ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.5 by jsr166, Thu Mar 19 05:10:42 2009 UTC vs.
Revision 1.99 by dl, Wed Mar 23 11:27:43 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24 > import java.util.concurrent.locks.LockSupport;
25 > import java.util.concurrent.locks.ReentrantLock;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
30 < * ForkJoinPool provides the entry point for submissions from
31 < * non-ForkJoinTasks, as well as management and monitoring operations.
32 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
29 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 > * A {@code ForkJoinPool} provides the entry point for submissions
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
35 < * that they provide <em>work-stealing</em>: all threads in the pool
36 < * attempt to find and execute subtasks created by other active tasks
37 < * (eventually blocking if none exist). This makes them efficient when
38 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
39 < * as the mixed execution of some plain Runnable- or Callable- based
40 < * activities along with ForkJoinTasks. Otherwise, other
41 < * ExecutorService implementations are typically more appropriate
42 < * choices.
34 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 > * ExecutorService} mainly by virtue of employing
36 > * <em>work-stealing</em>: all threads in the pool attempt to find and
37 > * execute subtasks created by other active tasks (eventually blocking
38 > * waiting for work if none exist). This enables efficient processing
39 > * when most tasks spawn other subtasks (as do most {@code
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44 < * <p>A ForkJoinPool may be constructed with a given parallelism level
45 < * (target pool size), which it attempts to maintain by dynamically
46 < * adding, suspending, or resuming threads, even if some tasks are
47 < * waiting to join others. However, no such adjustments are performed
48 < * in the face of blocked IO or other unmanaged synchronization. The
49 < * nested <code>ManagedBlocker</code> interface enables extension of
50 < * the kinds of synchronization accommodated.  The target parallelism
51 < * level may also be changed dynamically (<code>setParallelism</code>)
52 < * and dynamically thread construction can be limited using methods
43 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
56 < * <code>getStealCount</code>) that are intended to aid in developing,
56 > * {@link #getStealCount}) that are intended to aid in developing,
57   * tuning, and monitoring fork/join applications. Also, method
58 < * <code>toString</code> returns indications of pool state in a
58 > * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 + * used for all parallel task execution in a program or subsystem.
97 + * Otherwise, use would not usually outweigh the construction and
98 + * bookkeeping overhead of creating a large set of threads. For
99 + * example, a common pool could be used for the {@code SortTasks}
100 + * illustrated in {@link RecursiveAction}. Because {@code
101 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 + * daemon} mode, there is typically no need to explicitly {@link
103 + * #shutdown} such a pool upon program exit.
104 + *
105 + * <pre>
106 + * static final ForkJoinPool mainPool = new ForkJoinPool();
107 + * ...
108 + * public void sort(long[] array) {
109 + *   mainPool.invoke(new SortTask(array, 0, array.length));
110 + * }
111 + * </pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
116 < * IllegalArgumentExceptions.
115 > * pools with greater than the maximum number result in
116 > * {@code IllegalArgumentException}.
117 > *
118 > * <p>This implementation rejects submitted tasks (that is, by throwing
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121 > *
122 > * @since 1.7
123 > * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300 >     *
301 >     * Style notes: There is a lot of representation-level coupling
302 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306 >     * workers, and direct access to ForkJoinTask.status by both
307 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308 >     * trying to reduce this, since any associated future changes in
309 >     * representations will need to be accompanied by algorithmic
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
65    /** Mask for packing and unpacking shorts */
66    private static final int  shortMask = 0xffff;
67
68    /** Max pool size -- must be a power of two minus 1 */
69    private static final int MAX_THREADS =  0x7FFF;
70
338      /**
339 <     * Factory for creating new ForkJoinWorkerThreads.  A
340 <     * ForkJoinWorkerThreadFactory must be defined and used for
341 <     * ForkJoinWorkerThread subclasses that extend base functionality
342 <     * or initialize threads with different contexts.
339 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
340 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
341 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
342 >     * functionality or initialize threads with different contexts.
343       */
344      public static interface ForkJoinWorkerThreadFactory {
345          /**
346           * Returns a new worker thread operating in the given pool.
347           *
348           * @param pool the pool this thread works in
349 <         * @throws NullPointerException if pool is null;
349 >         * @throws NullPointerException if the pool is null
350           */
351          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352      }
353  
354      /**
355 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
355 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 <            try {
95 <                return new ForkJoinWorkerThread(pool);
96 <            } catch (OutOfMemoryError oom)  {
97 <                return null;
98 <            }
361 >            return new ForkJoinWorkerThread(pool);
362          }
363      }
364  
# Line 104 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
108 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
115 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 127 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
131 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * Array holding all worker threads in the pool. Array size must
395 <     * be a power of two.  Updates and replacements are protected by
396 <     * workerLock, but it is always kept in a consistent enough state
397 <     * to be randomly accessed without locking by workers performing
398 <     * work-stealing.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    volatile ForkJoinWorkerThread[] workers;
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Lock protecting access to workers.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private final ReentrantLock workerLock;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Condition for awaitTermination.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private final Condition termination;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420  
421      /**
422 <     * The uncaught exception handler used when any worker
423 <     * abrupty terminates
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426       */
427 <    private Thread.UncaughtExceptionHandler ueh;
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 >
429 >    /**
430 >     * Array serving as submission queue. Initialized upon construction.
431 >     */
432 >    private ForkJoinTask<?>[] submissionQueue;
433 >
434 >    /**
435 >     * Lock protecting submissions array for addSubmission
436 >     */
437 >    private final ReentrantLock submissionLock;
438 >
439 >    /**
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442 >     */
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 161 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Head of stack of threads that were created to maintain
452 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile WaitQueueNode spareStack;
454 >    final Thread.UncaughtExceptionHandler ueh;
455 >
456 >    /**
457 >     * Prefix for assigning names to worker threads
458 >     */
459 >    private final String workerNamePrefix;
460  
461      /**
462       * Sum of per-thread steal counts, updated only when threads are
463       * idle or terminating.
464       */
465 <    private final AtomicLong stealCount;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Queue for external submissions.
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487       */
488 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * Head of Treiber stack for barrier sync. See below for explanation
524 >     * The target parallelism level.
525       */
526 <    private volatile WaitQueueNode syncStack;
526 >    final int parallelism;
527  
528      /**
529 <     * The count for event barrier
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private volatile long eventCount;
534 >    volatile int queueBase;
535  
536      /**
537 <     * Pool number, just for assigning useful names to worker threads
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private final int poolNumber;
542 >    int queueTop;
543  
544      /**
545 <     * The maximum allowed pool size
545 >     * True when shutdown() has been called.
546       */
547 <    private volatile int maxPoolSize;
547 >    volatile boolean shutdown;
548  
549      /**
550 <     * The desired parallelism level, updated only under workerLock.
550 >     * True if use local fifo, not default lifo, for local polling
551 >     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private volatile int parallelism;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * Holds number of total (i.e., created and not yet terminated)
557 <     * and running (i.e., not blocked on joins or other managed sync)
558 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private volatile int workerCounts;
560 >    volatile int quiescerCount;
561  
562 <    private static int totalCountOf(int s)           { return s >>> 16;  }
563 <    private static int runningCountOf(int s)         { return s & shortMask; }
564 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
562 >    /**
563 >     * The number of threads blocked in join.
564 >     */
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Add delta (which may be negative) to running count.  This must
223 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void updateRunningCount(int delta) {
228 <        int s;
229 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
230 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Add delta (which may be negative) to both total and running
234 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    private void updateWorkerCount(int delta) {
239 <        int d = delta + (delta << 16); // add to both lo and hi parts
240 <        int s;
241 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
242 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Lifecycle control. High word contains runState, low word
579 <     * contains the number of workers that are (probably) executing
580 <     * tasks. This value is atomically incremented before a worker
581 <     * gets a task to run, and decremented when worker has no tasks
582 <     * and cannot find any. These two fields are bundled together to
583 <     * support correct termination triggering.  Note: activeCount
584 <     * CAS'es cheat by assuming active count is in low word, so need
585 <     * to be modified if this changes
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private volatile int runControl;
587 >    volatile int scanGuard;
588  
589 <    // RunState values. Order among values matters
257 <    private static final int RUNNING     = 0;
258 <    private static final int SHUTDOWN    = 1;
259 <    private static final int TERMINATING = 2;
260 <    private static final int TERMINATED  = 3;
589 >    private static final int SG_UNIT = 1 << 16;
590  
591 <    private static int runStateOf(int c)             { return c >>> 16; }
592 <    private static int activeCountOf(int c)          { return c & shortMask; }
593 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
591 >    /**
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598 >     */
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Try incrementing active count; fail on contention. Called by
604 <     * workers before/during executing tasks.
605 <     * @return true on success;
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608 >     *
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Try decrementing active count; fail on contention.
278 <     * Possibly trigger termination on success
279 <     * Called by workers when they can't find tasks.
280 <     * @return true on success
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c = runControl;
630 <        int nextc = c - 1;
631 <        if (!casRunControl(c, nextc))
632 <            return false;
633 <        if (canTerminateOnShutdown(nextc))
634 <            terminateOnShutdown();
635 <        return true;
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Return true if argument represents zero active count and
671 <     * nonzero runstate, which is the triggering condition for
672 <     * terminating on shutdown.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private static boolean canTerminateOnShutdown(int c) {
676 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690 >        }
691 >        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Transition run state to at least the given state. Return true
698 <     * if not already at least given state.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private boolean transitionRunStateTo(int state) {
716 <        for (;;) {
717 <            int c = runControl;
718 <            if (runStateOf(c) >= state)
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737 >            }
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757                  return false;
758 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
758 >            }
759 >            return true;                         // all queues empty
760 >        }
761 >    }
762 >
763 >    /**
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent, possibly
766 >     * terminates worker upon exit.  Otherwise, before blocking,
767 >     * rescans queues to avoid missed signals.  Upon finding work,
768 >     * releases at least one worker (which may be the current
769 >     * worker). Rescans restart upon detected staleness or failure to
770 >     * release due to contention. Note the unusual conventions about
771 >     * Thread.interrupt here and elsewhere: Because interrupts are
772 >     * used solely to alert threads to check termination, which is
773 >     * checked here anyway, we clear status (using Thread.interrupted)
774 >     * before any call to park, so that park does not immediately
775 >     * return due to status being set via some other unrelated call to
776 >     * interrupt in user code.
777 >     *
778 >     * @param w the calling worker
779 >     * @param c the ctl value on entry
780 >     * @return true if waited or another thread was released upon enq
781 >     */
782 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783 >        int v = w.eventCount;
784 >        w.nextWait = (int)c;                      // w's successor record
785 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 >            long d = ctl; // return true if lost to a deq, to force scan
788 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789 >        }
790 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
791 >            long s = stealCount;
792 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793 >                sc = w.stealCount = 0;
794 >            else if (w.eventCount != v)
795 >                return true;                      // update next time
796 >        }
797 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802                  return true;
803 +            if (!rescanned) {
804 +                int g = scanGuard, m = g & SMASK;
805 +                ForkJoinWorkerThread[] ws = workers;
806 +                if (ws != null && m < ws.length) {
807 +                    rescanned = true;
808 +                    for (int i = 0; i <= m; ++i) {
809 +                        ForkJoinWorkerThread u = ws[i];
810 +                        if (u != null) {
811 +                            if (u.queueBase != u.queueTop &&
812 +                                !tryReleaseWaiter())
813 +                                rescanned = false; // contended
814 +                            if (w.eventCount != v)
815 +                                return true;
816 +                        }
817 +                    }
818 +                }
819 +                if (scanGuard != g ||              // stale
820 +                    (queueBase != queueTop && !tryReleaseWaiter()))
821 +                    rescanned = false;
822 +                if (!rescanned)
823 +                    Thread.yield();                // reduce contention
824 +                else
825 +                    Thread.interrupted();          // clear before park
826 +            }
827 +            else {
828 +                w.parked = true;                   // must recheck
829 +                if (w.eventCount != v) {
830 +                    w.parked = false;
831 +                    return true;
832 +                }
833 +                LockSupport.park(this);
834 +                rescanned = w.parked = false;
835 +            }
836          }
837      }
838  
839      /**
840 <     * Controls whether to add spares to maintain parallelism
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime <
868 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 >                    Thread.interrupted();          // spurious wakeup
870 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 >                                                   currentCtl, prevCtl)) {
872 >                    w.terminate = true;            // restore previous
873 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 >                    break;
875 >                }
876 >            }
877 >        }
878 >    }
879 >
880 >    // Submissions
881 >
882 >    /**
883 >     * Enqueues the given task in the submissionQueue.  Same idea as
884 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885 >     *
886 >     * @param t the task
887       */
888 <    private volatile boolean maintainsParallelism;
888 >    private void addSubmission(ForkJoinTask<?> t) {
889 >        final ReentrantLock lock = this.submissionLock;
890 >        lock.lock();
891 >        try {
892 >            ForkJoinTask<?>[] q; int s, m;
893 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 >                UNSAFE.putOrderedObject(q, u, t);
896 >                queueTop = s + 1;
897 >                if (s - queueBase == m)
898 >                    growSubmissionQueue();
899 >            }
900 >        } finally {
901 >            lock.unlock();
902 >        }
903 >        signalWork();
904 >    }
905  
906 <    // Constructors
906 >    //  (pollSubmission is defined below with exported methods)
907  
908      /**
909 <     * Creates a ForkJoinPool with a pool size equal to the number of
910 <     * processors available on the system and using the default
325 <     * ForkJoinWorkerThreadFactory,
326 <     * @throws SecurityException if a security manager exists and
327 <     *         the caller is not permitted to modify threads
328 <     *         because it does not hold {@link
329 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
909 >     * Creates or doubles submissionQueue array.
910 >     * Basically identical to ForkJoinWorkerThread version.
911       */
912 <    public ForkJoinPool() {
913 <        this(Runtime.getRuntime().availableProcessors(),
914 <             defaultForkJoinWorkerThreadFactory);
912 >    private void growSubmissionQueue() {
913 >        ForkJoinTask<?>[] oldQ = submissionQueue;
914 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915 >        if (size > MAXIMUM_QUEUE_CAPACITY)
916 >            throw new RejectedExecutionException("Queue capacity exceeded");
917 >        if (size < INITIAL_QUEUE_CAPACITY)
918 >            size = INITIAL_QUEUE_CAPACITY;
919 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 >        int mask = size - 1;
921 >        int top = queueTop;
922 >        int oldMask;
923 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 >            for (int b = queueBase; b != top; ++b) {
925 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 >                    UNSAFE.putObjectVolatile
929 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 >            }
931 >        }
932      }
933  
934 +    // Blocking support
935 +
936      /**
937 <     * Creates a ForkJoinPool with the indicated parellelism level
938 <     * threads, and using the default ForkJoinWorkerThreadFactory,
939 <     * @param parallelism the number of worker threads
940 <     * @throws IllegalArgumentException if parallelism less than or
941 <     * equal to zero
942 <     * @throws SecurityException if a security manager exists and
343 <     *         the caller is not permitted to modify threads
344 <     *         because it does not hold {@link
345 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
937 >     * Tries to increment blockedCount, decrement active count
938 >     * (sometimes implicitly) and possibly release or create a
939 >     * compensating worker in preparation for blocking. Fails
940 >     * on contention or termination.
941 >     *
942 >     * @return true if the caller can block, else should recheck and retry
943       */
944 <    public ForkJoinPool(int parallelism) {
945 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
944 >    private boolean tryPreBlock() {
945 >        int b = blockedCount;
946 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947 >            int pc = parallelism;
948 >            do {
949 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 >                int e, ac, tc, rc, i;
951 >                long c = ctl;
952 >                int u = (int)(c >>> 32);
953 >                if ((e = (int)c) < 0) {
954 >                                                 // skip -- terminating
955 >                }
956 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957 >                         (ws = workers) != null &&
958 >                         (i = ~e & SMASK) < ws.length &&
959 >                         (w = ws[i]) != null) {
960 >                    long nc = ((long)(w.nextWait & E_MASK) |
961 >                               (c & (AC_MASK|TC_MASK)));
962 >                    if (w.eventCount == e &&
963 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 >                        if (w.parked)
966 >                            UNSAFE.unpark(w);
967 >                        return true;             // release an idle worker
968 >                    }
969 >                }
970 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973 >                        return true;             // no compensation needed
974 >                }
975 >                else if (tc + pc < MAX_ID) {
976 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 >                        addWorker();
979 >                        return true;            // create a replacement
980 >                    }
981 >                }
982 >                // try to back out on any failure and let caller retry
983 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                               b = blockedCount, b - 1));
985 >        }
986 >        return false;
987      }
988  
989      /**
990 <     * Creates a ForkJoinPool with parallelism equal to the number of
353 <     * processors available on the system and using the given
354 <     * ForkJoinWorkerThreadFactory,
355 <     * @param factory the factory for creating new threads
356 <     * @throws NullPointerException if factory is null
357 <     * @throws SecurityException if a security manager exists and
358 <     *         the caller is not permitted to modify threads
359 <     *         because it does not hold {@link
360 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
990 >     * Decrements blockedCount and increments active count
991       */
992 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
993 <        this(Runtime.getRuntime().availableProcessors(), factory);
992 >    private void postBlock() {
993 >        long c;
994 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 >                                                c = ctl, c + AC_UNIT));
996 >        int b;
997 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 >                                              b = blockedCount, b - 1));
999      }
1000  
1001      /**
1002 <     * Creates a ForkJoinPool with the given parallelism and factory.
1002 >     * Possibly blocks waiting for the given task to complete, or
1003 >     * cancels the task if terminating.  Fails to wait if contended.
1004       *
1005 <     * @param parallelism the targeted number of worker threads
370 <     * @param factory the factory for creating new threads
371 <     * @throws IllegalArgumentException if parallelism less than or
372 <     * equal to zero, or greater than implementation limit.
373 <     * @throws NullPointerException if factory is null
374 <     * @throws SecurityException if a security manager exists and
375 <     *         the caller is not permitted to modify threads
376 <     *         because it does not hold {@link
377 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1005 >     * @param joinMe the task
1006       */
1007 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1008 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1009 <            throw new IllegalArgumentException();
1010 <        if (factory == null)
1011 <            throw new NullPointerException();
1012 <        checkPermission();
1013 <        this.factory = factory;
1014 <        this.parallelism = parallelism;
1015 <        this.maxPoolSize = MAX_THREADS;
1016 <        this.maintainsParallelism = true;
1017 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
390 <        this.workerLock = new ReentrantLock();
391 <        this.termination = workerLock.newCondition();
392 <        this.stealCount = new AtomicLong();
393 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
394 <        createAndStartInitialWorkers(parallelism);
1007 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008 >        int s;
1009 >        Thread.interrupted(); // clear interrupts before checking termination
1010 >        if (joinMe.status >= 0) {
1011 >            if (tryPreBlock()) {
1012 >                joinMe.tryAwaitDone(0L);
1013 >                postBlock();
1014 >            }
1015 >            else if ((ctl & STOP_BIT) != 0L)
1016 >                joinMe.cancelIgnoringExceptions();
1017 >        }
1018      }
1019  
1020      /**
1021 <     * Create new worker using factory.
1022 <     * @param index the index to assign worker
1023 <     * @return new worker, or null of factory failed
1021 >     * Possibly blocks the given worker waiting for joinMe to
1022 >     * complete or timeout
1023 >     *
1024 >     * @param joinMe the task
1025 >     * @param millis the wait time for underlying Object.wait
1026       */
1027 <    private ForkJoinWorkerThread createWorker(int index) {
1028 <        Thread.UncaughtExceptionHandler h = ueh;
1029 <        ForkJoinWorkerThread w = factory.newThread(this);
1030 <        if (w != null) {
1031 <            w.poolIndex = index;
1032 <            w.setDaemon(true);
1033 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1034 <            if (h != null)
1035 <                w.setUncaughtExceptionHandler(h);
1027 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1028 >        while (joinMe.status >= 0) {
1029 >            Thread.interrupted();
1030 >            if ((ctl & STOP_BIT) != 0L) {
1031 >                joinMe.cancelIgnoringExceptions();
1032 >                break;
1033 >            }
1034 >            if (tryPreBlock()) {
1035 >                long last = System.nanoTime();
1036 >                while (joinMe.status >= 0) {
1037 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1038 >                    if (millis <= 0)
1039 >                        break;
1040 >                    joinMe.tryAwaitDone(millis);
1041 >                    if (joinMe.status < 0)
1042 >                        break;
1043 >                    if ((ctl & STOP_BIT) != 0L) {
1044 >                        joinMe.cancelIgnoringExceptions();
1045 >                        break;
1046 >                    }
1047 >                    long now = System.nanoTime();
1048 >                    nanos -= now - last;
1049 >                    last = now;
1050 >                }
1051 >                postBlock();
1052 >                break;
1053 >            }
1054          }
412        return w;
1055      }
1056  
1057      /**
1058 <     * Return a good size for worker array given pool size.
417 <     * Currently requires size to be a power of two.
1058 >     * If necessary, compensates for blocker, and blocks
1059       */
1060 <    private static int arraySizeFor(int ps) {
1061 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1060 >    private void awaitBlocker(ManagedBlocker blocker)
1061 >        throws InterruptedException {
1062 >        while (!blocker.isReleasable()) {
1063 >            if (tryPreBlock()) {
1064 >                try {
1065 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1066 >                } finally {
1067 >                    postBlock();
1068 >                }
1069 >                break;
1070 >            }
1071 >        }
1072      }
1073  
1074 +    // Creating, registering and deregistring workers
1075 +
1076      /**
1077 <     * Create or resize array if necessary to hold newLength
1078 <     * @return the array
1077 >     * Tries to create and start a worker; minimally rolls back counts
1078 >     * on failure.
1079       */
1080 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1081 <        ForkJoinWorkerThread[] ws = workers;
1082 <        if (ws == null)
1083 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1084 <        else if (newLength > ws.length)
1085 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1080 >    private void addWorker() {
1081 >        Throwable ex = null;
1082 >        ForkJoinWorkerThread t = null;
1083 >        try {
1084 >            t = factory.newThread(this);
1085 >        } catch (Throwable e) {
1086 >            ex = e;
1087 >        }
1088 >        if (t == null) {  // null or exceptional factory return
1089 >            long c;       // adjust counts
1090 >            do {} while (!UNSAFE.compareAndSwapLong
1091 >                         (this, ctlOffset, c = ctl,
1092 >                          (((c - AC_UNIT) & AC_MASK) |
1093 >                           ((c - TC_UNIT) & TC_MASK) |
1094 >                           (c & ~(AC_MASK|TC_MASK)))));
1095 >            // Propagate exception if originating from an external caller
1096 >            if (!tryTerminate(false) && ex != null &&
1097 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1098 >                UNSAFE.throwException(ex);
1099 >        }
1100          else
1101 <            return ws;
1101 >            t.start();
1102      }
1103  
1104      /**
1105 <     * Try to shrink workers into smaller array after one or more terminate
1105 >     * Callback from ForkJoinWorkerThread constructor to assign a
1106 >     * public name
1107       */
1108 <    private void tryShrinkWorkerArray() {
1109 <        ForkJoinWorkerThread[] ws = workers;
1110 <        int len = ws.length;
1111 <        int last = len - 1;
1112 <        while (last >= 0 && ws[last] == null)
1113 <            --last;
446 <        int newLength = arraySizeFor(last+1);
447 <        if (newLength < len)
448 <            workers = Arrays.copyOf(ws, newLength);
1108 >    final String nextWorkerName() {
1109 >        for (int n;;) {
1110 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1111 >                                         n = nextWorkerNumber, ++n))
1112 >                return workerNamePrefix + n;
1113 >        }
1114      }
1115  
1116      /**
1117 <     * Initial worker array and worker creation and startup. (This
1118 <     * must be done under lock to avoid interference by some of the
1119 <     * newly started threads while creating others.)
1117 >     * Callback from ForkJoinWorkerThread constructor to
1118 >     * determine its poolIndex and record in workers array.
1119 >     *
1120 >     * @param w the worker
1121 >     * @return the worker's pool index
1122       */
1123 <    private void createAndStartInitialWorkers(int ps) {
1124 <        final ReentrantLock lock = this.workerLock;
1125 <        lock.lock();
1126 <        try {
1127 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1128 <            for (int i = 0; i < ps; ++i) {
1129 <                ForkJoinWorkerThread w = createWorker(i);
1130 <                if (w != null) {
1131 <                    ws[i] = w;
1132 <                    w.start();
1133 <                    updateWorkerCount(1);
1123 >    final int registerWorker(ForkJoinWorkerThread w) {
1124 >        /*
1125 >         * In the typical case, a new worker acquires the lock, uses
1126 >         * next available index and returns quickly.  Since we should
1127 >         * not block callers (ultimately from signalWork or
1128 >         * tryPreBlock) waiting for the lock needed to do this, we
1129 >         * instead help release other workers while waiting for the
1130 >         * lock.
1131 >         */
1132 >        for (int g;;) {
1133 >            ForkJoinWorkerThread[] ws;
1134 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1135 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1136 >                                         g, g | SG_UNIT)) {
1137 >                int k = nextWorkerIndex;
1138 >                try {
1139 >                    if ((ws = workers) != null) { // ignore on shutdown
1140 >                        int n = ws.length;
1141 >                        if (k < 0 || k >= n || ws[k] != null) {
1142 >                            for (k = 0; k < n && ws[k] != null; ++k)
1143 >                                ;
1144 >                            if (k == n)
1145 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1146 >                        }
1147 >                        ws[k] = w;
1148 >                        nextWorkerIndex = k + 1;
1149 >                        int m = g & SMASK;
1150 >                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1151 >                    }
1152 >                } finally {
1153 >                    scanGuard = g;
1154 >                }
1155 >                return k;
1156 >            }
1157 >            else if ((ws = workers) != null) { // help release others
1158 >                for (ForkJoinWorkerThread u : ws) {
1159 >                    if (u != null && u.queueBase != u.queueTop) {
1160 >                        if (tryReleaseWaiter())
1161 >                            break;
1162 >                    }
1163                  }
1164              }
469        } finally {
470            lock.unlock();
1165          }
1166      }
1167  
1168      /**
1169 <     * Worker creation and startup for threads added via setParallelism.
1169 >     * Final callback from terminating worker.  Removes record of
1170 >     * worker from array, and adjusts counts. If pool is shutting
1171 >     * down, tries to complete termination.
1172 >     *
1173 >     * @param w the worker
1174       */
1175 <    private void createAndStartAddedWorkers() {
1176 <        resumeAllSpares();  // Allow spares to convert to nonspare
1177 <        int ps = parallelism;
1178 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1179 <        int len = ws.length;
1180 <        // Sweep through slots, to keep lowest indices most populated
1181 <        int k = 0;
1182 <        while (k < len) {
1183 <            if (ws[k] != null) {
1184 <                ++k;
1185 <                continue;
1175 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1176 >        int idx = w.poolIndex;
1177 >        int sc = w.stealCount;
1178 >        int steps = 0;
1179 >        // Remove from array, adjust worker counts and collect steal count.
1180 >        // We can intermix failed removes or adjusts with steal updates
1181 >        do {
1182 >            long s, c;
1183 >            int g;
1184 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1185 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1186 >                                         g, g |= SG_UNIT)) {
1187 >                ForkJoinWorkerThread[] ws = workers;
1188 >                if (ws != null && idx >= 0 &&
1189 >                    idx < ws.length && ws[idx] == w)
1190 >                    ws[idx] = null;    // verify
1191 >                nextWorkerIndex = idx;
1192 >                scanGuard = g + SG_UNIT;
1193 >                steps = 1;
1194 >            }
1195 >            if (steps == 1 &&
1196 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1197 >                                          (((c - AC_UNIT) & AC_MASK) |
1198 >                                           ((c - TC_UNIT) & TC_MASK) |
1199 >                                           (c & ~(AC_MASK|TC_MASK)))))
1200 >                steps = 2;
1201 >            if (sc != 0 &&
1202 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1203 >                                          s = stealCount, s + sc))
1204 >                sc = 0;
1205 >        } while (steps != 2 || sc != 0);
1206 >        if (!tryTerminate(false)) {
1207 >            if (ex != null)   // possibly replace if died abnormally
1208 >                signalWork();
1209 >            else
1210 >                tryReleaseWaiter();
1211 >        }
1212 >    }
1213 >
1214 >    // Shutdown and termination
1215 >
1216 >    /**
1217 >     * Possibly initiates and/or completes termination.
1218 >     *
1219 >     * @param now if true, unconditionally terminate, else only
1220 >     * if shutdown and empty queue and no active workers
1221 >     * @return true if now terminating or terminated
1222 >     */
1223 >    private boolean tryTerminate(boolean now) {
1224 >        long c;
1225 >        while (((c = ctl) & STOP_BIT) == 0) {
1226 >            if (!now) {
1227 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1228 >                    return false;
1229 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1230 >                    queueBase != queueTop) {
1231 >                    if (ctl == c) // staleness check
1232 >                        return false;
1233 >                    continue;
1234 >                }
1235              }
1236 <            int s = workerCounts;
1237 <            int tc = totalCountOf(s);
1238 <            int rc = runningCountOf(s);
1239 <            if (rc >= ps || tc >= ps)
1240 <                break;
1241 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1242 <                ForkJoinWorkerThread w = createWorker(k);
1243 <                if (w != null) {
1244 <                    ws[k++] = w;
1245 <                    w.start();
1236 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1237 >                startTerminating();
1238 >        }
1239 >        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1240 >            final ReentrantLock lock = this.submissionLock;
1241 >            lock.lock();
1242 >            try {
1243 >                termination.signalAll();
1244 >            } finally {
1245 >                lock.unlock();
1246 >            }
1247 >        }
1248 >        return true;
1249 >    }
1250 >
1251 >    /**
1252 >     * Runs up to three passes through workers: (0) Setting
1253 >     * termination status for each worker, followed by wakeups up to
1254 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1255 >     * lagging threads (likely in external tasks, but possibly also
1256 >     * blocked in joins).  Each pass repeats previous steps because of
1257 >     * potential lagging thread creation.
1258 >     */
1259 >    private void startTerminating() {
1260 >        cancelSubmissions();
1261 >        for (int pass = 0; pass < 3; ++pass) {
1262 >            ForkJoinWorkerThread[] ws = workers;
1263 >            if (ws != null) {
1264 >                for (ForkJoinWorkerThread w : ws) {
1265 >                    if (w != null) {
1266 >                        w.terminate = true;
1267 >                        if (pass > 0) {
1268 >                            w.cancelTasks();
1269 >                            if (pass > 1 && !w.isInterrupted()) {
1270 >                                try {
1271 >                                    w.interrupt();
1272 >                                } catch (SecurityException ignore) {
1273 >                                }
1274 >                            }
1275 >                        }
1276 >                    }
1277                  }
1278 <                else {
1279 <                    updateWorkerCount(-1); // back out on failed creation
1280 <                    break;
1278 >                terminateWaiters();
1279 >            }
1280 >        }
1281 >    }
1282 >
1283 >    /**
1284 >     * Polls and cancels all submissions. Called only during termination.
1285 >     */
1286 >    private void cancelSubmissions() {
1287 >        while (queueBase != queueTop) {
1288 >            ForkJoinTask<?> task = pollSubmission();
1289 >            if (task != null) {
1290 >                try {
1291 >                    task.cancel(false);
1292 >                } catch (Throwable ignore) {
1293                  }
1294              }
1295          }
1296      }
1297  
1298 <    // Execution methods
1298 >    /**
1299 >     * Tries to set the termination status of waiting workers, and
1300 >     * then wakes them up (after which they will terminate).
1301 >     */
1302 >    private void terminateWaiters() {
1303 >        ForkJoinWorkerThread[] ws = workers;
1304 >        if (ws != null) {
1305 >            ForkJoinWorkerThread w; long c; int i, e;
1306 >            int n = ws.length;
1307 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1308 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1309 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1310 >                                              (long)(w.nextWait & E_MASK) |
1311 >                                              ((c + AC_UNIT) & AC_MASK) |
1312 >                                              (c & (TC_MASK|STOP_BIT)))) {
1313 >                    w.terminate = true;
1314 >                    w.eventCount = e + EC_UNIT;
1315 >                    if (w.parked)
1316 >                        UNSAFE.unpark(w);
1317 >                }
1318 >            }
1319 >        }
1320 >    }
1321 >
1322 >    // misc ForkJoinWorkerThread support
1323  
1324      /**
1325 <     * Common code for execute, invoke and submit
1325 >     * Increment or decrement quiescerCount. Needed only to prevent
1326 >     * triggering shutdown if a worker is transiently inactive while
1327 >     * checking quiescence.
1328 >     *
1329 >     * @param delta 1 for increment, -1 for decrement
1330       */
1331 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1332 <        if (isShutdown())
1333 <            throw new RejectedExecutionException();
1334 <        submissionQueue.offer(task);
517 <        signalIdleWorkers();
1331 >    final void addQuiescerCount(int delta) {
1332 >        int c;
1333 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1334 >                                              c = quiescerCount, c + delta));
1335      }
1336  
1337      /**
1338 <     * Performs the given task; returning its result upon completion
1338 >     * Directly increment or decrement active count without
1339 >     * queuing. This method is used to transiently assert inactivation
1340 >     * while checking quiescence.
1341 >     *
1342 >     * @param delta 1 for increment, -1 for decrement
1343 >     */
1344 >    final void addActiveCount(int delta) {
1345 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1346 >        long c;
1347 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1348 >                                                ((c + d) & AC_MASK) |
1349 >                                                (c & ~AC_MASK)));
1350 >    }
1351 >
1352 >    /**
1353 >     * Returns the approximate (non-atomic) number of idle threads per
1354 >     * active thread.
1355 >     */
1356 >    final int idlePerActive() {
1357 >        // Approximate at powers of two for small values, saturate past 4
1358 >        int p = parallelism;
1359 >        int a = p + (int)(ctl >> AC_SHIFT);
1360 >        return (a > (p >>>= 1) ? 0 :
1361 >                a > (p >>>= 1) ? 1 :
1362 >                a > (p >>>= 1) ? 2 :
1363 >                a > (p >>>= 1) ? 4 :
1364 >                8);
1365 >    }
1366 >
1367 >    // Exported methods
1368 >
1369 >    // Constructors
1370 >
1371 >    /**
1372 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1373 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1374 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1375 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1376 >     *
1377 >     * @throws SecurityException if a security manager exists and
1378 >     *         the caller is not permitted to modify threads
1379 >     *         because it does not hold {@link
1380 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1381 >     */
1382 >    public ForkJoinPool() {
1383 >        this(Runtime.getRuntime().availableProcessors(),
1384 >             defaultForkJoinWorkerThreadFactory, null, false);
1385 >    }
1386 >
1387 >    /**
1388 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1389 >     * level, the {@linkplain
1390 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1391 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1392 >     *
1393 >     * @param parallelism the parallelism level
1394 >     * @throws IllegalArgumentException if parallelism less than or
1395 >     *         equal to zero, or greater than implementation limit
1396 >     * @throws SecurityException if a security manager exists and
1397 >     *         the caller is not permitted to modify threads
1398 >     *         because it does not hold {@link
1399 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1400 >     */
1401 >    public ForkJoinPool(int parallelism) {
1402 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1403 >    }
1404 >
1405 >    /**
1406 >     * Creates a {@code ForkJoinPool} with the given parameters.
1407 >     *
1408 >     * @param parallelism the parallelism level. For default value,
1409 >     * use {@link java.lang.Runtime#availableProcessors}.
1410 >     * @param factory the factory for creating new threads. For default value,
1411 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1412 >     * @param handler the handler for internal worker threads that
1413 >     * terminate due to unrecoverable errors encountered while executing
1414 >     * tasks. For default value, use {@code null}.
1415 >     * @param asyncMode if true,
1416 >     * establishes local first-in-first-out scheduling mode for forked
1417 >     * tasks that are never joined. This mode may be more appropriate
1418 >     * than default locally stack-based mode in applications in which
1419 >     * worker threads only process event-style asynchronous tasks.
1420 >     * For default value, use {@code false}.
1421 >     * @throws IllegalArgumentException if parallelism less than or
1422 >     *         equal to zero, or greater than implementation limit
1423 >     * @throws NullPointerException if the factory is null
1424 >     * @throws SecurityException if a security manager exists and
1425 >     *         the caller is not permitted to modify threads
1426 >     *         because it does not hold {@link
1427 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1428 >     */
1429 >    public ForkJoinPool(int parallelism,
1430 >                        ForkJoinWorkerThreadFactory factory,
1431 >                        Thread.UncaughtExceptionHandler handler,
1432 >                        boolean asyncMode) {
1433 >        checkPermission();
1434 >        if (factory == null)
1435 >            throw new NullPointerException();
1436 >        if (parallelism <= 0 || parallelism > MAX_ID)
1437 >            throw new IllegalArgumentException();
1438 >        this.parallelism = parallelism;
1439 >        this.factory = factory;
1440 >        this.ueh = handler;
1441 >        this.locallyFifo = asyncMode;
1442 >        long np = (long)(-parallelism); // offset ctl counts
1443 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1444 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1445 >        // initialize workers array with room for 2*parallelism if possible
1446 >        int n = parallelism << 1;
1447 >        if (n >= MAX_ID)
1448 >            n = MAX_ID;
1449 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1450 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1451 >        }
1452 >        workers = new ForkJoinWorkerThread[n + 1];
1453 >        this.submissionLock = new ReentrantLock();
1454 >        this.termination = submissionLock.newCondition();
1455 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1456 >        sb.append(poolNumberGenerator.incrementAndGet());
1457 >        sb.append("-worker-");
1458 >        this.workerNamePrefix = sb.toString();
1459 >    }
1460 >
1461 >    // Execution methods
1462 >
1463 >    /**
1464 >     * Performs the given task, returning its result upon completion.
1465 >     * If the computation encounters an unchecked Exception or Error,
1466 >     * it is rethrown as the outcome of this invocation.  Rethrown
1467 >     * exceptions behave in the same way as regular exceptions, but,
1468 >     * when possible, contain stack traces (as displayed for example
1469 >     * using {@code ex.printStackTrace()}) of both the current thread
1470 >     * as well as the thread actually encountering the exception;
1471 >     * minimally only the latter.
1472 >     *
1473       * @param task the task
1474       * @return the task's result
1475 <     * @throws NullPointerException if task is null
1476 <     * @throws RejectedExecutionException if pool is shut down
1475 >     * @throws NullPointerException if the task is null
1476 >     * @throws RejectedExecutionException if the task cannot be
1477 >     *         scheduled for execution
1478       */
1479      public <T> T invoke(ForkJoinTask<T> task) {
1480 <        doSubmit(task);
1481 <        return task.join();
1480 >        Thread t = Thread.currentThread();
1481 >        if (task == null)
1482 >            throw new NullPointerException();
1483 >        if (shutdown)
1484 >            throw new RejectedExecutionException();
1485 >        if ((t instanceof ForkJoinWorkerThread) &&
1486 >            ((ForkJoinWorkerThread)t).pool == this)
1487 >            return task.invoke();  // bypass submit if in same pool
1488 >        else {
1489 >            addSubmission(task);
1490 >            return task.join();
1491 >        }
1492 >    }
1493 >
1494 >    /**
1495 >     * Unless terminating, forks task if within an ongoing FJ
1496 >     * computation in the current pool, else submits as external task.
1497 >     */
1498 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1499 >        ForkJoinWorkerThread w;
1500 >        Thread t = Thread.currentThread();
1501 >        if (shutdown)
1502 >            throw new RejectedExecutionException();
1503 >        if ((t instanceof ForkJoinWorkerThread) &&
1504 >            (w = (ForkJoinWorkerThread)t).pool == this)
1505 >            w.pushTask(task);
1506 >        else
1507 >            addSubmission(task);
1508      }
1509  
1510      /**
1511       * Arranges for (asynchronous) execution of the given task.
1512 +     *
1513       * @param task the task
1514 <     * @throws NullPointerException if task is null
1515 <     * @throws RejectedExecutionException if pool is shut down
1514 >     * @throws NullPointerException if the task is null
1515 >     * @throws RejectedExecutionException if the task cannot be
1516 >     *         scheduled for execution
1517       */
1518 <    public <T> void execute(ForkJoinTask<T> task) {
1519 <        doSubmit(task);
1518 >    public void execute(ForkJoinTask<?> task) {
1519 >        if (task == null)
1520 >            throw new NullPointerException();
1521 >        forkOrSubmit(task);
1522      }
1523  
1524      // AbstractExecutorService methods
1525  
1526 +    /**
1527 +     * @throws NullPointerException if the task is null
1528 +     * @throws RejectedExecutionException if the task cannot be
1529 +     *         scheduled for execution
1530 +     */
1531      public void execute(Runnable task) {
1532 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1532 >        if (task == null)
1533 >            throw new NullPointerException();
1534 >        ForkJoinTask<?> job;
1535 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1536 >            job = (ForkJoinTask<?>) task;
1537 >        else
1538 >            job = ForkJoinTask.adapt(task, null);
1539 >        forkOrSubmit(job);
1540      }
1541  
1542 +    /**
1543 +     * Submits a ForkJoinTask for execution.
1544 +     *
1545 +     * @param task the task to submit
1546 +     * @return the task
1547 +     * @throws NullPointerException if the task is null
1548 +     * @throws RejectedExecutionException if the task cannot be
1549 +     *         scheduled for execution
1550 +     */
1551 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1552 +        if (task == null)
1553 +            throw new NullPointerException();
1554 +        forkOrSubmit(task);
1555 +        return task;
1556 +    }
1557 +
1558 +    /**
1559 +     * @throws NullPointerException if the task is null
1560 +     * @throws RejectedExecutionException if the task cannot be
1561 +     *         scheduled for execution
1562 +     */
1563      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1564 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1565 <        doSubmit(job);
1564 >        if (task == null)
1565 >            throw new NullPointerException();
1566 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1567 >        forkOrSubmit(job);
1568          return job;
1569      }
1570  
1571 +    /**
1572 +     * @throws NullPointerException if the task is null
1573 +     * @throws RejectedExecutionException if the task cannot be
1574 +     *         scheduled for execution
1575 +     */
1576      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1577 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1578 <        doSubmit(job);
1577 >        if (task == null)
1578 >            throw new NullPointerException();
1579 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1580 >        forkOrSubmit(job);
1581          return job;
1582      }
1583  
1584 +    /**
1585 +     * @throws NullPointerException if the task is null
1586 +     * @throws RejectedExecutionException if the task cannot be
1587 +     *         scheduled for execution
1588 +     */
1589      public ForkJoinTask<?> submit(Runnable task) {
1590 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1591 <        doSubmit(job);
1590 >        if (task == null)
1591 >            throw new NullPointerException();
1592 >        ForkJoinTask<?> job;
1593 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1594 >            job = (ForkJoinTask<?>) task;
1595 >        else
1596 >            job = ForkJoinTask.adapt(task, null);
1597 >        forkOrSubmit(job);
1598          return job;
1599      }
1600  
1601      /**
1602 <     * Adaptor for Runnables. This implements RunnableFuture
1603 <     * to be compliant with AbstractExecutorService constraints
1602 >     * @throws NullPointerException       {@inheritDoc}
1603 >     * @throws RejectedExecutionException {@inheritDoc}
1604       */
570    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
571        implements RunnableFuture<T> {
572        final Runnable runnable;
573        final T resultOnCompletion;
574        T result;
575        AdaptedRunnable(Runnable runnable, T result) {
576            if (runnable == null) throw new NullPointerException();
577            this.runnable = runnable;
578            this.resultOnCompletion = result;
579        }
580        public T getRawResult() { return result; }
581        public void setRawResult(T v) { result = v; }
582        public boolean exec() {
583            runnable.run();
584            result = resultOnCompletion;
585            return true;
586        }
587        public void run() { invoke(); }
588    }
589
590    /**
591     * Adaptor for Callables
592     */
593    static final class AdaptedCallable<T> extends ForkJoinTask<T>
594        implements RunnableFuture<T> {
595        final Callable<T> callable;
596        T result;
597        AdaptedCallable(Callable<T> callable) {
598            if (callable == null) throw new NullPointerException();
599            this.callable = callable;
600        }
601        public T getRawResult() { return result; }
602        public void setRawResult(T v) { result = v; }
603        public boolean exec() {
604            try {
605                result = callable.call();
606                return true;
607            } catch (Error err) {
608                throw err;
609            } catch (RuntimeException rex) {
610                throw rex;
611            } catch (Exception ex) {
612                throw new RuntimeException(ex);
613            }
614        }
615        public void run() { invoke(); }
616    }
617
1605      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1606 <        ArrayList<ForkJoinTask<T>> ts =
1606 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1607              new ArrayList<ForkJoinTask<T>>(tasks.size());
1608 <        for (Callable<T> c : tasks)
1609 <            ts.add(new AdaptedCallable<T>(c));
1610 <        invoke(new InvokeAll<T>(ts));
1611 <        return (List<Future<T>>)(List)ts;
1608 >        for (Callable<T> task : tasks)
1609 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1610 >        invoke(new InvokeAll<T>(forkJoinTasks));
1611 >
1612 >        @SuppressWarnings({"unchecked", "rawtypes"})
1613 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1614 >        return futures;
1615      }
1616  
1617      static final class InvokeAll<T> extends RecursiveAction {
1618          final ArrayList<ForkJoinTask<T>> tasks;
1619          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1620          public void compute() {
1621 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1621 >            try { invokeAll(tasks); }
1622 >            catch (Exception ignore) {}
1623          }
1624 +        private static final long serialVersionUID = -7914297376763021607L;
1625      }
1626  
635    // Configuration and status settings and queries
636
1627      /**
1628 <     * Returns the factory used for constructing new workers
1628 >     * Returns the factory used for constructing new workers.
1629       *
1630       * @return the factory used for constructing new workers
1631       */
# Line 646 | Line 1636 | public class ForkJoinPool extends Abstra
1636      /**
1637       * Returns the handler for internal worker threads that terminate
1638       * due to unrecoverable errors encountered while executing tasks.
649     * @return the handler, or null if none
650     */
651    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
652        Thread.UncaughtExceptionHandler h;
653        final ReentrantLock lock = this.workerLock;
654        lock.lock();
655        try {
656            h = ueh;
657        } finally {
658            lock.unlock();
659        }
660        return h;
661    }
662
663    /**
664     * Sets the handler for internal worker threads that terminate due
665     * to unrecoverable errors encountered while executing tasks.
666     * Unless set, the current default or ThreadGroup handler is used
667     * as handler.
1639       *
1640 <     * @param h the new handler
670 <     * @return the old handler, or null if none
671 <     * @throws SecurityException if a security manager exists and
672 <     *         the caller is not permitted to modify threads
673 <     *         because it does not hold {@link
674 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
675 <     */
676 <    public Thread.UncaughtExceptionHandler
677 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
678 <        checkPermission();
679 <        Thread.UncaughtExceptionHandler old = null;
680 <        final ReentrantLock lock = this.workerLock;
681 <        lock.lock();
682 <        try {
683 <            old = ueh;
684 <            ueh = h;
685 <            ForkJoinWorkerThread[] ws = workers;
686 <            for (int i = 0; i < ws.length; ++i) {
687 <                ForkJoinWorkerThread w = ws[i];
688 <                if (w != null)
689 <                    w.setUncaughtExceptionHandler(h);
690 <            }
691 <        } finally {
692 <            lock.unlock();
693 <        }
694 <        return old;
695 <    }
696 <
697 <
698 <    /**
699 <     * Sets the target paralleism level of this pool.
700 <     * @param parallelism the target parallelism
701 <     * @throws IllegalArgumentException if parallelism less than or
702 <     * equal to zero or greater than maximum size bounds.
703 <     * @throws SecurityException if a security manager exists and
704 <     *         the caller is not permitted to modify threads
705 <     *         because it does not hold {@link
706 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1640 >     * @return the handler, or {@code null} if none
1641       */
1642 <    public void setParallelism(int parallelism) {
1643 <        checkPermission();
710 <        if (parallelism <= 0 || parallelism > maxPoolSize)
711 <            throw new IllegalArgumentException();
712 <        final ReentrantLock lock = this.workerLock;
713 <        lock.lock();
714 <        try {
715 <            if (!isTerminating()) {
716 <                int p = this.parallelism;
717 <                this.parallelism = parallelism;
718 <                if (parallelism > p)
719 <                    createAndStartAddedWorkers();
720 <                else
721 <                    trimSpares();
722 <            }
723 <        } finally {
724 <            lock.unlock();
725 <        }
726 <        signalIdleWorkers();
1642 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1643 >        return ueh;
1644      }
1645  
1646      /**
1647 <     * Returns the targeted number of worker threads in this pool.
1647 >     * Returns the targeted parallelism level of this pool.
1648       *
1649 <     * @return the targeted number of worker threads in this pool
1649 >     * @return the targeted parallelism level of this pool
1650       */
1651      public int getParallelism() {
1652          return parallelism;
# Line 737 | Line 1654 | public class ForkJoinPool extends Abstra
1654  
1655      /**
1656       * Returns the number of worker threads that have started but not
1657 <     * yet terminated.  This result returned by this method may differ
1658 <     * from <code>getParallelism</code> when threads are created to
1657 >     * yet terminated.  The result returned by this method may differ
1658 >     * from {@link #getParallelism} when threads are created to
1659       * maintain parallelism when others are cooperatively blocked.
1660       *
1661       * @return the number of worker threads
1662       */
1663      public int getPoolSize() {
1664 <        return totalCountOf(workerCounts);
748 <    }
749 <
750 <    /**
751 <     * Returns the maximum number of threads allowed to exist in the
752 <     * pool, even if there are insufficient unblocked running threads.
753 <     * @return the maximum
754 <     */
755 <    public int getMaximumPoolSize() {
756 <        return maxPoolSize;
1664 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1665      }
1666  
1667      /**
1668 <     * Sets the maximum number of threads allowed to exist in the
1669 <     * pool, even if there are insufficient unblocked running threads.
1670 <     * Setting this value has no effect on current pool size. It
1671 <     * controls construction of new threads.
764 <     * @throws IllegalArgumentException if negative or greater then
765 <     * internal implementation limit.
766 <     */
767 <    public void setMaximumPoolSize(int newMax) {
768 <        if (newMax < 0 || newMax > MAX_THREADS)
769 <            throw new IllegalArgumentException();
770 <        maxPoolSize = newMax;
771 <    }
772 <
773 <
774 <    /**
775 <     * Returns true if this pool dynamically maintains its target
776 <     * parallelism level. If false, new threads are added only to
777 <     * avoid possible starvation.
778 <     * This setting is by default true;
779 <     * @return true if maintains parallelism
780 <     */
781 <    public boolean getMaintainsParallelism() {
782 <        return maintainsParallelism;
783 <    }
784 <
785 <    /**
786 <     * Sets whether this pool dynamically maintains its target
787 <     * parallelism level. If false, new threads are added only to
788 <     * avoid possible starvation.
789 <     * @param enable true to maintains parallelism
1668 >     * Returns {@code true} if this pool uses local first-in-first-out
1669 >     * scheduling mode for forked tasks that are never joined.
1670 >     *
1671 >     * @return {@code true} if this pool uses async mode
1672       */
1673 <    public void setMaintainsParallelism(boolean enable) {
1674 <        maintainsParallelism = enable;
1673 >    public boolean getAsyncMode() {
1674 >        return locallyFifo;
1675      }
1676  
1677      /**
1678       * Returns an estimate of the number of worker threads that are
1679       * not blocked waiting to join tasks or for other managed
1680 <     * synchronization.
1680 >     * synchronization. This method may overestimate the
1681 >     * number of running threads.
1682       *
1683       * @return the number of worker threads
1684       */
1685      public int getRunningThreadCount() {
1686 <        return runningCountOf(workerCounts);
1686 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1687 >        return r <= 0? 0 : r; // suppress momentarily negative values
1688      }
1689  
1690      /**
1691       * Returns an estimate of the number of threads that are currently
1692       * stealing or executing tasks. This method may overestimate the
1693       * number of active threads.
1694 <     * @return the number of active threads.
1694 >     *
1695 >     * @return the number of active threads
1696       */
1697      public int getActiveThreadCount() {
1698 <        return activeCountOf(runControl);
1699 <    }
815 <
816 <    /**
817 <     * Returns an estimate of the number of threads that are currently
818 <     * idle waiting for tasks. This method may underestimate the
819 <     * number of idle threads.
820 <     * @return the number of idle threads.
821 <     */
822 <    final int getIdleThreadCount() {
823 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
824 <        return (c <= 0)? 0 : c;
1698 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1699 >        return r <= 0? 0 : r; // suppress momentarily negative values
1700      }
1701  
1702      /**
1703 <     * Returns true if all worker threads are currently idle. An idle
1704 <     * worker is one that cannot obtain a task to execute because none
1705 <     * are available to steal from other threads, and there are no
1706 <     * pending submissions to the pool. This method is conservative:
1707 <     * It might not return true immediately upon idleness of all
1708 <     * threads, but will eventually become true if threads remain
1709 <     * inactive.
1710 <     * @return true if all threads are currently idle
1703 >     * Returns {@code true} if all worker threads are currently idle.
1704 >     * An idle worker is one that cannot obtain a task to execute
1705 >     * because none are available to steal from other threads, and
1706 >     * there are no pending submissions to the pool. This method is
1707 >     * conservative; it might not return {@code true} immediately upon
1708 >     * idleness of all threads, but will eventually become true if
1709 >     * threads remain inactive.
1710 >     *
1711 >     * @return {@code true} if all threads are currently idle
1712       */
1713      public boolean isQuiescent() {
1714 <        return activeCountOf(runControl) == 0;
1714 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1715      }
1716  
1717      /**
# Line 843 | Line 1719 | public class ForkJoinPool extends Abstra
1719       * one thread's work queue by another. The reported value
1720       * underestimates the actual total number of steals when the pool
1721       * is not quiescent. This value may be useful for monitoring and
1722 <     * tuning fork/join programs: In general, steal counts should be
1722 >     * tuning fork/join programs: in general, steal counts should be
1723       * high enough to keep threads busy, but low enough to avoid
1724       * overhead and contention across threads.
1725 <     * @return the number of steals.
1725 >     *
1726 >     * @return the number of steals
1727       */
1728      public long getStealCount() {
1729 <        return stealCount.get();
853 <    }
854 <
855 <    /**
856 <     * Accumulate steal count from a worker. Call only
857 <     * when worker known to be idle.
858 <     */
859 <    private void updateStealCount(ForkJoinWorkerThread w) {
860 <        int sc = w.getAndClearStealCount();
861 <        if (sc != 0)
862 <            stealCount.addAndGet(sc);
1729 >        return stealCount;
1730      }
1731  
1732      /**
# Line 869 | Line 1736 | public class ForkJoinPool extends Abstra
1736       * an approximation, obtained by iterating across all threads in
1737       * the pool. This method may be useful for tuning task
1738       * granularities.
1739 <     * @return the number of queued tasks.
1739 >     *
1740 >     * @return the number of queued tasks
1741       */
1742      public long getQueuedTaskCount() {
1743          long count = 0;
1744 <        ForkJoinWorkerThread[] ws = workers;
1745 <        for (int i = 0; i < ws.length; ++i) {
1746 <            ForkJoinWorkerThread t = ws[i];
1747 <            if (t != null)
1748 <                count += t.getQueueSize();
1744 >        ForkJoinWorkerThread[] ws;
1745 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1746 >            (ws = workers) != null) {
1747 >            for (ForkJoinWorkerThread w : ws)
1748 >                if (w != null)
1749 >                    count -= w.queueBase - w.queueTop; // must read base first
1750          }
1751          return count;
1752      }
1753  
1754      /**
1755 <     * Returns an estimate of the number tasks submitted to this pool
1756 <     * that have not yet begun executing. This method takes time
1757 <     * proportional to the number of submissions.
1758 <     * @return the number of queued submissions.
1755 >     * Returns an estimate of the number of tasks submitted to this
1756 >     * pool that have not yet begun executing.  This method may take
1757 >     * time proportional to the number of submissions.
1758 >     *
1759 >     * @return the number of queued submissions
1760       */
1761      public int getQueuedSubmissionCount() {
1762 <        return submissionQueue.size();
1762 >        return -queueBase + queueTop;
1763      }
1764  
1765      /**
1766 <     * Returns true if there are any tasks submitted to this pool
1767 <     * that have not yet begun executing.
1768 <     * @return <code>true</code> if there are any queued submissions.
1766 >     * Returns {@code true} if there are any tasks submitted to this
1767 >     * pool that have not yet begun executing.
1768 >     *
1769 >     * @return {@code true} if there are any queued submissions
1770       */
1771      public boolean hasQueuedSubmissions() {
1772 <        return !submissionQueue.isEmpty();
1772 >        return queueBase != queueTop;
1773      }
1774  
1775      /**
1776       * Removes and returns the next unexecuted submission if one is
1777       * available.  This method may be useful in extensions to this
1778       * class that re-assign work in systems with multiple pools.
1779 <     * @return the next submission, or null if none
1779 >     *
1780 >     * @return the next submission, or {@code null} if none
1781       */
1782      protected ForkJoinTask<?> pollSubmission() {
1783 <        return submissionQueue.poll();
1783 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1784 >        while ((b = queueBase) != queueTop &&
1785 >               (q = submissionQueue) != null &&
1786 >               (i = (q.length - 1) & b) >= 0) {
1787 >            long u = (i << ASHIFT) + ABASE;
1788 >            if ((t = q[i]) != null &&
1789 >                queueBase == b &&
1790 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1791 >                queueBase = b + 1;
1792 >                return t;
1793 >            }
1794 >        }
1795 >        return null;
1796 >    }
1797 >
1798 >    /**
1799 >     * Removes all available unexecuted submitted and forked tasks
1800 >     * from scheduling queues and adds them to the given collection,
1801 >     * without altering their execution status. These may include
1802 >     * artificially generated or wrapped tasks. This method is
1803 >     * designed to be invoked only when the pool is known to be
1804 >     * quiescent. Invocations at other times may not remove all
1805 >     * tasks. A failure encountered while attempting to add elements
1806 >     * to collection {@code c} may result in elements being in
1807 >     * neither, either or both collections when the associated
1808 >     * exception is thrown.  The behavior of this operation is
1809 >     * undefined if the specified collection is modified while the
1810 >     * operation is in progress.
1811 >     *
1812 >     * @param c the collection to transfer elements into
1813 >     * @return the number of elements transferred
1814 >     */
1815 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1816 >        int count = 0;
1817 >        while (queueBase != queueTop) {
1818 >            ForkJoinTask<?> t = pollSubmission();
1819 >            if (t != null) {
1820 >                c.add(t);
1821 >                ++count;
1822 >            }
1823 >        }
1824 >        ForkJoinWorkerThread[] ws;
1825 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1826 >            (ws = workers) != null) {
1827 >            for (ForkJoinWorkerThread w : ws)
1828 >                if (w != null)
1829 >                    count += w.drainTasksTo(c);
1830 >        }
1831 >        return count;
1832      }
1833  
1834      /**
# Line 919 | Line 1839 | public class ForkJoinPool extends Abstra
1839       * @return a string identifying this pool, as well as its state
1840       */
1841      public String toString() {
922        int ps = parallelism;
923        int wc = workerCounts;
924        int rc = runControl;
1842          long st = getStealCount();
1843          long qt = getQueuedTaskCount();
1844          long qs = getQueuedSubmissionCount();
1845 +        int pc = parallelism;
1846 +        long c = ctl;
1847 +        int tc = pc + (short)(c >>> TC_SHIFT);
1848 +        int rc = pc + (int)(c >> AC_SHIFT);
1849 +        if (rc < 0) // ignore transient negative
1850 +            rc = 0;
1851 +        int ac = rc + blockedCount;
1852 +        String level;
1853 +        if ((c & STOP_BIT) != 0)
1854 +            level = (tc == 0)? "Terminated" : "Terminating";
1855 +        else
1856 +            level = shutdown? "Shutting down" : "Running";
1857          return super.toString() +
1858 <            "[" + runStateToString(runStateOf(rc)) +
1859 <            ", parallelism = " + ps +
1860 <            ", size = " + totalCountOf(wc) +
1861 <            ", active = " + activeCountOf(rc) +
1862 <            ", running = " + runningCountOf(wc) +
1858 >            "[" + level +
1859 >            ", parallelism = " + pc +
1860 >            ", size = " + tc +
1861 >            ", active = " + ac +
1862 >            ", running = " + rc +
1863              ", steals = " + st +
1864              ", tasks = " + qt +
1865              ", submissions = " + qs +
1866              "]";
1867      }
1868  
940    private static String runStateToString(int rs) {
941        switch(rs) {
942        case RUNNING: return "Running";
943        case SHUTDOWN: return "Shutting down";
944        case TERMINATING: return "Terminating";
945        case TERMINATED: return "Terminated";
946        default: throw new Error("Unknown run state");
947        }
948    }
949
950    // lifecycle control
951
1869      /**
1870       * Initiates an orderly shutdown in which previously submitted
1871       * tasks are executed, but no new tasks will be accepted.
1872       * Invocation has no additional effect if already shut down.
1873       * Tasks that are in the process of being submitted concurrently
1874       * during the course of this method may or may not be rejected.
1875 +     *
1876       * @throws SecurityException if a security manager exists and
1877       *         the caller is not permitted to modify threads
1878       *         because it does not hold {@link
1879 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1879 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1880       */
1881      public void shutdown() {
1882          checkPermission();
1883 <        transitionRunStateTo(SHUTDOWN);
1884 <        if (canTerminateOnShutdown(runControl))
967 <            terminateOnShutdown();
1883 >        shutdown = true;
1884 >        tryTerminate(false);
1885      }
1886  
1887      /**
1888 <     * Attempts to stop all actively executing tasks, and cancels all
1889 <     * waiting tasks.  Tasks that are in the process of being
1890 <     * submitted or executed concurrently during the course of this
1891 <     * method may or may not be rejected. Unlike some other executors,
1892 <     * this method cancels rather than collects non-executed tasks,
1893 <     * so always returns an empty list.
1888 >     * Attempts to cancel and/or stop all tasks, and reject all
1889 >     * subsequently submitted tasks.  Tasks that are in the process of
1890 >     * being submitted or executed concurrently during the course of
1891 >     * this method may or may not be rejected. This method cancels
1892 >     * both existing and unexecuted tasks, in order to permit
1893 >     * termination in the presence of task dependencies. So the method
1894 >     * always returns an empty list (unlike the case for some other
1895 >     * Executors).
1896 >     *
1897       * @return an empty list
1898       * @throws SecurityException if a security manager exists and
1899       *         the caller is not permitted to modify threads
1900       *         because it does not hold {@link
1901 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1901 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1902       */
1903      public List<Runnable> shutdownNow() {
1904          checkPermission();
1905 <        terminate();
1905 >        shutdown = true;
1906 >        tryTerminate(true);
1907          return Collections.emptyList();
1908      }
1909  
1910      /**
1911 <     * Returns <code>true</code> if all tasks have completed following shut down.
1911 >     * Returns {@code true} if all tasks have completed following shut down.
1912       *
1913 <     * @return <code>true</code> if all tasks have completed following shut down
1913 >     * @return {@code true} if all tasks have completed following shut down
1914       */
1915      public boolean isTerminated() {
1916 <        return runStateOf(runControl) == TERMINATED;
1916 >        long c = ctl;
1917 >        return ((c & STOP_BIT) != 0L &&
1918 >                (short)(c >>> TC_SHIFT) == -parallelism);
1919      }
1920  
1921      /**
1922 <     * Returns <code>true</code> if the process of termination has
1923 <     * commenced but possibly not yet completed.
1922 >     * Returns {@code true} if the process of termination has
1923 >     * commenced but not yet completed.  This method may be useful for
1924 >     * debugging. A return of {@code true} reported a sufficient
1925 >     * period after shutdown may indicate that submitted tasks have
1926 >     * ignored or suppressed interruption, or are waiting for IO,
1927 >     * causing this executor not to properly terminate. (See the
1928 >     * advisory notes for class {@link ForkJoinTask} stating that
1929 >     * tasks should not normally entail blocking operations.  But if
1930 >     * they do, they must abort them on interrupt.)
1931       *
1932 <     * @return <code>true</code> if terminating
1932 >     * @return {@code true} if terminating but not yet terminated
1933       */
1934      public boolean isTerminating() {
1935 <        return runStateOf(runControl) >= TERMINATING;
1935 >        long c = ctl;
1936 >        return ((c & STOP_BIT) != 0L &&
1937 >                (short)(c >>> TC_SHIFT) != -parallelism);
1938 >    }
1939 >
1940 >    /**
1941 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1942 >     */
1943 >    final boolean isAtLeastTerminating() {
1944 >        return (ctl & STOP_BIT) != 0L;
1945      }
1946  
1947      /**
1948 <     * Returns <code>true</code> if this pool has been shut down.
1948 >     * Returns {@code true} if this pool has been shut down.
1949       *
1950 <     * @return <code>true</code> if this pool has been shut down
1950 >     * @return {@code true} if this pool has been shut down
1951       */
1952      public boolean isShutdown() {
1953 <        return runStateOf(runControl) >= SHUTDOWN;
1953 >        return shutdown;
1954      }
1955  
1956      /**
# Line 1021 | Line 1960 | public class ForkJoinPool extends Abstra
1960       *
1961       * @param timeout the maximum time to wait
1962       * @param unit the time unit of the timeout argument
1963 <     * @return <code>true</code> if this executor terminated and
1964 <     *         <code>false</code> if the timeout elapsed before termination
1963 >     * @return {@code true} if this executor terminated and
1964 >     *         {@code false} if the timeout elapsed before termination
1965       * @throws InterruptedException if interrupted while waiting
1966       */
1967      public boolean awaitTermination(long timeout, TimeUnit unit)
1968          throws InterruptedException {
1969          long nanos = unit.toNanos(timeout);
1970 <        final ReentrantLock lock = this.workerLock;
1970 >        final ReentrantLock lock = this.submissionLock;
1971          lock.lock();
1972          try {
1973              for (;;) {
# Line 1043 | Line 1982 | public class ForkJoinPool extends Abstra
1982          }
1983      }
1984  
1046    // Shutdown and termination support
1047
1048    /**
1049     * Callback from terminating worker. Null out the corresponding
1050     * workers slot, and if terminating, try to terminate, else try to
1051     * shrink workers array.
1052     * @param w the worker
1053     */
1054    final void workerTerminated(ForkJoinWorkerThread w) {
1055        updateStealCount(w);
1056        updateWorkerCount(-1);
1057        final ReentrantLock lock = this.workerLock;
1058        lock.lock();
1059        try {
1060            ForkJoinWorkerThread[] ws = workers;
1061            int idx = w.poolIndex;
1062            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1063                ws[idx] = null;
1064            if (totalCountOf(workerCounts) == 0) {
1065                terminate(); // no-op if already terminating
1066                transitionRunStateTo(TERMINATED);
1067                termination.signalAll();
1068            }
1069            else if (!isTerminating()) {
1070                tryShrinkWorkerArray();
1071                tryResumeSpare(true); // allow replacement
1072            }
1073        } finally {
1074            lock.unlock();
1075        }
1076        signalIdleWorkers();
1077    }
1078
1985      /**
1986 <     * Initiate termination.
1987 <     */
1082 <    private void terminate() {
1083 <        if (transitionRunStateTo(TERMINATING)) {
1084 <            stopAllWorkers();
1085 <            resumeAllSpares();
1086 <            signalIdleWorkers();
1087 <            cancelQueuedSubmissions();
1088 <            cancelQueuedWorkerTasks();
1089 <            interruptUnterminatedWorkers();
1090 <            signalIdleWorkers(); // resignal after interrupt
1091 <        }
1092 <    }
1093 <
1094 <    /**
1095 <     * Possibly terminate when on shutdown state
1096 <     */
1097 <    private void terminateOnShutdown() {
1098 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1099 <            terminate();
1100 <    }
1101 <
1102 <    /**
1103 <     * Clear out and cancel submissions
1104 <     */
1105 <    private void cancelQueuedSubmissions() {
1106 <        ForkJoinTask<?> task;
1107 <        while ((task = pollSubmission()) != null)
1108 <            task.cancel(false);
1109 <    }
1110 <
1111 <    /**
1112 <     * Clean out worker queues.
1113 <     */
1114 <    private void cancelQueuedWorkerTasks() {
1115 <        final ReentrantLock lock = this.workerLock;
1116 <        lock.lock();
1117 <        try {
1118 <            ForkJoinWorkerThread[] ws = workers;
1119 <            for (int i = 0; i < ws.length; ++i) {
1120 <                ForkJoinWorkerThread t = ws[i];
1121 <                if (t != null)
1122 <                    t.cancelTasks();
1123 <            }
1124 <        } finally {
1125 <            lock.unlock();
1126 <        }
1127 <    }
1128 <
1129 <    /**
1130 <     * Set each worker's status to terminating. Requires lock to avoid
1131 <     * conflicts with add/remove
1132 <     */
1133 <    private void stopAllWorkers() {
1134 <        final ReentrantLock lock = this.workerLock;
1135 <        lock.lock();
1136 <        try {
1137 <            ForkJoinWorkerThread[] ws = workers;
1138 <            for (int i = 0; i < ws.length; ++i) {
1139 <                ForkJoinWorkerThread t = ws[i];
1140 <                if (t != null)
1141 <                    t.shutdownNow();
1142 <            }
1143 <        } finally {
1144 <            lock.unlock();
1145 <        }
1146 <    }
1147 <
1148 <    /**
1149 <     * Interrupt all unterminated workers.  This is not required for
1150 <     * sake of internal control, but may help unstick user code during
1151 <     * shutdown.
1152 <     */
1153 <    private void interruptUnterminatedWorkers() {
1154 <        final ReentrantLock lock = this.workerLock;
1155 <        lock.lock();
1156 <        try {
1157 <            ForkJoinWorkerThread[] ws = workers;
1158 <            for (int i = 0; i < ws.length; ++i) {
1159 <                ForkJoinWorkerThread t = ws[i];
1160 <                if (t != null && !t.isTerminated()) {
1161 <                    try {
1162 <                        t.interrupt();
1163 <                    } catch (SecurityException ignore) {
1164 <                    }
1165 <                }
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <    }
1171 <
1172 <
1173 <    /*
1174 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1175 <     * are basic Treiber stack nodes, also used for spare stack.
1986 >     * Interface for extending managed parallelism for tasks running
1987 >     * in {@link ForkJoinPool}s.
1988       *
1989 <     * The event barrier has an event count and a wait queue (actually
1990 <     * a Treiber stack).  Workers are enabled to look for work when
1991 <     * the eventCount is incremented. If they fail to find work, they
1992 <     * may wait for next count. Upon release, threads help others wake
1993 <     * up.
1994 <     *
1995 <     * Synchronization events occur only in enough contexts to
1996 <     * maintain overall liveness:
1997 <     *
1998 <     *   - Submission of a new task to the pool
1999 <     *   - Resizes or other changes to the workers array
2000 <     *   - pool termination
2001 <     *   - A worker pushing a task on an empty queue
1190 <     *
1191 <     * The case of pushing a task occurs often enough, and is heavy
1192 <     * enough compared to simple stack pushes, to require special
1193 <     * handling: Method signalWork returns without advancing count if
1194 <     * the queue appears to be empty.  This would ordinarily result in
1195 <     * races causing some queued waiters not to be woken up. To avoid
1196 <     * this, the first worker enqueued in method sync (see
1197 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1198 <     * helps signal if any are found. This works well because the
1199 <     * worker has nothing better to do, and so might as well help
1200 <     * alleviate the overhead and contention on the threads actually
1201 <     * doing work.  Also, since event counts increments on task
1202 <     * availability exist to maintain liveness (rather than to force
1203 <     * refreshes etc), it is OK for callers to exit early if
1204 <     * contending with another signaller.
1205 <     */
1206 <    static final class WaitQueueNode {
1207 <        WaitQueueNode next; // only written before enqueued
1208 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1209 <        final long count; // unused for spare stack
1210 <
1211 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1212 <            count = c;
1213 <            thread = w;
1214 <        }
1215 <
1216 <        /**
1217 <         * Wake up waiter, returning false if known to already
1218 <         */
1219 <        boolean signal() {
1220 <            ForkJoinWorkerThread t = thread;
1221 <            if (t == null)
1222 <                return false;
1223 <            thread = null;
1224 <            LockSupport.unpark(t);
1225 <            return true;
1226 <        }
1227 <
1228 <        /**
1229 <         * Await release on sync
1230 <         */
1231 <        void awaitSyncRelease(ForkJoinPool p) {
1232 <            while (thread != null && !p.syncIsReleasable(this))
1233 <                LockSupport.park(this);
1234 <        }
1235 <
1236 <        /**
1237 <         * Await resumption as spare
1238 <         */
1239 <        void awaitSpareRelease() {
1240 <            while (thread != null) {
1241 <                if (!Thread.interrupted())
1242 <                    LockSupport.park(this);
1243 <            }
1244 <        }
1245 <    }
1246 <
1247 <    /**
1248 <     * Ensures that no thread is waiting for count to advance from the
1249 <     * current value of eventCount read on entry to this method, by
1250 <     * releasing waiting threads if necessary.
1251 <     * @return the count
1252 <     */
1253 <    final long ensureSync() {
1254 <        long c = eventCount;
1255 <        WaitQueueNode q;
1256 <        while ((q = syncStack) != null && q.count < c) {
1257 <            if (casBarrierStack(q, null)) {
1258 <                do {
1259 <                    q.signal();
1260 <                } while ((q = q.next) != null);
1261 <                break;
1262 <            }
1263 <        }
1264 <        return c;
1265 <    }
1266 <
1267 <    /**
1268 <     * Increments event count and releases waiting threads.
1269 <     */
1270 <    private void signalIdleWorkers() {
1271 <        long c;
1272 <        do;while (!casEventCount(c = eventCount, c+1));
1273 <        ensureSync();
1274 <    }
1275 <
1276 <    /**
1277 <     * Signal threads waiting to poll a task. Because method sync
1278 <     * rechecks availability, it is OK to only proceed if queue
1279 <     * appears to be non-empty, and OK to skip under contention to
1280 <     * increment count (since some other thread succeeded).
1281 <     */
1282 <    final void signalWork() {
1283 <        long c;
1284 <        WaitQueueNode q;
1285 <        if (syncStack != null &&
1286 <            casEventCount(c = eventCount, c+1) &&
1287 <            (((q = syncStack) != null && q.count <= c) &&
1288 <             (!casBarrierStack(q, q.next) || !q.signal())))
1289 <            ensureSync();
1290 <    }
1291 <
1292 <    /**
1293 <     * Waits until event count advances from last value held by
1294 <     * caller, or if excess threads, caller is resumed as spare, or
1295 <     * caller or pool is terminating. Updates caller's event on exit.
1296 <     * @param w the calling worker thread
1297 <     */
1298 <    final void sync(ForkJoinWorkerThread w) {
1299 <        updateStealCount(w); // Transfer w's count while it is idle
1300 <
1301 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1302 <            long prev = w.lastEventCount;
1303 <            WaitQueueNode node = null;
1304 <            WaitQueueNode h;
1305 <            while (eventCount == prev &&
1306 <                   ((h = syncStack) == null || h.count == prev)) {
1307 <                if (node == null)
1308 <                    node = new WaitQueueNode(prev, w);
1309 <                if (casBarrierStack(node.next = h, node)) {
1310 <                    node.awaitSyncRelease(this);
1311 <                    break;
1312 <                }
1313 <            }
1314 <            long ec = ensureSync();
1315 <            if (ec != prev) {
1316 <                w.lastEventCount = ec;
1317 <                break;
1318 <            }
1319 <        }
1320 <    }
1321 <
1322 <    /**
1323 <     * Returns true if worker waiting on sync can proceed:
1324 <     *  - on signal (thread == null)
1325 <     *  - on event count advance (winning race to notify vs signaller)
1326 <     *  - on Interrupt
1327 <     *  - if the first queued node, we find work available
1328 <     * If node was not signalled and event count not advanced on exit,
1329 <     * then we also help advance event count.
1330 <     * @return true if node can be released
1331 <     */
1332 <    final boolean syncIsReleasable(WaitQueueNode node) {
1333 <        long prev = node.count;
1334 <        if (!Thread.interrupted() && node.thread != null &&
1335 <            (node.next != null ||
1336 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1337 <            eventCount == prev)
1338 <            return false;
1339 <        if (node.thread != null) {
1340 <            node.thread = null;
1341 <            long ec = eventCount;
1342 <            if (prev <= ec) // help signal
1343 <                casEventCount(ec, ec+1);
1344 <        }
1345 <        return true;
1346 <    }
1347 <
1348 <    /**
1349 <     * Returns true if a new sync event occurred since last call to
1350 <     * sync or this method, if so, updating caller's count.
1351 <     */
1352 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1353 <        long lc = w.lastEventCount;
1354 <        long ec = ensureSync();
1355 <        if (ec == lc)
1356 <            return false;
1357 <        w.lastEventCount = ec;
1358 <        return true;
1359 <    }
1360 <
1361 <    //  Parallelism maintenance
1362 <
1363 <    /**
1364 <     * Decrement running count; if too low, add spare.
1989 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1990 >     * {@code isReleasable} must return {@code true} if blocking is
1991 >     * not necessary. Method {@code block} blocks the current thread
1992 >     * if necessary (perhaps internally invoking {@code isReleasable}
1993 >     * before actually blocking). These actions are performed by any
1994 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1995 >     * unusual methods in this API accommodate synchronizers that may,
1996 >     * but don't usually, block for long periods. Similarly, they
1997 >     * allow more efficient internal handling of cases in which
1998 >     * additional workers may be, but usually are not, needed to
1999 >     * ensure sufficient parallelism.  Toward this end,
2000 >     * implementations of method {@code isReleasable} must be amenable
2001 >     * to repeated invocation.
2002       *
1366     * Conceptually, all we need to do here is add or resume a
1367     * spare thread when one is about to block (and remove or
1368     * suspend it later when unblocked -- see suspendIfSpare).
1369     * However, implementing this idea requires coping with
1370     * several problems: We have imperfect information about the
1371     * states of threads. Some count updates can and usually do
1372     * lag run state changes, despite arrangements to keep them
1373     * accurate (for example, when possible, updating counts
1374     * before signalling or resuming), especially when running on
1375     * dynamic JVMs that don't optimize the infrequent paths that
1376     * update counts. Generating too many threads can make these
1377     * problems become worse, because excess threads are more
1378     * likely to be context-switched with others, slowing them all
1379     * down, especially if there is no work available, so all are
1380     * busy scanning or idling.  Also, excess spare threads can
1381     * only be suspended or removed when they are idle, not
1382     * immediately when they aren't needed. So adding threads will
1383     * raise parallelism level for longer than necessary.  Also,
1384     * FJ applications often enounter highly transient peaks when
1385     * many threads are blocked joining, but for less time than it
1386     * takes to create or resume spares.
1387     *
1388     * @param joinMe if non-null, return early if done
1389     * @param maintainParallelism if true, try to stay within
1390     * target counts, else create only to avoid starvation
1391     * @return true if joinMe known to be done
1392     */
1393    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1394        maintainParallelism &= maintainsParallelism; // overrride
1395        boolean dec = false;  // true when running count decremented
1396        while (spareStack == null || !tryResumeSpare(dec)) {
1397            int counts = workerCounts;
1398            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1399                if (!needSpare(counts, maintainParallelism))
1400                    break;
1401                if (joinMe.status < 0)
1402                    return true;
1403                if (tryAddSpare(counts))
1404                    break;
1405            }
1406        }
1407        return false;
1408    }
1409
1410    /**
1411     * Same idea as preJoin
1412     */
1413    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1414        maintainParallelism &= maintainsParallelism;
1415        boolean dec = false;
1416        while (spareStack == null || !tryResumeSpare(dec)) {
1417            int counts = workerCounts;
1418            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1419                if (!needSpare(counts, maintainParallelism))
1420                    break;
1421                if (blocker.isReleasable())
1422                    return true;
1423                if (tryAddSpare(counts))
1424                    break;
1425            }
1426        }
1427        return false;
1428    }
1429
1430    /**
1431     * Returns true if a spare thread appears to be needed.  If
1432     * maintaining parallelism, returns true when the deficit in
1433     * running threads is more than the surplus of total threads, and
1434     * there is apparently some work to do.  This self-limiting rule
1435     * means that the more threads that have already been added, the
1436     * less parallelism we will tolerate before adding another.
1437     * @param counts current worker counts
1438     * @param maintainParallelism try to maintain parallelism
1439     */
1440    private boolean needSpare(int counts, boolean maintainParallelism) {
1441        int ps = parallelism;
1442        int rc = runningCountOf(counts);
1443        int tc = totalCountOf(counts);
1444        int runningDeficit = ps - rc;
1445        int totalSurplus = tc - ps;
1446        return (tc < maxPoolSize &&
1447                (rc == 0 || totalSurplus < 0 ||
1448                 (maintainParallelism &&
1449                  runningDeficit > totalSurplus &&
1450                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1451    }
1452
1453    /**
1454     * Add a spare worker if lock available and no more than the
1455     * expected numbers of threads exist
1456     * @return true if successful
1457     */
1458    private boolean tryAddSpare(int expectedCounts) {
1459        final ReentrantLock lock = this.workerLock;
1460        int expectedRunning = runningCountOf(expectedCounts);
1461        int expectedTotal = totalCountOf(expectedCounts);
1462        boolean success = false;
1463        boolean locked = false;
1464        // confirm counts while locking; CAS after obtaining lock
1465        try {
1466            for (;;) {
1467                int s = workerCounts;
1468                int tc = totalCountOf(s);
1469                int rc = runningCountOf(s);
1470                if (rc > expectedRunning || tc > expectedTotal)
1471                    break;
1472                if (!locked && !(locked = lock.tryLock()))
1473                    break;
1474                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1475                    createAndStartSpare(tc);
1476                    success = true;
1477                    break;
1478                }
1479            }
1480        } finally {
1481            if (locked)
1482                lock.unlock();
1483        }
1484        return success;
1485    }
1486
1487    /**
1488     * Add the kth spare worker. On entry, pool coounts are already
1489     * adjusted to reflect addition.
1490     */
1491    private void createAndStartSpare(int k) {
1492        ForkJoinWorkerThread w = null;
1493        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1494        int len = ws.length;
1495        // Probably, we can place at slot k. If not, find empty slot
1496        if (k < len && ws[k] != null) {
1497            for (k = 0; k < len && ws[k] != null; ++k)
1498                ;
1499        }
1500        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1501            ws[k] = w;
1502            w.start();
1503        }
1504        else
1505            updateWorkerCount(-1); // adjust on failure
1506        signalIdleWorkers();
1507    }
1508
1509    /**
1510     * Suspend calling thread w if there are excess threads.  Called
1511     * only from sync.  Spares are enqueued in a Treiber stack
1512     * using the same WaitQueueNodes as barriers.  They are resumed
1513     * mainly in preJoin, but are also woken on pool events that
1514     * require all threads to check run state.
1515     * @param w the caller
1516     */
1517    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1518        WaitQueueNode node = null;
1519        int s;
1520        while (parallelism < runningCountOf(s = workerCounts)) {
1521            if (node == null)
1522                node = new WaitQueueNode(0, w);
1523            if (casWorkerCounts(s, s-1)) { // representation-dependent
1524                // push onto stack
1525                do;while (!casSpareStack(node.next = spareStack, node));
1526                // block until released by resumeSpare
1527                node.awaitSpareRelease();
1528                return true;
1529            }
1530        }
1531        return false;
1532    }
1533
1534    /**
1535     * Try to pop and resume a spare thread.
1536     * @param updateCount if true, increment running count on success
1537     * @return true if successful
1538     */
1539    private boolean tryResumeSpare(boolean updateCount) {
1540        WaitQueueNode q;
1541        while ((q = spareStack) != null) {
1542            if (casSpareStack(q, q.next)) {
1543                if (updateCount)
1544                    updateRunningCount(1);
1545                q.signal();
1546                return true;
1547            }
1548        }
1549        return false;
1550    }
1551
1552    /**
1553     * Pop and resume all spare threads. Same idea as ensureSync.
1554     * @return true if any spares released
1555     */
1556    private boolean resumeAllSpares() {
1557        WaitQueueNode q;
1558        while ( (q = spareStack) != null) {
1559            if (casSpareStack(q, null)) {
1560                do {
1561                    updateRunningCount(1);
1562                    q.signal();
1563                } while ((q = q.next) != null);
1564                return true;
1565            }
1566        }
1567        return false;
1568    }
1569
1570    /**
1571     * Pop and shutdown excessive spare threads. Call only while
1572     * holding lock. This is not guaranteed to eliminate all excess
1573     * threads, only those suspended as spares, which are the ones
1574     * unlikely to be needed in the future.
1575     */
1576    private void trimSpares() {
1577        int surplus = totalCountOf(workerCounts) - parallelism;
1578        WaitQueueNode q;
1579        while (surplus > 0 && (q = spareStack) != null) {
1580            if (casSpareStack(q, null)) {
1581                do {
1582                    updateRunningCount(1);
1583                    ForkJoinWorkerThread w = q.thread;
1584                    if (w != null && surplus > 0 &&
1585                        runningCountOf(workerCounts) > 0 && w.shutdown())
1586                        --surplus;
1587                    q.signal();
1588                } while ((q = q.next) != null);
1589            }
1590        }
1591    }
1592
1593    /**
1594     * Interface for extending managed parallelism for tasks running
1595     * in ForkJoinPools. A ManagedBlocker provides two methods.
1596     * Method <code>isReleasable</code> must return true if blocking is not
1597     * necessary. Method <code>block</code> blocks the current thread
1598     * if necessary (perhaps internally invoking isReleasable before
1599     * actually blocking.).
2003       * <p>For example, here is a ManagedBlocker based on a
2004       * ReentrantLock:
2005 <     * <pre>
2006 <     *   class ManagedLocker implements ManagedBlocker {
2007 <     *     final ReentrantLock lock;
2008 <     *     boolean hasLock = false;
2009 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2010 <     *     public boolean block() {
2011 <     *        if (!hasLock)
2012 <     *           lock.lock();
2013 <     *        return true;
1611 <     *     }
1612 <     *     public boolean isReleasable() {
1613 <     *        return hasLock || (hasLock = lock.tryLock());
1614 <     *     }
2005 >     *  <pre> {@code
2006 >     * class ManagedLocker implements ManagedBlocker {
2007 >     *   final ReentrantLock lock;
2008 >     *   boolean hasLock = false;
2009 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2010 >     *   public boolean block() {
2011 >     *     if (!hasLock)
2012 >     *       lock.lock();
2013 >     *     return true;
2014       *   }
2015 <     * </pre>
2015 >     *   public boolean isReleasable() {
2016 >     *     return hasLock || (hasLock = lock.tryLock());
2017 >     *   }
2018 >     * }}</pre>
2019 >     *
2020 >     * <p>Here is a class that possibly blocks waiting for an
2021 >     * item on a given queue:
2022 >     *  <pre> {@code
2023 >     * class QueueTaker<E> implements ManagedBlocker {
2024 >     *   final BlockingQueue<E> queue;
2025 >     *   volatile E item = null;
2026 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2027 >     *   public boolean block() throws InterruptedException {
2028 >     *     if (item == null)
2029 >     *       item = queue.take();
2030 >     *     return true;
2031 >     *   }
2032 >     *   public boolean isReleasable() {
2033 >     *     return item != null || (item = queue.poll()) != null;
2034 >     *   }
2035 >     *   public E getItem() { // call after pool.managedBlock completes
2036 >     *     return item;
2037 >     *   }
2038 >     * }}</pre>
2039       */
2040      public static interface ManagedBlocker {
2041          /**
2042           * Possibly blocks the current thread, for example waiting for
2043           * a lock or condition.
2044 <         * @return true if no additional blocking is necessary (i.e.,
2045 <         * if isReleasable would return true).
2044 >         *
2045 >         * @return {@code true} if no additional blocking is necessary
2046 >         * (i.e., if isReleasable would return true)
2047           * @throws InterruptedException if interrupted while waiting
2048 <         * (the method is not required to do so, but is allowe to).
2048 >         * (the method is not required to do so, but is allowed to)
2049           */
2050          boolean block() throws InterruptedException;
2051  
2052          /**
2053 <         * Returns true if blocking is unnecessary.
2053 >         * Returns {@code true} if blocking is unnecessary.
2054           */
2055          boolean isReleasable();
2056      }
2057  
2058      /**
2059       * Blocks in accord with the given blocker.  If the current thread
2060 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2061 <     * spare thread to be activated if necessary to ensure parallelism
2062 <     * while the current thread is blocked.  If
2063 <     * <code>maintainParallelism</code> is true and the pool supports
2064 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2065 <     * maintain the pool's nominal parallelism. Otherwise if activates
2066 <     * a thread only if necessary to avoid complete starvation. This
2067 <     * option may be preferable when blockages use timeouts, or are
2068 <     * almost always brief.
2069 <     *
2070 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2071 <     * equivalent to
2072 <     * <pre>
2073 <     *   while (!blocker.isReleasable())
1651 <     *      if (blocker.block())
1652 <     *         return;
1653 <     * </pre>
1654 <     * If the caller is a ForkJoinTask, then the pool may first
1655 <     * be expanded to ensure parallelism, and later adjusted.
2060 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2061 >     * arranges for a spare thread to be activated if necessary to
2062 >     * ensure sufficient parallelism while the current thread is blocked.
2063 >     *
2064 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2065 >     * behaviorally equivalent to
2066 >     *  <pre> {@code
2067 >     * while (!blocker.isReleasable())
2068 >     *   if (blocker.block())
2069 >     *     return;
2070 >     * }</pre>
2071 >     *
2072 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2073 >     * first be expanded to ensure parallelism, and later adjusted.
2074       *
2075       * @param blocker the blocker
2076 <     * @param maintainParallelism if true and supported by this pool,
1659 <     * attempt to maintain the pool's nominal parallelism; otherwise
1660 <     * activate a thread only if necessary to avoid complete
1661 <     * starvation.
1662 <     * @throws InterruptedException if blocker.block did so.
2076 >     * @throws InterruptedException if blocker.block did so
2077       */
2078 <    public static void managedBlock(ManagedBlocker blocker,
1665 <                                    boolean maintainParallelism)
2078 >    public static void managedBlock(ManagedBlocker blocker)
2079          throws InterruptedException {
2080          Thread t = Thread.currentThread();
2081 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2082 <                             ((ForkJoinWorkerThread)t).pool : null);
2083 <        if (!blocker.isReleasable()) {
2084 <            try {
2085 <                if (pool == null ||
2086 <                    !pool.preBlock(blocker, maintainParallelism))
1674 <                    awaitBlocker(blocker);
1675 <            } finally {
1676 <                if (pool != null)
1677 <                    pool.updateRunningCount(1);
1678 <            }
2081 >        if (t instanceof ForkJoinWorkerThread) {
2082 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2083 >            w.pool.awaitBlocker(blocker);
2084 >        }
2085 >        else {
2086 >            do {} while (!blocker.isReleasable() && !blocker.block());
2087          }
2088      }
2089  
2090 <    private static void awaitBlocker(ManagedBlocker blocker)
2091 <        throws InterruptedException {
2092 <        do;while (!blocker.isReleasable() && !blocker.block());
1685 <    }
1686 <
1687 <    // AbstractExecutorService overrides
2090 >    // AbstractExecutorService overrides.  These rely on undocumented
2091 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2092 >    // implement RunnableFuture.
2093  
2094      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2095 <        return new AdaptedRunnable(runnable, value);
2095 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2096      }
2097  
2098      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2099 <        return new AdaptedCallable(callable);
2099 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2100      }
2101  
2102 +    // Unsafe mechanics
2103 +    private static final sun.misc.Unsafe UNSAFE;
2104 +    private static final long ctlOffset;
2105 +    private static final long stealCountOffset;
2106 +    private static final long blockedCountOffset;
2107 +    private static final long quiescerCountOffset;
2108 +    private static final long scanGuardOffset;
2109 +    private static final long nextWorkerNumberOffset;
2110 +    private static final long ABASE;
2111 +    private static final int ASHIFT;
2112  
2113 <    // Temporary Unsafe mechanics for preliminary release
2114 <    private static Unsafe getUnsafe() throws Throwable {
2113 >    static {
2114 >        poolNumberGenerator = new AtomicInteger();
2115 >        workerSeedGenerator = new Random();
2116 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2117 >        defaultForkJoinWorkerThreadFactory =
2118 >            new DefaultForkJoinWorkerThreadFactory();
2119 >        int s;
2120          try {
2121 <            return Unsafe.getUnsafe();
2121 >            UNSAFE = getUnsafe();
2122 >            Class k = ForkJoinPool.class;
2123 >            ctlOffset = UNSAFE.objectFieldOffset
2124 >                (k.getDeclaredField("ctl"));
2125 >            stealCountOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("stealCount"));
2127 >            blockedCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("blockedCount"));
2129 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("quiescerCount"));
2131 >            scanGuardOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("scanGuard"));
2133 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2134 >                (k.getDeclaredField("nextWorkerNumber"));
2135 >            Class a = ForkJoinTask[].class;
2136 >            ABASE = UNSAFE.arrayBaseOffset(a);
2137 >            s = UNSAFE.arrayIndexScale(a);
2138 >        } catch (Exception e) {
2139 >            throw new Error(e);
2140 >        }
2141 >        if ((s & (s-1)) != 0)
2142 >            throw new Error("data type scale not a power of two");
2143 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2144 >    }
2145 >
2146 >    /**
2147 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2148 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2149 >     * into a jdk.
2150 >     *
2151 >     * @return a sun.misc.Unsafe
2152 >     */
2153 >    private static sun.misc.Unsafe getUnsafe() {
2154 >        try {
2155 >            return sun.misc.Unsafe.getUnsafe();
2156          } catch (SecurityException se) {
2157              try {
2158                  return java.security.AccessController.doPrivileged
2159 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2160 <                        public Unsafe run() throws Exception {
2161 <                            return getUnsafePrivileged();
2159 >                    (new java.security
2160 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2161 >                        public sun.misc.Unsafe run() throws Exception {
2162 >                            java.lang.reflect.Field f = sun.misc
2163 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2164 >                            f.setAccessible(true);
2165 >                            return (sun.misc.Unsafe) f.get(null);
2166                          }});
2167              } catch (java.security.PrivilegedActionException e) {
2168 <                throw e.getCause();
2168 >                throw new RuntimeException("Could not initialize intrinsics",
2169 >                                           e.getCause());
2170              }
2171          }
2172      }
1714
1715    private static Unsafe getUnsafePrivileged()
1716            throws NoSuchFieldException, IllegalAccessException {
1717        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1718        f.setAccessible(true);
1719        return (Unsafe) f.get(null);
1720    }
1721
1722    private static long fieldOffset(String fieldName)
1723            throws NoSuchFieldException {
1724        return _unsafe.objectFieldOffset
1725            (ForkJoinPool.class.getDeclaredField(fieldName));
1726    }
1727
1728    static final Unsafe _unsafe;
1729    static final long eventCountOffset;
1730    static final long workerCountsOffset;
1731    static final long runControlOffset;
1732    static final long syncStackOffset;
1733    static final long spareStackOffset;
1734
1735    static {
1736        try {
1737            _unsafe = getUnsafe();
1738            eventCountOffset = fieldOffset("eventCount");
1739            workerCountsOffset = fieldOffset("workerCounts");
1740            runControlOffset = fieldOffset("runControl");
1741            syncStackOffset = fieldOffset("syncStack");
1742            spareStackOffset = fieldOffset("spareStack");
1743        } catch (Throwable e) {
1744            throw new RuntimeException("Could not initialize intrinsics", e);
1745        }
1746    }
1747
1748    private boolean casEventCount(long cmp, long val) {
1749        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1750    }
1751    private boolean casWorkerCounts(int cmp, int val) {
1752        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1753    }
1754    private boolean casRunControl(int cmp, int val) {
1755        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1756    }
1757    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1758        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1759    }
1760    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1761        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1762    }
2173   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines