ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.13
Committed: Wed Jul 22 01:36:51 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +3 -0 lines
Log Message:
Add @since, @author tags

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. When setting
31 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
32 * use with fine-grained tasks that are never joined. Otherwise, other
33 * ExecutorService implementations are typically more appropriate
34 * choices.
35 *
36 * <p>A ForkJoinPool may be constructed with a given parallelism level
37 * (target pool size), which it attempts to maintain by dynamically
38 * adding, suspending, or resuming threads, even if some tasks are
39 * waiting to join others. However, no such adjustments are performed
40 * in the face of blocked IO or other unmanaged synchronization. The
41 * nested {@code ManagedBlocker} interface enables extension of
42 * the kinds of synchronization accommodated. The target parallelism
43 * level may also be changed dynamically ({@code setParallelism})
44 * and thread construction can be limited using methods
45 * {@code setMaximumPoolSize} and/or
46 * {@code setMaintainsParallelism}.
47 *
48 * <p>In addition to execution and lifecycle control methods, this
49 * class provides status check methods (for example
50 * {@code getStealCount}) that are intended to aid in developing,
51 * tuning, and monitoring fork/join applications. Also, method
52 * {@code toString} returns indications of pool state in a
53 * convenient form for informal monitoring.
54 *
55 * <p><b>Implementation notes</b>: This implementation restricts the
56 * maximum number of running threads to 32767. Attempts to create
57 * pools with greater than the maximum result in
58 * IllegalArgumentExceptions.
59 *
60 * @since 1.7
61 * @author Doug Lea
62 */
63 public class ForkJoinPool extends AbstractExecutorService {
64
65 /*
66 * See the extended comments interspersed below for design,
67 * rationale, and walkthroughs.
68 */
69
70 /** Mask for packing and unpacking shorts */
71 private static final int shortMask = 0xffff;
72
73 /** Max pool size -- must be a power of two minus 1 */
74 private static final int MAX_THREADS = 0x7FFF;
75
76 /**
77 * Factory for creating new ForkJoinWorkerThreads. A
78 * ForkJoinWorkerThreadFactory must be defined and used for
79 * ForkJoinWorkerThread subclasses that extend base functionality
80 * or initialize threads with different contexts.
81 */
82 public static interface ForkJoinWorkerThreadFactory {
83 /**
84 * Returns a new worker thread operating in the given pool.
85 *
86 * @param pool the pool this thread works in
87 * @throws NullPointerException if pool is null
88 */
89 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
90 }
91
92 /**
93 * Default ForkJoinWorkerThreadFactory implementation, creates a
94 * new ForkJoinWorkerThread.
95 */
96 static class DefaultForkJoinWorkerThreadFactory
97 implements ForkJoinWorkerThreadFactory {
98 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
99 try {
100 return new ForkJoinWorkerThread(pool);
101 } catch (OutOfMemoryError oom) {
102 return null;
103 }
104 }
105 }
106
107 /**
108 * Creates a new ForkJoinWorkerThread. This factory is used unless
109 * overridden in ForkJoinPool constructors.
110 */
111 public static final ForkJoinWorkerThreadFactory
112 defaultForkJoinWorkerThreadFactory =
113 new DefaultForkJoinWorkerThreadFactory();
114
115 /**
116 * Permission required for callers of methods that may start or
117 * kill threads.
118 */
119 private static final RuntimePermission modifyThreadPermission =
120 new RuntimePermission("modifyThread");
121
122 /**
123 * If there is a security manager, makes sure caller has
124 * permission to modify threads.
125 */
126 private static void checkPermission() {
127 SecurityManager security = System.getSecurityManager();
128 if (security != null)
129 security.checkPermission(modifyThreadPermission);
130 }
131
132 /**
133 * Generator for assigning sequence numbers as pool names.
134 */
135 private static final AtomicInteger poolNumberGenerator =
136 new AtomicInteger();
137
138 /**
139 * Array holding all worker threads in the pool. Initialized upon
140 * first use. Array size must be a power of two. Updates and
141 * replacements are protected by workerLock, but it is always kept
142 * in a consistent enough state to be randomly accessed without
143 * locking by workers performing work-stealing.
144 */
145 volatile ForkJoinWorkerThread[] workers;
146
147 /**
148 * Lock protecting access to workers.
149 */
150 private final ReentrantLock workerLock;
151
152 /**
153 * Condition for awaitTermination.
154 */
155 private final Condition termination;
156
157 /**
158 * The uncaught exception handler used when any worker
159 * abruptly terminates
160 */
161 private Thread.UncaughtExceptionHandler ueh;
162
163 /**
164 * Creation factory for worker threads.
165 */
166 private final ForkJoinWorkerThreadFactory factory;
167
168 /**
169 * Head of stack of threads that were created to maintain
170 * parallelism when other threads blocked, but have since
171 * suspended when the parallelism level rose.
172 */
173 private volatile WaitQueueNode spareStack;
174
175 /**
176 * Sum of per-thread steal counts, updated only when threads are
177 * idle or terminating.
178 */
179 private final AtomicLong stealCount;
180
181 /**
182 * Queue for external submissions.
183 */
184 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
185
186 /**
187 * Head of Treiber stack for barrier sync. See below for explanation
188 */
189 private volatile WaitQueueNode syncStack;
190
191 /**
192 * The count for event barrier
193 */
194 private volatile long eventCount;
195
196 /**
197 * Pool number, just for assigning useful names to worker threads
198 */
199 private final int poolNumber;
200
201 /**
202 * The maximum allowed pool size
203 */
204 private volatile int maxPoolSize;
205
206 /**
207 * The desired parallelism level, updated only under workerLock.
208 */
209 private volatile int parallelism;
210
211 /**
212 * True if use local fifo, not default lifo, for local polling
213 */
214 private volatile boolean locallyFifo;
215
216 /**
217 * Holds number of total (i.e., created and not yet terminated)
218 * and running (i.e., not blocked on joins or other managed sync)
219 * threads, packed into one int to ensure consistent snapshot when
220 * making decisions about creating and suspending spare
221 * threads. Updated only by CAS. Note: CASes in
222 * updateRunningCount and preJoin running active count is in low
223 * word, so need to be modified if this changes
224 */
225 private volatile int workerCounts;
226
227 private static int totalCountOf(int s) { return s >>> 16; }
228 private static int runningCountOf(int s) { return s & shortMask; }
229 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
230
231 /**
232 * Adds delta (which may be negative) to running count. This must
233 * be called before (with negative arg) and after (with positive)
234 * any managed synchronization (i.e., mainly, joins).
235 * @param delta the number to add
236 */
237 final void updateRunningCount(int delta) {
238 int s;
239 do;while (!casWorkerCounts(s = workerCounts, s + delta));
240 }
241
242 /**
243 * Adds delta (which may be negative) to both total and running
244 * count. This must be called upon creation and termination of
245 * worker threads.
246 * @param delta the number to add
247 */
248 private void updateWorkerCount(int delta) {
249 int d = delta + (delta << 16); // add to both lo and hi parts
250 int s;
251 do;while (!casWorkerCounts(s = workerCounts, s + d));
252 }
253
254 /**
255 * Lifecycle control. High word contains runState, low word
256 * contains the number of workers that are (probably) executing
257 * tasks. This value is atomically incremented before a worker
258 * gets a task to run, and decremented when worker has no tasks
259 * and cannot find any. These two fields are bundled together to
260 * support correct termination triggering. Note: activeCount
261 * CAS'es cheat by assuming active count is in low word, so need
262 * to be modified if this changes
263 */
264 private volatile int runControl;
265
266 // RunState values. Order among values matters
267 private static final int RUNNING = 0;
268 private static final int SHUTDOWN = 1;
269 private static final int TERMINATING = 2;
270 private static final int TERMINATED = 3;
271
272 private static int runStateOf(int c) { return c >>> 16; }
273 private static int activeCountOf(int c) { return c & shortMask; }
274 private static int runControlFor(int r, int a) { return (r << 16) + a; }
275
276 /**
277 * Try incrementing active count; fail on contention. Called by
278 * workers before/during executing tasks.
279 * @return true on success
280 */
281 final boolean tryIncrementActiveCount() {
282 int c = runControl;
283 return casRunControl(c, c+1);
284 }
285
286 /**
287 * Tries decrementing active count; fails on contention.
288 * Possibly triggers termination on success.
289 * Called by workers when they can't find tasks.
290 * @return true on success
291 */
292 final boolean tryDecrementActiveCount() {
293 int c = runControl;
294 int nextc = c - 1;
295 if (!casRunControl(c, nextc))
296 return false;
297 if (canTerminateOnShutdown(nextc))
298 terminateOnShutdown();
299 return true;
300 }
301
302 /**
303 * Returns true if argument represents zero active count and
304 * nonzero runstate, which is the triggering condition for
305 * terminating on shutdown.
306 */
307 private static boolean canTerminateOnShutdown(int c) {
308 return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
309 }
310
311 /**
312 * Transition run state to at least the given state. Return true
313 * if not already at least given state.
314 */
315 private boolean transitionRunStateTo(int state) {
316 for (;;) {
317 int c = runControl;
318 if (runStateOf(c) >= state)
319 return false;
320 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
321 return true;
322 }
323 }
324
325 /**
326 * Controls whether to add spares to maintain parallelism
327 */
328 private volatile boolean maintainsParallelism;
329
330 // Constructors
331
332 /**
333 * Creates a ForkJoinPool with a pool size equal to the number of
334 * processors available on the system and using the default
335 * ForkJoinWorkerThreadFactory,
336 * @throws SecurityException if a security manager exists and
337 * the caller is not permitted to modify threads
338 * because it does not hold {@link
339 * java.lang.RuntimePermission}{@code ("modifyThread")},
340 */
341 public ForkJoinPool() {
342 this(Runtime.getRuntime().availableProcessors(),
343 defaultForkJoinWorkerThreadFactory);
344 }
345
346 /**
347 * Creates a ForkJoinPool with the indicated parallelism level
348 * threads, and using the default ForkJoinWorkerThreadFactory,
349 * @param parallelism the number of worker threads
350 * @throws IllegalArgumentException if parallelism less than or
351 * equal to zero
352 * @throws SecurityException if a security manager exists and
353 * the caller is not permitted to modify threads
354 * because it does not hold {@link
355 * java.lang.RuntimePermission}{@code ("modifyThread")},
356 */
357 public ForkJoinPool(int parallelism) {
358 this(parallelism, defaultForkJoinWorkerThreadFactory);
359 }
360
361 /**
362 * Creates a ForkJoinPool with parallelism equal to the number of
363 * processors available on the system and using the given
364 * ForkJoinWorkerThreadFactory,
365 * @param factory the factory for creating new threads
366 * @throws NullPointerException if factory is null
367 * @throws SecurityException if a security manager exists and
368 * the caller is not permitted to modify threads
369 * because it does not hold {@link
370 * java.lang.RuntimePermission}{@code ("modifyThread")},
371 */
372 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
373 this(Runtime.getRuntime().availableProcessors(), factory);
374 }
375
376 /**
377 * Creates a ForkJoinPool with the given parallelism and factory.
378 *
379 * @param parallelism the targeted number of worker threads
380 * @param factory the factory for creating new threads
381 * @throws IllegalArgumentException if parallelism less than or
382 * equal to zero, or greater than implementation limit
383 * @throws NullPointerException if factory is null
384 * @throws SecurityException if a security manager exists and
385 * the caller is not permitted to modify threads
386 * because it does not hold {@link
387 * java.lang.RuntimePermission}{@code ("modifyThread")},
388 */
389 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
390 if (parallelism <= 0 || parallelism > MAX_THREADS)
391 throw new IllegalArgumentException();
392 if (factory == null)
393 throw new NullPointerException();
394 checkPermission();
395 this.factory = factory;
396 this.parallelism = parallelism;
397 this.maxPoolSize = MAX_THREADS;
398 this.maintainsParallelism = true;
399 this.poolNumber = poolNumberGenerator.incrementAndGet();
400 this.workerLock = new ReentrantLock();
401 this.termination = workerLock.newCondition();
402 this.stealCount = new AtomicLong();
403 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
404 // worker array and workers are lazily constructed
405 }
406
407 /**
408 * Create new worker using factory.
409 * @param index the index to assign worker
410 * @return new worker, or null of factory failed
411 */
412 private ForkJoinWorkerThread createWorker(int index) {
413 Thread.UncaughtExceptionHandler h = ueh;
414 ForkJoinWorkerThread w = factory.newThread(this);
415 if (w != null) {
416 w.poolIndex = index;
417 w.setDaemon(true);
418 w.setAsyncMode(locallyFifo);
419 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
420 if (h != null)
421 w.setUncaughtExceptionHandler(h);
422 }
423 return w;
424 }
425
426 /**
427 * Returns a good size for worker array given pool size.
428 * Currently requires size to be a power of two.
429 */
430 private static int arraySizeFor(int ps) {
431 return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
432 }
433
434 /**
435 * Creates or resizes array if necessary to hold newLength.
436 * Call only under exclusion or lock.
437 * @return the array
438 */
439 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
440 ForkJoinWorkerThread[] ws = workers;
441 if (ws == null)
442 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
443 else if (newLength > ws.length)
444 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
445 else
446 return ws;
447 }
448
449 /**
450 * Try to shrink workers into smaller array after one or more terminate
451 */
452 private void tryShrinkWorkerArray() {
453 ForkJoinWorkerThread[] ws = workers;
454 if (ws != null) {
455 int len = ws.length;
456 int last = len - 1;
457 while (last >= 0 && ws[last] == null)
458 --last;
459 int newLength = arraySizeFor(last+1);
460 if (newLength < len)
461 workers = Arrays.copyOf(ws, newLength);
462 }
463 }
464
465 /**
466 * Initialize workers if necessary
467 */
468 final void ensureWorkerInitialization() {
469 ForkJoinWorkerThread[] ws = workers;
470 if (ws == null) {
471 final ReentrantLock lock = this.workerLock;
472 lock.lock();
473 try {
474 ws = workers;
475 if (ws == null) {
476 int ps = parallelism;
477 ws = ensureWorkerArrayCapacity(ps);
478 for (int i = 0; i < ps; ++i) {
479 ForkJoinWorkerThread w = createWorker(i);
480 if (w != null) {
481 ws[i] = w;
482 w.start();
483 updateWorkerCount(1);
484 }
485 }
486 }
487 } finally {
488 lock.unlock();
489 }
490 }
491 }
492
493 /**
494 * Worker creation and startup for threads added via setParallelism.
495 */
496 private void createAndStartAddedWorkers() {
497 resumeAllSpares(); // Allow spares to convert to nonspare
498 int ps = parallelism;
499 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
500 int len = ws.length;
501 // Sweep through slots, to keep lowest indices most populated
502 int k = 0;
503 while (k < len) {
504 if (ws[k] != null) {
505 ++k;
506 continue;
507 }
508 int s = workerCounts;
509 int tc = totalCountOf(s);
510 int rc = runningCountOf(s);
511 if (rc >= ps || tc >= ps)
512 break;
513 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
514 ForkJoinWorkerThread w = createWorker(k);
515 if (w != null) {
516 ws[k++] = w;
517 w.start();
518 }
519 else {
520 updateWorkerCount(-1); // back out on failed creation
521 break;
522 }
523 }
524 }
525 }
526
527 // Execution methods
528
529 /**
530 * Common code for execute, invoke and submit
531 */
532 private <T> void doSubmit(ForkJoinTask<T> task) {
533 if (isShutdown())
534 throw new RejectedExecutionException();
535 if (workers == null)
536 ensureWorkerInitialization();
537 submissionQueue.offer(task);
538 signalIdleWorkers();
539 }
540
541 /**
542 * Performs the given task; returning its result upon completion
543 * @param task the task
544 * @return the task's result
545 * @throws NullPointerException if task is null
546 * @throws RejectedExecutionException if pool is shut down
547 */
548 public <T> T invoke(ForkJoinTask<T> task) {
549 doSubmit(task);
550 return task.join();
551 }
552
553 /**
554 * Arranges for (asynchronous) execution of the given task.
555 * @param task the task
556 * @throws NullPointerException if task is null
557 * @throws RejectedExecutionException if pool is shut down
558 */
559 public <T> void execute(ForkJoinTask<T> task) {
560 doSubmit(task);
561 }
562
563 // AbstractExecutorService methods
564
565 public void execute(Runnable task) {
566 doSubmit(new AdaptedRunnable<Void>(task, null));
567 }
568
569 public <T> ForkJoinTask<T> submit(Callable<T> task) {
570 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
571 doSubmit(job);
572 return job;
573 }
574
575 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
576 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
577 doSubmit(job);
578 return job;
579 }
580
581 public ForkJoinTask<?> submit(Runnable task) {
582 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
583 doSubmit(job);
584 return job;
585 }
586
587 /**
588 * Adaptor for Runnables. This implements RunnableFuture
589 * to be compliant with AbstractExecutorService constraints
590 */
591 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
592 implements RunnableFuture<T> {
593 final Runnable runnable;
594 final T resultOnCompletion;
595 T result;
596 AdaptedRunnable(Runnable runnable, T result) {
597 if (runnable == null) throw new NullPointerException();
598 this.runnable = runnable;
599 this.resultOnCompletion = result;
600 }
601 public T getRawResult() { return result; }
602 public void setRawResult(T v) { result = v; }
603 public boolean exec() {
604 runnable.run();
605 result = resultOnCompletion;
606 return true;
607 }
608 public void run() { invoke(); }
609 }
610
611 /**
612 * Adaptor for Callables
613 */
614 static final class AdaptedCallable<T> extends ForkJoinTask<T>
615 implements RunnableFuture<T> {
616 final Callable<T> callable;
617 T result;
618 AdaptedCallable(Callable<T> callable) {
619 if (callable == null) throw new NullPointerException();
620 this.callable = callable;
621 }
622 public T getRawResult() { return result; }
623 public void setRawResult(T v) { result = v; }
624 public boolean exec() {
625 try {
626 result = callable.call();
627 return true;
628 } catch (Error err) {
629 throw err;
630 } catch (RuntimeException rex) {
631 throw rex;
632 } catch (Exception ex) {
633 throw new RuntimeException(ex);
634 }
635 }
636 public void run() { invoke(); }
637 }
638
639 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
640 ArrayList<ForkJoinTask<T>> ts =
641 new ArrayList<ForkJoinTask<T>>(tasks.size());
642 for (Callable<T> c : tasks)
643 ts.add(new AdaptedCallable<T>(c));
644 invoke(new InvokeAll<T>(ts));
645 return (List<Future<T>>)(List)ts;
646 }
647
648 static final class InvokeAll<T> extends RecursiveAction {
649 final ArrayList<ForkJoinTask<T>> tasks;
650 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
651 public void compute() {
652 try { invokeAll(tasks); } catch(Exception ignore) {}
653 }
654 }
655
656 // Configuration and status settings and queries
657
658 /**
659 * Returns the factory used for constructing new workers
660 *
661 * @return the factory used for constructing new workers
662 */
663 public ForkJoinWorkerThreadFactory getFactory() {
664 return factory;
665 }
666
667 /**
668 * Returns the handler for internal worker threads that terminate
669 * due to unrecoverable errors encountered while executing tasks.
670 * @return the handler, or null if none
671 */
672 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
673 Thread.UncaughtExceptionHandler h;
674 final ReentrantLock lock = this.workerLock;
675 lock.lock();
676 try {
677 h = ueh;
678 } finally {
679 lock.unlock();
680 }
681 return h;
682 }
683
684 /**
685 * Sets the handler for internal worker threads that terminate due
686 * to unrecoverable errors encountered while executing tasks.
687 * Unless set, the current default or ThreadGroup handler is used
688 * as handler.
689 *
690 * @param h the new handler
691 * @return the old handler, or null if none
692 * @throws SecurityException if a security manager exists and
693 * the caller is not permitted to modify threads
694 * because it does not hold {@link
695 * java.lang.RuntimePermission}{@code ("modifyThread")},
696 */
697 public Thread.UncaughtExceptionHandler
698 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
699 checkPermission();
700 Thread.UncaughtExceptionHandler old = null;
701 final ReentrantLock lock = this.workerLock;
702 lock.lock();
703 try {
704 old = ueh;
705 ueh = h;
706 ForkJoinWorkerThread[] ws = workers;
707 if (ws != null) {
708 for (int i = 0; i < ws.length; ++i) {
709 ForkJoinWorkerThread w = ws[i];
710 if (w != null)
711 w.setUncaughtExceptionHandler(h);
712 }
713 }
714 } finally {
715 lock.unlock();
716 }
717 return old;
718 }
719
720
721 /**
722 * Sets the target parallelism level of this pool.
723 * @param parallelism the target parallelism
724 * @throws IllegalArgumentException if parallelism less than or
725 * equal to zero or greater than maximum size bounds
726 * @throws SecurityException if a security manager exists and
727 * the caller is not permitted to modify threads
728 * because it does not hold {@link
729 * java.lang.RuntimePermission}{@code ("modifyThread")},
730 */
731 public void setParallelism(int parallelism) {
732 checkPermission();
733 if (parallelism <= 0 || parallelism > maxPoolSize)
734 throw new IllegalArgumentException();
735 final ReentrantLock lock = this.workerLock;
736 lock.lock();
737 try {
738 if (!isTerminating()) {
739 int p = this.parallelism;
740 this.parallelism = parallelism;
741 if (parallelism > p)
742 createAndStartAddedWorkers();
743 else
744 trimSpares();
745 }
746 } finally {
747 lock.unlock();
748 }
749 signalIdleWorkers();
750 }
751
752 /**
753 * Returns the targeted number of worker threads in this pool.
754 *
755 * @return the targeted number of worker threads in this pool
756 */
757 public int getParallelism() {
758 return parallelism;
759 }
760
761 /**
762 * Returns the number of worker threads that have started but not
763 * yet terminated. This result returned by this method may differ
764 * from {@code getParallelism} when threads are created to
765 * maintain parallelism when others are cooperatively blocked.
766 *
767 * @return the number of worker threads
768 */
769 public int getPoolSize() {
770 return totalCountOf(workerCounts);
771 }
772
773 /**
774 * Returns the maximum number of threads allowed to exist in the
775 * pool, even if there are insufficient unblocked running threads.
776 * @return the maximum
777 */
778 public int getMaximumPoolSize() {
779 return maxPoolSize;
780 }
781
782 /**
783 * Sets the maximum number of threads allowed to exist in the
784 * pool, even if there are insufficient unblocked running threads.
785 * Setting this value has no effect on current pool size. It
786 * controls construction of new threads.
787 * @throws IllegalArgumentException if negative or greater then
788 * internal implementation limit
789 */
790 public void setMaximumPoolSize(int newMax) {
791 if (newMax < 0 || newMax > MAX_THREADS)
792 throw new IllegalArgumentException();
793 maxPoolSize = newMax;
794 }
795
796
797 /**
798 * Returns true if this pool dynamically maintains its target
799 * parallelism level. If false, new threads are added only to
800 * avoid possible starvation.
801 * This setting is by default true;
802 * @return true if maintains parallelism
803 */
804 public boolean getMaintainsParallelism() {
805 return maintainsParallelism;
806 }
807
808 /**
809 * Sets whether this pool dynamically maintains its target
810 * parallelism level. If false, new threads are added only to
811 * avoid possible starvation.
812 * @param enable true to maintains parallelism
813 */
814 public void setMaintainsParallelism(boolean enable) {
815 maintainsParallelism = enable;
816 }
817
818 /**
819 * Establishes local first-in-first-out scheduling mode for forked
820 * tasks that are never joined. This mode may be more appropriate
821 * than default locally stack-based mode in applications in which
822 * worker threads only process asynchronous tasks. This method is
823 * designed to be invoked only when pool is quiescent, and
824 * typically only before any tasks are submitted. The effects of
825 * invocations at other times may be unpredictable.
826 *
827 * @param async if true, use locally FIFO scheduling
828 * @return the previous mode
829 */
830 public boolean setAsyncMode(boolean async) {
831 boolean oldMode = locallyFifo;
832 locallyFifo = async;
833 ForkJoinWorkerThread[] ws = workers;
834 if (ws != null) {
835 for (int i = 0; i < ws.length; ++i) {
836 ForkJoinWorkerThread t = ws[i];
837 if (t != null)
838 t.setAsyncMode(async);
839 }
840 }
841 return oldMode;
842 }
843
844 /**
845 * Returns true if this pool uses local first-in-first-out
846 * scheduling mode for forked tasks that are never joined.
847 *
848 * @return true if this pool uses async mode
849 */
850 public boolean getAsyncMode() {
851 return locallyFifo;
852 }
853
854 /**
855 * Returns an estimate of the number of worker threads that are
856 * not blocked waiting to join tasks or for other managed
857 * synchronization.
858 *
859 * @return the number of worker threads
860 */
861 public int getRunningThreadCount() {
862 return runningCountOf(workerCounts);
863 }
864
865 /**
866 * Returns an estimate of the number of threads that are currently
867 * stealing or executing tasks. This method may overestimate the
868 * number of active threads.
869 * @return the number of active threads
870 */
871 public int getActiveThreadCount() {
872 return activeCountOf(runControl);
873 }
874
875 /**
876 * Returns an estimate of the number of threads that are currently
877 * idle waiting for tasks. This method may underestimate the
878 * number of idle threads.
879 * @return the number of idle threads
880 */
881 final int getIdleThreadCount() {
882 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
883 return (c <= 0)? 0 : c;
884 }
885
886 /**
887 * Returns true if all worker threads are currently idle. An idle
888 * worker is one that cannot obtain a task to execute because none
889 * are available to steal from other threads, and there are no
890 * pending submissions to the pool. This method is conservative:
891 * It might not return true immediately upon idleness of all
892 * threads, but will eventually become true if threads remain
893 * inactive.
894 * @return true if all threads are currently idle
895 */
896 public boolean isQuiescent() {
897 return activeCountOf(runControl) == 0;
898 }
899
900 /**
901 * Returns an estimate of the total number of tasks stolen from
902 * one thread's work queue by another. The reported value
903 * underestimates the actual total number of steals when the pool
904 * is not quiescent. This value may be useful for monitoring and
905 * tuning fork/join programs: In general, steal counts should be
906 * high enough to keep threads busy, but low enough to avoid
907 * overhead and contention across threads.
908 * @return the number of steals
909 */
910 public long getStealCount() {
911 return stealCount.get();
912 }
913
914 /**
915 * Accumulate steal count from a worker. Call only
916 * when worker known to be idle.
917 */
918 private void updateStealCount(ForkJoinWorkerThread w) {
919 int sc = w.getAndClearStealCount();
920 if (sc != 0)
921 stealCount.addAndGet(sc);
922 }
923
924 /**
925 * Returns an estimate of the total number of tasks currently held
926 * in queues by worker threads (but not including tasks submitted
927 * to the pool that have not begun executing). This value is only
928 * an approximation, obtained by iterating across all threads in
929 * the pool. This method may be useful for tuning task
930 * granularities.
931 * @return the number of queued tasks
932 */
933 public long getQueuedTaskCount() {
934 long count = 0;
935 ForkJoinWorkerThread[] ws = workers;
936 if (ws != null) {
937 for (int i = 0; i < ws.length; ++i) {
938 ForkJoinWorkerThread t = ws[i];
939 if (t != null)
940 count += t.getQueueSize();
941 }
942 }
943 return count;
944 }
945
946 /**
947 * Returns an estimate of the number tasks submitted to this pool
948 * that have not yet begun executing. This method takes time
949 * proportional to the number of submissions.
950 * @return the number of queued submissions
951 */
952 public int getQueuedSubmissionCount() {
953 return submissionQueue.size();
954 }
955
956 /**
957 * Returns true if there are any tasks submitted to this pool
958 * that have not yet begun executing.
959 * @return {@code true} if there are any queued submissions
960 */
961 public boolean hasQueuedSubmissions() {
962 return !submissionQueue.isEmpty();
963 }
964
965 /**
966 * Removes and returns the next unexecuted submission if one is
967 * available. This method may be useful in extensions to this
968 * class that re-assign work in systems with multiple pools.
969 * @return the next submission, or null if none
970 */
971 protected ForkJoinTask<?> pollSubmission() {
972 return submissionQueue.poll();
973 }
974
975 /**
976 * Removes all available unexecuted submitted and forked tasks
977 * from scheduling queues and adds them to the given collection,
978 * without altering their execution status. These may include
979 * artificially generated or wrapped tasks. This method is designed
980 * to be invoked only when the pool is known to be
981 * quiescent. Invocations at other times may not remove all
982 * tasks. A failure encountered while attempting to add elements
983 * to collection {@code c} may result in elements being in
984 * neither, either or both collections when the associated
985 * exception is thrown. The behavior of this operation is
986 * undefined if the specified collection is modified while the
987 * operation is in progress.
988 * @param c the collection to transfer elements into
989 * @return the number of elements transferred
990 */
991 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
992 int n = submissionQueue.drainTo(c);
993 ForkJoinWorkerThread[] ws = workers;
994 if (ws != null) {
995 for (int i = 0; i < ws.length; ++i) {
996 ForkJoinWorkerThread w = ws[i];
997 if (w != null)
998 n += w.drainTasksTo(c);
999 }
1000 }
1001 return n;
1002 }
1003
1004 /**
1005 * Returns a string identifying this pool, as well as its state,
1006 * including indications of run state, parallelism level, and
1007 * worker and task counts.
1008 *
1009 * @return a string identifying this pool, as well as its state
1010 */
1011 public String toString() {
1012 int ps = parallelism;
1013 int wc = workerCounts;
1014 int rc = runControl;
1015 long st = getStealCount();
1016 long qt = getQueuedTaskCount();
1017 long qs = getQueuedSubmissionCount();
1018 return super.toString() +
1019 "[" + runStateToString(runStateOf(rc)) +
1020 ", parallelism = " + ps +
1021 ", size = " + totalCountOf(wc) +
1022 ", active = " + activeCountOf(rc) +
1023 ", running = " + runningCountOf(wc) +
1024 ", steals = " + st +
1025 ", tasks = " + qt +
1026 ", submissions = " + qs +
1027 "]";
1028 }
1029
1030 private static String runStateToString(int rs) {
1031 switch(rs) {
1032 case RUNNING: return "Running";
1033 case SHUTDOWN: return "Shutting down";
1034 case TERMINATING: return "Terminating";
1035 case TERMINATED: return "Terminated";
1036 default: throw new Error("Unknown run state");
1037 }
1038 }
1039
1040 // lifecycle control
1041
1042 /**
1043 * Initiates an orderly shutdown in which previously submitted
1044 * tasks are executed, but no new tasks will be accepted.
1045 * Invocation has no additional effect if already shut down.
1046 * Tasks that are in the process of being submitted concurrently
1047 * during the course of this method may or may not be rejected.
1048 * @throws SecurityException if a security manager exists and
1049 * the caller is not permitted to modify threads
1050 * because it does not hold {@link
1051 * java.lang.RuntimePermission}{@code ("modifyThread")},
1052 */
1053 public void shutdown() {
1054 checkPermission();
1055 transitionRunStateTo(SHUTDOWN);
1056 if (canTerminateOnShutdown(runControl))
1057 terminateOnShutdown();
1058 }
1059
1060 /**
1061 * Attempts to stop all actively executing tasks, and cancels all
1062 * waiting tasks. Tasks that are in the process of being
1063 * submitted or executed concurrently during the course of this
1064 * method may or may not be rejected. Unlike some other executors,
1065 * this method cancels rather than collects non-executed tasks
1066 * upon termination, so always returns an empty list. However, you
1067 * can use method {@code drainTasksTo} before invoking this
1068 * method to transfer unexecuted tasks to another collection.
1069 * @return an empty list
1070 * @throws SecurityException if a security manager exists and
1071 * the caller is not permitted to modify threads
1072 * because it does not hold {@link
1073 * java.lang.RuntimePermission}{@code ("modifyThread")},
1074 */
1075 public List<Runnable> shutdownNow() {
1076 checkPermission();
1077 terminate();
1078 return Collections.emptyList();
1079 }
1080
1081 /**
1082 * Returns {@code true} if all tasks have completed following shut down.
1083 *
1084 * @return {@code true} if all tasks have completed following shut down
1085 */
1086 public boolean isTerminated() {
1087 return runStateOf(runControl) == TERMINATED;
1088 }
1089
1090 /**
1091 * Returns {@code true} if the process of termination has
1092 * commenced but possibly not yet completed.
1093 *
1094 * @return {@code true} if terminating
1095 */
1096 public boolean isTerminating() {
1097 return runStateOf(runControl) >= TERMINATING;
1098 }
1099
1100 /**
1101 * Returns {@code true} if this pool has been shut down.
1102 *
1103 * @return {@code true} if this pool has been shut down
1104 */
1105 public boolean isShutdown() {
1106 return runStateOf(runControl) >= SHUTDOWN;
1107 }
1108
1109 /**
1110 * Blocks until all tasks have completed execution after a shutdown
1111 * request, or the timeout occurs, or the current thread is
1112 * interrupted, whichever happens first.
1113 *
1114 * @param timeout the maximum time to wait
1115 * @param unit the time unit of the timeout argument
1116 * @return {@code true} if this executor terminated and
1117 * {@code false} if the timeout elapsed before termination
1118 * @throws InterruptedException if interrupted while waiting
1119 */
1120 public boolean awaitTermination(long timeout, TimeUnit unit)
1121 throws InterruptedException {
1122 long nanos = unit.toNanos(timeout);
1123 final ReentrantLock lock = this.workerLock;
1124 lock.lock();
1125 try {
1126 for (;;) {
1127 if (isTerminated())
1128 return true;
1129 if (nanos <= 0)
1130 return false;
1131 nanos = termination.awaitNanos(nanos);
1132 }
1133 } finally {
1134 lock.unlock();
1135 }
1136 }
1137
1138 // Shutdown and termination support
1139
1140 /**
1141 * Callback from terminating worker. Null out the corresponding
1142 * workers slot, and if terminating, try to terminate, else try to
1143 * shrink workers array.
1144 * @param w the worker
1145 */
1146 final void workerTerminated(ForkJoinWorkerThread w) {
1147 updateStealCount(w);
1148 updateWorkerCount(-1);
1149 final ReentrantLock lock = this.workerLock;
1150 lock.lock();
1151 try {
1152 ForkJoinWorkerThread[] ws = workers;
1153 if (ws != null) {
1154 int idx = w.poolIndex;
1155 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1156 ws[idx] = null;
1157 if (totalCountOf(workerCounts) == 0) {
1158 terminate(); // no-op if already terminating
1159 transitionRunStateTo(TERMINATED);
1160 termination.signalAll();
1161 }
1162 else if (!isTerminating()) {
1163 tryShrinkWorkerArray();
1164 tryResumeSpare(true); // allow replacement
1165 }
1166 }
1167 } finally {
1168 lock.unlock();
1169 }
1170 signalIdleWorkers();
1171 }
1172
1173 /**
1174 * Initiate termination.
1175 */
1176 private void terminate() {
1177 if (transitionRunStateTo(TERMINATING)) {
1178 stopAllWorkers();
1179 resumeAllSpares();
1180 signalIdleWorkers();
1181 cancelQueuedSubmissions();
1182 cancelQueuedWorkerTasks();
1183 interruptUnterminatedWorkers();
1184 signalIdleWorkers(); // resignal after interrupt
1185 }
1186 }
1187
1188 /**
1189 * Possibly terminates when on shutdown state.
1190 */
1191 private void terminateOnShutdown() {
1192 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1193 terminate();
1194 }
1195
1196 /**
1197 * Clears out and cancels submissions.
1198 */
1199 private void cancelQueuedSubmissions() {
1200 ForkJoinTask<?> task;
1201 while ((task = pollSubmission()) != null)
1202 task.cancel(false);
1203 }
1204
1205 /**
1206 * Cleans out worker queues.
1207 */
1208 private void cancelQueuedWorkerTasks() {
1209 final ReentrantLock lock = this.workerLock;
1210 lock.lock();
1211 try {
1212 ForkJoinWorkerThread[] ws = workers;
1213 if (ws != null) {
1214 for (int i = 0; i < ws.length; ++i) {
1215 ForkJoinWorkerThread t = ws[i];
1216 if (t != null)
1217 t.cancelTasks();
1218 }
1219 }
1220 } finally {
1221 lock.unlock();
1222 }
1223 }
1224
1225 /**
1226 * Sets each worker's status to terminating. Requires lock to avoid
1227 * conflicts with add/remove.
1228 */
1229 private void stopAllWorkers() {
1230 final ReentrantLock lock = this.workerLock;
1231 lock.lock();
1232 try {
1233 ForkJoinWorkerThread[] ws = workers;
1234 if (ws != null) {
1235 for (int i = 0; i < ws.length; ++i) {
1236 ForkJoinWorkerThread t = ws[i];
1237 if (t != null)
1238 t.shutdownNow();
1239 }
1240 }
1241 } finally {
1242 lock.unlock();
1243 }
1244 }
1245
1246 /**
1247 * Interrupts all unterminated workers. This is not required for
1248 * sake of internal control, but may help unstick user code during
1249 * shutdown.
1250 */
1251 private void interruptUnterminatedWorkers() {
1252 final ReentrantLock lock = this.workerLock;
1253 lock.lock();
1254 try {
1255 ForkJoinWorkerThread[] ws = workers;
1256 if (ws != null) {
1257 for (int i = 0; i < ws.length; ++i) {
1258 ForkJoinWorkerThread t = ws[i];
1259 if (t != null && !t.isTerminated()) {
1260 try {
1261 t.interrupt();
1262 } catch (SecurityException ignore) {
1263 }
1264 }
1265 }
1266 }
1267 } finally {
1268 lock.unlock();
1269 }
1270 }
1271
1272
1273 /*
1274 * Nodes for event barrier to manage idle threads. Queue nodes
1275 * are basic Treiber stack nodes, also used for spare stack.
1276 *
1277 * The event barrier has an event count and a wait queue (actually
1278 * a Treiber stack). Workers are enabled to look for work when
1279 * the eventCount is incremented. If they fail to find work, they
1280 * may wait for next count. Upon release, threads help others wake
1281 * up.
1282 *
1283 * Synchronization events occur only in enough contexts to
1284 * maintain overall liveness:
1285 *
1286 * - Submission of a new task to the pool
1287 * - Resizes or other changes to the workers array
1288 * - pool termination
1289 * - A worker pushing a task on an empty queue
1290 *
1291 * The case of pushing a task occurs often enough, and is heavy
1292 * enough compared to simple stack pushes, to require special
1293 * handling: Method signalWork returns without advancing count if
1294 * the queue appears to be empty. This would ordinarily result in
1295 * races causing some queued waiters not to be woken up. To avoid
1296 * this, the first worker enqueued in method sync (see
1297 * syncIsReleasable) rescans for tasks after being enqueued, and
1298 * helps signal if any are found. This works well because the
1299 * worker has nothing better to do, and so might as well help
1300 * alleviate the overhead and contention on the threads actually
1301 * doing work. Also, since event counts increments on task
1302 * availability exist to maintain liveness (rather than to force
1303 * refreshes etc), it is OK for callers to exit early if
1304 * contending with another signaller.
1305 */
1306 static final class WaitQueueNode {
1307 WaitQueueNode next; // only written before enqueued
1308 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1309 final long count; // unused for spare stack
1310
1311 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1312 count = c;
1313 thread = w;
1314 }
1315
1316 /**
1317 * Wakes up waiter, returning false if known to already
1318 */
1319 boolean signal() {
1320 ForkJoinWorkerThread t = thread;
1321 if (t == null)
1322 return false;
1323 thread = null;
1324 LockSupport.unpark(t);
1325 return true;
1326 }
1327
1328 /**
1329 * Awaits release on sync.
1330 */
1331 void awaitSyncRelease(ForkJoinPool p) {
1332 while (thread != null && !p.syncIsReleasable(this))
1333 LockSupport.park(this);
1334 }
1335
1336 /**
1337 * Awaits resumption as spare.
1338 */
1339 void awaitSpareRelease() {
1340 while (thread != null) {
1341 if (!Thread.interrupted())
1342 LockSupport.park(this);
1343 }
1344 }
1345 }
1346
1347 /**
1348 * Ensures that no thread is waiting for count to advance from the
1349 * current value of eventCount read on entry to this method, by
1350 * releasing waiting threads if necessary.
1351 * @return the count
1352 */
1353 final long ensureSync() {
1354 long c = eventCount;
1355 WaitQueueNode q;
1356 while ((q = syncStack) != null && q.count < c) {
1357 if (casBarrierStack(q, null)) {
1358 do {
1359 q.signal();
1360 } while ((q = q.next) != null);
1361 break;
1362 }
1363 }
1364 return c;
1365 }
1366
1367 /**
1368 * Increments event count and releases waiting threads.
1369 */
1370 private void signalIdleWorkers() {
1371 long c;
1372 do;while (!casEventCount(c = eventCount, c+1));
1373 ensureSync();
1374 }
1375
1376 /**
1377 * Signals threads waiting to poll a task. Because method sync
1378 * rechecks availability, it is OK to only proceed if queue
1379 * appears to be non-empty, and OK to skip under contention to
1380 * increment count (since some other thread succeeded).
1381 */
1382 final void signalWork() {
1383 long c;
1384 WaitQueueNode q;
1385 if (syncStack != null &&
1386 casEventCount(c = eventCount, c+1) &&
1387 (((q = syncStack) != null && q.count <= c) &&
1388 (!casBarrierStack(q, q.next) || !q.signal())))
1389 ensureSync();
1390 }
1391
1392 /**
1393 * Waits until event count advances from last value held by
1394 * caller, or if excess threads, caller is resumed as spare, or
1395 * caller or pool is terminating. Updates caller's event on exit.
1396 * @param w the calling worker thread
1397 */
1398 final void sync(ForkJoinWorkerThread w) {
1399 updateStealCount(w); // Transfer w's count while it is idle
1400
1401 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1402 long prev = w.lastEventCount;
1403 WaitQueueNode node = null;
1404 WaitQueueNode h;
1405 while (eventCount == prev &&
1406 ((h = syncStack) == null || h.count == prev)) {
1407 if (node == null)
1408 node = new WaitQueueNode(prev, w);
1409 if (casBarrierStack(node.next = h, node)) {
1410 node.awaitSyncRelease(this);
1411 break;
1412 }
1413 }
1414 long ec = ensureSync();
1415 if (ec != prev) {
1416 w.lastEventCount = ec;
1417 break;
1418 }
1419 }
1420 }
1421
1422 /**
1423 * Returns true if worker waiting on sync can proceed:
1424 * - on signal (thread == null)
1425 * - on event count advance (winning race to notify vs signaller)
1426 * - on Interrupt
1427 * - if the first queued node, we find work available
1428 * If node was not signalled and event count not advanced on exit,
1429 * then we also help advance event count.
1430 * @return true if node can be released
1431 */
1432 final boolean syncIsReleasable(WaitQueueNode node) {
1433 long prev = node.count;
1434 if (!Thread.interrupted() && node.thread != null &&
1435 (node.next != null ||
1436 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1437 eventCount == prev)
1438 return false;
1439 if (node.thread != null) {
1440 node.thread = null;
1441 long ec = eventCount;
1442 if (prev <= ec) // help signal
1443 casEventCount(ec, ec+1);
1444 }
1445 return true;
1446 }
1447
1448 /**
1449 * Returns true if a new sync event occurred since last call to
1450 * sync or this method, if so, updating caller's count.
1451 */
1452 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1453 long lc = w.lastEventCount;
1454 long ec = ensureSync();
1455 if (ec == lc)
1456 return false;
1457 w.lastEventCount = ec;
1458 return true;
1459 }
1460
1461 // Parallelism maintenance
1462
1463 /**
1464 * Decrements running count; if too low, adds spare.
1465 *
1466 * Conceptually, all we need to do here is add or resume a
1467 * spare thread when one is about to block (and remove or
1468 * suspend it later when unblocked -- see suspendIfSpare).
1469 * However, implementing this idea requires coping with
1470 * several problems: We have imperfect information about the
1471 * states of threads. Some count updates can and usually do
1472 * lag run state changes, despite arrangements to keep them
1473 * accurate (for example, when possible, updating counts
1474 * before signalling or resuming), especially when running on
1475 * dynamic JVMs that don't optimize the infrequent paths that
1476 * update counts. Generating too many threads can make these
1477 * problems become worse, because excess threads are more
1478 * likely to be context-switched with others, slowing them all
1479 * down, especially if there is no work available, so all are
1480 * busy scanning or idling. Also, excess spare threads can
1481 * only be suspended or removed when they are idle, not
1482 * immediately when they aren't needed. So adding threads will
1483 * raise parallelism level for longer than necessary. Also,
1484 * FJ applications often encounter highly transient peaks when
1485 * many threads are blocked joining, but for less time than it
1486 * takes to create or resume spares.
1487 *
1488 * @param joinMe if non-null, return early if done
1489 * @param maintainParallelism if true, try to stay within
1490 * target counts, else create only to avoid starvation
1491 * @return true if joinMe known to be done
1492 */
1493 final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1494 maintainParallelism &= maintainsParallelism; // overrride
1495 boolean dec = false; // true when running count decremented
1496 while (spareStack == null || !tryResumeSpare(dec)) {
1497 int counts = workerCounts;
1498 if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1499 if (!needSpare(counts, maintainParallelism))
1500 break;
1501 if (joinMe.status < 0)
1502 return true;
1503 if (tryAddSpare(counts))
1504 break;
1505 }
1506 }
1507 return false;
1508 }
1509
1510 /**
1511 * Same idea as preJoin
1512 */
1513 final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1514 maintainParallelism &= maintainsParallelism;
1515 boolean dec = false;
1516 while (spareStack == null || !tryResumeSpare(dec)) {
1517 int counts = workerCounts;
1518 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1519 if (!needSpare(counts, maintainParallelism))
1520 break;
1521 if (blocker.isReleasable())
1522 return true;
1523 if (tryAddSpare(counts))
1524 break;
1525 }
1526 }
1527 return false;
1528 }
1529
1530 /**
1531 * Returns true if a spare thread appears to be needed. If
1532 * maintaining parallelism, returns true when the deficit in
1533 * running threads is more than the surplus of total threads, and
1534 * there is apparently some work to do. This self-limiting rule
1535 * means that the more threads that have already been added, the
1536 * less parallelism we will tolerate before adding another.
1537 * @param counts current worker counts
1538 * @param maintainParallelism try to maintain parallelism
1539 */
1540 private boolean needSpare(int counts, boolean maintainParallelism) {
1541 int ps = parallelism;
1542 int rc = runningCountOf(counts);
1543 int tc = totalCountOf(counts);
1544 int runningDeficit = ps - rc;
1545 int totalSurplus = tc - ps;
1546 return (tc < maxPoolSize &&
1547 (rc == 0 || totalSurplus < 0 ||
1548 (maintainParallelism &&
1549 runningDeficit > totalSurplus &&
1550 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1551 }
1552
1553 /**
1554 * Adds a spare worker if lock available and no more than the
1555 * expected numbers of threads exist.
1556 * @return true if successful
1557 */
1558 private boolean tryAddSpare(int expectedCounts) {
1559 final ReentrantLock lock = this.workerLock;
1560 int expectedRunning = runningCountOf(expectedCounts);
1561 int expectedTotal = totalCountOf(expectedCounts);
1562 boolean success = false;
1563 boolean locked = false;
1564 // confirm counts while locking; CAS after obtaining lock
1565 try {
1566 for (;;) {
1567 int s = workerCounts;
1568 int tc = totalCountOf(s);
1569 int rc = runningCountOf(s);
1570 if (rc > expectedRunning || tc > expectedTotal)
1571 break;
1572 if (!locked && !(locked = lock.tryLock()))
1573 break;
1574 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1575 createAndStartSpare(tc);
1576 success = true;
1577 break;
1578 }
1579 }
1580 } finally {
1581 if (locked)
1582 lock.unlock();
1583 }
1584 return success;
1585 }
1586
1587 /**
1588 * Adds the kth spare worker. On entry, pool counts are already
1589 * adjusted to reflect addition.
1590 */
1591 private void createAndStartSpare(int k) {
1592 ForkJoinWorkerThread w = null;
1593 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1594 int len = ws.length;
1595 // Probably, we can place at slot k. If not, find empty slot
1596 if (k < len && ws[k] != null) {
1597 for (k = 0; k < len && ws[k] != null; ++k)
1598 ;
1599 }
1600 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1601 ws[k] = w;
1602 w.start();
1603 }
1604 else
1605 updateWorkerCount(-1); // adjust on failure
1606 signalIdleWorkers();
1607 }
1608
1609 /**
1610 * Suspends calling thread w if there are excess threads. Called
1611 * only from sync. Spares are enqueued in a Treiber stack using
1612 * the same WaitQueueNodes as barriers. They are resumed mainly
1613 * in preJoin, but are also woken on pool events that require all
1614 * threads to check run state.
1615 * @param w the caller
1616 */
1617 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1618 WaitQueueNode node = null;
1619 int s;
1620 while (parallelism < runningCountOf(s = workerCounts)) {
1621 if (node == null)
1622 node = new WaitQueueNode(0, w);
1623 if (casWorkerCounts(s, s-1)) { // representation-dependent
1624 // push onto stack
1625 do;while (!casSpareStack(node.next = spareStack, node));
1626 // block until released by resumeSpare
1627 node.awaitSpareRelease();
1628 return true;
1629 }
1630 }
1631 return false;
1632 }
1633
1634 /**
1635 * Tries to pop and resume a spare thread.
1636 * @param updateCount if true, increment running count on success
1637 * @return true if successful
1638 */
1639 private boolean tryResumeSpare(boolean updateCount) {
1640 WaitQueueNode q;
1641 while ((q = spareStack) != null) {
1642 if (casSpareStack(q, q.next)) {
1643 if (updateCount)
1644 updateRunningCount(1);
1645 q.signal();
1646 return true;
1647 }
1648 }
1649 return false;
1650 }
1651
1652 /**
1653 * Pops and resumes all spare threads. Same idea as ensureSync.
1654 * @return true if any spares released
1655 */
1656 private boolean resumeAllSpares() {
1657 WaitQueueNode q;
1658 while ( (q = spareStack) != null) {
1659 if (casSpareStack(q, null)) {
1660 do {
1661 updateRunningCount(1);
1662 q.signal();
1663 } while ((q = q.next) != null);
1664 return true;
1665 }
1666 }
1667 return false;
1668 }
1669
1670 /**
1671 * Pops and shuts down excessive spare threads. Call only while
1672 * holding lock. This is not guaranteed to eliminate all excess
1673 * threads, only those suspended as spares, which are the ones
1674 * unlikely to be needed in the future.
1675 */
1676 private void trimSpares() {
1677 int surplus = totalCountOf(workerCounts) - parallelism;
1678 WaitQueueNode q;
1679 while (surplus > 0 && (q = spareStack) != null) {
1680 if (casSpareStack(q, null)) {
1681 do {
1682 updateRunningCount(1);
1683 ForkJoinWorkerThread w = q.thread;
1684 if (w != null && surplus > 0 &&
1685 runningCountOf(workerCounts) > 0 && w.shutdown())
1686 --surplus;
1687 q.signal();
1688 } while ((q = q.next) != null);
1689 }
1690 }
1691 }
1692
1693 /**
1694 * Interface for extending managed parallelism for tasks running
1695 * in ForkJoinPools. A ManagedBlocker provides two methods.
1696 * Method {@code isReleasable} must return true if blocking is not
1697 * necessary. Method {@code block} blocks the current thread
1698 * if necessary (perhaps internally invoking isReleasable before
1699 * actually blocking.).
1700 * <p>For example, here is a ManagedBlocker based on a
1701 * ReentrantLock:
1702 * <pre>
1703 * class ManagedLocker implements ManagedBlocker {
1704 * final ReentrantLock lock;
1705 * boolean hasLock = false;
1706 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1707 * public boolean block() {
1708 * if (!hasLock)
1709 * lock.lock();
1710 * return true;
1711 * }
1712 * public boolean isReleasable() {
1713 * return hasLock || (hasLock = lock.tryLock());
1714 * }
1715 * }
1716 * </pre>
1717 */
1718 public static interface ManagedBlocker {
1719 /**
1720 * Possibly blocks the current thread, for example waiting for
1721 * a lock or condition.
1722 * @return true if no additional blocking is necessary (i.e.,
1723 * if isReleasable would return true)
1724 * @throws InterruptedException if interrupted while waiting
1725 * (the method is not required to do so, but is allowed to).
1726 */
1727 boolean block() throws InterruptedException;
1728
1729 /**
1730 * Returns true if blocking is unnecessary.
1731 */
1732 boolean isReleasable();
1733 }
1734
1735 /**
1736 * Blocks in accord with the given blocker. If the current thread
1737 * is a ForkJoinWorkerThread, this method possibly arranges for a
1738 * spare thread to be activated if necessary to ensure parallelism
1739 * while the current thread is blocked. If
1740 * {@code maintainParallelism} is true and the pool supports
1741 * it ({@link #getMaintainsParallelism}), this method attempts to
1742 * maintain the pool's nominal parallelism. Otherwise if activates
1743 * a thread only if necessary to avoid complete starvation. This
1744 * option may be preferable when blockages use timeouts, or are
1745 * almost always brief.
1746 *
1747 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1748 * equivalent to
1749 * <pre>
1750 * while (!blocker.isReleasable())
1751 * if (blocker.block())
1752 * return;
1753 * </pre>
1754 * If the caller is a ForkJoinTask, then the pool may first
1755 * be expanded to ensure parallelism, and later adjusted.
1756 *
1757 * @param blocker the blocker
1758 * @param maintainParallelism if true and supported by this pool,
1759 * attempt to maintain the pool's nominal parallelism; otherwise
1760 * activate a thread only if necessary to avoid complete
1761 * starvation.
1762 * @throws InterruptedException if blocker.block did so
1763 */
1764 public static void managedBlock(ManagedBlocker blocker,
1765 boolean maintainParallelism)
1766 throws InterruptedException {
1767 Thread t = Thread.currentThread();
1768 ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1769 ((ForkJoinWorkerThread)t).pool : null);
1770 if (!blocker.isReleasable()) {
1771 try {
1772 if (pool == null ||
1773 !pool.preBlock(blocker, maintainParallelism))
1774 awaitBlocker(blocker);
1775 } finally {
1776 if (pool != null)
1777 pool.updateRunningCount(1);
1778 }
1779 }
1780 }
1781
1782 private static void awaitBlocker(ManagedBlocker blocker)
1783 throws InterruptedException {
1784 do;while (!blocker.isReleasable() && !blocker.block());
1785 }
1786
1787 // AbstractExecutorService overrides
1788
1789 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1790 return new AdaptedRunnable(runnable, value);
1791 }
1792
1793 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1794 return new AdaptedCallable(callable);
1795 }
1796
1797
1798 // Temporary Unsafe mechanics for preliminary release
1799 private static Unsafe getUnsafe() throws Throwable {
1800 try {
1801 return Unsafe.getUnsafe();
1802 } catch (SecurityException se) {
1803 try {
1804 return java.security.AccessController.doPrivileged
1805 (new java.security.PrivilegedExceptionAction<Unsafe>() {
1806 public Unsafe run() throws Exception {
1807 return getUnsafePrivileged();
1808 }});
1809 } catch (java.security.PrivilegedActionException e) {
1810 throw e.getCause();
1811 }
1812 }
1813 }
1814
1815 private static Unsafe getUnsafePrivileged()
1816 throws NoSuchFieldException, IllegalAccessException {
1817 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1818 f.setAccessible(true);
1819 return (Unsafe) f.get(null);
1820 }
1821
1822 private static long fieldOffset(String fieldName)
1823 throws NoSuchFieldException {
1824 return UNSAFE.objectFieldOffset
1825 (ForkJoinPool.class.getDeclaredField(fieldName));
1826 }
1827
1828 static final Unsafe UNSAFE;
1829 static final long eventCountOffset;
1830 static final long workerCountsOffset;
1831 static final long runControlOffset;
1832 static final long syncStackOffset;
1833 static final long spareStackOffset;
1834
1835 static {
1836 try {
1837 UNSAFE = getUnsafe();
1838 eventCountOffset = fieldOffset("eventCount");
1839 workerCountsOffset = fieldOffset("workerCounts");
1840 runControlOffset = fieldOffset("runControl");
1841 syncStackOffset = fieldOffset("syncStack");
1842 spareStackOffset = fieldOffset("spareStack");
1843 } catch (Throwable e) {
1844 throw new RuntimeException("Could not initialize intrinsics", e);
1845 }
1846 }
1847
1848 private boolean casEventCount(long cmp, long val) {
1849 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1850 }
1851 private boolean casWorkerCounts(int cmp, int val) {
1852 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1853 }
1854 private boolean casRunControl(int cmp, int val) {
1855 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1856 }
1857 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1858 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1859 }
1860 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1861 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1862 }
1863 }