ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.53 by dl, Mon Apr 5 15:52:26 2010 UTC vs.
Revision 1.99 by dl, Wed Mar 23 11:27:43 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15 + import java.util.concurrent.AbstractExecutorService;
16 + import java.util.concurrent.Callable;
17 + import java.util.concurrent.ExecutorService;
18 + import java.util.concurrent.Future;
19 + import java.util.concurrent.RejectedExecutionException;
20 + import java.util.concurrent.RunnableFuture;
21 + import java.util.concurrent.TimeUnit;
22 + import java.util.concurrent.TimeoutException;
23 + import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.CountDownLatch;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32   * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 37 | import java.util.concurrent.CountDownLat
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are stalled waiting to join others. However, no such adjustments
51 < * are performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 65 | Line 58 | import java.util.concurrent.CountDownLat
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 116 | import java.util.concurrent.CountDownLat
116   * {@code IllegalArgumentException}.
117   *
118   * <p>This implementation rejects submitted tasks (that is, by throwing
119 < * {@link RejectedExecutionException}) only when the pool is shut down.
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 103 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
110 <     * lastly to new submissions. These mechanics do not consider
111 <     * affinities, loads, cache localities, etc, so rarely provide the
112 <     * best possible performance on a given machine, but portably
113 <     * provide good throughput by averaging over these factors.
114 <     * (Further, even if we did try to use such information, we do not
115 <     * usually have a basis for exploiting it. For example, some sets
116 <     * of tasks profit from cache affinities, but others are harmed by
117 <     * cache pollution effects.)
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138       *
139       * The main throughput advantages of work-stealing stem from
140 <     * decentralized control -- workers mostly steal tasks from each
141 <     * other. We do not want to negate this by creating bottlenecks
142 <     * implementing the management responsibilities of this class. So
143 <     * we use a collection of techniques that avoid, reduce, or cope
144 <     * well with contention. These entail several instances of
145 <     * bit-packing into CASable fields to maintain only the minimally
146 <     * required atomicity. To enable such packing, we restrict maximum
147 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
148 <     * bit field), which is far in excess of normal operating range.
149 <     * Even though updates to some of these bookkeeping fields do
150 <     * sometimes contend with each other, they don't normally
151 <     * cache-contend with updates to others enough to warrant memory
152 <     * padding or isolation. So they are all held as fields of
153 <     * ForkJoinPool objects.  The main capabilities are as follows:
154 <     *
155 <     * 1. Creating and removing workers. Workers are recorded in the
156 <     * "workers" array. This is an array as opposed to some other data
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164       * structure to support index-based random steals by workers.
165       * Updates to the array recording new workers and unrecording
166 <     * terminated ones are protected from each other by a lock
167 <     * (workerLock) but the array is otherwise concurrently readable,
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168       * and accessed directly by workers. To simplify index-based
169       * operations, the array size is always a power of two, and all
170 <     * readers must tolerate null slots. Currently, all but the first
171 <     * worker thread creation is on-demand, triggered by task
172 <     * submissions, replacement of terminated workers, and/or
173 <     * compensation for blocked workers. However, all other support
174 <     * code is set up to work with other policies.
175 <     *
176 <     * 2. Bookkeeping for dynamically adding and removing workers. We
177 <     * maintain a given level of parallelism (or, if
178 <     * maintainsParallelism is false, at least avoid starvation). When
179 <     * some workers are known to be blocked (on joins or via
180 <     * ManagedBlocker), we may create or resume others to take their
181 <     * place until they unblock (see below). Implementing this
182 <     * requires counts of the number of "running" threads (i.e., those
183 <     * that are neither blocked nor artifically suspended) as well as
184 <     * the total number.  These two values are packed into one field,
185 <     * "workerCounts" because we need accurate snapshots when deciding
186 <     * to create, resume or suspend.  To support these decisions,
187 <     * updates must be prospective (not retrospective).  For example,
188 <     * the running count is decremented before blocking by a thread
189 <     * about to block, but incremented by the thread about to unblock
190 <     * it. (In a few cases, these prospective updates may need to be
191 <     * rolled back, for example when deciding to create a new worker
192 <     * but the thread factory fails or returns null. In these cases,
193 <     * we are no worse off wrt other decisions than we would be
194 <     * otherwise.)  Updates to the workerCounts field sometimes
195 <     * transiently encounter a fair amount of contention when join
196 <     * dependencies are such that many threads block or unblock at
197 <     * about the same time. We alleviate this by sometimes bundling
198 <     * updates (for example blocking one thread on join and resuming a
199 <     * spare cancel each other out), and in most other cases
200 <     * performing an alternative action (like releasing waiters and
201 <     * finding spares; see below) as a more productive form of
202 <     * backoff.
203 <     *
204 <     * 3. Maintaining global run state. The run state of the pool
205 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
206 <     * those in other Executor implementations, as well as a count of
207 <     * "active" workers -- those that are, or soon will be, or
208 <     * recently were executing tasks. The runLevel and active count
209 <     * are packed together in order to correctly trigger shutdown and
210 <     * termination. Without care, active counts can be subject to very
211 <     * high contention.  We substantially reduce this contention by
212 <     * relaxing update rules.  A worker must claim active status
213 <     * prospectively, by activating if it sees that a submitted or
214 <     * stealable task exists (it may find after activating that the
215 <     * task no longer exists). It stays active while processing this
216 <     * task (if it exists) and any other local subtasks it produces,
217 <     * until it cannot find any other tasks. It then tries
218 <     * inactivating (see method preStep), but upon update contention
219 <     * instead scans for more tasks, later retrying inactivation if it
220 <     * doesn't find any.
221 <     *
222 <     * 4. Managing idle workers waiting for tasks. We cannot let
223 <     * workers spin indefinitely scanning for tasks when none are
224 <     * available. On the other hand, we must quickly prod them into
225 <     * action when new tasks are submitted or generated.  We
226 <     * park/unpark these idle workers using an event-count scheme.
227 <     * Field eventCount is incremented upon events that may enable
228 <     * workers that previously could not find a task to now find one:
229 <     * Submission of a new task to the pool, or another worker pushing
230 <     * a task onto a previously empty queue.  (We also use this
231 <     * mechanism for termination and reconfiguration actions that
232 <     * require wakeups of idle workers).  Each worker maintains its
233 <     * last known event count, and blocks when a scan for work did not
234 <     * find a task AND its lastEventCount matches the current
235 <     * eventCount. Waiting idle workers are recorded in a variant of
236 <     * Treiber stack headed by field eventWaiters which, when nonzero,
237 <     * encodes the thread index and count awaited for by the worker
238 <     * thread most recently calling eventSync. This thread in turn has
239 <     * a record (field nextEventWaiter) for the next waiting worker.
240 <     * In addition to allowing simpler decisions about need for
241 <     * wakeup, the event count bits in eventWaiters serve the role of
242 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
243 <     * in task diffusion, workers not otherwise occupied may invoke
244 <     * method releaseWaiters, that removes and signals (unparks)
245 <     * workers not waiting on current count. To minimize task
246 <     * production stalls associate with signalling, any worker pushing
247 <     * a task on an empty queue invokes the weaker method signalWork,
248 <     * that only releases idle workers until it detects interference
249 <     * by other threads trying to release, and lets them take
250 <     * over. The net effect is a tree-like diffusion of signals, where
251 <     * released threads and possibly others) help with unparks.  To
252 <     * further reduce contention effects a bit, failed CASes to
253 <     * increment field eventCount are tolerated without retries.
254 <     * Conceptually they are merged into the same event, which is OK
255 <     * when their only purpose is to enable workers to scan for work.
256 <     *
257 <     * 5. Managing suspension of extra workers. When a worker is about
258 <     * to block waiting for a join (or via ManagedBlockers), we may
259 <     * create a new thread to maintain parallelism level, or at least
260 <     * avoid starvation (see below). Usually, extra threads are needed
261 <     * for only very short periods, yet join dependencies are such
262 <     * that we sometimes need them in bursts. Rather than create new
263 <     * threads each time this happens, we suspend no-longer-needed
264 <     * extra ones as "spares". For most purposes, we don't distinguish
265 <     * "extra" spare threads from normal "core" threads: On each call
266 <     * to preStep (the only point at which we can do this) a worker
267 <     * checks to see if there are now too many running workers, and if
268 <     * so, suspends itself.  Methods preJoin and doBlock look for
269 <     * suspended threads to resume before considering creating a new
270 <     * replacement. We don't need a special data structure to maintain
271 <     * spares; simply scanning the workers array looking for
272 <     * worker.isSuspended() is fine because the calling thread is
273 <     * otherwise not doing anything useful anyway; we are at least as
274 <     * happy if after locating a spare, the caller doesn't actually
275 <     * block because the join is ready before we try to adjust and
276 <     * compensate.  Note that this is intrinsically racy.  One thread
277 <     * may become a spare at about the same time as another is
278 <     * needlessly being created. We counteract this and related slop
279 <     * in part by requiring resumed spares to immediately recheck (in
280 <     * preStep) to see whether they they should re-suspend. The only
281 <     * effective difference between "extra" and "core" threads is that
282 <     * we allow the "extra" ones to time out and die if they are not
283 <     * resumed within a keep-alive interval of a few seconds. This is
284 <     * implemented mainly within ForkJoinWorkerThread, but requires
285 <     * some coordination (isTrimmed() -- meaning killed while
286 <     * suspended) to correctly maintain pool counts.
287 <     *
288 <     * 6. Deciding when to create new workers. The main dynamic
289 <     * control in this class is deciding when to create extra threads,
290 <     * in methods preJoin and doBlock. We always need to create one
291 <     * when the number of running threads becomes zero. But because
292 <     * blocked joins are typically dependent, we don't necessarily
293 <     * need or want one-to-one replacement. Using a one-to-one
294 <     * compensation rule often leads to enough useless overhead
295 <     * creating, suspending, resuming, and/or killing threads to
296 <     * signficantly degrade throughput.  We use a rule reflecting the
297 <     * idea that, the more spare threads you already have, the more
298 <     * evidence you need to create another one; where "evidence" is
299 <     * expressed as the current deficit -- target minus running
273 <     * threads. To reduce flickering and drift around target values,
274 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 <     * (where dc is deficit, sc is number of spare threads and pc is
276 <     * target parallelism.)  This effectively reduces churn at the
277 <     * price of systematically undershooting target parallelism when
278 <     * many threads are blocked.  However, biasing toward undeshooting
279 <     * partially compensates for the above mechanics to suspend extra
280 <     * threads, that normally lead to overshoot because we can only
281 <     * suspend workers in-between top-level actions. It also better
282 <     * copes with the fact that some of the methods in this class tend
283 <     * to never become compiled (but are interpreted), so some
284 <     * components of the entire set of controls might execute many
285 <     * times faster than others. And similarly for cases where the
286 <     * apparent lack of work is just due to GC stalls and other
287 <     * transient system activity.
288 <     *
289 <     * 7. Maintaining other configuration parameters and monitoring
290 <     * statistics. Updates to fields controlling parallelism level,
291 <     * max size, etc can only meaningfully take effect for individual
292 <     * threads upon their next top-level actions; i.e., between
293 <     * stealing/running tasks/submission, which are separated by calls
294 <     * to preStep.  Memory ordering for these (assumed infrequent)
295 <     * reconfiguration calls is ensured by using reads and writes to
296 <     * volatile field workerCounts (that must be read in preStep anyway)
297 <     * as "fences" -- user-level reads are preceded by reads of
298 <     * workCounts, and writes are followed by no-op CAS to
299 <     * workerCounts. The values reported by other management and
300 <     * monitoring methods are either computed on demand, or are kept
301 <     * in fields that are only updated when threads are otherwise
302 <     * idle.
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300       *
301 <     * Beware that there is a lot of representation-level coupling
301 >     * Style notes: There is a lot of representation-level coupling
302       * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 <     * ForkJoinTask.  For example, direct access to "workers" array by
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306       * workers, and direct access to ForkJoinTask.status by both
307       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308       * trying to reduce this, since any associated future changes in
309       * representations will need to be accompanied by algorithmic
310 <     * changes anyway.
311 <     *
312 <     * Style notes: There are lots of inline assignments (of form
313 <     * "while ((local = field) != 0)") which are usually the simplest
314 <     * way to ensure read orderings. Also several occurrences of the
315 <     * unusual "do {} while(!cas...)" which is the simplest way to
316 <     * force an update of a CAS'ed variable. There are also a few
317 <     * other coding oddities that help some methods perform reasonably
318 <     * even when interpreted (not compiled).
319 <     *
320 <     * The order of declarations in this file is: (1) statics (2)
321 <     * fields (along with constants used when unpacking some of them)
322 <     * (3) internal control methods (4) callbacks and other support
323 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
324 <     * methods (plus a few little helpers).
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
338      /**
# Line 345 | Line 355 | public class ForkJoinPool extends Abstra
355       * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361              return new ForkJoinWorkerThread(pool);
# Line 357 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
361 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
368 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 380 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
392 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392 >
393 >    /**
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399 >     */
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Absolute bound for parallelism level. Twice this number must
404 <     * fit into a 16bit field to enable word-packing for some counts.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private static final int MAX_THREADS = 0x7fff;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Array holding all worker threads in the pool.  Array size must
416 <     * be a power of two.  Updates and replacements are protected by
417 <     * workerLock, but the array is always kept in a consistent enough
396 <     * state to be randomly accessed without locking by workers
397 <     * performing work-stealing, as well as other traversal-based
398 <     * methods in this class. All readers must tolerate that some
399 <     * array slots may be null.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    volatile ForkJoinWorkerThread[] workers;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420  
421      /**
422 <     * Queue for external submissions.
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426       */
427 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428  
429      /**
430 <     * Lock protecting updates to workers array.
430 >     * Array serving as submission queue. Initialized upon construction.
431       */
432 <    private final ReentrantLock workerLock;
432 >    private ForkJoinTask<?>[] submissionQueue;
433  
434      /**
435 <     * Latch released upon termination.
435 >     * Lock protecting submissions array for addSubmission
436       */
437 <    private final CountDownLatch terminationLatch;
437 >    private final ReentrantLock submissionLock;
438 >
439 >    /**
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442 >     */
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 421 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 +     * The uncaught exception handler used when any worker abruptly
452 +     * terminates.
453 +     */
454 +    final Thread.UncaughtExceptionHandler ueh;
455 +
456 +    /**
457 +     * Prefix for assigning names to worker threads
458 +     */
459 +    private final String workerNamePrefix;
460 +
461 +    /**
462       * Sum of per-thread steal counts, updated only when threads are
463       * idle or terminating.
464       */
465      private volatile long stealCount;
466  
467      /**
468 <     * Encoded record of top of treiber stack of threads waiting for
469 <     * events. The top 32 bits contain the count being waited for. The
470 <     * bottom word contains one plus the pool index of waiting worker
471 <     * thread.
472 <     */
473 <    private volatile long eventWaiters;
474 <
475 <    private static final int  EVENT_COUNT_SHIFT = 32;
476 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
477 <
478 <    /**
479 <     * A counter for events that may wake up worker threads:
480 <     *   - Submission of a new task to the pool
481 <     *   - A worker pushing a task on an empty queue
482 <     *   - termination and reconfiguration
483 <     */
484 <    private volatile int eventCount;
485 <
486 <    /**
487 <     * Lifecycle control. The low word contains the number of workers
488 <     * that are (probably) executing tasks. This value is atomically
489 <     * incremented before a worker gets a task to run, and decremented
490 <     * when worker has no tasks and cannot find any.  Bits 16-18
491 <     * contain runLevel value. When all are zero, the pool is
492 <     * running. Level transitions are monotonic (running -> shutdown
493 <     * -> terminating -> terminated) so each transition adds a bit.
494 <     * These are bundled together to ensure consistent read for
495 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
496 <     * and active threads is zero).
497 <     */
498 <    private volatile int runState;
499 <
500 <    // Note: The order among run level values matters.
501 <    private static final int RUNLEVEL_SHIFT     = 16;
502 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
503 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
504 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
505 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
506 <    private static final int ONE_ACTIVE         = 1; // active update delta
507 <
508 <    /**
509 <     * Holds number of total (i.e., created and not yet terminated)
510 <     * and running (i.e., not blocked on joins or other managed sync)
511 <     * threads, packed together to ensure consistent snapshot when
512 <     * making decisions about creating and suspending spare
513 <     * threads. Updated only by CAS. Note that adding a new worker
514 <     * requires incrementing both counts, since workers start off in
515 <     * running state.  This field is also used for memory-fencing
516 <     * configuration parameters.
517 <     */
518 <    private volatile int workerCounts;
519 <
520 <    private static final int TOTAL_COUNT_SHIFT  = 16;
521 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484 <    private static final int ONE_RUNNING        = 1;
485 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487 >     */
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523 <    /*
524 <     * Fields parallelism. maxPoolSize, locallyFifo,
489 <     * maintainsParallelism, and ueh are non-volatile, but external
490 <     * reads/writes use workerCount fences to ensure visability.
523 >    /**
524 >     * The target parallelism level.
525       */
526 +    final int parallelism;
527  
528      /**
529 <     * The target parallelism level.
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private int parallelism;
534 >    volatile int queueBase;
535  
536      /**
537 <     * The maximum allowed pool size.
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private int maxPoolSize;
542 >    int queueTop;
543  
544      /**
545 <     * True if use local fifo, not default lifo, for local polling
505 <     * Replicated by ForkJoinWorkerThreads
545 >     * True when shutdown() has been called.
546       */
547 <    private boolean locallyFifo;
547 >    volatile boolean shutdown;
548  
549      /**
550 <     * Controls whether to add spares to maintain parallelism
550 >     * True if use local fifo, not default lifo, for local polling
551 >     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private boolean maintainsParallelism;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * The uncaught exception handler used when any worker
557 <     * abruptly terminates
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private Thread.UncaughtExceptionHandler ueh;
560 >    volatile int quiescerCount;
561  
562      /**
563 <     * Pool number, just for assigning useful names to worker threads
563 >     * The number of threads blocked in join.
564       */
565 <    private final int poolNumber;
565 >    volatile int blockedCount;
566  
567 <    // utilities for updating fields
567 >    /**
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569 >     */
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 <     *
530 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    final void updateRunningCount(int delta) {
533 <        int wc;
534 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 <                                               wc = workerCounts,
536 <                                               wc + delta));
537 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Write fence for user modifications of pool parameters
579 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private void workerCountWriteFence() {
588 <        int wc;
589 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                 wc = workerCounts, wc);
547 <    }
587 >    volatile int scanGuard;
588 >
589 >    private static final int SG_UNIT = 1 << 16;
590  
591      /**
592 <     * Read fence for external reads of pool parameters
593 <     * (parallelism. maxPoolSize, etc).
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598       */
599 <    private void workerCountReadFence() {
600 <        int ignore = workerCounts;
555 <    }
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Tries incrementing active count; fails on contention.
604 <     * Called by workers before executing tasks.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608       *
609 <     * @return true on success
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c;
613 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
614 <                                        c = runState, c + ONE_ACTIVE);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Tries decrementing active count; fails on contention.
571 <     * Called when workers cannot find tasks to run.
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c;
630 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 <                                        c = runState, c - ONE_ACTIVE);
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Advances to at least the given level. Returns true if not
671 <     * already in at least the given level.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private boolean advanceRunLevel(int level) {
676 <        for (;;) {
677 <            int s = runState;
678 <            if ((s & level) != 0)
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686                  return false;
687 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
688 <                return true;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690          }
691 +        return true;
692      }
693  
694 <    // workers array maintenance
694 >    // Scanning for tasks
695  
696      /**
697 <     * Records and returns a workers array index for new worker.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private int recordWorker(ForkJoinWorkerThread w) {
716 <        // Try using slot totalCount-1. If not available, scan and/or resize
717 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
718 <        final ReentrantLock lock = this.workerLock;
719 <        lock.lock();
720 <        try {
721 <            ForkJoinWorkerThread[] ws = workers;
722 <            int len = ws.length;
723 <            if (k < 0 || k >= len || ws[k] != null) {
724 <                for (k = 0; k < len && ws[k] != null; ++k)
725 <                    ;
726 <                if (k == len)
727 <                    ws = Arrays.copyOf(ws, len << 1);
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737              }
738 <            ws[k] = w;
739 <            workers = ws; // volatile array write ensures slot visibility
740 <        } finally {
741 <            lock.unlock();
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757 >                return false;
758 >            }
759 >            return true;                         // all queues empty
760          }
617        return k;
761      }
762  
763      /**
764 <     * Nulls out record of worker in workers array
765 <     */
766 <    private void forgetWorker(ForkJoinWorkerThread w) {
767 <        int idx = w.poolIndex;
768 <        // Locking helps method recordWorker avoid unecessary expansion
769 <        final ReentrantLock lock = this.workerLock;
770 <        lock.lock();
771 <        try {
772 <            ForkJoinWorkerThread[] ws = workers;
773 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
774 <                ws[idx] = null;
775 <        } finally {
776 <            lock.unlock();
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent, possibly
766 >     * terminates worker upon exit.  Otherwise, before blocking,
767 >     * rescans queues to avoid missed signals.  Upon finding work,
768 >     * releases at least one worker (which may be the current
769 >     * worker). Rescans restart upon detected staleness or failure to
770 >     * release due to contention. Note the unusual conventions about
771 >     * Thread.interrupt here and elsewhere: Because interrupts are
772 >     * used solely to alert threads to check termination, which is
773 >     * checked here anyway, we clear status (using Thread.interrupted)
774 >     * before any call to park, so that park does not immediately
775 >     * return due to status being set via some other unrelated call to
776 >     * interrupt in user code.
777 >     *
778 >     * @param w the calling worker
779 >     * @param c the ctl value on entry
780 >     * @return true if waited or another thread was released upon enq
781 >     */
782 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
783 >        int v = w.eventCount;
784 >        w.nextWait = (int)c;                      // w's successor record
785 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
786 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
787 >            long d = ctl; // return true if lost to a deq, to force scan
788 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
789 >        }
790 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
791 >            long s = stealCount;
792 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
793 >                sc = w.stealCount = 0;
794 >            else if (w.eventCount != v)
795 >                return true;                      // update next time
796 >        }
797 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 >            blockedCount == 0 && quiescerCount == 0)
799 >            idleAwaitWork(w, nc, c, v);           // quiescent
800 >        for (boolean rescanned = false;;) {
801 >            if (w.eventCount != v)
802 >                return true;
803 >            if (!rescanned) {
804 >                int g = scanGuard, m = g & SMASK;
805 >                ForkJoinWorkerThread[] ws = workers;
806 >                if (ws != null && m < ws.length) {
807 >                    rescanned = true;
808 >                    for (int i = 0; i <= m; ++i) {
809 >                        ForkJoinWorkerThread u = ws[i];
810 >                        if (u != null) {
811 >                            if (u.queueBase != u.queueTop &&
812 >                                !tryReleaseWaiter())
813 >                                rescanned = false; // contended
814 >                            if (w.eventCount != v)
815 >                                return true;
816 >                        }
817 >                    }
818 >                }
819 >                if (scanGuard != g ||              // stale
820 >                    (queueBase != queueTop && !tryReleaseWaiter()))
821 >                    rescanned = false;
822 >                if (!rescanned)
823 >                    Thread.yield();                // reduce contention
824 >                else
825 >                    Thread.interrupted();          // clear before park
826 >            }
827 >            else {
828 >                w.parked = true;                   // must recheck
829 >                if (w.eventCount != v) {
830 >                    w.parked = false;
831 >                    return true;
832 >                }
833 >                LockSupport.park(this);
834 >                rescanned = w.parked = false;
835 >            }
836          }
837      }
838  
839 <    // adding and removing workers
839 >    /**
840 >     * If inactivating worker w has caused pool to become
841 >     * quiescent, check for pool termination, and wait for event
842 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
843 >     * this case because quiescence reflects consensus about lack
844 >     * of work). On timeout, if ctl has not changed, terminate the
845 >     * worker. Upon its termination (see deregisterWorker), it may
846 >     * wake up another worker to possibly repeat this process.
847 >     *
848 >     * @param w the calling worker
849 >     * @param currentCtl the ctl value after enqueuing w
850 >     * @param prevCtl the ctl value if w terminated
851 >     * @param v the eventCount w awaits change
852 >     */
853 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
854 >                               long prevCtl, int v) {
855 >        if (w.eventCount == v) {
856 >            if (shutdown)
857 >                tryTerminate(false);
858 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
859 >            while (ctl == currentCtl) {
860 >                long startTime = System.nanoTime();
861 >                w.parked = true;
862 >                if (w.eventCount == v)             // must recheck
863 >                    LockSupport.parkNanos(this, SHRINK_RATE);
864 >                w.parked = false;
865 >                if (w.eventCount != v)
866 >                    break;
867 >                else if (System.nanoTime() - startTime <
868 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 >                    Thread.interrupted();          // spurious wakeup
870 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 >                                                   currentCtl, prevCtl)) {
872 >                    w.terminate = true;            // restore previous
873 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 >                    break;
875 >                }
876 >            }
877 >        }
878 >    }
879 >
880 >    // Submissions
881  
882      /**
883 <     * Tries to create and add new worker. Assumes that worker counts
884 <     * are already updated to accommodate the worker, so adjusts on
642 <     * failure.
883 >     * Enqueues the given task in the submissionQueue.  Same idea as
884 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
885       *
886 <     * @return new worker or null if creation failed
886 >     * @param t the task
887       */
888 <    private ForkJoinWorkerThread addWorker() {
889 <        ForkJoinWorkerThread w = null;
888 >    private void addSubmission(ForkJoinTask<?> t) {
889 >        final ReentrantLock lock = this.submissionLock;
890 >        lock.lock();
891          try {
892 <            w = factory.newThread(this);
893 <        } finally { // Adjust on either null or exceptional factory return
894 <            if (w == null) {
895 <                onWorkerCreationFailure();
896 <                return null;
892 >            ForkJoinTask<?>[] q; int s, m;
893 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 >                UNSAFE.putOrderedObject(q, u, t);
896 >                queueTop = s + 1;
897 >                if (s - queueBase == m)
898 >                    growSubmissionQueue();
899              }
900 +        } finally {
901 +            lock.unlock();
902          }
903 <        w.start(recordWorker(w), locallyFifo, ueh);
657 <        return w;
903 >        signalWork();
904      }
905  
906 <    /**
661 <     * Adjusts counts upon failure to create worker
662 <     */
663 <    private void onWorkerCreationFailure() {
664 <        int c;
665 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666 <                                               c = workerCounts,
667 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 <        tryTerminate(false); // in case of failure during shutdown
669 <    }
906 >    //  (pollSubmission is defined below with exported methods)
907  
908      /**
909 <     * Create enough total workers to establish target parallelism,
910 <     * giving up if terminating or addWorker fails
911 <     */
912 <    private void ensureEnoughTotalWorkers() {
913 <        int wc;
914 <        while (runState < TERMINATING &&
915 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
916 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
917 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
918 <                 addWorker() == null))
919 <                break;
909 >     * Creates or doubles submissionQueue array.
910 >     * Basically identical to ForkJoinWorkerThread version.
911 >     */
912 >    private void growSubmissionQueue() {
913 >        ForkJoinTask<?>[] oldQ = submissionQueue;
914 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
915 >        if (size > MAXIMUM_QUEUE_CAPACITY)
916 >            throw new RejectedExecutionException("Queue capacity exceeded");
917 >        if (size < INITIAL_QUEUE_CAPACITY)
918 >            size = INITIAL_QUEUE_CAPACITY;
919 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 >        int mask = size - 1;
921 >        int top = queueTop;
922 >        int oldMask;
923 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 >            for (int b = queueBase; b != top; ++b) {
925 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 >                    UNSAFE.putObjectVolatile
929 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 >            }
931          }
932      }
933  
934 +    // Blocking support
935 +
936      /**
937 <     * Final callback from terminating worker.  Removes record of
938 <     * worker from array, and adjusts counts. If pool is shutting
939 <     * down, tries to complete terminatation, else possibly replaces
940 <     * the worker.
937 >     * Tries to increment blockedCount, decrement active count
938 >     * (sometimes implicitly) and possibly release or create a
939 >     * compensating worker in preparation for blocking. Fails
940 >     * on contention or termination.
941       *
942 <     * @param w the worker
942 >     * @return true if the caller can block, else should recheck and retry
943       */
944 <    final void workerTerminated(ForkJoinWorkerThread w) {
945 <        if (w.active) { // force inactive
946 <            w.active = false;
947 <            do {} while (!tryDecrementActiveCount());
944 >    private boolean tryPreBlock() {
945 >        int b = blockedCount;
946 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
947 >            int pc = parallelism;
948 >            do {
949 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
950 >                int e, ac, tc, rc, i;
951 >                long c = ctl;
952 >                int u = (int)(c >>> 32);
953 >                if ((e = (int)c) < 0) {
954 >                                                 // skip -- terminating
955 >                }
956 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
957 >                         (ws = workers) != null &&
958 >                         (i = ~e & SMASK) < ws.length &&
959 >                         (w = ws[i]) != null) {
960 >                    long nc = ((long)(w.nextWait & E_MASK) |
961 >                               (c & (AC_MASK|TC_MASK)));
962 >                    if (w.eventCount == e &&
963 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 >                        if (w.parked)
966 >                            UNSAFE.unpark(w);
967 >                        return true;             // release an idle worker
968 >                    }
969 >                }
970 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
971 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
972 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
973 >                        return true;             // no compensation needed
974 >                }
975 >                else if (tc + pc < MAX_ID) {
976 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 >                        addWorker();
979 >                        return true;            // create a replacement
980 >                    }
981 >                }
982 >                // try to back out on any failure and let caller retry
983 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                               b = blockedCount, b - 1));
985          }
986 <        forgetWorker(w);
700 <
701 <        // decrement total count, and if was running, running count
702 <        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 <        int wc;
704 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 <                                               wc = workerCounts, wc - unit));
706 <
707 <        accumulateStealCount(w); // collect final count
708 <        if (!tryTerminate(false))
709 <            ensureEnoughTotalWorkers();
986 >        return false;
987      }
988  
712    // Waiting for and signalling events
713
989      /**
990 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry.  CAS failures are OK -- any change in count suffices.
990 >     * Decrements blockedCount and increments active count
991       */
992 <    private void advanceEventCount() {
993 <        int c;
994 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
992 >    private void postBlock() {
993 >        long c;
994 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 >                                                c = ctl, c + AC_UNIT));
996 >        int b;
997 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 >                                              b = blockedCount, b - 1));
999      }
1000  
1001      /**
1002 <     * Releases workers blocked on a count not equal to current count.
1002 >     * Possibly blocks waiting for the given task to complete, or
1003 >     * cancels the task if terminating.  Fails to wait if contended.
1004 >     *
1005 >     * @param joinMe the task
1006       */
1007 <    final void releaseWaiters() {
1008 <        long top;
1009 <        int id;
1010 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
1011 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
1012 <            ForkJoinWorkerThread[] ws = workers;
1013 <            ForkJoinWorkerThread w;
1014 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
1015 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1016 <                                          top, w.nextWaiter))
736 <                LockSupport.unpark(w);
1007 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1008 >        int s;
1009 >        Thread.interrupted(); // clear interrupts before checking termination
1010 >        if (joinMe.status >= 0) {
1011 >            if (tryPreBlock()) {
1012 >                joinMe.tryAwaitDone(0L);
1013 >                postBlock();
1014 >            }
1015 >            else if ((ctl & STOP_BIT) != 0L)
1016 >                joinMe.cancelIgnoringExceptions();
1017          }
1018      }
1019  
1020      /**
1021 <     * Advances eventCount and releases waiters until interference by
1022 <     * other releasing threads is detected.
1021 >     * Possibly blocks the given worker waiting for joinMe to
1022 >     * complete or timeout
1023 >     *
1024 >     * @param joinMe the task
1025 >     * @param millis the wait time for underlying Object.wait
1026       */
1027 <    final void signalWork() {
1028 <        int ec;
1029 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
1030 <        outer:for (;;) {
1031 <            long top = eventWaiters;
1032 <            ec = eventCount;
1033 <            for (;;) {
1034 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1035 <                int id = (int)(top & WAITER_INDEX_MASK);
1036 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1037 <                    return;
1038 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
1039 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1040 <                                               top, top = w.nextWaiter))
1041 <                    continue outer;      // possibly stale; reread
1042 <                LockSupport.unpark(w);
1043 <                if (top != eventWaiters) // let someone else take over
1044 <                    return;
1027 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1028 >        while (joinMe.status >= 0) {
1029 >            Thread.interrupted();
1030 >            if ((ctl & STOP_BIT) != 0L) {
1031 >                joinMe.cancelIgnoringExceptions();
1032 >                break;
1033 >            }
1034 >            if (tryPreBlock()) {
1035 >                long last = System.nanoTime();
1036 >                while (joinMe.status >= 0) {
1037 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1038 >                    if (millis <= 0)
1039 >                        break;
1040 >                    joinMe.tryAwaitDone(millis);
1041 >                    if (joinMe.status < 0)
1042 >                        break;
1043 >                    if ((ctl & STOP_BIT) != 0L) {
1044 >                        joinMe.cancelIgnoringExceptions();
1045 >                        break;
1046 >                    }
1047 >                    long now = System.nanoTime();
1048 >                    nanos -= now - last;
1049 >                    last = now;
1050 >                }
1051 >                postBlock();
1052 >                break;
1053              }
1054          }
1055      }
1056  
1057      /**
1058 <     * If worker is inactive, blocks until terminating or event count
1059 <     * advances from last value held by worker; in any case helps
1060 <     * release others.
1061 <     *
1062 <     * @param w the calling worker thread
1063 <     */
1064 <    private void eventSync(ForkJoinWorkerThread w) {
1065 <        if (!w.active) {
1066 <            int prev = w.lastEventCount;
1067 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 <                            ((long)(w.poolIndex + 1)));
778 <            long top;
779 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 <                   eventCount == prev) {
783 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 <                                              w.nextWaiter = top, nextTop)) {
785 <                    accumulateStealCount(w); // transfer steals while idle
786 <                    Thread.interrupted();    // clear/ignore interrupt
787 <                    while (eventCount == prev)
788 <                        w.doPark();
789 <                    break;
1058 >     * If necessary, compensates for blocker, and blocks
1059 >     */
1060 >    private void awaitBlocker(ManagedBlocker blocker)
1061 >        throws InterruptedException {
1062 >        while (!blocker.isReleasable()) {
1063 >            if (tryPreBlock()) {
1064 >                try {
1065 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1066 >                } finally {
1067 >                    postBlock();
1068                  }
1069 +                break;
1070              }
792            w.lastEventCount = eventCount;
1071          }
794        releaseWaiters();
1072      }
1073  
1074 +    // Creating, registering and deregistring workers
1075 +
1076      /**
1077 <     * Callback from workers invoked upon each top-level action (i.e.,
1078 <     * stealing a task or taking a submission and running
800 <     * it). Performs one or both of the following:
801 <     *
802 <     * * If the worker cannot find work, updates its active status to
803 <     * inactive and updates activeCount unless there is contention, in
804 <     * which case it may try again (either in this or a subsequent
805 <     * call).  Additionally, awaits the next task event and/or helps
806 <     * wake up other releasable waiters.
807 <     *
808 <     * * If there are too many running threads, suspends this worker
809 <     * (first forcing inactivation if necessary).  If it is not
810 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 <     * -- killed while suspended within suspendAsSpare. Otherwise,
812 <     * upon resume it rechecks to make sure that it is still needed.
813 <     *
814 <     * @param w the worker
815 <     * @param worked false if the worker scanned for work but didn't
816 <     * find any (in which case it may block waiting for work).
1077 >     * Tries to create and start a worker; minimally rolls back counts
1078 >     * on failure.
1079       */
1080 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1081 <        boolean active = w.active;
1082 <        boolean inactivate = !worked & active;
1083 <        for (;;) {
1084 <            if (inactivate) {
1085 <                int c = runState;
1086 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1087 <                                             c, c - ONE_ACTIVE))
1088 <                    inactivate = active = w.active = false;
1089 <            }
1090 <            int wc = workerCounts;
1091 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
1092 <                if (!worked)
1093 <                    eventSync(w);
1094 <                return;
1095 <            }
1096 <            if (!(inactivate |= active) &&  // must inactivate to suspend
1097 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1098 <                                         wc, wc - ONE_RUNNING) &&
837 <                !w.suspendAsSpare())        // false if trimmed
838 <                return;
1080 >    private void addWorker() {
1081 >        Throwable ex = null;
1082 >        ForkJoinWorkerThread t = null;
1083 >        try {
1084 >            t = factory.newThread(this);
1085 >        } catch (Throwable e) {
1086 >            ex = e;
1087 >        }
1088 >        if (t == null) {  // null or exceptional factory return
1089 >            long c;       // adjust counts
1090 >            do {} while (!UNSAFE.compareAndSwapLong
1091 >                         (this, ctlOffset, c = ctl,
1092 >                          (((c - AC_UNIT) & AC_MASK) |
1093 >                           ((c - TC_UNIT) & TC_MASK) |
1094 >                           (c & ~(AC_MASK|TC_MASK)))));
1095 >            // Propagate exception if originating from an external caller
1096 >            if (!tryTerminate(false) && ex != null &&
1097 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1098 >                UNSAFE.throwException(ex);
1099          }
1100 +        else
1101 +            t.start();
1102      }
1103  
1104      /**
1105 <     * Adjusts counts and creates or resumes compensating threads for
1106 <     * a worker about to block on task joinMe, returning early if
1107 <     * joinMe becomes ready. First tries resuming an existing spare
1108 <     * (which usually also avoids any count adjustment), but must then
1109 <     * decrement running count to determine whether a new thread is
1110 <     * needed. See above for fuller explanation.
1111 <     */
1112 <    final void preJoin(ForkJoinTask<?> joinMe) {
851 <        boolean dec = false;       // true when running count decremented
852 <        for (;;) {
853 <            releaseWaiters();      // help other threads progress
854 <
855 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
861 <                    break;
862 <                }
863 <            }
864 <            if (joinMe.status < 0)
865 <                return;
866 <
867 <            if (spare != null && spare.tryUnsuspend()) {
868 <                if (dec || joinMe.requestSignal() < 0) {
869 <                    int c;
870 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 <                                                           workerCountsOffset,
872 <                                                           c = workerCounts,
873 <                                                           c + ONE_RUNNING));
874 <                } // else no net count change
875 <                LockSupport.unpark(spare);
876 <                return;
877 <            }
878 <
879 <            int wc = workerCounts; // decrement running count
880 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 <                                                wc, wc -= ONE_RUNNING)) &&
883 <                joinMe.requestSignal() < 0) { // cannot block
884 <                int c;                        // back out
885 <                do {} while (!UNSAFE.compareAndSwapInt(this,
886 <                                                       workerCountsOffset,
887 <                                                       c = workerCounts,
888 <                                                       c + ONE_RUNNING));
889 <                return;
890 <            }
891 <
892 <            if (dec) {
893 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 <                int pc = parallelism;
895 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 <                                 !maintainsParallelism)) ||
898 <                    tc >= maxPoolSize) // cannot add
899 <                    return;
900 <                if (spare == null &&
901 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 <                    addWorker();
904 <                    return;
905 <                }
906 <            }
1105 >     * Callback from ForkJoinWorkerThread constructor to assign a
1106 >     * public name
1107 >     */
1108 >    final String nextWorkerName() {
1109 >        for (int n;;) {
1110 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1111 >                                         n = nextWorkerNumber, ++n))
1112 >                return workerNamePrefix + n;
1113          }
1114      }
1115  
1116      /**
1117 <     * Same idea as preJoin but with too many differing details to
1118 <     * integrate: There are no task-based signal counts, and only one
1119 <     * way to do the actual blocking. So for simplicity it is directly
1120 <     * incorporated into this method.
1117 >     * Callback from ForkJoinWorkerThread constructor to
1118 >     * determine its poolIndex and record in workers array.
1119 >     *
1120 >     * @param w the worker
1121 >     * @return the worker's pool index
1122       */
1123 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1124 <        throws InterruptedException {
1125 <        maintainPar &= maintainsParallelism; // override
1126 <        boolean dec = false;
1127 <        boolean done = false;
1128 <        for (;;) {
1129 <            releaseWaiters();
1130 <            if (done = blocker.isReleasable())
1131 <                break;
1132 <            ForkJoinWorkerThread spare = null;
1133 <            for (ForkJoinWorkerThread w : workers) {
1134 <                if (w != null && w.isSuspended()) {
1135 <                    spare = w;
1136 <                    break;
1123 >    final int registerWorker(ForkJoinWorkerThread w) {
1124 >        /*
1125 >         * In the typical case, a new worker acquires the lock, uses
1126 >         * next available index and returns quickly.  Since we should
1127 >         * not block callers (ultimately from signalWork or
1128 >         * tryPreBlock) waiting for the lock needed to do this, we
1129 >         * instead help release other workers while waiting for the
1130 >         * lock.
1131 >         */
1132 >        for (int g;;) {
1133 >            ForkJoinWorkerThread[] ws;
1134 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1135 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1136 >                                         g, g | SG_UNIT)) {
1137 >                int k = nextWorkerIndex;
1138 >                try {
1139 >                    if ((ws = workers) != null) { // ignore on shutdown
1140 >                        int n = ws.length;
1141 >                        if (k < 0 || k >= n || ws[k] != null) {
1142 >                            for (k = 0; k < n && ws[k] != null; ++k)
1143 >                                ;
1144 >                            if (k == n)
1145 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1146 >                        }
1147 >                        ws[k] = w;
1148 >                        nextWorkerIndex = k + 1;
1149 >                        int m = g & SMASK;
1150 >                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1151 >                    }
1152 >                } finally {
1153 >                    scanGuard = g;
1154                  }
1155 +                return k;
1156              }
1157 <            if (done = blocker.isReleasable())
1158 <                break;
1159 <            if (spare != null && spare.tryUnsuspend()) {
1160 <                if (dec) {
1161 <                    int c;
1162 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 <                                                           workerCountsOffset,
939 <                                                           c = workerCounts,
940 <                                                           c + ONE_RUNNING));
941 <                }
942 <                LockSupport.unpark(spare);
943 <                break;
944 <            }
945 <            int wc = workerCounts;
946 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947 <                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948 <                                               wc, wc -= ONE_RUNNING);
949 <            if (dec) {
950 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
951 <                int pc = parallelism;
952 <                int dc = pc - (wc & RUNNING_COUNT_MASK);
953 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954 <                                 !maintainPar)) ||
955 <                    tc >= maxPoolSize)
956 <                    break;
957 <                if (spare == null &&
958 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959 <                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960 <                    addWorker();
961 <                    break;
1157 >            else if ((ws = workers) != null) { // help release others
1158 >                for (ForkJoinWorkerThread u : ws) {
1159 >                    if (u != null && u.queueBase != u.queueTop) {
1160 >                        if (tryReleaseWaiter())
1161 >                            break;
1162 >                    }
1163                  }
1164              }
1165          }
1166 +    }
1167  
1168 <        try {
1169 <            if (!done)
1170 <                do {} while (!blocker.isReleasable() && !blocker.block());
1171 <        } finally {
1172 <            if (dec) {
1173 <                int c;
1174 <                do {} while (!UNSAFE.compareAndSwapInt(this,
1175 <                                                       workerCountsOffset,
1176 <                                                       c = workerCounts,
1177 <                                                       c + ONE_RUNNING));
1168 >    /**
1169 >     * Final callback from terminating worker.  Removes record of
1170 >     * worker from array, and adjusts counts. If pool is shutting
1171 >     * down, tries to complete termination.
1172 >     *
1173 >     * @param w the worker
1174 >     */
1175 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1176 >        int idx = w.poolIndex;
1177 >        int sc = w.stealCount;
1178 >        int steps = 0;
1179 >        // Remove from array, adjust worker counts and collect steal count.
1180 >        // We can intermix failed removes or adjusts with steal updates
1181 >        do {
1182 >            long s, c;
1183 >            int g;
1184 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1185 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1186 >                                         g, g |= SG_UNIT)) {
1187 >                ForkJoinWorkerThread[] ws = workers;
1188 >                if (ws != null && idx >= 0 &&
1189 >                    idx < ws.length && ws[idx] == w)
1190 >                    ws[idx] = null;    // verify
1191 >                nextWorkerIndex = idx;
1192 >                scanGuard = g + SG_UNIT;
1193 >                steps = 1;
1194              }
1195 +            if (steps == 1 &&
1196 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1197 +                                          (((c - AC_UNIT) & AC_MASK) |
1198 +                                           ((c - TC_UNIT) & TC_MASK) |
1199 +                                           (c & ~(AC_MASK|TC_MASK)))))
1200 +                steps = 2;
1201 +            if (sc != 0 &&
1202 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1203 +                                          s = stealCount, s + sc))
1204 +                sc = 0;
1205 +        } while (steps != 2 || sc != 0);
1206 +        if (!tryTerminate(false)) {
1207 +            if (ex != null)   // possibly replace if died abnormally
1208 +                signalWork();
1209 +            else
1210 +                tryReleaseWaiter();
1211          }
1212      }
1213  
1214 +    // Shutdown and termination
1215 +
1216      /**
1217       * Possibly initiates and/or completes termination.
1218       *
# Line 985 | Line 1221 | public class ForkJoinPool extends Abstra
1221       * @return true if now terminating or terminated
1222       */
1223      private boolean tryTerminate(boolean now) {
1224 <        if (now)
1225 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1226 <        else if (runState < SHUTDOWN ||
1227 <                 !submissionQueue.isEmpty() ||
1228 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1229 <            return false;
1230 <
1231 <        if (advanceRunLevel(TERMINATING))
1232 <            startTerminating();
1233 <
1234 <        // Finish now if all threads terminated; else in some subsequent call
1235 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1236 <            advanceRunLevel(TERMINATED);
1237 <            terminationLatch.countDown();
1224 >        long c;
1225 >        while (((c = ctl) & STOP_BIT) == 0) {
1226 >            if (!now) {
1227 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1228 >                    return false;
1229 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1230 >                    queueBase != queueTop) {
1231 >                    if (ctl == c) // staleness check
1232 >                        return false;
1233 >                    continue;
1234 >                }
1235 >            }
1236 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1237 >                startTerminating();
1238 >        }
1239 >        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1240 >            final ReentrantLock lock = this.submissionLock;
1241 >            lock.lock();
1242 >            try {
1243 >                termination.signalAll();
1244 >            } finally {
1245 >                lock.unlock();
1246 >            }
1247          }
1248          return true;
1249      }
1250  
1251      /**
1252 <     * Actions on transition to TERMINATING
1252 >     * Runs up to three passes through workers: (0) Setting
1253 >     * termination status for each worker, followed by wakeups up to
1254 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1255 >     * lagging threads (likely in external tasks, but possibly also
1256 >     * blocked in joins).  Each pass repeats previous steps because of
1257 >     * potential lagging thread creation.
1258       */
1259      private void startTerminating() {
1260 <        // Clear out and cancel submissions, ignoring exceptions
1261 <        ForkJoinTask<?> task;
1262 <        while ((task = submissionQueue.poll()) != null) {
1263 <            try {
1264 <                task.cancel(false);
1265 <            } catch (Throwable ignore) {
1260 >        cancelSubmissions();
1261 >        for (int pass = 0; pass < 3; ++pass) {
1262 >            ForkJoinWorkerThread[] ws = workers;
1263 >            if (ws != null) {
1264 >                for (ForkJoinWorkerThread w : ws) {
1265 >                    if (w != null) {
1266 >                        w.terminate = true;
1267 >                        if (pass > 0) {
1268 >                            w.cancelTasks();
1269 >                            if (pass > 1 && !w.isInterrupted()) {
1270 >                                try {
1271 >                                    w.interrupt();
1272 >                                } catch (SecurityException ignore) {
1273 >                                }
1274 >                            }
1275 >                        }
1276 >                    }
1277 >                }
1278 >                terminateWaiters();
1279              }
1280          }
1281 <        // Propagate run level
1282 <        for (ForkJoinWorkerThread w : workers) {
1283 <            if (w != null)
1284 <                w.shutdown();    // also resumes suspended workers
1285 <        }
1286 <        // Ensure no straggling local tasks
1287 <        for (ForkJoinWorkerThread w : workers) {
1288 <            if (w != null)
1289 <                w.cancelTasks();
1027 <        }
1028 <        // Wake up idle workers
1029 <        advanceEventCount();
1030 <        releaseWaiters();
1031 <        // Unstick pending joins
1032 <        for (ForkJoinWorkerThread w : workers) {
1033 <            if (w != null && !w.isTerminated()) {
1281 >    }
1282 >
1283 >    /**
1284 >     * Polls and cancels all submissions. Called only during termination.
1285 >     */
1286 >    private void cancelSubmissions() {
1287 >        while (queueBase != queueTop) {
1288 >            ForkJoinTask<?> task = pollSubmission();
1289 >            if (task != null) {
1290                  try {
1291 <                    w.interrupt();
1292 <                } catch (SecurityException ignore) {
1291 >                    task.cancel(false);
1292 >                } catch (Throwable ignore) {
1293                  }
1294              }
1295          }
1296      }
1297  
1042    // misc support for ForkJoinWorkerThread
1043
1298      /**
1299 <     * Returns pool number
1299 >     * Tries to set the termination status of waiting workers, and
1300 >     * then wakes them up (after which they will terminate).
1301       */
1302 <    final int getPoolNumber() {
1303 <        return poolNumber;
1302 >    private void terminateWaiters() {
1303 >        ForkJoinWorkerThread[] ws = workers;
1304 >        if (ws != null) {
1305 >            ForkJoinWorkerThread w; long c; int i, e;
1306 >            int n = ws.length;
1307 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1308 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1309 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1310 >                                              (long)(w.nextWait & E_MASK) |
1311 >                                              ((c + AC_UNIT) & AC_MASK) |
1312 >                                              (c & (TC_MASK|STOP_BIT)))) {
1313 >                    w.terminate = true;
1314 >                    w.eventCount = e + EC_UNIT;
1315 >                    if (w.parked)
1316 >                        UNSAFE.unpark(w);
1317 >                }
1318 >            }
1319 >        }
1320      }
1321  
1322 +    // misc ForkJoinWorkerThread support
1323 +
1324      /**
1325 <     * Accumulates steal count from a worker, clearing
1326 <     * the worker's value
1325 >     * Increment or decrement quiescerCount. Needed only to prevent
1326 >     * triggering shutdown if a worker is transiently inactive while
1327 >     * checking quiescence.
1328 >     *
1329 >     * @param delta 1 for increment, -1 for decrement
1330       */
1331 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1332 <        int sc = w.stealCount;
1333 <        if (sc != 0) {
1334 <            long c;
1059 <            w.stealCount = 0;
1060 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1061 <                                                    c = stealCount, c + sc));
1062 <        }
1331 >    final void addQuiescerCount(int delta) {
1332 >        int c;
1333 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1334 >                                              c = quiescerCount, c + delta));
1335      }
1336  
1337      /**
1338 <     * Returns the approximate (non-atomic) number of idle threads per
1339 <     * active thread.
1338 >     * Directly increment or decrement active count without
1339 >     * queuing. This method is used to transiently assert inactivation
1340 >     * while checking quiescence.
1341 >     *
1342 >     * @param delta 1 for increment, -1 for decrement
1343       */
1344 <    final int idlePerActive() {
1345 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1346 <        int pc = parallelism; // use targeted parallelism, not rc
1347 <        // Use exact results for small values, saturate past 4
1348 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1344 >    final void addActiveCount(int delta) {
1345 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1346 >        long c;
1347 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1348 >                                                ((c + d) & AC_MASK) |
1349 >                                                (c & ~AC_MASK)));
1350      }
1351  
1352      /**
1353 <     * Returns the approximate (non-atomic) difference between running
1354 <     * and active counts.
1353 >     * Returns the approximate (non-atomic) number of idle threads per
1354 >     * active thread.
1355       */
1356 <    final int inactiveCount() {
1357 <        return (workerCounts & RUNNING_COUNT_MASK) -
1358 <            (runState & ACTIVE_COUNT_MASK);
1356 >    final int idlePerActive() {
1357 >        // Approximate at powers of two for small values, saturate past 4
1358 >        int p = parallelism;
1359 >        int a = p + (int)(ctl >> AC_SHIFT);
1360 >        return (a > (p >>>= 1) ? 0 :
1361 >                a > (p >>>= 1) ? 1 :
1362 >                a > (p >>>= 1) ? 2 :
1363 >                a > (p >>>= 1) ? 4 :
1364 >                8);
1365      }
1366  
1367 <    // Public and protected methods
1367 >    // Exported methods
1368  
1369      // Constructors
1370  
1371      /**
1372       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1373 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1374 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1373 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1374 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1375 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1376       *
1377       * @throws SecurityException if a security manager exists and
1378       *         the caller is not permitted to modify threads
# Line 1098 | Line 1381 | public class ForkJoinPool extends Abstra
1381       */
1382      public ForkJoinPool() {
1383          this(Runtime.getRuntime().availableProcessors(),
1384 <             defaultForkJoinWorkerThreadFactory);
1384 >             defaultForkJoinWorkerThreadFactory, null, false);
1385      }
1386  
1387      /**
1388       * Creates a {@code ForkJoinPool} with the indicated parallelism
1389 <     * level and using the {@linkplain
1390 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1389 >     * level, the {@linkplain
1390 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1391 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1392       *
1393       * @param parallelism the parallelism level
1394       * @throws IllegalArgumentException if parallelism less than or
# Line 1115 | Line 1399 | public class ForkJoinPool extends Abstra
1399       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1400       */
1401      public ForkJoinPool(int parallelism) {
1402 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1402 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1403      }
1404  
1405      /**
1406 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1123 <     * java.lang.Runtime#availableProcessors}, and using the given
1124 <     * thread factory.
1406 >     * Creates a {@code ForkJoinPool} with the given parameters.
1407       *
1408 <     * @param factory the factory for creating new threads
1409 <     * @throws NullPointerException if the factory is null
1410 <     * @throws SecurityException if a security manager exists and
1411 <     *         the caller is not permitted to modify threads
1412 <     *         because it does not hold {@link
1413 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1414 <     */
1415 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1416 <        this(Runtime.getRuntime().availableProcessors(), factory);
1417 <    }
1418 <
1419 <    /**
1420 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1139 <     * thread factory.
1140 <     *
1141 <     * @param parallelism the parallelism level
1142 <     * @param factory the factory for creating new threads
1408 >     * @param parallelism the parallelism level. For default value,
1409 >     * use {@link java.lang.Runtime#availableProcessors}.
1410 >     * @param factory the factory for creating new threads. For default value,
1411 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1412 >     * @param handler the handler for internal worker threads that
1413 >     * terminate due to unrecoverable errors encountered while executing
1414 >     * tasks. For default value, use {@code null}.
1415 >     * @param asyncMode if true,
1416 >     * establishes local first-in-first-out scheduling mode for forked
1417 >     * tasks that are never joined. This mode may be more appropriate
1418 >     * than default locally stack-based mode in applications in which
1419 >     * worker threads only process event-style asynchronous tasks.
1420 >     * For default value, use {@code false}.
1421       * @throws IllegalArgumentException if parallelism less than or
1422       *         equal to zero, or greater than implementation limit
1423       * @throws NullPointerException if the factory is null
# Line 1148 | Line 1426 | public class ForkJoinPool extends Abstra
1426       *         because it does not hold {@link
1427       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1428       */
1429 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1429 >    public ForkJoinPool(int parallelism,
1430 >                        ForkJoinWorkerThreadFactory factory,
1431 >                        Thread.UncaughtExceptionHandler handler,
1432 >                        boolean asyncMode) {
1433          checkPermission();
1434          if (factory == null)
1435              throw new NullPointerException();
1436 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1436 >        if (parallelism <= 0 || parallelism > MAX_ID)
1437              throw new IllegalArgumentException();
1157        this.poolNumber = poolNumberGenerator.incrementAndGet();
1158        int arraySize = initialArraySizeFor(parallelism);
1438          this.parallelism = parallelism;
1439          this.factory = factory;
1440 <        this.maxPoolSize = MAX_THREADS;
1441 <        this.maintainsParallelism = true;
1442 <        this.workers = new ForkJoinWorkerThread[arraySize];
1443 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1444 <        this.workerLock = new ReentrantLock();
1445 <        this.terminationLatch = new CountDownLatch(1);
1446 <        // Start first worker; remaining workers added upon first submission
1447 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
1448 <        addWorker();
1449 <    }
1450 <
1451 <    /**
1452 <     * Returns initial power of two size for workers array.
1453 <     * @param pc the initial parallelism level
1454 <     */
1455 <    private static int initialArraySizeFor(int pc) {
1456 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1457 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1458 <        size |= size >>> 1;
1180 <        size |= size >>> 2;
1181 <        size |= size >>> 4;
1182 <        size |= size >>> 8;
1183 <        return size + 1;
1440 >        this.ueh = handler;
1441 >        this.locallyFifo = asyncMode;
1442 >        long np = (long)(-parallelism); // offset ctl counts
1443 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1444 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1445 >        // initialize workers array with room for 2*parallelism if possible
1446 >        int n = parallelism << 1;
1447 >        if (n >= MAX_ID)
1448 >            n = MAX_ID;
1449 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1450 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1451 >        }
1452 >        workers = new ForkJoinWorkerThread[n + 1];
1453 >        this.submissionLock = new ReentrantLock();
1454 >        this.termination = submissionLock.newCondition();
1455 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1456 >        sb.append(poolNumberGenerator.incrementAndGet());
1457 >        sb.append("-worker-");
1458 >        this.workerNamePrefix = sb.toString();
1459      }
1460  
1461      // Execution methods
1462  
1463      /**
1189     * Common code for execute, invoke and submit
1190     */
1191    private <T> void doSubmit(ForkJoinTask<T> task) {
1192        if (task == null)
1193            throw new NullPointerException();
1194        if (runState >= SHUTDOWN)
1195            throw new RejectedExecutionException();
1196        submissionQueue.offer(task);
1197        advanceEventCount();
1198        releaseWaiters();
1199        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1200            ensureEnoughTotalWorkers();
1201    }
1202
1203    /**
1464       * Performs the given task, returning its result upon completion.
1465 +     * If the computation encounters an unchecked Exception or Error,
1466 +     * it is rethrown as the outcome of this invocation.  Rethrown
1467 +     * exceptions behave in the same way as regular exceptions, but,
1468 +     * when possible, contain stack traces (as displayed for example
1469 +     * using {@code ex.printStackTrace()}) of both the current thread
1470 +     * as well as the thread actually encountering the exception;
1471 +     * minimally only the latter.
1472       *
1473       * @param task the task
1474       * @return the task's result
# Line 1210 | Line 1477 | public class ForkJoinPool extends Abstra
1477       *         scheduled for execution
1478       */
1479      public <T> T invoke(ForkJoinTask<T> task) {
1480 <        doSubmit(task);
1481 <        return task.join();
1480 >        Thread t = Thread.currentThread();
1481 >        if (task == null)
1482 >            throw new NullPointerException();
1483 >        if (shutdown)
1484 >            throw new RejectedExecutionException();
1485 >        if ((t instanceof ForkJoinWorkerThread) &&
1486 >            ((ForkJoinWorkerThread)t).pool == this)
1487 >            return task.invoke();  // bypass submit if in same pool
1488 >        else {
1489 >            addSubmission(task);
1490 >            return task.join();
1491 >        }
1492 >    }
1493 >
1494 >    /**
1495 >     * Unless terminating, forks task if within an ongoing FJ
1496 >     * computation in the current pool, else submits as external task.
1497 >     */
1498 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1499 >        ForkJoinWorkerThread w;
1500 >        Thread t = Thread.currentThread();
1501 >        if (shutdown)
1502 >            throw new RejectedExecutionException();
1503 >        if ((t instanceof ForkJoinWorkerThread) &&
1504 >            (w = (ForkJoinWorkerThread)t).pool == this)
1505 >            w.pushTask(task);
1506 >        else
1507 >            addSubmission(task);
1508      }
1509  
1510      /**
# Line 1223 | Line 1516 | public class ForkJoinPool extends Abstra
1516       *         scheduled for execution
1517       */
1518      public void execute(ForkJoinTask<?> task) {
1519 <        doSubmit(task);
1519 >        if (task == null)
1520 >            throw new NullPointerException();
1521 >        forkOrSubmit(task);
1522      }
1523  
1524      // AbstractExecutorService methods
# Line 1234 | Line 1529 | public class ForkJoinPool extends Abstra
1529       *         scheduled for execution
1530       */
1531      public void execute(Runnable task) {
1532 +        if (task == null)
1533 +            throw new NullPointerException();
1534          ForkJoinTask<?> job;
1535          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1536              job = (ForkJoinTask<?>) task;
1537          else
1538              job = ForkJoinTask.adapt(task, null);
1539 <        doSubmit(job);
1539 >        forkOrSubmit(job);
1540 >    }
1541 >
1542 >    /**
1543 >     * Submits a ForkJoinTask for execution.
1544 >     *
1545 >     * @param task the task to submit
1546 >     * @return the task
1547 >     * @throws NullPointerException if the task is null
1548 >     * @throws RejectedExecutionException if the task cannot be
1549 >     *         scheduled for execution
1550 >     */
1551 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1552 >        if (task == null)
1553 >            throw new NullPointerException();
1554 >        forkOrSubmit(task);
1555 >        return task;
1556      }
1557  
1558      /**
# Line 1248 | Line 1561 | public class ForkJoinPool extends Abstra
1561       *         scheduled for execution
1562       */
1563      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1564 +        if (task == null)
1565 +            throw new NullPointerException();
1566          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1567 <        doSubmit(job);
1567 >        forkOrSubmit(job);
1568          return job;
1569      }
1570  
# Line 1259 | Line 1574 | public class ForkJoinPool extends Abstra
1574       *         scheduled for execution
1575       */
1576      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1577 +        if (task == null)
1578 +            throw new NullPointerException();
1579          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1580 <        doSubmit(job);
1580 >        forkOrSubmit(job);
1581          return job;
1582      }
1583  
# Line 1270 | Line 1587 | public class ForkJoinPool extends Abstra
1587       *         scheduled for execution
1588       */
1589      public ForkJoinTask<?> submit(Runnable task) {
1590 +        if (task == null)
1591 +            throw new NullPointerException();
1592          ForkJoinTask<?> job;
1593          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1594              job = (ForkJoinTask<?>) task;
1595          else
1596              job = ForkJoinTask.adapt(task, null);
1597 <        doSubmit(job);
1597 >        forkOrSubmit(job);
1598          return job;
1599      }
1600  
1601      /**
1283     * Submits a ForkJoinTask for execution.
1284     *
1285     * @param task the task to submit
1286     * @return the task
1287     * @throws NullPointerException if the task is null
1288     * @throws RejectedExecutionException if the task cannot be
1289     *         scheduled for execution
1290     */
1291    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1292        doSubmit(task);
1293        return task;
1294    }
1295
1296    /**
1602       * @throws NullPointerException       {@inheritDoc}
1603       * @throws RejectedExecutionException {@inheritDoc}
1604       */
# Line 1305 | Line 1610 | public class ForkJoinPool extends Abstra
1610          invoke(new InvokeAll<T>(forkJoinTasks));
1611  
1612          @SuppressWarnings({"unchecked", "rawtypes"})
1613 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1613 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1614          return futures;
1615      }
1616  
# Line 1335 | Line 1640 | public class ForkJoinPool extends Abstra
1640       * @return the handler, or {@code null} if none
1641       */
1642      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338        workerCountReadFence();
1643          return ueh;
1644      }
1645  
1646      /**
1343     * Sets the handler for internal worker threads that terminate due
1344     * to unrecoverable errors encountered while executing tasks.
1345     * Unless set, the current default or ThreadGroup handler is used
1346     * as handler.
1347     *
1348     * @param h the new handler
1349     * @return the old handler, or {@code null} if none
1350     * @throws SecurityException if a security manager exists and
1351     *         the caller is not permitted to modify threads
1352     *         because it does not hold {@link
1353     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1354     */
1355    public Thread.UncaughtExceptionHandler
1356        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357        checkPermission();
1358        workerCountReadFence();
1359        Thread.UncaughtExceptionHandler old = ueh;
1360        if (h != old) {
1361            ueh = h;
1362            workerCountWriteFence();
1363            for (ForkJoinWorkerThread w : workers) {
1364                if (w != null)
1365                    w.setUncaughtExceptionHandler(h);
1366            }
1367        }
1368        return old;
1369    }
1370
1371    /**
1372     * Sets the target parallelism level of this pool.
1373     *
1374     * @param parallelism the target parallelism
1375     * @throws IllegalArgumentException if parallelism less than or
1376     * equal to zero or greater than maximum size bounds
1377     * @throws SecurityException if a security manager exists and
1378     *         the caller is not permitted to modify threads
1379     *         because it does not hold {@link
1380     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1381     */
1382    public void setParallelism(int parallelism) {
1383        checkPermission();
1384        if (parallelism <= 0 || parallelism > maxPoolSize)
1385            throw new IllegalArgumentException();
1386        workerCountReadFence();
1387        int pc = this.parallelism;
1388        if (pc != parallelism) {
1389            this.parallelism = parallelism;
1390            workerCountWriteFence();
1391            // Release spares. If too many, some will die after re-suspend
1392            for (ForkJoinWorkerThread w : workers) {
1393                if (w != null && w.tryUnsuspend()) {
1394                    updateRunningCount(1);
1395                    LockSupport.unpark(w);
1396                }
1397            }
1398            ensureEnoughTotalWorkers();
1399            advanceEventCount();
1400            releaseWaiters(); // force config recheck by existing workers
1401        }
1402    }
1403
1404    /**
1647       * Returns the targeted parallelism level of this pool.
1648       *
1649       * @return the targeted parallelism level of this pool
1650       */
1651      public int getParallelism() {
1410        //        workerCountReadFence(); // inlined below
1411        int ignore = workerCounts;
1652          return parallelism;
1653      }
1654  
1655      /**
1656       * Returns the number of worker threads that have started but not
1657 <     * yet terminated.  This result returned by this method may differ
1657 >     * yet terminated.  The result returned by this method may differ
1658       * from {@link #getParallelism} when threads are created to
1659       * maintain parallelism when others are cooperatively blocked.
1660       *
1661       * @return the number of worker threads
1662       */
1663      public int getPoolSize() {
1664 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1425 <    }
1426 <
1427 <    /**
1428 <     * Returns the maximum number of threads allowed to exist in the
1429 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
1430 <     * maximum is an implementation-defined value designed only to
1431 <     * prevent runaway growth.
1432 <     *
1433 <     * @return the maximum
1434 <     */
1435 <    public int getMaximumPoolSize() {
1436 <        workerCountReadFence();
1437 <        return maxPoolSize;
1438 <    }
1439 <
1440 <    /**
1441 <     * Sets the maximum number of threads allowed to exist in the
1442 <     * pool. The given value should normally be greater than or equal
1443 <     * to the {@link #getParallelism parallelism} level. Setting this
1444 <     * value has no effect on current pool size. It controls
1445 <     * construction of new threads.
1446 <     *
1447 <     * @throws IllegalArgumentException if negative or greater than
1448 <     * internal implementation limit
1449 <     */
1450 <    public void setMaximumPoolSize(int newMax) {
1451 <        if (newMax < 0 || newMax > MAX_THREADS)
1452 <            throw new IllegalArgumentException();
1453 <        maxPoolSize = newMax;
1454 <        workerCountWriteFence();
1455 <    }
1456 <
1457 <    /**
1458 <     * Returns {@code true} if this pool dynamically maintains its
1459 <     * target parallelism level. If false, new threads are added only
1460 <     * to avoid possible starvation.  This setting is by default true.
1461 <     *
1462 <     * @return {@code true} if maintains parallelism
1463 <     */
1464 <    public boolean getMaintainsParallelism() {
1465 <        workerCountReadFence();
1466 <        return maintainsParallelism;
1467 <    }
1468 <
1469 <    /**
1470 <     * Sets whether this pool dynamically maintains its target
1471 <     * parallelism level. If false, new threads are added only to
1472 <     * avoid possible starvation.
1473 <     *
1474 <     * @param enable {@code true} to maintain parallelism
1475 <     */
1476 <    public void setMaintainsParallelism(boolean enable) {
1477 <        maintainsParallelism = enable;
1478 <        workerCountWriteFence();
1479 <    }
1480 <
1481 <    /**
1482 <     * Establishes local first-in-first-out scheduling mode for forked
1483 <     * tasks that are never joined. This mode may be more appropriate
1484 <     * than default locally stack-based mode in applications in which
1485 <     * worker threads only process asynchronous tasks.  This method is
1486 <     * designed to be invoked only when the pool is quiescent, and
1487 <     * typically only before any tasks are submitted. The effects of
1488 <     * invocations at other times may be unpredictable.
1489 <     *
1490 <     * @param async if {@code true}, use locally FIFO scheduling
1491 <     * @return the previous mode
1492 <     * @see #getAsyncMode
1493 <     */
1494 <    public boolean setAsyncMode(boolean async) {
1495 <        workerCountReadFence();
1496 <        boolean oldMode = locallyFifo;
1497 <        if (oldMode != async) {
1498 <            locallyFifo = async;
1499 <            workerCountWriteFence();
1500 <            for (ForkJoinWorkerThread w : workers) {
1501 <                if (w != null)
1502 <                    w.setAsyncMode(async);
1503 <            }
1504 <        }
1505 <        return oldMode;
1664 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1665      }
1666  
1667      /**
# Line 1510 | Line 1669 | public class ForkJoinPool extends Abstra
1669       * scheduling mode for forked tasks that are never joined.
1670       *
1671       * @return {@code true} if this pool uses async mode
1513     * @see #setAsyncMode
1672       */
1673      public boolean getAsyncMode() {
1516        workerCountReadFence();
1674          return locallyFifo;
1675      }
1676  
# Line 1526 | Line 1683 | public class ForkJoinPool extends Abstra
1683       * @return the number of worker threads
1684       */
1685      public int getRunningThreadCount() {
1686 <        return workerCounts & RUNNING_COUNT_MASK;
1686 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1687 >        return r <= 0? 0 : r; // suppress momentarily negative values
1688      }
1689  
1690      /**
# Line 1537 | Line 1695 | public class ForkJoinPool extends Abstra
1695       * @return the number of active threads
1696       */
1697      public int getActiveThreadCount() {
1698 <        return runState & ACTIVE_COUNT_MASK;
1698 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1699 >        return r <= 0? 0 : r; // suppress momentarily negative values
1700      }
1701  
1702      /**
# Line 1552 | Line 1711 | public class ForkJoinPool extends Abstra
1711       * @return {@code true} if all threads are currently idle
1712       */
1713      public boolean isQuiescent() {
1714 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1714 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1715      }
1716  
1717      /**
# Line 1582 | Line 1741 | public class ForkJoinPool extends Abstra
1741       */
1742      public long getQueuedTaskCount() {
1743          long count = 0;
1744 <        for (ForkJoinWorkerThread w : workers) {
1745 <            if (w != null)
1746 <                count += w.getQueueSize();
1744 >        ForkJoinWorkerThread[] ws;
1745 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1746 >            (ws = workers) != null) {
1747 >            for (ForkJoinWorkerThread w : ws)
1748 >                if (w != null)
1749 >                    count -= w.queueBase - w.queueTop; // must read base first
1750          }
1751          return count;
1752      }
1753  
1754      /**
1755       * Returns an estimate of the number of tasks submitted to this
1756 <     * pool that have not yet begun executing.  This method takes time
1757 <     * proportional to the number of submissions.
1756 >     * pool that have not yet begun executing.  This method may take
1757 >     * time proportional to the number of submissions.
1758       *
1759       * @return the number of queued submissions
1760       */
1761      public int getQueuedSubmissionCount() {
1762 <        return submissionQueue.size();
1762 >        return -queueBase + queueTop;
1763      }
1764  
1765      /**
# Line 1607 | Line 1769 | public class ForkJoinPool extends Abstra
1769       * @return {@code true} if there are any queued submissions
1770       */
1771      public boolean hasQueuedSubmissions() {
1772 <        return !submissionQueue.isEmpty();
1772 >        return queueBase != queueTop;
1773      }
1774  
1775      /**
# Line 1618 | Line 1780 | public class ForkJoinPool extends Abstra
1780       * @return the next submission, or {@code null} if none
1781       */
1782      protected ForkJoinTask<?> pollSubmission() {
1783 <        return submissionQueue.poll();
1783 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1784 >        while ((b = queueBase) != queueTop &&
1785 >               (q = submissionQueue) != null &&
1786 >               (i = (q.length - 1) & b) >= 0) {
1787 >            long u = (i << ASHIFT) + ABASE;
1788 >            if ((t = q[i]) != null &&
1789 >                queueBase == b &&
1790 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1791 >                queueBase = b + 1;
1792 >                return t;
1793 >            }
1794 >        }
1795 >        return null;
1796      }
1797  
1798      /**
# Line 1639 | Line 1813 | public class ForkJoinPool extends Abstra
1813       * @return the number of elements transferred
1814       */
1815      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1816 <        int n = submissionQueue.drainTo(c);
1817 <        for (ForkJoinWorkerThread w : workers) {
1818 <            if (w != null)
1819 <                n += w.drainTasksTo(c);
1816 >        int count = 0;
1817 >        while (queueBase != queueTop) {
1818 >            ForkJoinTask<?> t = pollSubmission();
1819 >            if (t != null) {
1820 >                c.add(t);
1821 >                ++count;
1822 >            }
1823 >        }
1824 >        ForkJoinWorkerThread[] ws;
1825 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1826 >            (ws = workers) != null) {
1827 >            for (ForkJoinWorkerThread w : ws)
1828 >                if (w != null)
1829 >                    count += w.drainTasksTo(c);
1830          }
1831 <        return n;
1831 >        return count;
1832      }
1833  
1834      /**
# Line 1658 | Line 1842 | public class ForkJoinPool extends Abstra
1842          long st = getStealCount();
1843          long qt = getQueuedTaskCount();
1844          long qs = getQueuedSubmissionCount();
1661        int wc = workerCounts;
1662        int tc = wc >>> TOTAL_COUNT_SHIFT;
1663        int rc = wc & RUNNING_COUNT_MASK;
1845          int pc = parallelism;
1846 <        int rs = runState;
1847 <        int ac = rs & ACTIVE_COUNT_MASK;
1846 >        long c = ctl;
1847 >        int tc = pc + (short)(c >>> TC_SHIFT);
1848 >        int rc = pc + (int)(c >> AC_SHIFT);
1849 >        if (rc < 0) // ignore transient negative
1850 >            rc = 0;
1851 >        int ac = rc + blockedCount;
1852 >        String level;
1853 >        if ((c & STOP_BIT) != 0)
1854 >            level = (tc == 0)? "Terminated" : "Terminating";
1855 >        else
1856 >            level = shutdown? "Shutting down" : "Running";
1857          return super.toString() +
1858 <            "[" + runLevelToString(rs) +
1858 >            "[" + level +
1859              ", parallelism = " + pc +
1860              ", size = " + tc +
1861              ", active = " + ac +
# Line 1676 | Line 1866 | public class ForkJoinPool extends Abstra
1866              "]";
1867      }
1868  
1679    private static String runLevelToString(int s) {
1680        return ((s & TERMINATED) != 0 ? "Terminated" :
1681                ((s & TERMINATING) != 0 ? "Terminating" :
1682                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1683                  "Running")));
1684    }
1685
1869      /**
1870       * Initiates an orderly shutdown in which previously submitted
1871       * tasks are executed, but no new tasks will be accepted.
# Line 1697 | Line 1880 | public class ForkJoinPool extends Abstra
1880       */
1881      public void shutdown() {
1882          checkPermission();
1883 <        advanceRunLevel(SHUTDOWN);
1883 >        shutdown = true;
1884          tryTerminate(false);
1885      }
1886  
# Line 1719 | Line 1902 | public class ForkJoinPool extends Abstra
1902       */
1903      public List<Runnable> shutdownNow() {
1904          checkPermission();
1905 +        shutdown = true;
1906          tryTerminate(true);
1907          return Collections.emptyList();
1908      }
# Line 1729 | Line 1913 | public class ForkJoinPool extends Abstra
1913       * @return {@code true} if all tasks have completed following shut down
1914       */
1915      public boolean isTerminated() {
1916 <        return runState >= TERMINATED;
1916 >        long c = ctl;
1917 >        return ((c & STOP_BIT) != 0L &&
1918 >                (short)(c >>> TC_SHIFT) == -parallelism);
1919      }
1920  
1921      /**
# Line 1737 | Line 1923 | public class ForkJoinPool extends Abstra
1923       * commenced but not yet completed.  This method may be useful for
1924       * debugging. A return of {@code true} reported a sufficient
1925       * period after shutdown may indicate that submitted tasks have
1926 <     * ignored or suppressed interruption, causing this executor not
1927 <     * to properly terminate.
1926 >     * ignored or suppressed interruption, or are waiting for IO,
1927 >     * causing this executor not to properly terminate. (See the
1928 >     * advisory notes for class {@link ForkJoinTask} stating that
1929 >     * tasks should not normally entail blocking operations.  But if
1930 >     * they do, they must abort them on interrupt.)
1931       *
1932       * @return {@code true} if terminating but not yet terminated
1933       */
1934      public boolean isTerminating() {
1935 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1935 >        long c = ctl;
1936 >        return ((c & STOP_BIT) != 0L &&
1937 >                (short)(c >>> TC_SHIFT) != -parallelism);
1938 >    }
1939 >
1940 >    /**
1941 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1942 >     */
1943 >    final boolean isAtLeastTerminating() {
1944 >        return (ctl & STOP_BIT) != 0L;
1945      }
1946  
1947      /**
# Line 1752 | Line 1950 | public class ForkJoinPool extends Abstra
1950       * @return {@code true} if this pool has been shut down
1951       */
1952      public boolean isShutdown() {
1953 <        return runState >= SHUTDOWN;
1953 >        return shutdown;
1954      }
1955  
1956      /**
# Line 1768 | Line 1966 | public class ForkJoinPool extends Abstra
1966       */
1967      public boolean awaitTermination(long timeout, TimeUnit unit)
1968          throws InterruptedException {
1969 <        return terminationLatch.await(timeout, unit);
1969 >        long nanos = unit.toNanos(timeout);
1970 >        final ReentrantLock lock = this.submissionLock;
1971 >        lock.lock();
1972 >        try {
1973 >            for (;;) {
1974 >                if (isTerminated())
1975 >                    return true;
1976 >                if (nanos <= 0)
1977 >                    return false;
1978 >                nanos = termination.awaitNanos(nanos);
1979 >            }
1980 >        } finally {
1981 >            lock.unlock();
1982 >        }
1983      }
1984  
1985      /**
1986       * Interface for extending managed parallelism for tasks running
1987       * in {@link ForkJoinPool}s.
1988       *
1989 <     * <p>A {@code ManagedBlocker} provides two methods.
1990 <     * Method {@code isReleasable} must return {@code true} if
1991 <     * blocking is not necessary. Method {@code block} blocks the
1992 <     * current thread if necessary (perhaps internally invoking
1993 <     * {@code isReleasable} before actually blocking).
1989 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1990 >     * {@code isReleasable} must return {@code true} if blocking is
1991 >     * not necessary. Method {@code block} blocks the current thread
1992 >     * if necessary (perhaps internally invoking {@code isReleasable}
1993 >     * before actually blocking). These actions are performed by any
1994 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1995 >     * unusual methods in this API accommodate synchronizers that may,
1996 >     * but don't usually, block for long periods. Similarly, they
1997 >     * allow more efficient internal handling of cases in which
1998 >     * additional workers may be, but usually are not, needed to
1999 >     * ensure sufficient parallelism.  Toward this end,
2000 >     * implementations of method {@code isReleasable} must be amenable
2001 >     * to repeated invocation.
2002       *
2003       * <p>For example, here is a ManagedBlocker based on a
2004       * ReentrantLock:
# Line 1797 | Line 2016 | public class ForkJoinPool extends Abstra
2016       *     return hasLock || (hasLock = lock.tryLock());
2017       *   }
2018       * }}</pre>
2019 +     *
2020 +     * <p>Here is a class that possibly blocks waiting for an
2021 +     * item on a given queue:
2022 +     *  <pre> {@code
2023 +     * class QueueTaker<E> implements ManagedBlocker {
2024 +     *   final BlockingQueue<E> queue;
2025 +     *   volatile E item = null;
2026 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2027 +     *   public boolean block() throws InterruptedException {
2028 +     *     if (item == null)
2029 +     *       item = queue.take();
2030 +     *     return true;
2031 +     *   }
2032 +     *   public boolean isReleasable() {
2033 +     *     return item != null || (item = queue.poll()) != null;
2034 +     *   }
2035 +     *   public E getItem() { // call after pool.managedBlock completes
2036 +     *     return item;
2037 +     *   }
2038 +     * }}</pre>
2039       */
2040      public static interface ManagedBlocker {
2041          /**
# Line 1820 | Line 2059 | public class ForkJoinPool extends Abstra
2059       * Blocks in accord with the given blocker.  If the current thread
2060       * is a {@link ForkJoinWorkerThread}, this method possibly
2061       * arranges for a spare thread to be activated if necessary to
2062 <     * ensure parallelism while the current thread is blocked.
1824 <     *
1825 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1826 <     * supports it ({@link #getMaintainsParallelism}), this method
1827 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1828 <     * it activates a thread only if necessary to avoid complete
1829 <     * starvation. This option may be preferable when blockages use
1830 <     * timeouts, or are almost always brief.
2062 >     * ensure sufficient parallelism while the current thread is blocked.
2063       *
2064       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2065       * behaviorally equivalent to
# Line 1841 | Line 2073 | public class ForkJoinPool extends Abstra
2073       * first be expanded to ensure parallelism, and later adjusted.
2074       *
2075       * @param blocker the blocker
1844     * @param maintainParallelism if {@code true} and supported by
1845     * this pool, attempt to maintain the pool's nominal parallelism;
1846     * otherwise activate a thread only if necessary to avoid
1847     * complete starvation.
2076       * @throws InterruptedException if blocker.block did so
2077       */
2078 <    public static void managedBlock(ManagedBlocker blocker,
1851 <                                    boolean maintainParallelism)
2078 >    public static void managedBlock(ManagedBlocker blocker)
2079          throws InterruptedException {
2080          Thread t = Thread.currentThread();
2081 <        if (t instanceof ForkJoinWorkerThread)
2082 <            ((ForkJoinWorkerThread) t).pool.
2083 <                doBlock(blocker, maintainParallelism);
2084 <        else
2085 <            awaitBlocker(blocker);
2086 <    }
2087 <
1861 <    /**
1862 <     * Performs Non-FJ blocking
1863 <     */
1864 <    private static void awaitBlocker(ManagedBlocker blocker)
1865 <        throws InterruptedException {
1866 <        do {} while (!blocker.isReleasable() && !blocker.block());
2081 >        if (t instanceof ForkJoinWorkerThread) {
2082 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2083 >            w.pool.awaitBlocker(blocker);
2084 >        }
2085 >        else {
2086 >            do {} while (!blocker.isReleasable() && !blocker.block());
2087 >        }
2088      }
2089  
2090      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1879 | Line 2100 | public class ForkJoinPool extends Abstra
2100      }
2101  
2102      // Unsafe mechanics
2103 <
2104 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2105 <    private static final long workerCountsOffset =
2106 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2107 <    private static final long runStateOffset =
2108 <        objectFieldOffset("runState", ForkJoinPool.class);
2109 <    private static final long eventCountOffset =
2110 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2111 <    private static final long eventWaitersOffset =
2112 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
2113 <    private static final long stealCountOffset =
2114 <        objectFieldOffset("stealCount",ForkJoinPool.class);
2115 <
2116 <
2117 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2103 >    private static final sun.misc.Unsafe UNSAFE;
2104 >    private static final long ctlOffset;
2105 >    private static final long stealCountOffset;
2106 >    private static final long blockedCountOffset;
2107 >    private static final long quiescerCountOffset;
2108 >    private static final long scanGuardOffset;
2109 >    private static final long nextWorkerNumberOffset;
2110 >    private static final long ABASE;
2111 >    private static final int ASHIFT;
2112 >
2113 >    static {
2114 >        poolNumberGenerator = new AtomicInteger();
2115 >        workerSeedGenerator = new Random();
2116 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2117 >        defaultForkJoinWorkerThreadFactory =
2118 >            new DefaultForkJoinWorkerThreadFactory();
2119 >        int s;
2120          try {
2121 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2122 <        } catch (NoSuchFieldException e) {
2123 <            // Convert Exception to corresponding Error
2124 <            NoSuchFieldError error = new NoSuchFieldError(field);
2125 <            error.initCause(e);
2126 <            throw error;
2127 <        }
2121 >            UNSAFE = getUnsafe();
2122 >            Class k = ForkJoinPool.class;
2123 >            ctlOffset = UNSAFE.objectFieldOffset
2124 >                (k.getDeclaredField("ctl"));
2125 >            stealCountOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("stealCount"));
2127 >            blockedCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("blockedCount"));
2129 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("quiescerCount"));
2131 >            scanGuardOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("scanGuard"));
2133 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2134 >                (k.getDeclaredField("nextWorkerNumber"));
2135 >            Class a = ForkJoinTask[].class;
2136 >            ABASE = UNSAFE.arrayBaseOffset(a);
2137 >            s = UNSAFE.arrayIndexScale(a);
2138 >        } catch (Exception e) {
2139 >            throw new Error(e);
2140 >        }
2141 >        if ((s & (s-1)) != 0)
2142 >            throw new Error("data type scale not a power of two");
2143 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2144      }
2145  
2146      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines