ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.98 by dl, Mon Mar 21 23:29:03 2011 UTC vs.
Revision 1.116 by dl, Fri Jan 27 17:27:28 2012 UTC

# Line 19 | Line 19 | import java.util.concurrent.Future;
19   import java.util.concurrent.RejectedExecutionException;
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.locks.LockSupport;
23 > import java.util.concurrent.atomic.AtomicLong;
24   import java.util.concurrent.locks.ReentrantLock;
25   import java.util.concurrent.locks.Condition;
26  
# Line 34 | Line 33 | import java.util.concurrent.locks.Condit
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45   * <p>A {@code ForkJoinPool} is constructed with a given target
46   * parallelism level; by default, equal to the number of available
# Line 60 | Line 61 | import java.util.concurrent.locks.Condit
61   *
62   * <p> As is the case with other ExecutorServices, there are three
63   * main task execution methods summarized in the following
64 < * table. These are designed to be used by clients not already engaged
65 < * in fork/join computations in the current pool.  The main forms of
66 < * these methods accept instances of {@code ForkJoinTask}, but
67 < * overloaded forms also allow mixed execution of plain {@code
68 < * Runnable}- or {@code Callable}- based activities as well.  However,
69 < * tasks that are already executing in a pool should normally
70 < * <em>NOT</em> use these pool execution methods, but instead use the
71 < * within-computation forms listed in the table.
64 > * table. These are designed to be used primarily by clients not
65 > * already engaged in fork/join computations in the current pool.  The
66 > * main forms of these methods accept instances of {@code
67 > * ForkJoinTask}, but overloaded forms also allow mixed execution of
68 > * plain {@code Runnable}- or {@code Callable}- based activities as
69 > * well.  However, tasks that are already executing in a pool should
70 > * normally instead use the within-computation forms listed in the
71 > * table unless using async event-style tasks that are not usually
72 > * joined, in which case there is little difference among choice of
73 > * methods.
74   *
75   * <table BORDER CELLPADDING=3 CELLSPACING=1>
76   *  <tr>
# Line 102 | Line 105 | import java.util.concurrent.locks.Condit
105   * daemon} mode, there is typically no need to explicitly {@link
106   * #shutdown} such a pool upon program exit.
107   *
108 < * <pre>
108 > *  <pre> {@code
109   * static final ForkJoinPool mainPool = new ForkJoinPool();
110   * ...
111   * public void sort(long[] array) {
112   *   mainPool.invoke(new SortTask(array, 0, array.length));
113 < * }
111 < * </pre>
113 > * }}</pre>
114   *
115   * <p><b>Implementation notes</b>: This implementation restricts the
116   * maximum number of running threads to 32767. Attempts to create
# Line 127 | Line 129 | public class ForkJoinPool extends Abstra
129      /*
130       * Implementation Overview
131       *
132 <     * This class provides the central bookkeeping and control for a
133 <     * set of worker threads: Submissions from non-FJ threads enter
134 <     * into a submission queue. Workers take these tasks and typically
135 <     * split them into subtasks that may be stolen by other workers.
136 <     * Preference rules give first priority to processing tasks from
137 <     * their own queues (LIFO or FIFO, depending on mode), then to
138 <     * randomized FIFO steals of tasks in other worker queues, and
139 <     * lastly to new submissions.
132 >     * This class and its nested classes provide the main
133 >     * functionality and control for a set of worker threads:
134 >     * Submissions from non-FJ threads enter into submission
135 >     * queues. Workers take these tasks and typically split them into
136 >     * subtasks that may be stolen by other workers.  Preference rules
137 >     * give first priority to processing tasks from their own queues
138 >     * (LIFO or FIFO, depending on mode), then to randomized FIFO
139 >     * steals of tasks in other queues.
140 >     *
141 >     * WorkQueues.
142 >     * ==========
143 >     *
144 >     * Most operations occur within work-stealing queues (in nested
145 >     * class WorkQueue).  These are special forms of Deques that
146 >     * support only three of the four possible end-operations -- push,
147 >     * pop, and poll (aka steal), under the further constraints that
148 >     * push and pop are called only from the owning thread (or, as
149 >     * extended here, under a lock), while poll may be called from
150 >     * other threads.  (If you are unfamiliar with them, you probably
151 >     * want to read Herlihy and Shavit's book "The Art of
152 >     * Multiprocessor programming", chapter 16 describing these in
153 >     * more detail before proceeding.)  The main work-stealing queue
154 >     * design is roughly similar to those in the papers "Dynamic
155 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156 >     * (http://research.sun.com/scalable/pubs/index.html) and
157 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159 >     * The main differences ultimately stem from gc requirements that
160 >     * we null out taken slots as soon as we can, to maintain as small
161 >     * a footprint as possible even in programs generating huge
162 >     * numbers of tasks. To accomplish this, we shift the CAS
163 >     * arbitrating pop vs poll (steal) from being on the indices
164 >     * ("base" and "top") to the slots themselves.  So, both a
165 >     * successful pop and poll mainly entail a CAS of a slot from
166 >     * non-null to null.  Because we rely on CASes of references, we
167 >     * do not need tag bits on base or top.  They are simple ints as
168 >     * used in any circular array-based queue (see for example
169 >     * ArrayDeque).  Updates to the indices must still be ordered in a
170 >     * way that guarantees that top == base means the queue is empty,
171 >     * but otherwise may err on the side of possibly making the queue
172 >     * appear nonempty when a push, pop, or poll have not fully
173 >     * committed. Note that this means that the poll operation,
174 >     * considered individually, is not wait-free. One thief cannot
175 >     * successfully continue until another in-progress one (or, if
176 >     * previously empty, a push) completes.  However, in the
177 >     * aggregate, we ensure at least probabilistic non-blockingness.
178 >     * If an attempted steal fails, a thief always chooses a different
179 >     * random victim target to try next. So, in order for one thief to
180 >     * progress, it suffices for any in-progress poll or new push on
181 >     * any empty queue to complete.
182 >     *
183 >     * This approach also enables support of a user mode in which local
184 >     * task processing is in FIFO, not LIFO order, simply by using
185 >     * poll rather than pop.  This can be useful in message-passing
186 >     * frameworks in which tasks are never joined.  However neither
187 >     * mode considers affinities, loads, cache localities, etc, so
188 >     * rarely provide the best possible performance on a given
189 >     * machine, but portably provide good throughput by averaging over
190 >     * these factors.  (Further, even if we did try to use such
191 >     * information, we do not usually have a basis for exploiting
192 >     * it. For example, some sets of tasks profit from cache
193 >     * affinities, but others are harmed by cache pollution effects.)
194 >     *
195 >     * WorkQueues are also used in a similar way for tasks submitted
196 >     * to the pool. We cannot mix these tasks in the same queues used
197 >     * for work-stealing (this would contaminate lifo/fifo
198 >     * processing). Instead, we loosely associate submission queues
199 >     * with submitting threads, using a form of hashing.  The
200 >     * ThreadLocal Submitter class contains a value initially used as
201 >     * a hash code for choosing existing queues, but may be randomly
202 >     * repositioned upon contention with other submitters.  In
203 >     * essence, submitters act like workers except that they never
204 >     * take tasks, and they are multiplexed on to a finite number of
205 >     * shared work queues. However, classes are set up so that future
206 >     * extensions could allow submitters to optionally help perform
207 >     * tasks as well. Pool submissions from internal workers are also
208 >     * allowed, but use randomized rather than thread-hashed queue
209 >     * indices to avoid imbalance.  Insertion of tasks in shared mode
210 >     * requires a lock (mainly to protect in the case of resizing) but
211 >     * we use only a simple spinlock (using bits in field runState),
212 >     * because submitters encountering a busy queue try or create
213 >     * others so never block.
214 >     *
215 >     * Management.
216 >     * ==========
217       *
218       * The main throughput advantages of work-stealing stem from
219       * decentralized control -- workers mostly take tasks from
220       * themselves or each other. We cannot negate this in the
221       * implementation of other management responsibilities. The main
222       * tactic for avoiding bottlenecks is packing nearly all
223 <     * essentially atomic control state into a single 64bit volatile
224 <     * variable ("ctl"). This variable is read on the order of 10-100
225 <     * times as often as it is modified (always via CAS). (There is
226 <     * some additional control state, for example variable "shutdown"
227 <     * for which we can cope with uncoordinated updates.)  This
228 <     * streamlines synchronization and control at the expense of messy
229 <     * constructions needed to repack status bits upon updates.
230 <     * Updates tend not to contend with each other except during
231 <     * bursts while submitted tasks begin or end.  In some cases when
232 <     * they do contend, threads can instead do something else
233 <     * (usually, scan for tasks) until contention subsides.
234 <     *
235 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
236 <     * (which is far in excess of normal operating range) to allow
237 <     * ids, counts, and their negations (used for thresholding) to fit
238 <     * into 16bit fields.
239 <     *
240 <     * Recording Workers.  Workers are recorded in the "workers" array
241 <     * that is created upon pool construction and expanded if (rarely)
242 <     * necessary.  This is an array as opposed to some other data
243 <     * structure to support index-based random steals by workers.
244 <     * Updates to the array recording new workers and unrecording
245 <     * terminated ones are protected from each other by a seqLock
246 <     * (scanGuard) but the array is otherwise concurrently readable,
168 <     * and accessed directly by workers. To simplify index-based
223 >     * essentially atomic control state into two volatile variables
224 >     * that are by far most often read (not written) as status and
225 >     * consistency checks
226 >     *
227 >     * Field "ctl" contains 64 bits holding all the information needed
228 >     * to atomically decide to add, inactivate, enqueue (on an event
229 >     * queue), dequeue, and/or re-activate workers.  To enable this
230 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231 >     * far in excess of normal operating range) to allow ids, counts,
232 >     * and their negations (used for thresholding) to fit into 16bit
233 >     * fields.
234 >     *
235 >     * Field "runState" contains 32 bits needed to register and
236 >     * deregister WorkQueues, as well as to enable shutdown. It is
237 >     * only modified under a lock (normally briefly held, but
238 >     * occasionally protecting allocations and resizings) but even
239 >     * when locked remains available to check consistency.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247       * operations, the array size is always a power of two, and all
248 <     * readers must tolerate null slots. To avoid flailing during
249 <     * start-up, the array is presized to hold twice #parallelism
250 <     * workers (which is unlikely to need further resizing during
251 <     * execution). But to avoid dealing with so many null slots,
252 <     * variable scanGuard includes a mask for the nearest power of two
253 <     * that contains all current workers.  All worker thread creation
254 <     * is on-demand, triggered by task submissions, replacement of
255 <     * terminated workers, and/or compensation for blocked
256 <     * workers. However, all other support code is set up to work with
257 <     * other policies.  To ensure that we do not hold on to worker
258 <     * references that would prevent GC, ALL accesses to workers are
259 <     * via indices into the workers array (which is one source of some
260 <     * of the messy code constructions here). In essence, the workers
261 <     * array serves as a weak reference mechanism. Thus for example
262 <     * the wait queue field of ctl stores worker indices, not worker
263 <     * references.  Access to the workers in associated methods (for
264 <     * example signalWork) must both index-check and null-check the
265 <     * IDs. All such accesses ignore bad IDs by returning out early
266 <     * from what they are doing, since this can only be associated
267 <     * with termination, in which case it is OK to give up.
268 <     *
269 <     * All uses of the workers array, as well as queue arrays, check
270 <     * that the array is non-null (even if previously non-null). This
271 <     * allows nulling during termination, which is currently not
272 <     * necessary, but remains an option for resource-revocation-based
273 <     * shutdown schemes.
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning. To avoid flailing during start-up, the array is
252 >     * presized to hold twice #parallelism workers (which is unlikely
253 >     * to need further resizing during execution). But to avoid
254 >     * dealing with so many null slots, variable runState includes a
255 >     * mask for the nearest power of two that contains all current
256 >     * workers.  All worker thread creation is on-demand, triggered by
257 >     * task submissions, replacement of terminated workers, and/or
258 >     * compensation for blocked workers. However, all other support
259 >     * code is set up to work with other policies.  To ensure that we
260 >     * do not hold on to worker references that would prevent GC, ALL
261 >     * accesses to workQueues are via indices into the workQueues
262 >     * array (which is one source of some of the messy code
263 >     * constructions here). In essence, the workQueues array serves as
264 >     * a weak reference mechanism. Thus for example the wait queue
265 >     * field of ctl stores indices, not references.  Access to the
266 >     * workQueues in associated methods (for example signalWork) must
267 >     * both index-check and null-check the IDs. All such accesses
268 >     * ignore bad IDs by returning out early from what they are doing,
269 >     * since this can only be associated with termination, in which
270 >     * case it is OK to give up.
271 >     *
272 >     * All uses of the workQueues array check that it is non-null
273 >     * (even if previously non-null). This allows nulling during
274 >     * termination, which is currently not necessary, but remains an
275 >     * option for resource-revocation-based shutdown schemes. It also
276 >     * helps reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278       *
279 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280       * let workers spin indefinitely scanning for tasks when none can
281       * be found immediately, and we cannot start/resume workers unless
282       * there appear to be tasks available.  On the other hand, we must
283       * quickly prod them into action when new tasks are submitted or
284 <     * generated.  We park/unpark workers after placing in an event
285 <     * wait queue when they cannot find work. This "queue" is actually
286 <     * a simple Treiber stack, headed by the "id" field of ctl, plus a
287 <     * 15bit counter value to both wake up waiters (by advancing their
288 <     * count) and avoid ABA effects. Successors are held in worker
289 <     * field "nextWait".  Queuing deals with several intrinsic races,
290 <     * mainly that a task-producing thread can miss seeing (and
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296       * signalling) another thread that gave up looking for work but
297       * has not yet entered the wait queue. We solve this by requiring
298 <     * a full sweep of all workers both before (in scan()) and after
299 <     * (in tryAwaitWork()) a newly waiting worker is added to the wait
300 <     * queue. During a rescan, the worker might release some other
301 <     * queued worker rather than itself, which has the same net
302 <     * effect. Because enqueued workers may actually be rescanning
303 <     * rather than waiting, we set and clear the "parked" field of
304 <     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
305 <     * (Use of the parked field requires a secondary recheck to avoid
306 <     * missed signals.)
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * Workqueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316       * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had two or fewer tasks, they
317 >     * task to a queue that previously had fewer than two tasks, they
318       * signal waiting workers (or trigger creation of new ones if
319       * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans
321 <     * as well as those performed when a worker steals a task and
322 <     * notices that there are more tasks too; together these cover the
323 <     * signals needed in cases when more than two tasks are pushed
231 <     * but untaken.
320 >     * These primary signals are buttressed by signals during rescans;
321 >     * together these cover the signals needed in cases when more
322 >     * tasks are pushed but untaken, and improve performance compared
323 >     * to having one thread wake up all workers.
324       *
325       * Trimming workers. To release resources after periods of lack of
326       * use, a worker starting to wait when the pool is quiescent will
# Line 236 | Line 328 | public class ForkJoinPool extends Abstra
328       * SHRINK_RATE nanosecs. This will slowly propagate, eventually
329       * terminating all workers after long periods of non-use.
330       *
331 <     * Submissions. External submissions are maintained in an
332 <     * array-based queue that is structured identically to
333 <     * ForkJoinWorkerThread queues except for the use of
334 <     * submissionLock in method addSubmission. Unlike the case for
335 <     * worker queues, multiple external threads can add new
336 <     * submissions, so adding requires a lock.
337 <     *
338 <     * Compensation. Beyond work-stealing support and lifecycle
339 <     * control, the main responsibility of this framework is to take
340 <     * actions when one worker is waiting to join a task stolen (or
341 <     * always held by) another.  Because we are multiplexing many
342 <     * tasks on to a pool of workers, we can't just let them block (as
343 <     * in Thread.join).  We also cannot just reassign the joiner's
344 <     * run-time stack with another and replace it later, which would
345 <     * be a form of "continuation", that even if possible is not
346 <     * necessarily a good idea since we sometimes need both an
347 <     * unblocked task and its continuation to progress. Instead we
348 <     * combine two tactics:
331 >     * Shutdown and Termination. A call to shutdownNow atomically sets
332 >     * a runState bit and then (non-atomically) sets each workers
333 >     * runState status, cancels all unprocessed tasks, and wakes up
334 >     * all waiting workers.  Detecting whether termination should
335 >     * commence after a non-abrupt shutdown() call requires more work
336 >     * and bookkeeping. We need consensus about quiescence (i.e., that
337 >     * there is no more work). The active count provides a primary
338 >     * indication but non-abrupt shutdown still requires a rechecking
339 >     * scan for any workers that are inactive but not queued.
340 >     *
341 >     * Joining Tasks.
342 >     * ==============
343 >     *
344 >     * Any of several actions may be taken when one worker is waiting
345 >     * to join a task stolen (or always held by) another.  Because we
346 >     * are multiplexing many tasks on to a pool of workers, we can't
347 >     * just let them block (as in Thread.join).  We also cannot just
348 >     * reassign the joiner's run-time stack with another and replace
349 >     * it later, which would be a form of "continuation", that even if
350 >     * possible is not necessarily a good idea since we sometimes need
351 >     * both an unblocked task and its continuation to
352 >     * progress. Instead we combine two tactics:
353       *
354       *   Helping: Arranging for the joiner to execute some task that it
355 <     *      would be running if the steal had not occurred.  Method
260 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 <     *      links to try to find such a task.
355 >     *      would be running if the steal had not occurred.
356       *
357       *   Compensating: Unless there are already enough live threads,
358 <     *      method tryPreBlock() may create or re-activate a spare
359 <     *      thread to compensate for blocked joiners until they
360 <     *      unblock.
358 >     *      method tryCompensate() may create or re-activate a spare
359 >     *      thread to compensate for blocked joiners until they unblock.
360 >     *
361 >     * A third form (implemented in tryRemoveAndExec and
362 >     * tryPollForAndExec) amounts to helping a hypothetical
363 >     * compensator: If we can readily tell that a possible action of a
364 >     * compensator is to steal and execute the task being joined, the
365 >     * joining thread can do so directly, without the need for a
366 >     * compensation thread (although at the expense of larger run-time
367 >     * stacks, but the tradeoff is typically worthwhile).
368       *
369       * The ManagedBlocker extension API can't use helping so relies
370       * only on compensation in method awaitBlocker.
371       *
372 +     * The algorithm in tryHelpStealer entails a form of "linear"
373 +     * helping: Each worker records (in field currentSteal) the most
374 +     * recent task it stole from some other worker. Plus, it records
375 +     * (in field currentJoin) the task it is currently actively
376 +     * joining. Method tryHelpStealer uses these markers to try to
377 +     * find a worker to help (i.e., steal back a task from and execute
378 +     * it) that could hasten completion of the actively joined task.
379 +     * In essence, the joiner executes a task that would be on its own
380 +     * local deque had the to-be-joined task not been stolen. This may
381 +     * be seen as a conservative variant of the approach in Wagner &
382 +     * Calder "Leapfrogging: a portable technique for implementing
383 +     * efficient futures" SIGPLAN Notices, 1993
384 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
385 +     * that: (1) We only maintain dependency links across workers upon
386 +     * steals, rather than use per-task bookkeeping.  This sometimes
387 +     * requires a linear scan of workers array to locate stealers, but
388 +     * often doesn't because stealers leave hints (that may become
389 +     * stale/wrong) of where to locate them.  A stealHint is only a
390 +     * hint because a worker might have had multiple steals and the
391 +     * hint records only one of them (usually the most current).
392 +     * Hinting isolates cost to when it is needed, rather than adding
393 +     * to per-task overhead.  (2) It is "shallow", ignoring nesting
394 +     * and potentially cyclic mutual steals.  (3) It is intentionally
395 +     * racy: field currentJoin is updated only while actively joining,
396 +     * which means that we miss links in the chain during long-lived
397 +     * tasks, GC stalls etc (which is OK since blocking in such cases
398 +     * is usually a good idea).  (4) We bound the number of attempts
399 +     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
400 +     * the worker and if necessary replacing it with another.
401 +     *
402       * It is impossible to keep exactly the target parallelism number
403       * of threads running at any given time.  Determining the
404       * existence of conservatively safe helping targets, the
405       * availability of already-created spares, and the apparent need
406 <     * to create new spares are all racy and require heuristic
407 <     * guidance, so we rely on multiple retries of each.  Currently,
408 <     * in keeping with on-demand signalling policy, we compensate only
409 <     * if blocking would leave less than one active (non-waiting,
410 <     * non-blocked) worker. Additionally, to avoid some false alarms
411 <     * due to GC, lagging counters, system activity, etc, compensated
412 <     * blocking for joins is only attempted after rechecks stabilize
413 <     * (retries are interspersed with Thread.yield, for good
414 <     * citizenship).  The variable blockedCount, incremented before
284 <     * blocking and decremented after, is sometimes needed to
285 <     * distinguish cases of waiting for work vs blocking on joins or
286 <     * other managed sync. Both cases are equivalent for most pool
287 <     * control, so we can update non-atomically. (Additionally,
288 <     * contention on blockedCount alleviates some contention on ctl).
289 <     *
290 <     * Shutdown and Termination. A call to shutdownNow atomically sets
291 <     * the ctl stop bit and then (non-atomically) sets each workers
292 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 <     * all waiting workers.  Detecting whether termination should
294 <     * commence after a non-abrupt shutdown() call requires more work
295 <     * and bookkeeping. We need consensus about quiesence (i.e., that
296 <     * there is no more work) which is reflected in active counts so
297 <     * long as there are no current blockers, as well as possible
298 <     * re-evaluations during independent changes in blocking or
299 <     * quiescing workers.
406 >     * to create new spares are all racy, so we rely on multiple
407 >     * retries of each.  Currently, in keeping with on-demand
408 >     * signalling policy, we compensate only if blocking would leave
409 >     * less than one active (non-waiting, non-blocked) worker.
410 >     * Additionally, to avoid some false alarms due to GC, lagging
411 >     * counters, system activity, etc, compensated blocking for joins
412 >     * is only attempted after rechecks stabilize in
413 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
414 >     * Thread.yield, for good citizenship.)
415       *
416       * Style notes: There is a lot of representation-level coupling
417       * among classes ForkJoinPool, ForkJoinWorkerThread, and
418 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
419 <     * data structures managed by ForkJoinPool, so are directly
420 <     * accessed.  Conversely we allow access to "workers" array by
421 <     * workers, and direct access to ForkJoinTask.status by both
422 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
423 <     * trying to reduce this, since any associated future changes in
424 <     * representations will need to be accompanied by algorithmic
425 <     * changes anyway. All together, these low-level implementation
426 <     * choices produce as much as a factor of 4 performance
312 <     * improvement compared to naive implementations, and enable the
313 <     * processing of billions of tasks per second, at the expense of
314 <     * some ugliness.
418 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
419 >     * managed by ForkJoinPool, so are directly accessed.  There is
420 >     * little point trying to reduce this, since any associated future
421 >     * changes in representations will need to be accompanied by
422 >     * algorithmic changes anyway. All together, these low-level
423 >     * implementation choices produce as much as a factor of 4
424 >     * performance improvement compared to naive implementations, and
425 >     * enable the processing of billions of tasks per second, at the
426 >     * expense of some ugliness.
427       *
428       * Methods signalWork() and scan() are the main bottlenecks so are
429       * especially heavily micro-optimized/mangled.  There are lots of
# Line 328 | Line 440 | public class ForkJoinPool extends Abstra
440       * The order of declarations in this file is: (1) declarations of
441       * statics (2) fields (along with constants used when unpacking
442       * some of them), listed in an order that tends to reduce
443 <     * contention among them a bit under most JVMs.  (3) internal
444 <     * control methods (4) callbacks and other support for
445 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
446 <     * methods (plus a few little helpers). (6) static block
447 <     * initializing all statics in a minimally dependent order.
443 >     * contention among them a bit under most JVMs; (3) nested
444 >     * classes; (4) internal control methods; (5) callbacks and other
445 >     * support for ForkJoinTask methods; (6) exported methods (plus a
446 >     * few little helpers); (7) static block initializing all statics
447 >     * in a minimally dependent order.
448       */
449  
450      /**
# Line 391 | Line 503 | public class ForkJoinPool extends Abstra
503      private static final AtomicInteger poolNumberGenerator;
504  
505      /**
506 <     * Generator for initial random seeds for worker victim
507 <     * selection. This is used only to create initial seeds. Random
508 <     * steals use a cheaper xorshift generator per steal attempt. We
397 <     * don't expect much contention on seedGenerator, so just use a
398 <     * plain Random.
399 <     */
400 <    static final Random workerSeedGenerator;
401 <
402 <    /**
403 <     * Array holding all worker threads in the pool.  Initialized upon
404 <     * construction. Array size must be a power of two.  Updates and
405 <     * replacements are protected by scanGuard, but the array is
406 <     * always kept in a consistent enough state to be randomly
407 <     * accessed without locking by workers performing work-stealing,
408 <     * as well as other traversal-based methods in this class, so long
409 <     * as reads memory-acquire by first reading ctl. All readers must
410 <     * tolerate that some array slots may be null.
411 <     */
412 <    ForkJoinWorkerThread[] workers;
413 <
414 <    /**
415 <     * Initial size for submission queue array. Must be a power of
416 <     * two.  In many applications, these always stay small so we use a
417 <     * small initial cap.
418 <     */
419 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
420 <
421 <    /**
422 <     * Maximum size for submission queue array. Must be a power of two
423 <     * less than or equal to 1 << (31 - width of array entry) to
424 <     * ensure lack of index wraparound, but is capped at a lower
425 <     * value to help users trap runaway computations.
426 <     */
427 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 <
429 <    /**
430 <     * Array serving as submission queue. Initialized upon construction.
431 <     */
432 <    private ForkJoinTask<?>[] submissionQueue;
433 <
434 <    /**
435 <     * Lock protecting submissions array for addSubmission
436 <     */
437 <    private final ReentrantLock submissionLock;
438 <
439 <    /**
440 <     * Condition for awaitTermination, using submissionLock for
441 <     * convenience.
442 <     */
443 <    private final Condition termination;
444 <
445 <    /**
446 <     * Creation factory for worker threads.
447 <     */
448 <    private final ForkJoinWorkerThreadFactory factory;
449 <
450 <    /**
451 <     * The uncaught exception handler used when any worker abruptly
452 <     * terminates.
453 <     */
454 <    final Thread.UncaughtExceptionHandler ueh;
455 <
456 <    /**
457 <     * Prefix for assigning names to worker threads
458 <     */
459 <    private final String workerNamePrefix;
460 <
461 <    /**
462 <     * Sum of per-thread steal counts, updated only when threads are
463 <     * idle or terminating.
464 <     */
465 <    private volatile long stealCount;
466 <
467 <    /**
468 <     * Main pool control -- a long packed with:
506 >     * Bits and masks for control variables
507 >     *
508 >     * Field ctl is a long packed with:
509       * AC: Number of active running workers minus target parallelism (16 bits)
510 <     * TC: Number of total workers minus target parallelism (16bits)
510 >     * TC: Number of total workers minus target parallelism (16 bits)
511       * ST: true if pool is terminating (1 bit)
512       * EC: the wait count of top waiting thread (15 bits)
513 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
513 >     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
514       *
515       * When convenient, we can extract the upper 32 bits of counts and
516       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 484 | Line 524 | public class ForkJoinPool extends Abstra
524       * negative, the pool is terminating.  To deal with these possibly
525       * negative fields, we use casts in and out of "short" and/or
526       * signed shifts to maintain signedness.
527 +     *
528 +     * When a thread is queued (inactivated), its eventCount field is
529 +     * negative, which is the only way to tell if a worker is
530 +     * prevented from executing tasks, even though it must continue to
531 +     * scan for them to avoid queuing races.
532 +     *
533 +     * Field runState is an int packed with:
534 +     * SHUTDOWN: true if shutdown is enabled (1 bit)
535 +     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
536 +     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
537 +     *
538 +     * The combination of mask and sequence number enables simple
539 +     * consistency checks: Staleness of read-only operations on the
540 +     * workers and queues arrays can be checked by comparing runState
541 +     * before vs after the reads. The low 16 bits (i.e, anding with
542 +     * SMASK) hold (the smallest power of two covering all worker
543 +     * indices, minus one.  The mask for queues (vs workers) is twice
544 +     * this value plus 1.
545       */
488    volatile long ctl;
546  
547      // bit positions/shifts for fields
548      private static final int  AC_SHIFT   = 48;
# Line 517 | Line 574 | public class ForkJoinPool extends Abstra
574      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
575  
576      // masks and units for dealing with e = (int)ctl
577 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
578 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
577 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
578 >    private static final int E_SEQ       = 1 << EC_SHIFT;
579 >
580 >    // runState bits
581 >    private static final int SHUTDOWN    = 1 << 31;
582 >    private static final int RS_SEQ      = 1 << 16;
583 >    private static final int RS_SEQ_MASK = 0x7fff0000;
584 >
585 >    // access mode for WorkQueue
586 >    static final int LIFO_QUEUE          =  0;
587 >    static final int FIFO_QUEUE          =  1;
588 >    static final int SHARED_QUEUE        = -1;
589  
590      /**
591 <     * The target parallelism level.
591 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
592 >     * task when the pool is quiescent to instead try to shrink the
593 >     * number of workers.  The exact value does not matter too
594 >     * much. It must be short enough to release resources during
595 >     * sustained periods of idleness, but not so short that threads
596 >     * are continually re-created.
597       */
598 <    final int parallelism;
598 >    private static final long SHRINK_RATE =
599 >        4L * 1000L * 1000L * 1000L; // 4 seconds
600  
601      /**
602 <     * Index (mod submission queue length) of next element to take
603 <     * from submission queue. Usage is identical to that for
531 <     * per-worker queues -- see ForkJoinWorkerThread internal
532 <     * documentation.
602 >     * The timeout value for attempted shrinkage, includes
603 >     * some slop to cope with system timer imprecision.
604       */
605 <    volatile int queueBase;
605 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
606  
607      /**
608 <     * Index (mod submission queue length) of next element to add
609 <     * in submission queue. Usage is identical to that for
610 <     * per-worker queues -- see ForkJoinWorkerThread internal
611 <     * documentation.
608 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
609 >     * Depths for legitimate chains are unbounded, but we use a fixed
610 >     * constant to avoid (otherwise unchecked) cycles and to bound
611 >     * staleness of traversal parameters at the expense of sometimes
612 >     * blocking when we could be helping.
613       */
614 <    int queueTop;
614 >    private static final int MAX_HELP_DEPTH = 16;
615  
616 <    /**
617 <     * True when shutdown() has been called.
616 >    /*
617 >     * Field layout order in this class tends to matter more than one
618 >     * would like. Runtime layout order is only loosely related to
619 >     * declaration order and may differ across JVMs, but the following
620 >     * empirically works OK on current JVMs.
621 >     */
622 >
623 >    volatile long ctl;                       // main pool control
624 >    final int parallelism;                   // parallelism level
625 >    final int localMode;                     // per-worker scheduling mode
626 >    int nextPoolIndex;                       // hint used in registerWorker
627 >    volatile int runState;                   // shutdown status, seq, and mask
628 >    WorkQueue[] workQueues;                  // main registry
629 >    final ReentrantLock lock;                // for registration
630 >    final Condition termination;             // for awaitTermination
631 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
632 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
633 >    final AtomicLong stealCount;             // collect counts when terminated
634 >    final AtomicInteger nextWorkerNumber;    // to create worker name string
635 >    final String workerNamePrefix;           // Prefix for assigning worker names
636 >
637 >    /**
638 >     * Queues supporting work-stealing as well as external task
639 >     * submission. See above for main rationale and algorithms.
640 >     * Implementation relies heavily on "Unsafe" intrinsics
641 >     * and selective use of "volatile":
642 >     *
643 >     * Field "base" is the index (mod array.length) of the least valid
644 >     * queue slot, which is always the next position to steal (poll)
645 >     * from if nonempty. Reads and writes require volatile orderings
646 >     * but not CAS, because updates are only performed after slot
647 >     * CASes.
648 >     *
649 >     * Field "top" is the index (mod array.length) of the next queue
650 >     * slot to push to or pop from. It is written only by owner thread
651 >     * for push, or under lock for trySharedPush, and accessed by
652 >     * other threads only after reading (volatile) base.  Both top and
653 >     * base are allowed to wrap around on overflow, but (top - base)
654 >     * (or more commonly -(base - top) to force volatile read of base
655 >     * before top) still estimates size.
656 >     *
657 >     * The array slots are read and written using the emulation of
658 >     * volatiles/atomics provided by Unsafe. Insertions must in
659 >     * general use putOrderedObject as a form of releasing store to
660 >     * ensure that all writes to the task object are ordered before
661 >     * its publication in the queue. (Although we can avoid one case
662 >     * of this when locked in trySharedPush.) All removals entail a
663 >     * CAS to null.  The array is always a power of two. To ensure
664 >     * safety of Unsafe array operations, all accesses perform
665 >     * explicit null checks and implicit bounds checks via
666 >     * power-of-two masking.
667 >     *
668 >     * In addition to basic queuing support, this class contains
669 >     * fields described elsewhere to control execution. It turns out
670 >     * to work better memory-layout-wise to include them in this
671 >     * class rather than a separate class.
672 >     *
673 >     * Performance on most platforms is very sensitive to placement of
674 >     * instances of both WorkQueues and their arrays -- we absolutely
675 >     * do not want multiple WorkQueue instances or multiple queue
676 >     * arrays sharing cache lines. (It would be best for queue objects
677 >     * and their arrays to share, but there is nothing available to
678 >     * help arrange that).  Unfortunately, because they are recorded
679 >     * in a common array, WorkQueue instances are often moved to be
680 >     * adjacent by garbage collectors. To reduce impact, we use field
681 >     * padding that works OK on common platforms; this effectively
682 >     * trades off slightly slower average field access for the sake of
683 >     * avoiding really bad worst-case access. (Until better JVM
684 >     * support is in place, this padding is dependent on transient
685 >     * properties of JVM field layout rules.)  We also take care in
686 >     * allocating and sizing and resizing the array. Non-shared queue
687 >     * arrays are initialized (via method growArray) by workers before
688 >     * use. Others are allocated on first use.
689       */
690 <    volatile boolean shutdown;
690 >    static final class WorkQueue {
691 >        /**
692 >         * Capacity of work-stealing queue array upon initialization.
693 >         * Must be a power of two; at least 4, but set larger to
694 >         * reduce cacheline sharing among queues.
695 >         */
696 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
697 >
698 >        /**
699 >         * Maximum size for queue arrays. Must be a power of two less
700 >         * than or equal to 1 << (31 - width of array entry) to ensure
701 >         * lack of wraparound of index calculations, but defined to a
702 >         * value a bit less than this to help users trap runaway
703 >         * programs before saturating systems.
704 >         */
705 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
706 >
707 >        volatile long totalSteals; // cumulative number of steals
708 >        int seed;                  // for random scanning; initialize nonzero
709 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
710 >        int nextWait;              // encoded record of next event waiter
711 >        int rescans;               // remaining scans until block
712 >        int nsteals;               // top-level task executions since last idle
713 >        final int mode;            // lifo, fifo, or shared
714 >        int poolIndex;             // index of this queue in pool (or 0)
715 >        int stealHint;             // index of most recent known stealer
716 >        volatile int runState;     // 1: locked, -1: terminate; else 0
717 >        volatile int base;         // index of next slot for poll
718 >        int top;                   // index of next slot for push
719 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
720 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
721 >        volatile Thread parker;    // == owner during call to park; else null
722 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
723 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
724 >        // Heuristic padding to ameliorate unfortunate memory placements
725 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
726 >
727 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
728 >            this.owner = owner;
729 >            this.mode = mode;
730 >            // Place indices in the center of array (that is not yet allocated)
731 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
732 >        }
733 >
734 >        /**
735 >         * Returns number of tasks in the queue
736 >         */
737 >        final int queueSize() {
738 >            int n = base - top; // non-owner callers must read base first
739 >            return (n >= 0) ? 0 : -n;
740 >        }
741 >
742 >        /**
743 >         * Pushes a task. Call only by owner in unshared queues.
744 >         *
745 >         * @param task the task. Caller must ensure non-null.
746 >         * @param p, if non-null, pool to signal if necessary
747 >         * @throw RejectedExecutionException if array cannot
748 >         * be resized
749 >         */
750 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
751 >            ForkJoinTask<?>[] a;
752 >            int s = top, m, n;
753 >            if ((a = array) != null) {    // ignore if queue removed
754 >                U.putOrderedObject
755 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
756 >                if ((n = (top = s + 1) - base) <= 2) {
757 >                    if (p != null)
758 >                        p.signalWork();
759 >                }
760 >                else if (n >= m)
761 >                    growArray(true);
762 >            }
763 >        }
764 >
765 >        /**
766 >         * Pushes a task if lock is free and array is either big
767 >         * enough or can be resized to be big enough.
768 >         *
769 >         * @param task the task. Caller must ensure non-null.
770 >         * @return true if submitted
771 >         */
772 >        final boolean trySharedPush(ForkJoinTask<?> task) {
773 >            boolean submitted = false;
774 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
775 >                ForkJoinTask<?>[] a = array;
776 >                int s = top, n = s - base;
777 >                try {
778 >                    if ((a != null && n < a.length - 1) ||
779 >                        (a = growArray(false)) != null) { // must presize
780 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
781 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
782 >                        top = s + 1;
783 >                        submitted = true;
784 >                    }
785 >                } finally {
786 >                    runState = 0;                         // unlock
787 >                }
788 >            }
789 >            return submitted;
790 >        }
791 >
792 >        /**
793 >         * Takes next task, if one exists, in FIFO order.
794 >         */
795 >        final ForkJoinTask<?> poll() {
796 >            ForkJoinTask<?>[] a; int b, i;
797 >            while ((b = base) - top < 0 && (a = array) != null &&
798 >                   (i = (a.length - 1) & b) >= 0) {
799 >                int j = (i << ASHIFT) + ABASE;
800 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
801 >                if (t != null && base == b &&
802 >                    U.compareAndSwapObject(a, j, t, null)) {
803 >                    base = b + 1;
804 >                    return t;
805 >                }
806 >            }
807 >            return null;
808 >        }
809 >
810 >        /**
811 >         * Takes next task, if one exists, in LIFO order.
812 >         * Call only by owner in unshared queues.
813 >         */
814 >        final ForkJoinTask<?> pop() {
815 >            ForkJoinTask<?> t; int m;
816 >            ForkJoinTask<?>[] a = array;
817 >            if (a != null && (m = a.length - 1) >= 0) {
818 >                for (int s; (s = top - 1) - base >= 0;) {
819 >                    int j = ((m & s) << ASHIFT) + ABASE;
820 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
821 >                        break;
822 >                    if (U.compareAndSwapObject(a, j, t, null)) {
823 >                        top = s;
824 >                        return t;
825 >                    }
826 >                }
827 >            }
828 >            return null;
829 >        }
830 >
831 >        /**
832 >         * Takes next task, if one exists, in order specified by mode.
833 >         */
834 >        final ForkJoinTask<?> nextLocalTask() {
835 >            return mode == 0 ? pop() : poll();
836 >        }
837 >
838 >        /**
839 >         * Returns next task, if one exists, in order specified by mode.
840 >         */
841 >        final ForkJoinTask<?> peek() {
842 >            ForkJoinTask<?>[] a = array; int m;
843 >            if (a == null || (m = a.length - 1) < 0)
844 >                return null;
845 >            int i = mode == 0 ? top - 1 : base;
846 >            int j = ((i & m) << ASHIFT) + ABASE;
847 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
848 >        }
849 >
850 >        /**
851 >         * Returns task at index b if b is current base of queue.
852 >         */
853 >        final ForkJoinTask<?> pollAt(int b) {
854 >            ForkJoinTask<?>[] a; int i;
855 >            ForkJoinTask<?> task = null;
856 >            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
857 >                int j = (i << ASHIFT) + ABASE;
858 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
859 >                if (t != null && base == b &&
860 >                    U.compareAndSwapObject(a, j, t, null)) {
861 >                    base = b + 1;
862 >                    task = t;
863 >                }
864 >            }
865 >            return task;
866 >        }
867 >
868 >        /**
869 >         * Pops the given task only if it is at the current top.
870 >         */
871 >        final boolean tryUnpush(ForkJoinTask<?> t) {
872 >            ForkJoinTask<?>[] a; int s;
873 >            if ((a = array) != null && (s = top) != base &&
874 >                U.compareAndSwapObject
875 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
876 >                top = s;
877 >                return true;
878 >            }
879 >            return false;
880 >        }
881 >
882 >        /**
883 >         * Polls the given task only if it is at the current base.
884 >         */
885 >        final boolean pollFor(ForkJoinTask<?> task) {
886 >            ForkJoinTask<?>[] a; int b, i;
887 >            if ((b = base) - top < 0 && (a = array) != null &&
888 >                (i = (a.length - 1) & b) >= 0) {
889 >                int j = (i << ASHIFT) + ABASE;
890 >                if (U.getObjectVolatile(a, j) == task && base == b &&
891 >                    U.compareAndSwapObject(a, j, task, null)) {
892 >                    base = b + 1;
893 >                    return true;
894 >                }
895 >            }
896 >            return false;
897 >        }
898 >
899 >        /**
900 >         * If present, removes from queue and executes the given task, or
901 >         * any other cancelled task. Returns (true) immediately on any CAS
902 >         * or consistency check failure so caller can retry.
903 >         *
904 >         * @return false if no progress can be made
905 >         */
906 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
907 >            boolean removed = false, empty = true, progress = true;
908 >            ForkJoinTask<?>[] a; int m, s, b, n;
909 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
910 >                (n = (s = top) - (b = base)) > 0) {
911 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
912 >                    int j = ((--s & m) << ASHIFT) + ABASE;
913 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
914 >                    if (t == null)                    // inconsistent length
915 >                        break;
916 >                    else if (t == task) {
917 >                        if (s + 1 == top) {           // pop
918 >                            if (!U.compareAndSwapObject(a, j, task, null))
919 >                                break;
920 >                            top = s;
921 >                            removed = true;
922 >                        }
923 >                        else if (base == b)           // replace with proxy
924 >                            removed = U.compareAndSwapObject(a, j, task,
925 >                                                             new EmptyTask());
926 >                        break;
927 >                    }
928 >                    else if (t.status >= 0)
929 >                        empty = false;
930 >                    else if (s + 1 == top) {          // pop and throw away
931 >                        if (U.compareAndSwapObject(a, j, t, null))
932 >                            top = s;
933 >                        break;
934 >                    }
935 >                    if (--n == 0) {
936 >                        if (!empty && base == b)
937 >                            progress = false;
938 >                        break;
939 >                    }
940 >                }
941 >            }
942 >            if (removed)
943 >                task.doExec();
944 >            return progress;
945 >        }
946 >
947 >        /**
948 >         * Initializes or doubles the capacity of array. Call either
949 >         * by owner or with lock held -- it is OK for base, but not
950 >         * top, to move while resizings are in progress.
951 >         *
952 >         * @param rejectOnFailure if true, throw exception if capacity
953 >         * exceeded (relayed ultimately to user); else return null.
954 >         */
955 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
956 >            ForkJoinTask<?>[] oldA = array;
957 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
958 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
959 >                int oldMask, t, b;
960 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
961 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
962 >                    (t = top) - (b = base) > 0) {
963 >                    int mask = size - 1;
964 >                    do {
965 >                        ForkJoinTask<?> x;
966 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
967 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
968 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
969 >                        if (x != null &&
970 >                            U.compareAndSwapObject(oldA, oldj, x, null))
971 >                            U.putObjectVolatile(a, j, x);
972 >                    } while (++b != t);
973 >                }
974 >                return a;
975 >            }
976 >            else if (!rejectOnFailure)
977 >                return null;
978 >            else
979 >                throw new RejectedExecutionException("Queue capacity exceeded");
980 >        }
981 >
982 >        /**
983 >         * Removes and cancels all known tasks, ignoring any exceptions
984 >         */
985 >        final void cancelAll() {
986 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
987 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
988 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
989 >                ForkJoinTask.cancelIgnoringExceptions(t);
990 >        }
991 >
992 >        // Execution methods
993 >
994 >        /**
995 >         * Removes and runs tasks until empty, using local mode
996 >         * ordering.
997 >         */
998 >        final void runLocalTasks() {
999 >            if (base - top < 0) {
1000 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1001 >                    t.doExec();
1002 >            }
1003 >        }
1004 >
1005 >        /**
1006 >         * Executes a top-level task and any local tasks remaining
1007 >         * after execution.
1008 >         *
1009 >         * @return true unless terminating
1010 >         */
1011 >        final boolean runTask(ForkJoinTask<?> t) {
1012 >            boolean alive = true;
1013 >            if (t != null) {
1014 >                currentSteal = t;
1015 >                t.doExec();
1016 >                runLocalTasks();
1017 >                ++nsteals;
1018 >                currentSteal = null;
1019 >            }
1020 >            else if (runState < 0)            // terminating
1021 >                alive = false;
1022 >            return alive;
1023 >        }
1024 >
1025 >        /**
1026 >         * Executes a non-top-level (stolen) task
1027 >         */
1028 >        final void runSubtask(ForkJoinTask<?> t) {
1029 >            if (t != null) {
1030 >                ForkJoinTask<?> ps = currentSteal;
1031 >                currentSteal = t;
1032 >                t.doExec();
1033 >                currentSteal = ps;
1034 >            }
1035 >        }
1036 >
1037 >        /**
1038 >         * Computes next value for random probes.  Scans don't require
1039 >         * a very high quality generator, but also not a crummy one.
1040 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
1041 >         * This is manually inlined in several usages in ForkJoinPool
1042 >         * to avoid writes inside busy scan loops.
1043 >         */
1044 >        final int nextSeed() {
1045 >            int r = seed;
1046 >            r ^= r << 13;
1047 >            r ^= r >>> 17;
1048 >            r ^= r << 5;
1049 >            return seed = r;
1050 >        }
1051 >
1052 >        // Unsafe mechanics
1053 >        private static final sun.misc.Unsafe U;
1054 >        private static final long RUNSTATE;
1055 >        private static final int ABASE;
1056 >        private static final int ASHIFT;
1057 >        static {
1058 >            int s;
1059 >            try {
1060 >                U = getUnsafe();
1061 >                Class<?> k = WorkQueue.class;
1062 >                Class<?> ak = ForkJoinTask[].class;
1063 >                RUNSTATE = U.objectFieldOffset
1064 >                    (k.getDeclaredField("runState"));
1065 >                ABASE = U.arrayBaseOffset(ak);
1066 >                s = U.arrayIndexScale(ak);
1067 >            } catch (Exception e) {
1068 >                throw new Error(e);
1069 >            }
1070 >            if ((s & (s-1)) != 0)
1071 >                throw new Error("data type scale not a power of two");
1072 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1073 >        }
1074 >    }
1075  
1076      /**
1077 <     * True if use local fifo, not default lifo, for local polling
1078 <     * Read by, and replicated by ForkJoinWorkerThreads
1077 >     * Class for artificial tasks that are used to replace the target
1078 >     * of local joins if they are removed from an interior queue slot
1079 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1080 >     * actually do anything beyond having a unique identity.
1081       */
1082 <    final boolean locallyFifo;
1082 >    static final class EmptyTask extends ForkJoinTask<Void> {
1083 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1084 >        public Void getRawResult() { return null; }
1085 >        public void setRawResult(Void x) {}
1086 >        public boolean exec() { return true; }
1087 >    }
1088  
1089      /**
1090 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
1091 <     * When non-zero, suppresses automatic shutdown when active
1092 <     * counts become zero.
1090 > <<<<<<< ForkJoinPool.java
1091 >     * Per-thread records for (typically non-FJ) threads that submit
1092 >     * to pools. Cureently holds only psuedo-random seed / index that
1093 >     * is used to chose submission queues in method doSubmit. In the
1094 >     * future, this may incorporate a means to implement different
1095 >     * task rejection and resubmission policies.
1096       */
1097 <    volatile int quiescerCount;
1097 >    static final class Submitter {
1098 >        int seed; // seed for random submission queue selection
1099 >
1100 >        // Heuristic padding to ameliorate unfortunate memory placements
1101 >        int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1102 >
1103 >        Submitter() {
1104 >            // Use identityHashCode, forced negative, for seed
1105 >            seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1106 >        }
1107 >
1108 >        /**
1109 >         * Computes next value for random probes.  Like method
1110 >         * WorkQueue.nextSeed, this is manually inlined in several
1111 >         * usages to avoid writes inside busy loops.
1112 >         */
1113 >        final int nextSeed() {
1114 >            int r = seed;
1115 >            r ^= r << 13;
1116 >            r ^= r >>> 17;
1117 >            return seed = r ^= r << 5;
1118 >        }
1119 >    }
1120 >
1121 >    /** ThreadLocal class for Submitters */
1122 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1123 >        public Submitter initialValue() { return new Submitter(); }
1124 >    }
1125  
1126      /**
1127 <     * The number of threads blocked in join.
1127 >     * Per-thread submission bookeeping. Shared across all pools
1128 >     * to reduce ThreadLocal pollution and because random motion
1129 >     * to avoid contention in one pool is likely to hold for others.
1130       */
1131 <    volatile int blockedCount;
1131 >    static final ThreadSubmitter submitters = new ThreadSubmitter();
1132  
1133      /**
1134 <     * Counter for worker Thread names (unrelated to their poolIndex)
1134 >     * Top-level runloop for workers
1135       */
1136 <    private volatile int nextWorkerNumber;
1136 >    final void runWorker(ForkJoinWorkerThread wt) {
1137 >        // Initialize queue array and seed in this thread
1138 >        WorkQueue w = wt.workQueue;
1139 >        w.growArray(false);
1140 >        // Same initial hash as Submitters
1141 >        w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1142 >
1143 >        do {} while (w.runTask(scan(w)));
1144 >    }
1145 >
1146 >    // Creating, registering and deregistering workers
1147  
1148      /**
1149 <     * The index for the next created worker. Accessed under scanGuard.
1149 >     * Tries to create and start a worker
1150       */
1151 <    private int nextWorkerIndex;
1151 >    private void addWorker() {
1152 >        Throwable ex = null;
1153 >        ForkJoinWorkerThread w = null;
1154 >        try {
1155 >            if ((w = factory.newThread(this)) != null) {
1156 >                w.start();
1157 >                return;
1158 >            }
1159 >        } catch (Throwable e) {
1160 >            ex = e;
1161 >        }
1162 >        deregisterWorker(w, ex);
1163 >    }
1164  
1165      /**
1166 <     * SeqLock and index masking for updates to workers array.  Locked
1167 <     * when SG_UNIT is set. Unlocking clears bit by adding
1168 <     * SG_UNIT. Staleness of read-only operations can be checked by
1169 <     * comparing scanGuard to value before the reads. The low 16 bits
582 <     * (i.e, anding with SMASK) hold (the smallest power of two
583 <     * covering all worker indices, minus one, and is used to avoid
584 <     * dealing with large numbers of null slots when the workers array
585 <     * is overallocated.
1166 >     * Callback from ForkJoinWorkerThread constructor to assign a
1167 >     * public name. This must be separate from registerWorker because
1168 >     * it is called during the "super" constructor call in
1169 >     * ForkJoinWorkerThread.
1170       */
1171 <    volatile int scanGuard;
1171 >    final String nextWorkerName() {
1172 >        return workerNamePrefix.concat
1173 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1174 >    }
1175  
1176 <    private static final int SG_UNIT = 1 << 16;
1176 >    /**
1177 >     * Callback from ForkJoinWorkerThread constructor to establish and
1178 >     * record its WorkQueue
1179 >     *
1180 >     * @param wt the worker thread
1181 >     */
1182 >    final void registerWorker(ForkJoinWorkerThread wt) {
1183 >        WorkQueue w = wt.workQueue;
1184 >        ReentrantLock lock = this.lock;
1185 >        lock.lock();
1186 >        try {
1187 >            int k = nextPoolIndex;
1188 >            WorkQueue[] ws = workQueues;
1189 >            if (ws != null) {                       // ignore on shutdown
1190 >                int n = ws.length;
1191 >                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1192 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1193 >                        ;                           // workers are at odd indices
1194 >                    if (k >= n)                     // resize
1195 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1196 >                }
1197 >                w.poolIndex = k;
1198 >                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1199 >                ws[k] = w;                          // record worker
1200 >                nextPoolIndex = k + 2;
1201 >                int rs = runState;
1202 >                int m = rs & SMASK;                 // recalculate runState mask
1203 >                if (k > m)
1204 >                    m = (m << 1) + 1;
1205 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1206 >            }
1207 >        } finally {
1208 >            lock.unlock();
1209 >        }
1210 >    }
1211  
1212      /**
1213 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1214 <     * task when the pool is quiescent to instead try to shrink the
1215 <     * number of workers.  The exact value does not matter too
1216 <     * much. It must be short enough to release resources during
1217 <     * sustained periods of idleness, but not so short that threads
1218 <     * are continually re-created.
1213 >     * Final callback from terminating worker, as well as failure to
1214 >     * construct or start a worker in addWorker.  Removes record of
1215 >     * worker from array, and adjusts counts. If pool is shutting
1216 >     * down, tries to complete termination.
1217 >     *
1218 >     * @param wt the worker thread or null if addWorker failed
1219 >     * @param ex the exception causing failure, or null if none
1220       */
1221 <    private static final long SHRINK_RATE =
1222 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1221 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1222 >        WorkQueue w = null;
1223 >        if (wt != null && (w = wt.workQueue) != null) {
1224 >            w.runState = -1;                // ensure runState is set
1225 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1226 >            int idx = w.poolIndex;
1227 >            ReentrantLock lock = this.lock;
1228 >            lock.lock();
1229 >            try {                           // remove record from array
1230 >                WorkQueue[] ws = workQueues;
1231 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1232 >                    ws[nextPoolIndex = idx] = null;
1233 >            } finally {
1234 >                lock.unlock();
1235 >            }
1236 >        }
1237 >
1238 >        long c;                             // adjust ctl counts
1239 >        do {} while (!U.compareAndSwapLong
1240 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1241 >                                           ((c - TC_UNIT) & TC_MASK) |
1242 >                                           (c & ~(AC_MASK|TC_MASK)))));
1243 >
1244 >        if (!tryTerminate(false) && w != null) {
1245 >            w.cancelAll();                  // cancel remaining tasks
1246 >            if (w.array != null)            // suppress signal if never ran
1247 >                signalWork();               // wake up or create replacement
1248 >        }
1249 >
1250 >        if (ex != null)                     // rethrow
1251 >            U.throwException(ex);
1252 >    }
1253  
1254      /**
1255 <     * Top-level loop for worker threads: On each step: if the
604 <     * previous step swept through all queues and found no tasks, or
605 <     * there are excess threads, then possibly blocks. Otherwise,
606 <     * scans for and, if found, executes a task. Returns when pool
607 <     * and/or worker terminate.
1255 >     * Tries to add and register a new queue at the given index.
1256       *
1257 <     * @param w the worker
1257 >     * @param idx the workQueues array index to register the queue
1258 >     * @return the queue, or null if could not add because could
1259 >     * not acquire lock or idx is unusable
1260       */
1261 <    final void work(ForkJoinWorkerThread w) {
1262 <        boolean swept = false;                // true on empty scans
1263 <        long c;
1264 <        while (!w.terminate && (int)(c = ctl) >= 0) {
1265 <            int a;                            // active count
1266 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
1267 <                swept = scan(w, a);
1268 <            else if (tryAwaitWork(w, c))
1269 <                swept = false;
1261 >    private WorkQueue tryAddSharedQueue(int idx) {
1262 >        WorkQueue q = null;
1263 >        ReentrantLock lock = this.lock;
1264 >        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1265 >            // create queue outside of lock but only if apparently free
1266 >            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1267 >            if (lock.tryLock()) {
1268 >                try {
1269 >                    WorkQueue[] ws = workQueues;
1270 >                    if (ws != null && idx < ws.length) {
1271 >                        if ((q = ws[idx]) == null) {
1272 >                            int rs;         // update runState seq
1273 >                            ws[idx] = q = nq;
1274 >                            runState = (((rs = runState) & SHUTDOWN) |
1275 >                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1276 >                        }
1277 >                    }
1278 >                } finally {
1279 >                    lock.unlock();
1280 >                }
1281 >            }
1282          }
1283 +        return q;
1284      }
1285  
1286 <    // Signalling
1286 >    // Maintaining ctl counts
1287 >
1288 >    /**
1289 >     * Increments active count; mainly called upon return from blocking
1290 >     */
1291 >    final void incrementActiveCount() {
1292 >        long c;
1293 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1294 >    }
1295  
1296      /**
1297 <     * Wakes up or creates a worker.
1297 >     * Activates or creates a worker
1298       */
1299      final void signalWork() {
1300          /*
# Line 639 | Line 1310 | public class ForkJoinPool extends Abstra
1310           */
1311          long c; int e, u;
1312          while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1313 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1314 <            if (e > 0) {                         // release a waiting worker
1315 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1316 <                if ((ws = workers) == null ||
1317 <                    (i = ~e & SMASK) >= ws.length ||
1318 <                    (w = ws[i]) == null)
1313 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1314 >            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1315 >            if (e == 0) {                    // add a new worker
1316 >                if (U.compareAndSwapLong
1317 >                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1318 >                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1319 >                    addWorker();
1320                      break;
1321 <                long nc = (((long)(w.nextWait & E_MASK)) |
1322 <                           ((long)(u + UAC_UNIT) << 32));
1323 <                if (w.eventCount == e &&
1324 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1325 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1326 <                    if (w.parked)
1327 <                        UNSAFE.unpark(w);
1321 >                }
1322 >            }
1323 >            else if (e > 0 && ws != null &&
1324 >                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1325 >                     (w = ws[i]) != null &&
1326 >                     w.eventCount == (e | INT_SIGN)) {
1327 >                if (U.compareAndSwapLong
1328 >                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1329 >                                    ((long)(u + UAC_UNIT) << 32)))) {
1330 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1331 >                    if ((p = w.parker) != null)
1332 >                        U.unpark(p);         // release a waiting worker
1333                      break;
1334                  }
1335              }
1336 <            else if (UNSAFE.compareAndSwapLong
660 <                     (this, ctlOffset, c,
661 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 <                addWorker();
1336 >            else
1337                  break;
665            }
1338          }
1339      }
1340  
1341      /**
1342 <     * Variant of signalWork to help release waiters on rescans.
1343 <     * Tries once to release a waiter if active count < 0.
1342 >     * Tries to decrement active count (sometimes implicitly) and
1343 >     * possibly release or create a compensating worker in preparation
1344 >     * for blocking. Fails on contention or termination.
1345       *
1346 <     * @return false if failed due to contention, else true
1346 >     * @return true if the caller can block, else should recheck and retry
1347       */
1348 <    private boolean tryReleaseWaiter() {
1349 <        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1350 <        if ((e = (int)(c = ctl)) > 0 &&
1351 <            (int)(c >> AC_SHIFT) < 0 &&
679 <            (ws = workers) != null &&
680 <            (i = ~e & SMASK) < ws.length &&
681 <            (w = ws[i]) != null) {
682 <            long nc = ((long)(w.nextWait & E_MASK) |
683 <                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 <            if (w.eventCount != e ||
685 <                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 <                return false;
687 <            w.eventCount = (e + EC_UNIT) & E_MASK;
688 <            if (w.parked)
689 <                UNSAFE.unpark(w);
690 <        }
691 <        return true;
692 <    }
693 <
694 <    // Scanning for tasks
1348 >    final boolean tryCompensate() {
1349 >        WorkQueue[] ws; WorkQueue w; Thread p;
1350 >        int pc = parallelism, e, u, ac, tc, i;
1351 >        long c = ctl;
1352  
1353 <    /**
1354 <     * Scans for and, if found, executes one task. Scans start at a
1355 <     * random index of workers array, and randomly select the first
1356 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1357 <     * circular sweeps, which is necessary to check quiescence. and
1358 <     * taking a submission only if no stealable tasks were found.  The
1359 <     * steal code inside the loop is a specialized form of
1360 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1361 <     * helpJoinTask and signal propagation. The code for submission
1362 <     * queues is almost identical. On each steal, the worker completes
1363 <     * not only the task, but also all local tasks that this task may
1364 <     * have generated. On detecting staleness or contention when
1365 <     * trying to take a task, this method returns without finishing
709 <     * sweep, which allows global state rechecks before retry.
710 <     *
711 <     * @param w the worker
712 <     * @param a the number of active workers
713 <     * @return true if swept all queues without finding a task
714 <     */
715 <    private boolean scan(ForkJoinWorkerThread w, int a) {
716 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 <        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 <        ForkJoinWorkerThread[] ws = workers;
719 <        if (ws == null || ws.length <= m)         // staleness check
720 <            return false;
721 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 <            ForkJoinWorkerThread v = ws[k & m];
724 <            if (v != null && (b = v.queueBase) != v.queueTop &&
725 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 <                long u = (i << ASHIFT) + ABASE;
727 <                if ((t = q[i]) != null && v.queueBase == b &&
728 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 <                    int d = (v.queueBase = b + 1) - v.queueTop;
730 <                    v.stealHint = w.poolIndex;
731 <                    if (d != 0)
732 <                        signalWork();             // propagate if nonempty
733 <                    w.execTask(t);
1353 >        if ((e = (int)c) >= 0) {
1354 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1355 >                e != 0 && (ws = workQueues) != null &&
1356 >                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1357 >                (w = ws[i]) != null) {
1358 >                if (w.eventCount == (e | INT_SIGN) &&
1359 >                    U.compareAndSwapLong
1360 >                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1361 >                                    (c & (AC_MASK|TC_MASK))))) {
1362 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1363 >                    if ((p = w.parker) != null)
1364 >                        U.unpark(p);
1365 >                    return true;             // release an idle worker
1366                  }
735                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736                return false;                     // store next seed
1367              }
1368 <            else if (j < 0) {                     // xorshift
1369 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1368 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1369 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1370 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1371 >                    return true;             // no compensation needed
1372 >            }
1373 >            else if (tc + pc < MAX_ID) {
1374 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1375 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1376 >                    addWorker();
1377 >                    return true;             // create replacement
1378 >                }
1379              }
741            else
742                ++k;
743        }
744        if (scanGuard != g)                       // staleness check
745            return false;
746        else {                                    // try to take submission
747            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748            if ((b = queueBase) != queueTop &&
749                (q = submissionQueue) != null &&
750                (i = (q.length - 1) & b) >= 0) {
751                long u = (i << ASHIFT) + ABASE;
752                if ((t = q[i]) != null && queueBase == b &&
753                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754                    queueBase = b + 1;
755                    w.execTask(t);
756                }
757                return false;
758            }
759            return true;                         // all queues empty
1380          }
1381 +        return false;
1382      }
1383  
1384 +    // Submissions
1385 +
1386      /**
1387 <     * Tries to enqueue worker w in wait queue and await change in
1388 <     * worker's eventCount.  If the pool is quiescent, possibly
1389 <     * terminates worker upon exit.  Otherwise, before blocking,
1390 <     * rescans queues to avoid missed signals.  Upon finding work,
768 <     * releases at least one worker (which may be the current
769 <     * worker). Rescans restart upon detected staleness or failure to
770 <     * release due to contention. Note the unusual conventions about
771 <     * Thread.interrupt here and elsewhere: Because interrupts are
772 <     * used solely to alert threads to check termination, which is
773 <     * checked here anyway, we clear status (using Thread.interrupted)
774 <     * before any call to park, so that park does not immediately
775 <     * return due to status being set via some other unrelated call to
776 <     * interrupt in user code.
777 <     *
778 <     * @param w the calling worker
779 <     * @param c the ctl value on entry
780 <     * @return true if waited or another thread was released upon enq
1387 >     * Unless shutting down, adds the given task to a submission queue
1388 >     * at submitter's current queue index. If no queue exists at the
1389 >     * index, one is created unless pool lock is busy.  If the queue
1390 >     * and/or lock are busy, another index is randomly chosen.
1391       */
1392 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
1393 <        int v = w.eventCount;
1394 <        w.nextWait = (int)c;                      // w's successor record
1395 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1396 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1397 <            long d = ctl; // return true if lost to a deq, to force scan
1398 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
1399 <        }
1400 <        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
1401 <            long s = stealCount;
1402 <            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
1403 <                sc = w.stealCount = 0;
1404 <            else if (w.eventCount != v)
1405 <                return true;                      // update next time
1406 <        }
1407 <        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 <            blockedCount == 0 && quiescerCount == 0)
799 <            idleAwaitWork(w, nc, c, v);           // quiescent
800 <        for (boolean rescanned = false;;) {
801 <            if (w.eventCount != v)
802 <                return true;
803 <            if (!rescanned) {
804 <                int g = scanGuard, m = g & SMASK;
805 <                ForkJoinWorkerThread[] ws = workers;
806 <                if (ws != null && m < ws.length) {
807 <                    rescanned = true;
808 <                    for (int i = 0; i <= m; ++i) {
809 <                        ForkJoinWorkerThread u = ws[i];
810 <                        if (u != null) {
811 <                            if (u.queueBase != u.queueTop &&
812 <                                !tryReleaseWaiter())
813 <                                rescanned = false; // contended
814 <                            if (w.eventCount != v)
815 <                                return true;
816 <                        }
817 <                    }
818 <                }
819 <                if (scanGuard != g ||              // stale
820 <                    (queueBase != queueTop && !tryReleaseWaiter()))
821 <                    rescanned = false;
822 <                if (!rescanned)
823 <                    Thread.yield();                // reduce contention
824 <                else
825 <                    Thread.interrupted();          // clear before park
826 <            }
827 <            else {
828 <                w.parked = true;                   // must recheck
829 <                if (w.eventCount != v) {
830 <                    w.parked = false;
831 <                    return true;
832 <                }
833 <                LockSupport.park(this);
834 <                rescanned = w.parked = false;
1392 >    private void doSubmit(ForkJoinTask<?> task) {
1393 >        if (task == null)
1394 >            throw new NullPointerException();
1395 >        Submitter s = submitters.get();
1396 >        for (int r = s.seed;;) {
1397 >            WorkQueue q; int k;
1398 >            int rs = runState, m = rs & SMASK;
1399 >            WorkQueue[] ws = workQueues;
1400 >            if (rs < 0 || ws == null)   // shutting down
1401 >                throw new RejectedExecutionException();
1402 >            if (ws.length > m &&        // k must be at index
1403 >                ((q = ws[k = (r << 1) & m]) != null ||
1404 >                 (q = tryAddSharedQueue(k)) != null) &&
1405 >                q.trySharedPush(task)) {
1406 >                signalWork();
1407 >                return;
1408              }
1409 +            r ^= r << 13;               // xorshift seed to new position
1410 +            r ^= r >>> 17;
1411 +            if (((s.seed = r ^= r << 5) & m) == 0)
1412 +                Thread.yield();         // occasionally yield if busy
1413          }
1414      }
1415  
1416 +
1417 +    // Scanning for tasks
1418 +
1419      /**
1420 <     * If inactivating worker w has caused pool to become
1421 <     * quiescent, check for pool termination, and wait for event
1422 <     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
1423 <     * this case because quiescence reflects consensus about lack
1424 <     * of work). On timeout, if ctl has not changed, terminate the
1425 <     * worker. Upon its termination (see deregisterWorker), it may
1426 <     * wake up another worker to possibly repeat this process.
1427 <     *
1428 <     * @param w the calling worker
1429 <     * @param currentCtl the ctl value after enqueuing w
1430 <     * @param prevCtl the ctl value if w terminated
1431 <     * @param v the eventCount w awaits change
1432 <     */
1433 <    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
1434 <                               long prevCtl, int v) {
1435 <        if (w.eventCount == v) {
1436 <            if (shutdown)
1437 <                tryTerminate(false);
1438 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1439 <            while (ctl == currentCtl) {
1440 <                long startTime = System.nanoTime();
1441 <                w.parked = true;
1442 <                if (w.eventCount == v)             // must recheck
1443 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1444 <                w.parked = false;
1445 <                if (w.eventCount != v)
1420 >     * Scans for and, if found, returns one task, else possibly
1421 >     * inactivates the worker. This method operates on single reads of
1422 >     * volatile state and is designed to be re-invoked continuously in
1423 >     * part because it returns upon detecting inconsistencies,
1424 >     * contention, or state changes that indicate possible success on
1425 >     * re-invocation.
1426 >     *
1427 >     * The scan searches for tasks across queues, randomly selecting
1428 >     * the first #queues probes, favoring steals 2:1 over submissions
1429 >     * (by exploiting even/odd indexing), and then performing a
1430 >     * circular sweep of all queues.  The scan terminates upon either
1431 >     * finding a non-empty queue, or completing a full sweep. If the
1432 >     * worker is not inactivated, it takes and returns a task from
1433 >     * this queue.  On failure to find a task, we take one of the
1434 >     * following actions, after which the caller will retry calling
1435 >     * this method unless terminated.
1436 >     *
1437 >     * * If not a complete sweep, try to release a waiting worker.  If
1438 >     * the scan terminated because the worker is inactivated, then the
1439 >     * released worker will often be the calling worker, and it can
1440 >     * succeed obtaining a task on the next call. Or maybe it is
1441 >     * another worker, but with same net effect. Releasing in other
1442 >     * cases as well ensures that we have enough workers running.
1443 >     *
1444 >     * * If the caller has run a task since the the last empty scan,
1445 >     * return (to allow rescan) if other workers are not also yet
1446 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1447 >     * ensure eventual inactivation, and occasional calls to
1448 >     * Thread.yield to help avoid interference with more useful
1449 >     * activities on the system.
1450 >     *
1451 >     * * If pool is terminating, terminate the worker
1452 >     *
1453 >     * * If not already enqueued, try to inactivate and enqueue the
1454 >     * worker on wait queue.
1455 >     *
1456 >     * * If already enqueued and none of the above apply, either park
1457 >     * awaiting signal, or if this is the most recent waiter and pool
1458 >     * is quiescent, relay to idleAwaitWork to check for termination
1459 >     * and possibly shrink pool.
1460 >     *
1461 >     * @param w the worker (via its WorkQueue)
1462 >     * @return a task or null of none found
1463 >     */
1464 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1465 >        boolean swept = false;                 // true after full empty scan
1466 >        WorkQueue[] ws;                        // volatile read order matters
1467 >        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1468 >        int rs = runState, m = rs & SMASK;
1469 >        if ((ws = workQueues) != null && ws.length > m) {
1470 >            ForkJoinTask<?> task = null;
1471 >            for (int k = 0, j = -2 - m; ; ++j) {
1472 >                WorkQueue q; int b;
1473 >                if (j < 0) {                    // random probes while j negative
1474 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1475 >                }                               // worker (not submit) for odd j
1476 >                else                            // cyclic scan when j >= 0
1477 >                    k += (m >>> 1) | 1;         // step by half to reduce bias
1478 >
1479 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1480 >                    if (ec >= 0)
1481 >                        task = q.pollAt(b);     // steal
1482                      break;
1483 <                else if (System.nanoTime() - startTime < SHRINK_RATE)
1484 <                    Thread.interrupted();          // spurious wakeup
1485 <                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
1486 <                                                   currentCtl, prevCtl)) {
871 <                    w.terminate = true;            // restore previous
872 <                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
1483 >                }
1484 >                else if (j > m) {
1485 >                    if (rs == runState)        // staleness check
1486 >                        swept = true;
1487                      break;
1488                  }
1489              }
1490 <        }
1491 <    }
1492 <
1493 <    // Submissions
1494 <
1495 <    /**
1496 <     * Enqueues the given task in the submissionQueue.  Same idea as
1497 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1498 <     *
1499 <     * @param t the task
1500 <     */
1501 <    private void addSubmission(ForkJoinTask<?> t) {
1502 <        final ReentrantLock lock = this.submissionLock;
1503 <        lock.lock();
1504 <        try {
1505 <            ForkJoinTask<?>[] q; int s, m;
1506 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1507 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1508 <                UNSAFE.putOrderedObject(q, u, t);
1509 <                queueTop = s + 1;
1510 <                if (s - queueBase == m)
1511 <                    growSubmissionQueue();
1490 >            w.seed = r;                        // save seed for next scan
1491 >            if (task != null)
1492 >                return task;
1493 >        }
1494 >
1495 >        // Decode ctl on empty scan
1496 >        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497 >        if (!swept) {                          // try to release a waiter
1498 >            WorkQueue v; Thread p;
1499 >            if (e > 0 && a < 0 && ws != null &&
1500 >                (v = ws[((~e << 1) | 1) & m]) != null &&
1501 >                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502 >                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503 >                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504 >                v.eventCount = (e + E_SEQ) & E_MASK;
1505 >                if ((p = v.parker) != null)
1506 >                    U.unpark(p);
1507 >            }
1508 >        }
1509 >        else if ((nr = w.rescans) > 0) {       // continue rescanning
1510 >            int ac = a + parallelism;
1511 >            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512 >                w.eventCount == ec)
1513 >                Thread.yield();                // 1 bit randomness for yield call
1514 >        }
1515 >        else if (e < 0)                        // pool is terminating
1516 >            w.runState = -1;
1517 >        else if (ec >= 0) {                    // try to enqueue
1518 >            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519 >            w.nextWait = e;
1520 >            w.eventCount = ec | INT_SIGN;      // mark as inactive
1521 >            if (!U.compareAndSwapLong(this, CTL, c, nc))
1522 >                w.eventCount = ec;             // back out on CAS failure
1523 >            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1524 >                if (a <= 0)                    // ... unless too many active
1525 >                    w.rescans = a + parallelism;
1526 >                w.nsteals = 0;
1527 >                w.totalSteals += ns;
1528 >            }
1529 >        }
1530 >        else{                                  // already queued
1531 >            if (parallelism == -a)
1532 >                idleAwaitWork(w);              // quiescent
1533 >            if (w.eventCount == ec) {
1534 >                Thread.interrupted();          // clear status
1535 >                ForkJoinWorkerThread wt = w.owner;
1536 >                U.putObject(wt, PARKBLOCKER, this);
1537 >                w.parker = wt;                 // emulate LockSupport.park
1538 >                if (w.eventCount == ec)        // recheck
1539 >                    U.park(false, 0L);         // block
1540 >                w.parker = null;
1541 >                U.putObject(wt, PARKBLOCKER, null);
1542              }
899        } finally {
900            lock.unlock();
1543          }
1544 <        signalWork();
1544 >        return null;
1545      }
1546  
905    //  (pollSubmission is defined below with exported methods)
906
1547      /**
1548 <     * Creates or doubles submissionQueue array.
1549 <     * Basically identical to ForkJoinWorkerThread version.
1548 >     * If inactivating worker w has caused pool to become quiescent,
1549 >     * check for pool termination, and, so long as this is not the
1550 >     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1551 >     * timeout, if ctl has not changed, terminate the worker, which
1552 >     * will in turn wake up another worker to possibly repeat this
1553 >     * process.
1554 >     *
1555 >     * @param w the calling worker
1556       */
1557 <    private void growSubmissionQueue() {
1558 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1559 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1560 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1561 <            throw new RejectedExecutionException("Queue capacity exceeded");
1562 <        if (size < INITIAL_QUEUE_CAPACITY)
1563 <            size = INITIAL_QUEUE_CAPACITY;
1564 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1565 <        int mask = size - 1;
1566 <        int top = queueTop;
1567 <        int oldMask;
1568 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
1569 <            for (int b = queueBase; b != top; ++b) {
1570 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
1571 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
1572 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
1573 <                    UNSAFE.putObjectVolatile
1574 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1557 >    private void idleAwaitWork(WorkQueue w) {
1558 >        long c; int nw, ec;
1559 >        if (!tryTerminate(false) &&
1560 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1561 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1562 >            (nw = w.nextWait) != 0) {
1563 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1564 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1565 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566 >            ForkJoinWorkerThread wt = w.owner;
1567 >            while (ctl == c) {
1568 >                long startTime = System.nanoTime();
1569 >                Thread.interrupted();  // timed variant of version in scan()
1570 >                U.putObject(wt, PARKBLOCKER, this);
1571 >                w.parker = wt;
1572 >                if (ctl == c)
1573 >                    U.park(false, SHRINK_RATE);
1574 >                w.parker = null;
1575 >                U.putObject(wt, PARKBLOCKER, null);
1576 >                if (ctl != c)
1577 >                    break;
1578 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1579 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1580 >                    w.runState = -1;          // shrink
1581 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1582 >                    break;
1583 >                }
1584              }
1585          }
1586      }
1587  
933    // Blocking support
934
1588      /**
1589 <     * Tries to increment blockedCount, decrement active count
1590 <     * (sometimes implicitly) and possibly release or create a
1591 <     * compensating worker in preparation for blocking. Fails
1592 <     * on contention or termination.
1593 <     *
1594 <     * @return true if the caller can block, else should recheck and retry
1595 <     */
1596 <    private boolean tryPreBlock() {
1597 <        int b = blockedCount;
1598 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1599 <            int pc = parallelism;
1600 <            do {
1601 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1602 <                int e, ac, tc, rc, i;
1603 <                long c = ctl;
1604 <                int u = (int)(c >>> 32);
1605 <                if ((e = (int)c) < 0) {
1606 <                                                 // skip -- terminating
1607 <                }
1608 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
1609 <                         (ws = workers) != null &&
1610 <                         (i = ~e & SMASK) < ws.length &&
1611 <                         (w = ws[i]) != null) {
1612 <                    long nc = ((long)(w.nextWait & E_MASK) |
1613 <                               (c & (AC_MASK|TC_MASK)));
1614 <                    if (w.eventCount == e &&
1615 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1616 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
1617 <                        if (w.parked)
1618 <                            UNSAFE.unpark(w);
1619 <                        return true;             // release an idle worker
1589 >     * Tries to locate and execute tasks for a stealer of the given
1590 >     * task, or in turn one of its stealers, Traces currentSteal ->
1591 >     * currentJoin links looking for a thread working on a descendant
1592 >     * of the given task and with a non-empty queue to steal back and
1593 >     * execute tasks from. The first call to this method upon a
1594 >     * waiting join will often entail scanning/search, (which is OK
1595 >     * because the joiner has nothing better to do), but this method
1596 >     * leaves hints in workers to speed up subsequent calls. The
1597 >     * implementation is very branchy to cope with potential
1598 >     * inconsistencies or loops encountering chains that are stale,
1599 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1600 >     * of these cases are dealt with by just retrying by caller.
1601 >     *
1602 >     * @param joiner the joining worker
1603 >     * @param task the task to join
1604 >     * @return true if found or ran a task (and so is immediately retryable)
1605 >     */
1606 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1607 >        ForkJoinTask<?> subtask;    // current target
1608 >        boolean progress = false;
1609 >        int depth = 0;              // current chain depth
1610 >        int m = runState & SMASK;
1611 >        WorkQueue[] ws = workQueues;
1612 >
1613 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1614 >            outer:for (WorkQueue j = joiner;;) {
1615 >                // Try to find the stealer of subtask, by first using hint
1616 >                WorkQueue stealer = null;
1617 >                WorkQueue v = ws[j.stealHint & m];
1618 >                if (v != null && v.currentSteal == subtask)
1619 >                    stealer = v;
1620 >                else {
1621 >                    for (int i = 1; i <= m; i += 2) {
1622 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1623 >                            stealer = v;
1624 >                            j.stealHint = i; // save hint
1625 >                            break;
1626 >                        }
1627                      }
1628 +                    if (stealer == null)
1629 +                        break;
1630                  }
1631 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1632 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1633 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
1634 <                        return true;             // no compensation needed
1635 <                }
1636 <                else if (tc + pc < MAX_ID) {
1637 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1638 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1639 <                        addWorker();
1640 <                        return true;            // create a replacement
1631 >
1632 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1633 >                    ForkJoinTask<?> t; int b;
1634 >                    if (task.status < 0)
1635 >                        break outer;
1636 >                    if ((b = q.base) - q.top < 0) {
1637 >                        progress = true;
1638 >                        if (subtask.status < 0)
1639 >                            break outer;               // stale
1640 >                        if ((t = q.pollAt(b)) != null) {
1641 >                            stealer.stealHint = joiner.poolIndex;
1642 >                            joiner.runSubtask(t);
1643 >                        }
1644 >                    }
1645 >                    else { // empty - try to descend to find stealer's stealer
1646 >                        ForkJoinTask<?> next = stealer.currentJoin;
1647 >                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648 >                            next == null || next == subtask)
1649 >                            break outer;  // max depth, stale, dead-end, cyclic
1650 >                        subtask = next;
1651 >                        j = stealer;
1652 >                        break;
1653                      }
1654                  }
1655 <                // try to back out on any failure and let caller retry
982 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
983 <                                               b = blockedCount, b - 1));
1655 >            }
1656          }
1657 <        return false;
986 <    }
987 <
988 <    /**
989 <     * Decrements blockedCount and increments active count
990 <     */
991 <    private void postBlock() {
992 <        long c;
993 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
994 <                                                c = ctl, c + AC_UNIT));
995 <        int b;
996 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
997 <                                              b = blockedCount, b - 1));
1657 >        return progress;
1658      }
1659  
1660      /**
1661 <     * Possibly blocks waiting for the given task to complete, or
1002 <     * cancels the task if terminating.  Fails to wait if contended.
1661 >     * If task is at base of some steal queue, steals and executes it.
1662       *
1663 <     * @param joinMe the task
1663 >     * @param joiner the joining worker
1664 >     * @param task the task
1665       */
1666 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1667 <        int s;
1668 <        Thread.interrupted(); // clear interrupts before checking termination
1669 <        if (joinMe.status >= 0) {
1670 <            if (tryPreBlock()) {
1671 <                joinMe.tryAwaitDone(0L);
1672 <                postBlock();
1666 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1667 >        WorkQueue[] ws;
1668 >        int m = runState & SMASK;
1669 >        if ((ws = workQueues) != null && ws.length > m) {
1670 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1671 >                WorkQueue q = ws[j];
1672 >                if (q != null && q.pollFor(task)) {
1673 >                    joiner.runSubtask(task);
1674 >                    break;
1675 >                }
1676              }
1014            else if ((ctl & STOP_BIT) != 0L)
1015                joinMe.cancelIgnoringExceptions();
1677          }
1678      }
1679  
1680      /**
1681 <     * Possibly blocks the given worker waiting for joinMe to
1682 <     * complete or timeout
1683 <     *
1684 <     * @param joinMe the task
1685 <     * @param millis the wait time for underlying Object.wait
1686 <     */
1687 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1688 <        while (joinMe.status >= 0) {
1689 <            Thread.interrupted();
1690 <            if ((ctl & STOP_BIT) != 0L) {
1691 <                joinMe.cancelIgnoringExceptions();
1692 <                break;
1693 <            }
1694 <            if (tryPreBlock()) {
1695 <                long last = System.nanoTime();
1696 <                while (joinMe.status >= 0) {
1697 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1037 <                    if (millis <= 0)
1038 <                        break;
1039 <                    joinMe.tryAwaitDone(millis);
1040 <                    if (joinMe.status < 0)
1041 <                        break;
1042 <                    if ((ctl & STOP_BIT) != 0L) {
1043 <                        joinMe.cancelIgnoringExceptions();
1044 <                        break;
1681 >     * Returns a non-empty steal queue, if one is found during a random,
1682 >     * then cyclic scan, else null.  This method must be retried by
1683 >     * caller if, by the time it tries to use the queue, it is empty.
1684 >     */
1685 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1686 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1687 >        for (WorkQueue[] ws;;) {
1688 >            int m = runState & SMASK;
1689 >            if ((ws = workQueues) == null)
1690 >                return null;
1691 >            if (ws.length > m) {
1692 >                WorkQueue q;
1693 >                for (int n = m << 2, k = r, j = -n;;) {
1694 >                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1695 >                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1696 >                        w.seed = r;
1697 >                        return q;
1698                      }
1699 <                    long now = System.nanoTime();
1700 <                    nanos -= now - last;
1701 <                    last = now;
1699 >                    else if (j > n)
1700 >                        return null;
1701 >                    else
1702 >                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703 >
1704                  }
1050                postBlock();
1051                break;
1705              }
1706          }
1707      }
1708  
1709      /**
1710 <     * If necessary, compensates for blocker, and blocks
1711 <     */
1712 <    private void awaitBlocker(ManagedBlocker blocker)
1713 <        throws InterruptedException {
1714 <        while (!blocker.isReleasable()) {
1715 <            if (tryPreBlock()) {
1716 <                try {
1717 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1718 <                } finally {
1719 <                    postBlock();
1710 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1711 >     * active count ctl maintenance, but rather than blocking
1712 >     * when tasks cannot be found, we rescan until all others cannot
1713 >     * find tasks either.
1714 >     */
1715 >    final void helpQuiescePool(WorkQueue w) {
1716 >        for (boolean active = true;;) {
1717 >            w.runLocalTasks();      // exhaust local queue
1718 >            WorkQueue q = findNonEmptyStealQueue(w);
1719 >            if (q != null) {
1720 >                ForkJoinTask<?> t;
1721 >                if (!active) {      // re-establish active count
1722 >                    long c;
1723 >                    active = true;
1724 >                    do {} while (!U.compareAndSwapLong
1725 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1726 >                }
1727 >                if ((t = q.poll()) != null)
1728 >                    w.runSubtask(t);
1729 >            }
1730 >            else {
1731 >                long c;
1732 >                if (active) {       // decrement active count without queuing
1733 >                    active = false;
1734 >                    do {} while (!U.compareAndSwapLong
1735 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1736 >                }
1737 >                else
1738 >                    c = ctl;        // re-increment on exit
1739 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1740 >                    do {} while (!U.compareAndSwapLong
1741 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1742 >                    break;
1743                  }
1068                break;
1744              }
1745          }
1746      }
1747  
1073    // Creating, registering and deregistring workers
1074
1748      /**
1749 <     * Tries to create and start a worker; minimally rolls back counts
1750 <     * on failure.
1749 >     * Gets and removes a local or stolen task for the given worker
1750 >     *
1751 >     * @return a task, if available
1752       */
1753 <    private void addWorker() {
1754 <        Throwable ex = null;
1755 <        ForkJoinWorkerThread t = null;
1756 <        try {
1757 <            t = factory.newThread(this);
1758 <        } catch (Throwable e) {
1759 <            ex = e;
1760 <        }
1761 <        if (t == null) {  // null or exceptional factory return
1088 <            long c;       // adjust counts
1089 <            do {} while (!UNSAFE.compareAndSwapLong
1090 <                         (this, ctlOffset, c = ctl,
1091 <                          (((c - AC_UNIT) & AC_MASK) |
1092 <                           ((c - TC_UNIT) & TC_MASK) |
1093 <                           (c & ~(AC_MASK|TC_MASK)))));
1094 <            // Propagate exception if originating from an external caller
1095 <            if (!tryTerminate(false) && ex != null &&
1096 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1097 <                UNSAFE.throwException(ex);
1753 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1754 >        for (ForkJoinTask<?> t;;) {
1755 >            WorkQueue q;
1756 >            if ((t = w.nextLocalTask()) != null)
1757 >                return t;
1758 >            if ((q = findNonEmptyStealQueue(w)) == null)
1759 >                return null;
1760 >            if ((t = q.poll()) != null)
1761 >                return t;
1762          }
1099        else
1100            t.start();
1763      }
1764  
1765      /**
1766 <     * Callback from ForkJoinWorkerThread constructor to assign a
1767 <     * public name
1766 >     * Returns the approximate (non-atomic) number of idle threads per
1767 >     * active thread to offset steal queue size for method
1768 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1769       */
1770 <    final String nextWorkerName() {
1771 <        for (int n;;) {
1772 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1773 <                                         n = nextWorkerNumber, ++n))
1774 <                return workerNamePrefix + n;
1775 <        }
1770 >    final int idlePerActive() {
1771 >        // Approximate at powers of two for small values, saturate past 4
1772 >        int p = parallelism;
1773 >        int a = p + (int)(ctl >> AC_SHIFT);
1774 >        return (a > (p >>>= 1) ? 0 :
1775 >                a > (p >>>= 1) ? 1 :
1776 >                a > (p >>>= 1) ? 2 :
1777 >                a > (p >>>= 1) ? 4 :
1778 >                8);
1779      }
1780  
1781 <    /**
1116 <     * Callback from ForkJoinWorkerThread constructor to
1117 <     * determine its poolIndex and record in workers array.
1118 <     *
1119 <     * @param w the worker
1120 <     * @return the worker's pool index
1121 <     */
1122 <    final int registerWorker(ForkJoinWorkerThread w) {
1123 <        /*
1124 <         * In the typical case, a new worker acquires the lock, uses
1125 <         * next available index and returns quickly.  Since we should
1126 <         * not block callers (ultimately from signalWork or
1127 <         * tryPreBlock) waiting for the lock needed to do this, we
1128 <         * instead help release other workers while waiting for the
1129 <         * lock.
1130 <         */
1131 <        for (int g;;) {
1132 <            ForkJoinWorkerThread[] ws;
1133 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
1134 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1135 <                                         g, g | SG_UNIT)) {
1136 <                int k = nextWorkerIndex;
1137 <                try {
1138 <                    if ((ws = workers) != null) { // ignore on shutdown
1139 <                        int n = ws.length;
1140 <                        if (k < 0 || k >= n || ws[k] != null) {
1141 <                            for (k = 0; k < n && ws[k] != null; ++k)
1142 <                                ;
1143 <                            if (k == n)
1144 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1145 <                        }
1146 <                        ws[k] = w;
1147 <                        nextWorkerIndex = k + 1;
1148 <                        int m = g & SMASK;
1149 <                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1150 <                    }
1151 <                } finally {
1152 <                    scanGuard = g;
1153 <                }
1154 <                return k;
1155 <            }
1156 <            else if ((ws = workers) != null) { // help release others
1157 <                for (ForkJoinWorkerThread u : ws) {
1158 <                    if (u != null && u.queueBase != u.queueTop) {
1159 <                        if (tryReleaseWaiter())
1160 <                            break;
1161 <                    }
1162 <                }
1163 <            }
1164 <        }
1165 <    }
1781 >    // Termination
1782  
1783      /**
1784 <     * Final callback from terminating worker.  Removes record of
1169 <     * worker from array, and adjusts counts. If pool is shutting
1170 <     * down, tries to complete termination.
1171 <     *
1172 <     * @param w the worker
1784 >     * Sets SHUTDOWN bit of runState under lock
1785       */
1786 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1787 <        int idx = w.poolIndex;
1788 <        int sc = w.stealCount;
1789 <        int steps = 0;
1790 <        // Remove from array, adjust worker counts and collect steal count.
1791 <        // We can intermix failed removes or adjusts with steal updates
1180 <        do {
1181 <            long s, c;
1182 <            int g;
1183 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1184 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1185 <                                         g, g |= SG_UNIT)) {
1186 <                ForkJoinWorkerThread[] ws = workers;
1187 <                if (ws != null && idx >= 0 &&
1188 <                    idx < ws.length && ws[idx] == w)
1189 <                    ws[idx] = null;    // verify
1190 <                nextWorkerIndex = idx;
1191 <                scanGuard = g + SG_UNIT;
1192 <                steps = 1;
1193 <            }
1194 <            if (steps == 1 &&
1195 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1196 <                                          (((c - AC_UNIT) & AC_MASK) |
1197 <                                           ((c - TC_UNIT) & TC_MASK) |
1198 <                                           (c & ~(AC_MASK|TC_MASK)))))
1199 <                steps = 2;
1200 <            if (sc != 0 &&
1201 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1202 <                                          s = stealCount, s + sc))
1203 <                sc = 0;
1204 <        } while (steps != 2 || sc != 0);
1205 <        if (!tryTerminate(false)) {
1206 <            if (ex != null)   // possibly replace if died abnormally
1207 <                signalWork();
1208 <            else
1209 <                tryReleaseWaiter();
1786 >    private void enableShutdown() {
1787 >        ReentrantLock lock = this.lock;
1788 >        if (runState >= 0) {
1789 >            lock.lock();                       // don't need try/finally
1790 >            runState |= SHUTDOWN;
1791 >            lock.unlock();
1792          }
1793      }
1794  
1213    // Shutdown and termination
1214
1795      /**
1796 <     * Possibly initiates and/or completes termination.
1796 >     * Possibly initiates and/or completes termination.  Upon
1797 >     * termination, cancels all queued tasks and then
1798       *
1799       * @param now if true, unconditionally terminate, else only
1800 <     * if shutdown and empty queue and no active workers
1800 >     * if no work and no active workers
1801       * @return true if now terminating or terminated
1802       */
1803      private boolean tryTerminate(boolean now) {
1804 <        long c;
1805 <        while (((c = ctl) & STOP_BIT) == 0) {
1804 >        for (long c;;) {
1805 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1806 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1807 >                    ReentrantLock lock = this.lock; // signal when no workers
1808 >                    lock.lock();                    // don't need try/finally
1809 >                    termination.signalAll();        // signal when 0 workers
1810 >                    lock.unlock();
1811 >                }
1812 >                return true;
1813 >            }
1814              if (!now) {
1815 <                if ((int)(c >> AC_SHIFT) != -parallelism)
1815 >                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1816 >                    hasQueuedSubmissions())
1817                      return false;
1818 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1819 <                    queueBase != queueTop) {
1820 <                    if (ctl == c) // staleness check
1821 <                        return false;
1822 <                    continue;
1818 >                // Check for unqueued inactive workers. One pass suffices.
1819 >                WorkQueue[] ws = workQueues; WorkQueue w;
1820 >                if (ws != null) {
1821 >                    int n = ws.length;
1822 >                    for (int i = 1; i < n; i += 2) {
1823 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
1824 >                            return false;
1825 >                    }
1826                  }
1827              }
1828 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1828 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1829                  startTerminating();
1830          }
1238        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1239            final ReentrantLock lock = this.submissionLock;
1240            lock.lock();
1241            try {
1242                termination.signalAll();
1243            } finally {
1244                lock.unlock();
1245            }
1246        }
1247        return true;
1831      }
1832  
1833      /**
1834 <     * Runs up to three passes through workers: (0) Setting
1835 <     * termination status for each worker, followed by wakeups up to
1836 <     * queued workers; (1) helping cancel tasks; (2) interrupting
1837 <     * lagging threads (likely in external tasks, but possibly also
1838 <     * blocked in joins).  Each pass repeats previous steps because of
1839 <     * potential lagging thread creation.
1834 >     * Initiates termination: Runs three passes through workQueues:
1835 >     * (0) Setting termination status, followed by wakeups of queued
1836 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837 >     * threads (likely in external tasks, but possibly also blocked in
1838 >     * joins).  Each pass repeats previous steps because of potential
1839 >     * lagging thread creation.
1840       */
1841      private void startTerminating() {
1259        cancelSubmissions();
1842          for (int pass = 0; pass < 3; ++pass) {
1843 <            ForkJoinWorkerThread[] ws = workers;
1843 >            WorkQueue[] ws = workQueues;
1844              if (ws != null) {
1845 <                for (ForkJoinWorkerThread w : ws) {
1846 <                    if (w != null) {
1847 <                        w.terminate = true;
1845 >                WorkQueue w; Thread wt;
1846 >                int n = ws.length;
1847 >                for (int j = 0; j < n; ++j) {
1848 >                    if ((w = ws[j]) != null) {
1849 >                        w.runState = -1;
1850                          if (pass > 0) {
1851 <                            w.cancelTasks();
1852 <                            if (pass > 1 && !w.isInterrupted()) {
1851 >                            w.cancelAll();
1852 >                            if (pass > 1 && (wt = w.owner) != null &&
1853 >                                !wt.isInterrupted()) {
1854                                  try {
1855 <                                    w.interrupt();
1855 >                                    wt.interrupt();
1856                                  } catch (SecurityException ignore) {
1857                                  }
1858                              }
1859                          }
1860                      }
1861                  }
1862 <                terminateWaiters();
1863 <            }
1864 <        }
1865 <    }
1866 <
1867 <    /**
1868 <     * Polls and cancels all submissions. Called only during termination.
1869 <     */
1870 <    private void cancelSubmissions() {
1871 <        while (queueBase != queueTop) {
1872 <            ForkJoinTask<?> task = pollSubmission();
1873 <            if (task != null) {
1874 <                try {
1290 <                    task.cancel(false);
1291 <                } catch (Throwable ignore) {
1292 <                }
1293 <            }
1294 <        }
1295 <    }
1296 <
1297 <    /**
1298 <     * Tries to set the termination status of waiting workers, and
1299 <     * then wakes them up (after which they will terminate).
1300 <     */
1301 <    private void terminateWaiters() {
1302 <        ForkJoinWorkerThread[] ws = workers;
1303 <        if (ws != null) {
1304 <            ForkJoinWorkerThread w; long c; int i, e;
1305 <            int n = ws.length;
1306 <            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1307 <                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1308 <                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1309 <                                              (long)(w.nextWait & E_MASK) |
1310 <                                              ((c + AC_UNIT) & AC_MASK) |
1311 <                                              (c & (TC_MASK|STOP_BIT)))) {
1312 <                    w.terminate = true;
1313 <                    w.eventCount = e + EC_UNIT;
1314 <                    if (w.parked)
1315 <                        UNSAFE.unpark(w);
1862 >                // Wake up workers parked on event queue
1863 >                int i, e; long c; Thread p;
1864 >                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1865 >                       (w = ws[i]) != null &&
1866 >                       w.eventCount == (e | INT_SIGN)) {
1867 >                    long nc = ((long)(w.nextWait & E_MASK) |
1868 >                               ((c + AC_UNIT) & AC_MASK) |
1869 >                               (c & (TC_MASK|STOP_BIT)));
1870 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1871 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1872 >                        if ((p = w.parker) != null)
1873 >                            U.unpark(p);
1874 >                    }
1875                  }
1876              }
1877          }
1878      }
1879  
1321    // misc ForkJoinWorkerThread support
1322
1323    /**
1324     * Increment or decrement quiescerCount. Needed only to prevent
1325     * triggering shutdown if a worker is transiently inactive while
1326     * checking quiescence.
1327     *
1328     * @param delta 1 for increment, -1 for decrement
1329     */
1330    final void addQuiescerCount(int delta) {
1331        int c;
1332        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1333                                              c = quiescerCount, c + delta));
1334    }
1335
1336    /**
1337     * Directly increment or decrement active count without
1338     * queuing. This method is used to transiently assert inactivation
1339     * while checking quiescence.
1340     *
1341     * @param delta 1 for increment, -1 for decrement
1342     */
1343    final void addActiveCount(int delta) {
1344        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1345        long c;
1346        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1347                                                ((c + d) & AC_MASK) |
1348                                                (c & ~AC_MASK)));
1349    }
1350
1351    /**
1352     * Returns the approximate (non-atomic) number of idle threads per
1353     * active thread.
1354     */
1355    final int idlePerActive() {
1356        // Approximate at powers of two for small values, saturate past 4
1357        int p = parallelism;
1358        int a = p + (int)(ctl >> AC_SHIFT);
1359        return (a > (p >>>= 1) ? 0 :
1360                a > (p >>>= 1) ? 1 :
1361                a > (p >>>= 1) ? 2 :
1362                a > (p >>>= 1) ? 4 :
1363                8);
1364    }
1365
1880      // Exported methods
1881  
1882      // Constructors
# Line 1437 | Line 1951 | public class ForkJoinPool extends Abstra
1951          this.parallelism = parallelism;
1952          this.factory = factory;
1953          this.ueh = handler;
1954 <        this.locallyFifo = asyncMode;
1954 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955 >        this.nextPoolIndex = 1;
1956          long np = (long)(-parallelism); // offset ctl counts
1957          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1958 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1444 <        // initialize workers array with room for 2*parallelism if possible
1958 >        // initialize workQueues array with room for 2*parallelism if possible
1959          int n = parallelism << 1;
1960          if (n >= MAX_ID)
1961              n = MAX_ID;
1962          else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963              n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964          }
1965 <        workers = new ForkJoinWorkerThread[n + 1];
1966 <        this.submissionLock = new ReentrantLock();
1967 <        this.termination = submissionLock.newCondition();
1965 >        this.workQueues = new WorkQueue[(n + 1) << 1];
1966 >        ReentrantLock lck = this.lock = new ReentrantLock();
1967 >        this.termination = lck.newCondition();
1968 >        this.stealCount = new AtomicLong();
1969 >        this.nextWorkerNumber = new AtomicInteger();
1970          StringBuilder sb = new StringBuilder("ForkJoinPool-");
1971          sb.append(poolNumberGenerator.incrementAndGet());
1972          sb.append("-worker-");
1973          this.workerNamePrefix = sb.toString();
1974 +        // Create initial submission queue
1975 +        WorkQueue sq = tryAddSharedQueue(0);
1976 +        if (sq != null)
1977 +            sq.growArray(false);
1978      }
1979  
1980      // Execution methods
# Line 1476 | Line 1996 | public class ForkJoinPool extends Abstra
1996       *         scheduled for execution
1997       */
1998      public <T> T invoke(ForkJoinTask<T> task) {
1999 <        Thread t = Thread.currentThread();
2000 <        if (task == null)
1481 <            throw new NullPointerException();
1482 <        if (shutdown)
1483 <            throw new RejectedExecutionException();
1484 <        if ((t instanceof ForkJoinWorkerThread) &&
1485 <            ((ForkJoinWorkerThread)t).pool == this)
1486 <            return task.invoke();  // bypass submit if in same pool
1487 <        else {
1488 <            addSubmission(task);
1489 <            return task.join();
1490 <        }
1491 <    }
1492 <
1493 <    /**
1494 <     * Unless terminating, forks task if within an ongoing FJ
1495 <     * computation in the current pool, else submits as external task.
1496 <     */
1497 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1498 <        ForkJoinWorkerThread w;
1499 <        Thread t = Thread.currentThread();
1500 <        if (shutdown)
1501 <            throw new RejectedExecutionException();
1502 <        if ((t instanceof ForkJoinWorkerThread) &&
1503 <            (w = (ForkJoinWorkerThread)t).pool == this)
1504 <            w.pushTask(task);
1505 <        else
1506 <            addSubmission(task);
1999 >        doSubmit(task);
2000 >        return task.join();
2001      }
2002  
2003      /**
# Line 1515 | Line 2009 | public class ForkJoinPool extends Abstra
2009       *         scheduled for execution
2010       */
2011      public void execute(ForkJoinTask<?> task) {
2012 <        if (task == null)
1519 <            throw new NullPointerException();
1520 <        forkOrSubmit(task);
2012 >        doSubmit(task);
2013      }
2014  
2015      // AbstractExecutorService methods
# Line 1535 | Line 2027 | public class ForkJoinPool extends Abstra
2027              job = (ForkJoinTask<?>) task;
2028          else
2029              job = ForkJoinTask.adapt(task, null);
2030 <        forkOrSubmit(job);
2030 >        doSubmit(job);
2031      }
2032  
2033      /**
# Line 1548 | Line 2040 | public class ForkJoinPool extends Abstra
2040       *         scheduled for execution
2041       */
2042      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2043 <        if (task == null)
1552 <            throw new NullPointerException();
1553 <        forkOrSubmit(task);
2043 >        doSubmit(task);
2044          return task;
2045      }
2046  
# Line 1563 | Line 2053 | public class ForkJoinPool extends Abstra
2053          if (task == null)
2054              throw new NullPointerException();
2055          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056 <        forkOrSubmit(job);
2056 >        doSubmit(job);
2057          return job;
2058      }
2059  
# Line 1576 | Line 2066 | public class ForkJoinPool extends Abstra
2066          if (task == null)
2067              throw new NullPointerException();
2068          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069 <        forkOrSubmit(job);
2069 >        doSubmit(job);
2070          return job;
2071      }
2072  
# Line 1593 | Line 2083 | public class ForkJoinPool extends Abstra
2083              job = (ForkJoinTask<?>) task;
2084          else
2085              job = ForkJoinTask.adapt(task, null);
2086 <        forkOrSubmit(job);
2086 >        doSubmit(job);
2087          return job;
2088      }
2089  
# Line 1670 | Line 2160 | public class ForkJoinPool extends Abstra
2160       * @return {@code true} if this pool uses async mode
2161       */
2162      public boolean getAsyncMode() {
2163 <        return locallyFifo;
2163 >        return localMode != 0;
2164      }
2165  
2166      /**
# Line 1682 | Line 2172 | public class ForkJoinPool extends Abstra
2172       * @return the number of worker threads
2173       */
2174      public int getRunningThreadCount() {
2175 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2176 <        return r <= 0? 0 : r; // suppress momentarily negative values
2175 >        int rc = 0;
2176 >        WorkQueue[] ws; WorkQueue w;
2177 >        if ((ws = workQueues) != null) {
2178 >            int n = ws.length;
2179 >            for (int i = 1; i < n; i += 2) {
2180 >                Thread.State s; ForkJoinWorkerThread wt;
2181 >                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182 >                    w.eventCount >= 0 &&
2183 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
2184 >                    s != Thread.State.WAITING &&
2185 >                    s != Thread.State.TIMED_WAITING)
2186 >                    ++rc;
2187 >            }
2188 >        }
2189 >        return rc;
2190      }
2191  
2192      /**
# Line 1694 | Line 2197 | public class ForkJoinPool extends Abstra
2197       * @return the number of active threads
2198       */
2199      public int getActiveThreadCount() {
2200 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2201 <        return r <= 0? 0 : r; // suppress momentarily negative values
2200 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2201 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2202      }
2203  
2204      /**
# Line 1710 | Line 2213 | public class ForkJoinPool extends Abstra
2213       * @return {@code true} if all threads are currently idle
2214       */
2215      public boolean isQuiescent() {
2216 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2216 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2217      }
2218  
2219      /**
# Line 1725 | Line 2228 | public class ForkJoinPool extends Abstra
2228       * @return the number of steals
2229       */
2230      public long getStealCount() {
2231 <        return stealCount;
2231 >        long count = stealCount.get();
2232 >        WorkQueue[] ws; WorkQueue w;
2233 >        if ((ws = workQueues) != null) {
2234 >            int n = ws.length;
2235 >            for (int i = 1; i < n; i += 2) {
2236 >                if ((w = ws[i]) != null)
2237 >                    count += w.totalSteals;
2238 >            }
2239 >        }
2240 >        return count;
2241      }
2242  
2243      /**
# Line 1740 | Line 2252 | public class ForkJoinPool extends Abstra
2252       */
2253      public long getQueuedTaskCount() {
2254          long count = 0;
2255 <        ForkJoinWorkerThread[] ws;
2256 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2257 <            (ws = workers) != null) {
2258 <            for (ForkJoinWorkerThread w : ws)
2259 <                if (w != null)
2260 <                    count -= w.queueBase - w.queueTop; // must read base first
2255 >        WorkQueue[] ws; WorkQueue w;
2256 >        if ((ws = workQueues) != null) {
2257 >            int n = ws.length;
2258 >            for (int i = 1; i < n; i += 2) {
2259 >                if ((w = ws[i]) != null)
2260 >                    count += w.queueSize();
2261 >            }
2262          }
2263          return count;
2264      }
# Line 1758 | Line 2271 | public class ForkJoinPool extends Abstra
2271       * @return the number of queued submissions
2272       */
2273      public int getQueuedSubmissionCount() {
2274 <        return -queueBase + queueTop;
2274 >        int count = 0;
2275 >        WorkQueue[] ws; WorkQueue w;
2276 >        if ((ws = workQueues) != null) {
2277 >            int n = ws.length;
2278 >            for (int i = 0; i < n; i += 2) {
2279 >                if ((w = ws[i]) != null)
2280 >                    count += w.queueSize();
2281 >            }
2282 >        }
2283 >        return count;
2284      }
2285  
2286      /**
# Line 1768 | Line 2290 | public class ForkJoinPool extends Abstra
2290       * @return {@code true} if there are any queued submissions
2291       */
2292      public boolean hasQueuedSubmissions() {
2293 <        return queueBase != queueTop;
2293 >        WorkQueue[] ws; WorkQueue w;
2294 >        if ((ws = workQueues) != null) {
2295 >            int n = ws.length;
2296 >            for (int i = 0; i < n; i += 2) {
2297 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2298 >                    return true;
2299 >            }
2300 >        }
2301 >        return false;
2302      }
2303  
2304      /**
# Line 1779 | Line 2309 | public class ForkJoinPool extends Abstra
2309       * @return the next submission, or {@code null} if none
2310       */
2311      protected ForkJoinTask<?> pollSubmission() {
2312 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2313 <        while ((b = queueBase) != queueTop &&
2314 <               (q = submissionQueue) != null &&
2315 <               (i = (q.length - 1) & b) >= 0) {
2316 <            long u = (i << ASHIFT) + ABASE;
2317 <            if ((t = q[i]) != null &&
1788 <                queueBase == b &&
1789 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1790 <                queueBase = b + 1;
1791 <                return t;
2312 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2313 >        if ((ws = workQueues) != null) {
2314 >            int n = ws.length;
2315 >            for (int i = 0; i < n; i += 2) {
2316 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2317 >                    return t;
2318              }
2319          }
2320          return null;
# Line 1813 | Line 2339 | public class ForkJoinPool extends Abstra
2339       */
2340      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2341          int count = 0;
2342 <        while (queueBase != queueTop) {
2343 <            ForkJoinTask<?> t = pollSubmission();
2344 <            if (t != null) {
2345 <                c.add(t);
2346 <                ++count;
2342 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2343 >        if ((ws = workQueues) != null) {
2344 >            int n = ws.length;
2345 >            for (int i = 0; i < n; ++i) {
2346 >                if ((w = ws[i]) != null) {
2347 >                    while ((t = w.poll()) != null) {
2348 >                        c.add(t);
2349 >                        ++count;
2350 >                    }
2351 >                }
2352              }
2353          }
1823        ForkJoinWorkerThread[] ws;
1824        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1825            (ws = workers) != null) {
1826            for (ForkJoinWorkerThread w : ws)
1827                if (w != null)
1828                    count += w.drainTasksTo(c);
1829        }
2354          return count;
2355      }
2356  
# Line 1841 | Line 2365 | public class ForkJoinPool extends Abstra
2365          long st = getStealCount();
2366          long qt = getQueuedTaskCount();
2367          long qs = getQueuedSubmissionCount();
2368 +        int rc = getRunningThreadCount();
2369          int pc = parallelism;
2370          long c = ctl;
2371          int tc = pc + (short)(c >>> TC_SHIFT);
2372 <        int rc = pc + (int)(c >> AC_SHIFT);
2373 <        if (rc < 0) // ignore transient negative
2374 <            rc = 0;
1850 <        int ac = rc + blockedCount;
2372 >        int ac = pc + (int)(c >> AC_SHIFT);
2373 >        if (ac < 0) // ignore transient negative
2374 >            ac = 0;
2375          String level;
2376          if ((c & STOP_BIT) != 0)
2377 <            level = (tc == 0)? "Terminated" : "Terminating";
2377 >            level = (tc == 0) ? "Terminated" : "Terminating";
2378          else
2379 <            level = shutdown? "Shutting down" : "Running";
2379 >            level = runState < 0 ? "Shutting down" : "Running";
2380          return super.toString() +
2381              "[" + level +
2382              ", parallelism = " + pc +
# Line 1879 | Line 2403 | public class ForkJoinPool extends Abstra
2403       */
2404      public void shutdown() {
2405          checkPermission();
2406 <        shutdown = true;
2406 >        enableShutdown();
2407          tryTerminate(false);
2408      }
2409  
# Line 1901 | Line 2425 | public class ForkJoinPool extends Abstra
2425       */
2426      public List<Runnable> shutdownNow() {
2427          checkPermission();
2428 <        shutdown = true;
2428 >        enableShutdown();
2429          tryTerminate(true);
2430          return Collections.emptyList();
2431      }
# Line 1937 | Line 2461 | public class ForkJoinPool extends Abstra
2461      }
2462  
2463      /**
1940     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1941     */
1942    final boolean isAtLeastTerminating() {
1943        return (ctl & STOP_BIT) != 0L;
1944    }
1945
1946    /**
2464       * Returns {@code true} if this pool has been shut down.
2465       *
2466       * @return {@code true} if this pool has been shut down
2467       */
2468      public boolean isShutdown() {
2469 <        return shutdown;
2469 >        return runState < 0;
2470      }
2471  
2472      /**
# Line 1966 | Line 2483 | public class ForkJoinPool extends Abstra
2483      public boolean awaitTermination(long timeout, TimeUnit unit)
2484          throws InterruptedException {
2485          long nanos = unit.toNanos(timeout);
2486 <        final ReentrantLock lock = this.submissionLock;
2486 >        final ReentrantLock lock = this.lock;
2487          lock.lock();
2488          try {
2489              for (;;) {
# Line 2077 | Line 2594 | public class ForkJoinPool extends Abstra
2594      public static void managedBlock(ManagedBlocker blocker)
2595          throws InterruptedException {
2596          Thread t = Thread.currentThread();
2597 <        if (t instanceof ForkJoinWorkerThread) {
2598 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2599 <            w.pool.awaitBlocker(blocker);
2600 <        }
2601 <        else {
2602 <            do {} while (!blocker.isReleasable() && !blocker.block());
2597 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2598 >                          ((ForkJoinWorkerThread)t).pool : null);
2599 >        while (!blocker.isReleasable()) {
2600 >            if (p == null || p.tryCompensate()) {
2601 >                try {
2602 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2603 >                } finally {
2604 >                    if (p != null)
2605 >                        p.incrementActiveCount();
2606 >                }
2607 >                break;
2608 >            }
2609          }
2610      }
2611  
# Line 2099 | Line 2622 | public class ForkJoinPool extends Abstra
2622      }
2623  
2624      // Unsafe mechanics
2625 <    private static final sun.misc.Unsafe UNSAFE;
2626 <    private static final long ctlOffset;
2627 <    private static final long stealCountOffset;
2628 <    private static final long blockedCountOffset;
2106 <    private static final long quiescerCountOffset;
2107 <    private static final long scanGuardOffset;
2108 <    private static final long nextWorkerNumberOffset;
2109 <    private static final long ABASE;
2110 <    private static final int ASHIFT;
2625 >    private static final sun.misc.Unsafe U;
2626 >    private static final long CTL;
2627 >    private static final long RUNSTATE;
2628 >    private static final long PARKBLOCKER;
2629  
2630      static {
2631          poolNumberGenerator = new AtomicInteger();
2114        workerSeedGenerator = new Random();
2632          modifyThreadPermission = new RuntimePermission("modifyThread");
2633          defaultForkJoinWorkerThreadFactory =
2634              new DefaultForkJoinWorkerThreadFactory();
2635          int s;
2636          try {
2637 <            UNSAFE = getUnsafe();
2638 <            Class k = ForkJoinPool.class;
2639 <            ctlOffset = UNSAFE.objectFieldOffset
2637 >            U = getUnsafe();
2638 >            Class<?> k = ForkJoinPool.class;
2639 >            Class<?> tk = Thread.class;
2640 >            CTL = U.objectFieldOffset
2641                  (k.getDeclaredField("ctl"));
2642 <            stealCountOffset = UNSAFE.objectFieldOffset
2643 <                (k.getDeclaredField("stealCount"));
2644 <            blockedCountOffset = UNSAFE.objectFieldOffset
2645 <                (k.getDeclaredField("blockedCount"));
2128 <            quiescerCountOffset = UNSAFE.objectFieldOffset
2129 <                (k.getDeclaredField("quiescerCount"));
2130 <            scanGuardOffset = UNSAFE.objectFieldOffset
2131 <                (k.getDeclaredField("scanGuard"));
2132 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2133 <                (k.getDeclaredField("nextWorkerNumber"));
2134 <            Class a = ForkJoinTask[].class;
2135 <            ABASE = UNSAFE.arrayBaseOffset(a);
2136 <            s = UNSAFE.arrayIndexScale(a);
2642 >            RUNSTATE = U.objectFieldOffset
2643 >                (k.getDeclaredField("runState"));
2644 >            PARKBLOCKER = U.objectFieldOffset
2645 >                (tk.getDeclaredField("parkBlocker"));
2646          } catch (Exception e) {
2647              throw new Error(e);
2648          }
2140        if ((s & (s-1)) != 0)
2141            throw new Error("data type scale not a power of two");
2142        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2649      }
2650  
2651      /**
# Line 2169 | Line 2675 | public class ForkJoinPool extends Abstra
2675              }
2676          }
2677      }
2678 +
2679   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines