ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.99 by dl, Wed Mar 23 11:27:43 2011 UTC vs.
Revision 1.138 by jsr166, Tue Oct 30 16:05:35 2012 UTC

# Line 19 | Line 19 | import java.util.concurrent.Future;
19   import java.util.concurrent.RejectedExecutionException;
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.locks.LockSupport;
24 < import java.util.concurrent.locks.ReentrantLock;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 34 | Line 33 | import java.util.concurrent.locks.Condit
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A {@code ForkJoinPool} is constructed with a given target
46 < * parallelism level; by default, equal to the number of available
47 < * processors. The pool attempts to maintain enough active (or
48 < * available) threads by dynamically adding, suspending, or resuming
49 < * internal worker threads, even if some tasks are stalled waiting to
50 < * join others. However, no such adjustments are guaranteed in the
51 < * face of blocked IO or other unmanaged synchronization. The nested
52 < * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is used by any ForkJoinTask that
47 > * is not explicitly submitted to a specified pool. Using the common
48 > * pool normally reduces resource usage (its threads are slowly
49 > * reclaimed during periods of non-use, and reinstated upon subsequent
50 > * use).  The common pool is by default constructed with default
51 > * parameters, but these may be controlled by setting any or all of
52 > * the three properties {@code
53 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
54 > * threadFactory, exceptionHandler}}.
55 > *
56 > * <p>For applications that require separate or custom pools, a {@code
57 > * ForkJoinPool} may be constructed with a given target parallelism
58 > * level; by default, equal to the number of available processors. The
59 > * pool attempts to maintain enough active (or available) threads by
60 > * dynamically adding, suspending, or resuming internal worker
61 > * threads, even if some tasks are stalled waiting to join
62 > * others. However, no such adjustments are guaranteed in the face of
63 > * blocked IO or other unmanaged synchronization. The nested {@link
64 > * ManagedBlocker} interface enables extension of the kinds of
65   * synchronization accommodated.
66   *
67   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 72 | import java.util.concurrent.locks.Condit
72   * convenient form for informal monitoring.
73   *
74   * <p> As is the case with other ExecutorServices, there are three
75 < * main task execution methods summarized in the following
76 < * table. These are designed to be used by clients not already engaged
77 < * in fork/join computations in the current pool.  The main forms of
78 < * these methods accept instances of {@code ForkJoinTask}, but
79 < * overloaded forms also allow mixed execution of plain {@code
75 > * main task execution methods summarized in the following table.
76 > * These are designed to be used primarily by clients not already
77 > * engaged in fork/join computations in the current pool.  The main
78 > * forms of these methods accept instances of {@code ForkJoinTask},
79 > * but overloaded forms also allow mixed execution of plain {@code
80   * Runnable}- or {@code Callable}- based activities as well.  However,
81 < * tasks that are already executing in a pool should normally
82 < * <em>NOT</em> use these pool execution methods, but instead use the
83 < * within-computation forms listed in the table.
81 > * tasks that are already executing in a pool should normally instead
82 > * use the within-computation forms listed in the table unless using
83 > * async event-style tasks that are not usually joined, in which case
84 > * there is little difference among choice of methods.
85   *
86   * <table BORDER CELLPADDING=3 CELLSPACING=1>
87   *  <tr>
# Line 92 | Line 106 | import java.util.concurrent.locks.Condit
106   *  </tr>
107   * </table>
108   *
95 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 * used for all parallel task execution in a program or subsystem.
97 * Otherwise, use would not usually outweigh the construction and
98 * bookkeeping overhead of creating a large set of threads. For
99 * example, a common pool could be used for the {@code SortTasks}
100 * illustrated in {@link RecursiveAction}. Because {@code
101 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 * daemon} mode, there is typically no need to explicitly {@link
103 * #shutdown} such a pool upon program exit.
104 *
105 * <pre>
106 * static final ForkJoinPool mainPool = new ForkJoinPool();
107 * ...
108 * public void sort(long[] array) {
109 *   mainPool.invoke(new SortTask(array, 0, array.length));
110 * }
111 * </pre>
112 *
109   * <p><b>Implementation notes</b>: This implementation restricts the
110   * maximum number of running threads to 32767. Attempts to create
111   * pools with greater than the maximum number result in
# Line 127 | Line 123 | public class ForkJoinPool extends Abstra
123      /*
124       * Implementation Overview
125       *
126 <     * This class provides the central bookkeeping and control for a
127 <     * set of worker threads: Submissions from non-FJ threads enter
128 <     * into a submission queue. Workers take these tasks and typically
129 <     * split them into subtasks that may be stolen by other workers.
130 <     * Preference rules give first priority to processing tasks from
131 <     * their own queues (LIFO or FIFO, depending on mode), then to
132 <     * randomized FIFO steals of tasks in other worker queues, and
133 <     * lastly to new submissions.
126 >     * This class and its nested classes provide the main
127 >     * functionality and control for a set of worker threads:
128 >     * Submissions from non-FJ threads enter into submission queues.
129 >     * Workers take these tasks and typically split them into subtasks
130 >     * that may be stolen by other workers.  Preference rules give
131 >     * first priority to processing tasks from their own queues (LIFO
132 >     * or FIFO, depending on mode), then to randomized FIFO steals of
133 >     * tasks in other queues.
134 >     *
135 >     * WorkQueues
136 >     * ==========
137 >     *
138 >     * Most operations occur within work-stealing queues (in nested
139 >     * class WorkQueue).  These are special forms of Deques that
140 >     * support only three of the four possible end-operations -- push,
141 >     * pop, and poll (aka steal), under the further constraints that
142 >     * push and pop are called only from the owning thread (or, as
143 >     * extended here, under a lock), while poll may be called from
144 >     * other threads.  (If you are unfamiliar with them, you probably
145 >     * want to read Herlihy and Shavit's book "The Art of
146 >     * Multiprocessor programming", chapter 16 describing these in
147 >     * more detail before proceeding.)  The main work-stealing queue
148 >     * design is roughly similar to those in the papers "Dynamic
149 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150 >     * (http://research.sun.com/scalable/pubs/index.html) and
151 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 >     * The main differences ultimately stem from GC requirements that
154 >     * we null out taken slots as soon as we can, to maintain as small
155 >     * a footprint as possible even in programs generating huge
156 >     * numbers of tasks. To accomplish this, we shift the CAS
157 >     * arbitrating pop vs poll (steal) from being on the indices
158 >     * ("base" and "top") to the slots themselves.  So, both a
159 >     * successful pop and poll mainly entail a CAS of a slot from
160 >     * non-null to null.  Because we rely on CASes of references, we
161 >     * do not need tag bits on base or top.  They are simple ints as
162 >     * used in any circular array-based queue (see for example
163 >     * ArrayDeque).  Updates to the indices must still be ordered in a
164 >     * way that guarantees that top == base means the queue is empty,
165 >     * but otherwise may err on the side of possibly making the queue
166 >     * appear nonempty when a push, pop, or poll have not fully
167 >     * committed. Note that this means that the poll operation,
168 >     * considered individually, is not wait-free. One thief cannot
169 >     * successfully continue until another in-progress one (or, if
170 >     * previously empty, a push) completes.  However, in the
171 >     * aggregate, we ensure at least probabilistic non-blockingness.
172 >     * If an attempted steal fails, a thief always chooses a different
173 >     * random victim target to try next. So, in order for one thief to
174 >     * progress, it suffices for any in-progress poll or new push on
175 >     * any empty queue to complete. (This is why we normally use
176 >     * method pollAt and its variants that try once at the apparent
177 >     * base index, else consider alternative actions, rather than
178 >     * method poll.)
179 >     *
180 >     * This approach also enables support of a user mode in which local
181 >     * task processing is in FIFO, not LIFO order, simply by using
182 >     * poll rather than pop.  This can be useful in message-passing
183 >     * frameworks in which tasks are never joined.  However neither
184 >     * mode considers affinities, loads, cache localities, etc, so
185 >     * rarely provide the best possible performance on a given
186 >     * machine, but portably provide good throughput by averaging over
187 >     * these factors.  (Further, even if we did try to use such
188 >     * information, we do not usually have a basis for exploiting it.
189 >     * For example, some sets of tasks profit from cache affinities,
190 >     * but others are harmed by cache pollution effects.)
191 >     *
192 >     * WorkQueues are also used in a similar way for tasks submitted
193 >     * to the pool. We cannot mix these tasks in the same queues used
194 >     * for work-stealing (this would contaminate lifo/fifo
195 >     * processing). Instead, we loosely associate submission queues
196 >     * with submitting threads, using a form of hashing.  The
197 >     * ThreadLocal Submitter class contains a value initially used as
198 >     * a hash code for choosing existing queues, but may be randomly
199 >     * repositioned upon contention with other submitters.  In
200 >     * essence, submitters act like workers except that they never
201 >     * take tasks, and they are multiplexed on to a finite number of
202 >     * shared work queues. However, classes are set up so that future
203 >     * extensions could allow submitters to optionally help perform
204 >     * tasks as well. Insertion of tasks in shared mode requires a
205 >     * lock (mainly to protect in the case of resizing) but we use
206 >     * only a simple spinlock (using bits in field runState), because
207 >     * submitters encountering a busy queue move on to try or create
208 >     * other queues -- they block only when creating and registering
209 >     * new queues.
210 >     *
211 >     * Management
212 >     * ==========
213       *
214       * The main throughput advantages of work-stealing stem from
215       * decentralized control -- workers mostly take tasks from
216       * themselves or each other. We cannot negate this in the
217       * implementation of other management responsibilities. The main
218       * tactic for avoiding bottlenecks is packing nearly all
219 <     * essentially atomic control state into a single 64bit volatile
220 <     * variable ("ctl"). This variable is read on the order of 10-100
221 <     * times as often as it is modified (always via CAS). (There is
222 <     * some additional control state, for example variable "shutdown"
223 <     * for which we can cope with uncoordinated updates.)  This
224 <     * streamlines synchronization and control at the expense of messy
225 <     * constructions needed to repack status bits upon updates.
226 <     * Updates tend not to contend with each other except during
227 <     * bursts while submitted tasks begin or end.  In some cases when
228 <     * they do contend, threads can instead do something else
229 <     * (usually, scan for tasks) until contention subsides.
230 <     *
231 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
232 <     * (which is far in excess of normal operating range) to allow
233 <     * ids, counts, and their negations (used for thresholding) to fit
234 <     * into 16bit fields.
235 <     *
236 <     * Recording Workers.  Workers are recorded in the "workers" array
237 <     * that is created upon pool construction and expanded if (rarely)
238 <     * necessary.  This is an array as opposed to some other data
239 <     * structure to support index-based random steals by workers.
240 <     * Updates to the array recording new workers and unrecording
241 <     * terminated ones are protected from each other by a seqLock
242 <     * (scanGuard) but the array is otherwise concurrently readable,
243 <     * and accessed directly by workers. To simplify index-based
244 <     * operations, the array size is always a power of two, and all
245 <     * readers must tolerate null slots. To avoid flailing during
246 <     * start-up, the array is presized to hold twice #parallelism
247 <     * workers (which is unlikely to need further resizing during
248 <     * execution). But to avoid dealing with so many null slots,
249 <     * variable scanGuard includes a mask for the nearest power of two
250 <     * that contains all current workers.  All worker thread creation
251 <     * is on-demand, triggered by task submissions, replacement of
252 <     * terminated workers, and/or compensation for blocked
253 <     * workers. However, all other support code is set up to work with
254 <     * other policies.  To ensure that we do not hold on to worker
255 <     * references that would prevent GC, ALL accesses to workers are
256 <     * via indices into the workers array (which is one source of some
257 <     * of the messy code constructions here). In essence, the workers
258 <     * array serves as a weak reference mechanism. Thus for example
259 <     * the wait queue field of ctl stores worker indices, not worker
260 <     * references.  Access to the workers in associated methods (for
261 <     * example signalWork) must both index-check and null-check the
262 <     * IDs. All such accesses ignore bad IDs by returning out early
263 <     * from what they are doing, since this can only be associated
264 <     * with termination, in which case it is OK to give up.
265 <     *
266 <     * All uses of the workers array, as well as queue arrays, check
267 <     * that the array is non-null (even if previously non-null). This
268 <     * allows nulling during termination, which is currently not
194 <     * necessary, but remains an option for resource-revocation-based
195 <     * shutdown schemes.
219 >     * essentially atomic control state into two volatile variables
220 >     * that are by far most often read (not written) as status and
221 >     * consistency checks.
222 >     *
223 >     * Field "ctl" contains 64 bits holding all the information needed
224 >     * to atomically decide to add, inactivate, enqueue (on an event
225 >     * queue), dequeue, and/or re-activate workers.  To enable this
226 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227 >     * far in excess of normal operating range) to allow ids, counts,
228 >     * and their negations (used for thresholding) to fit into 16bit
229 >     * fields.
230 >     *
231 >     * Field "runState" contains 32 bits needed to register and
232 >     * deregister WorkQueues, as well as to enable shutdown. It is
233 >     * only modified under a lock (normally briefly held, but
234 >     * occasionally protecting allocations and resizings) but even
235 >     * when locked remains available to check consistency.
236 >     *
237 >     * Recording WorkQueues.  WorkQueues are recorded in the
238 >     * "workQueues" array that is created upon first use and expanded
239 >     * if necessary.  Updates to the array while recording new workers
240 >     * and unrecording terminated ones are protected from each other
241 >     * by a lock but the array is otherwise concurrently readable, and
242 >     * accessed directly.  To simplify index-based operations, the
243 >     * array size is always a power of two, and all readers must
244 >     * tolerate null slots. Shared (submission) queues are at even
245 >     * indices, worker queues at odd indices. Grouping them together
246 >     * in this way simplifies and speeds up task scanning.
247 >     *
248 >     * All worker thread creation is on-demand, triggered by task
249 >     * submissions, replacement of terminated workers, and/or
250 >     * compensation for blocked workers. However, all other support
251 >     * code is set up to work with other policies.  To ensure that we
252 >     * do not hold on to worker references that would prevent GC, ALL
253 >     * accesses to workQueues are via indices into the workQueues
254 >     * array (which is one source of some of the messy code
255 >     * constructions here). In essence, the workQueues array serves as
256 >     * a weak reference mechanism. Thus for example the wait queue
257 >     * field of ctl stores indices, not references.  Access to the
258 >     * workQueues in associated methods (for example signalWork) must
259 >     * both index-check and null-check the IDs. All such accesses
260 >     * ignore bad IDs by returning out early from what they are doing,
261 >     * since this can only be associated with termination, in which
262 >     * case it is OK to give up.  All uses of the workQueues array
263 >     * also check that it is non-null (even if previously
264 >     * non-null). This allows nulling during termination, which is
265 >     * currently not necessary, but remains an option for
266 >     * resource-revocation-based shutdown schemes. It also helps
267 >     * reduce JIT issuance of uncommon-trap code, which tends to
268 >     * unnecessarily complicate control flow in some methods.
269       *
270 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
270 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271       * let workers spin indefinitely scanning for tasks when none can
272       * be found immediately, and we cannot start/resume workers unless
273       * there appear to be tasks available.  On the other hand, we must
274       * quickly prod them into action when new tasks are submitted or
275 <     * generated.  We park/unpark workers after placing in an event
276 <     * wait queue when they cannot find work. This "queue" is actually
277 <     * a simple Treiber stack, headed by the "id" field of ctl, plus a
278 <     * 15bit counter value to both wake up waiters (by advancing their
279 <     * count) and avoid ABA effects. Successors are held in worker
280 <     * field "nextWait".  Queuing deals with several intrinsic races,
281 <     * mainly that a task-producing thread can miss seeing (and
275 >     * generated. In many usages, ramp-up time to activate workers is
276 >     * the main limiting factor in overall performance (this is
277 >     * compounded at program start-up by JIT compilation and
278 >     * allocation). So we try to streamline this as much as possible.
279 >     * We park/unpark workers after placing in an event wait queue
280 >     * when they cannot find work. This "queue" is actually a simple
281 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282 >     * counter value (that reflects the number of times a worker has
283 >     * been inactivated) to avoid ABA effects (we need only as many
284 >     * version numbers as worker threads). Successors are held in
285 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
286 >     * races, mainly that a task-producing thread can miss seeing (and
287       * signalling) another thread that gave up looking for work but
288       * has not yet entered the wait queue. We solve this by requiring
289 <     * a full sweep of all workers both before (in scan()) and after
290 <     * (in tryAwaitWork()) a newly waiting worker is added to the wait
291 <     * queue. During a rescan, the worker might release some other
292 <     * queued worker rather than itself, which has the same net
293 <     * effect. Because enqueued workers may actually be rescanning
294 <     * rather than waiting, we set and clear the "parked" field of
295 <     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
296 <     * (Use of the parked field requires a secondary recheck to avoid
297 <     * missed signals.)
289 >     * a full sweep of all workers (via repeated calls to method
290 >     * scan()) both before and after a newly waiting worker is added
291 >     * to the wait queue. During a rescan, the worker might release
292 >     * some other queued worker rather than itself, which has the same
293 >     * net effect. Because enqueued workers may actually be rescanning
294 >     * rather than waiting, we set and clear the "parker" field of
295 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
296 >     * requires a secondary recheck to avoid missed signals.)  Note
297 >     * the unusual conventions about Thread.interrupts surrounding
298 >     * parking and other blocking: Because interrupts are used solely
299 >     * to alert threads to check termination, which is checked anyway
300 >     * upon blocking, we clear status (using Thread.interrupted)
301 >     * before any call to park, so that park does not immediately
302 >     * return due to status being set via some other unrelated call to
303 >     * interrupt in user code.
304       *
305       * Signalling.  We create or wake up workers only when there
306       * appears to be at least one task they might be able to find and
307       * execute.  When a submission is added or another worker adds a
308 <     * task to a queue that previously had two or fewer tasks, they
308 >     * task to a queue that previously had fewer than two tasks, they
309       * signal waiting workers (or trigger creation of new ones if
310       * fewer than the given parallelism level -- see signalWork).
311 <     * These primary signals are buttressed by signals during rescans
312 <     * as well as those performed when a worker steals a task and
313 <     * notices that there are more tasks too; together these cover the
314 <     * signals needed in cases when more than two tasks are pushed
231 <     * but untaken.
311 >     * These primary signals are buttressed by signals during rescans;
312 >     * together these cover the signals needed in cases when more
313 >     * tasks are pushed but untaken, and improve performance compared
314 >     * to having one thread wake up all workers.
315       *
316       * Trimming workers. To release resources after periods of lack of
317       * use, a worker starting to wait when the pool is quiescent will
318 <     * time out and terminate if the pool has remained quiescent for
319 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
320 <     * terminating all workers after long periods of non-use.
321 <     *
322 <     * Submissions. External submissions are maintained in an
323 <     * array-based queue that is structured identically to
324 <     * ForkJoinWorkerThread queues except for the use of
325 <     * submissionLock in method addSubmission. Unlike the case for
326 <     * worker queues, multiple external threads can add new
327 <     * submissions, so adding requires a lock.
328 <     *
329 <     * Compensation. Beyond work-stealing support and lifecycle
330 <     * control, the main responsibility of this framework is to take
331 <     * actions when one worker is waiting to join a task stolen (or
332 <     * always held by) another.  Because we are multiplexing many
333 <     * tasks on to a pool of workers, we can't just let them block (as
334 <     * in Thread.join).  We also cannot just reassign the joiner's
335 <     * run-time stack with another and replace it later, which would
336 <     * be a form of "continuation", that even if possible is not
337 <     * necessarily a good idea since we sometimes need both an
338 <     * unblocked task and its continuation to progress. Instead we
339 <     * combine two tactics:
318 >     * time out and terminate if the pool has remained quiescent for a
319 >     * given period -- a short period if there are more threads than
320 >     * parallelism, longer as the number of threads decreases. This
321 >     * will slowly propagate, eventually terminating all workers after
322 >     * periods of non-use.
323 >     *
324 >     * Shutdown and Termination. A call to shutdownNow atomically sets
325 >     * a runState bit and then (non-atomically) sets each worker's
326 >     * runState status, cancels all unprocessed tasks, and wakes up
327 >     * all waiting workers.  Detecting whether termination should
328 >     * commence after a non-abrupt shutdown() call requires more work
329 >     * and bookkeeping. We need consensus about quiescence (i.e., that
330 >     * there is no more work). The active count provides a primary
331 >     * indication but non-abrupt shutdown still requires a rechecking
332 >     * scan for any workers that are inactive but not queued.
333 >     *
334 >     * Joining Tasks
335 >     * =============
336 >     *
337 >     * Any of several actions may be taken when one worker is waiting
338 >     * to join a task stolen (or always held) by another.  Because we
339 >     * are multiplexing many tasks on to a pool of workers, we can't
340 >     * just let them block (as in Thread.join).  We also cannot just
341 >     * reassign the joiner's run-time stack with another and replace
342 >     * it later, which would be a form of "continuation", that even if
343 >     * possible is not necessarily a good idea since we sometimes need
344 >     * both an unblocked task and its continuation to progress.
345 >     * Instead we combine two tactics:
346       *
347       *   Helping: Arranging for the joiner to execute some task that it
348 <     *      would be running if the steal had not occurred.  Method
260 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 <     *      links to try to find such a task.
348 >     *      would be running if the steal had not occurred.
349       *
350       *   Compensating: Unless there are already enough live threads,
351 <     *      method tryPreBlock() may create or re-activate a spare
352 <     *      thread to compensate for blocked joiners until they
353 <     *      unblock.
351 >     *      method tryCompensate() may create or re-activate a spare
352 >     *      thread to compensate for blocked joiners until they unblock.
353 >     *
354 >     * A third form (implemented in tryRemoveAndExec and
355 >     * tryPollForAndExec) amounts to helping a hypothetical
356 >     * compensator: If we can readily tell that a possible action of a
357 >     * compensator is to steal and execute the task being joined, the
358 >     * joining thread can do so directly, without the need for a
359 >     * compensation thread (although at the expense of larger run-time
360 >     * stacks, but the tradeoff is typically worthwhile).
361       *
362       * The ManagedBlocker extension API can't use helping so relies
363       * only on compensation in method awaitBlocker.
364       *
365 +     * The algorithm in tryHelpStealer entails a form of "linear"
366 +     * helping: Each worker records (in field currentSteal) the most
367 +     * recent task it stole from some other worker. Plus, it records
368 +     * (in field currentJoin) the task it is currently actively
369 +     * joining. Method tryHelpStealer uses these markers to try to
370 +     * find a worker to help (i.e., steal back a task from and execute
371 +     * it) that could hasten completion of the actively joined task.
372 +     * In essence, the joiner executes a task that would be on its own
373 +     * local deque had the to-be-joined task not been stolen. This may
374 +     * be seen as a conservative variant of the approach in Wagner &
375 +     * Calder "Leapfrogging: a portable technique for implementing
376 +     * efficient futures" SIGPLAN Notices, 1993
377 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378 +     * that: (1) We only maintain dependency links across workers upon
379 +     * steals, rather than use per-task bookkeeping.  This sometimes
380 +     * requires a linear scan of workQueues array to locate stealers,
381 +     * but often doesn't because stealers leave hints (that may become
382 +     * stale/wrong) of where to locate them.  A stealHint is only a
383 +     * hint because a worker might have had multiple steals and the
384 +     * hint records only one of them (usually the most current).
385 +     * Hinting isolates cost to when it is needed, rather than adding
386 +     * to per-task overhead.  (2) It is "shallow", ignoring nesting
387 +     * and potentially cyclic mutual steals.  (3) It is intentionally
388 +     * racy: field currentJoin is updated only while actively joining,
389 +     * which means that we miss links in the chain during long-lived
390 +     * tasks, GC stalls etc (which is OK since blocking in such cases
391 +     * is usually a good idea).  (4) We bound the number of attempts
392 +     * to find work (see MAX_HELP) and fall back to suspending the
393 +     * worker and if necessary replacing it with another.
394 +     *
395       * It is impossible to keep exactly the target parallelism number
396       * of threads running at any given time.  Determining the
397       * existence of conservatively safe helping targets, the
398       * availability of already-created spares, and the apparent need
399 <     * to create new spares are all racy and require heuristic
400 <     * guidance, so we rely on multiple retries of each.  Currently,
401 <     * in keeping with on-demand signalling policy, we compensate only
402 <     * if blocking would leave less than one active (non-waiting,
403 <     * non-blocked) worker. Additionally, to avoid some false alarms
404 <     * due to GC, lagging counters, system activity, etc, compensated
405 <     * blocking for joins is only attempted after rechecks stabilize
406 <     * (retries are interspersed with Thread.yield, for good
407 <     * citizenship).  The variable blockedCount, incremented before
408 <     * blocking and decremented after, is sometimes needed to
409 <     * distinguish cases of waiting for work vs blocking on joins or
410 <     * other managed sync. Both cases are equivalent for most pool
411 <     * control, so we can update non-atomically. (Additionally,
412 <     * contention on blockedCount alleviates some contention on ctl).
413 <     *
414 <     * Shutdown and Termination. A call to shutdownNow atomically sets
415 <     * the ctl stop bit and then (non-atomically) sets each workers
416 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
417 <     * all waiting workers.  Detecting whether termination should
418 <     * commence after a non-abrupt shutdown() call requires more work
419 <     * and bookkeeping. We need consensus about quiesence (i.e., that
420 <     * there is no more work) which is reflected in active counts so
421 <     * long as there are no current blockers, as well as possible
422 <     * re-evaluations during independent changes in blocking or
423 <     * quiescing workers.
399 >     * to create new spares are all racy, so we rely on multiple
400 >     * retries of each.  Compensation in the apparent absence of
401 >     * helping opportunities is challenging to control on JVMs, where
402 >     * GC and other activities can stall progress of tasks that in
403 >     * turn stall out many other dependent tasks, without us being
404 >     * able to determine whether they will ever require compensation.
405 >     * Even though work-stealing otherwise encounters little
406 >     * degradation in the presence of more threads than cores,
407 >     * aggressively adding new threads in such cases entails risk of
408 >     * unwanted positive feedback control loops in which more threads
409 >     * cause more dependent stalls (as well as delayed progress of
410 >     * unblocked threads to the point that we know they are available)
411 >     * leading to more situations requiring more threads, and so
412 >     * on. This aspect of control can be seen as an (analytically
413 >     * intractable) game with an opponent that may choose the worst
414 >     * (for us) active thread to stall at any time.  We take several
415 >     * precautions to bound losses (and thus bound gains), mainly in
416 >     * methods tryCompensate and awaitJoin: (1) We only try
417 >     * compensation after attempting enough helping steps (measured
418 >     * via counting and timing) that we have already consumed the
419 >     * estimated cost of creating and activating a new thread.  (2) We
420 >     * allow up to 50% of threads to be blocked before initially
421 >     * adding any others, and unless completely saturated, check that
422 >     * some work is available for a new worker before adding. Also, we
423 >     * create up to only 50% more threads until entering a mode that
424 >     * only adds a thread if all others are possibly blocked.  All
425 >     * together, this means that we might be half as fast to react,
426 >     * and create half as many threads as possible in the ideal case,
427 >     * but present vastly fewer anomalies in all other cases compared
428 >     * to both more aggressive and more conservative alternatives.
429       *
430       * Style notes: There is a lot of representation-level coupling
431       * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
433 <     * data structures managed by ForkJoinPool, so are directly
434 <     * accessed.  Conversely we allow access to "workers" array by
435 <     * workers, and direct access to ForkJoinTask.status by both
436 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
437 <     * trying to reduce this, since any associated future changes in
438 <     * representations will need to be accompanied by algorithmic
439 <     * changes anyway. All together, these low-level implementation
440 <     * choices produce as much as a factor of 4 performance
441 <     * improvement compared to naive implementations, and enable the
442 <     * processing of billions of tasks per second, at the expense of
443 <     * some ugliness.
444 <     *
445 <     * Methods signalWork() and scan() are the main bottlenecks so are
446 <     * especially heavily micro-optimized/mangled.  There are lots of
447 <     * inline assignments (of form "while ((local = field) != 0)")
448 <     * which are usually the simplest way to ensure the required read
449 <     * orderings (which are sometimes critical). This leads to a
450 <     * "C"-like style of listing declarations of these locals at the
451 <     * heads of methods or blocks.  There are several occurrences of
452 <     * the unusual "do {} while (!cas...)"  which is the simplest way
453 <     * to force an update of a CAS'ed variable. There are also other
454 <     * coding oddities that help some methods perform reasonably even
455 <     * when interpreted (not compiled).
456 <     *
457 <     * The order of declarations in this file is: (1) declarations of
458 <     * statics (2) fields (along with constants used when unpacking
459 <     * some of them), listed in an order that tends to reduce
460 <     * contention among them a bit under most JVMs.  (3) internal
461 <     * control methods (4) callbacks and other support for
462 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
463 <     * methods (plus a few little helpers). (6) static block
464 <     * initializing all statics in a minimally dependent order.
432 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
433 >     * managed by ForkJoinPool, so are directly accessed.  There is
434 >     * little point trying to reduce this, since any associated future
435 >     * changes in representations will need to be accompanied by
436 >     * algorithmic changes anyway. Several methods intrinsically
437 >     * sprawl because they must accumulate sets of consistent reads of
438 >     * volatiles held in local variables.  Methods signalWork() and
439 >     * scan() are the main bottlenecks, so are especially heavily
440 >     * micro-optimized/mangled.  There are lots of inline assignments
441 >     * (of form "while ((local = field) != 0)") which are usually the
442 >     * simplest way to ensure the required read orderings (which are
443 >     * sometimes critical). This leads to a "C"-like style of listing
444 >     * declarations of these locals at the heads of methods or blocks.
445 >     * There are several occurrences of the unusual "do {} while
446 >     * (!cas...)"  which is the simplest way to force an update of a
447 >     * CAS'ed variable. There are also other coding oddities that help
448 >     * some methods perform reasonably even when interpreted (not
449 >     * compiled).
450 >     *
451 >     * The order of declarations in this file is:
452 >     * (1) Static utility functions
453 >     * (2) Nested (static) classes
454 >     * (3) Static fields
455 >     * (4) Fields, along with constants used when unpacking some of them
456 >     * (5) Internal control methods
457 >     * (6) Callbacks and other support for ForkJoinTask methods
458 >     * (7) Exported methods
459 >     * (8) Static block initializing statics in minimally dependent order
460 >     */
461 >
462 >    // Static utilities
463 >
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467       */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475  
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 363 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
504 >     * Class for artificial tasks that are used to replace the target
505 >     * of local joins if they are removed from an interior queue slot
506 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507 >     * actually do anything beyond having a unique identity.
508 >     */
509 >    static final class EmptyTask extends ForkJoinTask<Void> {
510 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511 >        public final Void getRawResult() { return null; }
512 >        public final void setRawResult(Void x) {}
513 >        public final boolean exec() { return true; }
514 >    }
515 >
516 >    /**
517 >     * Queues supporting work-stealing as well as external task
518 >     * submission. See above for main rationale and algorithms.
519 >     * Implementation relies heavily on "Unsafe" intrinsics
520 >     * and selective use of "volatile":
521 >     *
522 >     * Field "base" is the index (mod array.length) of the least valid
523 >     * queue slot, which is always the next position to steal (poll)
524 >     * from if nonempty. Reads and writes require volatile orderings
525 >     * but not CAS, because updates are only performed after slot
526 >     * CASes.
527 >     *
528 >     * Field "top" is the index (mod array.length) of the next queue
529 >     * slot to push to or pop from. It is written only by owner thread
530 >     * for push, or under lock for trySharedPush, and accessed by
531 >     * other threads only after reading (volatile) base.  Both top and
532 >     * base are allowed to wrap around on overflow, but (top - base)
533 >     * (or more commonly -(base - top) to force volatile read of base
534 >     * before top) still estimates size.
535 >     *
536 >     * The array slots are read and written using the emulation of
537 >     * volatiles/atomics provided by Unsafe. Insertions must in
538 >     * general use putOrderedObject as a form of releasing store to
539 >     * ensure that all writes to the task object are ordered before
540 >     * its publication in the queue. (Although we can avoid one case
541 >     * of this when locked in trySharedPush.) All removals entail a
542 >     * CAS to null.  The array is always a power of two. To ensure
543 >     * safety of Unsafe array operations, all accesses perform
544 >     * explicit null checks and implicit bounds checks via
545 >     * power-of-two masking.
546 >     *
547 >     * In addition to basic queuing support, this class contains
548 >     * fields described elsewhere to control execution. It turns out
549 >     * to work better memory-layout-wise to include them in this
550 >     * class rather than a separate class.
551 >     *
552 >     * Performance on most platforms is very sensitive to placement of
553 >     * instances of both WorkQueues and their arrays -- we absolutely
554 >     * do not want multiple WorkQueue instances or multiple queue
555 >     * arrays sharing cache lines. (It would be best for queue objects
556 >     * and their arrays to share, but there is nothing available to
557 >     * help arrange that).  Unfortunately, because they are recorded
558 >     * in a common array, WorkQueue instances are often moved to be
559 >     * adjacent by garbage collectors. To reduce impact, we use field
560 >     * padding that works OK on common platforms; this effectively
561 >     * trades off slightly slower average field access for the sake of
562 >     * avoiding really bad worst-case access. (Until better JVM
563 >     * support is in place, this padding is dependent on transient
564 >     * properties of JVM field layout rules.)  We also take care in
565 >     * allocating, sizing and resizing the array. Non-shared queue
566 >     * arrays are initialized (via method growArray) by workers before
567 >     * use. Others are allocated on first use.
568       */
569 <    public static final ForkJoinWorkerThreadFactory
570 <        defaultForkJoinWorkerThreadFactory;
569 >    static final class WorkQueue {
570 >        /**
571 >         * Capacity of work-stealing queue array upon initialization.
572 >         * Must be a power of two; at least 4, but should be larger to
573 >         * reduce or eliminate cacheline sharing among queues.
574 >         * Currently, it is much larger, as a partial workaround for
575 >         * the fact that JVMs often place arrays in locations that
576 >         * share GC bookkeeping (especially cardmarks) such that
577 >         * per-write accesses encounter serious memory contention.
578 >         */
579 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580  
581 <    /**
582 <     * Permission required for callers of methods that may start or
583 <     * kill threads.
584 <     */
585 <    private static final RuntimePermission modifyThreadPermission;
581 >        /**
582 >         * Maximum size for queue arrays. Must be a power of two less
583 >         * than or equal to 1 << (31 - width of array entry) to ensure
584 >         * lack of wraparound of index calculations, but defined to a
585 >         * value a bit less than this to help users trap runaway
586 >         * programs before saturating systems.
587 >         */
588 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589 >
590 >        volatile long totalSteals; // cumulative number of steals
591 >        int seed;                  // for random scanning; initialize nonzero
592 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
593 >        int nextWait;              // encoded record of next event waiter
594 >        int rescans;               // remaining scans until block
595 >        int nsteals;               // top-level task executions since last idle
596 >        final int mode;            // lifo, fifo, or shared
597 >        int poolIndex;             // index of this queue in pool (or 0)
598 >        int stealHint;             // index of most recent known stealer
599 >        volatile int runState;     // 1: locked, -1: terminate; else 0
600 >        volatile int base;         // index of next slot for poll
601 >        int top;                   // index of next slot for push
602 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
603 >        final ForkJoinPool pool;   // the containing pool (may be null)
604 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
605 >        volatile Thread parker;    // == owner during call to park; else null
606 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
607 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
608 >        // Heuristic padding to ameliorate unfortunate memory placements
609 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
610 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 >
612 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613 >            this.mode = mode;
614 >            this.pool = pool;
615 >            this.owner = owner;
616 >            // Place indices in the center of array (that is not yet allocated)
617 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618 >        }
619 >
620 >        /**
621 >         * Returns the approximate number of tasks in the queue.
622 >         */
623 >        final int queueSize() {
624 >            int n = base - top;       // non-owner callers must read base first
625 >            return (n >= 0) ? 0 : -n; // ignore transient negative
626 >        }
627 >
628 >        /**
629 >         * Provides a more accurate estimate of whether this queue has
630 >         * any tasks than does queueSize, by checking whether a
631 >         * near-empty queue has at least one unclaimed task.
632 >         */
633 >        final boolean isEmpty() {
634 >            ForkJoinTask<?>[] a; int m, s;
635 >            int n = base - (s = top);
636 >            return (n >= 0 ||
637 >                    (n == -1 &&
638 >                     ((a = array) == null ||
639 >                      (m = a.length - 1) < 0 ||
640 >                      U.getObjectVolatile
641 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 >        }
643 >
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @throw RejectedExecutionException if array cannot be resized
649 >         */
650 >        final void push(ForkJoinTask<?> task) {
651 >            ForkJoinTask<?>[] a; ForkJoinPool p;
652 >            int s = top, m, n;
653 >            if ((a = array) != null) {    // ignore if queue removed
654 >                U.putOrderedObject
655 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656 >                if ((n = (top = s + 1) - base) <= 2) {
657 >                    if ((p = pool) != null)
658 >                        p.signalWork();
659 >                }
660 >                else if (n >= m)
661 >                    growArray(true);
662 >            }
663 >        }
664 >
665 >        /**
666 >         * Pushes a task if lock is free and array is either big
667 >         * enough or can be resized to be big enough.
668 >         *
669 >         * @param task the task. Caller must ensure non-null.
670 >         * @return true if submitted
671 >         */
672 >        final boolean trySharedPush(ForkJoinTask<?> task) {
673 >            boolean submitted = false;
674 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675 >                ForkJoinTask<?>[] a = array;
676 >                int s = top;
677 >                try {
678 >                    if ((a != null && a.length > s + 1 - base) ||
679 >                        (a = growArray(false)) != null) { // must presize
680 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
682 >                        top = s + 1;
683 >                        submitted = true;
684 >                    }
685 >                } finally {
686 >                    runState = 0;                         // unlock
687 >                }
688 >            }
689 >            return submitted;
690 >        }
691 >
692 >        /**
693 >         * Takes next task, if one exists, in LIFO order.  Call only
694 >         * by owner in unshared queues.
695 >         */
696 >        final ForkJoinTask<?> pop() {
697 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
699 >                for (int s; (s = top - 1) - base >= 0;) {
700 >                    long j = ((m & s) << ASHIFT) + ABASE;
701 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 >                        break;
703 >                    if (U.compareAndSwapObject(a, j, t, null)) {
704 >                        top = s;
705 >                        return t;
706 >                    }
707 >                }
708 >            }
709 >            return null;
710 >        }
711 >
712 >        final ForkJoinTask<?> sharedPop() {
713 >            ForkJoinTask<?> task = null;
714 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715 >                try {
716 >                    ForkJoinTask<?>[] a; int m;
717 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
718 >                        for (int s; (s = top - 1) - base >= 0;) {
719 >                            long j = ((m & s) << ASHIFT) + ABASE;
720 >                            ForkJoinTask<?> t =
721 >                                (ForkJoinTask<?>)U.getObject(a, j);
722 >                            if (t == null)
723 >                                break;
724 >                            if (U.compareAndSwapObject(a, j, t, null)) {
725 >                                top = s;
726 >                                task = t;
727 >                                break;
728 >                            }
729 >                        }
730 >                    }
731 >                } finally {
732 >                    runState = 0;
733 >                }
734 >            }
735 >            return task;
736 >        }
737 >
738 >        /**
739 >         * Version of pop that takes top element only if it
740 >         * its root is the given CountedCompleter.
741 >         */
742 >        final ForkJoinTask<?> popCC(CountedCompleter<?> root) {
743 >            ForkJoinTask<?>[] a; int m;
744 >            if (root != null && (a = array) != null && (m = a.length - 1) >= 0) {
745 >                for (int s; (s = top - 1) - base >= 0;) {
746 >                    long j = ((m & s) << ASHIFT) + ABASE;
747 >                    ForkJoinTask<?> t =
748 >                        (ForkJoinTask<?>)U.getObject(a, j);
749 >                    if (t == null || !(t instanceof CountedCompleter) ||
750 >                        ((CountedCompleter<?>)t).getRoot() != root)
751 >                        break;
752 >                    if (U.compareAndSwapObject(a, j, t, null)) {
753 >                        top = s;
754 >                        return t;
755 >                    }
756 >                    if (root.status < 0)
757 >                        break;
758 >                }
759 >            }
760 >            return null;
761 >        }
762 >
763 >        /**
764 >         * Shared version of popCC
765 >         */
766 >        final ForkJoinTask<?> sharedPopCC(CountedCompleter<?> root) {
767 >            ForkJoinTask<?> task = null;
768 >            if (root != null &&
769 >                runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
770 >                try {
771 >                    ForkJoinTask<?>[] a; int m;
772 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
773 >                        for (int s; (s = top - 1) - base >= 0;) {
774 >                            long j = ((m & s) << ASHIFT) + ABASE;
775 >                            ForkJoinTask<?> t =
776 >                                (ForkJoinTask<?>)U.getObject(a, j);
777 >                            if (t == null || !(t instanceof CountedCompleter) ||
778 >                                ((CountedCompleter<?>)t).getRoot() != root)
779 >                                break;
780 >                            if (U.compareAndSwapObject(a, j, t, null)) {
781 >                                top = s;
782 >                                task = t;
783 >                                break;
784 >                            }
785 >                            if (root.status < 0)
786 >                                break;
787 >                        }
788 >                    }
789 >                } finally {
790 >                    runState = 0;
791 >                }
792 >            }
793 >            return task;
794 >        }
795 >
796 >        /**
797 >         * Takes a task in FIFO order if b is base of queue and a task
798 >         * can be claimed without contention. Specialized versions
799 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
800 >         */
801 >        final ForkJoinTask<?> pollAt(int b) {
802 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
803 >            if ((a = array) != null) {
804 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
805 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
806 >                    base == b &&
807 >                    U.compareAndSwapObject(a, j, t, null)) {
808 >                    base = b + 1;
809 >                    return t;
810 >                }
811 >            }
812 >            return null;
813 >        }
814 >
815 >        /**
816 >         * Takes next task, if one exists, in FIFO order.
817 >         */
818 >        final ForkJoinTask<?> poll() {
819 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
820 >            while ((b = base) - top < 0 && (a = array) != null) {
821 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
823 >                if (t != null) {
824 >                    if (base == b &&
825 >                        U.compareAndSwapObject(a, j, t, null)) {
826 >                        base = b + 1;
827 >                        return t;
828 >                    }
829 >                }
830 >                else if (base == b) {
831 >                    if (b + 1 == top)
832 >                        break;
833 >                    Thread.yield(); // wait for lagging update
834 >                }
835 >            }
836 >            return null;
837 >        }
838 >
839 >        /**
840 >         * Takes next task, if one exists, in order specified by mode.
841 >         */
842 >        final ForkJoinTask<?> nextLocalTask() {
843 >            return mode == 0 ? pop() : poll();
844 >        }
845 >
846 >        /**
847 >         * Returns next task, if one exists, in order specified by mode.
848 >         */
849 >        final ForkJoinTask<?> peek() {
850 >            ForkJoinTask<?>[] a = array; int m;
851 >            if (a == null || (m = a.length - 1) < 0)
852 >                return null;
853 >            int i = mode == 0 ? top - 1 : base;
854 >            int j = ((i & m) << ASHIFT) + ABASE;
855 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
856 >        }
857 >
858 >        /**
859 >         * Pops the given task only if it is at the current top.
860 >         */
861 >        final boolean tryUnpush(ForkJoinTask<?> t) {
862 >            ForkJoinTask<?>[] a; int s;
863 >            if ((a = array) != null && (s = top) != base &&
864 >                U.compareAndSwapObject
865 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
866 >                top = s;
867 >                return true;
868 >            }
869 >            return false;
870 >        }
871 >
872 >        /**
873 >         * Version of tryUnpush for shared queues; called by non-FJ
874 >         * submitters after prechecking that task probably exists.
875 >         */
876 >        final boolean trySharedUnpush(ForkJoinTask<?> t) {
877 >            boolean success = false;
878 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
879 >                try {
880 >                    ForkJoinTask<?>[] a; int s;
881 >                    if ((a = array) != null && (s = top) != base &&
882 >                        U.compareAndSwapObject
883 >                        (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
884 >                        top = s;
885 >                        success = true;
886 >                    }
887 >                } finally {
888 >                    runState = 0;                         // unlock
889 >                }
890 >            }
891 >            return success;
892 >        }
893 >
894 >        /**
895 >         * Polls the given task only if it is at the current base.
896 >         */
897 >        final boolean pollFor(ForkJoinTask<?> task) {
898 >            ForkJoinTask<?>[] a; int b;
899 >            if ((b = base) - top < 0 && (a = array) != null) {
900 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
901 >                if (U.getObjectVolatile(a, j) == task && base == b &&
902 >                    U.compareAndSwapObject(a, j, task, null)) {
903 >                    base = b + 1;
904 >                    return true;
905 >                }
906 >            }
907 >            return false;
908 >        }
909 >
910 >        /**
911 >         * Initializes or doubles the capacity of array. Call either
912 >         * by owner or with lock held -- it is OK for base, but not
913 >         * top, to move while resizings are in progress.
914 >         *
915 >         * @param rejectOnFailure if true, throw exception if capacity
916 >         * exceeded (relayed ultimately to user); else return null.
917 >         */
918 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
919 >            ForkJoinTask<?>[] oldA = array;
920 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
921 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
922 >                int oldMask, t, b;
923 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
924 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
925 >                    (t = top) - (b = base) > 0) {
926 >                    int mask = size - 1;
927 >                    do {
928 >                        ForkJoinTask<?> x;
929 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
930 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
931 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
932 >                        if (x != null &&
933 >                            U.compareAndSwapObject(oldA, oldj, x, null))
934 >                            U.putObjectVolatile(a, j, x);
935 >                    } while (++b != t);
936 >                }
937 >                return a;
938 >            }
939 >            else if (!rejectOnFailure)
940 >                return null;
941 >            else
942 >                throw new RejectedExecutionException("Queue capacity exceeded");
943 >        }
944 >
945 >        /**
946 >         * Removes and cancels all known tasks, ignoring any exceptions.
947 >         */
948 >        final void cancelAll() {
949 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
950 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
951 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
952 >                ForkJoinTask.cancelIgnoringExceptions(t);
953 >        }
954 >
955 >        /**
956 >         * Computes next value for random probes.  Scans don't require
957 >         * a very high quality generator, but also not a crummy one.
958 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
959 >         * This is manually inlined in its usages in ForkJoinPool to
960 >         * avoid writes inside busy scan loops.
961 >         */
962 >        final int nextSeed() {
963 >            int r = seed;
964 >            r ^= r << 13;
965 >            r ^= r >>> 17;
966 >            return seed = r ^= r << 5;
967 >        }
968 >
969 >        // Execution methods
970 >
971 >        /**
972 >         * Pops and runs tasks until empty.
973 >         */
974 >        private void popAndExecAll() {
975 >            // A bit faster than repeated pop calls
976 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
977 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
978 >                   (s = top - 1) - base >= 0 &&
979 >                   (t = ((ForkJoinTask<?>)
980 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
981 >                   != null) {
982 >                if (U.compareAndSwapObject(a, j, t, null)) {
983 >                    top = s;
984 >                    t.doExec();
985 >                }
986 >            }
987 >        }
988 >
989 >        /**
990 >         * Polls and runs tasks until empty.
991 >         */
992 >        private void pollAndExecAll() {
993 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
994 >                t.doExec();
995 >        }
996 >
997 >        /**
998 >         * If present, removes from queue and executes the given task, or
999 >         * any other cancelled task. Returns (true) immediately on any CAS
1000 >         * or consistency check failure so caller can retry.
1001 >         *
1002 >         * @return 0 if no progress can be made, else positive
1003 >         * (this unusual convention simplifies use with tryHelpStealer.)
1004 >         */
1005 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
1006 >            int stat = 1;
1007 >            boolean removed = false, empty = true;
1008 >            ForkJoinTask<?>[] a; int m, s, b, n;
1009 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
1010 >                (n = (s = top) - (b = base)) > 0) {
1011 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
1012 >                    int j = ((--s & m) << ASHIFT) + ABASE;
1013 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
1014 >                    if (t == null)                    // inconsistent length
1015 >                        break;
1016 >                    else if (t == task) {
1017 >                        if (s + 1 == top) {           // pop
1018 >                            if (!U.compareAndSwapObject(a, j, task, null))
1019 >                                break;
1020 >                            top = s;
1021 >                            removed = true;
1022 >                        }
1023 >                        else if (base == b)           // replace with proxy
1024 >                            removed = U.compareAndSwapObject(a, j, task,
1025 >                                                             new EmptyTask());
1026 >                        break;
1027 >                    }
1028 >                    else if (t.status >= 0)
1029 >                        empty = false;
1030 >                    else if (s + 1 == top) {          // pop and throw away
1031 >                        if (U.compareAndSwapObject(a, j, t, null))
1032 >                            top = s;
1033 >                        break;
1034 >                    }
1035 >                    if (--n == 0) {
1036 >                        if (!empty && base == b)
1037 >                            stat = 0;
1038 >                        break;
1039 >                    }
1040 >                }
1041 >            }
1042 >            if (removed)
1043 >                task.doExec();
1044 >            return stat;
1045 >        }
1046 >
1047 >        /**
1048 >         * Executes a top-level task and any local tasks remaining
1049 >         * after execution.
1050 >         */
1051 >        final void runTask(ForkJoinTask<?> t) {
1052 >            if (t != null) {
1053 >                currentSteal = t;
1054 >                t.doExec();
1055 >                if (top != base) {       // process remaining local tasks
1056 >                    if (mode == 0)
1057 >                        popAndExecAll();
1058 >                    else
1059 >                        pollAndExecAll();
1060 >                }
1061 >                ++nsteals;
1062 >                currentSteal = null;
1063 >            }
1064 >        }
1065 >
1066 >        /**
1067 >         * Executes a non-top-level (stolen) task.
1068 >         */
1069 >        final void runSubtask(ForkJoinTask<?> t) {
1070 >            if (t != null) {
1071 >                ForkJoinTask<?> ps = currentSteal;
1072 >                currentSteal = t;
1073 >                t.doExec();
1074 >                currentSteal = ps;
1075 >            }
1076 >        }
1077 >
1078 >        /**
1079 >         * Returns true if owned and not known to be blocked.
1080 >         */
1081 >        final boolean isApparentlyUnblocked() {
1082 >            Thread wt; Thread.State s;
1083 >            return (eventCount >= 0 &&
1084 >                    (wt = owner) != null &&
1085 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1086 >                    s != Thread.State.WAITING &&
1087 >                    s != Thread.State.TIMED_WAITING);
1088 >        }
1089 >
1090 >        /**
1091 >         * If this owned and is not already interrupted, try to
1092 >         * interrupt and/or unpark, ignoring exceptions.
1093 >         */
1094 >        final void interruptOwner() {
1095 >            Thread wt, p;
1096 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1097 >                try {
1098 >                    wt.interrupt();
1099 >                } catch (SecurityException ignore) {
1100 >                }
1101 >            }
1102 >            if ((p = parker) != null)
1103 >                U.unpark(p);
1104 >        }
1105 >
1106 >        // Unsafe mechanics
1107 >        private static final sun.misc.Unsafe U;
1108 >        private static final long RUNSTATE;
1109 >        private static final int ABASE;
1110 >        private static final int ASHIFT;
1111 >        static {
1112 >            int s;
1113 >            try {
1114 >                U = getUnsafe();
1115 >                Class<?> k = WorkQueue.class;
1116 >                Class<?> ak = ForkJoinTask[].class;
1117 >                RUNSTATE = U.objectFieldOffset
1118 >                    (k.getDeclaredField("runState"));
1119 >                ABASE = U.arrayBaseOffset(ak);
1120 >                s = U.arrayIndexScale(ak);
1121 >            } catch (Exception e) {
1122 >                throw new Error(e);
1123 >            }
1124 >            if ((s & (s-1)) != 0)
1125 >                throw new Error("data type scale not a power of two");
1126 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1127 >        }
1128 >    }
1129  
1130      /**
1131 <     * If there is a security manager, makes sure caller has
1132 <     * permission to modify threads.
1131 >     * Per-thread records for threads that submit to pools. Currently
1132 >     * holds only pseudo-random seed / index that is used to choose
1133 >     * submission queues in method doSubmit. In the future, this may
1134 >     * also incorporate a means to implement different task rejection
1135 >     * and resubmission policies.
1136 >     *
1137 >     * Seeds for submitters and workers/workQueues work in basically
1138 >     * the same way but are initialized and updated using slightly
1139 >     * different mechanics. Both are initialized using the same
1140 >     * approach as in class ThreadLocal, where successive values are
1141 >     * unlikely to collide with previous values. This is done during
1142 >     * registration for workers, but requires a separate AtomicInteger
1143 >     * for submitters. Seeds are then randomly modified upon
1144 >     * collisions using xorshifts, which requires a non-zero seed.
1145       */
1146 <    private static void checkPermission() {
1147 <        SecurityManager security = System.getSecurityManager();
1148 <        if (security != null)
1149 <            security.checkPermission(modifyThreadPermission);
1146 >    static final class Submitter {
1147 >        int seed;
1148 >        Submitter() {
1149 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1150 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1151 >        }
1152 >    }
1153 >
1154 >    /** ThreadLocal class for Submitters */
1155 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1156 >        public Submitter initialValue() { return new Submitter(); }
1157      }
1158  
1159 +    // static fields (initialized in static initializer below)
1160 +
1161      /**
1162 <     * Generator for assigning sequence numbers as pool names.
1162 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1163 >     * overridden in ForkJoinPool constructors.
1164       */
1165 <    private static final AtomicInteger poolNumberGenerator;
1165 >    public static final ForkJoinWorkerThreadFactory
1166 >        defaultForkJoinWorkerThreadFactory;
1167 >
1168 >
1169 >    /** Property prefix for constructing common pool */
1170 >    private static final String propPrefix =
1171 >        "java.util.concurrent.ForkJoinPool.common.";
1172  
1173      /**
1174 <     * Generator for initial random seeds for worker victim
1175 <     * selection. This is used only to create initial seeds. Random
1176 <     * steals use a cheaper xorshift generator per steal attempt. We
397 <     * don't expect much contention on seedGenerator, so just use a
398 <     * plain Random.
1174 >     * Common (static) pool. Non-null for public use unless a static
1175 >     * construction exception, but internal usages must null-check on
1176 >     * use.
1177       */
1178 <    static final Random workerSeedGenerator;
1178 >    static final ForkJoinPool commonPool;
1179  
1180      /**
1181 <     * Array holding all worker threads in the pool.  Initialized upon
404 <     * construction. Array size must be a power of two.  Updates and
405 <     * replacements are protected by scanGuard, but the array is
406 <     * always kept in a consistent enough state to be randomly
407 <     * accessed without locking by workers performing work-stealing,
408 <     * as well as other traversal-based methods in this class, so long
409 <     * as reads memory-acquire by first reading ctl. All readers must
410 <     * tolerate that some array slots may be null.
1181 >     * Common pool parallelism. Must equal commonPool.parallelism.
1182       */
1183 <    ForkJoinWorkerThread[] workers;
1183 >    static final int commonPoolParallelism;
1184  
1185      /**
1186 <     * Initial size for submission queue array. Must be a power of
416 <     * two.  In many applications, these always stay small so we use a
417 <     * small initial cap.
1186 >     * Generator for assigning sequence numbers as pool names.
1187       */
1188 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
1188 >    private static final AtomicInteger poolNumberGenerator;
1189  
1190      /**
1191 <     * Maximum size for submission queue array. Must be a power of two
1192 <     * less than or equal to 1 << (31 - width of array entry) to
424 <     * ensure lack of index wraparound, but is capped at a lower
425 <     * value to help users trap runaway computations.
1191 >     * Generator for initial hashes/seeds for submitters. Accessed by
1192 >     * Submitter class constructor.
1193       */
1194 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1194 >    static final AtomicInteger nextSubmitterSeed;
1195  
1196      /**
1197 <     * Array serving as submission queue. Initialized upon construction.
1197 >     * Permission required for callers of methods that may start or
1198 >     * kill threads.
1199       */
1200 <    private ForkJoinTask<?>[] submissionQueue;
1200 >    private static final RuntimePermission modifyThreadPermission;
1201  
1202      /**
1203 <     * Lock protecting submissions array for addSubmission
1203 >     * Per-thread submission bookkeeping. Shared across all pools
1204 >     * to reduce ThreadLocal pollution and because random motion
1205 >     * to avoid contention in one pool is likely to hold for others.
1206       */
1207 <    private final ReentrantLock submissionLock;
1207 >    private static final ThreadSubmitter submitters;
1208 >
1209 >    // static constants
1210  
1211      /**
1212 <     * Condition for awaitTermination, using submissionLock for
1213 <     * convenience.
1212 >     * Initial timeout value (in nanoseconds) for the thread triggering
1213 >     * quiescence to park waiting for new work. On timeout, the thread
1214 >     * will instead try to shrink the number of workers.
1215       */
1216 <    private final Condition termination;
1216 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1217  
1218      /**
1219 <     * Creation factory for worker threads.
1219 >     * Timeout value when there are more threads than parallelism level
1220       */
1221 <    private final ForkJoinWorkerThreadFactory factory;
1221 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1222  
1223      /**
1224 <     * The uncaught exception handler used when any worker abruptly
1225 <     * terminates.
1224 >     * The maximum stolen->joining link depth allowed in method
1225 >     * tryHelpStealer.  Must be a power of two. This value also
1226 >     * controls the maximum number of times to try to help join a task
1227 >     * without any apparent progress or change in pool state before
1228 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1229 >     * chains are unbounded, but we use a fixed constant to avoid
1230 >     * (otherwise unchecked) cycles and to bound staleness of
1231 >     * traversal parameters at the expense of sometimes blocking when
1232 >     * we could be helping.
1233       */
1234 <    final Thread.UncaughtExceptionHandler ueh;
1234 >    private static final int MAX_HELP = 64;
1235  
1236      /**
1237 <     * Prefix for assigning names to worker threads
1237 >     * Secondary time-based bound (in nanosecs) for helping attempts
1238 >     * before trying compensated blocking in awaitJoin. Used in
1239 >     * conjunction with MAX_HELP to reduce variance due to different
1240 >     * polling rates associated with different helping options. The
1241 >     * value should roughly approximate the time required to create
1242 >     * and/or activate a worker thread.
1243       */
1244 <    private final String workerNamePrefix;
1244 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1245  
1246      /**
1247 <     * Sum of per-thread steal counts, updated only when threads are
1248 <     * idle or terminating.
1247 >     * Increment for seed generators. See class ThreadLocal for
1248 >     * explanation.
1249       */
1250 <    private volatile long stealCount;
1250 >    private static final int SEED_INCREMENT = 0x61c88647;
1251  
1252      /**
1253 <     * Main pool control -- a long packed with:
1253 >     * Bits and masks for control variables
1254 >     *
1255 >     * Field ctl is a long packed with:
1256       * AC: Number of active running workers minus target parallelism (16 bits)
1257 <     * TC: Number of total workers minus target parallelism (16bits)
1257 >     * TC: Number of total workers minus target parallelism (16 bits)
1258       * ST: true if pool is terminating (1 bit)
1259       * EC: the wait count of top waiting thread (15 bits)
1260 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1260 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1261       *
1262       * When convenient, we can extract the upper 32 bits of counts and
1263       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 479 | Line 1266 | public class ForkJoinPool extends Abstra
1266       * parallelism and the positionings of fields makes it possible to
1267       * perform the most common checks via sign tests of fields: When
1268       * ac is negative, there are not enough active workers, when tc is
1269 <     * negative, there are not enough total workers, when id is
483 <     * negative, there is at least one waiting worker, and when e is
1269 >     * negative, there are not enough total workers, and when e is
1270       * negative, the pool is terminating.  To deal with these possibly
1271       * negative fields, we use casts in and out of "short" and/or
1272       * signed shifts to maintain signedness.
1273 +     *
1274 +     * When a thread is queued (inactivated), its eventCount field is
1275 +     * set negative, which is the only way to tell if a worker is
1276 +     * prevented from executing tasks, even though it must continue to
1277 +     * scan for them to avoid queuing races. Note however that
1278 +     * eventCount updates lag releases so usage requires care.
1279 +     *
1280 +     * Field runState is an int packed with:
1281 +     * SHUTDOWN: true if shutdown is enabled (1 bit)
1282 +     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1283 +     * INIT: set true after workQueues array construction (1 bit)
1284 +     *
1285 +     * The sequence number enables simple consistency checks:
1286 +     * Staleness of read-only operations on the workQueues array can
1287 +     * be checked by comparing runState before vs after the reads.
1288       */
488    volatile long ctl;
1289  
1290      // bit positions/shifts for fields
1291      private static final int  AC_SHIFT   = 48;
# Line 494 | Line 1294 | public class ForkJoinPool extends Abstra
1294      private static final int  EC_SHIFT   = 16;
1295  
1296      // bounds
1297 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1298 <    private static final int  SMASK      = 0xffff;  // mask short bits
1297 >    private static final int  SMASK      = 0xffff;  // short bits
1298 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1299 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1300      private static final int  SHORT_SIGN = 1 << 15;
1301      private static final int  INT_SIGN   = 1 << 31;
1302  
# Line 517 | Line 1318 | public class ForkJoinPool extends Abstra
1318      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1319  
1320      // masks and units for dealing with e = (int)ctl
1321 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1322 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
1321 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1322 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1323  
1324 <    /**
1325 <     * The target parallelism level.
1326 <     */
1327 <    final int parallelism;
1324 >    // runState bits
1325 >    private static final int SHUTDOWN    = 1 << 31;
1326 >
1327 >    // access mode for WorkQueue
1328 >    static final int LIFO_QUEUE          =  0;
1329 >    static final int FIFO_QUEUE          =  1;
1330 >    static final int SHARED_QUEUE        = -1;
1331 >
1332 >    // Instance fields
1333 >
1334 >    /*
1335 >     * Field layout order in this class tends to matter more than one
1336 >     * would like. Runtime layout order is only loosely related to
1337 >     * declaration order and may differ across JVMs, but the following
1338 >     * empirically works OK on current JVMs.
1339 >     */
1340 >
1341 >    volatile long stealCount;                  // collects worker counts
1342 >    volatile long ctl;                         // main pool control
1343 >    final int parallelism;                     // parallelism level
1344 >    final int localMode;                       // per-worker scheduling mode
1345 >    volatile int nextWorkerNumber;             // to create worker name string
1346 >    final int submitMask;                      // submit queue index bound
1347 >    int nextSeed;                              // for initializing worker seeds
1348 >    volatile int mainLock;                     // spinlock for array updates
1349 >    volatile int runState;                     // shutdown status and seq
1350 >    WorkQueue[] workQueues;                    // main registry
1351 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1352 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1353 >    final String workerNamePrefix;             // to create worker name string
1354 >
1355 >    /*
1356 >     * Mechanics for main lock protecting worker array updates.  Uses
1357 >     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1358 >     * normal cases, but falling back to builtin lock when (rarely)
1359 >     * needed.  See internal ConcurrentHashMap documentation for
1360 >     * explanation.
1361 >     */
1362 >
1363 >    static final int LOCK_WAITING = 2; // bit to indicate need for signal
1364 >    static final int MAX_LOCK_SPINS = 1 << 8;
1365 >
1366 >    private void tryAwaitMainLock() {
1367 >        int spins = MAX_LOCK_SPINS, r = 0, h;
1368 >        while (((h = mainLock) & 1) != 0) {
1369 >            if (r == 0)
1370 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1371 >            else if (spins >= 0) {
1372 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1373 >                if (r >= 0)
1374 >                    --spins;
1375 >            }
1376 >            else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1377 >                synchronized (this) {
1378 >                    if ((mainLock & LOCK_WAITING) != 0) {
1379 >                        try {
1380 >                            wait();
1381 >                        } catch (InterruptedException ie) {
1382 >                            Thread.currentThread().interrupt();
1383 >                        }
1384 >                    }
1385 >                    else
1386 >                        notifyAll(); // possibly won race vs signaller
1387 >                }
1388 >                break;
1389 >            }
1390 >        }
1391 >    }
1392 >
1393 >    //  Creating, registering, and deregistering workers
1394  
1395      /**
1396 <     * Index (mod submission queue length) of next element to take
530 <     * from submission queue. Usage is identical to that for
531 <     * per-worker queues -- see ForkJoinWorkerThread internal
532 <     * documentation.
1396 >     * Tries to create and start a worker
1397       */
1398 <    volatile int queueBase;
1398 >    private void addWorker() {
1399 >        Throwable ex = null;
1400 >        ForkJoinWorkerThread wt = null;
1401 >        try {
1402 >            if ((wt = factory.newThread(this)) != null) {
1403 >                wt.start();
1404 >                return;
1405 >            }
1406 >        } catch (Throwable e) {
1407 >            ex = e;
1408 >        }
1409 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1410 >    }
1411  
1412      /**
1413 <     * Index (mod submission queue length) of next element to add
1414 <     * in submission queue. Usage is identical to that for
1415 <     * per-worker queues -- see ForkJoinWorkerThread internal
1416 <     * documentation.
1413 >     * Callback from ForkJoinWorkerThread constructor to assign a
1414 >     * public name. This must be separate from registerWorker because
1415 >     * it is called during the "super" constructor call in
1416 >     * ForkJoinWorkerThread.
1417       */
1418 <    int queueTop;
1418 >    final String nextWorkerName() {
1419 >        int n;
1420 >        do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1421 >                                          n = nextWorkerNumber, ++n));
1422 >        return workerNamePrefix.concat(Integer.toString(n));
1423 >    }
1424  
1425      /**
1426 <     * True when shutdown() has been called.
1426 >     * Callback from ForkJoinWorkerThread constructor to establish its
1427 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1428 >     * to packing entries in front of the workQueues array, we treat
1429 >     * the array as a simple power-of-two hash table using per-thread
1430 >     * seed as hash, expanding as needed.
1431 >     *
1432 >     * @param w the worker's queue
1433       */
1434 <    volatile boolean shutdown;
1434 >    final void registerWorker(WorkQueue w) {
1435 >        while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1436 >            tryAwaitMainLock();
1437 >        try {
1438 >            WorkQueue[] ws;
1439 >            if ((ws = workQueues) == null)
1440 >                ws = workQueues = new WorkQueue[submitMask + 1];
1441 >            if (w != null) {
1442 >                int rs, n =  ws.length, m = n - 1;
1443 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1444 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1445 >                int r = (s << 1) | 1;               // use odd-numbered indices
1446 >                if (ws[r &= m] != null) {           // collision
1447 >                    int probes = 0;                 // step by approx half size
1448 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1449 >                    while (ws[r = (r + step) & m] != null) {
1450 >                        if (++probes >= n) {
1451 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1452 >                            m = n - 1;
1453 >                            probes = 0;
1454 >                        }
1455 >                    }
1456 >                }
1457 >                w.eventCount = w.poolIndex = r;     // establish before recording
1458 >                ws[r] = w;                          // also update seq
1459 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1460 >            }
1461 >        } finally {
1462 >            if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1463 >                mainLock = 0;
1464 >                synchronized (this) { notifyAll(); };
1465 >            }
1466 >        }
1467 >
1468 >    }
1469  
1470      /**
1471 <     * True if use local fifo, not default lifo, for local polling
1472 <     * Read by, and replicated by ForkJoinWorkerThreads
1471 >     * Final callback from terminating worker, as well as upon failure
1472 >     * to construct or start a worker in addWorker.  Removes record of
1473 >     * worker from array, and adjusts counts. If pool is shutting
1474 >     * down, tries to complete termination.
1475 >     *
1476 >     * @param wt the worker thread or null if addWorker failed
1477 >     * @param ex the exception causing failure, or null if none
1478       */
1479 <    final boolean locallyFifo;
1479 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1480 >        WorkQueue w = null;
1481 >        if (wt != null && (w = wt.workQueue) != null) {
1482 >            w.runState = -1;                // ensure runState is set
1483 >            long steals = w.totalSteals + w.nsteals, sc;
1484 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1485 >                                               sc = stealCount, sc + steals));
1486 >            int idx = w.poolIndex;
1487 >            while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1488 >                tryAwaitMainLock();
1489 >            try {
1490 >                WorkQueue[] ws = workQueues;
1491 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1492 >                    ws[idx] = null;
1493 >            } finally {
1494 >                if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1495 >                    mainLock = 0;
1496 >                    synchronized (this) { notifyAll(); };
1497 >                }
1498 >            }
1499 >        }
1500 >
1501 >        long c;                             // adjust ctl counts
1502 >        do {} while (!U.compareAndSwapLong
1503 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1504 >                                           ((c - TC_UNIT) & TC_MASK) |
1505 >                                           (c & ~(AC_MASK|TC_MASK)))));
1506 >
1507 >        if (!tryTerminate(false, false) && w != null) {
1508 >            w.cancelAll();                  // cancel remaining tasks
1509 >            if (w.array != null)            // suppress signal if never ran
1510 >                signalWork();               // wake up or create replacement
1511 >            if (ex == null)                 // help clean refs on way out
1512 >                ForkJoinTask.helpExpungeStaleExceptions();
1513 >        }
1514 >
1515 >        if (ex != null)                     // rethrow
1516 >            U.throwException(ex);
1517 >    }
1518 >
1519 >    // Submissions
1520  
1521      /**
1522 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
1523 <     * When non-zero, suppresses automatic shutdown when active
1524 <     * counts become zero.
1525 <     */
1526 <    volatile int quiescerCount;
1522 >     * Unless shutting down, adds the given task to a submission queue
1523 >     * at submitter's current queue index (modulo submission
1524 >     * range). If no queue exists at the index, one is created.  If
1525 >     * the queue is busy, another index is randomly chosen. The
1526 >     * submitMask bounds the effective number of queues to the
1527 >     * (nearest power of two for) parallelism level.
1528 >     *
1529 >     * @param task the task. Caller must ensure non-null.
1530 >     */
1531 >    private void doSubmit(ForkJoinTask<?> task) {
1532 >        Submitter s = submitters.get();
1533 >        for (int r = s.seed, m = submitMask;;) {
1534 >            WorkQueue[] ws; WorkQueue q;
1535 >            int k = r & m & SQMASK;          // use only even indices
1536 >            if (runState < 0)
1537 >                throw new RejectedExecutionException(); // shutting down
1538 >            else if ((ws = workQueues) == null || ws.length <= k) {
1539 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1540 >                    tryAwaitMainLock();
1541 >                try {
1542 >                    if (workQueues == null)
1543 >                        workQueues = new WorkQueue[submitMask + 1];
1544 >                } finally {
1545 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546 >                        mainLock = 0;
1547 >                        synchronized (this) { notifyAll(); };
1548 >                    }
1549 >                }
1550 >            }
1551 >            else if ((q = ws[k]) == null) {  // create new queue
1552 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1553 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1554 >                    tryAwaitMainLock();
1555 >                try {
1556 >                    int rs = runState;       // to update seq
1557 >                    if (ws == workQueues && ws[k] == null) {
1558 >                        ws[k] = nq;
1559 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1560 >                    }
1561 >                } finally {
1562 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1563 >                        mainLock = 0;
1564 >                        synchronized (this) { notifyAll(); };
1565 >                    }
1566 >                }
1567 >            }
1568 >            else if (q.trySharedPush(task)) {
1569 >                signalWork();
1570 >                return;
1571 >            }
1572 >            else if (m > 1) {                // move to a different index
1573 >                r ^= r << 13;                // same xorshift as WorkQueues
1574 >                r ^= r >>> 17;
1575 >                s.seed = r ^= r << 5;
1576 >            }
1577 >            else
1578 >                Thread.yield();              // yield if no alternatives
1579 >        }
1580 >    }
1581  
1582      /**
1583 <     * The number of threads blocked in join.
1583 >     * Submits the given (non-null) task to the common pool, if possible.
1584       */
1585 <    volatile int blockedCount;
1585 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1586 >        ForkJoinPool p;
1587 >        if ((p = commonPool) == null)
1588 >            throw new RejectedExecutionException("Common Pool Unavailable");
1589 >        p.doSubmit(task);
1590 >    }
1591  
1592      /**
1593 <     * Counter for worker Thread names (unrelated to their poolIndex)
1593 >     * Returns true if caller is (or may be) submitter to the common
1594 >     * pool, and not all workers are active, and there appear to be
1595 >     * tasks in the associated submission queue.
1596       */
1597 <    private volatile int nextWorkerNumber;
1597 >    static boolean canHelpCommonPool() {
1598 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1599 >        int k = submitters.get().seed & SQMASK;
1600 >        return ((p = commonPool) != null &&
1601 >                (int)(p.ctl >> AC_SHIFT) < 0 &&
1602 >                (ws = p.workQueues) != null &&
1603 >                ws.length > (k &= p.submitMask) &&
1604 >                (q = ws[k]) != null &&
1605 >                q.top - q.base > 0);
1606 >    }
1607  
1608      /**
1609 <     * The index for the next created worker. Accessed under scanGuard.
1609 >     * Returns true if the given task was submitted to common pool
1610 >     * and has not yet commenced execution, and is available for
1611 >     * removal according to execution policies; if so removing the
1612 >     * submission from the pool.
1613 >     *
1614 >     * @param task the task
1615 >     * @return true if successful
1616       */
1617 <    private int nextWorkerIndex;
1617 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1618 >        // Peek, looking for task and eligibility before
1619 >        // using trySharedUnpush to actually take it under lock
1620 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1621 >        ForkJoinTask<?>[] a; int s;
1622 >        int k = submitters.get().seed & SQMASK;
1623 >        return ((p = commonPool) != null &&
1624 >                (int)(p.ctl >> AC_SHIFT) < 0 &&
1625 >                (ws = p.workQueues) != null &&
1626 >                ws.length > (k &= p.submitMask) &&
1627 >                (q = ws[k]) != null &&
1628 >                (a = q.array) != null &&
1629 >                (s = q.top - 1) - q.base >= 0 &&
1630 >                s >= 0 && s < a.length &&
1631 >                a[s] == task &&
1632 >                q.trySharedUnpush(task));
1633 >    }
1634  
1635      /**
1636 <     * SeqLock and index masking for updates to workers array.  Locked
1637 <     * when SG_UNIT is set. Unlocking clears bit by adding
1638 <     * SG_UNIT. Staleness of read-only operations can be checked by
1639 <     * comparing scanGuard to value before the reads. The low 16 bits
1640 <     * (i.e, anding with SMASK) hold (the smallest power of two
1641 <     * covering all worker indices, minus one, and is used to avoid
1642 <     * dealing with large numbers of null slots when the workers array
1643 <     * is overallocated.
1644 <     */
1645 <    volatile int scanGuard;
1636 >     * Tries to pop a task from common pool with given root
1637 >     */
1638 >    static ForkJoinTask<?> popCCFromCommonPool(CountedCompleter<?> root) {
1639 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1640 >        ForkJoinTask<?> t;
1641 >        int k = submitters.get().seed & SQMASK;
1642 >        if (root != null &&
1643 >            (p = commonPool) != null &&
1644 >            (int)(p.ctl >> AC_SHIFT) < 0 &&
1645 >            (ws = p.workQueues) != null &&
1646 >            ws.length > (k &= p.submitMask) &&
1647 >            (q = ws[k]) != null && q.top - q.base > 0 &&
1648 >            root.status < 0 &&
1649 >            (t = q.sharedPopCC(root)) != null)
1650 >            return t;
1651 >        return null;
1652 >    }
1653  
589    private static final int SG_UNIT = 1 << 16;
1654  
1655 <    /**
592 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 <     * task when the pool is quiescent to instead try to shrink the
594 <     * number of workers.  The exact value does not matter too
595 <     * much. It must be short enough to release resources during
596 <     * sustained periods of idleness, but not so short that threads
597 <     * are continually re-created.
598 <     */
599 <    private static final long SHRINK_RATE =
600 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1655 >    // Maintaining ctl counts
1656  
1657      /**
1658 <     * Top-level loop for worker threads: On each step: if the
604 <     * previous step swept through all queues and found no tasks, or
605 <     * there are excess threads, then possibly blocks. Otherwise,
606 <     * scans for and, if found, executes a task. Returns when pool
607 <     * and/or worker terminate.
608 <     *
609 <     * @param w the worker
1658 >     * Increments active count; mainly called upon return from blocking.
1659       */
1660 <    final void work(ForkJoinWorkerThread w) {
612 <        boolean swept = false;                // true on empty scans
1660 >    final void incrementActiveCount() {
1661          long c;
1662 <        while (!w.terminate && (int)(c = ctl) >= 0) {
615 <            int a;                            // active count
616 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 <                swept = scan(w, a);
618 <            else if (tryAwaitWork(w, c))
619 <                swept = false;
620 <        }
1662 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1663      }
1664  
623    // Signalling
624
1665      /**
1666 <     * Wakes up or creates a worker.
1666 >     * Tries to create one or activate one or more workers if too few are active.
1667       */
1668      final void signalWork() {
1669 <        /*
1670 <         * The while condition is true if: (there is are too few total
1671 <         * workers OR there is at least one waiter) AND (there are too
1672 <         * few active workers OR the pool is terminating).  The value
1673 <         * of e distinguishes the remaining cases: zero (no waiters)
1674 <         * for create, negative if terminating (in which case do
1675 <         * nothing), else release a waiter. The secondary checks for
1676 <         * release (non-null array etc) can fail if the pool begins
1677 <         * terminating after the test, and don't impose any added cost
1678 <         * because JVMs must perform null and bounds checks anyway.
1679 <         */
1680 <        long c; int e, u;
1681 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1682 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1683 <            if (e > 0) {                         // release a waiting worker
1684 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 <                if ((ws = workers) == null ||
646 <                    (i = ~e & SMASK) >= ws.length ||
647 <                    (w = ws[i]) == null)
1669 >        long c; int u;
1670 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1671 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1672 >            if ((e = (int)c) > 0) {                     // at least one waiting
1673 >                if (ws != null && (i = e & SMASK) < ws.length &&
1674 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1675 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1676 >                               ((long)(u + UAC_UNIT) << 32));
1677 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1678 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1679 >                        if ((p = w.parker) != null)
1680 >                            U.unpark(p);                // activate and release
1681 >                        break;
1682 >                    }
1683 >                }
1684 >                else
1685                      break;
1686 <                long nc = (((long)(w.nextWait & E_MASK)) |
1687 <                           ((long)(u + UAC_UNIT) << 32));
1688 <                if (w.eventCount == e &&
1689 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1690 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1691 <                    if (w.parked)
655 <                        UNSAFE.unpark(w);
1686 >            }
1687 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1688 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1689 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1690 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1691 >                    addWorker();
1692                      break;
1693                  }
1694              }
1695 <            else if (UNSAFE.compareAndSwapLong
660 <                     (this, ctlOffset, c,
661 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 <                addWorker();
1695 >            else
1696                  break;
665            }
1697          }
1698      }
1699  
669    /**
670     * Variant of signalWork to help release waiters on rescans.
671     * Tries once to release a waiter if active count < 0.
672     *
673     * @return false if failed due to contention, else true
674     */
675    private boolean tryReleaseWaiter() {
676        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677        if ((e = (int)(c = ctl)) > 0 &&
678            (int)(c >> AC_SHIFT) < 0 &&
679            (ws = workers) != null &&
680            (i = ~e & SMASK) < ws.length &&
681            (w = ws[i]) != null) {
682            long nc = ((long)(w.nextWait & E_MASK) |
683                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684            if (w.eventCount != e ||
685                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686                return false;
687            w.eventCount = (e + EC_UNIT) & E_MASK;
688            if (w.parked)
689                UNSAFE.unpark(w);
690        }
691        return true;
692    }
693
1700      // Scanning for tasks
1701  
1702      /**
1703 <     * Scans for and, if found, executes one task. Scans start at a
1704 <     * random index of workers array, and randomly select the first
1705 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1706 <     * circular sweeps, which is necessary to check quiescence. and
1707 <     * taking a submission only if no stealable tasks were found.  The
1708 <     * steal code inside the loop is a specialized form of
1709 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1710 <     * helpJoinTask and signal propagation. The code for submission
1711 <     * queues is almost identical. On each steal, the worker completes
1712 <     * not only the task, but also all local tasks that this task may
1713 <     * have generated. On detecting staleness or contention when
1714 <     * trying to take a task, this method returns without finishing
1715 <     * sweep, which allows global state rechecks before retry.
1716 <     *
1717 <     * @param w the worker
1718 <     * @param a the number of active workers
1719 <     * @return true if swept all queues without finding a task
1720 <     */
1721 <    private boolean scan(ForkJoinWorkerThread w, int a) {
1722 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
1723 <        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
1724 <        ForkJoinWorkerThread[] ws = workers;
1725 <        if (ws == null || ws.length <= m)         // staleness check
1726 <            return false;
1727 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
1728 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1729 <            ForkJoinWorkerThread v = ws[k & m];
1730 <            if (v != null && (b = v.queueBase) != v.queueTop &&
1731 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
1732 <                long u = (i << ASHIFT) + ABASE;
1733 <                if ((t = q[i]) != null && v.queueBase == b &&
1734 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
1735 <                    int d = (v.queueBase = b + 1) - v.queueTop;
1736 <                    v.stealHint = w.poolIndex;
1737 <                    if (d != 0)
1738 <                        signalWork();             // propagate if nonempty
1739 <                    w.execTask(t);
1703 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1704 >     */
1705 >    final void runWorker(WorkQueue w) {
1706 >        w.growArray(false);         // initialize queue array in this thread
1707 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1708 >    }
1709 >
1710 >    /**
1711 >     * Scans for and, if found, returns one task, else possibly
1712 >     * inactivates the worker. This method operates on single reads of
1713 >     * volatile state and is designed to be re-invoked continuously,
1714 >     * in part because it returns upon detecting inconsistencies,
1715 >     * contention, or state changes that indicate possible success on
1716 >     * re-invocation.
1717 >     *
1718 >     * The scan searches for tasks across a random permutation of
1719 >     * queues (starting at a random index and stepping by a random
1720 >     * relative prime, checking each at least once).  The scan
1721 >     * terminates upon either finding a non-empty queue, or completing
1722 >     * the sweep. If the worker is not inactivated, it takes and
1723 >     * returns a task from this queue.  On failure to find a task, we
1724 >     * take one of the following actions, after which the caller will
1725 >     * retry calling this method unless terminated.
1726 >     *
1727 >     * * If pool is terminating, terminate the worker.
1728 >     *
1729 >     * * If not a complete sweep, try to release a waiting worker.  If
1730 >     * the scan terminated because the worker is inactivated, then the
1731 >     * released worker will often be the calling worker, and it can
1732 >     * succeed obtaining a task on the next call. Or maybe it is
1733 >     * another worker, but with same net effect. Releasing in other
1734 >     * cases as well ensures that we have enough workers running.
1735 >     *
1736 >     * * If not already enqueued, try to inactivate and enqueue the
1737 >     * worker on wait queue. Or, if inactivating has caused the pool
1738 >     * to be quiescent, relay to idleAwaitWork to check for
1739 >     * termination and possibly shrink pool.
1740 >     *
1741 >     * * If already inactive, and the caller has run a task since the
1742 >     * last empty scan, return (to allow rescan) unless others are
1743 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1744 >     * scan to ensure eventual inactivation and blocking.
1745 >     *
1746 >     * * If already enqueued and none of the above apply, park
1747 >     * awaiting signal,
1748 >     *
1749 >     * @param w the worker (via its WorkQueue)
1750 >     * @return a task or null if none found
1751 >     */
1752 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1753 >        WorkQueue[] ws;                       // first update random seed
1754 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1755 >        int rs = runState, m;                 // volatile read order matters
1756 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1757 >            int ec = w.eventCount;            // ec is negative if inactive
1758 >            int step = (r >>> 16) | 1;        // relative prime
1759 >            for (int j = (m + 1) << 2; ; r += step) {
1760 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1761 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1762 >                    (a = q.array) != null) {  // probably nonempty
1763 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1764 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1765 >                    if (q.base == b && ec >= 0 && t != null &&
1766 >                        U.compareAndSwapObject(a, i, t, null)) {
1767 >                        if (q.top - (q.base = b + 1) > 0)
1768 >                            signalWork();    // help pushes signal
1769 >                        return t;
1770 >                    }
1771 >                    else if (ec < 0 || j <= m) {
1772 >                        rs = 0;               // mark scan as imcomplete
1773 >                        break;                // caller can retry after release
1774 >                    }
1775                  }
1776 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
1777 <                return false;                     // store next seed
737 <            }
738 <            else if (j < 0) {                     // xorshift
739 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1776 >                if (--j < 0)
1777 >                    break;
1778              }
741            else
742                ++k;
743        }
744        if (scanGuard != g)                       // staleness check
745            return false;
746        else {                                    // try to take submission
747            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748            if ((b = queueBase) != queueTop &&
749                (q = submissionQueue) != null &&
750                (i = (q.length - 1) & b) >= 0) {
751                long u = (i << ASHIFT) + ABASE;
752                if ((t = q[i]) != null && queueBase == b &&
753                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754                    queueBase = b + 1;
755                    w.execTask(t);
756                }
757                return false;
758            }
759            return true;                         // all queues empty
760        }
761    }
1779  
1780 <    /**
1781 <     * Tries to enqueue worker w in wait queue and await change in
1782 <     * worker's eventCount.  If the pool is quiescent, possibly
1783 <     * terminates worker upon exit.  Otherwise, before blocking,
1784 <     * rescans queues to avoid missed signals.  Upon finding work,
1785 <     * releases at least one worker (which may be the current
1786 <     * worker). Rescans restart upon detected staleness or failure to
1787 <     * release due to contention. Note the unusual conventions about
1788 <     * Thread.interrupt here and elsewhere: Because interrupts are
1789 <     * used solely to alert threads to check termination, which is
1790 <     * checked here anyway, we clear status (using Thread.interrupted)
1791 <     * before any call to park, so that park does not immediately
1792 <     * return due to status being set via some other unrelated call to
776 <     * interrupt in user code.
777 <     *
778 <     * @param w the calling worker
779 <     * @param c the ctl value on entry
780 <     * @return true if waited or another thread was released upon enq
781 <     */
782 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783 <        int v = w.eventCount;
784 <        w.nextWait = (int)c;                      // w's successor record
785 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 <            long d = ctl; // return true if lost to a deq, to force scan
788 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789 <        }
790 <        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
791 <            long s = stealCount;
792 <            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793 <                sc = w.stealCount = 0;
794 <            else if (w.eventCount != v)
795 <                return true;                      // update next time
796 <        }
797 <        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 <            blockedCount == 0 && quiescerCount == 0)
799 <            idleAwaitWork(w, nc, c, v);           // quiescent
800 <        for (boolean rescanned = false;;) {
801 <            if (w.eventCount != v)
802 <                return true;
803 <            if (!rescanned) {
804 <                int g = scanGuard, m = g & SMASK;
805 <                ForkJoinWorkerThread[] ws = workers;
806 <                if (ws != null && m < ws.length) {
807 <                    rescanned = true;
808 <                    for (int i = 0; i <= m; ++i) {
809 <                        ForkJoinWorkerThread u = ws[i];
810 <                        if (u != null) {
811 <                            if (u.queueBase != u.queueTop &&
812 <                                !tryReleaseWaiter())
813 <                                rescanned = false; // contended
814 <                            if (w.eventCount != v)
815 <                                return true;
816 <                        }
1780 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1781 >            if (e < 0)                        // decode ctl on empty scan
1782 >                w.runState = -1;              // pool is terminating
1783 >            else if (rs == 0 || rs != runState) { // incomplete scan
1784 >                WorkQueue v; Thread p;        // try to release a waiter
1785 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1786 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1787 >                    long nc = ((long)(v.nextWait & E_MASK) |
1788 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1789 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1790 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1791 >                        if ((p = v.parker) != null)
1792 >                            U.unpark(p);
1793                      }
1794                  }
819                if (scanGuard != g ||              // stale
820                    (queueBase != queueTop && !tryReleaseWaiter()))
821                    rescanned = false;
822                if (!rescanned)
823                    Thread.yield();                // reduce contention
824                else
825                    Thread.interrupted();          // clear before park
1795              }
1796 <            else {
1797 <                w.parked = true;                   // must recheck
1798 <                if (w.eventCount != v) {
1799 <                    w.parked = false;
1800 <                    return true;
1796 >            else if (ec >= 0) {               // try to enqueue/inactivate
1797 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1798 >                w.nextWait = e;
1799 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1800 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1801 >                    w.eventCount = ec;        // unmark on CAS failure
1802 >                else {
1803 >                    if ((ns = w.nsteals) != 0) {
1804 >                        w.nsteals = 0;        // set rescans if ran task
1805 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1806 >                        w.totalSteals += ns;
1807 >                    }
1808 >                    if (a == 1 - parallelism) // quiescent
1809 >                        idleAwaitWork(w, nc, c);
1810 >                }
1811 >            }
1812 >            else if (w.eventCount < 0) {      // already queued
1813 >                int ac = a + parallelism;
1814 >                if ((nr = w.rescans) > 0)     // continue rescanning
1815 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1816 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1817 >                    Thread.interrupted();     // clear status
1818 >                    Thread wt = Thread.currentThread();
1819 >                    U.putObject(wt, PARKBLOCKER, this);
1820 >                    w.parker = wt;            // emulate LockSupport.park
1821 >                    if (w.eventCount < 0)     // recheck
1822 >                        U.park(false, 0L);
1823 >                    w.parker = null;
1824 >                    U.putObject(wt, PARKBLOCKER, null);
1825                  }
833                LockSupport.park(this);
834                rescanned = w.parked = false;
1826              }
1827          }
1828 +        return null;
1829      }
1830  
1831      /**
1832 <     * If inactivating worker w has caused pool to become
1833 <     * quiescent, check for pool termination, and wait for event
1834 <     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
1835 <     * this case because quiescence reflects consensus about lack
1836 <     * of work). On timeout, if ctl has not changed, terminate the
1837 <     * worker. Upon its termination (see deregisterWorker), it may
846 <     * wake up another worker to possibly repeat this process.
1832 >     * If inactivating worker w has caused the pool to become
1833 >     * quiescent, checks for pool termination, and, so long as this is
1834 >     * not the only worker, waits for event for up to a given
1835 >     * duration.  On timeout, if ctl has not changed, terminates the
1836 >     * worker, which will in turn wake up another worker to possibly
1837 >     * repeat this process.
1838       *
1839       * @param w the calling worker
1840 <     * @param currentCtl the ctl value after enqueuing w
1841 <     * @param prevCtl the ctl value if w terminated
1842 <     * @param v the eventCount w awaits change
1843 <     */
1844 <    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
1845 <                               long prevCtl, int v) {
1846 <        if (w.eventCount == v) {
1847 <            if (shutdown)
1848 <                tryTerminate(false);
1849 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1840 >     * @param currentCtl the ctl value triggering possible quiescence
1841 >     * @param prevCtl the ctl value to restore if thread is terminated
1842 >     */
1843 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1844 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1845 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1846 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1847 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1848 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1849 >            Thread wt = Thread.currentThread();
1850              while (ctl == currentCtl) {
1851 <                long startTime = System.nanoTime();
1852 <                w.parked = true;
1853 <                if (w.eventCount == v)             // must recheck
1854 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1855 <                w.parked = false;
1856 <                if (w.eventCount != v)
1851 >                Thread.interrupted();  // timed variant of version in scan()
1852 >                U.putObject(wt, PARKBLOCKER, this);
1853 >                w.parker = wt;
1854 >                if (ctl == currentCtl)
1855 >                    U.park(false, parkTime);
1856 >                w.parker = null;
1857 >                U.putObject(wt, PARKBLOCKER, null);
1858 >                if (ctl != currentCtl)
1859                      break;
1860 <                else if (System.nanoTime() - startTime <
1861 <                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
1862 <                    Thread.interrupted();          // spurious wakeup
1863 <                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 <                                                   currentCtl, prevCtl)) {
872 <                    w.terminate = true;            // restore previous
873 <                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
1860 >                if (deadline - System.nanoTime() <= 0L &&
1861 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1862 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1863 >                    w.runState = -1;   // shrink
1864                      break;
1865                  }
1866              }
1867          }
1868      }
1869  
880    // Submissions
881
1870      /**
1871 <     * Enqueues the given task in the submissionQueue.  Same idea as
1872 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1873 <     *
1874 <     * @param t the task
1875 <     */
1876 <    private void addSubmission(ForkJoinTask<?> t) {
1877 <        final ReentrantLock lock = this.submissionLock;
1878 <        lock.lock();
1879 <        try {
1880 <            ForkJoinTask<?>[] q; int s, m;
1881 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1882 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1883 <                UNSAFE.putOrderedObject(q, u, t);
1884 <                queueTop = s + 1;
1885 <                if (s - queueBase == m)
1886 <                    growSubmissionQueue();
1871 >     * Tries to locate and execute tasks for a stealer of the given
1872 >     * task, or in turn one of its stealers, Traces currentSteal ->
1873 >     * currentJoin links looking for a thread working on a descendant
1874 >     * of the given task and with a non-empty queue to steal back and
1875 >     * execute tasks from. The first call to this method upon a
1876 >     * waiting join will often entail scanning/search, (which is OK
1877 >     * because the joiner has nothing better to do), but this method
1878 >     * leaves hints in workers to speed up subsequent calls. The
1879 >     * implementation is very branchy to cope with potential
1880 >     * inconsistencies or loops encountering chains that are stale,
1881 >     * unknown, or so long that they are likely cyclic.
1882 >     *
1883 >     * @param joiner the joining worker
1884 >     * @param task the task to join
1885 >     * @return 0 if no progress can be made, negative if task
1886 >     * known complete, else positive
1887 >     */
1888 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1889 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1890 >        if (joiner != null && task != null) {       // hoist null checks
1891 >            restart: for (;;) {
1892 >                ForkJoinTask<?> subtask = task;     // current target
1893 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1894 >                    WorkQueue[] ws; int m, s, h;
1895 >                    if ((s = task.status) < 0) {
1896 >                        stat = s;
1897 >                        break restart;
1898 >                    }
1899 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1900 >                        break restart;              // shutting down
1901 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1902 >                        v.currentSteal != subtask) {
1903 >                        for (int origin = h;;) {    // find stealer
1904 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1905 >                                (subtask.status < 0 || j.currentJoin != subtask))
1906 >                                continue restart;   // occasional staleness check
1907 >                            if ((v = ws[h]) != null &&
1908 >                                v.currentSteal == subtask) {
1909 >                                j.stealHint = h;    // save hint
1910 >                                break;
1911 >                            }
1912 >                            if (h == origin)
1913 >                                break restart;      // cannot find stealer
1914 >                        }
1915 >                    }
1916 >                    for (;;) { // help stealer or descend to its stealer
1917 >                        ForkJoinTask[] a;  int b;
1918 >                        if (subtask.status < 0)     // surround probes with
1919 >                            continue restart;       //   consistency checks
1920 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1921 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1922 >                            ForkJoinTask<?> t =
1923 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1924 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1925 >                                v.currentSteal != subtask)
1926 >                                continue restart;   // stale
1927 >                            stat = 1;               // apparent progress
1928 >                            if (t != null && v.base == b &&
1929 >                                U.compareAndSwapObject(a, i, t, null)) {
1930 >                                v.base = b + 1;     // help stealer
1931 >                                joiner.runSubtask(t);
1932 >                            }
1933 >                            else if (v.base == b && ++steps == MAX_HELP)
1934 >                                break restart;      // v apparently stalled
1935 >                        }
1936 >                        else {                      // empty -- try to descend
1937 >                            ForkJoinTask<?> next = v.currentJoin;
1938 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1939 >                                v.currentSteal != subtask)
1940 >                                continue restart;   // stale
1941 >                            else if (next == null || ++steps == MAX_HELP)
1942 >                                break restart;      // dead-end or maybe cyclic
1943 >                            else {
1944 >                                subtask = next;
1945 >                                j = v;
1946 >                                break;
1947 >                            }
1948 >                        }
1949 >                    }
1950 >                }
1951              }
900        } finally {
901            lock.unlock();
1952          }
1953 <        signalWork();
1953 >        return stat;
1954      }
1955  
906    //  (pollSubmission is defined below with exported methods)
907
1956      /**
1957 <     * Creates or doubles submissionQueue array.
1958 <     * Basically identical to ForkJoinWorkerThread version.
1957 >     * If task is at base of some steal queue, steals and executes it.
1958 >     *
1959 >     * @param joiner the joining worker
1960 >     * @param task the task
1961       */
1962 <    private void growSubmissionQueue() {
1963 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1964 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1965 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1966 <            throw new RejectedExecutionException("Queue capacity exceeded");
1967 <        if (size < INITIAL_QUEUE_CAPACITY)
1968 <            size = INITIAL_QUEUE_CAPACITY;
1969 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1970 <        int mask = size - 1;
921 <        int top = queueTop;
922 <        int oldMask;
923 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 <            for (int b = queueBase; b != top; ++b) {
925 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 <                    UNSAFE.putObjectVolatile
929 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1962 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1963 >        WorkQueue[] ws;
1964 >        if ((ws = workQueues) != null) {
1965 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1966 >                WorkQueue q = ws[j];
1967 >                if (q != null && q.pollFor(task)) {
1968 >                    joiner.runSubtask(task);
1969 >                    break;
1970 >                }
1971              }
1972          }
1973      }
1974  
934    // Blocking support
935
1975      /**
1976 <     * Tries to increment blockedCount, decrement active count
1977 <     * (sometimes implicitly) and possibly release or create a
1978 <     * compensating worker in preparation for blocking. Fails
1979 <     * on contention or termination.
1976 >     * Tries to decrement active count (sometimes implicitly) and
1977 >     * possibly release or create a compensating worker in preparation
1978 >     * for blocking. Fails on contention or termination. Otherwise,
1979 >     * adds a new thread if no idle workers are available and either
1980 >     * pool would become completely starved or: (at least half
1981 >     * starved, and fewer than 50% spares exist, and there is at least
1982 >     * one task apparently available). Even though the availability
1983 >     * check requires a full scan, it is worthwhile in reducing false
1984 >     * alarms.
1985       *
1986 +     * @param task if non-null, a task being waited for
1987 +     * @param blocker if non-null, a blocker being waited for
1988       * @return true if the caller can block, else should recheck and retry
1989       */
1990 <    private boolean tryPreBlock() {
1991 <        int b = blockedCount;
1992 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1993 <            int pc = parallelism;
1994 <            do {
1995 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1996 <                int e, ac, tc, rc, i;
1997 <                long c = ctl;
1998 <                int u = (int)(c >>> 32);
1999 <                if ((e = (int)c) < 0) {
2000 <                                                 // skip -- terminating
2001 <                }
2002 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
2003 <                         (ws = workers) != null &&
2004 <                         (i = ~e & SMASK) < ws.length &&
2005 <                         (w = ws[i]) != null) {
2006 <                    long nc = ((long)(w.nextWait & E_MASK) |
2007 <                               (c & (AC_MASK|TC_MASK)));
2008 <                    if (w.eventCount == e &&
963 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 <                        if (w.parked)
966 <                            UNSAFE.unpark(w);
967 <                        return true;             // release an idle worker
1990 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1991 >        int pc = parallelism, e;
1992 >        long c = ctl;
1993 >        WorkQueue[] ws = workQueues;
1994 >        if ((e = (int)c) >= 0 && ws != null) {
1995 >            int u, a, ac, hc;
1996 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1997 >            boolean replace = false;
1998 >            if ((a = u >> UAC_SHIFT) <= 0) {
1999 >                if ((ac = a + pc) <= 1)
2000 >                    replace = true;
2001 >                else if ((e > 0 || (task != null &&
2002 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
2003 >                    WorkQueue w;
2004 >                    for (int j = 0; j < ws.length; ++j) {
2005 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
2006 >                            replace = true;
2007 >                            break;   // in compensation range and tasks available
2008 >                        }
2009                      }
2010                  }
2011 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
2011 >            }
2012 >            if ((task == null || task.status >= 0) && // recheck need to block
2013 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
2014 >                if (!replace) {          // no compensation
2015                      long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2016 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
2017 <                        return true;             // no compensation needed
2016 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
2017 >                        return true;
2018                  }
2019 <                else if (tc + pc < MAX_ID) {
2019 >                else if (e != 0) {       // release an idle worker
2020 >                    WorkQueue w; Thread p; int i;
2021 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2022 >                        long nc = ((long)(w.nextWait & E_MASK) |
2023 >                                   (c & (AC_MASK|TC_MASK)));
2024 >                        if (w.eventCount == (e | INT_SIGN) &&
2025 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
2026 >                            w.eventCount = (e + E_SEQ) & E_MASK;
2027 >                            if ((p = w.parker) != null)
2028 >                                U.unpark(p);
2029 >                            return true;
2030 >                        }
2031 >                    }
2032 >                }
2033 >                else if (tc < MAX_CAP) { // create replacement
2034                      long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2035 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
2035 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2036                          addWorker();
2037 <                        return true;            // create a replacement
2037 >                        return true;
2038                      }
2039                  }
2040 <                // try to back out on any failure and let caller retry
983 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 <                                               b = blockedCount, b - 1));
2040 >            }
2041          }
2042          return false;
2043      }
2044  
2045      /**
2046 <     * Decrements blockedCount and increments active count
991 <     */
992 <    private void postBlock() {
993 <        long c;
994 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 <                                                c = ctl, c + AC_UNIT));
996 <        int b;
997 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 <                                              b = blockedCount, b - 1));
999 <    }
1000 <
1001 <    /**
1002 <     * Possibly blocks waiting for the given task to complete, or
1003 <     * cancels the task if terminating.  Fails to wait if contended.
2046 >     * Helps and/or blocks until the given task is done.
2047       *
2048 <     * @param joinMe the task
2048 >     * @param joiner the joining worker
2049 >     * @param task the task
2050 >     * @return task status on exit
2051       */
2052 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
2052 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2053          int s;
2054 <        Thread.interrupted(); // clear interrupts before checking termination
2055 <        if (joinMe.status >= 0) {
2056 <            if (tryPreBlock()) {
2057 <                joinMe.tryAwaitDone(0L);
2058 <                postBlock();
2054 >        if ((s = task.status) >= 0) {
2055 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2056 >            joiner.currentJoin = task;
2057 >            long startTime = 0L;
2058 >            for (int k = 0;;) {
2059 >                if ((s = (joiner.isEmpty() ?           // try to help
2060 >                          tryHelpStealer(joiner, task) :
2061 >                          joiner.tryRemoveAndExec(task))) == 0 &&
2062 >                    (s = task.status) >= 0) {
2063 >                    if (k == 0) {
2064 >                        startTime = System.nanoTime();
2065 >                        tryPollForAndExec(joiner, task); // check uncommon case
2066 >                    }
2067 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
2068 >                             System.nanoTime() - startTime >=
2069 >                             COMPENSATION_DELAY &&
2070 >                             tryCompensate(task, null)) {
2071 >                        if (task.trySetSignal()) {
2072 >                            synchronized (task) {
2073 >                                if (task.status >= 0) {
2074 >                                    try {                // see ForkJoinTask
2075 >                                        task.wait();     //  for explanation
2076 >                                    } catch (InterruptedException ie) {
2077 >                                    }
2078 >                                }
2079 >                                else
2080 >                                    task.notifyAll();
2081 >                            }
2082 >                        }
2083 >                        long c;                          // re-activate
2084 >                        do {} while (!U.compareAndSwapLong
2085 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2086 >                    }
2087 >                }
2088 >                if (s < 0 || (s = task.status) < 0) {
2089 >                    joiner.currentJoin = prevJoin;
2090 >                    break;
2091 >                }
2092 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2093 >                    Thread.yield();                     // for politeness
2094              }
1015            else if ((ctl & STOP_BIT) != 0L)
1016                joinMe.cancelIgnoringExceptions();
2095          }
2096 +        return s;
2097      }
2098  
2099      /**
2100 <     * Possibly blocks the given worker waiting for joinMe to
2101 <     * complete or timeout
2100 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2101 >     * to help join only while there is continuous progress. (Caller
2102 >     * will then enter a timed wait.)
2103       *
2104 <     * @param joinMe the task
2105 <     * @param millis the wait time for underlying Object.wait
2104 >     * @param joiner the joining worker
2105 >     * @param task the task
2106 >     * @return task status on exit
2107       */
2108 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
2109 <        while (joinMe.status >= 0) {
2110 <            Thread.interrupted();
2111 <            if ((ctl & STOP_BIT) != 0L) {
2112 <                joinMe.cancelIgnoringExceptions();
2113 <                break;
2114 <            }
2115 <            if (tryPreBlock()) {
1035 <                long last = System.nanoTime();
1036 <                while (joinMe.status >= 0) {
1037 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1038 <                    if (millis <= 0)
1039 <                        break;
1040 <                    joinMe.tryAwaitDone(millis);
1041 <                    if (joinMe.status < 0)
1042 <                        break;
1043 <                    if ((ctl & STOP_BIT) != 0L) {
1044 <                        joinMe.cancelIgnoringExceptions();
1045 <                        break;
1046 <                    }
1047 <                    long now = System.nanoTime();
1048 <                    nanos -= now - last;
1049 <                    last = now;
1050 <                }
1051 <                postBlock();
1052 <                break;
1053 <            }
1054 <        }
2108 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2109 >        int s;
2110 >        while ((s = task.status) >= 0 &&
2111 >               (joiner.isEmpty() ?
2112 >                tryHelpStealer(joiner, task) :
2113 >                joiner.tryRemoveAndExec(task)) != 0)
2114 >            ;
2115 >        return s;
2116      }
2117  
2118      /**
2119 <     * If necessary, compensates for blocker, and blocks
2120 <     */
2121 <    private void awaitBlocker(ManagedBlocker blocker)
2122 <        throws InterruptedException {
2123 <        while (!blocker.isReleasable()) {
2124 <            if (tryPreBlock()) {
2125 <                try {
2126 <                    do {} while (!blocker.isReleasable() && !blocker.block());
2127 <                } finally {
2128 <                    postBlock();
2119 >     * Returns a (probably) non-empty steal queue, if one is found
2120 >     * during a random, then cyclic scan, else null.  This method must
2121 >     * be retried by caller if, by the time it tries to use the queue,
2122 >     * it is empty.
2123 >     */
2124 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2125 >        // Similar to loop in scan(), but ignoring submissions
2126 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2127 >        int step = (r >>> 16) | 1;
2128 >        for (WorkQueue[] ws;;) {
2129 >            int rs = runState, m;
2130 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2131 >                return null;
2132 >            for (int j = (m + 1) << 2; ; r += step) {
2133 >                WorkQueue q = ws[((r << 1) | 1) & m];
2134 >                if (q != null && !q.isEmpty())
2135 >                    return q;
2136 >                else if (--j < 0) {
2137 >                    if (runState == rs)
2138 >                        return null;
2139 >                    break;
2140                  }
1069                break;
2141              }
2142          }
2143      }
2144  
1074    // Creating, registering and deregistring workers
1075
2145      /**
2146 <     * Tries to create and start a worker; minimally rolls back counts
2147 <     * on failure.
2148 <     */
2149 <    private void addWorker() {
2150 <        Throwable ex = null;
2151 <        ForkJoinWorkerThread t = null;
2152 <        try {
2153 <            t = factory.newThread(this);
2154 <        } catch (Throwable e) {
2155 <            ex = e;
2156 <        }
2157 <        if (t == null) {  // null or exceptional factory return
2158 <            long c;       // adjust counts
2159 <            do {} while (!UNSAFE.compareAndSwapLong
2160 <                         (this, ctlOffset, c = ctl,
2161 <                          (((c - AC_UNIT) & AC_MASK) |
2162 <                           ((c - TC_UNIT) & TC_MASK) |
2163 <                           (c & ~(AC_MASK|TC_MASK)))));
2164 <            // Propagate exception if originating from an external caller
2165 <            if (!tryTerminate(false) && ex != null &&
2166 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
2167 <                UNSAFE.throwException(ex);
2146 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2147 >     * active count ctl maintenance, but rather than blocking
2148 >     * when tasks cannot be found, we rescan until all others cannot
2149 >     * find tasks either.
2150 >     */
2151 >    final void helpQuiescePool(WorkQueue w) {
2152 >        for (boolean active = true;;) {
2153 >            ForkJoinTask<?> localTask; // exhaust local queue
2154 >            while ((localTask = w.nextLocalTask()) != null)
2155 >                localTask.doExec();
2156 >            WorkQueue q = findNonEmptyStealQueue(w);
2157 >            if (q != null) {
2158 >                ForkJoinTask<?> t; int b;
2159 >                if (!active) {      // re-establish active count
2160 >                    long c;
2161 >                    active = true;
2162 >                    do {} while (!U.compareAndSwapLong
2163 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2164 >                }
2165 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2166 >                    w.runSubtask(t);
2167 >            }
2168 >            else {
2169 >                long c;
2170 >                if (active) {       // decrement active count without queuing
2171 >                    active = false;
2172 >                    do {} while (!U.compareAndSwapLong
2173 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2174 >                }
2175 >                else
2176 >                    c = ctl;        // re-increment on exit
2177 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2178 >                    do {} while (!U.compareAndSwapLong
2179 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2180 >                    break;
2181 >                }
2182 >            }
2183          }
1100        else
1101            t.start();
2184      }
2185  
2186      /**
2187 <     * Callback from ForkJoinWorkerThread constructor to assign a
1106 <     * public name
2187 >     * Restricted version of helpQuiescePool for non-FJ callers
2188       */
2189 <    final String nextWorkerName() {
2190 <        for (int n;;) {
2191 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
2192 <                                         n = nextWorkerNumber, ++n))
2193 <                return workerNamePrefix + n;
2194 <        }
2195 <    }
2196 <
2197 <    /**
2198 <     * Callback from ForkJoinWorkerThread constructor to
2199 <     * determine its poolIndex and record in workers array.
2200 <     *
2201 <     * @param w the worker
1121 <     * @return the worker's pool index
1122 <     */
1123 <    final int registerWorker(ForkJoinWorkerThread w) {
1124 <        /*
1125 <         * In the typical case, a new worker acquires the lock, uses
1126 <         * next available index and returns quickly.  Since we should
1127 <         * not block callers (ultimately from signalWork or
1128 <         * tryPreBlock) waiting for the lock needed to do this, we
1129 <         * instead help release other workers while waiting for the
1130 <         * lock.
1131 <         */
1132 <        for (int g;;) {
1133 <            ForkJoinWorkerThread[] ws;
1134 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
1135 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1136 <                                         g, g | SG_UNIT)) {
1137 <                int k = nextWorkerIndex;
1138 <                try {
1139 <                    if ((ws = workers) != null) { // ignore on shutdown
1140 <                        int n = ws.length;
1141 <                        if (k < 0 || k >= n || ws[k] != null) {
1142 <                            for (k = 0; k < n && ws[k] != null; ++k)
1143 <                                ;
1144 <                            if (k == n)
1145 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1146 <                        }
1147 <                        ws[k] = w;
1148 <                        nextWorkerIndex = k + 1;
1149 <                        int m = g & SMASK;
1150 <                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1151 <                    }
1152 <                } finally {
1153 <                    scanGuard = g;
1154 <                }
1155 <                return k;
1156 <            }
1157 <            else if ((ws = workers) != null) { // help release others
1158 <                for (ForkJoinWorkerThread u : ws) {
1159 <                    if (u != null && u.queueBase != u.queueTop) {
1160 <                        if (tryReleaseWaiter())
1161 <                            break;
1162 <                    }
1163 <                }
2189 >    static void externalHelpQuiescePool() {
2190 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2191 >        ForkJoinTask<?>[] a; int b;
2192 >        ForkJoinTask<?> t = null;
2193 >        int k = submitters.get().seed & SQMASK;
2194 >        if ((p = commonPool) != null &&
2195 >            (int)(p.ctl >> AC_SHIFT) < 0 &&
2196 >            (ws = p.workQueues) != null &&
2197 >            ws.length > (k &= p.submitMask) &&
2198 >            (q = ws[k]) != null) {
2199 >            while (q.top - q.base > 0) {
2200 >                if ((t = q.sharedPop()) != null)
2201 >                    break;
2202              }
2203 +            if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2204 +                (b = sq.base) - sq.top < 0)
2205 +                t = sq.pollAt(b);
2206 +            if (t != null)
2207 +                t.doExec();
2208          }
2209      }
2210  
2211      /**
2212 <     * Final callback from terminating worker.  Removes record of
1170 <     * worker from array, and adjusts counts. If pool is shutting
1171 <     * down, tries to complete termination.
2212 >     * Gets and removes a local or stolen task for the given worker.
2213       *
2214 <     * @param w the worker
2214 >     * @return a task, if available
2215       */
2216 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
2217 <        int idx = w.poolIndex;
2218 <        int sc = w.stealCount;
2219 <        int steps = 0;
2220 <        // Remove from array, adjust worker counts and collect steal count.
2221 <        // We can intermix failed removes or adjusts with steal updates
2222 <        do {
2223 <            long s, c;
2224 <            int g;
1184 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1185 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1186 <                                         g, g |= SG_UNIT)) {
1187 <                ForkJoinWorkerThread[] ws = workers;
1188 <                if (ws != null && idx >= 0 &&
1189 <                    idx < ws.length && ws[idx] == w)
1190 <                    ws[idx] = null;    // verify
1191 <                nextWorkerIndex = idx;
1192 <                scanGuard = g + SG_UNIT;
1193 <                steps = 1;
1194 <            }
1195 <            if (steps == 1 &&
1196 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1197 <                                          (((c - AC_UNIT) & AC_MASK) |
1198 <                                           ((c - TC_UNIT) & TC_MASK) |
1199 <                                           (c & ~(AC_MASK|TC_MASK)))))
1200 <                steps = 2;
1201 <            if (sc != 0 &&
1202 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1203 <                                          s = stealCount, s + sc))
1204 <                sc = 0;
1205 <        } while (steps != 2 || sc != 0);
1206 <        if (!tryTerminate(false)) {
1207 <            if (ex != null)   // possibly replace if died abnormally
1208 <                signalWork();
1209 <            else
1210 <                tryReleaseWaiter();
2216 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2217 >        for (ForkJoinTask<?> t;;) {
2218 >            WorkQueue q; int b;
2219 >            if ((t = w.nextLocalTask()) != null)
2220 >                return t;
2221 >            if ((q = findNonEmptyStealQueue(w)) == null)
2222 >                return null;
2223 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2224 >                return t;
2225          }
2226      }
2227  
2228 <    // Shutdown and termination
2228 >    /**
2229 >     * Returns the approximate (non-atomic) number of idle threads per
2230 >     * active thread to offset steal queue size for method
2231 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2232 >     */
2233 >    final int idlePerActive() {
2234 >        // Approximate at powers of two for small values, saturate past 4
2235 >        int p = parallelism;
2236 >        int a = p + (int)(ctl >> AC_SHIFT);
2237 >        return (a > (p >>>= 1) ? 0 :
2238 >                a > (p >>>= 1) ? 1 :
2239 >                a > (p >>>= 1) ? 2 :
2240 >                a > (p >>>= 1) ? 4 :
2241 >                8);
2242 >    }
2243  
2244      /**
2245 <     * Possibly initiates and/or completes termination.
2245 >     * Returns approximate submission queue length for the given caller
2246 >     */
2247 >    static int getEstimatedSubmitterQueueLength() {
2248 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2249 >        int k = submitters.get().seed & SQMASK;
2250 >        return ((p = commonPool) != null &&
2251 >                p.runState >= 0 &&
2252 >                (ws = p.workQueues) != null &&
2253 >                ws.length > (k &= p.submitMask) &&
2254 >                (q = ws[k]) != null) ?
2255 >            q.queueSize() : 0;
2256 >    }
2257 >
2258 >    //  Termination
2259 >
2260 >    /**
2261 >     * Possibly initiates and/or completes termination.  The caller
2262 >     * triggering termination runs three passes through workQueues:
2263 >     * (0) Setting termination status, followed by wakeups of queued
2264 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2265 >     * threads (likely in external tasks, but possibly also blocked in
2266 >     * joins).  Each pass repeats previous steps because of potential
2267 >     * lagging thread creation.
2268       *
2269       * @param now if true, unconditionally terminate, else only
2270 <     * if shutdown and empty queue and no active workers
2270 >     * if no work and no active workers
2271 >     * @param enable if true, enable shutdown when next possible
2272       * @return true if now terminating or terminated
2273       */
2274 <    private boolean tryTerminate(boolean now) {
2275 <        long c;
2276 <        while (((c = ctl) & STOP_BIT) == 0) {
2277 <            if (!now) {
2278 <                if ((int)(c >> AC_SHIFT) != -parallelism)
2274 >    private boolean tryTerminate(boolean now, boolean enable) {
2275 >        for (long c;;) {
2276 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2277 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2278 >                    synchronized (this) {
2279 >                        notifyAll();                // signal when 0 workers
2280 >                    }
2281 >                }
2282 >                return true;
2283 >            }
2284 >            if (runState >= 0) {                    // not yet enabled
2285 >                if (!enable)
2286                      return false;
2287 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
2288 <                    queueBase != queueTop) {
2289 <                    if (ctl == c) // staleness check
2290 <                        return false;
2291 <                    continue;
2287 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2288 >                    tryAwaitMainLock();
2289 >                try {
2290 >                    runState |= SHUTDOWN;
2291 >                } finally {
2292 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2293 >                        mainLock = 0;
2294 >                        synchronized (this) { notifyAll(); };
2295 >                    }
2296                  }
2297              }
2298 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
2299 <                startTerminating();
2300 <        }
2301 <        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
2302 <            final ReentrantLock lock = this.submissionLock;
2303 <            lock.lock();
2304 <            try {
2305 <                termination.signalAll();
2306 <            } finally {
2307 <                lock.unlock();
2298 >            if (!now) {                             // check if idle & no tasks
2299 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2300 >                    hasQueuedSubmissions())
2301 >                    return false;
2302 >                // Check for unqueued inactive workers. One pass suffices.
2303 >                WorkQueue[] ws = workQueues; WorkQueue w;
2304 >                if (ws != null) {
2305 >                    for (int i = 1; i < ws.length; i += 2) {
2306 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2307 >                            return false;
2308 >                    }
2309 >                }
2310              }
2311 <        }
2312 <        return true;
2313 <    }
2314 <
2315 <    /**
2316 <     * Runs up to three passes through workers: (0) Setting
2317 <     * termination status for each worker, followed by wakeups up to
2318 <     * queued workers; (1) helping cancel tasks; (2) interrupting
2319 <     * lagging threads (likely in external tasks, but possibly also
2320 <     * blocked in joins).  Each pass repeats previous steps because of
2321 <     * potential lagging thread creation.
2322 <     */
2323 <    private void startTerminating() {
1260 <        cancelSubmissions();
1261 <        for (int pass = 0; pass < 3; ++pass) {
1262 <            ForkJoinWorkerThread[] ws = workers;
1263 <            if (ws != null) {
1264 <                for (ForkJoinWorkerThread w : ws) {
1265 <                    if (w != null) {
1266 <                        w.terminate = true;
1267 <                        if (pass > 0) {
1268 <                            w.cancelTasks();
1269 <                            if (pass > 1 && !w.isInterrupted()) {
1270 <                                try {
1271 <                                    w.interrupt();
1272 <                                } catch (SecurityException ignore) {
2311 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2312 >                for (int pass = 0; pass < 3; ++pass) {
2313 >                    WorkQueue[] ws = workQueues;
2314 >                    if (ws != null) {
2315 >                        WorkQueue w;
2316 >                        int n = ws.length;
2317 >                        for (int i = 0; i < n; ++i) {
2318 >                            if ((w = ws[i]) != null) {
2319 >                                w.runState = -1;
2320 >                                if (pass > 0) {
2321 >                                    w.cancelAll();
2322 >                                    if (pass > 1)
2323 >                                        w.interruptOwner();
2324                                  }
2325                              }
2326                          }
2327 +                        // Wake up workers parked on event queue
2328 +                        int i, e; long cc; Thread p;
2329 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2330 +                               (i = e & SMASK) < n &&
2331 +                               (w = ws[i]) != null) {
2332 +                            long nc = ((long)(w.nextWait & E_MASK) |
2333 +                                       ((cc + AC_UNIT) & AC_MASK) |
2334 +                                       (cc & (TC_MASK|STOP_BIT)));
2335 +                            if (w.eventCount == (e | INT_SIGN) &&
2336 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2337 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2338 +                                w.runState = -1;
2339 +                                if ((p = w.parker) != null)
2340 +                                    U.unpark(p);
2341 +                            }
2342 +                        }
2343                      }
2344                  }
1278                terminateWaiters();
1279            }
1280        }
1281    }
1282
1283    /**
1284     * Polls and cancels all submissions. Called only during termination.
1285     */
1286    private void cancelSubmissions() {
1287        while (queueBase != queueTop) {
1288            ForkJoinTask<?> task = pollSubmission();
1289            if (task != null) {
1290                try {
1291                    task.cancel(false);
1292                } catch (Throwable ignore) {
1293                }
1294            }
1295        }
1296    }
1297
1298    /**
1299     * Tries to set the termination status of waiting workers, and
1300     * then wakes them up (after which they will terminate).
1301     */
1302    private void terminateWaiters() {
1303        ForkJoinWorkerThread[] ws = workers;
1304        if (ws != null) {
1305            ForkJoinWorkerThread w; long c; int i, e;
1306            int n = ws.length;
1307            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1308                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1309                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1310                                              (long)(w.nextWait & E_MASK) |
1311                                              ((c + AC_UNIT) & AC_MASK) |
1312                                              (c & (TC_MASK|STOP_BIT)))) {
1313                    w.terminate = true;
1314                    w.eventCount = e + EC_UNIT;
1315                    if (w.parked)
1316                        UNSAFE.unpark(w);
1317                }
2345              }
2346          }
2347      }
2348  
1322    // misc ForkJoinWorkerThread support
1323
1324    /**
1325     * Increment or decrement quiescerCount. Needed only to prevent
1326     * triggering shutdown if a worker is transiently inactive while
1327     * checking quiescence.
1328     *
1329     * @param delta 1 for increment, -1 for decrement
1330     */
1331    final void addQuiescerCount(int delta) {
1332        int c;
1333        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1334                                              c = quiescerCount, c + delta));
1335    }
1336
1337    /**
1338     * Directly increment or decrement active count without
1339     * queuing. This method is used to transiently assert inactivation
1340     * while checking quiescence.
1341     *
1342     * @param delta 1 for increment, -1 for decrement
1343     */
1344    final void addActiveCount(int delta) {
1345        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1346        long c;
1347        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1348                                                ((c + d) & AC_MASK) |
1349                                                (c & ~AC_MASK)));
1350    }
1351
1352    /**
1353     * Returns the approximate (non-atomic) number of idle threads per
1354     * active thread.
1355     */
1356    final int idlePerActive() {
1357        // Approximate at powers of two for small values, saturate past 4
1358        int p = parallelism;
1359        int a = p + (int)(ctl >> AC_SHIFT);
1360        return (a > (p >>>= 1) ? 0 :
1361                a > (p >>>= 1) ? 1 :
1362                a > (p >>>= 1) ? 2 :
1363                a > (p >>>= 1) ? 4 :
1364                8);
1365    }
1366
2349      // Exported methods
2350  
2351      // Constructors
# Line 1433 | Line 2415 | public class ForkJoinPool extends Abstra
2415          checkPermission();
2416          if (factory == null)
2417              throw new NullPointerException();
2418 <        if (parallelism <= 0 || parallelism > MAX_ID)
2418 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2419              throw new IllegalArgumentException();
2420          this.parallelism = parallelism;
2421          this.factory = factory;
2422          this.ueh = handler;
2423 <        this.locallyFifo = asyncMode;
2423 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2424          long np = (long)(-parallelism); // offset ctl counts
2425          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2426 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
2427 <        // initialize workers array with room for 2*parallelism if possible
2428 <        int n = parallelism << 1;
2429 <        if (n >= MAX_ID)
2430 <            n = MAX_ID;
1449 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1450 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1451 <        }
1452 <        workers = new ForkJoinWorkerThread[n + 1];
1453 <        this.submissionLock = new ReentrantLock();
1454 <        this.termination = submissionLock.newCondition();
2426 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2427 >        int n = parallelism - 1;
2428 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2429 >        this.submitMask = ((n + 1) << 1) - 1;
2430 >        int pn = poolNumberGenerator.incrementAndGet();
2431          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2432 <        sb.append(poolNumberGenerator.incrementAndGet());
2432 >        sb.append(Integer.toString(pn));
2433          sb.append("-worker-");
2434          this.workerNamePrefix = sb.toString();
2435 +        this.runState = 1;              // set init flag
2436 +    }
2437 +
2438 +    /**
2439 +     * Constructor for common pool, suitable only for static initialization.
2440 +     * Basically the same as above, but uses smallest possible initial footprint.
2441 +     */
2442 +    ForkJoinPool(int parallelism, int submitMask,
2443 +                 ForkJoinWorkerThreadFactory factory,
2444 +                 Thread.UncaughtExceptionHandler handler) {
2445 +        this.factory = factory;
2446 +        this.ueh = handler;
2447 +        this.submitMask = submitMask;
2448 +        this.parallelism = parallelism;
2449 +        long np = (long)(-parallelism);
2450 +        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 +        this.localMode = LIFO_QUEUE;
2452 +        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2453 +        this.runState = 1;
2454 +    }
2455 +
2456 +    /**
2457 +     * Returns the common pool instance.
2458 +     *
2459 +     * @return the common pool instance
2460 +     */
2461 +    public static ForkJoinPool commonPool() {
2462 +        ForkJoinPool p;
2463 +        if ((p = commonPool) == null)
2464 +            throw new Error("Common Pool Unavailable");
2465 +        return p;
2466      }
2467  
2468      // Execution methods
# Line 1477 | Line 2484 | public class ForkJoinPool extends Abstra
2484       *         scheduled for execution
2485       */
2486      public <T> T invoke(ForkJoinTask<T> task) {
1480        Thread t = Thread.currentThread();
2487          if (task == null)
2488              throw new NullPointerException();
2489 <        if (shutdown)
2490 <            throw new RejectedExecutionException();
1485 <        if ((t instanceof ForkJoinWorkerThread) &&
1486 <            ((ForkJoinWorkerThread)t).pool == this)
1487 <            return task.invoke();  // bypass submit if in same pool
1488 <        else {
1489 <            addSubmission(task);
1490 <            return task.join();
1491 <        }
1492 <    }
1493 <
1494 <    /**
1495 <     * Unless terminating, forks task if within an ongoing FJ
1496 <     * computation in the current pool, else submits as external task.
1497 <     */
1498 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1499 <        ForkJoinWorkerThread w;
1500 <        Thread t = Thread.currentThread();
1501 <        if (shutdown)
1502 <            throw new RejectedExecutionException();
1503 <        if ((t instanceof ForkJoinWorkerThread) &&
1504 <            (w = (ForkJoinWorkerThread)t).pool == this)
1505 <            w.pushTask(task);
1506 <        else
1507 <            addSubmission(task);
2489 >        doSubmit(task);
2490 >        return task.join();
2491      }
2492  
2493      /**
# Line 1518 | Line 2501 | public class ForkJoinPool extends Abstra
2501      public void execute(ForkJoinTask<?> task) {
2502          if (task == null)
2503              throw new NullPointerException();
2504 <        forkOrSubmit(task);
2504 >        doSubmit(task);
2505      }
2506  
2507      // AbstractExecutorService methods
# Line 1535 | Line 2518 | public class ForkJoinPool extends Abstra
2518          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2519              job = (ForkJoinTask<?>) task;
2520          else
2521 <            job = ForkJoinTask.adapt(task, null);
2522 <        forkOrSubmit(job);
2521 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2522 >        doSubmit(job);
2523      }
2524  
2525      /**
# Line 1551 | Line 2534 | public class ForkJoinPool extends Abstra
2534      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2535          if (task == null)
2536              throw new NullPointerException();
2537 <        forkOrSubmit(task);
2537 >        doSubmit(task);
2538          return task;
2539      }
2540  
# Line 1561 | Line 2544 | public class ForkJoinPool extends Abstra
2544       *         scheduled for execution
2545       */
2546      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2547 <        if (task == null)
2548 <            throw new NullPointerException();
1566 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1567 <        forkOrSubmit(job);
2547 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2548 >        doSubmit(job);
2549          return job;
2550      }
2551  
# Line 1574 | Line 2555 | public class ForkJoinPool extends Abstra
2555       *         scheduled for execution
2556       */
2557      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2558 <        if (task == null)
2559 <            throw new NullPointerException();
1579 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1580 <        forkOrSubmit(job);
2558 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2559 >        doSubmit(job);
2560          return job;
2561      }
2562  
# Line 1593 | Line 2572 | public class ForkJoinPool extends Abstra
2572          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2573              job = (ForkJoinTask<?>) task;
2574          else
2575 <            job = ForkJoinTask.adapt(task, null);
2576 <        forkOrSubmit(job);
2575 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2576 >        doSubmit(job);
2577          return job;
2578      }
2579  
# Line 1603 | Line 2582 | public class ForkJoinPool extends Abstra
2582       * @throws RejectedExecutionException {@inheritDoc}
2583       */
2584      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2585 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2586 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2587 <        for (Callable<T> task : tasks)
2588 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2589 <        invoke(new InvokeAll<T>(forkJoinTasks));
2590 <
2585 >        // In previous versions of this class, this method constructed
2586 >        // a task to run ForkJoinTask.invokeAll, but now external
2587 >        // invocation of multiple tasks is at least as efficient.
2588 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2589 >        // Workaround needed because method wasn't declared with
2590 >        // wildcards in return type but should have been.
2591          @SuppressWarnings({"unchecked", "rawtypes"})
2592 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1614 <        return futures;
1615 <    }
2592 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2593  
2594 <    static final class InvokeAll<T> extends RecursiveAction {
2595 <        final ArrayList<ForkJoinTask<T>> tasks;
2596 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2597 <        public void compute() {
2598 <            try { invokeAll(tasks); }
2599 <            catch (Exception ignore) {}
2594 >        boolean done = false;
2595 >        try {
2596 >            for (Callable<T> t : tasks) {
2597 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2598 >                doSubmit(f);
2599 >                fs.add(f);
2600 >            }
2601 >            for (ForkJoinTask<T> f : fs)
2602 >                f.quietlyJoin();
2603 >            done = true;
2604 >            return futures;
2605 >        } finally {
2606 >            if (!done)
2607 >                for (ForkJoinTask<T> f : fs)
2608 >                    f.cancel(false);
2609          }
1624        private static final long serialVersionUID = -7914297376763021607L;
2610      }
2611  
2612      /**
# Line 1653 | Line 2638 | public class ForkJoinPool extends Abstra
2638      }
2639  
2640      /**
2641 +     * Returns the targeted parallelism level of the common pool.
2642 +     *
2643 +     * @return the targeted parallelism level of the common pool
2644 +     */
2645 +    public static int getCommonPoolParallelism() {
2646 +        return commonPoolParallelism;
2647 +    }
2648 +
2649 +    /**
2650       * Returns the number of worker threads that have started but not
2651       * yet terminated.  The result returned by this method may differ
2652       * from {@link #getParallelism} when threads are created to
# Line 1671 | Line 2665 | public class ForkJoinPool extends Abstra
2665       * @return {@code true} if this pool uses async mode
2666       */
2667      public boolean getAsyncMode() {
2668 <        return locallyFifo;
2668 >        return localMode != 0;
2669      }
2670  
2671      /**
# Line 1683 | Line 2677 | public class ForkJoinPool extends Abstra
2677       * @return the number of worker threads
2678       */
2679      public int getRunningThreadCount() {
2680 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2681 <        return r <= 0? 0 : r; // suppress momentarily negative values
2680 >        int rc = 0;
2681 >        WorkQueue[] ws; WorkQueue w;
2682 >        if ((ws = workQueues) != null) {
2683 >            for (int i = 1; i < ws.length; i += 2) {
2684 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2685 >                    ++rc;
2686 >            }
2687 >        }
2688 >        return rc;
2689      }
2690  
2691      /**
# Line 1695 | Line 2696 | public class ForkJoinPool extends Abstra
2696       * @return the number of active threads
2697       */
2698      public int getActiveThreadCount() {
2699 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2700 <        return r <= 0? 0 : r; // suppress momentarily negative values
2699 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2700 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2701      }
2702  
2703      /**
# Line 1711 | Line 2712 | public class ForkJoinPool extends Abstra
2712       * @return {@code true} if all threads are currently idle
2713       */
2714      public boolean isQuiescent() {
2715 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2715 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2716      }
2717  
2718      /**
# Line 1726 | Line 2727 | public class ForkJoinPool extends Abstra
2727       * @return the number of steals
2728       */
2729      public long getStealCount() {
2730 <        return stealCount;
2730 >        long count = stealCount;
2731 >        WorkQueue[] ws; WorkQueue w;
2732 >        if ((ws = workQueues) != null) {
2733 >            for (int i = 1; i < ws.length; i += 2) {
2734 >                if ((w = ws[i]) != null)
2735 >                    count += w.totalSteals;
2736 >            }
2737 >        }
2738 >        return count;
2739      }
2740  
2741      /**
# Line 1741 | Line 2750 | public class ForkJoinPool extends Abstra
2750       */
2751      public long getQueuedTaskCount() {
2752          long count = 0;
2753 <        ForkJoinWorkerThread[] ws;
2754 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2755 <            (ws = workers) != null) {
2756 <            for (ForkJoinWorkerThread w : ws)
2757 <                if (w != null)
2758 <                    count -= w.queueBase - w.queueTop; // must read base first
2753 >        WorkQueue[] ws; WorkQueue w;
2754 >        if ((ws = workQueues) != null) {
2755 >            for (int i = 1; i < ws.length; i += 2) {
2756 >                if ((w = ws[i]) != null)
2757 >                    count += w.queueSize();
2758 >            }
2759          }
2760          return count;
2761      }
# Line 1759 | Line 2768 | public class ForkJoinPool extends Abstra
2768       * @return the number of queued submissions
2769       */
2770      public int getQueuedSubmissionCount() {
2771 <        return -queueBase + queueTop;
2771 >        int count = 0;
2772 >        WorkQueue[] ws; WorkQueue w;
2773 >        if ((ws = workQueues) != null) {
2774 >            for (int i = 0; i < ws.length; i += 2) {
2775 >                if ((w = ws[i]) != null)
2776 >                    count += w.queueSize();
2777 >            }
2778 >        }
2779 >        return count;
2780      }
2781  
2782      /**
# Line 1769 | Line 2786 | public class ForkJoinPool extends Abstra
2786       * @return {@code true} if there are any queued submissions
2787       */
2788      public boolean hasQueuedSubmissions() {
2789 <        return queueBase != queueTop;
2789 >        WorkQueue[] ws; WorkQueue w;
2790 >        if ((ws = workQueues) != null) {
2791 >            for (int i = 0; i < ws.length; i += 2) {
2792 >                if ((w = ws[i]) != null && !w.isEmpty())
2793 >                    return true;
2794 >            }
2795 >        }
2796 >        return false;
2797      }
2798  
2799      /**
# Line 1780 | Line 2804 | public class ForkJoinPool extends Abstra
2804       * @return the next submission, or {@code null} if none
2805       */
2806      protected ForkJoinTask<?> pollSubmission() {
2807 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2808 <        while ((b = queueBase) != queueTop &&
2809 <               (q = submissionQueue) != null &&
2810 <               (i = (q.length - 1) & b) >= 0) {
2811 <            long u = (i << ASHIFT) + ABASE;
1788 <            if ((t = q[i]) != null &&
1789 <                queueBase == b &&
1790 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1791 <                queueBase = b + 1;
1792 <                return t;
2807 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2808 >        if ((ws = workQueues) != null) {
2809 >            for (int i = 0; i < ws.length; i += 2) {
2810 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2811 >                    return t;
2812              }
2813          }
2814          return null;
# Line 1814 | Line 2833 | public class ForkJoinPool extends Abstra
2833       */
2834      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2835          int count = 0;
2836 <        while (queueBase != queueTop) {
2837 <            ForkJoinTask<?> t = pollSubmission();
2838 <            if (t != null) {
2839 <                c.add(t);
2840 <                ++count;
2836 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2837 >        if ((ws = workQueues) != null) {
2838 >            for (int i = 0; i < ws.length; ++i) {
2839 >                if ((w = ws[i]) != null) {
2840 >                    while ((t = w.poll()) != null) {
2841 >                        c.add(t);
2842 >                        ++count;
2843 >                    }
2844 >                }
2845              }
2846          }
1824        ForkJoinWorkerThread[] ws;
1825        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1826            (ws = workers) != null) {
1827            for (ForkJoinWorkerThread w : ws)
1828                if (w != null)
1829                    count += w.drainTasksTo(c);
1830        }
2847          return count;
2848      }
2849  
# Line 1839 | Line 2855 | public class ForkJoinPool extends Abstra
2855       * @return a string identifying this pool, as well as its state
2856       */
2857      public String toString() {
2858 <        long st = getStealCount();
2859 <        long qt = getQueuedTaskCount();
2860 <        long qs = getQueuedSubmissionCount();
1845 <        int pc = parallelism;
2858 >        // Use a single pass through workQueues to collect counts
2859 >        long qt = 0L, qs = 0L; int rc = 0;
2860 >        long st = stealCount;
2861          long c = ctl;
2862 +        WorkQueue[] ws; WorkQueue w;
2863 +        if ((ws = workQueues) != null) {
2864 +            for (int i = 0; i < ws.length; ++i) {
2865 +                if ((w = ws[i]) != null) {
2866 +                    int size = w.queueSize();
2867 +                    if ((i & 1) == 0)
2868 +                        qs += size;
2869 +                    else {
2870 +                        qt += size;
2871 +                        st += w.totalSteals;
2872 +                        if (w.isApparentlyUnblocked())
2873 +                            ++rc;
2874 +                    }
2875 +                }
2876 +            }
2877 +        }
2878 +        int pc = parallelism;
2879          int tc = pc + (short)(c >>> TC_SHIFT);
2880 <        int rc = pc + (int)(c >> AC_SHIFT);
2881 <        if (rc < 0) // ignore transient negative
2882 <            rc = 0;
1851 <        int ac = rc + blockedCount;
2880 >        int ac = pc + (int)(c >> AC_SHIFT);
2881 >        if (ac < 0) // ignore transient negative
2882 >            ac = 0;
2883          String level;
2884          if ((c & STOP_BIT) != 0)
2885 <            level = (tc == 0)? "Terminated" : "Terminating";
2885 >            level = (tc == 0) ? "Terminated" : "Terminating";
2886          else
2887 <            level = shutdown? "Shutting down" : "Running";
2887 >            level = runState < 0 ? "Shutting down" : "Running";
2888          return super.toString() +
2889              "[" + level +
2890              ", parallelism = " + pc +
# Line 1867 | Line 2898 | public class ForkJoinPool extends Abstra
2898      }
2899  
2900      /**
2901 <     * Initiates an orderly shutdown in which previously submitted
2902 <     * tasks are executed, but no new tasks will be accepted.
2903 <     * Invocation has no additional effect if already shut down.
2904 <     * Tasks that are in the process of being submitted concurrently
2905 <     * during the course of this method may or may not be rejected.
2901 >     * Possibly initiates an orderly shutdown in which previously
2902 >     * submitted tasks are executed, but no new tasks will be
2903 >     * accepted. Invocation has no effect on execution state if this
2904 >     * is the {@link #commonPool}, and no additional effect if
2905 >     * already shut down.  Tasks that are in the process of being
2906 >     * submitted concurrently during the course of this method may or
2907 >     * may not be rejected.
2908       *
2909       * @throws SecurityException if a security manager exists and
2910       *         the caller is not permitted to modify threads
# Line 1880 | Line 2913 | public class ForkJoinPool extends Abstra
2913       */
2914      public void shutdown() {
2915          checkPermission();
2916 <        shutdown = true;
2917 <        tryTerminate(false);
2916 >        if (this != commonPool)
2917 >            tryTerminate(false, true);
2918      }
2919  
2920      /**
2921 <     * Attempts to cancel and/or stop all tasks, and reject all
2922 <     * subsequently submitted tasks.  Tasks that are in the process of
2923 <     * being submitted or executed concurrently during the course of
2924 <     * this method may or may not be rejected. This method cancels
2925 <     * both existing and unexecuted tasks, in order to permit
2926 <     * termination in the presence of task dependencies. So the method
2927 <     * always returns an empty list (unlike the case for some other
2928 <     * Executors).
2921 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2922 >     * all subsequently submitted tasks.  Invocation has no effect on
2923 >     * execution state if this is the {@link #commonPool}, and no
2924 >     * additional effect if already shut down. Otherwise, tasks that
2925 >     * are in the process of being submitted or executed concurrently
2926 >     * during the course of this method may or may not be
2927 >     * rejected. This method cancels both existing and unexecuted
2928 >     * tasks, in order to permit termination in the presence of task
2929 >     * dependencies. So the method always returns an empty list
2930 >     * (unlike the case for some other Executors).
2931       *
2932       * @return an empty list
2933       * @throws SecurityException if a security manager exists and
# Line 1902 | Line 2937 | public class ForkJoinPool extends Abstra
2937       */
2938      public List<Runnable> shutdownNow() {
2939          checkPermission();
2940 <        shutdown = true;
2941 <        tryTerminate(true);
2940 >        if (this != commonPool)
2941 >            tryTerminate(true, true);
2942          return Collections.emptyList();
2943      }
2944  
# Line 1938 | Line 2973 | public class ForkJoinPool extends Abstra
2973      }
2974  
2975      /**
1941     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1942     */
1943    final boolean isAtLeastTerminating() {
1944        return (ctl & STOP_BIT) != 0L;
1945    }
1946
1947    /**
2976       * Returns {@code true} if this pool has been shut down.
2977       *
2978       * @return {@code true} if this pool has been shut down
2979       */
2980      public boolean isShutdown() {
2981 <        return shutdown;
2981 >        return runState < 0;
2982      }
2983  
2984      /**
# Line 1967 | Line 2995 | public class ForkJoinPool extends Abstra
2995      public boolean awaitTermination(long timeout, TimeUnit unit)
2996          throws InterruptedException {
2997          long nanos = unit.toNanos(timeout);
2998 <        final ReentrantLock lock = this.submissionLock;
2999 <        lock.lock();
3000 <        try {
3001 <            for (;;) {
3002 <                if (isTerminated())
3003 <                    return true;
3004 <                if (nanos <= 0)
3005 <                    return false;
3006 <                nanos = termination.awaitNanos(nanos);
2998 >        if (isTerminated())
2999 >            return true;
3000 >        long startTime = System.nanoTime();
3001 >        boolean terminated = false;
3002 >        synchronized (this) {
3003 >            for (long waitTime = nanos, millis = 0L;;) {
3004 >                if (terminated = isTerminated() ||
3005 >                    waitTime <= 0L ||
3006 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3007 >                    break;
3008 >                wait(millis);
3009 >                waitTime = nanos - (System.nanoTime() - startTime);
3010              }
1980        } finally {
1981            lock.unlock();
3011          }
3012 +        return terminated;
3013      }
3014  
3015      /**
# Line 2078 | Line 3108 | public class ForkJoinPool extends Abstra
3108      public static void managedBlock(ManagedBlocker blocker)
3109          throws InterruptedException {
3110          Thread t = Thread.currentThread();
3111 <        if (t instanceof ForkJoinWorkerThread) {
3112 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3113 <            w.pool.awaitBlocker(blocker);
3114 <        }
3115 <        else {
3116 <            do {} while (!blocker.isReleasable() && !blocker.block());
3111 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3112 >                          ((ForkJoinWorkerThread)t).pool : null);
3113 >        while (!blocker.isReleasable()) {
3114 >            if (p == null || p.tryCompensate(null, blocker)) {
3115 >                try {
3116 >                    do {} while (!blocker.isReleasable() && !blocker.block());
3117 >                } finally {
3118 >                    if (p != null)
3119 >                        p.incrementActiveCount();
3120 >                }
3121 >                break;
3122 >            }
3123          }
3124      }
3125  
# Line 2092 | Line 3128 | public class ForkJoinPool extends Abstra
3128      // implement RunnableFuture.
3129  
3130      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3131 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3131 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3132      }
3133  
3134      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3135 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3135 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3136      }
3137  
3138      // Unsafe mechanics
3139 <    private static final sun.misc.Unsafe UNSAFE;
3140 <    private static final long ctlOffset;
3141 <    private static final long stealCountOffset;
3142 <    private static final long blockedCountOffset;
2107 <    private static final long quiescerCountOffset;
2108 <    private static final long scanGuardOffset;
2109 <    private static final long nextWorkerNumberOffset;
2110 <    private static final long ABASE;
3139 >    private static final sun.misc.Unsafe U;
3140 >    private static final long CTL;
3141 >    private static final long PARKBLOCKER;
3142 >    private static final int ABASE;
3143      private static final int ASHIFT;
3144 +    private static final long NEXTWORKERNUMBER;
3145 +    private static final long STEALCOUNT;
3146 +    private static final long MAINLOCK;
3147  
3148      static {
3149          poolNumberGenerator = new AtomicInteger();
3150 <        workerSeedGenerator = new Random();
3150 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
3151          modifyThreadPermission = new RuntimePermission("modifyThread");
3152          defaultForkJoinWorkerThreadFactory =
3153              new DefaultForkJoinWorkerThreadFactory();
3154 +        submitters = new ThreadSubmitter();
3155          int s;
3156          try {
3157 <            UNSAFE = getUnsafe();
3158 <            Class k = ForkJoinPool.class;
3159 <            ctlOffset = UNSAFE.objectFieldOffset
3157 >            U = getUnsafe();
3158 >            Class<?> k = ForkJoinPool.class;
3159 >            Class<?> ak = ForkJoinTask[].class;
3160 >            CTL = U.objectFieldOffset
3161                  (k.getDeclaredField("ctl"));
3162 <            stealCountOffset = UNSAFE.objectFieldOffset
2126 <                (k.getDeclaredField("stealCount"));
2127 <            blockedCountOffset = UNSAFE.objectFieldOffset
2128 <                (k.getDeclaredField("blockedCount"));
2129 <            quiescerCountOffset = UNSAFE.objectFieldOffset
2130 <                (k.getDeclaredField("quiescerCount"));
2131 <            scanGuardOffset = UNSAFE.objectFieldOffset
2132 <                (k.getDeclaredField("scanGuard"));
2133 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
3162 >            NEXTWORKERNUMBER = U.objectFieldOffset
3163                  (k.getDeclaredField("nextWorkerNumber"));
3164 <            Class a = ForkJoinTask[].class;
3165 <            ABASE = UNSAFE.arrayBaseOffset(a);
3166 <            s = UNSAFE.arrayIndexScale(a);
3164 >            STEALCOUNT = U.objectFieldOffset
3165 >                (k.getDeclaredField("stealCount"));
3166 >            MAINLOCK = U.objectFieldOffset
3167 >                (k.getDeclaredField("mainLock"));
3168 >            Class<?> tk = Thread.class;
3169 >            PARKBLOCKER = U.objectFieldOffset
3170 >                (tk.getDeclaredField("parkBlocker"));
3171 >            ABASE = U.arrayBaseOffset(ak);
3172 >            s = U.arrayIndexScale(ak);
3173 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3174          } catch (Exception e) {
3175              throw new Error(e);
3176          }
3177          if ((s & (s-1)) != 0)
3178              throw new Error("data type scale not a power of two");
3179 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3179 >        try { // Establish common pool
3180 >            String pp = System.getProperty(propPrefix + "parallelism");
3181 >            String fp = System.getProperty(propPrefix + "threadFactory");
3182 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3183 >            ForkJoinWorkerThreadFactory fac = (fp == null) ?
3184 >                defaultForkJoinWorkerThreadFactory :
3185 >                ((ForkJoinWorkerThreadFactory)ClassLoader.
3186 >                 getSystemClassLoader().loadClass(fp).newInstance());
3187 >            Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3188 >                ((Thread.UncaughtExceptionHandler)ClassLoader.
3189 >                 getSystemClassLoader().loadClass(up).newInstance());
3190 >            int par;
3191 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3192 >                par = Runtime.getRuntime().availableProcessors();
3193 >            if (par > MAX_CAP)
3194 >                par = MAX_CAP;
3195 >            commonPoolParallelism = par;
3196 >            int n = par - 1; // precompute submit mask
3197 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3198 >            n |= n >>> 8; n |= n >>> 16;
3199 >            int mask = ((n + 1) << 1) - 1;
3200 >            commonPool = new ForkJoinPool(par, mask, fac, ueh);
3201 >        } catch (Exception e) {
3202 >            throw new Error(e);
3203 >        }
3204      }
3205  
3206      /**
# Line 2170 | Line 3230 | public class ForkJoinPool extends Abstra
3230              }
3231          }
3232      }
3233 +
3234   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines