedSubmissionCount() {
1738 <        return submissionQueue.size();
1738 >        return -queueBase + queueTop;
1739      }
1740  
1741      /**
# Line 1660 | Line 1745 | public class ForkJoinPool extends Abstra
1745       * @return {@code true} if there are any queued submissions
1746       */
1747      public boolean hasQueuedSubmissions() {
1748 <        return !submissionQueue.isEmpty();
1748 >        return queueBase != queueTop;
1749      }
1750  
1751      /**
# Line 1671 | Line 1756 | public class ForkJoinPool extends Abstra
1756       * @return the next submission, or {@code null} if none
1757       */
1758      protected ForkJoinTask<?> pollSubmission() {
1759 <        return submissionQueue.poll();
1759 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1760 >        while ((b = queueBase) != queueTop &&
1761 >               (q = submissionQueue) != null &&
1762 >               (i = (q.length - 1) & b) >= 0) {
1763 >            long u = (i << ASHIFT) + ABASE;
1764 >            if ((t = q[i]) != null &&
1765 >                queueBase == b &&
1766 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1767 >                queueBase = b + 1;
1768 >                return t;
1769 >            }
1770 >        }
1771 >        return null;
1772      }
1773  
1774      /**
# Line 1692 | Line 1789 | public class ForkJoinPool extends Abstra
1789       * @return the number of elements transferred
1790       */
1791      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1792 <        int n = submissionQueue.drainTo(c);
1793 <        for (ForkJoinWorkerThread w : workers) {
1794 <            if (w != null)
1795 <                n += w.drainTasksTo(c);
1792 >        int count = 0;
1793 >        while (queueBase != queueTop) {
1794 >            ForkJoinTask<?> t = pollSubmission();
1795 >            if (t != null) {
1796 >                c.add(t);
1797 >                ++count;
1798 >            }
1799 >        }
1800 >        ForkJoinWorkerThread[] ws;
1801 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1802 >            (ws = workers) != null) {
1803 >            for (ForkJoinWorkerThread w : ws)
1804 >                if (w != null)
1805 >                    count += w.drainTasksTo(c);
1806          }
1807 <        return n;
1807 >        return count;
1808      }
1809  
1810      /**
# Line 1711 | Line 1818 | public class ForkJoinPool extends Abstra
1818          long st = getStealCount();
1819          long qt = getQueuedTaskCount();
1820          long qs = getQueuedSubmissionCount();
1714        int wc = workerCounts;
1715        int tc = wc >>> TOTAL_COUNT_SHIFT;
1716        int rc = wc & RUNNING_COUNT_MASK;
1821          int pc = parallelism;
1822 <        int rs = runState;
1823 <        int ac = rs & ACTIVE_COUNT_MASK;
1822 >        long c = ctl;
1823 >        int tc = pc + (short)(c >>> TC_SHIFT);
1824 >        int rc = pc + (int)(c >> AC_SHIFT);
1825 >        if (rc < 0) // ignore transient negative
1826 >            rc = 0;
1827 >        int ac = rc + blockedCount;
1828 >        String level;
1829 >        if ((c & STOP_BIT) != 0)
1830 >            level = (tc == 0)? "Terminated" : "Terminating";
1831 >        else
1832 >            level = shutdown? "Shutting down" : "Running";
1833          return super.toString() +
1834 <            "[" + runLevelToString(rs) +
1834 >            "[" + level +
1835              ", parallelism = " + pc +
1836              ", size = " + tc +
1837              ", active = " + ac +
# Line 1729 | Line 1842 | public class ForkJoinPool extends Abstra
1842              "]";
1843      }
1844  
1732    private static String runLevelToString(int s) {
1733        return ((s & TERMINATED) != 0 ? "Terminated" :
1734                ((s & TERMINATING) != 0 ? "Terminating" :
1735                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1736                  "Running")));
1737    }
1738
1845      /**
1846       * Initiates an orderly shutdown in which previously submitted
1847       * tasks are executed, but no new tasks will be accepted.
# Line 1750 | Line 1856 | public class ForkJoinPool extends Abstra
1856       */
1857      public void shutdown() {
1858          checkPermission();
1859 <        advanceRunLevel(SHUTDOWN);
1859 >        shutdown = true;
1860          tryTerminate(false);
1861      }
1862  
# Line 1772 | Line 1878 | public class ForkJoinPool extends Abstra
1878       */
1879      public List<Runnable> shutdownNow() {
1880          checkPermission();
1881 +        shutdown = true;
1882          tryTerminate(true);
1883          return Collections.emptyList();
1884      }
# Line 1782 | Line 1889 | public class ForkJoinPool extends Abstra
1889       * @return {@code true} if all tasks have completed following shut down
1890       */
1891      public boolean isTerminated() {
1892 <        return runState >= TERMINATED;
1892 >        long c = ctl;
1893 >        return ((c & STOP_BIT) != 0L &&
1894 >                (short)(c >>> TC_SHIFT) == -parallelism);
1895      }
1896  
1897      /**
# Line 1790 | Line 1899 | public class ForkJoinPool extends Abstra
1899       * commenced but not yet completed.  This method may be useful for
1900       * debugging. A return of {@code true} reported a sufficient
1901       * period after shutdown may indicate that submitted tasks have
1902 <     * ignored or suppressed interruption, causing this executor not
1903 <     * to properly terminate.
1902 >     * ignored or suppressed interruption, or are waiting for IO,
1903 >     * causing this executor not to properly terminate. (See the
1904 >     * advisory notes for class {@link ForkJoinTask} stating that
1905 >     * tasks should not normally entail blocking operations.  But if
1906 >     * they do, they must abort them on interrupt.)
1907       *
1908       * @return {@code true} if terminating but not yet terminated
1909       */
1910      public boolean isTerminating() {
1911 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1911 >        long c = ctl;
1912 >        return ((c & STOP_BIT) != 0L &&
1913 >                (short)(c >>> TC_SHIFT) != -parallelism);
1914 >    }
1915 >
1916 >    /**
1917 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1918 >     */
1919 >    final boolean isAtLeastTerminating() {
1920 >        return (ctl & STOP_BIT) != 0L;
1921      }
1922  
1923      /**
# Line 1805 | Line 1926 | public class ForkJoinPool extends Abstra
1926       * @return {@code true} if this pool has been shut down
1927       */
1928      public boolean isShutdown() {
1929 <        return runState >= SHUTDOWN;
1929 >        return shutdown;
1930      }
1931  
1932      /**
# Line 1821 | Line 1942 | public class ForkJoinPool extends Abstra
1942       */
1943      public boolean awaitTermination(long timeout, TimeUnit unit)
1944          throws InterruptedException {
1945 <        return terminationLatch.await(timeout, unit);
1945 >        long nanos = unit.toNanos(timeout);
1946 >        final ReentrantLock lock = this.submissionLock;
1947 >        lock.lock();
1948 >        try {
1949 >            for (;;) {
1950 >                if (isTerminated())
1951 >                    return true;
1952 >                if (nanos <= 0)
1953 >                    return false;
1954 >                nanos = termination.awaitNanos(nanos);
1955 >            }
1956 >        } finally {
1957 >            lock.unlock();
1958 >        }
1959      }
1960  
1961      /**
1962       * Interface for extending managed parallelism for tasks running
1963       * in {@link ForkJoinPool}s.
1964       *
1965 <     * <p>A {@code ManagedBlocker} provides two methods.
1966 <     * Method {@code isReleasable} must return {@code true} if
1967 <     * blocking is not necessary. Method {@code block} blocks the
1968 <     * current thread if necessary (perhaps internally invoking
1969 <     * {@code isReleasable} before actually blocking).
1965 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1966 >     * {@code isReleasable} must return {@code true} if blocking is
1967 >     * not necessary. Method {@code block} blocks the current thread
1968 >     * if necessary (perhaps internally invoking {@code isReleasable}
1969 >     * before actually blocking). The unusual methods in this API
1970 >     * accommodate synchronizers that may, but don't usually, block
1971 >     * for long periods. Similarly, they allow more efficient internal
1972 >     * handling of cases in which additional workers may be, but
1973 >     * usually are not, needed to ensure sufficient parallelism.
1974 >     * Toward this end, implementations of method {@code isReleasable}
1975 >     * must be amenable to repeated invocation.
1976       *
1977       * <p>For example, here is a ManagedBlocker based on a
1978       * ReentrantLock:
# Line 1850 | Line 1990 | public class ForkJoinPool extends Abstra
1990       *     return hasLock || (hasLock = lock.tryLock());
1991       *   }
1992       * }}</pre>
1993 +     *
1994 +     * <p>Here is a class that possibly blocks waiting for an
1995 +     * item on a given queue:
1996 +     *  <pre> {@code
1997 +     * class QueueTaker<E> implements ManagedBlocker {
1998 +     *   final BlockingQueue<E> queue;
1999 +     *   volatile E item = null;
2000 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2001 +     *   public boolean block() throws InterruptedException {
2002 +     *     if (item == null)
2003 +     *       item = queue.take();
2004 +     *     return true;
2005 +     *   }
2006 +     *   public boolean isReleasable() {
2007 +     *     return item != null || (item = queue.poll()) != null;
2008 +     *   }
2009 +     *   public E getItem() { // call after pool.managedBlock completes
2010 +     *     return item;
2011 +     *   }
2012 +     * }}</pre>
2013       */
2014      public static interface ManagedBlocker {
2015          /**
# Line 1873 | Line 2033 | public class ForkJoinPool extends Abstra
2033       * Blocks in accord with the given blocker.  If the current thread
2034       * is a {@link ForkJoinWorkerThread}, this method possibly
2035       * arranges for a spare thread to be activated if necessary to
2036 <     * ensure parallelism while the current thread is blocked.
1877 <     *
1878 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1879 <     * supports it ({@link #getMaintainsParallelism}), this method
1880 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1881 <     * it activates a thread only if necessary to avoid complete
1882 <     * starvation. This option may be preferable when blockages use
1883 <     * timeouts, or are almost always brief.
2036 >     * ensure sufficient parallelism while the current thread is blocked.
2037       *
2038       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2039       * behaviorally equivalent to
# Line 1894 | Line 2047 | public class ForkJoinPool extends Abstra
2047       * first be expanded to ensure parallelism, and later adjusted.
2048       *
2049       * @param blocker the blocker
1897     * @param maintainParallelism if {@code true} and supported by
1898     * this pool, attempt to maintain the pool's nominal parallelism;
1899     * otherwise activate a thread only if necessary to avoid
1900     * complete starvation.
2050       * @throws InterruptedException if blocker.block did so
2051       */
2052 <    public static void managedBlock(ManagedBlocker blocker,
1904 <                                    boolean maintainParallelism)
2052 >    public static void managedBlock(ManagedBlocker blocker)
2053          throws InterruptedException {
2054          Thread t = Thread.currentThread();
2055 <        if (t instanceof ForkJoinWorkerThread)
2056 <            ((ForkJoinWorkerThread) t).pool.
2057 <                doBlock(blocker, maintainParallelism);
2058 <        else
2059 <            awaitBlocker(blocker);
2060 <    }
2061 <
1914 <    /**
1915 <     * Performs Non-FJ blocking
1916 <     */
1917 <    private static void awaitBlocker(ManagedBlocker blocker)
1918 <        throws InterruptedException {
1919 <        do {} while (!blocker.isReleasable() && !blocker.block());
2055 >        if (t instanceof ForkJoinWorkerThread) {
2056 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2057 >            w.pool.awaitBlocker(blocker);
2058 >        }
2059 >        else {
2060 >            do {} while (!blocker.isReleasable() && !blocker.block());
2061 >        }
2062      }
2063  
2064      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1932 | Line 2074 | public class ForkJoinPool extends Abstra
2074      }
2075  
2076      // Unsafe mechanics
2077 <
2078 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2079 <    private static final long workerCountsOffset =
2080 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2081 <    private static final long runStateOffset =
2082 <        objectFieldOffset("runState", ForkJoinPool.class);
2083 <    private static final long eventCountOffset =
2084 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2085 <    private static final long eventWaitersOffset =
2086 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2087 <    private static final long stealCountOffset =
2088 <        objectFieldOffset("stealCount",ForkJoinPool.class);
2089 <
2090 <
2091 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2077 >    private static final sun.misc.Unsafe UNSAFE;
2078 >    private static final long ctlOffset;
2079 >    private static final long stealCountOffset;
2080 >    private static final long blockedCountOffset;
2081 >    private static final long quiescerCountOffset;
2082 >    private static final long scanGuardOffset;
2083 >    private static final long nextWorkerNumberOffset;
2084 >    private static final long ABASE;
2085 >    private static final int ASHIFT;
2086 >
2087 >    static {
2088 >        poolNumberGenerator = new AtomicInteger();
2089 >        workerSeedGenerator = new Random();
2090 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2091 >        defaultForkJoinWorkerThreadFactory =
2092 >            new DefaultForkJoinWorkerThreadFactory();
2093 >        int s;
2094          try {
2095 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2096 <        } catch (NoSuchFieldException e) {
2097 <            // Convert Exception to corresponding Error
2098 <            NoSuchFieldError error = new NoSuchFieldError(field);
2099 <            error.initCause(e);
2100 <            throw error;
2101 <        }
2095 >            UNSAFE = getUnsafe();
2096 >            Class k = ForkJoinPool.class;
2097 >            ctlOffset = UNSAFE.objectFieldOffset
2098 >                (k.getDeclaredField("ctl"));
2099 >            stealCountOffset = UNSAFE.objectFieldOffset
2100 >                (k.getDeclaredField("stealCount"));
2101 >            blockedCountOffset = UNSAFE.objectFieldOffset
2102 >                (k.getDeclaredField("blockedCount"));
2103 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2104 >                (k.getDeclaredField("quiescerCount"));
2105 >            scanGuardOffset = UNSAFE.objectFieldOffset
2106 >                (k.getDeclaredField("scanGuard"));
2107 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2108 >                (k.getDeclaredField("nextWorkerNumber"));
2109 >            Class a = ForkJoinTask[].class;
2110 >            ABASE = UNSAFE.arrayBaseOffset(a);
2111 >            s = UNSAFE.arrayIndexScale(a);
2112 >        } catch (Exception e) {
2113 >            throw new Error(e);
2114 >        }
2115 >        if ((s & (s-1)) != 0)
2116 >            throw new Error("data type scale not a power of two");
2117 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2118      }
2119  
2120      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines