ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.48 by jsr166, Thu Aug 6 06:41:34 2009 UTC vs.
Revision 1.99 by dl, Wed Mar 23 11:27:43 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32   * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 37 | import java.util.concurrent.atomic.Atomi
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are stalled waiting to join others. However, no such adjustments
51 < * are performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 62 | Line 58 | import java.util.concurrent.atomic.Atomi
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 116 | import java.util.concurrent.atomic.Atomi
116   * {@code IllegalArgumentException}.
117   *
118   * <p>This implementation rejects submitted tasks (that is, by throwing
119 < * {@link RejectedExecutionException}) only when the pool is shut down.
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 94 | Line 125 | import java.util.concurrent.atomic.Atomi
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300 >     *
301 >     * Style notes: There is a lot of representation-level coupling
302 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306 >     * workers, and direct access to ForkJoinTask.status by both
307 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308 >     * trying to reduce this, since any associated future changes in
309 >     * representations will need to be accompanied by algorithmic
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
338      /**
339       * Factory for creating new {@link ForkJoinWorkerThread}s.
340       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 355 | public class ForkJoinPool extends Abstra
355       * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
361 >            return new ForkJoinWorkerThread(pool);
362          }
363      }
364  
# Line 140 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
144 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
151 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 163 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
167 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * Array holding all worker threads in the pool. Initialized upon
395 <     * first use. Array size must be a power of two.  Updates and
396 <     * replacements are protected by workerLock, but it is always kept
397 <     * in a consistent enough state to be randomly accessed without
398 <     * locking by workers performing work-stealing.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    volatile ForkJoinWorkerThread[] workers;
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Lock protecting access to workers.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private final ReentrantLock workerLock;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Condition for awaitTermination.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private final Condition termination;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420 >
421 >    /**
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426 >     */
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 >
429 >    /**
430 >     * Array serving as submission queue. Initialized upon construction.
431 >     */
432 >    private ForkJoinTask<?>[] submissionQueue;
433 >
434 >    /**
435 >     * Lock protecting submissions array for addSubmission
436 >     */
437 >    private final ReentrantLock submissionLock;
438  
439      /**
440 <     * The uncaught exception handler used when any worker
441 <     * abruptly terminates
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442       */
443 <    private Thread.UncaughtExceptionHandler ueh;
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 197 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Head of stack of threads that were created to maintain
452 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile WaitQueueNode spareStack;
454 >    final Thread.UncaughtExceptionHandler ueh;
455  
456      /**
457 <     * Sum of per-thread steal counts, updated only when threads are
208 <     * idle or terminating.
457 >     * Prefix for assigning names to worker threads
458       */
459 <    private final AtomicLong stealCount;
459 >    private final String workerNamePrefix;
460  
461      /**
462 <     * Queue for external submissions.
462 >     * Sum of per-thread steal counts, updated only when threads are
463 >     * idle or terminating.
464       */
465 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Head of Treiber stack for barrier sync. See below for explanation.
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487       */
488 <    private volatile WaitQueueNode syncStack;
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * The count for event barrier
524 >     * The target parallelism level.
525       */
526 <    private volatile long eventCount;
526 >    final int parallelism;
527  
528      /**
529 <     * Pool number, just for assigning useful names to worker threads
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private final int poolNumber;
534 >    volatile int queueBase;
535  
536      /**
537 <     * The maximum allowed pool size
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private volatile int maxPoolSize;
542 >    int queueTop;
543  
544      /**
545 <     * The desired parallelism level, updated only under workerLock.
545 >     * True when shutdown() has been called.
546       */
547 <    private volatile int parallelism;
547 >    volatile boolean shutdown;
548  
549      /**
550       * True if use local fifo, not default lifo, for local polling
551 +     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private volatile boolean locallyFifo;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * Holds number of total (i.e., created and not yet terminated)
557 <     * and running (i.e., not blocked on joins or other managed sync)
558 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private volatile int workerCounts;
560 >    volatile int quiescerCount;
561  
562 <    private static int totalCountOf(int s)           { return s >>> 16;  }
563 <    private static int runningCountOf(int s)         { return s & shortMask; }
564 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
562 >    /**
563 >     * The number of threads blocked in join.
564 >     */
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Adds delta (which may be negative) to running count.  This must
264 <     * be called before (with negative arg) and after (with positive)
265 <     * any managed synchronization (i.e., mainly, joins).
266 <     *
267 <     * @param delta the number to add
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void updateRunningCount(int delta) {
270 <        int s;
271 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
272 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Adds delta (which may be negative) to both total and running
276 <     * count.  This must be called upon creation and termination of
277 <     * worker threads.
278 <     *
279 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    private void updateWorkerCount(int delta) {
282 <        int d = delta + (delta << 16); // add to both lo and hi parts
283 <        int s;
284 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
285 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Lifecycle control. High word contains runState, low word
579 <     * contains the number of workers that are (probably) executing
580 <     * tasks. This value is atomically incremented before a worker
581 <     * gets a task to run, and decremented when worker has no tasks
582 <     * and cannot find any. These two fields are bundled together to
583 <     * support correct termination triggering.  Note: activeCount
584 <     * CAS'es cheat by assuming active count is in low word, so need
585 <     * to be modified if this changes
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private volatile int runControl;
587 >    volatile int scanGuard;
588  
589 <    // RunState values. Order among values matters
300 <    private static final int RUNNING     = 0;
301 <    private static final int SHUTDOWN    = 1;
302 <    private static final int TERMINATING = 2;
303 <    private static final int TERMINATED  = 3;
589 >    private static final int SG_UNIT = 1 << 16;
590  
591 <    private static int runStateOf(int c)             { return c >>> 16; }
592 <    private static int activeCountOf(int c)          { return c & shortMask; }
593 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
591 >    /**
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598 >     */
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Tries incrementing active count; fails on contention.
604 <     * Called by workers before/during executing tasks.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608       *
609 <     * @return true on success
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Tries decrementing active count; fails on contention.
322 <     * Possibly triggers termination on success.
323 <     * Called by workers when they can't find tasks.
324 <     *
325 <     * @return true on success
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c = runControl;
630 <        int nextc = c - 1;
631 <        if (!casRunControl(c, nextc))
632 <            return false;
633 <        if (canTerminateOnShutdown(nextc))
634 <            terminateOnShutdown();
635 <        return true;
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Returns {@code true} if argument represents zero active count
671 <     * and nonzero runstate, which is the triggering condition for
672 <     * terminating on shutdown.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private static boolean canTerminateOnShutdown(int c) {
676 <        // i.e. least bit is nonzero runState bit
677 <        return ((c & -c) >>> 16) != 0;
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690 >        }
691 >        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Transition run state to at least the given state. Return true
698 <     * if not already at least given state.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private boolean transitionRunStateTo(int state) {
716 <        for (;;) {
717 <            int c = runControl;
718 <            if (runStateOf(c) >= state)
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737 >            }
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757                  return false;
758 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
758 >            }
759 >            return true;                         // all queues empty
760 >        }
761 >    }
762 >
763 >    /**
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent, possibly
766 >     * terminates worker upon exit.  Otherwise, before blocking,
767 >     * rescans queues to avoid missed signals.  Upon finding work,
768 >     * releases at least one worker (which may be the current
769 >     * worker). Rescans restart upon detected staleness or failure to
770 >     * release due to contention. Note the unusual conventions about
771 >     * Thread.interrupt here and elsewhere: Because interrupts are
772 >     * used solely to alert threads to check termination, which is
773 >     * checked here anyway, we clear status (using Thread.interrupted)
774 >     * before any call to park, so that park does not immediately
775 >     * return due to status being set via some other unrelated call to
776 >     * interrupt in user code.
777 >     *
778 >     * @param w the calling worker
779 >     * @param c the ctl value on entry
780 >     * @return true if waited or another thread was released upon enq
781 >     */
782 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783 >        int v = w.eventCount;
784 >        w.nextWait = (int)c;                      // w's successor record
785 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 >            long d = ctl; // return true if lost to a deq, to force scan
788 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789 >        }
790 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
791 >            long s = stealCount;
792 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793 >                sc = w.stealCount = 0;
794 >            else if (w.eventCount != v)
795 >                return true;                      // update next time
796 >        }
797 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802                  return true;
803 +            if (!rescanned) {
804 +                int g = scanGuard, m = g & SMASK;
805 +                ForkJoinWorkerThread[] ws = workers;
806 +                if (ws != null && m < ws.length) {
807 +                    rescanned = true;
808 +                    for (int i = 0; i <= m; ++i) {
809 +                        ForkJoinWorkerThread u = ws[i];
810 +                        if (u != null) {
811 +                            if (u.queueBase != u.queueTop &&
812 +                                !tryReleaseWaiter())
813 +                                rescanned = false; // contended
814 +                            if (w.eventCount != v)
815 +                                return true;
816 +                        }
817 +                    }
818 +                }
819 +                if (scanGuard != g ||              // stale
820 +                    (queueBase != queueTop && !tryReleaseWaiter()))
821 +                    rescanned = false;
822 +                if (!rescanned)
823 +                    Thread.yield();                // reduce contention
824 +                else
825 +                    Thread.interrupted();          // clear before park
826 +            }
827 +            else {
828 +                w.parked = true;                   // must recheck
829 +                if (w.eventCount != v) {
830 +                    w.parked = false;
831 +                    return true;
832 +                }
833 +                LockSupport.park(this);
834 +                rescanned = w.parked = false;
835 +            }
836          }
837      }
838  
839      /**
840 <     * Controls whether to add spares to maintain parallelism
841 <     */
842 <    private volatile boolean maintainsParallelism;
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime <
868 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 >                    Thread.interrupted();          // spurious wakeup
870 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 >                                                   currentCtl, prevCtl)) {
872 >                    w.terminate = true;            // restore previous
873 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 >                    break;
875 >                }
876 >            }
877 >        }
878 >    }
879  
880 <    // Constructors
880 >    // Submissions
881  
882      /**
883 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
884 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
371 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
883 >     * Enqueues the given task in the submissionQueue.  Same idea as
884 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885       *
886 <     * @throws SecurityException if a security manager exists and
374 <     *         the caller is not permitted to modify threads
375 <     *         because it does not hold {@link
376 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
886 >     * @param t the task
887       */
888 <    public ForkJoinPool() {
889 <        this(Runtime.getRuntime().availableProcessors(),
890 <             defaultForkJoinWorkerThreadFactory);
888 >    private void addSubmission(ForkJoinTask<?> t) {
889 >        final ReentrantLock lock = this.submissionLock;
890 >        lock.lock();
891 >        try {
892 >            ForkJoinTask<?>[] q; int s, m;
893 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 >                UNSAFE.putOrderedObject(q, u, t);
896 >                queueTop = s + 1;
897 >                if (s - queueBase == m)
898 >                    growSubmissionQueue();
899 >            }
900 >        } finally {
901 >            lock.unlock();
902 >        }
903 >        signalWork();
904      }
905  
906 +    //  (pollSubmission is defined below with exported methods)
907 +
908      /**
909 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
910 <     * level and using the {@linkplain
386 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
387 <     *
388 <     * @param parallelism the parallelism level
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     *         equal to zero, or greater than implementation limit
391 <     * @throws SecurityException if a security manager exists and
392 <     *         the caller is not permitted to modify threads
393 <     *         because it does not hold {@link
394 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
909 >     * Creates or doubles submissionQueue array.
910 >     * Basically identical to ForkJoinWorkerThread version.
911       */
912 <    public ForkJoinPool(int parallelism) {
913 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
912 >    private void growSubmissionQueue() {
913 >        ForkJoinTask<?>[] oldQ = submissionQueue;
914 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915 >        if (size > MAXIMUM_QUEUE_CAPACITY)
916 >            throw new RejectedExecutionException("Queue capacity exceeded");
917 >        if (size < INITIAL_QUEUE_CAPACITY)
918 >            size = INITIAL_QUEUE_CAPACITY;
919 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 >        int mask = size - 1;
921 >        int top = queueTop;
922 >        int oldMask;
923 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 >            for (int b = queueBase; b != top; ++b) {
925 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 >                    UNSAFE.putObjectVolatile
929 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 >            }
931 >        }
932 >    }
933 >
934 >    // Blocking support
935 >
936 >    /**
937 >     * Tries to increment blockedCount, decrement active count
938 >     * (sometimes implicitly) and possibly release or create a
939 >     * compensating worker in preparation for blocking. Fails
940 >     * on contention or termination.
941 >     *
942 >     * @return true if the caller can block, else should recheck and retry
943 >     */
944 >    private boolean tryPreBlock() {
945 >        int b = blockedCount;
946 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947 >            int pc = parallelism;
948 >            do {
949 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 >                int e, ac, tc, rc, i;
951 >                long c = ctl;
952 >                int u = (int)(c >>> 32);
953 >                if ((e = (int)c) < 0) {
954 >                                                 // skip -- terminating
955 >                }
956 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957 >                         (ws = workers) != null &&
958 >                         (i = ~e & SMASK) < ws.length &&
959 >                         (w = ws[i]) != null) {
960 >                    long nc = ((long)(w.nextWait & E_MASK) |
961 >                               (c & (AC_MASK|TC_MASK)));
962 >                    if (w.eventCount == e &&
963 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 >                        if (w.parked)
966 >                            UNSAFE.unpark(w);
967 >                        return true;             // release an idle worker
968 >                    }
969 >                }
970 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973 >                        return true;             // no compensation needed
974 >                }
975 >                else if (tc + pc < MAX_ID) {
976 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 >                        addWorker();
979 >                        return true;            // create a replacement
980 >                    }
981 >                }
982 >                // try to back out on any failure and let caller retry
983 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                               b = blockedCount, b - 1));
985 >        }
986 >        return false;
987      }
988  
989      /**
990 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
402 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
404 <     *
405 <     * @param factory the factory for creating new threads
406 <     * @throws NullPointerException if the factory is null
407 <     * @throws SecurityException if a security manager exists and
408 <     *         the caller is not permitted to modify threads
409 <     *         because it does not hold {@link
410 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
990 >     * Decrements blockedCount and increments active count
991       */
992 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
993 <        this(Runtime.getRuntime().availableProcessors(), factory);
992 >    private void postBlock() {
993 >        long c;
994 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 >                                                c = ctl, c + AC_UNIT));
996 >        int b;
997 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 >                                              b = blockedCount, b - 1));
999      }
1000  
1001      /**
1002 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1003 <     * thread factory.
1002 >     * Possibly blocks waiting for the given task to complete, or
1003 >     * cancels the task if terminating.  Fails to wait if contended.
1004       *
1005 <     * @param parallelism the parallelism level
421 <     * @param factory the factory for creating new threads
422 <     * @throws IllegalArgumentException if parallelism less than or
423 <     *         equal to zero, or greater than implementation limit
424 <     * @throws NullPointerException if the factory is null
425 <     * @throws SecurityException if a security manager exists and
426 <     *         the caller is not permitted to modify threads
427 <     *         because it does not hold {@link
428 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1005 >     * @param joinMe the task
1006       */
1007 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1008 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1009 <            throw new IllegalArgumentException();
1010 <        if (factory == null)
1011 <            throw new NullPointerException();
1012 <        checkPermission();
1013 <        this.factory = factory;
1014 <        this.parallelism = parallelism;
1015 <        this.maxPoolSize = MAX_THREADS;
1016 <        this.maintainsParallelism = true;
1017 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
441 <        this.workerLock = new ReentrantLock();
442 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
444 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
445 <        // worker array and workers are lazily constructed
1007 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008 >        int s;
1009 >        Thread.interrupted(); // clear interrupts before checking termination
1010 >        if (joinMe.status >= 0) {
1011 >            if (tryPreBlock()) {
1012 >                joinMe.tryAwaitDone(0L);
1013 >                postBlock();
1014 >            }
1015 >            else if ((ctl & STOP_BIT) != 0L)
1016 >                joinMe.cancelIgnoringExceptions();
1017 >        }
1018      }
1019  
1020      /**
1021 <     * Creates a new worker thread using factory.
1021 >     * Possibly blocks the given worker waiting for joinMe to
1022 >     * complete or timeout
1023       *
1024 <     * @param index the index to assign worker
1025 <     * @return new worker, or null if factory failed
1024 >     * @param joinMe the task
1025 >     * @param millis the wait time for underlying Object.wait
1026       */
1027 <    private ForkJoinWorkerThread createWorker(int index) {
1028 <        Thread.UncaughtExceptionHandler h = ueh;
1029 <        ForkJoinWorkerThread w = factory.newThread(this);
1030 <        if (w != null) {
1031 <            w.poolIndex = index;
1032 <            w.setDaemon(true);
1033 <            w.setAsyncMode(locallyFifo);
1034 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1035 <            if (h != null)
1036 <                w.setUncaughtExceptionHandler(h);
1027 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1028 >        while (joinMe.status >= 0) {
1029 >            Thread.interrupted();
1030 >            if ((ctl & STOP_BIT) != 0L) {
1031 >                joinMe.cancelIgnoringExceptions();
1032 >                break;
1033 >            }
1034 >            if (tryPreBlock()) {
1035 >                long last = System.nanoTime();
1036 >                while (joinMe.status >= 0) {
1037 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1038 >                    if (millis <= 0)
1039 >                        break;
1040 >                    joinMe.tryAwaitDone(millis);
1041 >                    if (joinMe.status < 0)
1042 >                        break;
1043 >                    if ((ctl & STOP_BIT) != 0L) {
1044 >                        joinMe.cancelIgnoringExceptions();
1045 >                        break;
1046 >                    }
1047 >                    long now = System.nanoTime();
1048 >                    nanos -= now - last;
1049 >                    last = now;
1050 >                }
1051 >                postBlock();
1052 >                break;
1053 >            }
1054          }
465        return w;
1055      }
1056  
1057      /**
1058 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
1058 >     * If necessary, compensates for blocker, and blocks
1059       */
1060 <    private static int arraySizeFor(int poolSize) {
1061 <        if (poolSize <= 1)
1062 <            return 1;
1063 <        // See Hackers Delight, sec 3.2
1064 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
1065 <        c |= c >>>  1;
1066 <        c |= c >>>  2;
1067 <        c |= c >>>  4;
1068 <        c |= c >>>  8;
1069 <        c |= c >>> 16;
1070 <        return c + 1;
1060 >    private void awaitBlocker(ManagedBlocker blocker)
1061 >        throws InterruptedException {
1062 >        while (!blocker.isReleasable()) {
1063 >            if (tryPreBlock()) {
1064 >                try {
1065 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1066 >                } finally {
1067 >                    postBlock();
1068 >                }
1069 >                break;
1070 >            }
1071 >        }
1072      }
1073  
1074 +    // Creating, registering and deregistring workers
1075 +
1076      /**
1077 <     * Creates or resizes array if necessary to hold newLength.
1078 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
1077 >     * Tries to create and start a worker; minimally rolls back counts
1078 >     * on failure.
1079       */
1080 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1081 <        ForkJoinWorkerThread[] ws = workers;
1082 <        if (ws == null)
1083 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1084 <        else if (newLength > ws.length)
1085 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1080 >    private void addWorker() {
1081 >        Throwable ex = null;
1082 >        ForkJoinWorkerThread t = null;
1083 >        try {
1084 >            t = factory.newThread(this);
1085 >        } catch (Throwable e) {
1086 >            ex = e;
1087 >        }
1088 >        if (t == null) {  // null or exceptional factory return
1089 >            long c;       // adjust counts
1090 >            do {} while (!UNSAFE.compareAndSwapLong
1091 >                         (this, ctlOffset, c = ctl,
1092 >                          (((c - AC_UNIT) & AC_MASK) |
1093 >                           ((c - TC_UNIT) & TC_MASK) |
1094 >                           (c & ~(AC_MASK|TC_MASK)))));
1095 >            // Propagate exception if originating from an external caller
1096 >            if (!tryTerminate(false) && ex != null &&
1097 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1098 >                UNSAFE.throwException(ex);
1099 >        }
1100          else
1101 <            return ws;
1101 >            t.start();
1102      }
1103  
1104      /**
1105 <     * Tries to shrink workers into smaller array after one or more terminate.
1105 >     * Callback from ForkJoinWorkerThread constructor to assign a
1106 >     * public name
1107       */
1108 <    private void tryShrinkWorkerArray() {
1109 <        ForkJoinWorkerThread[] ws = workers;
1110 <        if (ws != null) {
1111 <            int len = ws.length;
1112 <            int last = len - 1;
509 <            while (last >= 0 && ws[last] == null)
510 <                --last;
511 <            int newLength = arraySizeFor(last+1);
512 <            if (newLength < len)
513 <                workers = Arrays.copyOf(ws, newLength);
1108 >    final String nextWorkerName() {
1109 >        for (int n;;) {
1110 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1111 >                                         n = nextWorkerNumber, ++n))
1112 >                return workerNamePrefix + n;
1113          }
1114      }
1115  
1116      /**
1117 <     * Initializes workers if necessary.
1117 >     * Callback from ForkJoinWorkerThread constructor to
1118 >     * determine its poolIndex and record in workers array.
1119 >     *
1120 >     * @param w the worker
1121 >     * @return the worker's pool index
1122       */
1123 <    final void ensureWorkerInitialization() {
1124 <        ForkJoinWorkerThread[] ws = workers;
1125 <        if (ws == null) {
1126 <            final ReentrantLock lock = this.workerLock;
1127 <            lock.lock();
1128 <            try {
1129 <                ws = workers;
1130 <                if (ws == null) {
1131 <                    int ps = parallelism;
1132 <                    ws = ensureWorkerArrayCapacity(ps);
1133 <                    for (int i = 0; i < ps; ++i) {
1134 <                        ForkJoinWorkerThread w = createWorker(i);
1135 <                        if (w != null) {
1136 <                            ws[i] = w;
1137 <                            w.start();
1138 <                            updateWorkerCount(1);
1123 >    final int registerWorker(ForkJoinWorkerThread w) {
1124 >        /*
1125 >         * In the typical case, a new worker acquires the lock, uses
1126 >         * next available index and returns quickly.  Since we should
1127 >         * not block callers (ultimately from signalWork or
1128 >         * tryPreBlock) waiting for the lock needed to do this, we
1129 >         * instead help release other workers while waiting for the
1130 >         * lock.
1131 >         */
1132 >        for (int g;;) {
1133 >            ForkJoinWorkerThread[] ws;
1134 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1135 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1136 >                                         g, g | SG_UNIT)) {
1137 >                int k = nextWorkerIndex;
1138 >                try {
1139 >                    if ((ws = workers) != null) { // ignore on shutdown
1140 >                        int n = ws.length;
1141 >                        if (k < 0 || k >= n || ws[k] != null) {
1142 >                            for (k = 0; k < n && ws[k] != null; ++k)
1143 >                                ;
1144 >                            if (k == n)
1145 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1146                          }
1147 +                        ws[k] = w;
1148 +                        nextWorkerIndex = k + 1;
1149 +                        int m = g & SMASK;
1150 +                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1151 +                    }
1152 +                } finally {
1153 +                    scanGuard = g;
1154 +                }
1155 +                return k;
1156 +            }
1157 +            else if ((ws = workers) != null) { // help release others
1158 +                for (ForkJoinWorkerThread u : ws) {
1159 +                    if (u != null && u.queueBase != u.queueTop) {
1160 +                        if (tryReleaseWaiter())
1161 +                            break;
1162                      }
1163                  }
1164 +            }
1165 +        }
1166 +    }
1167 +
1168 +    /**
1169 +     * Final callback from terminating worker.  Removes record of
1170 +     * worker from array, and adjusts counts. If pool is shutting
1171 +     * down, tries to complete termination.
1172 +     *
1173 +     * @param w the worker
1174 +     */
1175 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1176 +        int idx = w.poolIndex;
1177 +        int sc = w.stealCount;
1178 +        int steps = 0;
1179 +        // Remove from array, adjust worker counts and collect steal count.
1180 +        // We can intermix failed removes or adjusts with steal updates
1181 +        do {
1182 +            long s, c;
1183 +            int g;
1184 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1185 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1186 +                                         g, g |= SG_UNIT)) {
1187 +                ForkJoinWorkerThread[] ws = workers;
1188 +                if (ws != null && idx >= 0 &&
1189 +                    idx < ws.length && ws[idx] == w)
1190 +                    ws[idx] = null;    // verify
1191 +                nextWorkerIndex = idx;
1192 +                scanGuard = g + SG_UNIT;
1193 +                steps = 1;
1194 +            }
1195 +            if (steps == 1 &&
1196 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1197 +                                          (((c - AC_UNIT) & AC_MASK) |
1198 +                                           ((c - TC_UNIT) & TC_MASK) |
1199 +                                           (c & ~(AC_MASK|TC_MASK)))))
1200 +                steps = 2;
1201 +            if (sc != 0 &&
1202 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1203 +                                          s = stealCount, s + sc))
1204 +                sc = 0;
1205 +        } while (steps != 2 || sc != 0);
1206 +        if (!tryTerminate(false)) {
1207 +            if (ex != null)   // possibly replace if died abnormally
1208 +                signalWork();
1209 +            else
1210 +                tryReleaseWaiter();
1211 +        }
1212 +    }
1213 +
1214 +    // Shutdown and termination
1215 +
1216 +    /**
1217 +     * Possibly initiates and/or completes termination.
1218 +     *
1219 +     * @param now if true, unconditionally terminate, else only
1220 +     * if shutdown and empty queue and no active workers
1221 +     * @return true if now terminating or terminated
1222 +     */
1223 +    private boolean tryTerminate(boolean now) {
1224 +        long c;
1225 +        while (((c = ctl) & STOP_BIT) == 0) {
1226 +            if (!now) {
1227 +                if ((int)(c >> AC_SHIFT) != -parallelism)
1228 +                    return false;
1229 +                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1230 +                    queueBase != queueTop) {
1231 +                    if (ctl == c) // staleness check
1232 +                        return false;
1233 +                    continue;
1234 +                }
1235 +            }
1236 +            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1237 +                startTerminating();
1238 +        }
1239 +        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1240 +            final ReentrantLock lock = this.submissionLock;
1241 +            lock.lock();
1242 +            try {
1243 +                termination.signalAll();
1244              } finally {
1245                  lock.unlock();
1246              }
1247          }
1248 +        return true;
1249      }
1250  
1251      /**
1252 <     * Worker creation and startup for threads added via setParallelism.
1253 <     */
1254 <    private void createAndStartAddedWorkers() {
1255 <        resumeAllSpares();  // Allow spares to convert to nonspare
1256 <        int ps = parallelism;
1257 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1258 <        int len = ws.length;
1259 <        // Sweep through slots, to keep lowest indices most populated
1260 <        int k = 0;
1261 <        while (k < len) {
1262 <            if (ws[k] != null) {
1263 <                ++k;
1264 <                continue;
1252 >     * Runs up to three passes through workers: (0) Setting
1253 >     * termination status for each worker, followed by wakeups up to
1254 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1255 >     * lagging threads (likely in external tasks, but possibly also
1256 >     * blocked in joins).  Each pass repeats previous steps because of
1257 >     * potential lagging thread creation.
1258 >     */
1259 >    private void startTerminating() {
1260 >        cancelSubmissions();
1261 >        for (int pass = 0; pass < 3; ++pass) {
1262 >            ForkJoinWorkerThread[] ws = workers;
1263 >            if (ws != null) {
1264 >                for (ForkJoinWorkerThread w : ws) {
1265 >                    if (w != null) {
1266 >                        w.terminate = true;
1267 >                        if (pass > 0) {
1268 >                            w.cancelTasks();
1269 >                            if (pass > 1 && !w.isInterrupted()) {
1270 >                                try {
1271 >                                    w.interrupt();
1272 >                                } catch (SecurityException ignore) {
1273 >                                }
1274 >                            }
1275 >                        }
1276 >                    }
1277 >                }
1278 >                terminateWaiters();
1279              }
1280 <            int s = workerCounts;
1281 <            int tc = totalCountOf(s);
1282 <            int rc = runningCountOf(s);
1283 <            if (rc >= ps || tc >= ps)
1284 <                break;
1285 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1286 <                ForkJoinWorkerThread w = createWorker(k);
1287 <                if (w != null) {
1288 <                    ws[k++] = w;
1289 <                    w.start();
1280 >        }
1281 >    }
1282 >
1283 >    /**
1284 >     * Polls and cancels all submissions. Called only during termination.
1285 >     */
1286 >    private void cancelSubmissions() {
1287 >        while (queueBase != queueTop) {
1288 >            ForkJoinTask<?> task = pollSubmission();
1289 >            if (task != null) {
1290 >                try {
1291 >                    task.cancel(false);
1292 >                } catch (Throwable ignore) {
1293                  }
1294 <                else {
1295 <                    updateWorkerCount(-1); // back out on failed creation
1296 <                    break;
1294 >            }
1295 >        }
1296 >    }
1297 >
1298 >    /**
1299 >     * Tries to set the termination status of waiting workers, and
1300 >     * then wakes them up (after which they will terminate).
1301 >     */
1302 >    private void terminateWaiters() {
1303 >        ForkJoinWorkerThread[] ws = workers;
1304 >        if (ws != null) {
1305 >            ForkJoinWorkerThread w; long c; int i, e;
1306 >            int n = ws.length;
1307 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1308 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1309 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1310 >                                              (long)(w.nextWait & E_MASK) |
1311 >                                              ((c + AC_UNIT) & AC_MASK) |
1312 >                                              (c & (TC_MASK|STOP_BIT)))) {
1313 >                    w.terminate = true;
1314 >                    w.eventCount = e + EC_UNIT;
1315 >                    if (w.parked)
1316 >                        UNSAFE.unpark(w);
1317                  }
1318              }
1319          }
1320      }
1321  
1322 <    // Execution methods
1322 >    // misc ForkJoinWorkerThread support
1323  
1324      /**
1325 <     * Common code for execute, invoke and submit
1325 >     * Increment or decrement quiescerCount. Needed only to prevent
1326 >     * triggering shutdown if a worker is transiently inactive while
1327 >     * checking quiescence.
1328 >     *
1329 >     * @param delta 1 for increment, -1 for decrement
1330       */
1331 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1332 <        if (task == null)
1331 >    final void addQuiescerCount(int delta) {
1332 >        int c;
1333 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1334 >                                              c = quiescerCount, c + delta));
1335 >    }
1336 >
1337 >    /**
1338 >     * Directly increment or decrement active count without
1339 >     * queuing. This method is used to transiently assert inactivation
1340 >     * while checking quiescence.
1341 >     *
1342 >     * @param delta 1 for increment, -1 for decrement
1343 >     */
1344 >    final void addActiveCount(int delta) {
1345 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1346 >        long c;
1347 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1348 >                                                ((c + d) & AC_MASK) |
1349 >                                                (c & ~AC_MASK)));
1350 >    }
1351 >
1352 >    /**
1353 >     * Returns the approximate (non-atomic) number of idle threads per
1354 >     * active thread.
1355 >     */
1356 >    final int idlePerActive() {
1357 >        // Approximate at powers of two for small values, saturate past 4
1358 >        int p = parallelism;
1359 >        int a = p + (int)(ctl >> AC_SHIFT);
1360 >        return (a > (p >>>= 1) ? 0 :
1361 >                a > (p >>>= 1) ? 1 :
1362 >                a > (p >>>= 1) ? 2 :
1363 >                a > (p >>>= 1) ? 4 :
1364 >                8);
1365 >    }
1366 >
1367 >    // Exported methods
1368 >
1369 >    // Constructors
1370 >
1371 >    /**
1372 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1373 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1374 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1375 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1376 >     *
1377 >     * @throws SecurityException if a security manager exists and
1378 >     *         the caller is not permitted to modify threads
1379 >     *         because it does not hold {@link
1380 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1381 >     */
1382 >    public ForkJoinPool() {
1383 >        this(Runtime.getRuntime().availableProcessors(),
1384 >             defaultForkJoinWorkerThreadFactory, null, false);
1385 >    }
1386 >
1387 >    /**
1388 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1389 >     * level, the {@linkplain
1390 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1391 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1392 >     *
1393 >     * @param parallelism the parallelism level
1394 >     * @throws IllegalArgumentException if parallelism less than or
1395 >     *         equal to zero, or greater than implementation limit
1396 >     * @throws SecurityException if a security manager exists and
1397 >     *         the caller is not permitted to modify threads
1398 >     *         because it does not hold {@link
1399 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1400 >     */
1401 >    public ForkJoinPool(int parallelism) {
1402 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1403 >    }
1404 >
1405 >    /**
1406 >     * Creates a {@code ForkJoinPool} with the given parameters.
1407 >     *
1408 >     * @param parallelism the parallelism level. For default value,
1409 >     * use {@link java.lang.Runtime#availableProcessors}.
1410 >     * @param factory the factory for creating new threads. For default value,
1411 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1412 >     * @param handler the handler for internal worker threads that
1413 >     * terminate due to unrecoverable errors encountered while executing
1414 >     * tasks. For default value, use {@code null}.
1415 >     * @param asyncMode if true,
1416 >     * establishes local first-in-first-out scheduling mode for forked
1417 >     * tasks that are never joined. This mode may be more appropriate
1418 >     * than default locally stack-based mode in applications in which
1419 >     * worker threads only process event-style asynchronous tasks.
1420 >     * For default value, use {@code false}.
1421 >     * @throws IllegalArgumentException if parallelism less than or
1422 >     *         equal to zero, or greater than implementation limit
1423 >     * @throws NullPointerException if the factory is null
1424 >     * @throws SecurityException if a security manager exists and
1425 >     *         the caller is not permitted to modify threads
1426 >     *         because it does not hold {@link
1427 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1428 >     */
1429 >    public ForkJoinPool(int parallelism,
1430 >                        ForkJoinWorkerThreadFactory factory,
1431 >                        Thread.UncaughtExceptionHandler handler,
1432 >                        boolean asyncMode) {
1433 >        checkPermission();
1434 >        if (factory == null)
1435              throw new NullPointerException();
1436 <        if (isShutdown())
1437 <            throw new RejectedExecutionException();
1438 <        if (workers == null)
1439 <            ensureWorkerInitialization();
1440 <        submissionQueue.offer(task);
1441 <        signalIdleWorkers();
1436 >        if (parallelism <= 0 || parallelism > MAX_ID)
1437 >            throw new IllegalArgumentException();
1438 >        this.parallelism = parallelism;
1439 >        this.factory = factory;
1440 >        this.ueh = handler;
1441 >        this.locallyFifo = asyncMode;
1442 >        long np = (long)(-parallelism); // offset ctl counts
1443 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1444 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1445 >        // initialize workers array with room for 2*parallelism if possible
1446 >        int n = parallelism << 1;
1447 >        if (n >= MAX_ID)
1448 >            n = MAX_ID;
1449 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1450 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1451 >        }
1452 >        workers = new ForkJoinWorkerThread[n + 1];
1453 >        this.submissionLock = new ReentrantLock();
1454 >        this.termination = submissionLock.newCondition();
1455 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1456 >        sb.append(poolNumberGenerator.incrementAndGet());
1457 >        sb.append("-worker-");
1458 >        this.workerNamePrefix = sb.toString();
1459      }
1460  
1461 +    // Execution methods
1462 +
1463      /**
1464       * Performs the given task, returning its result upon completion.
1465 +     * If the computation encounters an unchecked Exception or Error,
1466 +     * it is rethrown as the outcome of this invocation.  Rethrown
1467 +     * exceptions behave in the same way as regular exceptions, but,
1468 +     * when possible, contain stack traces (as displayed for example
1469 +     * using {@code ex.printStackTrace()}) of both the current thread
1470 +     * as well as the thread actually encountering the exception;
1471 +     * minimally only the latter.
1472       *
1473       * @param task the task
1474       * @return the task's result
# Line 602 | Line 1477 | public class ForkJoinPool extends Abstra
1477       *         scheduled for execution
1478       */
1479      public <T> T invoke(ForkJoinTask<T> task) {
1480 <        doSubmit(task);
1481 <        return task.join();
1480 >        Thread t = Thread.currentThread();
1481 >        if (task == null)
1482 >            throw new NullPointerException();
1483 >        if (shutdown)
1484 >            throw new RejectedExecutionException();
1485 >        if ((t instanceof ForkJoinWorkerThread) &&
1486 >            ((ForkJoinWorkerThread)t).pool == this)
1487 >            return task.invoke();  // bypass submit if in same pool
1488 >        else {
1489 >            addSubmission(task);
1490 >            return task.join();
1491 >        }
1492 >    }
1493 >
1494 >    /**
1495 >     * Unless terminating, forks task if within an ongoing FJ
1496 >     * computation in the current pool, else submits as external task.
1497 >     */
1498 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1499 >        ForkJoinWorkerThread w;
1500 >        Thread t = Thread.currentThread();
1501 >        if (shutdown)
1502 >            throw new RejectedExecutionException();
1503 >        if ((t instanceof ForkJoinWorkerThread) &&
1504 >            (w = (ForkJoinWorkerThread)t).pool == this)
1505 >            w.pushTask(task);
1506 >        else
1507 >            addSubmission(task);
1508      }
1509  
1510      /**
# Line 615 | Line 1516 | public class ForkJoinPool extends Abstra
1516       *         scheduled for execution
1517       */
1518      public void execute(ForkJoinTask<?> task) {
1519 <        doSubmit(task);
1519 >        if (task == null)
1520 >            throw new NullPointerException();
1521 >        forkOrSubmit(task);
1522      }
1523  
1524      // AbstractExecutorService methods
# Line 626 | Line 1529 | public class ForkJoinPool extends Abstra
1529       *         scheduled for execution
1530       */
1531      public void execute(Runnable task) {
1532 +        if (task == null)
1533 +            throw new NullPointerException();
1534          ForkJoinTask<?> job;
1535          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1536              job = (ForkJoinTask<?>) task;
1537          else
1538              job = ForkJoinTask.adapt(task, null);
1539 <        doSubmit(job);
1539 >        forkOrSubmit(job);
1540 >    }
1541 >
1542 >    /**
1543 >     * Submits a ForkJoinTask for execution.
1544 >     *
1545 >     * @param task the task to submit
1546 >     * @return the task
1547 >     * @throws NullPointerException if the task is null
1548 >     * @throws RejectedExecutionException if the task cannot be
1549 >     *         scheduled for execution
1550 >     */
1551 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1552 >        if (task == null)
1553 >            throw new NullPointerException();
1554 >        forkOrSubmit(task);
1555 >        return task;
1556      }
1557  
1558      /**
# Line 640 | Line 1561 | public class ForkJoinPool extends Abstra
1561       *         scheduled for execution
1562       */
1563      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1564 +        if (task == null)
1565 +            throw new NullPointerException();
1566          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1567 <        doSubmit(job);
1567 >        forkOrSubmit(job);
1568          return job;
1569      }
1570  
# Line 651 | Line 1574 | public class ForkJoinPool extends Abstra
1574       *         scheduled for execution
1575       */
1576      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1577 +        if (task == null)
1578 +            throw new NullPointerException();
1579          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1580 <        doSubmit(job);
1580 >        forkOrSubmit(job);
1581          return job;
1582      }
1583  
# Line 662 | Line 1587 | public class ForkJoinPool extends Abstra
1587       *         scheduled for execution
1588       */
1589      public ForkJoinTask<?> submit(Runnable task) {
1590 +        if (task == null)
1591 +            throw new NullPointerException();
1592          ForkJoinTask<?> job;
1593          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1594              job = (ForkJoinTask<?>) task;
1595          else
1596              job = ForkJoinTask.adapt(task, null);
1597 <        doSubmit(job);
1597 >        forkOrSubmit(job);
1598          return job;
1599      }
1600  
1601      /**
675     * Submits a ForkJoinTask for execution.
676     *
677     * @param task the task to submit
678     * @return the task
679     * @throws NullPointerException if the task is null
680     * @throws RejectedExecutionException if the task cannot be
681     *         scheduled for execution
682     */
683    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
684        doSubmit(task);
685        return task;
686    }
687
688
689    /**
1602       * @throws NullPointerException       {@inheritDoc}
1603       * @throws RejectedExecutionException {@inheritDoc}
1604       */
# Line 698 | Line 1610 | public class ForkJoinPool extends Abstra
1610          invoke(new InvokeAll<T>(forkJoinTasks));
1611  
1612          @SuppressWarnings({"unchecked", "rawtypes"})
1613 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1613 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1614          return futures;
1615      }
1616  
# Line 712 | Line 1624 | public class ForkJoinPool extends Abstra
1624          private static final long serialVersionUID = -7914297376763021607L;
1625      }
1626  
715    // Configuration and status settings and queries
716
1627      /**
1628       * Returns the factory used for constructing new workers.
1629       *
# Line 730 | Line 1640 | public class ForkJoinPool extends Abstra
1640       * @return the handler, or {@code null} if none
1641       */
1642      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1643 <        Thread.UncaughtExceptionHandler h;
734 <        final ReentrantLock lock = this.workerLock;
735 <        lock.lock();
736 <        try {
737 <            h = ueh;
738 <        } finally {
739 <            lock.unlock();
740 <        }
741 <        return h;
742 <    }
743 <
744 <    /**
745 <     * Sets the handler for internal worker threads that terminate due
746 <     * to unrecoverable errors encountered while executing tasks.
747 <     * Unless set, the current default or ThreadGroup handler is used
748 <     * as handler.
749 <     *
750 <     * @param h the new handler
751 <     * @return the old handler, or {@code null} if none
752 <     * @throws SecurityException if a security manager exists and
753 <     *         the caller is not permitted to modify threads
754 <     *         because it does not hold {@link
755 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
756 <     */
757 <    public Thread.UncaughtExceptionHandler
758 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
759 <        checkPermission();
760 <        Thread.UncaughtExceptionHandler old = null;
761 <        final ReentrantLock lock = this.workerLock;
762 <        lock.lock();
763 <        try {
764 <            old = ueh;
765 <            ueh = h;
766 <            ForkJoinWorkerThread[] ws = workers;
767 <            if (ws != null) {
768 <                for (int i = 0; i < ws.length; ++i) {
769 <                    ForkJoinWorkerThread w = ws[i];
770 <                    if (w != null)
771 <                        w.setUncaughtExceptionHandler(h);
772 <                }
773 <            }
774 <        } finally {
775 <            lock.unlock();
776 <        }
777 <        return old;
778 <    }
779 <
780 <
781 <    /**
782 <     * Sets the target parallelism level of this pool.
783 <     *
784 <     * @param parallelism the target parallelism
785 <     * @throws IllegalArgumentException if parallelism less than or
786 <     * equal to zero or greater than maximum size bounds
787 <     * @throws SecurityException if a security manager exists and
788 <     *         the caller is not permitted to modify threads
789 <     *         because it does not hold {@link
790 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
791 <     */
792 <    public void setParallelism(int parallelism) {
793 <        checkPermission();
794 <        if (parallelism <= 0 || parallelism > maxPoolSize)
795 <            throw new IllegalArgumentException();
796 <        final ReentrantLock lock = this.workerLock;
797 <        lock.lock();
798 <        try {
799 <            if (isProcessingTasks()) {
800 <                int p = this.parallelism;
801 <                this.parallelism = parallelism;
802 <                if (parallelism > p)
803 <                    createAndStartAddedWorkers();
804 <                else
805 <                    trimSpares();
806 <            }
807 <        } finally {
808 <            lock.unlock();
809 <        }
810 <        signalIdleWorkers();
1643 >        return ueh;
1644      }
1645  
1646      /**
# Line 821 | Line 1654 | public class ForkJoinPool extends Abstra
1654  
1655      /**
1656       * Returns the number of worker threads that have started but not
1657 <     * yet terminated.  This result returned by this method may differ
1657 >     * yet terminated.  The result returned by this method may differ
1658       * from {@link #getParallelism} when threads are created to
1659       * maintain parallelism when others are cooperatively blocked.
1660       *
1661       * @return the number of worker threads
1662       */
1663      public int getPoolSize() {
1664 <        return totalCountOf(workerCounts);
832 <    }
833 <
834 <    /**
835 <     * Returns the maximum number of threads allowed to exist in the
836 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
837 <     * maximum is an implementation-defined value designed only to
838 <     * prevent runaway growth.
839 <     *
840 <     * @return the maximum
841 <     */
842 <    public int getMaximumPoolSize() {
843 <        return maxPoolSize;
844 <    }
845 <
846 <    /**
847 <     * Sets the maximum number of threads allowed to exist in the
848 <     * pool. The given value should normally be greater than or equal
849 <     * to the {@link #getParallelism parallelism} level. Setting this
850 <     * value has no effect on current pool size. It controls
851 <     * construction of new threads.
852 <     *
853 <     * @throws IllegalArgumentException if negative or greater than
854 <     * internal implementation limit
855 <     */
856 <    public void setMaximumPoolSize(int newMax) {
857 <        if (newMax < 0 || newMax > MAX_THREADS)
858 <            throw new IllegalArgumentException();
859 <        maxPoolSize = newMax;
860 <    }
861 <
862 <
863 <    /**
864 <     * Returns {@code true} if this pool dynamically maintains its
865 <     * target parallelism level. If false, new threads are added only
866 <     * to avoid possible starvation.  This setting is by default true.
867 <     *
868 <     * @return {@code true} if maintains parallelism
869 <     */
870 <    public boolean getMaintainsParallelism() {
871 <        return maintainsParallelism;
872 <    }
873 <
874 <    /**
875 <     * Sets whether this pool dynamically maintains its target
876 <     * parallelism level. If false, new threads are added only to
877 <     * avoid possible starvation.
878 <     *
879 <     * @param enable {@code true} to maintain parallelism
880 <     */
881 <    public void setMaintainsParallelism(boolean enable) {
882 <        maintainsParallelism = enable;
883 <    }
884 <
885 <    /**
886 <     * Establishes local first-in-first-out scheduling mode for forked
887 <     * tasks that are never joined. This mode may be more appropriate
888 <     * than default locally stack-based mode in applications in which
889 <     * worker threads only process asynchronous tasks.  This method is
890 <     * designed to be invoked only when the pool is quiescent, and
891 <     * typically only before any tasks are submitted. The effects of
892 <     * invocations at other times may be unpredictable.
893 <     *
894 <     * @param async if {@code true}, use locally FIFO scheduling
895 <     * @return the previous mode
896 <     * @see #getAsyncMode
897 <     */
898 <    public boolean setAsyncMode(boolean async) {
899 <        boolean oldMode = locallyFifo;
900 <        locallyFifo = async;
901 <        ForkJoinWorkerThread[] ws = workers;
902 <        if (ws != null) {
903 <            for (int i = 0; i < ws.length; ++i) {
904 <                ForkJoinWorkerThread t = ws[i];
905 <                if (t != null)
906 <                    t.setAsyncMode(async);
907 <            }
908 <        }
909 <        return oldMode;
1664 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1665      }
1666  
1667      /**
# Line 914 | Line 1669 | public class ForkJoinPool extends Abstra
1669       * scheduling mode for forked tasks that are never joined.
1670       *
1671       * @return {@code true} if this pool uses async mode
917     * @see #setAsyncMode
1672       */
1673      public boolean getAsyncMode() {
1674          return locallyFifo;
# Line 923 | Line 1677 | public class ForkJoinPool extends Abstra
1677      /**
1678       * Returns an estimate of the number of worker threads that are
1679       * not blocked waiting to join tasks or for other managed
1680 <     * synchronization.
1680 >     * synchronization. This method may overestimate the
1681 >     * number of running threads.
1682       *
1683       * @return the number of worker threads
1684       */
1685      public int getRunningThreadCount() {
1686 <        return runningCountOf(workerCounts);
1686 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1687 >        return r <= 0? 0 : r; // suppress momentarily negative values
1688      }
1689  
1690      /**
# Line 939 | Line 1695 | public class ForkJoinPool extends Abstra
1695       * @return the number of active threads
1696       */
1697      public int getActiveThreadCount() {
1698 <        return activeCountOf(runControl);
1699 <    }
944 <
945 <    /**
946 <     * Returns an estimate of the number of threads that are currently
947 <     * idle waiting for tasks. This method may underestimate the
948 <     * number of idle threads.
949 <     *
950 <     * @return the number of idle threads
951 <     */
952 <    final int getIdleThreadCount() {
953 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
954 <        return (c <= 0) ? 0 : c;
1698 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1699 >        return r <= 0? 0 : r; // suppress momentarily negative values
1700      }
1701  
1702      /**
# Line 966 | Line 1711 | public class ForkJoinPool extends Abstra
1711       * @return {@code true} if all threads are currently idle
1712       */
1713      public boolean isQuiescent() {
1714 <        return activeCountOf(runControl) == 0;
1714 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1715      }
1716  
1717      /**
# Line 981 | Line 1726 | public class ForkJoinPool extends Abstra
1726       * @return the number of steals
1727       */
1728      public long getStealCount() {
1729 <        return stealCount.get();
985 <    }
986 <
987 <    /**
988 <     * Accumulates steal count from a worker.
989 <     * Call only when worker known to be idle.
990 <     */
991 <    private void updateStealCount(ForkJoinWorkerThread w) {
992 <        int sc = w.getAndClearStealCount();
993 <        if (sc != 0)
994 <            stealCount.addAndGet(sc);
1729 >        return stealCount;
1730      }
1731  
1732      /**
# Line 1006 | Line 1741 | public class ForkJoinPool extends Abstra
1741       */
1742      public long getQueuedTaskCount() {
1743          long count = 0;
1744 <        ForkJoinWorkerThread[] ws = workers;
1745 <        if (ws != null) {
1746 <            for (int i = 0; i < ws.length; ++i) {
1747 <                ForkJoinWorkerThread t = ws[i];
1748 <                if (t != null)
1749 <                    count += t.getQueueSize();
1015 <            }
1744 >        ForkJoinWorkerThread[] ws;
1745 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1746 >            (ws = workers) != null) {
1747 >            for (ForkJoinWorkerThread w : ws)
1748 >                if (w != null)
1749 >                    count -= w.queueBase - w.queueTop; // must read base first
1750          }
1751          return count;
1752      }
1753  
1754      /**
1755       * Returns an estimate of the number of tasks submitted to this
1756 <     * pool that have not yet begun executing.  This method takes time
1757 <     * proportional to the number of submissions.
1756 >     * pool that have not yet begun executing.  This method may take
1757 >     * time proportional to the number of submissions.
1758       *
1759       * @return the number of queued submissions
1760       */
1761      public int getQueuedSubmissionCount() {
1762 <        return submissionQueue.size();
1762 >        return -queueBase + queueTop;
1763      }
1764  
1765      /**
# Line 1035 | Line 1769 | public class ForkJoinPool extends Abstra
1769       * @return {@code true} if there are any queued submissions
1770       */
1771      public boolean hasQueuedSubmissions() {
1772 <        return !submissionQueue.isEmpty();
1772 >        return queueBase != queueTop;
1773      }
1774  
1775      /**
# Line 1046 | Line 1780 | public class ForkJoinPool extends Abstra
1780       * @return the next submission, or {@code null} if none
1781       */
1782      protected ForkJoinTask<?> pollSubmission() {
1783 <        return submissionQueue.poll();
1783 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1784 >        while ((b = queueBase) != queueTop &&
1785 >               (q = submissionQueue) != null &&
1786 >               (i = (q.length - 1) & b) >= 0) {
1787 >            long u = (i << ASHIFT) + ABASE;
1788 >            if ((t = q[i]) != null &&
1789 >                queueBase == b &&
1790 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1791 >                queueBase = b + 1;
1792 >                return t;
1793 >            }
1794 >        }
1795 >        return null;
1796      }
1797  
1798      /**
# Line 1067 | Line 1813 | public class ForkJoinPool extends Abstra
1813       * @return the number of elements transferred
1814       */
1815      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1816 <        int n = submissionQueue.drainTo(c);
1817 <        ForkJoinWorkerThread[] ws = workers;
1818 <        if (ws != null) {
1819 <            for (int i = 0; i < ws.length; ++i) {
1820 <                ForkJoinWorkerThread w = ws[i];
1821 <                if (w != null)
1076 <                    n += w.drainTasksTo(c);
1816 >        int count = 0;
1817 >        while (queueBase != queueTop) {
1818 >            ForkJoinTask<?> t = pollSubmission();
1819 >            if (t != null) {
1820 >                c.add(t);
1821 >                ++count;
1822              }
1823          }
1824 <        return n;
1824 >        ForkJoinWorkerThread[] ws;
1825 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1826 >            (ws = workers) != null) {
1827 >            for (ForkJoinWorkerThread w : ws)
1828 >                if (w != null)
1829 >                    count += w.drainTasksTo(c);
1830 >        }
1831 >        return count;
1832      }
1833  
1834      /**
# Line 1087 | Line 1839 | public class ForkJoinPool extends Abstra
1839       * @return a string identifying this pool, as well as its state
1840       */
1841      public String toString() {
1090        int ps = parallelism;
1091        int wc = workerCounts;
1092        int rc = runControl;
1842          long st = getStealCount();
1843          long qt = getQueuedTaskCount();
1844          long qs = getQueuedSubmissionCount();
1845 +        int pc = parallelism;
1846 +        long c = ctl;
1847 +        int tc = pc + (short)(c >>> TC_SHIFT);
1848 +        int rc = pc + (int)(c >> AC_SHIFT);
1849 +        if (rc < 0) // ignore transient negative
1850 +            rc = 0;
1851 +        int ac = rc + blockedCount;
1852 +        String level;
1853 +        if ((c & STOP_BIT) != 0)
1854 +            level = (tc == 0)? "Terminated" : "Terminating";
1855 +        else
1856 +            level = shutdown? "Shutting down" : "Running";
1857          return super.toString() +
1858 <            "[" + runStateToString(runStateOf(rc)) +
1859 <            ", parallelism = " + ps +
1860 <            ", size = " + totalCountOf(wc) +
1861 <            ", active = " + activeCountOf(rc) +
1862 <            ", running = " + runningCountOf(wc) +
1858 >            "[" + level +
1859 >            ", parallelism = " + pc +
1860 >            ", size = " + tc +
1861 >            ", active = " + ac +
1862 >            ", running = " + rc +
1863              ", steals = " + st +
1864              ", tasks = " + qt +
1865              ", submissions = " + qs +
1866              "]";
1867      }
1868  
1108    private static String runStateToString(int rs) {
1109        switch(rs) {
1110        case RUNNING: return "Running";
1111        case SHUTDOWN: return "Shutting down";
1112        case TERMINATING: return "Terminating";
1113        case TERMINATED: return "Terminated";
1114        default: throw new Error("Unknown run state");
1115        }
1116    }
1117
1118    // lifecycle control
1119
1869      /**
1870       * Initiates an orderly shutdown in which previously submitted
1871       * tasks are executed, but no new tasks will be accepted.
# Line 1131 | Line 1880 | public class ForkJoinPool extends Abstra
1880       */
1881      public void shutdown() {
1882          checkPermission();
1883 <        transitionRunStateTo(SHUTDOWN);
1884 <        if (canTerminateOnShutdown(runControl)) {
1136 <            if (workers == null) { // shutting down before workers created
1137 <                final ReentrantLock lock = this.workerLock;
1138 <                lock.lock();
1139 <                try {
1140 <                    if (workers == null) {
1141 <                        terminate();
1142 <                        transitionRunStateTo(TERMINATED);
1143 <                        termination.signalAll();
1144 <                    }
1145 <                } finally {
1146 <                    lock.unlock();
1147 <                }
1148 <            }
1149 <            terminateOnShutdown();
1150 <        }
1883 >        shutdown = true;
1884 >        tryTerminate(false);
1885      }
1886  
1887      /**
# Line 1168 | Line 1902 | public class ForkJoinPool extends Abstra
1902       */
1903      public List<Runnable> shutdownNow() {
1904          checkPermission();
1905 <        terminate();
1905 >        shutdown = true;
1906 >        tryTerminate(true);
1907          return Collections.emptyList();
1908      }
1909  
# Line 1178 | Line 1913 | public class ForkJoinPool extends Abstra
1913       * @return {@code true} if all tasks have completed following shut down
1914       */
1915      public boolean isTerminated() {
1916 <        return runStateOf(runControl) == TERMINATED;
1916 >        long c = ctl;
1917 >        return ((c & STOP_BIT) != 0L &&
1918 >                (short)(c >>> TC_SHIFT) == -parallelism);
1919      }
1920  
1921      /**
# Line 1186 | Line 1923 | public class ForkJoinPool extends Abstra
1923       * commenced but not yet completed.  This method may be useful for
1924       * debugging. A return of {@code true} reported a sufficient
1925       * period after shutdown may indicate that submitted tasks have
1926 <     * ignored or suppressed interruption, causing this executor not
1927 <     * to properly terminate.
1926 >     * ignored or suppressed interruption, or are waiting for IO,
1927 >     * causing this executor not to properly terminate. (See the
1928 >     * advisory notes for class {@link ForkJoinTask} stating that
1929 >     * tasks should not normally entail blocking operations.  But if
1930 >     * they do, they must abort them on interrupt.)
1931       *
1932       * @return {@code true} if terminating but not yet terminated
1933       */
1934      public boolean isTerminating() {
1935 <        return runStateOf(runControl) == TERMINATING;
1935 >        long c = ctl;
1936 >        return ((c & STOP_BIT) != 0L &&
1937 >                (short)(c >>> TC_SHIFT) != -parallelism);
1938      }
1939  
1940      /**
1941 <     * Returns {@code true} if this pool has been shut down.
1200 <     *
1201 <     * @return {@code true} if this pool has been shut down
1941 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1942       */
1943 <    public boolean isShutdown() {
1944 <        return runStateOf(runControl) >= SHUTDOWN;
1943 >    final boolean isAtLeastTerminating() {
1944 >        return (ctl & STOP_BIT) != 0L;
1945      }
1946  
1947      /**
1948 <     * Returns true if pool is not terminating or terminated.
1949 <     * Used internally to suppress execution when terminating.
1948 >     * Returns {@code true} if this pool has been shut down.
1949 >     *
1950 >     * @return {@code true} if this pool has been shut down
1951       */
1952 <    final boolean isProcessingTasks() {
1953 <        return runStateOf(runControl) < TERMINATING;
1952 >    public boolean isShutdown() {
1953 >        return shutdown;
1954      }
1955  
1956      /**
# Line 1226 | Line 1967 | public class ForkJoinPool extends Abstra
1967      public boolean awaitTermination(long timeout, TimeUnit unit)
1968          throws InterruptedException {
1969          long nanos = unit.toNanos(timeout);
1970 <        final ReentrantLock lock = this.workerLock;
1970 >        final ReentrantLock lock = this.submissionLock;
1971          lock.lock();
1972          try {
1973              for (;;) {
# Line 1241 | Line 1982 | public class ForkJoinPool extends Abstra
1982          }
1983      }
1984  
1244    // Shutdown and termination support
1245
1246    /**
1247     * Callback from terminating worker. Nulls out the corresponding
1248     * workers slot, and if terminating, tries to terminate; else
1249     * tries to shrink workers array.
1250     *
1251     * @param w the worker
1252     */
1253    final void workerTerminated(ForkJoinWorkerThread w) {
1254        updateStealCount(w);
1255        updateWorkerCount(-1);
1256        final ReentrantLock lock = this.workerLock;
1257        lock.lock();
1258        try {
1259            ForkJoinWorkerThread[] ws = workers;
1260            if (ws != null) {
1261                int idx = w.poolIndex;
1262                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1263                    ws[idx] = null;
1264                if (totalCountOf(workerCounts) == 0) {
1265                    terminate(); // no-op if already terminating
1266                    transitionRunStateTo(TERMINATED);
1267                    termination.signalAll();
1268                }
1269                else if (isProcessingTasks()) {
1270                    tryShrinkWorkerArray();
1271                    tryResumeSpare(true); // allow replacement
1272                }
1273            }
1274        } finally {
1275            lock.unlock();
1276        }
1277        signalIdleWorkers();
1278    }
1279
1280    /**
1281     * Initiates termination.
1282     */
1283    private void terminate() {
1284        if (transitionRunStateTo(TERMINATING)) {
1285            stopAllWorkers();
1286            resumeAllSpares();
1287            signalIdleWorkers();
1288            cancelQueuedSubmissions();
1289            cancelQueuedWorkerTasks();
1290            interruptUnterminatedWorkers();
1291            signalIdleWorkers(); // resignal after interrupt
1292        }
1293    }
1294
1295    /**
1296     * Possibly terminates when on shutdown state.
1297     */
1298    private void terminateOnShutdown() {
1299        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1300            terminate();
1301    }
1302
1303    /**
1304     * Clears out and cancels submissions.
1305     */
1306    private void cancelQueuedSubmissions() {
1307        ForkJoinTask<?> task;
1308        while ((task = pollSubmission()) != null)
1309            task.cancel(false);
1310    }
1311
1312    /**
1313     * Cleans out worker queues.
1314     */
1315    private void cancelQueuedWorkerTasks() {
1316        final ReentrantLock lock = this.workerLock;
1317        lock.lock();
1318        try {
1319            ForkJoinWorkerThread[] ws = workers;
1320            if (ws != null) {
1321                for (int i = 0; i < ws.length; ++i) {
1322                    ForkJoinWorkerThread t = ws[i];
1323                    if (t != null)
1324                        t.cancelTasks();
1325                }
1326            }
1327        } finally {
1328            lock.unlock();
1329        }
1330    }
1331
1332    /**
1333     * Sets each worker's status to terminating. Requires lock to avoid
1334     * conflicts with add/remove.
1335     */
1336    private void stopAllWorkers() {
1337        final ReentrantLock lock = this.workerLock;
1338        lock.lock();
1339        try {
1340            ForkJoinWorkerThread[] ws = workers;
1341            if (ws != null) {
1342                for (int i = 0; i < ws.length; ++i) {
1343                    ForkJoinWorkerThread t = ws[i];
1344                    if (t != null)
1345                        t.shutdownNow();
1346                }
1347            }
1348        } finally {
1349            lock.unlock();
1350        }
1351    }
1352
1353    /**
1354     * Interrupts all unterminated workers.  This is not required for
1355     * sake of internal control, but may help unstick user code during
1356     * shutdown.
1357     */
1358    private void interruptUnterminatedWorkers() {
1359        final ReentrantLock lock = this.workerLock;
1360        lock.lock();
1361        try {
1362            ForkJoinWorkerThread[] ws = workers;
1363            if (ws != null) {
1364                for (int i = 0; i < ws.length; ++i) {
1365                    ForkJoinWorkerThread t = ws[i];
1366                    if (t != null && !t.isTerminated()) {
1367                        try {
1368                            t.interrupt();
1369                        } catch (SecurityException ignore) {
1370                        }
1371                    }
1372                }
1373            }
1374        } finally {
1375            lock.unlock();
1376        }
1377    }
1378
1379
1380    /*
1381     * Nodes for event barrier to manage idle threads.  Queue nodes
1382     * are basic Treiber stack nodes, also used for spare stack.
1383     *
1384     * The event barrier has an event count and a wait queue (actually
1385     * a Treiber stack).  Workers are enabled to look for work when
1386     * the eventCount is incremented. If they fail to find work, they
1387     * may wait for next count. Upon release, threads help others wake
1388     * up.
1389     *
1390     * Synchronization events occur only in enough contexts to
1391     * maintain overall liveness:
1392     *
1393     *   - Submission of a new task to the pool
1394     *   - Resizes or other changes to the workers array
1395     *   - pool termination
1396     *   - A worker pushing a task on an empty queue
1397     *
1398     * The case of pushing a task occurs often enough, and is heavy
1399     * enough compared to simple stack pushes, to require special
1400     * handling: Method signalWork returns without advancing count if
1401     * the queue appears to be empty.  This would ordinarily result in
1402     * races causing some queued waiters not to be woken up. To avoid
1403     * this, the first worker enqueued in method sync (see
1404     * syncIsReleasable) rescans for tasks after being enqueued, and
1405     * helps signal if any are found. This works well because the
1406     * worker has nothing better to do, and so might as well help
1407     * alleviate the overhead and contention on the threads actually
1408     * doing work.  Also, since event counts increments on task
1409     * availability exist to maintain liveness (rather than to force
1410     * refreshes etc), it is OK for callers to exit early if
1411     * contending with another signaller.
1412     */
1413    static final class WaitQueueNode {
1414        WaitQueueNode next; // only written before enqueued
1415        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1416        final long count; // unused for spare stack
1417
1418        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1419            count = c;
1420            thread = w;
1421        }
1422
1423        /**
1424         * Wakes up waiter, returning false if known to already
1425         */
1426        boolean signal() {
1427            ForkJoinWorkerThread t = thread;
1428            if (t == null)
1429                return false;
1430            thread = null;
1431            LockSupport.unpark(t);
1432            return true;
1433        }
1434
1435        /**
1436         * Awaits release on sync.
1437         */
1438        void awaitSyncRelease(ForkJoinPool p) {
1439            while (thread != null && !p.syncIsReleasable(this))
1440                LockSupport.park(this);
1441        }
1442
1443        /**
1444         * Awaits resumption as spare.
1445         */
1446        void awaitSpareRelease() {
1447            while (thread != null) {
1448                if (!Thread.interrupted())
1449                    LockSupport.park(this);
1450            }
1451        }
1452    }
1453
1454    /**
1455     * Ensures that no thread is waiting for count to advance from the
1456     * current value of eventCount read on entry to this method, by
1457     * releasing waiting threads if necessary.
1458     *
1459     * @return the count
1460     */
1461    final long ensureSync() {
1462        long c = eventCount;
1463        WaitQueueNode q;
1464        while ((q = syncStack) != null && q.count < c) {
1465            if (casBarrierStack(q, null)) {
1466                do {
1467                    q.signal();
1468                } while ((q = q.next) != null);
1469                break;
1470            }
1471        }
1472        return c;
1473    }
1474
1475    /**
1476     * Increments event count and releases waiting threads.
1477     */
1478    private void signalIdleWorkers() {
1479        long c;
1480        do {} while (!casEventCount(c = eventCount, c+1));
1481        ensureSync();
1482    }
1483
1484    /**
1485     * Signals threads waiting to poll a task. Because method sync
1486     * rechecks availability, it is OK to only proceed if queue
1487     * appears to be non-empty, and OK to skip under contention to
1488     * increment count (since some other thread succeeded).
1489     */
1490    final void signalWork() {
1491        long c;
1492        WaitQueueNode q;
1493        if (syncStack != null &&
1494            casEventCount(c = eventCount, c+1) &&
1495            (((q = syncStack) != null && q.count <= c) &&
1496             (!casBarrierStack(q, q.next) || !q.signal())))
1497            ensureSync();
1498    }
1499
1500    /**
1501     * Waits until event count advances from last value held by
1502     * caller, or if excess threads, caller is resumed as spare, or
1503     * caller or pool is terminating. Updates caller's event on exit.
1504     *
1505     * @param w the calling worker thread
1506     */
1507    final void sync(ForkJoinWorkerThread w) {
1508        updateStealCount(w); // Transfer w's count while it is idle
1509
1510        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1511            long prev = w.lastEventCount;
1512            WaitQueueNode node = null;
1513            WaitQueueNode h;
1514            while (eventCount == prev &&
1515                   ((h = syncStack) == null || h.count == prev)) {
1516                if (node == null)
1517                    node = new WaitQueueNode(prev, w);
1518                if (casBarrierStack(node.next = h, node)) {
1519                    node.awaitSyncRelease(this);
1520                    break;
1521                }
1522            }
1523            long ec = ensureSync();
1524            if (ec != prev) {
1525                w.lastEventCount = ec;
1526                break;
1527            }
1528        }
1529    }
1530
1531    /**
1532     * Returns {@code true} if worker waiting on sync can proceed:
1533     *  - on signal (thread == null)
1534     *  - on event count advance (winning race to notify vs signaller)
1535     *  - on interrupt
1536     *  - if the first queued node, we find work available
1537     * If node was not signalled and event count not advanced on exit,
1538     * then we also help advance event count.
1539     *
1540     * @return {@code true} if node can be released
1541     */
1542    final boolean syncIsReleasable(WaitQueueNode node) {
1543        long prev = node.count;
1544        if (!Thread.interrupted() && node.thread != null &&
1545            (node.next != null ||
1546             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1547            eventCount == prev)
1548            return false;
1549        if (node.thread != null) {
1550            node.thread = null;
1551            long ec = eventCount;
1552            if (prev <= ec) // help signal
1553                casEventCount(ec, ec+1);
1554        }
1555        return true;
1556    }
1557
1558    /**
1559     * Returns {@code true} if a new sync event occurred since last
1560     * call to sync or this method, if so, updating caller's count.
1561     */
1562    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1563        long lc = w.lastEventCount;
1564        long ec = ensureSync();
1565        if (ec == lc)
1566            return false;
1567        w.lastEventCount = ec;
1568        return true;
1569    }
1570
1571    //  Parallelism maintenance
1572
1573    /**
1574     * Decrements running count; if too low, adds spare.
1575     *
1576     * Conceptually, all we need to do here is add or resume a
1577     * spare thread when one is about to block (and remove or
1578     * suspend it later when unblocked -- see suspendIfSpare).
1579     * However, implementing this idea requires coping with
1580     * several problems: we have imperfect information about the
1581     * states of threads. Some count updates can and usually do
1582     * lag run state changes, despite arrangements to keep them
1583     * accurate (for example, when possible, updating counts
1584     * before signalling or resuming), especially when running on
1585     * dynamic JVMs that don't optimize the infrequent paths that
1586     * update counts. Generating too many threads can make these
1587     * problems become worse, because excess threads are more
1588     * likely to be context-switched with others, slowing them all
1589     * down, especially if there is no work available, so all are
1590     * busy scanning or idling.  Also, excess spare threads can
1591     * only be suspended or removed when they are idle, not
1592     * immediately when they aren't needed. So adding threads will
1593     * raise parallelism level for longer than necessary.  Also,
1594     * FJ applications often encounter highly transient peaks when
1595     * many threads are blocked joining, but for less time than it
1596     * takes to create or resume spares.
1597     *
1598     * @param joinMe if non-null, return early if done
1599     * @param maintainParallelism if true, try to stay within
1600     * target counts, else create only to avoid starvation
1601     * @return true if joinMe known to be done
1602     */
1603    final boolean preJoin(ForkJoinTask<?> joinMe,
1604                          boolean maintainParallelism) {
1605        maintainParallelism &= maintainsParallelism; // overrride
1606        boolean dec = false;  // true when running count decremented
1607        while (spareStack == null || !tryResumeSpare(dec)) {
1608            int counts = workerCounts;
1609            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1610                if (!needSpare(counts, maintainParallelism))
1611                    break;
1612                if (joinMe.status < 0)
1613                    return true;
1614                if (tryAddSpare(counts))
1615                    break;
1616            }
1617        }
1618        return false;
1619    }
1620
1621    /**
1622     * Same idea as preJoin
1623     */
1624    final boolean preBlock(ManagedBlocker blocker,
1625                           boolean maintainParallelism) {
1626        maintainParallelism &= maintainsParallelism;
1627        boolean dec = false;
1628        while (spareStack == null || !tryResumeSpare(dec)) {
1629            int counts = workerCounts;
1630            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1631                if (!needSpare(counts, maintainParallelism))
1632                    break;
1633                if (blocker.isReleasable())
1634                    return true;
1635                if (tryAddSpare(counts))
1636                    break;
1637            }
1638        }
1639        return false;
1640    }
1641
1642    /**
1643     * Returns {@code true} if a spare thread appears to be needed.
1644     * If maintaining parallelism, returns true when the deficit in
1645     * running threads is more than the surplus of total threads, and
1646     * there is apparently some work to do.  This self-limiting rule
1647     * means that the more threads that have already been added, the
1648     * less parallelism we will tolerate before adding another.
1649     *
1650     * @param counts current worker counts
1651     * @param maintainParallelism try to maintain parallelism
1652     */
1653    private boolean needSpare(int counts, boolean maintainParallelism) {
1654        int ps = parallelism;
1655        int rc = runningCountOf(counts);
1656        int tc = totalCountOf(counts);
1657        int runningDeficit = ps - rc;
1658        int totalSurplus = tc - ps;
1659        return (tc < maxPoolSize &&
1660                (rc == 0 || totalSurplus < 0 ||
1661                 (maintainParallelism &&
1662                  runningDeficit > totalSurplus &&
1663                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1664    }
1665
1666    /**
1667     * Adds a spare worker if lock available and no more than the
1668     * expected numbers of threads exist.
1669     *
1670     * @return true if successful
1671     */
1672    private boolean tryAddSpare(int expectedCounts) {
1673        final ReentrantLock lock = this.workerLock;
1674        int expectedRunning = runningCountOf(expectedCounts);
1675        int expectedTotal = totalCountOf(expectedCounts);
1676        boolean success = false;
1677        boolean locked = false;
1678        // confirm counts while locking; CAS after obtaining lock
1679        try {
1680            for (;;) {
1681                int s = workerCounts;
1682                int tc = totalCountOf(s);
1683                int rc = runningCountOf(s);
1684                if (rc > expectedRunning || tc > expectedTotal)
1685                    break;
1686                if (!locked && !(locked = lock.tryLock()))
1687                    break;
1688                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1689                    createAndStartSpare(tc);
1690                    success = true;
1691                    break;
1692                }
1693            }
1694        } finally {
1695            if (locked)
1696                lock.unlock();
1697        }
1698        return success;
1699    }
1700
1701    /**
1702     * Adds the kth spare worker. On entry, pool counts are already
1703     * adjusted to reflect addition.
1704     */
1705    private void createAndStartSpare(int k) {
1706        ForkJoinWorkerThread w = null;
1707        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1708        int len = ws.length;
1709        // Probably, we can place at slot k. If not, find empty slot
1710        if (k < len && ws[k] != null) {
1711            for (k = 0; k < len && ws[k] != null; ++k)
1712                ;
1713        }
1714        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1715            ws[k] = w;
1716            w.start();
1717        }
1718        else
1719            updateWorkerCount(-1); // adjust on failure
1720        signalIdleWorkers();
1721    }
1722
1723    /**
1724     * Suspends calling thread w if there are excess threads.  Called
1725     * only from sync.  Spares are enqueued in a Treiber stack using
1726     * the same WaitQueueNodes as barriers.  They are resumed mainly
1727     * in preJoin, but are also woken on pool events that require all
1728     * threads to check run state.
1729     *
1730     * @param w the caller
1731     */
1732    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1733        WaitQueueNode node = null;
1734        int s;
1735        while (parallelism < runningCountOf(s = workerCounts)) {
1736            if (node == null)
1737                node = new WaitQueueNode(0, w);
1738            if (casWorkerCounts(s, s-1)) { // representation-dependent
1739                // push onto stack
1740                do {} while (!casSpareStack(node.next = spareStack, node));
1741                // block until released by resumeSpare
1742                node.awaitSpareRelease();
1743                return true;
1744            }
1745        }
1746        return false;
1747    }
1748
1749    /**
1750     * Tries to pop and resume a spare thread.
1751     *
1752     * @param updateCount if true, increment running count on success
1753     * @return true if successful
1754     */
1755    private boolean tryResumeSpare(boolean updateCount) {
1756        WaitQueueNode q;
1757        while ((q = spareStack) != null) {
1758            if (casSpareStack(q, q.next)) {
1759                if (updateCount)
1760                    updateRunningCount(1);
1761                q.signal();
1762                return true;
1763            }
1764        }
1765        return false;
1766    }
1767
1768    /**
1769     * Pops and resumes all spare threads. Same idea as ensureSync.
1770     *
1771     * @return true if any spares released
1772     */
1773    private boolean resumeAllSpares() {
1774        WaitQueueNode q;
1775        while ( (q = spareStack) != null) {
1776            if (casSpareStack(q, null)) {
1777                do {
1778                    updateRunningCount(1);
1779                    q.signal();
1780                } while ((q = q.next) != null);
1781                return true;
1782            }
1783        }
1784        return false;
1785    }
1786
1787    /**
1788     * Pops and shuts down excessive spare threads. Call only while
1789     * holding lock. This is not guaranteed to eliminate all excess
1790     * threads, only those suspended as spares, which are the ones
1791     * unlikely to be needed in the future.
1792     */
1793    private void trimSpares() {
1794        int surplus = totalCountOf(workerCounts) - parallelism;
1795        WaitQueueNode q;
1796        while (surplus > 0 && (q = spareStack) != null) {
1797            if (casSpareStack(q, null)) {
1798                do {
1799                    updateRunningCount(1);
1800                    ForkJoinWorkerThread w = q.thread;
1801                    if (w != null && surplus > 0 &&
1802                        runningCountOf(workerCounts) > 0 && w.shutdown())
1803                        --surplus;
1804                    q.signal();
1805                } while ((q = q.next) != null);
1806            }
1807        }
1808    }
1809
1985      /**
1986       * Interface for extending managed parallelism for tasks running
1987       * in {@link ForkJoinPool}s.
1988       *
1989 <     * <p>A {@code ManagedBlocker} provides two methods.
1990 <     * Method {@code isReleasable} must return {@code true} if
1991 <     * blocking is not necessary. Method {@code block} blocks the
1992 <     * current thread if necessary (perhaps internally invoking
1993 <     * {@code isReleasable} before actually blocking).
1989 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1990 >     * {@code isReleasable} must return {@code true} if blocking is
1991 >     * not necessary. Method {@code block} blocks the current thread
1992 >     * if necessary (perhaps internally invoking {@code isReleasable}
1993 >     * before actually blocking). These actions are performed by any
1994 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1995 >     * unusual methods in this API accommodate synchronizers that may,
1996 >     * but don't usually, block for long periods. Similarly, they
1997 >     * allow more efficient internal handling of cases in which
1998 >     * additional workers may be, but usually are not, needed to
1999 >     * ensure sufficient parallelism.  Toward this end,
2000 >     * implementations of method {@code isReleasable} must be amenable
2001 >     * to repeated invocation.
2002       *
2003       * <p>For example, here is a ManagedBlocker based on a
2004       * ReentrantLock:
# Line 1833 | Line 2016 | public class ForkJoinPool extends Abstra
2016       *     return hasLock || (hasLock = lock.tryLock());
2017       *   }
2018       * }}</pre>
2019 +     *
2020 +     * <p>Here is a class that possibly blocks waiting for an
2021 +     * item on a given queue:
2022 +     *  <pre> {@code
2023 +     * class QueueTaker<E> implements ManagedBlocker {
2024 +     *   final BlockingQueue<E> queue;
2025 +     *   volatile E item = null;
2026 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2027 +     *   public boolean block() throws InterruptedException {
2028 +     *     if (item == null)
2029 +     *       item = queue.take();
2030 +     *     return true;
2031 +     *   }
2032 +     *   public boolean isReleasable() {
2033 +     *     return item != null || (item = queue.poll()) != null;
2034 +     *   }
2035 +     *   public E getItem() { // call after pool.managedBlock completes
2036 +     *     return item;
2037 +     *   }
2038 +     * }}</pre>
2039       */
2040      public static interface ManagedBlocker {
2041          /**
# Line 1856 | Line 2059 | public class ForkJoinPool extends Abstra
2059       * Blocks in accord with the given blocker.  If the current thread
2060       * is a {@link ForkJoinWorkerThread}, this method possibly
2061       * arranges for a spare thread to be activated if necessary to
2062 <     * ensure parallelism while the current thread is blocked.
1860 <     *
1861 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1862 <     * supports it ({@link #getMaintainsParallelism}), this method
1863 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1864 <     * it activates a thread only if necessary to avoid complete
1865 <     * starvation. This option may be preferable when blockages use
1866 <     * timeouts, or are almost always brief.
2062 >     * ensure sufficient parallelism while the current thread is blocked.
2063       *
2064       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2065       * behaviorally equivalent to
# Line 1877 | Line 2073 | public class ForkJoinPool extends Abstra
2073       * first be expanded to ensure parallelism, and later adjusted.
2074       *
2075       * @param blocker the blocker
1880     * @param maintainParallelism if {@code true} and supported by
1881     * this pool, attempt to maintain the pool's nominal parallelism;
1882     * otherwise activate a thread only if necessary to avoid
1883     * complete starvation.
2076       * @throws InterruptedException if blocker.block did so
2077       */
2078 <    public static void managedBlock(ManagedBlocker blocker,
1887 <                                    boolean maintainParallelism)
2078 >    public static void managedBlock(ManagedBlocker blocker)
2079          throws InterruptedException {
2080          Thread t = Thread.currentThread();
2081 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2082 <                             ((ForkJoinWorkerThread) t).pool : null);
2083 <        if (!blocker.isReleasable()) {
2084 <            try {
2085 <                if (pool == null ||
2086 <                    !pool.preBlock(blocker, maintainParallelism))
1896 <                    awaitBlocker(blocker);
1897 <            } finally {
1898 <                if (pool != null)
1899 <                    pool.updateRunningCount(1);
1900 <            }
2081 >        if (t instanceof ForkJoinWorkerThread) {
2082 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2083 >            w.pool.awaitBlocker(blocker);
2084 >        }
2085 >        else {
2086 >            do {} while (!blocker.isReleasable() && !blocker.block());
2087          }
1902    }
1903
1904    private static void awaitBlocker(ManagedBlocker blocker)
1905        throws InterruptedException {
1906        do {} while (!blocker.isReleasable() && !blocker.block());
2088      }
2089  
2090      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1919 | Line 2100 | public class ForkJoinPool extends Abstra
2100      }
2101  
2102      // Unsafe mechanics
2103 <
2104 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2105 <    private static final long eventCountOffset =
2106 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2107 <    private static final long workerCountsOffset =
2108 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2109 <    private static final long runControlOffset =
2110 <        objectFieldOffset("runControl", ForkJoinPool.class);
2111 <    private static final long syncStackOffset =
2112 <        objectFieldOffset("syncStack",ForkJoinPool.class);
2113 <    private static final long spareStackOffset =
2114 <        objectFieldOffset("spareStack", ForkJoinPool.class);
2115 <
2116 <    private boolean casEventCount(long cmp, long val) {
2117 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
2118 <    }
2119 <    private boolean casWorkerCounts(int cmp, int val) {
1939 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1940 <    }
1941 <    private boolean casRunControl(int cmp, int val) {
1942 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1943 <    }
1944 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1945 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1946 <    }
1947 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1948 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1949 <    }
1950 <
1951 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2103 >    private static final sun.misc.Unsafe UNSAFE;
2104 >    private static final long ctlOffset;
2105 >    private static final long stealCountOffset;
2106 >    private static final long blockedCountOffset;
2107 >    private static final long quiescerCountOffset;
2108 >    private static final long scanGuardOffset;
2109 >    private static final long nextWorkerNumberOffset;
2110 >    private static final long ABASE;
2111 >    private static final int ASHIFT;
2112 >
2113 >    static {
2114 >        poolNumberGenerator = new AtomicInteger();
2115 >        workerSeedGenerator = new Random();
2116 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2117 >        defaultForkJoinWorkerThreadFactory =
2118 >            new DefaultForkJoinWorkerThreadFactory();
2119 >        int s;
2120          try {
2121 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2122 <        } catch (NoSuchFieldException e) {
2123 <            // Convert Exception to corresponding Error
2124 <            NoSuchFieldError error = new NoSuchFieldError(field);
2125 <            error.initCause(e);
2126 <            throw error;
2127 <        }
2121 >            UNSAFE = getUnsafe();
2122 >            Class k = ForkJoinPool.class;
2123 >            ctlOffset = UNSAFE.objectFieldOffset
2124 >                (k.getDeclaredField("ctl"));
2125 >            stealCountOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("stealCount"));
2127 >            blockedCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("blockedCount"));
2129 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("quiescerCount"));
2131 >            scanGuardOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("scanGuard"));
2133 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2134 >                (k.getDeclaredField("nextWorkerNumber"));
2135 >            Class a = ForkJoinTask[].class;
2136 >            ABASE = UNSAFE.arrayBaseOffset(a);
2137 >            s = UNSAFE.arrayIndexScale(a);
2138 >        } catch (Exception e) {
2139 >            throw new Error(e);
2140 >        }
2141 >        if ((s & (s-1)) != 0)
2142 >            throw new Error("data type scale not a power of two");
2143 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2144      }
2145  
2146      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines