ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.40 by jsr166, Mon Aug 3 00:53:15 2009 UTC vs.
Revision 1.95 by dl, Fri Mar 4 13:29:39 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
32 < * monitoring operations.  Normally a single {@code ForkJoinPool} is
27 < * used for a large number of submitted tasks. Otherwise, use would
28 < * not usually outweigh the construction and bookkeeping overhead of
29 < * creating a large set of threads.
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34 < * <p>{@code ForkJoinPool}s differ from other kinds of {@link
35 < * Executor}s mainly in that they provide <em>work-stealing</em>: all
36 < * threads in the pool attempt to find and execute subtasks created by
37 < * other active tasks (eventually blocking if none exist). This makes
38 < * them efficient when most tasks spawn other subtasks (as do most
39 < * {@code ForkJoinTask}s), as well as the mixed execution of some
40 < * plain {@code Runnable}- or {@code Callable}- based activities along
41 < * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
42 < * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 < * with fine-grained tasks that are never joined. Otherwise, other
41 < * {@code ExecutorService} implementations are typically more
42 < * appropriate choices.
34 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 > * ExecutorService} mainly by virtue of employing
36 > * <em>work-stealing</em>: all threads in the pool attempt to find and
37 > * execute subtasks created by other active tasks (eventually blocking
38 > * waiting for work if none exist). This enables efficient processing
39 > * when most tasks spawn other subtasks (as do most {@code
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44 < * <p>A {@code ForkJoinPool} may be constructed with a given
45 < * parallelism level (target pool size), which it attempts to maintain
46 < * by dynamically adding, suspending, or resuming threads, even if
47 < * some tasks are waiting to join others. However, no such adjustments
48 < * are performed in the face of blocked IO or other unmanaged
49 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}) and thread construction can be limited
53 < * using methods {@link #setMaximumPoolSize} and/or {@link
54 < * #setMaintainsParallelism}.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 60 | Line 58 | import java.util.concurrent.atomic.Atomi
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 + * used for all parallel task execution in a program or subsystem.
97 + * Otherwise, use would not usually outweigh the construction and
98 + * bookkeeping overhead of creating a large set of threads. For
99 + * example, a common pool could be used for the {@code SortTasks}
100 + * illustrated in {@link RecursiveAction}. Because {@code
101 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 + * daemon} mode, there is typically no need to explicitly {@link
103 + * #shutdown} such a pool upon program exit.
104 + *
105 + * <pre>
106 + * static final ForkJoinPool mainPool = new ForkJoinPool();
107 + * ...
108 + * public void sort(long[] array) {
109 + *   mainPool.invoke(new SortTask(array, 0, array.length));
110 + * }
111 + * </pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
115 > * pools with greater than the maximum number result in
116   * {@code IllegalArgumentException}.
117   *
118 + * <p>This implementation rejects submitted tasks (that is, by throwing
119 + * {@link RejectedExecutionException}) only when the pool is shut down
120 + * or internal resources have been exhausted.
121 + *
122   * @since 1.7
123   * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300 >     *
301 >     * Style notes: There is a lot of representation-level coupling
302 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306 >     * workers, and direct access to ForkJoinTask.status by both
307 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308 >     * trying to reduce this, since any associated future changes in
309 >     * representations will need to be accompanied by algorithmic
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
78    /** Mask for packing and unpacking shorts */
79    private static final int  shortMask = 0xffff;
80
81    /** Max pool size -- must be a power of two minus 1 */
82    private static final int MAX_THREADS =  0x7FFF;
83
338      /**
339       * Factory for creating new {@link ForkJoinWorkerThread}s.
340       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 92 | Line 346 | public class ForkJoinPool extends Abstra
346           * Returns a new worker thread operating in the given pool.
347           *
348           * @param pool the pool this thread works in
349 <         * @throws NullPointerException if pool is null
349 >         * @throws NullPointerException if the pool is null
350           */
351          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352      }
# Line 101 | Line 355 | public class ForkJoinPool extends Abstra
355       * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 <            try {
108 <                return new ForkJoinWorkerThread(pool);
109 <            } catch (OutOfMemoryError oom)  {
110 <                return null;
111 <            }
361 >            return new ForkJoinWorkerThread(pool);
362          }
363      }
364  
# Line 117 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
121 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
128 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 140 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
144 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * Array holding all worker threads in the pool. Initialized upon
395 <     * first use. Array size must be a power of two.  Updates and
396 <     * replacements are protected by workerLock, but it is always kept
397 <     * in a consistent enough state to be randomly accessed without
398 <     * locking by workers performing work-stealing.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    volatile ForkJoinWorkerThread[] workers;
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Lock protecting access to workers.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private final ReentrantLock workerLock;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Condition for awaitTermination.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private final Condition termination;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420 >
421 >    /**
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426 >     */
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 >
429 >    /**
430 >     * Array serving as submission queue. Initialized upon construction.
431 >     */
432 >    private ForkJoinTask<?>[] submissionQueue;
433  
434      /**
435 <     * The uncaught exception handler used when any worker
167 <     * abruptly terminates
435 >     * Lock protecting submissions array for addSubmission
436       */
437 <    private Thread.UncaughtExceptionHandler ueh;
437 >    private final ReentrantLock submissionLock;
438 >
439 >    /**
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442 >     */
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 174 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Head of stack of threads that were created to maintain
452 <     * parallelism when other threads blocked, but have since
179 <     * suspended when the parallelism level rose.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile WaitQueueNode spareStack;
454 >    final Thread.UncaughtExceptionHandler ueh;
455  
456      /**
457 <     * Sum of per-thread steal counts, updated only when threads are
185 <     * idle or terminating.
457 >     * Prefix for assigning names to worker threads
458       */
459 <    private final AtomicLong stealCount;
459 >    private final String workerNamePrefix;
460  
461      /**
462 <     * Queue for external submissions.
462 >     * Sum of per-thread steal counts, updated only when threads are
463 >     * idle or terminating.
464       */
465 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Head of Treiber stack for barrier sync. See below for explanation.
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487       */
488 <    private volatile WaitQueueNode syncStack;
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * The count for event barrier
524 >     * The target parallelism level.
525       */
526 <    private volatile long eventCount;
526 >    final int parallelism;
527  
528      /**
529 <     * Pool number, just for assigning useful names to worker threads
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private final int poolNumber;
534 >    volatile int queueBase;
535  
536      /**
537 <     * The maximum allowed pool size
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private volatile int maxPoolSize;
542 >    int queueTop;
543  
544      /**
545 <     * The desired parallelism level, updated only under workerLock.
545 >     * True when shutdown() has been called.
546       */
547 <    private volatile int parallelism;
547 >    volatile boolean shutdown;
548  
549      /**
550       * True if use local fifo, not default lifo, for local polling
551 +     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private volatile boolean locallyFifo;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * Holds number of total (i.e., created and not yet terminated)
557 <     * and running (i.e., not blocked on joins or other managed sync)
558 <     * threads, packed into one int to ensure consistent snapshot when
228 <     * making decisions about creating and suspending spare
229 <     * threads. Updated only by CAS.  Note: CASes in
230 <     * updateRunningCount and preJoin assume that running active count
231 <     * is in low word, so need to be modified if this changes.
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private volatile int workerCounts;
560 >    volatile int quiescerCount;
561  
562 <    private static int totalCountOf(int s)           { return s >>> 16;  }
563 <    private static int runningCountOf(int s)         { return s & shortMask; }
564 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
562 >    /**
563 >     * The number of threads blocked in join.
564 >     */
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Adds delta (which may be negative) to running count.  This must
241 <     * be called before (with negative arg) and after (with positive)
242 <     * any managed synchronization (i.e., mainly, joins).
243 <     *
244 <     * @param delta the number to add
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void updateRunningCount(int delta) {
247 <        int s;
248 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
249 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Adds delta (which may be negative) to both total and running
253 <     * count.  This must be called upon creation and termination of
254 <     * worker threads.
255 <     *
256 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    private void updateWorkerCount(int delta) {
259 <        int d = delta + (delta << 16); // add to both lo and hi parts
260 <        int s;
261 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
262 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Lifecycle control. High word contains runState, low word
579 <     * contains the number of workers that are (probably) executing
580 <     * tasks. This value is atomically incremented before a worker
581 <     * gets a task to run, and decremented when worker has no tasks
582 <     * and cannot find any. These two fields are bundled together to
583 <     * support correct termination triggering.  Note: activeCount
584 <     * CAS'es cheat by assuming active count is in low word, so need
585 <     * to be modified if this changes
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private volatile int runControl;
587 >    volatile int scanGuard;
588  
589 <    // RunState values. Order among values matters
277 <    private static final int RUNNING     = 0;
278 <    private static final int SHUTDOWN    = 1;
279 <    private static final int TERMINATING = 2;
280 <    private static final int TERMINATED  = 3;
589 >    private static final int SG_UNIT = 1 << 16;
590  
591 <    private static int runStateOf(int c)             { return c >>> 16; }
592 <    private static int activeCountOf(int c)          { return c & shortMask; }
593 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
591 >    /**
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598 >     */
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Tries incrementing active count; fails on contention.
604 <     * Called by workers before/during executing tasks.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608       *
609 <     * @return true on success
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Tries decrementing active count; fails on contention.
299 <     * Possibly triggers termination on success.
300 <     * Called by workers when they can't find tasks.
301 <     *
302 <     * @return true on success
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c = runControl;
630 <        int nextc = c - 1;
631 <        if (!casRunControl(c, nextc))
632 <            return false;
633 <        if (canTerminateOnShutdown(nextc))
634 <            terminateOnShutdown();
635 <        return true;
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Returns {@code true} if argument represents zero active count
671 <     * and nonzero runstate, which is the triggering condition for
672 <     * terminating on shutdown.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private static boolean canTerminateOnShutdown(int c) {
676 <        // i.e. least bit is nonzero runState bit
677 <        return ((c & -c) >>> 16) != 0;
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690 >        }
691 >        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Transition run state to at least the given state. Return true
698 <     * if not already at least given state.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private boolean transitionRunStateTo(int state) {
716 <        for (;;) {
717 <            int c = runControl;
718 <            if (runStateOf(c) >= state)
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = parallelism == 1 - a? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737 >            }
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757                  return false;
758 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
758 >            }
759 >            return true;                         // all queues empty
760 >        }
761 >    }
762 >
763 >    /**
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent, possibly
766 >     * terminates worker upon exit.  Otherwise, before blocking,
767 >     * rescans queues to avoid missed signals.  Upon finding work,
768 >     * releases at least one worker (which may be the current
769 >     * worker). Rescans restart upon detected staleness or failure to
770 >     * release due to contention. Note the unusual conventions about
771 >     * Thread.interrupt here and elsewhere: Because interrupts are
772 >     * used solely to alert threads to check termination, which is
773 >     * checked here anyway, we clear status (using Thread.interrupted)
774 >     * before any call to park, so that park does not immediately
775 >     * return due to status being set via some other unrelated call to
776 >     * interrupt in user code.
777 >     *
778 >     * @param w the calling worker
779 >     * @param c the ctl value on entry
780 >     * @return true if waited or another thread was released upon enq
781 >     */
782 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783 >        int v = w.eventCount;
784 >        w.nextWait = (int)c;                      // w's successor record
785 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 >            long d = ctl; // return true if lost to a deq, to force scan
788 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789 >        }
790 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
791 >            long s = stealCount;
792 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793 >                sc = w.stealCount = 0;
794 >            else if (w.eventCount != v)
795 >                return true;                      // update next time
796 >        }
797 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802                  return true;
803 +            if (!rescanned) {
804 +                int g = scanGuard, m = g & SMASK;
805 +                ForkJoinWorkerThread[] ws = workers;
806 +                if (ws != null && m < ws.length) {
807 +                    rescanned = true;
808 +                    for (int i = 0; i <= m; ++i) {
809 +                        ForkJoinWorkerThread u = ws[i];
810 +                        if (u != null) {
811 +                            if (u.queueBase != u.queueTop &&
812 +                                !tryReleaseWaiter())
813 +                                rescanned = false; // contended
814 +                            if (w.eventCount != v)
815 +                                return true;
816 +                        }
817 +                    }
818 +                }
819 +                if (scanGuard != g ||              // stale
820 +                    (queueBase != queueTop && !tryReleaseWaiter()))
821 +                    rescanned = false;
822 +                if (!rescanned)
823 +                    Thread.yield();                // reduce contention
824 +                else
825 +                    Thread.interrupted();          // clear before park
826 +            }
827 +            else {
828 +                w.parked = true;                   // must recheck
829 +                if (w.eventCount != v) {
830 +                    w.parked = false;
831 +                    return true;
832 +                }
833 +                LockSupport.park(this);
834 +                rescanned = w.parked = false;
835 +            }
836          }
837      }
838  
839      /**
840 <     * Controls whether to add spares to maintain parallelism
841 <     */
842 <    private volatile boolean maintainsParallelism;
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime < SHRINK_RATE)
868 >                    Thread.interrupted();          // spurious wakeup
869 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
870 >                                                   currentCtl, prevCtl)) {
871 >                    w.terminate = true;            // restore previous
872 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
873 >                    break;
874 >                }
875 >            }
876 >        }
877 >    }
878  
879 <    // Constructors
879 >    // Submissions
880  
881      /**
882 <     * Creates a ForkJoinPool with a pool size equal to the number of
883 <     * processors available on the system, using the default
348 <     * ForkJoinWorkerThreadFactory.
882 >     * Enqueues the given task in the submissionQueue.  Same idea as
883 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
884       *
885 <     * @throws SecurityException if a security manager exists and
351 <     *         the caller is not permitted to modify threads
352 <     *         because it does not hold {@link
353 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
885 >     * @param t the task
886       */
887 <    public ForkJoinPool() {
888 <        this(Runtime.getRuntime().availableProcessors(),
889 <             defaultForkJoinWorkerThreadFactory);
887 >    private void addSubmission(ForkJoinTask<?> t) {
888 >        final ReentrantLock lock = this.submissionLock;
889 >        lock.lock();
890 >        try {
891 >            ForkJoinTask<?>[] q; int s, m;
892 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
893 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
894 >                UNSAFE.putOrderedObject(q, u, t);
895 >                queueTop = s + 1;
896 >                if (s - queueBase == m)
897 >                    growSubmissionQueue();
898 >            }
899 >        } finally {
900 >            lock.unlock();
901 >        }
902 >        signalWork();
903      }
904  
905 +    //  (pollSubmission is defined below with exported methods)
906 +
907      /**
908 <     * Creates a ForkJoinPool with the indicated parallelism level
909 <     * threads and using the default ForkJoinWorkerThreadFactory.
363 <     *
364 <     * @param parallelism the number of worker threads
365 <     * @throws IllegalArgumentException if parallelism less than or
366 <     * equal to zero
367 <     * @throws SecurityException if a security manager exists and
368 <     *         the caller is not permitted to modify threads
369 <     *         because it does not hold {@link
370 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
908 >     * Creates or doubles submissionQueue array.
909 >     * Basically identical to ForkJoinWorkerThread version.
910       */
911 <    public ForkJoinPool(int parallelism) {
912 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
911 >    private void growSubmissionQueue() {
912 >        ForkJoinTask<?>[] oldQ = submissionQueue;
913 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
914 >        if (size > MAXIMUM_QUEUE_CAPACITY)
915 >            throw new RejectedExecutionException("Queue capacity exceeded");
916 >        if (size < INITIAL_QUEUE_CAPACITY)
917 >            size = INITIAL_QUEUE_CAPACITY;
918 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
919 >        int mask = size - 1;
920 >        int top = queueTop;
921 >        int oldMask;
922 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
923 >            for (int b = queueBase; b != top; ++b) {
924 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
925 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
926 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
927 >                    UNSAFE.putObjectVolatile
928 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
929 >            }
930 >        }
931 >    }
932 >
933 >    // Blocking support
934 >
935 >    /**
936 >     * Tries to increment blockedCount, decrement active count
937 >     * (sometimes implicitly) and possibly release or create a
938 >     * compensating worker in preparation for blocking. Fails
939 >     * on contention or termination.
940 >     *
941 >     * @return true if the caller can block, else should recheck and retry
942 >     */
943 >    private boolean tryPreBlock() {
944 >        int b = blockedCount;
945 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
946 >            int pc = parallelism;
947 >            do {
948 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
949 >                int e, ac, tc, rc, i;
950 >                long c = ctl;
951 >                int u = (int)(c >>> 32);
952 >                if ((e = (int)c) < 0) {
953 >                                                 // skip -- terminating
954 >                }
955 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
956 >                         (ws = workers) != null &&
957 >                         (i = ~e & SMASK) < ws.length &&
958 >                         (w = ws[i]) != null) {
959 >                    long nc = ((long)(w.nextWait & E_MASK) |
960 >                               (c & (AC_MASK|TC_MASK)));
961 >                    if (w.eventCount == e &&
962 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
963 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
964 >                        if (w.parked)
965 >                            UNSAFE.unpark(w);
966 >                        return true;             // release an idle worker
967 >                    }
968 >                }
969 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
970 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
971 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
972 >                        return true;             // no compensation needed
973 >                }
974 >                else if (tc + pc < MAX_ID) {
975 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
976 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
977 >                        addWorker();
978 >                        return true;            // create a replacement
979 >                    }
980 >                }
981 >                // try to back out on any failure and let caller retry
982 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
983 >                                               b = blockedCount, b - 1));
984 >        }
985 >        return false;
986      }
987  
988      /**
989 <     * Creates a ForkJoinPool with parallelism equal to the number of
378 <     * processors available on the system and using the given
379 <     * ForkJoinWorkerThreadFactory.
380 <     *
381 <     * @param factory the factory for creating new threads
382 <     * @throws NullPointerException if factory is null
383 <     * @throws SecurityException if a security manager exists and
384 <     *         the caller is not permitted to modify threads
385 <     *         because it does not hold {@link
386 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
989 >     * Decrements blockedCount and increments active count
990       */
991 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
992 <        this(Runtime.getRuntime().availableProcessors(), factory);
991 >    private void postBlock() {
992 >        long c;
993 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
994 >                                                c = ctl, c + AC_UNIT));
995 >        int b;
996 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
997 >                                              b = blockedCount, b - 1));
998      }
999  
1000      /**
1001 <     * Creates a ForkJoinPool with the given parallelism and factory.
1001 >     * Possibly blocks waiting for the given task to complete, or
1002 >     * cancels the task if terminating.  Fails to wait if contended.
1003       *
1004 <     * @param parallelism the targeted number of worker threads
396 <     * @param factory the factory for creating new threads
397 <     * @throws IllegalArgumentException if parallelism less than or
398 <     * equal to zero, or greater than implementation limit
399 <     * @throws NullPointerException if factory is null
400 <     * @throws SecurityException if a security manager exists and
401 <     *         the caller is not permitted to modify threads
402 <     *         because it does not hold {@link
403 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1004 >     * @param joinMe the task
1005       */
1006 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1007 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1008 <            throw new IllegalArgumentException();
1009 <        if (factory == null)
1010 <            throw new NullPointerException();
1011 <        checkPermission();
1012 <        this.factory = factory;
1013 <        this.parallelism = parallelism;
1014 <        this.maxPoolSize = MAX_THREADS;
1015 <        this.maintainsParallelism = true;
1016 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
416 <        this.workerLock = new ReentrantLock();
417 <        this.termination = workerLock.newCondition();
418 <        this.stealCount = new AtomicLong();
419 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
420 <        // worker array and workers are lazily constructed
1006 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1007 >        int s;
1008 >        Thread.interrupted(); // clear interrupts before checking termination
1009 >        if (joinMe.status >= 0) {
1010 >            if (tryPreBlock()) {
1011 >                joinMe.tryAwaitDone(0L);
1012 >                postBlock();
1013 >            }
1014 >            else if ((ctl & STOP_BIT) != 0L)
1015 >                joinMe.cancelIgnoringExceptions();
1016 >        }
1017      }
1018  
1019      /**
1020 <     * Creates a new worker thread using factory.
1020 >     * Possibly blocks the given worker waiting for joinMe to
1021 >     * complete or timeout
1022       *
1023 <     * @param index the index to assign worker
1024 <     * @return new worker, or null of factory failed
1023 >     * @param joinMe the task
1024 >     * @param millis the wait time for underlying Object.wait
1025       */
1026 <    private ForkJoinWorkerThread createWorker(int index) {
1027 <        Thread.UncaughtExceptionHandler h = ueh;
1028 <        ForkJoinWorkerThread w = factory.newThread(this);
1029 <        if (w != null) {
1030 <            w.poolIndex = index;
1031 <            w.setDaemon(true);
1032 <            w.setAsyncMode(locallyFifo);
1033 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1034 <            if (h != null)
1035 <                w.setUncaughtExceptionHandler(h);
1026 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1027 >        while (joinMe.status >= 0) {
1028 >            Thread.interrupted();
1029 >            if ((ctl & STOP_BIT) != 0L) {
1030 >                joinMe.cancelIgnoringExceptions();
1031 >                break;
1032 >            }
1033 >            if (tryPreBlock()) {
1034 >                long last = System.nanoTime();
1035 >                while (joinMe.status >= 0) {
1036 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1037 >                    if (millis <= 0)
1038 >                        break;
1039 >                    joinMe.tryAwaitDone(millis);
1040 >                    if (joinMe.status < 0)
1041 >                        break;
1042 >                    if ((ctl & STOP_BIT) != 0L) {
1043 >                        joinMe.cancelIgnoringExceptions();
1044 >                        break;
1045 >                    }
1046 >                    long now = System.nanoTime();
1047 >                    nanos -= now - last;
1048 >                    last = now;
1049 >                }
1050 >                postBlock();
1051 >                break;
1052 >            }
1053          }
440        return w;
1054      }
1055  
1056      /**
1057 <     * Returns a good size for worker array given pool size.
445 <     * Currently requires size to be a power of two.
1057 >     * If necessary, compensates for blocker, and blocks
1058       */
1059 <    private static int arraySizeFor(int poolSize) {
1060 <        return (poolSize <= 1) ? 1 :
1061 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
1059 >    private void awaitBlocker(ManagedBlocker blocker)
1060 >        throws InterruptedException {
1061 >        while (!blocker.isReleasable()) {
1062 >            if (tryPreBlock()) {
1063 >                try {
1064 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1065 >                } finally {
1066 >                    postBlock();
1067 >                }
1068 >                break;
1069 >            }
1070 >        }
1071      }
1072  
1073 +    // Creating, registering and deregistring workers
1074 +
1075      /**
1076 <     * Creates or resizes array if necessary to hold newLength.
1077 <     * Call only under exclusion.
455 <     *
456 <     * @return the array
1076 >     * Tries to create and start a worker; minimally rolls back counts
1077 >     * on failure.
1078       */
1079 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1080 <        ForkJoinWorkerThread[] ws = workers;
1081 <        if (ws == null)
1082 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1083 <        else if (newLength > ws.length)
1084 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1079 >    private void addWorker() {
1080 >        Throwable ex = null;
1081 >        ForkJoinWorkerThread t = null;
1082 >        try {
1083 >            t = factory.newThread(this);
1084 >        } catch (Throwable e) {
1085 >            ex = e;
1086 >        }
1087 >        if (t == null) {  // null or exceptional factory return
1088 >            long c;       // adjust counts
1089 >            do {} while (!UNSAFE.compareAndSwapLong
1090 >                         (this, ctlOffset, c = ctl,
1091 >                          (((c - AC_UNIT) & AC_MASK) |
1092 >                           ((c - TC_UNIT) & TC_MASK) |
1093 >                           (c & ~(AC_MASK|TC_MASK)))));
1094 >            // Propagate exception if originating from an external caller
1095 >            if (!tryTerminate(false) && ex != null &&
1096 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1097 >                UNSAFE.throwException(ex);
1098 >        }
1099          else
1100 <            return ws;
1100 >            t.start();
1101      }
1102  
1103      /**
1104 <     * Tries to shrink workers into smaller array after one or more terminate.
1104 >     * Callback from ForkJoinWorkerThread constructor to assign a
1105 >     * public name
1106       */
1107 <    private void tryShrinkWorkerArray() {
1108 <        ForkJoinWorkerThread[] ws = workers;
1109 <        if (ws != null) {
1110 <            int len = ws.length;
1111 <            int last = len - 1;
476 <            while (last >= 0 && ws[last] == null)
477 <                --last;
478 <            int newLength = arraySizeFor(last+1);
479 <            if (newLength < len)
480 <                workers = Arrays.copyOf(ws, newLength);
1107 >    final String nextWorkerName() {
1108 >        for (int n;;) {
1109 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1110 >                                         n = nextWorkerNumber, ++n))
1111 >                return workerNamePrefix + n;
1112          }
1113      }
1114  
1115      /**
1116 <     * Initializes workers if necessary.
1116 >     * Callback from ForkJoinWorkerThread constructor to
1117 >     * determine its poolIndex and record in workers array.
1118 >     *
1119 >     * @param w the worker
1120 >     * @return the worker's pool index
1121       */
1122 <    final void ensureWorkerInitialization() {
1123 <        ForkJoinWorkerThread[] ws = workers;
1124 <        if (ws == null) {
1125 <            final ReentrantLock lock = this.workerLock;
1126 <            lock.lock();
1127 <            try {
1128 <                ws = workers;
1129 <                if (ws == null) {
1130 <                    int ps = parallelism;
1131 <                    ws = ensureWorkerArrayCapacity(ps);
1132 <                    for (int i = 0; i < ps; ++i) {
1133 <                        ForkJoinWorkerThread w = createWorker(i);
1134 <                        if (w != null) {
1135 <                            ws[i] = w;
1136 <                            w.start();
1137 <                            updateWorkerCount(1);
1122 >    final int registerWorker(ForkJoinWorkerThread w) {
1123 >        /*
1124 >         * In the typical case, a new worker acquires the lock, uses
1125 >         * next available index and returns quickly.  Since we should
1126 >         * not block callers (ultimately from signalWork or
1127 >         * tryPreBlock) waiting for the lock needed to do this, we
1128 >         * instead help release other workers while waiting for the
1129 >         * lock.
1130 >         */
1131 >        for (int g;;) {
1132 >            ForkJoinWorkerThread[] ws;
1133 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1134 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1135 >                                         g, g | SG_UNIT)) {
1136 >                int k = nextWorkerIndex;
1137 >                try {
1138 >                    if ((ws = workers) != null) { // ignore on shutdown
1139 >                        int n = ws.length;
1140 >                        if (k < 0 || k >= n || ws[k] != null) {
1141 >                            for (k = 0; k < n && ws[k] != null; ++k)
1142 >                                ;
1143 >                            if (k == n)
1144 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1145                          }
1146 +                        ws[k] = w;
1147 +                        nextWorkerIndex = k + 1;
1148 +                        int m = g & SMASK;
1149 +                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1150 +                    }
1151 +                } finally {
1152 +                    scanGuard = g;
1153 +                }
1154 +                return k;
1155 +            }
1156 +            else if ((ws = workers) != null) { // help release others
1157 +                for (ForkJoinWorkerThread u : ws) {
1158 +                    if (u != null && u.queueBase != u.queueTop) {
1159 +                        if (tryReleaseWaiter())
1160 +                            break;
1161                      }
1162                  }
1163 +            }
1164 +        }
1165 +    }
1166 +
1167 +    /**
1168 +     * Final callback from terminating worker.  Removes record of
1169 +     * worker from array, and adjusts counts. If pool is shutting
1170 +     * down, tries to complete termination.
1171 +     *
1172 +     * @param w the worker
1173 +     */
1174 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1175 +        int idx = w.poolIndex;
1176 +        int sc = w.stealCount;
1177 +        int steps = 0;
1178 +        // Remove from array, adjust worker counts and collect steal count.
1179 +        // We can intermix failed removes or adjusts with steal updates
1180 +        do {
1181 +            long s, c;
1182 +            int g;
1183 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1184 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1185 +                                         g, g |= SG_UNIT)) {
1186 +                ForkJoinWorkerThread[] ws = workers;
1187 +                if (ws != null && idx >= 0 &&
1188 +                    idx < ws.length && ws[idx] == w)
1189 +                    ws[idx] = null;    // verify
1190 +                nextWorkerIndex = idx;
1191 +                scanGuard = g + SG_UNIT;
1192 +                steps = 1;
1193 +            }
1194 +            if (steps == 1 &&
1195 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1196 +                                          (((c - AC_UNIT) & AC_MASK) |
1197 +                                           ((c - TC_UNIT) & TC_MASK) |
1198 +                                           (c & ~(AC_MASK|TC_MASK)))))
1199 +                steps = 2;
1200 +            if (sc != 0 &&
1201 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1202 +                                          s = stealCount, s + sc))
1203 +                sc = 0;
1204 +        } while (steps != 2 || sc != 0);
1205 +        if (!tryTerminate(false)) {
1206 +            if (ex != null)   // possibly replace if died abnormally
1207 +                signalWork();
1208 +            else
1209 +                tryReleaseWaiter();
1210 +        }
1211 +    }
1212 +
1213 +    // Shutdown and termination
1214 +
1215 +    /**
1216 +     * Possibly initiates and/or completes termination.
1217 +     *
1218 +     * @param now if true, unconditionally terminate, else only
1219 +     * if shutdown and empty queue and no active workers
1220 +     * @return true if now terminating or terminated
1221 +     */
1222 +    private boolean tryTerminate(boolean now) {
1223 +        long c;
1224 +        while (((c = ctl) & STOP_BIT) == 0) {
1225 +            if (!now) {
1226 +                if ((int)(c >> AC_SHIFT) != -parallelism)
1227 +                    return false;
1228 +                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1229 +                    queueBase != queueTop) {
1230 +                    if (ctl == c) // staleness check
1231 +                        return false;
1232 +                    continue;
1233 +                }
1234 +            }
1235 +            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1236 +                startTerminating();
1237 +        }
1238 +        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1239 +            final ReentrantLock lock = this.submissionLock;
1240 +            lock.lock();
1241 +            try {
1242 +                termination.signalAll();
1243              } finally {
1244                  lock.unlock();
1245              }
1246          }
1247 +        return true;
1248      }
1249  
1250      /**
1251 <     * Worker creation and startup for threads added via setParallelism.
1252 <     */
1253 <    private void createAndStartAddedWorkers() {
1254 <        resumeAllSpares();  // Allow spares to convert to nonspare
1255 <        int ps = parallelism;
1256 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1257 <        int len = ws.length;
1258 <        // Sweep through slots, to keep lowest indices most populated
1259 <        int k = 0;
1260 <        while (k < len) {
1261 <            if (ws[k] != null) {
1262 <                ++k;
1263 <                continue;
1251 >     * Runs up to three passes through workers: (0) Setting
1252 >     * termination status for each worker, followed by wakeups up to
1253 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1254 >     * lagging threads (likely in external tasks, but possibly also
1255 >     * blocked in joins).  Each pass repeats previous steps because of
1256 >     * potential lagging thread creation.
1257 >     */
1258 >    private void startTerminating() {
1259 >        cancelSubmissions();
1260 >        for (int pass = 0; pass < 3; ++pass) {
1261 >            ForkJoinWorkerThread[] ws = workers;
1262 >            if (ws != null) {
1263 >                for (ForkJoinWorkerThread w : ws) {
1264 >                    if (w != null) {
1265 >                        w.terminate = true;
1266 >                        if (pass > 0) {
1267 >                            w.cancelTasks();
1268 >                            if (pass > 1 && !w.isInterrupted()) {
1269 >                                try {
1270 >                                    w.interrupt();
1271 >                                } catch (SecurityException ignore) {
1272 >                                }
1273 >                            }
1274 >                        }
1275 >                    }
1276 >                }
1277 >                terminateWaiters();
1278              }
1279 <            int s = workerCounts;
1280 <            int tc = totalCountOf(s);
1281 <            int rc = runningCountOf(s);
1282 <            if (rc >= ps || tc >= ps)
1283 <                break;
1284 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1285 <                ForkJoinWorkerThread w = createWorker(k);
1286 <                if (w != null) {
1287 <                    ws[k++] = w;
1288 <                    w.start();
1279 >        }
1280 >    }
1281 >
1282 >    /**
1283 >     * Polls and cancels all submissions. Called only during termination.
1284 >     */
1285 >    private void cancelSubmissions() {
1286 >        while (queueBase != queueTop) {
1287 >            ForkJoinTask<?> task = pollSubmission();
1288 >            if (task != null) {
1289 >                try {
1290 >                    task.cancel(false);
1291 >                } catch (Throwable ignore) {
1292                  }
1293 <                else {
1294 <                    updateWorkerCount(-1); // back out on failed creation
1295 <                    break;
1293 >            }
1294 >        }
1295 >    }
1296 >
1297 >    /**
1298 >     * Tries to set the termination status of waiting workers, and
1299 >     * then wakes them up (after which they will terminate).
1300 >     */
1301 >    private void terminateWaiters() {
1302 >        ForkJoinWorkerThread[] ws = workers;
1303 >        if (ws != null) {
1304 >            ForkJoinWorkerThread w; long c; int i, e;
1305 >            int n = ws.length;
1306 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1307 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1308 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1309 >                                              (long)(w.nextWait & E_MASK) |
1310 >                                              ((c + AC_UNIT) & AC_MASK) |
1311 >                                              (c & (TC_MASK|STOP_BIT)))) {
1312 >                    w.terminate = true;
1313 >                    w.eventCount = e + EC_UNIT;
1314 >                    if (w.parked)
1315 >                        UNSAFE.unpark(w);
1316                  }
1317              }
1318          }
1319      }
1320  
1321 <    // Execution methods
1321 >    // misc ForkJoinWorkerThread support
1322  
1323      /**
1324 <     * Common code for execute, invoke and submit
1324 >     * Increment or decrement quiescerCount. Needed only to prevent
1325 >     * triggering shutdown if a worker is transiently inactive while
1326 >     * checking quiescence.
1327 >     *
1328 >     * @param delta 1 for increment, -1 for decrement
1329       */
1330 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1331 <        if (task == null)
1330 >    final void addQuiescerCount(int delta) {
1331 >        int c;
1332 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1333 >                                              c = quiescerCount, c + delta));
1334 >    }
1335 >
1336 >    /**
1337 >     * Directly increment or decrement active count without
1338 >     * queuing. This method is used to transiently assert inactivation
1339 >     * while checking quiescence.
1340 >     *
1341 >     * @param delta 1 for increment, -1 for decrement
1342 >     */
1343 >    final void addActiveCount(int delta) {
1344 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1345 >        long c;
1346 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1347 >                                                ((c + d) & AC_MASK) |
1348 >                                                (c & ~AC_MASK)));
1349 >    }
1350 >
1351 >    /**
1352 >     * Returns the approximate (non-atomic) number of idle threads per
1353 >     * active thread.
1354 >     */
1355 >    final int idlePerActive() {
1356 >        // Approximate at powers of two for small values, saturate past 4
1357 >        int p = parallelism;
1358 >        int a = p + (int)(ctl >> AC_SHIFT);
1359 >        return (a > (p >>>= 1) ? 0 :
1360 >                a > (p >>>= 1) ? 1 :
1361 >                a > (p >>>= 1) ? 2 :
1362 >                a > (p >>>= 1) ? 4 :
1363 >                8);
1364 >    }
1365 >
1366 >    // Exported methods
1367 >
1368 >    // Constructors
1369 >
1370 >    /**
1371 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1372 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1373 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1374 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1375 >     *
1376 >     * @throws SecurityException if a security manager exists and
1377 >     *         the caller is not permitted to modify threads
1378 >     *         because it does not hold {@link
1379 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1380 >     */
1381 >    public ForkJoinPool() {
1382 >        this(Runtime.getRuntime().availableProcessors(),
1383 >             defaultForkJoinWorkerThreadFactory, null, false);
1384 >    }
1385 >
1386 >    /**
1387 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1388 >     * level, the {@linkplain
1389 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1390 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1391 >     *
1392 >     * @param parallelism the parallelism level
1393 >     * @throws IllegalArgumentException if parallelism less than or
1394 >     *         equal to zero, or greater than implementation limit
1395 >     * @throws SecurityException if a security manager exists and
1396 >     *         the caller is not permitted to modify threads
1397 >     *         because it does not hold {@link
1398 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1399 >     */
1400 >    public ForkJoinPool(int parallelism) {
1401 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1402 >    }
1403 >
1404 >    /**
1405 >     * Creates a {@code ForkJoinPool} with the given parameters.
1406 >     *
1407 >     * @param parallelism the parallelism level. For default value,
1408 >     * use {@link java.lang.Runtime#availableProcessors}.
1409 >     * @param factory the factory for creating new threads. For default value,
1410 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1411 >     * @param handler the handler for internal worker threads that
1412 >     * terminate due to unrecoverable errors encountered while executing
1413 >     * tasks. For default value, use {@code null}.
1414 >     * @param asyncMode if true,
1415 >     * establishes local first-in-first-out scheduling mode for forked
1416 >     * tasks that are never joined. This mode may be more appropriate
1417 >     * than default locally stack-based mode in applications in which
1418 >     * worker threads only process event-style asynchronous tasks.
1419 >     * For default value, use {@code false}.
1420 >     * @throws IllegalArgumentException if parallelism less than or
1421 >     *         equal to zero, or greater than implementation limit
1422 >     * @throws NullPointerException if the factory is null
1423 >     * @throws SecurityException if a security manager exists and
1424 >     *         the caller is not permitted to modify threads
1425 >     *         because it does not hold {@link
1426 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1427 >     */
1428 >    public ForkJoinPool(int parallelism,
1429 >                        ForkJoinWorkerThreadFactory factory,
1430 >                        Thread.UncaughtExceptionHandler handler,
1431 >                        boolean asyncMode) {
1432 >        checkPermission();
1433 >        if (factory == null)
1434              throw new NullPointerException();
1435 <        if (isShutdown())
1436 <            throw new RejectedExecutionException();
1437 <        if (workers == null)
1438 <            ensureWorkerInitialization();
1439 <        submissionQueue.offer(task);
1440 <        signalIdleWorkers();
1435 >        if (parallelism <= 0 || parallelism > MAX_ID)
1436 >            throw new IllegalArgumentException();
1437 >        this.parallelism = parallelism;
1438 >        this.factory = factory;
1439 >        this.ueh = handler;
1440 >        this.locallyFifo = asyncMode;
1441 >        long np = (long)(-parallelism); // offset ctl counts
1442 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1443 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1444 >        // initialize workers array with room for 2*parallelism if possible
1445 >        int n = parallelism << 1;
1446 >        if (n >= MAX_ID)
1447 >            n = MAX_ID;
1448 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1449 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1450 >        }
1451 >        workers = new ForkJoinWorkerThread[n + 1];
1452 >        this.submissionLock = new ReentrantLock();
1453 >        this.termination = submissionLock.newCondition();
1454 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1455 >        sb.append(poolNumberGenerator.incrementAndGet());
1456 >        sb.append("-worker-");
1457 >        this.workerNamePrefix = sb.toString();
1458      }
1459  
1460 +    // Execution methods
1461 +
1462      /**
1463       * Performs the given task, returning its result upon completion.
1464 +     * If the computation encounters an unchecked Exception or Error,
1465 +     * it is rethrown as the outcome of this invocation.  Rethrown
1466 +     * exceptions behave in the same way as regular exceptions, but,
1467 +     * when possible, contain stack traces (as displayed for example
1468 +     * using {@code ex.printStackTrace()}) of both the current thread
1469 +     * as well as the thread actually encountering the exception;
1470 +     * minimally only the latter.
1471       *
1472       * @param task the task
1473       * @return the task's result
1474 <     * @throws NullPointerException if task is null
1475 <     * @throws RejectedExecutionException if pool is shut down
1474 >     * @throws NullPointerException if the task is null
1475 >     * @throws RejectedExecutionException if the task cannot be
1476 >     *         scheduled for execution
1477       */
1478      public <T> T invoke(ForkJoinTask<T> task) {
1479 <        doSubmit(task);
1480 <        return task.join();
1479 >        Thread t = Thread.currentThread();
1480 >        if (task == null)
1481 >            throw new NullPointerException();
1482 >        if (shutdown)
1483 >            throw new RejectedExecutionException();
1484 >        if ((t instanceof ForkJoinWorkerThread) &&
1485 >            ((ForkJoinWorkerThread)t).pool == this)
1486 >            return task.invoke();  // bypass submit if in same pool
1487 >        else {
1488 >            addSubmission(task);
1489 >            return task.join();
1490 >        }
1491 >    }
1492 >
1493 >    /**
1494 >     * Unless terminating, forks task if within an ongoing FJ
1495 >     * computation in the current pool, else submits as external task.
1496 >     */
1497 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1498 >        ForkJoinWorkerThread w;
1499 >        Thread t = Thread.currentThread();
1500 >        if (shutdown)
1501 >            throw new RejectedExecutionException();
1502 >        if ((t instanceof ForkJoinWorkerThread) &&
1503 >            (w = (ForkJoinWorkerThread)t).pool == this)
1504 >            w.pushTask(task);
1505 >        else
1506 >            addSubmission(task);
1507      }
1508  
1509      /**
1510       * Arranges for (asynchronous) execution of the given task.
1511       *
1512       * @param task the task
1513 <     * @throws NullPointerException if task is null
1514 <     * @throws RejectedExecutionException if pool is shut down
1513 >     * @throws NullPointerException if the task is null
1514 >     * @throws RejectedExecutionException if the task cannot be
1515 >     *         scheduled for execution
1516       */
1517      public void execute(ForkJoinTask<?> task) {
1518 <        doSubmit(task);
1518 >        if (task == null)
1519 >            throw new NullPointerException();
1520 >        forkOrSubmit(task);
1521      }
1522  
1523      // AbstractExecutorService methods
1524  
1525 +    /**
1526 +     * @throws NullPointerException if the task is null
1527 +     * @throws RejectedExecutionException if the task cannot be
1528 +     *         scheduled for execution
1529 +     */
1530      public void execute(Runnable task) {
1531 +        if (task == null)
1532 +            throw new NullPointerException();
1533          ForkJoinTask<?> job;
1534          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1535              job = (ForkJoinTask<?>) task;
1536          else
1537              job = ForkJoinTask.adapt(task, null);
1538 <        doSubmit(job);
1538 >        forkOrSubmit(job);
1539 >    }
1540 >
1541 >    /**
1542 >     * Submits a ForkJoinTask for execution.
1543 >     *
1544 >     * @param task the task to submit
1545 >     * @return the task
1546 >     * @throws NullPointerException if the task is null
1547 >     * @throws RejectedExecutionException if the task cannot be
1548 >     *         scheduled for execution
1549 >     */
1550 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1551 >        if (task == null)
1552 >            throw new NullPointerException();
1553 >        forkOrSubmit(task);
1554 >        return task;
1555      }
1556  
1557 +    /**
1558 +     * @throws NullPointerException if the task is null
1559 +     * @throws RejectedExecutionException if the task cannot be
1560 +     *         scheduled for execution
1561 +     */
1562      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1563 +        if (task == null)
1564 +            throw new NullPointerException();
1565          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1566 <        doSubmit(job);
1566 >        forkOrSubmit(job);
1567          return job;
1568      }
1569  
1570 +    /**
1571 +     * @throws NullPointerException if the task is null
1572 +     * @throws RejectedExecutionException if the task cannot be
1573 +     *         scheduled for execution
1574 +     */
1575      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1576 +        if (task == null)
1577 +            throw new NullPointerException();
1578          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1579 <        doSubmit(job);
1579 >        forkOrSubmit(job);
1580          return job;
1581      }
1582  
1583 +    /**
1584 +     * @throws NullPointerException if the task is null
1585 +     * @throws RejectedExecutionException if the task cannot be
1586 +     *         scheduled for execution
1587 +     */
1588      public ForkJoinTask<?> submit(Runnable task) {
1589 +        if (task == null)
1590 +            throw new NullPointerException();
1591          ForkJoinTask<?> job;
1592          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1593              job = (ForkJoinTask<?>) task;
1594          else
1595              job = ForkJoinTask.adapt(task, null);
1596 <        doSubmit(job);
1596 >        forkOrSubmit(job);
1597          return job;
1598      }
1599  
1600      /**
1601 <     * Submits a ForkJoinTask for execution.
1602 <     *
622 <     * @param task the task to submit
623 <     * @return the task
624 <     * @throws RejectedExecutionException if the task cannot be
625 <     *         scheduled for execution
626 <     * @throws NullPointerException if the task is null
1601 >     * @throws NullPointerException       {@inheritDoc}
1602 >     * @throws RejectedExecutionException {@inheritDoc}
1603       */
628    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
629        doSubmit(task);
630        return task;
631    }
632
633
1604      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1605          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1606              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 639 | Line 1609 | public class ForkJoinPool extends Abstra
1609          invoke(new InvokeAll<T>(forkJoinTasks));
1610  
1611          @SuppressWarnings({"unchecked", "rawtypes"})
1612 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1612 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1613          return futures;
1614      }
1615  
# Line 653 | Line 1623 | public class ForkJoinPool extends Abstra
1623          private static final long serialVersionUID = -7914297376763021607L;
1624      }
1625  
656    // Configuration and status settings and queries
657
1626      /**
1627       * Returns the factory used for constructing new workers.
1628       *
# Line 671 | Line 1639 | public class ForkJoinPool extends Abstra
1639       * @return the handler, or {@code null} if none
1640       */
1641      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1642 <        Thread.UncaughtExceptionHandler h;
675 <        final ReentrantLock lock = this.workerLock;
676 <        lock.lock();
677 <        try {
678 <            h = ueh;
679 <        } finally {
680 <            lock.unlock();
681 <        }
682 <        return h;
1642 >        return ueh;
1643      }
1644  
1645      /**
1646 <     * Sets the handler for internal worker threads that terminate due
687 <     * to unrecoverable errors encountered while executing tasks.
688 <     * Unless set, the current default or ThreadGroup handler is used
689 <     * as handler.
1646 >     * Returns the targeted parallelism level of this pool.
1647       *
1648 <     * @param h the new handler
692 <     * @return the old handler, or {@code null} if none
693 <     * @throws SecurityException if a security manager exists and
694 <     *         the caller is not permitted to modify threads
695 <     *         because it does not hold {@link
696 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
697 <     */
698 <    public Thread.UncaughtExceptionHandler
699 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700 <        checkPermission();
701 <        Thread.UncaughtExceptionHandler old = null;
702 <        final ReentrantLock lock = this.workerLock;
703 <        lock.lock();
704 <        try {
705 <            old = ueh;
706 <            ueh = h;
707 <            ForkJoinWorkerThread[] ws = workers;
708 <            if (ws != null) {
709 <                for (int i = 0; i < ws.length; ++i) {
710 <                    ForkJoinWorkerThread w = ws[i];
711 <                    if (w != null)
712 <                        w.setUncaughtExceptionHandler(h);
713 <                }
714 <            }
715 <        } finally {
716 <            lock.unlock();
717 <        }
718 <        return old;
719 <    }
720 <
721 <
722 <    /**
723 <     * Sets the target parallelism level of this pool.
724 <     *
725 <     * @param parallelism the target parallelism
726 <     * @throws IllegalArgumentException if parallelism less than or
727 <     * equal to zero or greater than maximum size bounds
728 <     * @throws SecurityException if a security manager exists and
729 <     *         the caller is not permitted to modify threads
730 <     *         because it does not hold {@link
731 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
732 <     */
733 <    public void setParallelism(int parallelism) {
734 <        checkPermission();
735 <        if (parallelism <= 0 || parallelism > maxPoolSize)
736 <            throw new IllegalArgumentException();
737 <        final ReentrantLock lock = this.workerLock;
738 <        lock.lock();
739 <        try {
740 <            if (!isTerminating()) {
741 <                int p = this.parallelism;
742 <                this.parallelism = parallelism;
743 <                if (parallelism > p)
744 <                    createAndStartAddedWorkers();
745 <                else
746 <                    trimSpares();
747 <            }
748 <        } finally {
749 <            lock.unlock();
750 <        }
751 <        signalIdleWorkers();
752 <    }
753 <
754 <    /**
755 <     * Returns the targeted number of worker threads in this pool.
756 <     *
757 <     * @return the targeted number of worker threads in this pool
1648 >     * @return the targeted parallelism level of this pool
1649       */
1650      public int getParallelism() {
1651          return parallelism;
# Line 762 | Line 1653 | public class ForkJoinPool extends Abstra
1653  
1654      /**
1655       * Returns the number of worker threads that have started but not
1656 <     * yet terminated.  This result returned by this method may differ
1656 >     * yet terminated.  The result returned by this method may differ
1657       * from {@link #getParallelism} when threads are created to
1658       * maintain parallelism when others are cooperatively blocked.
1659       *
1660       * @return the number of worker threads
1661       */
1662      public int getPoolSize() {
1663 <        return totalCountOf(workerCounts);
773 <    }
774 <
775 <    /**
776 <     * Returns the maximum number of threads allowed to exist in the
777 <     * pool, even if there are insufficient unblocked running threads.
778 <     *
779 <     * @return the maximum
780 <     */
781 <    public int getMaximumPoolSize() {
782 <        return maxPoolSize;
783 <    }
784 <
785 <    /**
786 <     * Sets the maximum number of threads allowed to exist in the
787 <     * pool, even if there are insufficient unblocked running threads.
788 <     * Setting this value has no effect on current pool size. It
789 <     * controls construction of new threads.
790 <     *
791 <     * @throws IllegalArgumentException if negative or greater than
792 <     * internal implementation limit
793 <     */
794 <    public void setMaximumPoolSize(int newMax) {
795 <        if (newMax < 0 || newMax > MAX_THREADS)
796 <            throw new IllegalArgumentException();
797 <        maxPoolSize = newMax;
798 <    }
799 <
800 <
801 <    /**
802 <     * Returns {@code true} if this pool dynamically maintains its
803 <     * target parallelism level. If false, new threads are added only
804 <     * to avoid possible starvation.  This setting is by default true.
805 <     *
806 <     * @return {@code true} if maintains parallelism
807 <     */
808 <    public boolean getMaintainsParallelism() {
809 <        return maintainsParallelism;
810 <    }
811 <
812 <    /**
813 <     * Sets whether this pool dynamically maintains its target
814 <     * parallelism level. If false, new threads are added only to
815 <     * avoid possible starvation.
816 <     *
817 <     * @param enable {@code true} to maintain parallelism
818 <     */
819 <    public void setMaintainsParallelism(boolean enable) {
820 <        maintainsParallelism = enable;
821 <    }
822 <
823 <    /**
824 <     * Establishes local first-in-first-out scheduling mode for forked
825 <     * tasks that are never joined. This mode may be more appropriate
826 <     * than default locally stack-based mode in applications in which
827 <     * worker threads only process asynchronous tasks.  This method is
828 <     * designed to be invoked only when the pool is quiescent, and
829 <     * typically only before any tasks are submitted. The effects of
830 <     * invocations at other times may be unpredictable.
831 <     *
832 <     * @param async if {@code true}, use locally FIFO scheduling
833 <     * @return the previous mode
834 <     * @see #getAsyncMode
835 <     */
836 <    public boolean setAsyncMode(boolean async) {
837 <        boolean oldMode = locallyFifo;
838 <        locallyFifo = async;
839 <        ForkJoinWorkerThread[] ws = workers;
840 <        if (ws != null) {
841 <            for (int i = 0; i < ws.length; ++i) {
842 <                ForkJoinWorkerThread t = ws[i];
843 <                if (t != null)
844 <                    t.setAsyncMode(async);
845 <            }
846 <        }
847 <        return oldMode;
1663 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1664      }
1665  
1666      /**
# Line 852 | Line 1668 | public class ForkJoinPool extends Abstra
1668       * scheduling mode for forked tasks that are never joined.
1669       *
1670       * @return {@code true} if this pool uses async mode
855     * @see #setAsyncMode
1671       */
1672      public boolean getAsyncMode() {
1673          return locallyFifo;
# Line 861 | Line 1676 | public class ForkJoinPool extends Abstra
1676      /**
1677       * Returns an estimate of the number of worker threads that are
1678       * not blocked waiting to join tasks or for other managed
1679 <     * synchronization.
1679 >     * synchronization. This method may overestimate the
1680 >     * number of running threads.
1681       *
1682       * @return the number of worker threads
1683       */
1684      public int getRunningThreadCount() {
1685 <        return runningCountOf(workerCounts);
1685 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1686 >        return r <= 0? 0 : r; // suppress momentarily negative values
1687      }
1688  
1689      /**
# Line 877 | Line 1694 | public class ForkJoinPool extends Abstra
1694       * @return the number of active threads
1695       */
1696      public int getActiveThreadCount() {
1697 <        return activeCountOf(runControl);
1698 <    }
882 <
883 <    /**
884 <     * Returns an estimate of the number of threads that are currently
885 <     * idle waiting for tasks. This method may underestimate the
886 <     * number of idle threads.
887 <     *
888 <     * @return the number of idle threads
889 <     */
890 <    final int getIdleThreadCount() {
891 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
892 <        return (c <= 0) ? 0 : c;
1697 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1698 >        return r <= 0? 0 : r; // suppress momentarily negative values
1699      }
1700  
1701      /**
# Line 904 | Line 1710 | public class ForkJoinPool extends Abstra
1710       * @return {@code true} if all threads are currently idle
1711       */
1712      public boolean isQuiescent() {
1713 <        return activeCountOf(runControl) == 0;
1713 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1714      }
1715  
1716      /**
# Line 919 | Line 1725 | public class ForkJoinPool extends Abstra
1725       * @return the number of steals
1726       */
1727      public long getStealCount() {
1728 <        return stealCount.get();
923 <    }
924 <
925 <    /**
926 <     * Accumulates steal count from a worker.
927 <     * Call only when worker known to be idle.
928 <     */
929 <    private void updateStealCount(ForkJoinWorkerThread w) {
930 <        int sc = w.getAndClearStealCount();
931 <        if (sc != 0)
932 <            stealCount.addAndGet(sc);
1728 >        return stealCount;
1729      }
1730  
1731      /**
# Line 944 | Line 1740 | public class ForkJoinPool extends Abstra
1740       */
1741      public long getQueuedTaskCount() {
1742          long count = 0;
1743 <        ForkJoinWorkerThread[] ws = workers;
1744 <        if (ws != null) {
1745 <            for (int i = 0; i < ws.length; ++i) {
1746 <                ForkJoinWorkerThread t = ws[i];
1747 <                if (t != null)
1748 <                    count += t.getQueueSize();
953 <            }
1743 >        ForkJoinWorkerThread[] ws;
1744 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1745 >            (ws = workers) != null) {
1746 >            for (ForkJoinWorkerThread w : ws)
1747 >                if (w != null)
1748 >                    count -= w.queueBase - w.queueTop; // must read base first
1749          }
1750          return count;
1751      }
1752  
1753      /**
1754       * Returns an estimate of the number of tasks submitted to this
1755 <     * pool that have not yet begun executing.  This method takes time
1756 <     * proportional to the number of submissions.
1755 >     * pool that have not yet begun executing.  This method may take
1756 >     * time proportional to the number of submissions.
1757       *
1758       * @return the number of queued submissions
1759       */
1760      public int getQueuedSubmissionCount() {
1761 <        return submissionQueue.size();
1761 >        return -queueBase + queueTop;
1762      }
1763  
1764      /**
# Line 973 | Line 1768 | public class ForkJoinPool extends Abstra
1768       * @return {@code true} if there are any queued submissions
1769       */
1770      public boolean hasQueuedSubmissions() {
1771 <        return !submissionQueue.isEmpty();
1771 >        return queueBase != queueTop;
1772      }
1773  
1774      /**
# Line 984 | Line 1779 | public class ForkJoinPool extends Abstra
1779       * @return the next submission, or {@code null} if none
1780       */
1781      protected ForkJoinTask<?> pollSubmission() {
1782 <        return submissionQueue.poll();
1782 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1783 >        while ((b = queueBase) != queueTop &&
1784 >               (q = submissionQueue) != null &&
1785 >               (i = (q.length - 1) & b) >= 0) {
1786 >            long u = (i << ASHIFT) + ABASE;
1787 >            if ((t = q[i]) != null &&
1788 >                queueBase == b &&
1789 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1790 >                queueBase = b + 1;
1791 >                return t;
1792 >            }
1793 >        }
1794 >        return null;
1795      }
1796  
1797      /**
1798       * Removes all available unexecuted submitted and forked tasks
1799       * from scheduling queues and adds them to the given collection,
1800       * without altering their execution status. These may include
1801 <     * artificially generated or wrapped tasks. This method is designed
1802 <     * to be invoked only when the pool is known to be
1801 >     * artificially generated or wrapped tasks. This method is
1802 >     * designed to be invoked only when the pool is known to be
1803       * quiescent. Invocations at other times may not remove all
1804       * tasks. A failure encountered while attempting to add elements
1805       * to collection {@code c} may result in elements being in
# Line 1005 | Line 1812 | public class ForkJoinPool extends Abstra
1812       * @return the number of elements transferred
1813       */
1814      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1815 <        int n = submissionQueue.drainTo(c);
1816 <        ForkJoinWorkerThread[] ws = workers;
1817 <        if (ws != null) {
1818 <            for (int i = 0; i < ws.length; ++i) {
1819 <                ForkJoinWorkerThread w = ws[i];
1820 <                if (w != null)
1014 <                    n += w.drainTasksTo(c);
1815 >        int count = 0;
1816 >        while (queueBase != queueTop) {
1817 >            ForkJoinTask<?> t = pollSubmission();
1818 >            if (t != null) {
1819 >                c.add(t);
1820 >                ++count;
1821              }
1822          }
1823 <        return n;
1823 >        ForkJoinWorkerThread[] ws;
1824 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1825 >            (ws = workers) != null) {
1826 >            for (ForkJoinWorkerThread w : ws)
1827 >                if (w != null)
1828 >                    count += w.drainTasksTo(c);
1829 >        }
1830 >        return count;
1831      }
1832  
1833      /**
# Line 1025 | Line 1838 | public class ForkJoinPool extends Abstra
1838       * @return a string identifying this pool, as well as its state
1839       */
1840      public String toString() {
1028        int ps = parallelism;
1029        int wc = workerCounts;
1030        int rc = runControl;
1841          long st = getStealCount();
1842          long qt = getQueuedTaskCount();
1843          long qs = getQueuedSubmissionCount();
1844 +        int pc = parallelism;
1845 +        long c = ctl;
1846 +        int tc = pc + (short)(c >>> TC_SHIFT);
1847 +        int rc = pc + (int)(c >> AC_SHIFT);
1848 +        if (rc < 0) // ignore transient negative
1849 +            rc = 0;
1850 +        int ac = rc + blockedCount;
1851 +        String level;
1852 +        if ((c & STOP_BIT) != 0)
1853 +            level = (tc == 0)? "Terminated" : "Terminating";
1854 +        else
1855 +            level = shutdown? "Shutting down" : "Running";
1856          return super.toString() +
1857 <            "[" + runStateToString(runStateOf(rc)) +
1858 <            ", parallelism = " + ps +
1859 <            ", size = " + totalCountOf(wc) +
1860 <            ", active = " + activeCountOf(rc) +
1861 <            ", running = " + runningCountOf(wc) +
1857 >            "[" + level +
1858 >            ", parallelism = " + pc +
1859 >            ", size = " + tc +
1860 >            ", active = " + ac +
1861 >            ", running = " + rc +
1862              ", steals = " + st +
1863              ", tasks = " + qt +
1864              ", submissions = " + qs +
1865              "]";
1866      }
1867  
1046    private static String runStateToString(int rs) {
1047        switch(rs) {
1048        case RUNNING: return "Running";
1049        case SHUTDOWN: return "Shutting down";
1050        case TERMINATING: return "Terminating";
1051        case TERMINATED: return "Terminated";
1052        default: throw new Error("Unknown run state");
1053        }
1054    }
1055
1056    // lifecycle control
1057
1868      /**
1869       * Initiates an orderly shutdown in which previously submitted
1870       * tasks are executed, but no new tasks will be accepted.
# Line 1069 | Line 1879 | public class ForkJoinPool extends Abstra
1879       */
1880      public void shutdown() {
1881          checkPermission();
1882 <        transitionRunStateTo(SHUTDOWN);
1883 <        if (canTerminateOnShutdown(runControl)) {
1074 <            if (workers == null) { // shutting down before workers created
1075 <                final ReentrantLock lock = this.workerLock;
1076 <                lock.lock();
1077 <                try {
1078 <                    if (workers == null) {
1079 <                        terminate();
1080 <                        transitionRunStateTo(TERMINATED);
1081 <                        termination.signalAll();
1082 <                    }
1083 <                } finally {
1084 <                    lock.unlock();
1085 <                }
1086 <            }
1087 <            terminateOnShutdown();
1088 <        }
1882 >        shutdown = true;
1883 >        tryTerminate(false);
1884      }
1885  
1886      /**
1887 <     * Attempts to stop all actively executing tasks, and cancels all
1888 <     * waiting tasks.  Tasks that are in the process of being
1889 <     * submitted or executed concurrently during the course of this
1890 <     * method may or may not be rejected. Unlike some other executors,
1891 <     * this method cancels rather than collects non-executed tasks
1892 <     * upon termination, so always returns an empty list. However, you
1893 <     * can use method {@link #drainTasksTo} before invoking this
1894 <     * method to transfer unexecuted tasks to another collection.
1887 >     * Attempts to cancel and/or stop all tasks, and reject all
1888 >     * subsequently submitted tasks.  Tasks that are in the process of
1889 >     * being submitted or executed concurrently during the course of
1890 >     * this method may or may not be rejected. This method cancels
1891 >     * both existing and unexecuted tasks, in order to permit
1892 >     * termination in the presence of task dependencies. So the method
1893 >     * always returns an empty list (unlike the case for some other
1894 >     * Executors).
1895       *
1896       * @return an empty list
1897       * @throws SecurityException if a security manager exists and
# Line 1106 | Line 1901 | public class ForkJoinPool extends Abstra
1901       */
1902      public List<Runnable> shutdownNow() {
1903          checkPermission();
1904 <        terminate();
1904 >        shutdown = true;
1905 >        tryTerminate(true);
1906          return Collections.emptyList();
1907      }
1908  
# Line 1116 | Line 1912 | public class ForkJoinPool extends Abstra
1912       * @return {@code true} if all tasks have completed following shut down
1913       */
1914      public boolean isTerminated() {
1915 <        return runStateOf(runControl) == TERMINATED;
1915 >        long c = ctl;
1916 >        return ((c & STOP_BIT) != 0L &&
1917 >                (short)(c >>> TC_SHIFT) == -parallelism);
1918      }
1919  
1920      /**
1921       * Returns {@code true} if the process of termination has
1922 <     * commenced but possibly not yet completed.
1922 >     * commenced but not yet completed.  This method may be useful for
1923 >     * debugging. A return of {@code true} reported a sufficient
1924 >     * period after shutdown may indicate that submitted tasks have
1925 >     * ignored or suppressed interruption, or are waiting for IO,
1926 >     * causing this executor not to properly terminate. (See the
1927 >     * advisory notes for class {@link ForkJoinTask} stating that
1928 >     * tasks should not normally entail blocking operations.  But if
1929 >     * they do, they must abort them on interrupt.)
1930       *
1931 <     * @return {@code true} if terminating
1931 >     * @return {@code true} if terminating but not yet terminated
1932       */
1933      public boolean isTerminating() {
1934 <        return runStateOf(runControl) >= TERMINATING;
1934 >        long c = ctl;
1935 >        return ((c & STOP_BIT) != 0L &&
1936 >                (short)(c >>> TC_SHIFT) != -parallelism);
1937 >    }
1938 >
1939 >    /**
1940 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1941 >     */
1942 >    final boolean isAtLeastTerminating() {
1943 >        return (ctl & STOP_BIT) != 0L;
1944      }
1945  
1946      /**
# Line 1135 | Line 1949 | public class ForkJoinPool extends Abstra
1949       * @return {@code true} if this pool has been shut down
1950       */
1951      public boolean isShutdown() {
1952 <        return runStateOf(runControl) >= SHUTDOWN;
1952 >        return shutdown;
1953      }
1954  
1955      /**
# Line 1152 | Line 1966 | public class ForkJoinPool extends Abstra
1966      public boolean awaitTermination(long timeout, TimeUnit unit)
1967          throws InterruptedException {
1968          long nanos = unit.toNanos(timeout);
1969 <        final ReentrantLock lock = this.workerLock;
1969 >        final ReentrantLock lock = this.submissionLock;
1970          lock.lock();
1971          try {
1972              for (;;) {
# Line 1167 | Line 1981 | public class ForkJoinPool extends Abstra
1981          }
1982      }
1983  
1170    // Shutdown and termination support
1171
1172    /**
1173     * Callback from terminating worker. Nulls out the corresponding
1174     * workers slot, and if terminating, tries to terminate; else
1175     * tries to shrink workers array.
1176     *
1177     * @param w the worker
1178     */
1179    final void workerTerminated(ForkJoinWorkerThread w) {
1180        updateStealCount(w);
1181        updateWorkerCount(-1);
1182        final ReentrantLock lock = this.workerLock;
1183        lock.lock();
1184        try {
1185            ForkJoinWorkerThread[] ws = workers;
1186            if (ws != null) {
1187                int idx = w.poolIndex;
1188                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1189                    ws[idx] = null;
1190                if (totalCountOf(workerCounts) == 0) {
1191                    terminate(); // no-op if already terminating
1192                    transitionRunStateTo(TERMINATED);
1193                    termination.signalAll();
1194                }
1195                else if (!isTerminating()) {
1196                    tryShrinkWorkerArray();
1197                    tryResumeSpare(true); // allow replacement
1198                }
1199            }
1200        } finally {
1201            lock.unlock();
1202        }
1203        signalIdleWorkers();
1204    }
1205
1206    /**
1207     * Initiates termination.
1208     */
1209    private void terminate() {
1210        if (transitionRunStateTo(TERMINATING)) {
1211            stopAllWorkers();
1212            resumeAllSpares();
1213            signalIdleWorkers();
1214            cancelQueuedSubmissions();
1215            cancelQueuedWorkerTasks();
1216            interruptUnterminatedWorkers();
1217            signalIdleWorkers(); // resignal after interrupt
1218        }
1219    }
1220
1221    /**
1222     * Possibly terminates when on shutdown state.
1223     */
1224    private void terminateOnShutdown() {
1225        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1226            terminate();
1227    }
1228
1229    /**
1230     * Clears out and cancels submissions.
1231     */
1232    private void cancelQueuedSubmissions() {
1233        ForkJoinTask<?> task;
1234        while ((task = pollSubmission()) != null)
1235            task.cancel(false);
1236    }
1237
1238    /**
1239     * Cleans out worker queues.
1240     */
1241    private void cancelQueuedWorkerTasks() {
1242        final ReentrantLock lock = this.workerLock;
1243        lock.lock();
1244        try {
1245            ForkJoinWorkerThread[] ws = workers;
1246            if (ws != null) {
1247                for (int i = 0; i < ws.length; ++i) {
1248                    ForkJoinWorkerThread t = ws[i];
1249                    if (t != null)
1250                        t.cancelTasks();
1251                }
1252            }
1253        } finally {
1254            lock.unlock();
1255        }
1256    }
1257
1258    /**
1259     * Sets each worker's status to terminating. Requires lock to avoid
1260     * conflicts with add/remove.
1261     */
1262    private void stopAllWorkers() {
1263        final ReentrantLock lock = this.workerLock;
1264        lock.lock();
1265        try {
1266            ForkJoinWorkerThread[] ws = workers;
1267            if (ws != null) {
1268                for (int i = 0; i < ws.length; ++i) {
1269                    ForkJoinWorkerThread t = ws[i];
1270                    if (t != null)
1271                        t.shutdownNow();
1272                }
1273            }
1274        } finally {
1275            lock.unlock();
1276        }
1277    }
1278
1279    /**
1280     * Interrupts all unterminated workers.  This is not required for
1281     * sake of internal control, but may help unstick user code during
1282     * shutdown.
1283     */
1284    private void interruptUnterminatedWorkers() {
1285        final ReentrantLock lock = this.workerLock;
1286        lock.lock();
1287        try {
1288            ForkJoinWorkerThread[] ws = workers;
1289            if (ws != null) {
1290                for (int i = 0; i < ws.length; ++i) {
1291                    ForkJoinWorkerThread t = ws[i];
1292                    if (t != null && !t.isTerminated()) {
1293                        try {
1294                            t.interrupt();
1295                        } catch (SecurityException ignore) {
1296                        }
1297                    }
1298                }
1299            }
1300        } finally {
1301            lock.unlock();
1302        }
1303    }
1304
1305
1306    /*
1307     * Nodes for event barrier to manage idle threads.  Queue nodes
1308     * are basic Treiber stack nodes, also used for spare stack.
1309     *
1310     * The event barrier has an event count and a wait queue (actually
1311     * a Treiber stack).  Workers are enabled to look for work when
1312     * the eventCount is incremented. If they fail to find work, they
1313     * may wait for next count. Upon release, threads help others wake
1314     * up.
1315     *
1316     * Synchronization events occur only in enough contexts to
1317     * maintain overall liveness:
1318     *
1319     *   - Submission of a new task to the pool
1320     *   - Resizes or other changes to the workers array
1321     *   - pool termination
1322     *   - A worker pushing a task on an empty queue
1323     *
1324     * The case of pushing a task occurs often enough, and is heavy
1325     * enough compared to simple stack pushes, to require special
1326     * handling: Method signalWork returns without advancing count if
1327     * the queue appears to be empty.  This would ordinarily result in
1328     * races causing some queued waiters not to be woken up. To avoid
1329     * this, the first worker enqueued in method sync (see
1330     * syncIsReleasable) rescans for tasks after being enqueued, and
1331     * helps signal if any are found. This works well because the
1332     * worker has nothing better to do, and so might as well help
1333     * alleviate the overhead and contention on the threads actually
1334     * doing work.  Also, since event counts increments on task
1335     * availability exist to maintain liveness (rather than to force
1336     * refreshes etc), it is OK for callers to exit early if
1337     * contending with another signaller.
1338     */
1339    static final class WaitQueueNode {
1340        WaitQueueNode next; // only written before enqueued
1341        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1342        final long count; // unused for spare stack
1343
1344        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1345            count = c;
1346            thread = w;
1347        }
1348
1349        /**
1350         * Wakes up waiter, returning false if known to already
1351         */
1352        boolean signal() {
1353            ForkJoinWorkerThread t = thread;
1354            if (t == null)
1355                return false;
1356            thread = null;
1357            LockSupport.unpark(t);
1358            return true;
1359        }
1360
1361        /**
1362         * Awaits release on sync.
1363         */
1364        void awaitSyncRelease(ForkJoinPool p) {
1365            while (thread != null && !p.syncIsReleasable(this))
1366                LockSupport.park(this);
1367        }
1368
1369        /**
1370         * Awaits resumption as spare.
1371         */
1372        void awaitSpareRelease() {
1373            while (thread != null) {
1374                if (!Thread.interrupted())
1375                    LockSupport.park(this);
1376            }
1377        }
1378    }
1379
1380    /**
1381     * Ensures that no thread is waiting for count to advance from the
1382     * current value of eventCount read on entry to this method, by
1383     * releasing waiting threads if necessary.
1384     *
1385     * @return the count
1386     */
1387    final long ensureSync() {
1388        long c = eventCount;
1389        WaitQueueNode q;
1390        while ((q = syncStack) != null && q.count < c) {
1391            if (casBarrierStack(q, null)) {
1392                do {
1393                    q.signal();
1394                } while ((q = q.next) != null);
1395                break;
1396            }
1397        }
1398        return c;
1399    }
1400
1401    /**
1402     * Increments event count and releases waiting threads.
1403     */
1404    private void signalIdleWorkers() {
1405        long c;
1406        do {} while (!casEventCount(c = eventCount, c+1));
1407        ensureSync();
1408    }
1409
1410    /**
1411     * Signals threads waiting to poll a task. Because method sync
1412     * rechecks availability, it is OK to only proceed if queue
1413     * appears to be non-empty, and OK to skip under contention to
1414     * increment count (since some other thread succeeded).
1415     */
1416    final void signalWork() {
1417        long c;
1418        WaitQueueNode q;
1419        if (syncStack != null &&
1420            casEventCount(c = eventCount, c+1) &&
1421            (((q = syncStack) != null && q.count <= c) &&
1422             (!casBarrierStack(q, q.next) || !q.signal())))
1423            ensureSync();
1424    }
1425
1426    /**
1427     * Waits until event count advances from last value held by
1428     * caller, or if excess threads, caller is resumed as spare, or
1429     * caller or pool is terminating. Updates caller's event on exit.
1430     *
1431     * @param w the calling worker thread
1432     */
1433    final void sync(ForkJoinWorkerThread w) {
1434        updateStealCount(w); // Transfer w's count while it is idle
1435
1436        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1437            long prev = w.lastEventCount;
1438            WaitQueueNode node = null;
1439            WaitQueueNode h;
1440            while (eventCount == prev &&
1441                   ((h = syncStack) == null || h.count == prev)) {
1442                if (node == null)
1443                    node = new WaitQueueNode(prev, w);
1444                if (casBarrierStack(node.next = h, node)) {
1445                    node.awaitSyncRelease(this);
1446                    break;
1447                }
1448            }
1449            long ec = ensureSync();
1450            if (ec != prev) {
1451                w.lastEventCount = ec;
1452                break;
1453            }
1454        }
1455    }
1456
1457    /**
1458     * Returns {@code true} if worker waiting on sync can proceed:
1459     *  - on signal (thread == null)
1460     *  - on event count advance (winning race to notify vs signaller)
1461     *  - on interrupt
1462     *  - if the first queued node, we find work available
1463     * If node was not signalled and event count not advanced on exit,
1464     * then we also help advance event count.
1465     *
1466     * @return {@code true} if node can be released
1467     */
1468    final boolean syncIsReleasable(WaitQueueNode node) {
1469        long prev = node.count;
1470        if (!Thread.interrupted() && node.thread != null &&
1471            (node.next != null ||
1472             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1473            eventCount == prev)
1474            return false;
1475        if (node.thread != null) {
1476            node.thread = null;
1477            long ec = eventCount;
1478            if (prev <= ec) // help signal
1479                casEventCount(ec, ec+1);
1480        }
1481        return true;
1482    }
1483
1484    /**
1485     * Returns {@code true} if a new sync event occurred since last
1486     * call to sync or this method, if so, updating caller's count.
1487     */
1488    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1489        long lc = w.lastEventCount;
1490        long ec = ensureSync();
1491        if (ec == lc)
1492            return false;
1493        w.lastEventCount = ec;
1494        return true;
1495    }
1496
1497    //  Parallelism maintenance
1498
1499    /**
1500     * Decrements running count; if too low, adds spare.
1501     *
1502     * Conceptually, all we need to do here is add or resume a
1503     * spare thread when one is about to block (and remove or
1504     * suspend it later when unblocked -- see suspendIfSpare).
1505     * However, implementing this idea requires coping with
1506     * several problems: we have imperfect information about the
1507     * states of threads. Some count updates can and usually do
1508     * lag run state changes, despite arrangements to keep them
1509     * accurate (for example, when possible, updating counts
1510     * before signalling or resuming), especially when running on
1511     * dynamic JVMs that don't optimize the infrequent paths that
1512     * update counts. Generating too many threads can make these
1513     * problems become worse, because excess threads are more
1514     * likely to be context-switched with others, slowing them all
1515     * down, especially if there is no work available, so all are
1516     * busy scanning or idling.  Also, excess spare threads can
1517     * only be suspended or removed when they are idle, not
1518     * immediately when they aren't needed. So adding threads will
1519     * raise parallelism level for longer than necessary.  Also,
1520     * FJ applications often encounter highly transient peaks when
1521     * many threads are blocked joining, but for less time than it
1522     * takes to create or resume spares.
1523     *
1524     * @param joinMe if non-null, return early if done
1525     * @param maintainParallelism if true, try to stay within
1526     * target counts, else create only to avoid starvation
1527     * @return true if joinMe known to be done
1528     */
1529    final boolean preJoin(ForkJoinTask<?> joinMe,
1530                          boolean maintainParallelism) {
1531        maintainParallelism &= maintainsParallelism; // overrride
1532        boolean dec = false;  // true when running count decremented
1533        while (spareStack == null || !tryResumeSpare(dec)) {
1534            int counts = workerCounts;
1535            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1536                // CAS cheat
1537                if (!needSpare(counts, maintainParallelism))
1538                    break;
1539                if (joinMe.status < 0)
1540                    return true;
1541                if (tryAddSpare(counts))
1542                    break;
1543            }
1544        }
1545        return false;
1546    }
1547
1548    /**
1549     * Same idea as preJoin
1550     */
1551    final boolean preBlock(ManagedBlocker blocker,
1552                           boolean maintainParallelism) {
1553        maintainParallelism &= maintainsParallelism;
1554        boolean dec = false;
1555        while (spareStack == null || !tryResumeSpare(dec)) {
1556            int counts = workerCounts;
1557            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1558                if (!needSpare(counts, maintainParallelism))
1559                    break;
1560                if (blocker.isReleasable())
1561                    return true;
1562                if (tryAddSpare(counts))
1563                    break;
1564            }
1565        }
1566        return false;
1567    }
1568
1569    /**
1570     * Returns {@code true} if a spare thread appears to be needed.
1571     * If maintaining parallelism, returns true when the deficit in
1572     * running threads is more than the surplus of total threads, and
1573     * there is apparently some work to do.  This self-limiting rule
1574     * means that the more threads that have already been added, the
1575     * less parallelism we will tolerate before adding another.
1576     *
1577     * @param counts current worker counts
1578     * @param maintainParallelism try to maintain parallelism
1579     */
1580    private boolean needSpare(int counts, boolean maintainParallelism) {
1581        int ps = parallelism;
1582        int rc = runningCountOf(counts);
1583        int tc = totalCountOf(counts);
1584        int runningDeficit = ps - rc;
1585        int totalSurplus = tc - ps;
1586        return (tc < maxPoolSize &&
1587                (rc == 0 || totalSurplus < 0 ||
1588                 (maintainParallelism &&
1589                  runningDeficit > totalSurplus &&
1590                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1591    }
1592
1593    /**
1594     * Adds a spare worker if lock available and no more than the
1595     * expected numbers of threads exist.
1596     *
1597     * @return true if successful
1598     */
1599    private boolean tryAddSpare(int expectedCounts) {
1600        final ReentrantLock lock = this.workerLock;
1601        int expectedRunning = runningCountOf(expectedCounts);
1602        int expectedTotal = totalCountOf(expectedCounts);
1603        boolean success = false;
1604        boolean locked = false;
1605        // confirm counts while locking; CAS after obtaining lock
1606        try {
1607            for (;;) {
1608                int s = workerCounts;
1609                int tc = totalCountOf(s);
1610                int rc = runningCountOf(s);
1611                if (rc > expectedRunning || tc > expectedTotal)
1612                    break;
1613                if (!locked && !(locked = lock.tryLock()))
1614                    break;
1615                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1616                    createAndStartSpare(tc);
1617                    success = true;
1618                    break;
1619                }
1620            }
1621        } finally {
1622            if (locked)
1623                lock.unlock();
1624        }
1625        return success;
1626    }
1627
1628    /**
1629     * Adds the kth spare worker. On entry, pool counts are already
1630     * adjusted to reflect addition.
1631     */
1632    private void createAndStartSpare(int k) {
1633        ForkJoinWorkerThread w = null;
1634        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1635        int len = ws.length;
1636        // Probably, we can place at slot k. If not, find empty slot
1637        if (k < len && ws[k] != null) {
1638            for (k = 0; k < len && ws[k] != null; ++k)
1639                ;
1640        }
1641        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1642            ws[k] = w;
1643            w.start();
1644        }
1645        else
1646            updateWorkerCount(-1); // adjust on failure
1647        signalIdleWorkers();
1648    }
1649
1650    /**
1651     * Suspends calling thread w if there are excess threads.  Called
1652     * only from sync.  Spares are enqueued in a Treiber stack using
1653     * the same WaitQueueNodes as barriers.  They are resumed mainly
1654     * in preJoin, but are also woken on pool events that require all
1655     * threads to check run state.
1656     *
1657     * @param w the caller
1658     */
1659    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1660        WaitQueueNode node = null;
1661        int s;
1662        while (parallelism < runningCountOf(s = workerCounts)) {
1663            if (node == null)
1664                node = new WaitQueueNode(0, w);
1665            if (casWorkerCounts(s, s-1)) { // representation-dependent
1666                // push onto stack
1667                do {} while (!casSpareStack(node.next = spareStack, node));
1668                // block until released by resumeSpare
1669                node.awaitSpareRelease();
1670                return true;
1671            }
1672        }
1673        return false;
1674    }
1675
1676    /**
1677     * Tries to pop and resume a spare thread.
1678     *
1679     * @param updateCount if true, increment running count on success
1680     * @return true if successful
1681     */
1682    private boolean tryResumeSpare(boolean updateCount) {
1683        WaitQueueNode q;
1684        while ((q = spareStack) != null) {
1685            if (casSpareStack(q, q.next)) {
1686                if (updateCount)
1687                    updateRunningCount(1);
1688                q.signal();
1689                return true;
1690            }
1691        }
1692        return false;
1693    }
1694
1695    /**
1696     * Pops and resumes all spare threads. Same idea as ensureSync.
1697     *
1698     * @return true if any spares released
1699     */
1700    private boolean resumeAllSpares() {
1701        WaitQueueNode q;
1702        while ( (q = spareStack) != null) {
1703            if (casSpareStack(q, null)) {
1704                do {
1705                    updateRunningCount(1);
1706                    q.signal();
1707                } while ((q = q.next) != null);
1708                return true;
1709            }
1710        }
1711        return false;
1712    }
1713
1714    /**
1715     * Pops and shuts down excessive spare threads. Call only while
1716     * holding lock. This is not guaranteed to eliminate all excess
1717     * threads, only those suspended as spares, which are the ones
1718     * unlikely to be needed in the future.
1719     */
1720    private void trimSpares() {
1721        int surplus = totalCountOf(workerCounts) - parallelism;
1722        WaitQueueNode q;
1723        while (surplus > 0 && (q = spareStack) != null) {
1724            if (casSpareStack(q, null)) {
1725                do {
1726                    updateRunningCount(1);
1727                    ForkJoinWorkerThread w = q.thread;
1728                    if (w != null && surplus > 0 &&
1729                        runningCountOf(workerCounts) > 0 && w.shutdown())
1730                        --surplus;
1731                    q.signal();
1732                } while ((q = q.next) != null);
1733            }
1734        }
1735    }
1736
1984      /**
1985       * Interface for extending managed parallelism for tasks running
1986       * in {@link ForkJoinPool}s.
1987       *
1988 <     * <p>A {@code ManagedBlocker} provides two methods.
1989 <     * Method {@code isReleasable} must return {@code true} if
1990 <     * blocking is not necessary. Method {@code block} blocks the
1991 <     * current thread if necessary (perhaps internally invoking
1992 <     * {@code isReleasable} before actually blocking).
1988 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1989 >     * {@code isReleasable} must return {@code true} if blocking is
1990 >     * not necessary. Method {@code block} blocks the current thread
1991 >     * if necessary (perhaps internally invoking {@code isReleasable}
1992 >     * before actually blocking). These actions are performed by any
1993 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1994 >     * unusual methods in this API accommodate synchronizers that may,
1995 >     * but don't usually, block for long periods. Similarly, they
1996 >     * allow more efficient internal handling of cases in which
1997 >     * additional workers may be, but usually are not, needed to
1998 >     * ensure sufficient parallelism.  Toward this end,
1999 >     * implementations of method {@code isReleasable} must be amenable
2000 >     * to repeated invocation.
2001       *
2002       * <p>For example, here is a ManagedBlocker based on a
2003       * ReentrantLock:
# Line 1760 | Line 2015 | public class ForkJoinPool extends Abstra
2015       *     return hasLock || (hasLock = lock.tryLock());
2016       *   }
2017       * }}</pre>
2018 +     *
2019 +     * <p>Here is a class that possibly blocks waiting for an
2020 +     * item on a given queue:
2021 +     *  <pre> {@code
2022 +     * class QueueTaker<E> implements ManagedBlocker {
2023 +     *   final BlockingQueue<E> queue;
2024 +     *   volatile E item = null;
2025 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2026 +     *   public boolean block() throws InterruptedException {
2027 +     *     if (item == null)
2028 +     *       item = queue.take();
2029 +     *     return true;
2030 +     *   }
2031 +     *   public boolean isReleasable() {
2032 +     *     return item != null || (item = queue.poll()) != null;
2033 +     *   }
2034 +     *   public E getItem() { // call after pool.managedBlock completes
2035 +     *     return item;
2036 +     *   }
2037 +     * }}</pre>
2038       */
2039      public static interface ManagedBlocker {
2040          /**
# Line 1783 | Line 2058 | public class ForkJoinPool extends Abstra
2058       * Blocks in accord with the given blocker.  If the current thread
2059       * is a {@link ForkJoinWorkerThread}, this method possibly
2060       * arranges for a spare thread to be activated if necessary to
2061 <     * ensure parallelism while the current thread is blocked.
1787 <     *
1788 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1789 <     * supports it ({@link #getMaintainsParallelism}), this method
1790 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1791 <     * it activates a thread only if necessary to avoid complete
1792 <     * starvation. This option may be preferable when blockages use
1793 <     * timeouts, or are almost always brief.
2061 >     * ensure sufficient parallelism while the current thread is blocked.
2062       *
2063       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2064       * behaviorally equivalent to
# Line 1804 | Line 2072 | public class ForkJoinPool extends Abstra
2072       * first be expanded to ensure parallelism, and later adjusted.
2073       *
2074       * @param blocker the blocker
1807     * @param maintainParallelism if {@code true} and supported by
1808     * this pool, attempt to maintain the pool's nominal parallelism;
1809     * otherwise activate a thread only if necessary to avoid
1810     * complete starvation.
2075       * @throws InterruptedException if blocker.block did so
2076       */
2077 <    public static void managedBlock(ManagedBlocker blocker,
1814 <                                    boolean maintainParallelism)
2077 >    public static void managedBlock(ManagedBlocker blocker)
2078          throws InterruptedException {
2079          Thread t = Thread.currentThread();
2080 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2081 <                             ((ForkJoinWorkerThread) t).pool : null);
2082 <        if (!blocker.isReleasable()) {
2083 <            try {
2084 <                if (pool == null ||
2085 <                    !pool.preBlock(blocker, maintainParallelism))
1823 <                    awaitBlocker(blocker);
1824 <            } finally {
1825 <                if (pool != null)
1826 <                    pool.updateRunningCount(1);
1827 <            }
2080 >        if (t instanceof ForkJoinWorkerThread) {
2081 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2082 >            w.pool.awaitBlocker(blocker);
2083 >        }
2084 >        else {
2085 >            do {} while (!blocker.isReleasable() && !blocker.block());
2086          }
1829    }
1830
1831    private static void awaitBlocker(ManagedBlocker blocker)
1832        throws InterruptedException {
1833        do {} while (!blocker.isReleasable() && !blocker.block());
2087      }
2088  
2089      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1846 | Line 2099 | public class ForkJoinPool extends Abstra
2099      }
2100  
2101      // Unsafe mechanics
2102 <
2103 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2104 <    private static final long eventCountOffset =
2105 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2106 <    private static final long workerCountsOffset =
2107 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2108 <    private static final long runControlOffset =
2109 <        objectFieldOffset("runControl", ForkJoinPool.class);
2110 <    private static final long syncStackOffset =
2111 <        objectFieldOffset("syncStack",ForkJoinPool.class);
2112 <    private static final long spareStackOffset =
2113 <        objectFieldOffset("spareStack", ForkJoinPool.class);
2114 <
2115 <    private boolean casEventCount(long cmp, long val) {
2116 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
2117 <    }
2118 <    private boolean casWorkerCounts(int cmp, int val) {
1866 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1867 <    }
1868 <    private boolean casRunControl(int cmp, int val) {
1869 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1870 <    }
1871 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1872 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1873 <    }
1874 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1875 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1876 <    }
1877 <
1878 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2102 >    private static final sun.misc.Unsafe UNSAFE;
2103 >    private static final long ctlOffset;
2104 >    private static final long stealCountOffset;
2105 >    private static final long blockedCountOffset;
2106 >    private static final long quiescerCountOffset;
2107 >    private static final long scanGuardOffset;
2108 >    private static final long nextWorkerNumberOffset;
2109 >    private static final long ABASE;
2110 >    private static final int ASHIFT;
2111 >
2112 >    static {
2113 >        poolNumberGenerator = new AtomicInteger();
2114 >        workerSeedGenerator = new Random();
2115 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2116 >        defaultForkJoinWorkerThreadFactory =
2117 >            new DefaultForkJoinWorkerThreadFactory();
2118 >        int s;
2119          try {
2120 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2121 <        } catch (NoSuchFieldException e) {
2122 <            // Convert Exception to corresponding Error
2123 <            NoSuchFieldError error = new NoSuchFieldError(field);
2124 <            error.initCause(e);
2125 <            throw error;
2126 <        }
2120 >            UNSAFE = getUnsafe();
2121 >            Class k = ForkJoinPool.class;
2122 >            ctlOffset = UNSAFE.objectFieldOffset
2123 >                (k.getDeclaredField("ctl"));
2124 >            stealCountOffset = UNSAFE.objectFieldOffset
2125 >                (k.getDeclaredField("stealCount"));
2126 >            blockedCountOffset = UNSAFE.objectFieldOffset
2127 >                (k.getDeclaredField("blockedCount"));
2128 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2129 >                (k.getDeclaredField("quiescerCount"));
2130 >            scanGuardOffset = UNSAFE.objectFieldOffset
2131 >                (k.getDeclaredField("scanGuard"));
2132 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2133 >                (k.getDeclaredField("nextWorkerNumber"));
2134 >            Class a = ForkJoinTask[].class;
2135 >            ABASE = UNSAFE.arrayBaseOffset(a);
2136 >            s = UNSAFE.arrayIndexScale(a);
2137 >        } catch (Exception e) {
2138 >            throw new Error(e);
2139 >        }
2140 >        if ((s & (s-1)) != 0)
2141 >            throw new Error("data type scale not a power of two");
2142 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2143      }
2144  
2145      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines