ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.74 by jsr166, Tue Sep 7 06:32:45 2010 UTC vs.
Revision 1.94 by dl, Tue Mar 1 10:59:04 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15 + import java.util.concurrent.AbstractExecutorService;
16 + import java.util.concurrent.Callable;
17 + import java.util.concurrent.ExecutorService;
18 + import java.util.concurrent.Future;
19 + import java.util.concurrent.RejectedExecutionException;
20 + import java.util.concurrent.RunnableFuture;
21 + import java.util.concurrent.TimeUnit;
22 + import java.util.concurrent.TimeoutException;
23 + import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
18 < import java.util.concurrent.CountDownLatch;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 123 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
138 <     * lastly to new submissions. These mechanics do not consider
139 <     * affinities, loads, cache localities, etc, so rarely provide the
140 <     * best possible performance on a given machine, but portably
141 <     * provide good throughput by averaging over these factors.
142 <     * (Further, even if we did try to use such information, we do not
143 <     * usually have a basis for exploiting it. For example, some sets
144 <     * of tasks profit from cache affinities, but others are harmed by
145 <     * cache pollution effects.)
146 <     *
147 <     * Beyond work-stealing support and essential bookkeeping, the
148 <     * main responsibility of this framework is to take actions when
149 <     * one worker is waiting to join a task stolen (or always held by)
150 <     * another.  Because we are multiplexing many tasks on to a pool
151 <     * of workers, we can't just let them block (as in Thread.join).
152 <     * We also cannot just reassign the joiner's run-time stack with
153 <     * another and replace it later, which would be a form of
154 <     * "continuation", that even if possible is not necessarily a good
155 <     * idea. Given that the creation costs of most threads on most
156 <     * systems mainly surrounds setting up runtime stacks, thread
157 <     * creation and switching is usually not much more expensive than
158 <     * stack creation and switching, and is more flexible). Instead we
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250       * combine two tactics:
251       *
252       *   Helping: Arranging for the joiner to execute some task that it
253       *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255       *      links to try to find such a task.
256       *
257       *   Compensating: Unless there are already enough live threads,
258 <     *      method helpMaintainParallelism() may create or
259 <     *      re-activate a spare thread to compensate for blocked
260 <     *      joiners until they unblock.
162 <     *
163 <     * It is impossible to keep exactly the target (parallelism)
164 <     * number of threads running at any given time.  Determining
165 <     * existence of conservatively safe helping targets, the
166 <     * availability of already-created spares, and the apparent need
167 <     * to create new spares are all racy and require heuristic
168 <     * guidance, so we rely on multiple retries of each.  Compensation
169 <     * occurs in slow-motion. It is triggered only upon timeouts of
170 <     * Object.wait used for joins. This reduces poor decisions that
171 <     * would otherwise be made when threads are waiting for others
172 <     * that are stalled because of unrelated activities such as
173 <     * garbage collection.
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261       *
262       * The ManagedBlocker extension API can't use helping so relies
263       * only on compensation in method awaitBlocker.
264       *
265 <     * The main throughput advantages of work-stealing stem from
266 <     * decentralized control -- workers mostly steal tasks from each
267 <     * other. We do not want to negate this by creating bottlenecks
268 <     * implementing other management responsibilities. So we use a
269 <     * collection of techniques that avoid, reduce, or cope well with
270 <     * contention. These entail several instances of bit-packing into
271 <     * CASable fields to maintain only the minimally required
272 <     * atomicity. To enable such packing, we restrict maximum
273 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
274 <     * unbalanced increments and decrements) to fit into a 16 bit
275 <     * field, which is far in excess of normal operating range.  Even
276 <     * though updates to some of these bookkeeping fields do sometimes
277 <     * contend with each other, they don't normally cache-contend with
278 <     * updates to others enough to warrant memory padding or
279 <     * isolation. So they are all held as fields of ForkJoinPool
280 <     * objects.  The main capabilities are as follows:
281 <     *
282 <     * 1. Creating and removing workers. Workers are recorded in the
283 <     * "workers" array. This is an array as opposed to some other data
284 <     * structure to support index-based random steals by workers.
285 <     * Updates to the array recording new workers and unrecording
286 <     * terminated ones are protected from each other by a lock
287 <     * (workerLock) but the array is otherwise concurrently readable,
288 <     * and accessed directly by workers. To simplify index-based
289 <     * operations, the array size is always a power of two, and all
290 <     * readers must tolerate null slots. Currently, all worker thread
291 <     * creation is on-demand, triggered by task submissions,
292 <     * replacement of terminated workers, and/or compensation for
293 <     * blocked workers. However, all other support code is set up to
294 <     * work with other policies.
208 <     *
209 <     * To ensure that we do not hold on to worker references that
210 <     * would prevent GC, ALL accesses to workers are via indices into
211 <     * the workers array (which is one source of some of the unusual
212 <     * code constructions here). In essence, the workers array serves
213 <     * as a WeakReference mechanism. Thus for example the event queue
214 <     * stores worker indices, not worker references. Access to the
215 <     * workers in associated methods (for example releaseEventWaiters)
216 <     * must both index-check and null-check the IDs. All such accesses
217 <     * ignore bad IDs by returning out early from what they are doing,
218 <     * since this can only be associated with shutdown, in which case
219 <     * it is OK to give up. On termination, we just clobber these
220 <     * data structures without trying to use them.
221 <     *
222 <     * 2. Bookkeeping for dynamically adding and removing workers. We
223 <     * aim to approximately maintain the given level of parallelism.
224 <     * When some workers are known to be blocked (on joins or via
225 <     * ManagedBlocker), we may create or resume others to take their
226 <     * place until they unblock (see below). Implementing this
227 <     * requires counts of the number of "running" threads (i.e., those
228 <     * that are neither blocked nor artificially suspended) as well as
229 <     * the total number.  These two values are packed into one field,
230 <     * "workerCounts" because we need accurate snapshots when deciding
231 <     * to create, resume or suspend.  Note however that the
232 <     * correspondence of these counts to reality is not guaranteed. In
233 <     * particular updates for unblocked threads may lag until they
234 <     * actually wake up.
235 <     *
236 <     * 3. Maintaining global run state. The run state of the pool
237 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
238 <     * those in other Executor implementations, as well as a count of
239 <     * "active" workers -- those that are, or soon will be, or
240 <     * recently were executing tasks. The runLevel and active count
241 <     * are packed together in order to correctly trigger shutdown and
242 <     * termination. Without care, active counts can be subject to very
243 <     * high contention.  We substantially reduce this contention by
244 <     * relaxing update rules.  A worker must claim active status
245 <     * prospectively, by activating if it sees that a submitted or
246 <     * stealable task exists (it may find after activating that the
247 <     * task no longer exists). It stays active while processing this
248 <     * task (if it exists) and any other local subtasks it produces,
249 <     * until it cannot find any other tasks. It then tries
250 <     * inactivating (see method preStep), but upon update contention
251 <     * instead scans for more tasks, later retrying inactivation if it
252 <     * doesn't find any.
253 <     *
254 <     * 4. Managing idle workers waiting for tasks. We cannot let
255 <     * workers spin indefinitely scanning for tasks when none are
256 <     * available. On the other hand, we must quickly prod them into
257 <     * action when new tasks are submitted or generated.  We
258 <     * park/unpark these idle workers using an event-count scheme.
259 <     * Field eventCount is incremented upon events that may enable
260 <     * workers that previously could not find a task to now find one:
261 <     * Submission of a new task to the pool, or another worker pushing
262 <     * a task onto a previously empty queue.  (We also use this
263 <     * mechanism for configuration and termination actions that
264 <     * require wakeups of idle workers).  Each worker maintains its
265 <     * last known event count, and blocks when a scan for work did not
266 <     * find a task AND its lastEventCount matches the current
267 <     * eventCount. Waiting idle workers are recorded in a variant of
268 <     * Treiber stack headed by field eventWaiters which, when nonzero,
269 <     * encodes the thread index and count awaited for by the worker
270 <     * thread most recently calling eventSync. This thread in turn has
271 <     * a record (field nextEventWaiter) for the next waiting worker.
272 <     * In addition to allowing simpler decisions about need for
273 <     * wakeup, the event count bits in eventWaiters serve the role of
274 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
275 <     * released threads also try to release at most two others.  The
276 <     * net effect is a tree-like diffusion of signals, where released
277 <     * threads (and possibly others) help with unparks.  To further
278 <     * reduce contention effects a bit, failed CASes to increment
279 <     * field eventCount are tolerated without retries in signalWork.
280 <     * Conceptually they are merged into the same event, which is OK
281 <     * when their only purpose is to enable workers to scan for work.
282 <     *
283 <     * 5. Managing suspension of extra workers. When a worker notices
284 <     * (usually upon timeout of a wait()) that there are too few
285 <     * running threads, we may create a new thread to maintain
286 <     * parallelism level, or at least avoid starvation. Usually, extra
287 <     * threads are needed for only very short periods, yet join
288 <     * dependencies are such that we sometimes need them in
289 <     * bursts. Rather than create new threads each time this happens,
290 <     * we suspend no-longer-needed extra ones as "spares". For most
291 <     * purposes, we don't distinguish "extra" spare threads from
292 <     * normal "core" threads: On each call to preStep (the only point
293 <     * at which we can do this) a worker checks to see if there are
294 <     * now too many running workers, and if so, suspends itself.
295 <     * Method helpMaintainParallelism looks for suspended threads to
296 <     * resume before considering creating a new replacement. The
297 <     * spares themselves are encoded on another variant of a Treiber
298 <     * Stack, headed at field "spareWaiters".  Note that the use of
299 <     * spares is intrinsically racy.  One thread may become a spare at
300 <     * about the same time as another is needlessly being created. We
301 <     * counteract this and related slop in part by requiring resumed
302 <     * spares to immediately recheck (in preStep) to see whether they
303 <     * should re-suspend.
304 <     *
305 <     * 6. Killing off unneeded workers. A timeout mechanism is used to
306 <     * shed unused workers: The oldest (first) event queue waiter uses
307 <     * a timed rather than hard wait. When this wait times out without
308 <     * a normal wakeup, it tries to shutdown any one (for convenience
309 <     * the newest) other spare or event waiter via
310 <     * tryShutdownUnusedWorker. This eventually reduces the number of
311 <     * worker threads to a minimum of one after a long enough period
312 <     * without use.
313 <     *
314 <     * 7. Deciding when to create new workers. The main dynamic
315 <     * control in this class is deciding when to create extra threads
316 <     * in method helpMaintainParallelism. We would like to keep
317 <     * exactly #parallelism threads running, which is an impossible
318 <     * task. We always need to create one when the number of running
319 <     * threads would become zero and all workers are busy. Beyond
320 <     * this, we must rely on heuristics that work well in the
321 <     * presence of transient phenomena such as GC stalls, dynamic
322 <     * compilation, and wake-up lags. These transients are extremely
323 <     * common -- we are normally trying to fully saturate the CPUs on
324 <     * a machine, so almost any activity other than running tasks
325 <     * impedes accuracy. Our main defense is to allow parallelism to
326 <     * lapse for a while during joins, and use a timeout to see if,
327 <     * after the resulting settling, there is still a need for
328 <     * additional workers.  This also better copes with the fact that
329 <     * some of the methods in this class tend to never become compiled
330 <     * (but are interpreted), so some components of the entire set of
331 <     * controls might execute 100 times faster than others. And
332 <     * similarly for cases where the apparent lack of work is just due
333 <     * to GC stalls and other transient system activity.
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295       *
296 <     * Beware that there is a lot of representation-level coupling
296 >     * Style notes: There is a lot of representation-level coupling
297       * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 <     * ForkJoinTask.  For example, direct access to "workers" array by
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301       * workers, and direct access to ForkJoinTask.status by both
302       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303       * trying to reduce this, since any associated future changes in
304       * representations will need to be accompanied by algorithmic
305 <     * changes anyway.
306 <     *
307 <     * Style notes: There are lots of inline assignments (of form
308 <     * "while ((local = field) != 0)") which are usually the simplest
309 <     * way to ensure the required read orderings (which are sometimes
310 <     * critical). Also several occurrences of the unusual "do {}
311 <     * while (!cas...)" which is the simplest way to force an update of
312 <     * a CAS'ed variable. There are also other coding oddities that
313 <     * help some methods perform reasonably even when interpreted (not
314 <     * compiled), at the expense of some messy constructions that
315 <     * reduce byte code counts.
316 <     *
317 <     * The order of declarations in this file is: (1) statics (2)
318 <     * fields (along with constants used when unpacking some of them)
319 <     * (3) internal control methods (4) callbacks and other support
320 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
321 <     * methods (plus a few little helpers).
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
333      /**
# Line 390 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
394 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
401 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 413 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
417 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * The time to block in a join (see awaitJoin) before checking if
390 <     * a new worker should be (re)started to maintain parallelism
391 <     * level. The value should be short enough to maintain global
392 <     * responsiveness and progress but long enough to avoid
393 <     * counterproductive firings during GC stalls or unrelated system
425 <     * activity, and to not bog down systems with continual re-firings
426 <     * on GCs or legitimately long waits.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * The wakeup interval (in nanoseconds) for the oldest worker
399 <     * waiting for an event invokes tryShutdownUnusedWorker to shrink
400 <     * the number of workers.  The exact value does not matter too
401 <     * much, but should be long enough to slowly release resources
402 <     * during long periods without use without disrupting normal use.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private static final long SHRINK_RATE_NANOS =
438 <        30L * 1000L * 1000L * 1000L; // 2 per minute
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Absolute bound for parallelism level. Twice this number plus
411 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
412 <     * word-packing for some counts and indices.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private static final int MAX_WORKERS   = 0x7fff;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415  
416      /**
417 <     * Array holding all worker threads in the pool.  Array size must
418 <     * be a power of two.  Updates and replacements are protected by
419 <     * workerLock, but the array is always kept in a consistent enough
420 <     * state to be randomly accessed without locking by workers
452 <     * performing work-stealing, as well as other traversal-based
453 <     * methods in this class. All readers must tolerate that some
454 <     * array slots may be null.
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421       */
422 <    volatile ForkJoinWorkerThread[] workers;
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * Queue for external submissions.
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
427 >    private ForkJoinTask<?>[] submissionQueue;
428  
429      /**
430 <     * Lock protecting updates to workers array.
430 >     * Lock protecting submissions array for addSubmission
431       */
432 <    private final ReentrantLock workerLock;
432 >    private final ReentrantLock submissionLock;
433  
434      /**
435 <     * Latch released upon termination.
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437       */
438 <    private final Phaser termination;
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 476 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * Sum of per-thread steal counts, updated only when threads are
447 <     * idle or terminating.
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    private volatile long stealCount;
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Encoded record of top of Treiber stack of threads waiting for
486 <     * events. The top 32 bits contain the count being waited for. The
487 <     * bottom 16 bits contains one plus the pool index of waiting
488 <     * worker thread. (Bits 16-31 are unused.)
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private volatile long eventWaiters;
491 <
492 <    private static final int  EVENT_COUNT_SHIFT = 32;
493 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * A counter for events that may wake up worker threads:
458 <     *   - Submission of a new task to the pool
498 <     *   - A worker pushing a task on an empty queue
499 <     *   - termination
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private volatile int eventCount;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Encoded record of top of Treiber stack of spare threads waiting
464 <     * for resumption. The top 16 bits contain an arbitrary count to
465 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
466 <     * index of waiting worker thread.
467 <     */
468 <    private volatile int spareWaiters;
469 <
470 <    private static final int SPARE_COUNT_SHIFT = 16;
471 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.
482 >     */
483 >    volatile long ctl;
484 >
485 >    // bit positions/shifts for fields
486 >    private static final int  AC_SHIFT   = 48;
487 >    private static final int  TC_SHIFT   = 32;
488 >    private static final int  ST_SHIFT   = 31;
489 >    private static final int  EC_SHIFT   = 16;
490 >
491 >    // bounds
492 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
493 >    private static final int  SMASK      = 0xffff;  // mask short bits
494 >    private static final int  SHORT_SIGN = 1 << 15;
495 >    private static final int  INT_SIGN   = 1 << 31;
496 >
497 >    // masks
498 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
499 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
500 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
501 >
502 >    // units for incrementing and decrementing
503 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
504 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
505 >
506 >    // masks and units for dealing with u = (int)(ctl >>> 32)
507 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
508 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
509 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
510 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
511 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
512 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
513 >
514 >    // masks and units for dealing with e = (int)ctl
515 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
516 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
517  
518      /**
519 <     * Lifecycle control. The low word contains the number of workers
516 <     * that are (probably) executing tasks. This value is atomically
517 <     * incremented before a worker gets a task to run, and decremented
518 <     * when worker has no tasks and cannot find any.  Bits 16-18
519 <     * contain runLevel value. When all are zero, the pool is
520 <     * running. Level transitions are monotonic (running -> shutdown
521 <     * -> terminating -> terminated) so each transition adds a bit.
522 <     * These are bundled together to ensure consistent read for
523 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
524 <     * and active threads is zero).
525 <     *
526 <     * Notes: Most direct CASes are dependent on these bitfield
527 <     * positions.  Also, this field is non-private to enable direct
528 <     * performance-sensitive CASes in ForkJoinWorkerThread.
519 >     * The target parallelism level.
520       */
521 <    volatile int runState;
531 <
532 <    // Note: The order among run level values matters.
533 <    private static final int RUNLEVEL_SHIFT     = 16;
534 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
535 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
536 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
521 >    final int parallelism;
522  
523      /**
524 <     * Holds number of total (i.e., created and not yet terminated)
525 <     * and running (i.e., not blocked on joins or other managed sync)
542 <     * threads, packed together to ensure consistent snapshot when
543 <     * making decisions about creating and suspending spare
544 <     * threads. Updated only by CAS. Note that adding a new worker
545 <     * requires incrementing both counts, since workers start off in
546 <     * running state.
524 >     * Index (mod submission queue length) of next element to take
525 >     * from submission queue.
526       */
527 <    private volatile int workerCounts;
527 >    volatile int queueBase;
528  
529 <    private static final int TOTAL_COUNT_SHIFT  = 16;
530 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
531 <    private static final int ONE_RUNNING        = 1;
532 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
529 >    /**
530 >     * Index (mod submission queue length) of next element to add
531 >     * in submission queue.
532 >     */
533 >    int queueTop;
534  
535      /**
536 <     * The target parallelism level.
557 <     * Accessed directly by ForkJoinWorkerThreads.
536 >     * True when shutdown() has been called.
537       */
538 <    final int parallelism;
538 >    volatile boolean shutdown;
539  
540      /**
541       * True if use local fifo, not default lifo, for local polling
# Line 565 | Line 544 | public class ForkJoinPool extends Abstra
544      final boolean locallyFifo;
545  
546      /**
547 <     * The uncaught exception handler used when any worker abruptly
548 <     * terminates.
547 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
548 >     * When non-zero, suppresses automatic shutdown when active
549 >     * counts become zero.
550       */
551 <    private final Thread.UncaughtExceptionHandler ueh;
551 >    volatile int quiescerCount;
552  
553      /**
554 <     * Pool number, just for assigning useful names to worker threads
554 >     * The number of threads blocked in join.
555       */
556 <    private final int poolNumber;
577 <
578 <    // Utilities for CASing fields. Note that most of these
579 <    // are usually manually inlined by callers
556 >    volatile int blockedCount;
557  
558      /**
559 <     * Increments running count part of workerCounts
559 >     * Counter for worker Thread names (unrelated to their poolIndex)
560       */
561 <    final void incrementRunningCount() {
585 <        int c;
586 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 <                                               c = workerCounts,
588 <                                               c + ONE_RUNNING));
589 <    }
561 >    private volatile int nextWorkerNumber;
562  
563      /**
564 <     * Tries to decrement running count unless already zero
564 >     * The index for the next created worker. Accessed under scanGuard.
565       */
566 <    final boolean tryDecrementRunningCount() {
595 <        int wc = workerCounts;
596 <        if ((wc & RUNNING_COUNT_MASK) == 0)
597 <            return false;
598 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
599 <                                        wc, wc - ONE_RUNNING);
600 <    }
566 >    private int nextWorkerIndex;
567  
568      /**
569 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
570 <     * (rarely) necessary when other count updates lag.
571 <     *
572 <     * @param dr -- either zero or ONE_RUNNING
573 <     * @param dt == either zero or ONE_TOTAL
569 >     * SeqLock and index masking for for updates to workers array.
570 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
571 >     * SG_UNIT. Staleness of read-only operations can be checked by
572 >     * comparing scanGuard to value before the reads. The low 16 bits
573 >     * (i.e, anding with SMASK) hold (the smallest power of two
574 >     * covering all worker indices, minus one, and is used to avoid
575 >     * dealing with large numbers of null slots when the workers array
576 >     * is overallocated.
577       */
578 <    private void decrementWorkerCounts(int dr, int dt) {
579 <        for (;;) {
580 <            int wc = workerCounts;
612 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
613 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
614 <                if ((runState & TERMINATED) != 0)
615 <                    return; // lagging termination on a backout
616 <                Thread.yield();
617 <            }
618 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619 <                                         wc, wc - (dr + dt)))
620 <                return;
621 <        }
622 <    }
578 >    volatile int scanGuard;
579 >
580 >    private static final int SG_UNIT = 1 << 16;
581  
582      /**
583 <     * Tries decrementing active count; fails on contention.
584 <     * Called when workers cannot find tasks to run.
583 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
584 >     * task when the pool is quiescent to instead try to shrink the
585 >     * number of workers.  The exact value does not matter too
586 >     * much. It must be short enough to release resources during
587 >     * sustained periods of idleness, but not so short that threads
588 >     * are continually re-created.
589       */
590 <    final boolean tryDecrementActiveCount() {
591 <        int c;
630 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 <                                        c = runState, c - 1);
632 <    }
590 >    private static final long SHRINK_RATE =
591 >        4L * 1000L * 1000L * 1000L; // 4 seconds
592  
593      /**
594 <     * Advances to at least the given level. Returns true if not
595 <     * already in at least the given level.
594 >     * Top-level loop for worker threads: On each step: if the
595 >     * previous step swept through all queues and found no tasks, or
596 >     * there are excess threads, then possibly blocks. Otherwise,
597 >     * scans for and, if found, executes a task. Returns when pool
598 >     * and/or worker terminate.
599 >     *
600 >     * @param w the worker
601       */
602 <    private boolean advanceRunLevel(int level) {
603 <        for (;;) {
604 <            int s = runState;
605 <            if ((s & level) != 0)
606 <                return false;
607 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
608 <                return true;
602 >    final void work(ForkJoinWorkerThread w) {
603 >        boolean swept = false;                // true on empty scans
604 >        long c;
605 >        while (!w.terminate && (int)(c = ctl) >= 0) {
606 >            int a;                            // active count
607 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
608 >                swept = scan(w, a);
609 >            else if (tryAwaitWork(w, c))
610 >                swept = false;
611          }
612      }
613  
614 <    // workers array maintenance
614 >    // Signalling
615  
616      /**
617 <     * Records and returns a workers array index for new worker.
617 >     * Wakes up or creates a worker.
618       */
619 <    private int recordWorker(ForkJoinWorkerThread w) {
620 <        // Try using slot totalCount-1. If not available, scan and/or resize
621 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
622 <        final ReentrantLock lock = this.workerLock;
623 <        lock.lock();
624 <        try {
625 <            ForkJoinWorkerThread[] ws = workers;
626 <            int n = ws.length;
627 <            if (k < 0 || k >= n || ws[k] != null) {
628 <                for (k = 0; k < n && ws[k] != null; ++k)
629 <                    ;
630 <                if (k == n)
631 <                    ws = Arrays.copyOf(ws, n << 1);
619 >    final void signalWork() {
620 >        /*
621 >         * The while condition is true if: (there is are too few total
622 >         * workers OR there is at least one waiter) AND (there are too
623 >         * few active workers OR the pool is terminating).  The value
624 >         * of e distinguishes the remaining cases: zero (no waiters)
625 >         * for create, negative if terminating (in which case do
626 >         * nothing), else release a waiter. The secondary checks for
627 >         * release (non-null array etc) can fail if the pool begins
628 >         * terminating after the test, and don't impose any added cost
629 >         * because JVMs must perform null and bounds checks anyway.
630 >         */
631 >        long c; int e, u;
632 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
633 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
634 >            if (e > 0) {                         // release a waiting worker
635 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
636 >                if ((ws = workers) == null ||
637 >                    (i = ~e & SMASK) >= ws.length ||
638 >                    (w = ws[i]) == null)
639 >                    break;
640 >                long nc = (((long)(w.nextWait & E_MASK)) |
641 >                           ((long)(u + UAC_UNIT) << 32));
642 >                if (w.eventCount == e &&
643 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
644 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
645 >                    if (w.parked)
646 >                        UNSAFE.unpark(w);
647 >                    break;
648 >                }
649 >            }
650 >            else if (UNSAFE.compareAndSwapLong
651 >                     (this, ctlOffset, c,
652 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
653 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
654 >                addWorker();
655 >                break;
656              }
667            ws[k] = w;
668            workers = ws; // volatile array write ensures slot visibility
669        } finally {
670            lock.unlock();
657          }
672        return k;
658      }
659  
660      /**
661 <     * Nulls out record of worker in workers array.
661 >     * Variant of signalWork to help release waiters on rescans.
662 >     * Tries once to release a waiter if active count < 0.
663 >     *
664 >     * @return false if failed due to contention, else true
665       */
666 <    private void forgetWorker(ForkJoinWorkerThread w) {
667 <        int idx = w.poolIndex;
668 <        // Locking helps method recordWorker avoid unnecessary expansion
669 <        final ReentrantLock lock = this.workerLock;
670 <        lock.lock();
671 <        try {
672 <            ForkJoinWorkerThread[] ws = workers;
673 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
674 <                ws[idx] = null;
675 <        } finally {
676 <            lock.unlock();
666 >    private boolean tryReleaseWaiter() {
667 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
668 >        if ((e = (int)(c = ctl)) > 0 &&
669 >            (int)(c >> AC_SHIFT) < 0 &&
670 >            (ws = workers) != null &&
671 >            (i = ~e & SMASK) < ws.length &&
672 >            (w = ws[i]) != null) {
673 >            long nc = ((long)(w.nextWait & E_MASK) |
674 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
675 >            if (w.eventCount != e ||
676 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
677 >                return false;
678 >            w.eventCount = (e + EC_UNIT) & E_MASK;
679 >            if (w.parked)
680 >                UNSAFE.unpark(w);
681          }
682 +        return true;
683      }
684  
685 +    // Scanning for tasks
686 +
687      /**
688 <     * Final callback from terminating worker.  Removes record of
689 <     * worker from array, and adjusts counts. If pool is shutting
690 <     * down, tries to complete termination.
688 >     * Scans for and, if found, executes one task. Scans start at a
689 >     * random index of workers array, and randomly select the first
690 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
691 >     * circular sweeps, which is necessary to check quiescence. and
692 >     * taking a submission only if no stealable tasks were found.  The
693 >     * steal code inside the loop is a specialized form of
694 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
695 >     * helpJoinTask and signal propagation. The code for submission
696 >     * queues is almost identical. On each steal, the worker completes
697 >     * not only the task, but also all local tasks that this task may
698 >     * have generated. On detecting staleness or contention when
699 >     * trying to take a task, this method returns without finishing
700 >     * sweep, which allows global state rechecks before retry.
701       *
702       * @param w the worker
703 +     * @param a the number of active workers
704 +     * @return true if swept all queues without finding a task
705       */
706 <    final void workerTerminated(ForkJoinWorkerThread w) {
707 <        forgetWorker(w);
708 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 <        while (w.stealCount != 0) // collect final count
703 <            tryAccumulateStealCount(w);
704 <        tryTerminate(false);
705 <    }
706 <
707 <    // Waiting for and signalling events
708 <
709 <    /**
710 <     * Releases workers blocked on a count not equal to current count.
711 <     * Normally called after precheck that eventWaiters isn't zero to
712 <     * avoid wasted array checks. Gives up upon a change in count or
713 <     * upon releasing two workers, letting others take over.
714 <     */
715 <    private void releaseEventWaiters() {
706 >    private boolean scan(ForkJoinWorkerThread w, int a) {
707 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
708 >        int m = parallelism == 1 - a? 0 : g & SMASK;
709          ForkJoinWorkerThread[] ws = workers;
710 <        int n = ws.length;
711 <        long h = eventWaiters;
712 <        int ec = eventCount;
713 <        boolean releasedOne = false;
714 <        ForkJoinWorkerThread w; int id;
715 <        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
716 <               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
717 <               id < n && (w = ws[id]) != null) {
718 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
719 <                                          h,  w.nextWaiter)) {
720 <                LockSupport.unpark(w);
721 <                if (releasedOne) // exit on second release
722 <                    break;
723 <                releasedOne = true;
710 >        if (ws == null || ws.length <= m)         // staleness check
711 >            return false;
712 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
713 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
714 >            ForkJoinWorkerThread v = ws[k & m];
715 >            if (v != null && (b = v.queueBase) != v.queueTop &&
716 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
717 >                long u = (i << ASHIFT) + ABASE;
718 >                if ((t = q[i]) != null && v.queueBase == b &&
719 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
720 >                    int d = (v.queueBase = b + 1) - v.queueTop;
721 >                    v.stealHint = w.poolIndex;
722 >                    if (d != 0)
723 >                        signalWork();             // propagate if nonempty
724 >                    w.execTask(t);
725 >                }
726 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
727 >                return false;                     // store next seed
728              }
729 <            if (eventCount != ec)
730 <                break;
731 <            h = eventWaiters;
729 >            else if (j < 0) {                     // xorshift
730 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
731 >            }
732 >            else
733 >                ++k;
734 >        }
735 >        if (scanGuard != g)                       // staleness check
736 >            return false;
737 >        else {                                    // try to take submission
738 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
739 >            if ((b = queueBase) != queueTop &&
740 >                (q = submissionQueue) != null &&
741 >                (i = (q.length - 1) & b) >= 0) {
742 >                long u = (i << ASHIFT) + ABASE;
743 >                if ((t = q[i]) != null && queueBase == b &&
744 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
745 >                    queueBase = b + 1;
746 >                    w.execTask(t);
747 >                }
748 >                return false;
749 >            }
750 >            return true;                         // all queues empty
751          }
752      }
753  
754      /**
755 <     * Tries to advance eventCount and releases waiters. Called only
756 <     * from workers.
757 <     */
758 <    final void signalWork() {
759 <        int c; // try to increment event count -- CAS failure OK
760 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
761 <        if (eventWaiters != 0L)
762 <            releaseEventWaiters();
763 <    }
764 <
765 <    /**
766 <     * Adds the given worker to event queue and blocks until
767 <     * terminating or event count advances from the given value
768 <     *
769 <     * @param w the calling worker thread
770 <     * @param ec the count
771 <     */
772 <    private void eventSync(ForkJoinWorkerThread w, int ec) {
773 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
774 <        long h;
775 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
776 <               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
777 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
778 <               eventCount == ec) {
779 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
780 <                                          w.nextWaiter = h, nh)) {
781 <                awaitEvent(w, ec);
782 <                break;
755 >     * Tries to enqueue worker w in wait queue and await change in
756 >     * worker's eventCount.  If the pool is quiescent, possibly
757 >     * terminates worker upon exit.  Otherwise, before blocking,
758 >     * rescans queues to avoid missed signals.  Upon finding work,
759 >     * releases at least one worker (which may be the current
760 >     * worker). Rescans restart upon detected staleness or failure to
761 >     * release due to contention.
762 >     *
763 >     * @param w the calling worker
764 >     * @param c the ctl value on entry
765 >     * @return true if waited or another thread was released upon enq
766 >     */
767 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
768 >        int v = w.eventCount;
769 >        w.nextWait = (int)c;                      // w's successor record
770 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
771 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
772 >            long d = ctl; // return true if lost to a deq, to force scan
773 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
774 >        }
775 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
776 >            long s = stealCount;
777 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
778 >                sc = w.stealCount = 0;
779 >            else if (w.eventCount != v)
780 >                return true;                      // update next time
781 >        }
782 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
783 >            blockedCount == 0 && quiescerCount == 0)
784 >            idleAwaitWork(w, nc, c, v);           // quiescent
785 >        for (boolean rescanned = false;;) {
786 >            if (w.eventCount != v)
787 >                return true;
788 >            if (!rescanned) {
789 >                int g = scanGuard, m = g & SMASK;
790 >                ForkJoinWorkerThread[] ws = workers;
791 >                if (ws != null && m < ws.length) {
792 >                    rescanned = true;
793 >                    for (int i = 0; i <= m; ++i) {
794 >                        ForkJoinWorkerThread u = ws[i];
795 >                        if (u != null) {
796 >                            if (u.queueBase != u.queueTop &&
797 >                                !tryReleaseWaiter())
798 >                                rescanned = false; // contended
799 >                            if (w.eventCount != v)
800 >                                return true;
801 >                        }
802 >                    }
803 >                }
804 >                if (scanGuard != g ||              // stale
805 >                    (queueBase != queueTop && !tryReleaseWaiter()))
806 >                    rescanned = false;
807 >                if (!rescanned)
808 >                    Thread.yield();                // reduce contention
809 >                else
810 >                    Thread.interrupted();          // clear before park
811 >            }
812 >            else {
813 >                w.parked = true;                   // must recheck
814 >                if (w.eventCount != v) {
815 >                    w.parked = false;
816 >                    return true;
817 >                }
818 >                LockSupport.park(this);
819 >                rescanned = w.parked = false;
820              }
821          }
822      }
823  
824      /**
825 <     * Blocks the given worker (that has already been entered as an
826 <     * event waiter) until terminating or event count advances from
827 <     * the given value. The oldest (first) waiter uses a timed wait to
828 <     * occasionally one-by-one shrink the number of workers (to a
829 <     * minimum of one) if the pool has not been used for extended
830 <     * periods.
831 <     *
832 <     * @param w the calling worker thread
833 <     * @param ec the count
834 <     */
835 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
836 <        while (eventCount == ec) {
837 <            if (tryAccumulateStealCount(w)) { // transfer while idle
838 <                boolean untimed = (w.nextWaiter != 0L ||
839 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
840 <                long startTime = untimed? 0 : System.nanoTime();
841 <                Thread.interrupted();         // clear/ignore interrupt
842 <                if (eventCount != ec || w.runState != 0 ||
843 <                    runState >= TERMINATING)  // recheck after clear
825 >     * If inactivating worker w has caused pool to become
826 >     * quiescent, check for pool termination, and wait for event
827 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
828 >     * this case because quiescence reflects consensus about lack
829 >     * of work). On timeout, if ctl has not changed, terminate the
830 >     * worker. Upon its termination (see deregisterWorker), it may
831 >     * wake up another worker to possibly repeat this process.
832 >     *
833 >     * @param w the calling worker
834 >     * @param currentCtl the ctl value after enqueuing w
835 >     * @param prevCtl the ctl value if w terminated
836 >     * @param v the eventCount w awaits change
837 >     */
838 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
839 >                               long prevCtl, int v) {
840 >        if (w.eventCount == v) {
841 >            if (shutdown)
842 >                tryTerminate(false);
843 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
844 >            while (ctl == currentCtl) {
845 >                long startTime = System.nanoTime();
846 >                w.parked = true;
847 >                if (w.eventCount == v)             // must recheck
848 >                    LockSupport.parkNanos(this, SHRINK_RATE);
849 >                w.parked = false;
850 >                if (w.eventCount != v)
851 >                    break;
852 >                else if (System.nanoTime() - startTime < SHRINK_RATE)
853 >                    Thread.interrupted();          // spurious wakeup
854 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
855 >                                                   currentCtl, prevCtl)) {
856 >                    w.terminate = true;            // restore previous
857 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
858                      break;
792                if (untimed)
793                    LockSupport.park(w);
794                else {
795                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
796                    if (eventCount != ec || w.runState != 0 ||
797                        runState >= TERMINATING)
798                        break;
799                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800                        tryShutdownUnusedWorker(ec);
859                  }
860              }
861          }
862      }
863  
864 <    // Maintaining parallelism
864 >    // Submissions
865  
866      /**
867 <     * Pushes worker onto the spare stack.
867 >     * Enqueues the given task in the submissionQueue.  Same idea as
868 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
869 >     *
870 >     * @param t the task
871       */
872 <    final void pushSpare(ForkJoinWorkerThread w) {
873 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
874 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
875 <                                               w.nextSpare = spareWaiters,ns));
872 >    private void addSubmission(ForkJoinTask<?> t) {
873 >        final ReentrantLock lock = this.submissionLock;
874 >        lock.lock();
875 >        try {
876 >            ForkJoinTask<?>[] q; int s, m;
877 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
878 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
879 >                UNSAFE.putOrderedObject(q, u, t);
880 >                queueTop = s + 1;
881 >                if (s - queueBase == m)
882 >                    growSubmissionQueue();
883 >            }
884 >        } finally {
885 >            lock.unlock();
886 >        }
887 >        signalWork();
888      }
889  
890 +    //  (pollSubmission is defined below with exported methods)
891 +
892      /**
893 <     * Tries (once) to resume a spare if the number of running
894 <     * threads is less than target.
893 >     * Creates or doubles submissionQueue array.
894 >     * Basically identical to ForkJoinWorkerThread version
895       */
896 <    private void tryResumeSpare() {
897 <        int sw, id;
898 <        ForkJoinWorkerThread[] ws = workers;
899 <        int n = ws.length;
900 <        ForkJoinWorkerThread w;
901 <        if ((sw = spareWaiters) != 0 &&
902 <            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
903 <            id < n && (w = ws[id]) != null &&
904 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
905 <            spareWaiters == sw &&
906 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
907 <                                     sw, w.nextSpare)) {
908 <            int c; // increment running count before resume
909 <            do {} while (!UNSAFE.compareAndSwapInt
910 <                         (this, workerCountsOffset,
911 <                          c = workerCounts, c + ONE_RUNNING));
912 <            if (w.tryUnsuspend())
913 <                LockSupport.unpark(w);
914 <            else   // back out if w was shutdown
840 <                decrementWorkerCounts(ONE_RUNNING, 0);
896 >    private void growSubmissionQueue() {
897 >        ForkJoinTask<?>[] oldQ = submissionQueue;
898 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
899 >        if (size > MAXIMUM_QUEUE_CAPACITY)
900 >            throw new RejectedExecutionException("Queue capacity exceeded");
901 >        if (size < INITIAL_QUEUE_CAPACITY)
902 >            size = INITIAL_QUEUE_CAPACITY;
903 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
904 >        int mask = size - 1;
905 >        int top = queueTop;
906 >        int oldMask;
907 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
908 >            for (int b = queueBase; b != top; ++b) {
909 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
910 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
911 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
912 >                    UNSAFE.putObjectVolatile
913 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
914 >            }
915          }
916      }
917  
918 +    // Blocking support
919 +
920      /**
921 <     * Tries to increase the number of running workers if below target
922 <     * parallelism: If a spare exists tries to resume it via
923 <     * tryResumeSpare.  Otherwise, if not enough total workers or all
924 <     * existing workers are busy, adds a new worker. In all cases also
925 <     * helps wake up releasable workers waiting for work.
926 <     */
927 <    private void helpMaintainParallelism() {
928 <        int pc = parallelism;
929 <        int wc, rs, tc;
930 <        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
931 <               (rs = runState) < TERMINATING) {
932 <            if (spareWaiters != 0)
933 <                tryResumeSpare();
934 <            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
935 <                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
936 <                break;   // enough total
937 <            else if (runState == rs && workerCounts == wc &&
938 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
939 <                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
940 <                ForkJoinWorkerThread w = null;
941 <                try {
942 <                    w = factory.newThread(this);
943 <                } finally { // adjust on null or exceptional factory return
944 <                    if (w == null) {
945 <                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
946 <                        tryTerminate(false); // handle failure during shutdown
921 >     * Tries to increment blockedCount, decrement active count
922 >     * (sometimes implicitly) and possibly release or create a
923 >     * compensating worker in preparation for blocking. Fails
924 >     * on contention or termination.
925 >     *
926 >     * @return true if the caller can block, else should recheck and retry
927 >     */
928 >    private boolean tryPreBlock() {
929 >        int b = blockedCount;
930 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
931 >            int pc = parallelism;
932 >            do {
933 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
934 >                int e, ac, tc, rc, i;
935 >                long c = ctl;
936 >                int u = (int)(c >>> 32);
937 >                if ((e = (int)c) < 0) {
938 >                                                 // skip -- terminating
939 >                }
940 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
941 >                         (ws = workers) != null &&
942 >                         (i = ~e & SMASK) < ws.length &&
943 >                         (w = ws[i]) != null) {
944 >                    long nc = ((long)(w.nextWait & E_MASK) |
945 >                               (c & (AC_MASK|TC_MASK)));
946 >                    if (w.eventCount == e &&
947 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
948 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
949 >                        if (w.parked)
950 >                            UNSAFE.unpark(w);
951 >                        return true;             // release an idle worker
952                      }
953                  }
954 <                if (w == null)
955 <                    break;
956 <                w.start(recordWorker(w), ueh);
957 <                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877 <                    int c; // advance event count
878 <                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879 <                                             c = eventCount, c+1);
880 <                    break; // add at most one unless total below target
954 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
955 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
956 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
957 >                        return true;             // no compensation needed
958                  }
959 <            }
959 >                else if (tc + pc < MAX_ID) {
960 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
961 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
962 >                        addWorker();
963 >                        return true;            // create a replacement
964 >                    }
965 >                }
966 >                // try to back out on any failure and let caller retry
967 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
968 >                                               b = blockedCount, b - 1));
969          }
970 <        if (eventWaiters != 0L)
885 <            releaseEventWaiters();
970 >        return false;
971      }
972  
973      /**
974 <     * Callback from the oldest waiter in awaitEvent waking up after a
890 <     * period of non-use. If all workers are idle, tries (once) to
891 <     * shutdown an event waiter or a spare, if one exists. Note that
892 <     * we don't need CAS or locks here because the method is called
893 <     * only from one thread occasionally waking (and even misfires are
894 <     * OK). Note that until the shutdown worker fully terminates,
895 <     * workerCounts will overestimate total count, which is tolerable.
896 <     *
897 <     * @param ec the event count waited on by caller (to abort
898 <     * attempt if count has since changed).
974 >     * Decrements blockedCount and increments active count
975       */
976 <    private void tryShutdownUnusedWorker(int ec) {
977 <        if (runState == 0 && eventCount == ec) { // only trigger if all idle
978 <            ForkJoinWorkerThread[] ws = workers;
979 <            int n = ws.length;
980 <            ForkJoinWorkerThread w = null;
981 <            boolean shutdown = false;
982 <            int sw;
907 <            long h;
908 <            if ((sw = spareWaiters) != 0) { // prefer killing spares
909 <                int id = (sw & SPARE_ID_MASK) - 1;
910 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
911 <                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912 <                                             sw, w.nextSpare))
913 <                    shutdown = true;
914 <            }
915 <            else if ((h = eventWaiters) != 0L) {
916 <                long nh;
917 <                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 <                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921 <                    shutdown = true;
922 <            }
923 <            if (w != null && shutdown) {
924 <                w.shutdown();
925 <                LockSupport.unpark(w);
926 <            }
927 <        }
928 <        releaseEventWaiters(); // in case of interference
976 >    private void postBlock() {
977 >        long c;
978 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
979 >                                                c = ctl, c + AC_UNIT));
980 >        int b;
981 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
982 >                                              b = blockedCount, b - 1));
983      }
984  
985      /**
986 <     * Callback from workers invoked upon each top-level action (i.e.,
987 <     * stealing a task or taking a submission and running it).
934 <     * Performs one or more of the following:
935 <     *
936 <     * 1. If the worker is active and either did not run a task
937 <     *    or there are too many workers, try to set its active status
938 <     *    to inactive and update activeCount. On contention, we may
939 <     *    try again in this or a subsequent call.
940 <     *
941 <     * 2. If not enough total workers, help create some.
942 <     *
943 <     * 3. If there are too many running workers, suspend this worker
944 <     *    (first forcing inactive if necessary).  If it is not needed,
945 <     *    it may be shutdown while suspended (via
946 <     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947 <     *    rechecks running thread count and need for event sync.
948 <     *
949 <     * 4. If worker did not run a task, await the next task event via
950 <     *    eventSync if necessary (first forcing inactivation), upon
951 <     *    which the worker may be shutdown via
952 <     *    tryShutdownUnusedWorker.  Otherwise, help release any
953 <     *    existing event waiters that are now releasable,
986 >     * Possibly blocks waiting for the given task to complete, or
987 >     * cancels the task if terminating.  Fails to wait if contended.
988       *
989 <     * @param w the worker
956 <     * @param ran true if worker ran a task since last call to this method
989 >     * @param joinMe the task
990       */
991 <    final void preStep(ForkJoinWorkerThread w, boolean ran) {
992 <        int wec = w.lastEventCount;
993 <        boolean active = w.active;
994 <        boolean inactivate = false;
995 <        int pc = parallelism;
996 <        int rs;
997 <        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965 <            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966 <                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967 <                inactivate = active = w.active = false;
968 <            int wc = workerCounts;
969 <            if ((wc & RUNNING_COUNT_MASK) > pc) {
970 <                if (!(inactivate |= active) && // must inactivate to suspend
971 <                    workerCounts == wc &&      // try to suspend as spare
972 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973 <                                             wc, wc - ONE_RUNNING))
974 <                    w.suspendAsSpare();
975 <            }
976 <            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977 <                helpMaintainParallelism();     // not enough workers
978 <            else if (!ran) {
979 <                long h = eventWaiters;
980 <                int ec = eventCount;
981 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982 <                    releaseEventWaiters();     // release others before waiting
983 <                else if (ec != wec) {
984 <                    w.lastEventCount = ec;     // no need to wait
985 <                    break;
986 <                }
987 <                else if (!(inactivate |= active))
988 <                    eventSync(w, wec);         // must inactivate before sync
991 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
992 >        int s;
993 >        Thread.interrupted(); // clear interrupts before checking termination
994 >        if (joinMe.status >= 0) {
995 >            if (tryPreBlock()) {
996 >                joinMe.tryAwaitDone(0L);
997 >                postBlock();
998              }
999 <            else
1000 <                break;
999 >            if ((ctl & STOP_BIT) != 0L)
1000 >                joinMe.cancelIgnoringExceptions();
1001          }
1002      }
1003  
1004      /**
1005 <     * Helps and/or blocks awaiting join of the given task.
1006 <     * See above for explanation.
1005 >     * Possibly blocks the given worker waiting for joinMe to
1006 >     * complete or timeout
1007       *
1008 <     * @param joinMe the task to join
1009 <     * @param worker the current worker thread
1008 >     * @param joinMe the task
1009 >     * @param millis the wait time for underlying Object.wait
1010       */
1011 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1003 <        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1011 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1012          while (joinMe.status >= 0) {
1013 <            int wc;
1014 <            worker.helpJoinTask(joinMe);
1015 <            if (joinMe.status < 0)
1013 >            Thread.interrupted();
1014 >            if ((ctl & STOP_BIT) != 0L) {
1015 >                joinMe.cancelIgnoringExceptions();
1016 >                break;
1017 >            }
1018 >            if (tryPreBlock()) {
1019 >                long last = System.nanoTime();
1020 >                while (joinMe.status >= 0) {
1021 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1022 >                    if (millis <= 0)
1023 >                        break;
1024 >                    joinMe.tryAwaitDone(millis);
1025 >                    if (joinMe.status < 0)
1026 >                        break;
1027 >                    if ((ctl & STOP_BIT) != 0L) {
1028 >                        joinMe.cancelIgnoringExceptions();
1029 >                        break;
1030 >                    }
1031 >                    long now = System.nanoTime();
1032 >                    nanos -= now - last;
1033 >                    last = now;
1034 >                }
1035 >                postBlock();
1036                  break;
1009            else if (retries > 0)
1010                --retries;
1011            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1012                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1013                                              wc, wc - ONE_RUNNING)) {
1014                int stat, c; long h;
1015                while ((stat = joinMe.status) >= 0 &&
1016                       (h = eventWaiters) != 0L && // help release others
1017                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018                    releaseEventWaiters();
1019                if (stat >= 0 &&
1020                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021                     (stat =
1022                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023                    helpMaintainParallelism(); // timeout or no running workers
1024                do {} while (!UNSAFE.compareAndSwapInt
1025                             (this, workerCountsOffset,
1026                              c = workerCounts, c + ONE_RUNNING));
1027                if (stat < 0)
1028                    break;   // else restart
1037              }
1038          }
1039      }
1040  
1041      /**
1042 <     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1042 >     * If necessary, compensates for blocker, and blocks
1043       */
1044 <    final void awaitBlocker(ManagedBlocker blocker)
1044 >    private void awaitBlocker(ManagedBlocker blocker)
1045          throws InterruptedException {
1046          while (!blocker.isReleasable()) {
1047 <            int wc = workerCounts;
1040 <            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1041 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1042 <                                         wc, wc - ONE_RUNNING)) {
1047 >            if (tryPreBlock()) {
1048                  try {
1049 <                    while (!blocker.isReleasable()) {
1045 <                        long h = eventWaiters;
1046 <                        if (h != 0L &&
1047 <                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1048 <                            releaseEventWaiters();
1049 <                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1050 <                                 runState < TERMINATING)
1051 <                            helpMaintainParallelism();
1052 <                        else if (blocker.block())
1053 <                            break;
1054 <                    }
1049 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1050                  } finally {
1051 <                    int c;
1057 <                    do {} while (!UNSAFE.compareAndSwapInt
1058 <                                 (this, workerCountsOffset,
1059 <                                  c = workerCounts, c + ONE_RUNNING));
1051 >                    postBlock();
1052                  }
1053                  break;
1054              }
1055          }
1056      }
1057  
1058 +    // Creating, registering and deregistring workers
1059 +
1060 +    /**
1061 +     * Tries to create and start a worker; minimally rolls back counts
1062 +     * on failure.
1063 +     */
1064 +    private void addWorker() {
1065 +        Throwable ex = null;
1066 +        ForkJoinWorkerThread t = null;
1067 +        try {
1068 +            t = factory.newThread(this);
1069 +        } catch (Throwable e) {
1070 +            ex = e;
1071 +        }
1072 +        if (t == null) {  // null or exceptional factory return
1073 +            long c;       // adjust counts
1074 +            do {} while (!UNSAFE.compareAndSwapLong
1075 +                         (this, ctlOffset, c = ctl,
1076 +                          (((c - AC_UNIT) & AC_MASK) |
1077 +                           ((c - TC_UNIT) & TC_MASK) |
1078 +                           (c & ~(AC_MASK|TC_MASK)))));
1079 +            // Propagate exception if originating from an external caller
1080 +            if (!tryTerminate(false) && ex != null &&
1081 +                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1082 +                UNSAFE.throwException(ex);
1083 +        }
1084 +        else
1085 +            t.start();
1086 +    }
1087 +
1088 +    /**
1089 +     * Callback from ForkJoinWorkerThread constructor to assign a
1090 +     * public name
1091 +     */
1092 +    final String nextWorkerName() {
1093 +        for (int n;;) {
1094 +            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1095 +                                         n = nextWorkerNumber, ++n))
1096 +                return workerNamePrefix + n;
1097 +        }
1098 +    }
1099 +
1100 +    /**
1101 +     * Callback from ForkJoinWorkerThread constructor to
1102 +     * determine its poolIndex and record in workers array.
1103 +     *
1104 +     * @param w the worker
1105 +     * @return the worker's pool index
1106 +     */
1107 +    final int registerWorker(ForkJoinWorkerThread w) {
1108 +        /*
1109 +         * In the typical case, a new worker acquires the lock, uses
1110 +         * next available index and returns quickly.  Since we should
1111 +         * not block callers (ultimately from signalWork or
1112 +         * tryPreBlock) waiting for the lock needed to do this, we
1113 +         * instead help release other workers while waiting for the
1114 +         * lock.
1115 +         */
1116 +        for (int g;;) {
1117 +            ForkJoinWorkerThread[] ws;
1118 +            if (((g = scanGuard) & SG_UNIT) == 0 &&
1119 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1120 +                                         g, g | SG_UNIT)) {
1121 +                int k = nextWorkerIndex;
1122 +                try {
1123 +                    if ((ws = workers) != null) { // ignore on shutdown
1124 +                        int n = ws.length;
1125 +                        if (k < 0 || k >= n || ws[k] != null) {
1126 +                            for (k = 0; k < n && ws[k] != null; ++k)
1127 +                                ;
1128 +                            if (k == n)
1129 +                                ws = workers = Arrays.copyOf(ws, n << 1);
1130 +                        }
1131 +                        ws[k] = w;
1132 +                        nextWorkerIndex = k + 1;
1133 +                        int m = g & SMASK;
1134 +                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1135 +                    }
1136 +                } finally {
1137 +                    scanGuard = g;
1138 +                }
1139 +                return k;
1140 +            }
1141 +            else if ((ws = workers) != null) { // help release others
1142 +                for (ForkJoinWorkerThread u : ws) {
1143 +                    if (u != null && u.queueBase != u.queueTop) {
1144 +                        if (tryReleaseWaiter())
1145 +                            break;
1146 +                    }
1147 +                }
1148 +            }
1149 +        }
1150 +    }
1151 +
1152 +    /**
1153 +     * Final callback from terminating worker.  Removes record of
1154 +     * worker from array, and adjusts counts. If pool is shutting
1155 +     * down, tries to complete termination.
1156 +     *
1157 +     * @param w the worker
1158 +     */
1159 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1160 +        int idx = w.poolIndex;
1161 +        int sc = w.stealCount;
1162 +        int steps = 0;
1163 +        // Remove from array, adjust worker counts and collect steal count.
1164 +        // We can intermix failed removes or adjusts with steal updates
1165 +        do {
1166 +            long s, c;
1167 +            int g;
1168 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1169 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1170 +                                         g, g |= SG_UNIT)) {
1171 +                ForkJoinWorkerThread[] ws = workers;
1172 +                if (ws != null && idx >= 0 &&
1173 +                    idx < ws.length && ws[idx] == w)
1174 +                    ws[idx] = null;    // verify
1175 +                nextWorkerIndex = idx;
1176 +                scanGuard = g + SG_UNIT;
1177 +                steps = 1;
1178 +            }
1179 +            if (steps == 1 &&
1180 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1181 +                                          (((c - AC_UNIT) & AC_MASK) |
1182 +                                           ((c - TC_UNIT) & TC_MASK) |
1183 +                                           (c & ~(AC_MASK|TC_MASK)))))
1184 +                steps = 2;
1185 +            if (sc != 0 &&
1186 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1187 +                                          s = stealCount, s + sc))
1188 +                sc = 0;
1189 +        } while (steps != 2 || sc != 0);
1190 +        if (!tryTerminate(false)) {
1191 +            if (ex != null)   // possibly replace if died abnormally
1192 +                signalWork();
1193 +            else
1194 +                tryReleaseWaiter();
1195 +        }
1196 +    }
1197 +
1198 +    // Shutdown and termination
1199 +
1200      /**
1201       * Possibly initiates and/or completes termination.
1202       *
# Line 1071 | Line 1205 | public class ForkJoinPool extends Abstra
1205       * @return true if now terminating or terminated
1206       */
1207      private boolean tryTerminate(boolean now) {
1208 <        if (now)
1209 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1210 <        else if (runState < SHUTDOWN ||
1211 <                 !submissionQueue.isEmpty() ||
1212 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1213 <            return false;
1214 <
1215 <        if (advanceRunLevel(TERMINATING))
1216 <            startTerminating();
1217 <
1218 <        // Finish now if all threads terminated; else in some subsequent call
1219 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1220 <            advanceRunLevel(TERMINATED);
1221 <            termination.arrive();
1208 >        long c;
1209 >        while (((c = ctl) & STOP_BIT) == 0) {
1210 >            if (!now) {
1211 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1212 >                    return false;
1213 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1214 >                    queueTop - queueBase > 0) {
1215 >                    if (ctl == c) // staleness check
1216 >                        return false;
1217 >                    continue;
1218 >                }
1219 >            }
1220 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1221 >                startTerminating();
1222 >        }
1223 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1224 >            submissionLock.lock();
1225 >            termination.signalAll();
1226 >            submissionLock.unlock();
1227          }
1228          return true;
1229      }
1230  
1231      /**
1232 <     * Actions on transition to TERMINATING
1233 <     *
1234 <     * Runs up to four passes through workers: (0) shutting down each
1235 <     * (without waking up if parked) to quickly spread notifications
1236 <     * without unnecessary bouncing around event queues etc (1) wake
1237 <     * up and help cancel tasks (2) interrupt (3) mop up races with
1099 <     * interrupted workers
1232 >     * Runs up to three passes through workers: (0) Setting
1233 >     * termination status for each worker, followed by wakeups up
1234 >     * queued workers (1) helping cancel tasks (2) interrupting
1235 >     * lagging threads (likely in external tasks, but possibly also
1236 >     * blocked in joins).  Each pass repeats previous steps because of
1237 >     * potential lagging thread creation.
1238       */
1239      private void startTerminating() {
1240          cancelSubmissions();
1241 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1242 <            int c; // advance event count
1243 <            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1244 <                                     c = eventCount, c+1);
1245 <            eventWaiters = 0L; // clobber lists
1246 <            spareWaiters = 0;
1247 <            for (ForkJoinWorkerThread w : workers) {
1248 <                if (w != null) {
1249 <                    w.shutdown();
1250 <                    if (passes > 0 && !w.isTerminated()) {
1251 <                        w.cancelTasks();
1252 <                        LockSupport.unpark(w);
1253 <                        if (passes > 1) {
1116 <                            try {
1117 <                                w.interrupt();
1118 <                            } catch (SecurityException ignore) {
1241 >        for (int pass = 0; pass < 3; ++pass) {
1242 >            ForkJoinWorkerThread[] ws = workers;
1243 >            if (ws != null) {
1244 >                for (ForkJoinWorkerThread w : ws) {
1245 >                    if (w != null) {
1246 >                        w.terminate = true;
1247 >                        if (pass > 0) {
1248 >                            w.cancelTasks();
1249 >                            if (pass > 1 && !w.isInterrupted()) {
1250 >                                try {
1251 >                                    w.interrupt();
1252 >                                } catch (SecurityException ignore) {
1253 >                                }
1254                              }
1255                          }
1256                      }
1257                  }
1258 +                terminateWaiters();
1259              }
1260          }
1261      }
1262  
1263      /**
1264 <     * Clears out and cancels submissions, ignoring exceptions.
1264 >     * Polls and cancels all submissions. Called only during termination.
1265       */
1266      private void cancelSubmissions() {
1267 <        ForkJoinTask<?> task;
1268 <        while ((task = submissionQueue.poll()) != null) {
1269 <            try {
1270 <                task.cancel(false);
1271 <            } catch (Throwable ignore) {
1267 >        while (queueBase != queueTop) {
1268 >            ForkJoinTask<?> task = pollSubmission();
1269 >            if (task != null) {
1270 >                try {
1271 >                    task.cancel(false);
1272 >                } catch (Throwable ignore) {
1273 >                }
1274              }
1275          }
1276      }
1277  
1278 <    // misc support for ForkJoinWorkerThread
1278 >    /**
1279 >     * Tries to set the termination status of waiting workers, and
1280 >     * then wake them up (after which they will terminate).
1281 >     */
1282 >    private void terminateWaiters() {
1283 >        ForkJoinWorkerThread[] ws = workers;
1284 >        if (ws != null) {
1285 >            ForkJoinWorkerThread w; long c; int i, e;
1286 >            int n = ws.length;
1287 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1288 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1289 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1290 >                                              (long)(w.nextWait & E_MASK) |
1291 >                                              ((c + AC_UNIT) & AC_MASK) |
1292 >                                              (c & (TC_MASK|STOP_BIT)))) {
1293 >                    w.terminate = true;
1294 >                    w.eventCount = e + EC_UNIT;
1295 >                    if (w.parked)
1296 >                        UNSAFE.unpark(w);
1297 >                }
1298 >            }
1299 >        }
1300 >    }
1301 >
1302 >    // misc ForkJoinWorkerThread support
1303  
1304      /**
1305 <     * Returns pool number.
1305 >     * Increment or decrement quiescerCount. Needed only to prevent
1306 >     * triggering shutdown if a worker is transiently inactive while
1307 >     * checking quiescence.
1308 >     *
1309 >     * @param delta 1 for increment, -1 for decrement
1310       */
1311 <    final int getPoolNumber() {
1312 <        return poolNumber;
1311 >    final void addQuiescerCount(int delta) {
1312 >        int c;
1313 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1314 >                                              c = quiescerCount, c + delta));
1315      }
1316  
1317      /**
1318 <     * Tries to accumulate steal count from a worker, clearing
1319 <     * the worker's value if successful.
1318 >     * Directly increment or decrement active count without
1319 >     * queuing. This method is used to transiently assert inactivation
1320 >     * while checking quiescence.
1321       *
1322 <     * @return true if worker steal count now zero
1322 >     * @param delta 1 for increment, -1 for decrement
1323       */
1324 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1325 <        int sc = w.stealCount;
1326 <        long c = stealCount;
1327 <        // CAS even if zero, for fence effects
1328 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1329 <            if (sc != 0)
1161 <                w.stealCount = 0;
1162 <            return true;
1163 <        }
1164 <        return sc == 0;
1324 >    final void addActiveCount(int delta) {
1325 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1326 >        long c;
1327 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1328 >                                                ((c + d) & AC_MASK) |
1329 >                                                (c & ~AC_MASK)));
1330      }
1331  
1332      /**
# Line 1169 | Line 1334 | public class ForkJoinPool extends Abstra
1334       * active thread.
1335       */
1336      final int idlePerActive() {
1337 <        int pc = parallelism; // use parallelism, not rc
1338 <        int ac = runState;    // no mask -- artificially boosts during shutdown
1339 <        // Use exact results for small values, saturate past 4
1340 <        return ((pc <= ac) ? 0 :
1341 <                (pc >>> 1 <= ac) ? 1 :
1342 <                (pc >>> 2 <= ac) ? 3 :
1343 <                pc >>> 3);
1337 >        // Approximate at powers of two for small values, saturate past 4
1338 >        int p = parallelism;
1339 >        int a = p + (int)(ctl >> AC_SHIFT);
1340 >        return (a > (p >>>= 1) ? 0 :
1341 >                a > (p >>>= 1) ? 1 :
1342 >                a > (p >>>= 1) ? 2 :
1343 >                a > (p >>>= 1) ? 4 :
1344 >                8);
1345      }
1346  
1347 <    // Public and protected methods
1347 >    // Exported methods
1348  
1349      // Constructors
1350  
# Line 1247 | Line 1413 | public class ForkJoinPool extends Abstra
1413          checkPermission();
1414          if (factory == null)
1415              throw new NullPointerException();
1416 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1416 >        if (parallelism <= 0 || parallelism > MAX_ID)
1417              throw new IllegalArgumentException();
1418          this.parallelism = parallelism;
1419          this.factory = factory;
1420          this.ueh = handler;
1421          this.locallyFifo = asyncMode;
1422 <        int arraySize = initialArraySizeFor(parallelism);
1423 <        this.workers = new ForkJoinWorkerThread[arraySize];
1424 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1425 <        this.workerLock = new ReentrantLock();
1426 <        this.termination = new Phaser(1);
1427 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1428 <    }
1429 <
1430 <    /**
1431 <     * Returns initial power of two size for workers array.
1432 <     * @param pc the initial parallelism level
1433 <     */
1434 <    private static int initialArraySizeFor(int pc) {
1435 <        // If possible, initially allocate enough space for one spare
1436 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1437 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1438 <        size |= size >>> 1;
1273 <        size |= size >>> 2;
1274 <        size |= size >>> 4;
1275 <        size |= size >>> 8;
1276 <        return size + 1;
1422 >        long np = (long)(-parallelism); // offset ctl counts
1423 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1424 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1425 >        // initialize workers array with room for 2*parallelism if possible
1426 >        int n = parallelism << 1;
1427 >        if (n >= MAX_ID)
1428 >            n = MAX_ID;
1429 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1430 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1431 >        }
1432 >        workers = new ForkJoinWorkerThread[n + 1];
1433 >        this.submissionLock = new ReentrantLock();
1434 >        this.termination = submissionLock.newCondition();
1435 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1436 >        sb.append(poolNumberGenerator.incrementAndGet());
1437 >        sb.append("-worker-");
1438 >        this.workerNamePrefix = sb.toString();
1439      }
1440  
1441      // Execution methods
1442  
1443      /**
1282     * Common code for execute, invoke and submit
1283     */
1284    private <T> void doSubmit(ForkJoinTask<T> task) {
1285        if (task == null)
1286            throw new NullPointerException();
1287        if (runState >= SHUTDOWN)
1288            throw new RejectedExecutionException();
1289        submissionQueue.offer(task);
1290        int c; // try to increment event count -- CAS failure OK
1291        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1292        helpMaintainParallelism(); // create, start, or resume some workers
1293    }
1294
1295    /**
1444       * Performs the given task, returning its result upon completion.
1445 +     * If the computation encounters an unchecked Exception or Error,
1446 +     * it is rethrown as the outcome of this invocation.  Rethrown
1447 +     * exceptions behave in the same way as regular exceptions, but,
1448 +     * when possible, contain stack traces (as displayed for example
1449 +     * using {@code ex.printStackTrace()}) of both the current thread
1450 +     * as well as the thread actually encountering the exception;
1451 +     * minimally only the latter.
1452       *
1453       * @param task the task
1454       * @return the task's result
# Line 1302 | Line 1457 | public class ForkJoinPool extends Abstra
1457       *         scheduled for execution
1458       */
1459      public <T> T invoke(ForkJoinTask<T> task) {
1460 <        doSubmit(task);
1461 <        return task.join();
1460 >        Thread t = Thread.currentThread();
1461 >        if (task == null)
1462 >            throw new NullPointerException();
1463 >        if (shutdown)
1464 >            throw new RejectedExecutionException();
1465 >        if ((t instanceof ForkJoinWorkerThread) &&
1466 >            ((ForkJoinWorkerThread)t).pool == this)
1467 >            return task.invoke();  // bypass submit if in same pool
1468 >        else {
1469 >            addSubmission(task);
1470 >            return task.join();
1471 >        }
1472 >    }
1473 >
1474 >    /**
1475 >     * Unless terminating, forks task if within an ongoing FJ
1476 >     * computation in the current pool, else submits as external task.
1477 >     */
1478 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1479 >        ForkJoinWorkerThread w;
1480 >        Thread t = Thread.currentThread();
1481 >        if (shutdown)
1482 >            throw new RejectedExecutionException();
1483 >        if ((t instanceof ForkJoinWorkerThread) &&
1484 >            (w = (ForkJoinWorkerThread)t).pool == this)
1485 >            w.pushTask(task);
1486 >        else
1487 >            addSubmission(task);
1488      }
1489  
1490      /**
# Line 1315 | Line 1496 | public class ForkJoinPool extends Abstra
1496       *         scheduled for execution
1497       */
1498      public void execute(ForkJoinTask<?> task) {
1499 <        doSubmit(task);
1499 >        if (task == null)
1500 >            throw new NullPointerException();
1501 >        forkOrSubmit(task);
1502      }
1503  
1504      // AbstractExecutorService methods
# Line 1326 | Line 1509 | public class ForkJoinPool extends Abstra
1509       *         scheduled for execution
1510       */
1511      public void execute(Runnable task) {
1512 +        if (task == null)
1513 +            throw new NullPointerException();
1514          ForkJoinTask<?> job;
1515          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1516              job = (ForkJoinTask<?>) task;
1517          else
1518              job = ForkJoinTask.adapt(task, null);
1519 <        doSubmit(job);
1519 >        forkOrSubmit(job);
1520      }
1521  
1522      /**
# Line 1344 | Line 1529 | public class ForkJoinPool extends Abstra
1529       *         scheduled for execution
1530       */
1531      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1532 <        doSubmit(task);
1532 >        if (task == null)
1533 >            throw new NullPointerException();
1534 >        forkOrSubmit(task);
1535          return task;
1536      }
1537  
# Line 1354 | Line 1541 | public class ForkJoinPool extends Abstra
1541       *         scheduled for execution
1542       */
1543      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1544 +        if (task == null)
1545 +            throw new NullPointerException();
1546          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1547 <        doSubmit(job);
1547 >        forkOrSubmit(job);
1548          return job;
1549      }
1550  
# Line 1365 | Line 1554 | public class ForkJoinPool extends Abstra
1554       *         scheduled for execution
1555       */
1556      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1557 +        if (task == null)
1558 +            throw new NullPointerException();
1559          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1560 <        doSubmit(job);
1560 >        forkOrSubmit(job);
1561          return job;
1562      }
1563  
# Line 1376 | Line 1567 | public class ForkJoinPool extends Abstra
1567       *         scheduled for execution
1568       */
1569      public ForkJoinTask<?> submit(Runnable task) {
1570 +        if (task == null)
1571 +            throw new NullPointerException();
1572          ForkJoinTask<?> job;
1573          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1574              job = (ForkJoinTask<?>) task;
1575          else
1576              job = ForkJoinTask.adapt(task, null);
1577 <        doSubmit(job);
1577 >        forkOrSubmit(job);
1578          return job;
1579      }
1580  
# Line 1441 | Line 1634 | public class ForkJoinPool extends Abstra
1634  
1635      /**
1636       * Returns the number of worker threads that have started but not
1637 <     * yet terminated.  This result returned by this method may differ
1637 >     * yet terminated.  The result returned by this method may differ
1638       * from {@link #getParallelism} when threads are created to
1639       * maintain parallelism when others are cooperatively blocked.
1640       *
1641       * @return the number of worker threads
1642       */
1643      public int getPoolSize() {
1644 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1644 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1645      }
1646  
1647      /**
# Line 1470 | Line 1663 | public class ForkJoinPool extends Abstra
1663       * @return the number of worker threads
1664       */
1665      public int getRunningThreadCount() {
1666 <        return workerCounts & RUNNING_COUNT_MASK;
1666 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1667 >        return r <= 0? 0 : r; // suppress momentarily negative values
1668      }
1669  
1670      /**
# Line 1481 | Line 1675 | public class ForkJoinPool extends Abstra
1675       * @return the number of active threads
1676       */
1677      public int getActiveThreadCount() {
1678 <        return runState & ACTIVE_COUNT_MASK;
1678 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1679 >        return r <= 0? 0 : r; // suppress momentarily negative values
1680      }
1681  
1682      /**
# Line 1496 | Line 1691 | public class ForkJoinPool extends Abstra
1691       * @return {@code true} if all threads are currently idle
1692       */
1693      public boolean isQuiescent() {
1694 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1694 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1695      }
1696  
1697      /**
# Line 1526 | Line 1721 | public class ForkJoinPool extends Abstra
1721       */
1722      public long getQueuedTaskCount() {
1723          long count = 0;
1724 <        for (ForkJoinWorkerThread w : workers)
1725 <            if (w != null)
1726 <                count += w.getQueueSize();
1724 >        ForkJoinWorkerThread[] ws;
1725 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1726 >            (ws = workers) != null) {
1727 >            for (ForkJoinWorkerThread w : ws)
1728 >                if (w != null)
1729 >                    count -= w.queueBase - w.queueTop; // must read base first
1730 >        }
1731          return count;
1732      }
1733  
1734      /**
1735       * Returns an estimate of the number of tasks submitted to this
1736 <     * pool that have not yet begun executing.  This method takes time
1737 <     * proportional to the number of submissions.
1736 >     * pool that have not yet begun executing.  This method may take
1737 >     * time proportional to the number of submissions.
1738       *
1739       * @return the number of queued submissions
1740       */
1741      public int getQueuedSubmissionCount() {
1742 <        return submissionQueue.size();
1742 >        return -queueBase + queueTop;
1743      }
1744  
1745      /**
# Line 1550 | Line 1749 | public class ForkJoinPool extends Abstra
1749       * @return {@code true} if there are any queued submissions
1750       */
1751      public boolean hasQueuedSubmissions() {
1752 <        return !submissionQueue.isEmpty();
1752 >        return queueBase != queueTop;
1753      }
1754  
1755      /**
# Line 1561 | Line 1760 | public class ForkJoinPool extends Abstra
1760       * @return the next submission, or {@code null} if none
1761       */
1762      protected ForkJoinTask<?> pollSubmission() {
1763 <        return submissionQueue.poll();
1763 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1764 >        while ((b = queueBase) != queueTop &&
1765 >               (q = submissionQueue) != null &&
1766 >               (i = (q.length - 1) & b) >= 0) {
1767 >            long u = (i << ASHIFT) + ABASE;
1768 >            if ((t = q[i]) != null &&
1769 >                queueBase == b &&
1770 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1771 >                queueBase = b + 1;
1772 >                return t;
1773 >            }
1774 >        }
1775 >        return null;
1776      }
1777  
1778      /**
# Line 1582 | Line 1793 | public class ForkJoinPool extends Abstra
1793       * @return the number of elements transferred
1794       */
1795      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1796 <        int count = submissionQueue.drainTo(c);
1797 <        for (ForkJoinWorkerThread w : workers)
1798 <            if (w != null)
1799 <                count += w.drainTasksTo(c);
1796 >        int count = 0;
1797 >        while (queueBase != queueTop) {
1798 >            ForkJoinTask<?> t = pollSubmission();
1799 >            if (t != null) {
1800 >                c.add(t);
1801 >                ++count;
1802 >            }
1803 >        }
1804 >        ForkJoinWorkerThread[] ws;
1805 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1806 >            (ws = workers) != null) {
1807 >            for (ForkJoinWorkerThread w : ws)
1808 >                if (w != null)
1809 >                    count += w.drainTasksTo(c);
1810 >        }
1811          return count;
1812      }
1813  
# Line 1600 | Line 1822 | public class ForkJoinPool extends Abstra
1822          long st = getStealCount();
1823          long qt = getQueuedTaskCount();
1824          long qs = getQueuedSubmissionCount();
1603        int wc = workerCounts;
1604        int tc = wc >>> TOTAL_COUNT_SHIFT;
1605        int rc = wc & RUNNING_COUNT_MASK;
1825          int pc = parallelism;
1826 <        int rs = runState;
1827 <        int ac = rs & ACTIVE_COUNT_MASK;
1826 >        long c = ctl;
1827 >        int tc = pc + (short)(c >>> TC_SHIFT);
1828 >        int rc = pc + (int)(c >> AC_SHIFT);
1829 >        if (rc < 0) // ignore transient negative
1830 >            rc = 0;
1831 >        int ac = rc + blockedCount;
1832 >        String level;
1833 >        if ((c & STOP_BIT) != 0)
1834 >            level = (tc == 0)? "Terminated" : "Terminating";
1835 >        else
1836 >            level = shutdown? "Shutting down" : "Running";
1837          return super.toString() +
1838 <            "[" + runLevelToString(rs) +
1838 >            "[" + level +
1839              ", parallelism = " + pc +
1840              ", size = " + tc +
1841              ", active = " + ac +
# Line 1618 | Line 1846 | public class ForkJoinPool extends Abstra
1846              "]";
1847      }
1848  
1621    private static String runLevelToString(int s) {
1622        return ((s & TERMINATED) != 0 ? "Terminated" :
1623                ((s & TERMINATING) != 0 ? "Terminating" :
1624                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1625                  "Running")));
1626    }
1627
1849      /**
1850       * Initiates an orderly shutdown in which previously submitted
1851       * tasks are executed, but no new tasks will be accepted.
# Line 1639 | Line 1860 | public class ForkJoinPool extends Abstra
1860       */
1861      public void shutdown() {
1862          checkPermission();
1863 <        advanceRunLevel(SHUTDOWN);
1863 >        shutdown = true;
1864          tryTerminate(false);
1865      }
1866  
# Line 1661 | Line 1882 | public class ForkJoinPool extends Abstra
1882       */
1883      public List<Runnable> shutdownNow() {
1884          checkPermission();
1885 +        shutdown = true;
1886          tryTerminate(true);
1887          return Collections.emptyList();
1888      }
# Line 1671 | Line 1893 | public class ForkJoinPool extends Abstra
1893       * @return {@code true} if all tasks have completed following shut down
1894       */
1895      public boolean isTerminated() {
1896 <        return runState >= TERMINATED;
1896 >        long c = ctl;
1897 >        return ((c & STOP_BIT) != 0L &&
1898 >                (short)(c >>> TC_SHIFT) == -parallelism);
1899      }
1900  
1901      /**
# Line 1679 | Line 1903 | public class ForkJoinPool extends Abstra
1903       * commenced but not yet completed.  This method may be useful for
1904       * debugging. A return of {@code true} reported a sufficient
1905       * period after shutdown may indicate that submitted tasks have
1906 <     * ignored or suppressed interruption, causing this executor not
1907 <     * to properly terminate.
1906 >     * ignored or suppressed interruption, or are waiting for IO,
1907 >     * causing this executor not to properly terminate. (See the
1908 >     * advisory notes for class {@link ForkJoinTask} stating that
1909 >     * tasks should not normally entail blocking operations.  But if
1910 >     * they do, they must abort them on interrupt.)
1911       *
1912       * @return {@code true} if terminating but not yet terminated
1913       */
1914      public boolean isTerminating() {
1915 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1915 >        long c = ctl;
1916 >        return ((c & STOP_BIT) != 0L &&
1917 >                (short)(c >>> TC_SHIFT) != -parallelism);
1918 >    }
1919 >
1920 >    /**
1921 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1922 >     */
1923 >    final boolean isAtLeastTerminating() {
1924 >        return (ctl & STOP_BIT) != 0L;
1925      }
1926  
1927      /**
# Line 1694 | Line 1930 | public class ForkJoinPool extends Abstra
1930       * @return {@code true} if this pool has been shut down
1931       */
1932      public boolean isShutdown() {
1933 <        return runState >= SHUTDOWN;
1933 >        return shutdown;
1934      }
1935  
1936      /**
# Line 1710 | Line 1946 | public class ForkJoinPool extends Abstra
1946       */
1947      public boolean awaitTermination(long timeout, TimeUnit unit)
1948          throws InterruptedException {
1949 +        long nanos = unit.toNanos(timeout);
1950 +        final ReentrantLock lock = this.submissionLock;
1951 +        lock.lock();
1952          try {
1953 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1954 <        } catch (TimeoutException ex) {
1955 <            return false;
1953 >            for (;;) {
1954 >                if (isTerminated())
1955 >                    return true;
1956 >                if (nanos <= 0)
1957 >                    return false;
1958 >                nanos = termination.awaitNanos(nanos);
1959 >            }
1960 >        } finally {
1961 >            lock.unlock();
1962          }
1963      }
1964  
# Line 1725 | Line 1970 | public class ForkJoinPool extends Abstra
1970       * {@code isReleasable} must return {@code true} if blocking is
1971       * not necessary. Method {@code block} blocks the current thread
1972       * if necessary (perhaps internally invoking {@code isReleasable}
1973 <     * before actually blocking). The unusual methods in this API
1974 <     * accommodate synchronizers that may, but don't usually, block
1975 <     * for long periods. Similarly, they allow more efficient internal
1976 <     * handling of cases in which additional workers may be, but
1977 <     * usually are not, needed to ensure sufficient parallelism.
1978 <     * Toward this end, implementations of method {@code isReleasable}
1979 <     * must be amenable to repeated invocation.
1973 >     * before actually blocking). These actions are performed by any
1974 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1975 >     * unusual methods in this API accommodate synchronizers that may,
1976 >     * but don't usually, block for long periods. Similarly, they
1977 >     * allow more efficient internal handling of cases in which
1978 >     * additional workers may be, but usually are not, needed to
1979 >     * ensure sufficient parallelism.  Toward this end,
1980 >     * implementations of method {@code isReleasable} must be amenable
1981 >     * to repeated invocation.
1982       *
1983       * <p>For example, here is a ManagedBlocker based on a
1984       * ReentrantLock:
# Line 1833 | Line 2080 | public class ForkJoinPool extends Abstra
2080      }
2081  
2082      // Unsafe mechanics
2083 <
2084 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2085 <    private static final long workerCountsOffset =
2086 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2087 <    private static final long runStateOffset =
2088 <        objectFieldOffset("runState", ForkJoinPool.class);
2089 <    private static final long eventCountOffset =
2090 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2091 <    private static final long eventWaitersOffset =
2092 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2093 <    private static final long stealCountOffset =
2094 <        objectFieldOffset("stealCount",ForkJoinPool.class);
2095 <    private static final long spareWaitersOffset =
2096 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
2097 <
2098 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2083 >    private static final sun.misc.Unsafe UNSAFE;
2084 >    private static final long ctlOffset;
2085 >    private static final long stealCountOffset;
2086 >    private static final long blockedCountOffset;
2087 >    private static final long quiescerCountOffset;
2088 >    private static final long scanGuardOffset;
2089 >    private static final long nextWorkerNumberOffset;
2090 >    private static final long ABASE;
2091 >    private static final int ASHIFT;
2092 >
2093 >    static {
2094 >        poolNumberGenerator = new AtomicInteger();
2095 >        workerSeedGenerator = new Random();
2096 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2097 >        defaultForkJoinWorkerThreadFactory =
2098 >            new DefaultForkJoinWorkerThreadFactory();
2099 >        int s;
2100          try {
2101 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2102 <        } catch (NoSuchFieldException e) {
2103 <            // Convert Exception to corresponding Error
2104 <            NoSuchFieldError error = new NoSuchFieldError(field);
2105 <            error.initCause(e);
2106 <            throw error;
2107 <        }
2101 >            UNSAFE = getUnsafe();
2102 >            Class k = ForkJoinPool.class;
2103 >            ctlOffset = UNSAFE.objectFieldOffset
2104 >                (k.getDeclaredField("ctl"));
2105 >            stealCountOffset = UNSAFE.objectFieldOffset
2106 >                (k.getDeclaredField("stealCount"));
2107 >            blockedCountOffset = UNSAFE.objectFieldOffset
2108 >                (k.getDeclaredField("blockedCount"));
2109 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2110 >                (k.getDeclaredField("quiescerCount"));
2111 >            scanGuardOffset = UNSAFE.objectFieldOffset
2112 >                (k.getDeclaredField("scanGuard"));
2113 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2114 >                (k.getDeclaredField("nextWorkerNumber"));
2115 >            Class a = ForkJoinTask[].class;
2116 >            ABASE = UNSAFE.arrayBaseOffset(a);
2117 >            s = UNSAFE.arrayIndexScale(a);
2118 >        } catch (Exception e) {
2119 >            throw new Error(e);
2120 >        }
2121 >        if ((s & (s-1)) != 0)
2122 >            throw new Error("data type scale not a power of two");
2123 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2124      }
2125  
2126      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines