ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.17
Committed: Thu Jul 23 23:07:57 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.16: +117 -74 lines
Log Message:
j.u.c. coding standards

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. When setting
31 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
32 * use with fine-grained tasks that are never joined. Otherwise, other
33 * ExecutorService implementations are typically more appropriate
34 * choices.
35 *
36 * <p>A ForkJoinPool may be constructed with a given parallelism level
37 * (target pool size), which it attempts to maintain by dynamically
38 * adding, suspending, or resuming threads, even if some tasks are
39 * waiting to join others. However, no such adjustments are performed
40 * in the face of blocked IO or other unmanaged synchronization. The
41 * nested {@code ManagedBlocker} interface enables extension of
42 * the kinds of synchronization accommodated. The target parallelism
43 * level may also be changed dynamically ({@code setParallelism})
44 * and thread construction can be limited using methods
45 * {@code setMaximumPoolSize} and/or
46 * {@code setMaintainsParallelism}.
47 *
48 * <p>In addition to execution and lifecycle control methods, this
49 * class provides status check methods (for example
50 * {@code getStealCount}) that are intended to aid in developing,
51 * tuning, and monitoring fork/join applications. Also, method
52 * {@code toString} returns indications of pool state in a
53 * convenient form for informal monitoring.
54 *
55 * <p><b>Implementation notes</b>: This implementation restricts the
56 * maximum number of running threads to 32767. Attempts to create
57 * pools with greater than the maximum result in
58 * IllegalArgumentExceptions.
59 *
60 * @since 1.7
61 * @author Doug Lea
62 */
63 public class ForkJoinPool extends AbstractExecutorService {
64
65 /*
66 * See the extended comments interspersed below for design,
67 * rationale, and walkthroughs.
68 */
69
70 /** Mask for packing and unpacking shorts */
71 private static final int shortMask = 0xffff;
72
73 /** Max pool size -- must be a power of two minus 1 */
74 private static final int MAX_THREADS = 0x7FFF;
75
76 /**
77 * Factory for creating new ForkJoinWorkerThreads. A
78 * ForkJoinWorkerThreadFactory must be defined and used for
79 * ForkJoinWorkerThread subclasses that extend base functionality
80 * or initialize threads with different contexts.
81 */
82 public static interface ForkJoinWorkerThreadFactory {
83 /**
84 * Returns a new worker thread operating in the given pool.
85 *
86 * @param pool the pool this thread works in
87 * @throws NullPointerException if pool is null
88 */
89 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
90 }
91
92 /**
93 * Default ForkJoinWorkerThreadFactory implementation; creates a
94 * new ForkJoinWorkerThread.
95 */
96 static class DefaultForkJoinWorkerThreadFactory
97 implements ForkJoinWorkerThreadFactory {
98 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
99 try {
100 return new ForkJoinWorkerThread(pool);
101 } catch (OutOfMemoryError oom) {
102 return null;
103 }
104 }
105 }
106
107 /**
108 * Creates a new ForkJoinWorkerThread. This factory is used unless
109 * overridden in ForkJoinPool constructors.
110 */
111 public static final ForkJoinWorkerThreadFactory
112 defaultForkJoinWorkerThreadFactory =
113 new DefaultForkJoinWorkerThreadFactory();
114
115 /**
116 * Permission required for callers of methods that may start or
117 * kill threads.
118 */
119 private static final RuntimePermission modifyThreadPermission =
120 new RuntimePermission("modifyThread");
121
122 /**
123 * If there is a security manager, makes sure caller has
124 * permission to modify threads.
125 */
126 private static void checkPermission() {
127 SecurityManager security = System.getSecurityManager();
128 if (security != null)
129 security.checkPermission(modifyThreadPermission);
130 }
131
132 /**
133 * Generator for assigning sequence numbers as pool names.
134 */
135 private static final AtomicInteger poolNumberGenerator =
136 new AtomicInteger();
137
138 /**
139 * Array holding all worker threads in the pool. Initialized upon
140 * first use. Array size must be a power of two. Updates and
141 * replacements are protected by workerLock, but it is always kept
142 * in a consistent enough state to be randomly accessed without
143 * locking by workers performing work-stealing.
144 */
145 volatile ForkJoinWorkerThread[] workers;
146
147 /**
148 * Lock protecting access to workers.
149 */
150 private final ReentrantLock workerLock;
151
152 /**
153 * Condition for awaitTermination.
154 */
155 private final Condition termination;
156
157 /**
158 * The uncaught exception handler used when any worker
159 * abruptly terminates
160 */
161 private Thread.UncaughtExceptionHandler ueh;
162
163 /**
164 * Creation factory for worker threads.
165 */
166 private final ForkJoinWorkerThreadFactory factory;
167
168 /**
169 * Head of stack of threads that were created to maintain
170 * parallelism when other threads blocked, but have since
171 * suspended when the parallelism level rose.
172 */
173 private volatile WaitQueueNode spareStack;
174
175 /**
176 * Sum of per-thread steal counts, updated only when threads are
177 * idle or terminating.
178 */
179 private final AtomicLong stealCount;
180
181 /**
182 * Queue for external submissions.
183 */
184 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
185
186 /**
187 * Head of Treiber stack for barrier sync. See below for explanation.
188 */
189 private volatile WaitQueueNode syncStack;
190
191 /**
192 * The count for event barrier
193 */
194 private volatile long eventCount;
195
196 /**
197 * Pool number, just for assigning useful names to worker threads
198 */
199 private final int poolNumber;
200
201 /**
202 * The maximum allowed pool size
203 */
204 private volatile int maxPoolSize;
205
206 /**
207 * The desired parallelism level, updated only under workerLock.
208 */
209 private volatile int parallelism;
210
211 /**
212 * True if use local fifo, not default lifo, for local polling
213 */
214 private volatile boolean locallyFifo;
215
216 /**
217 * Holds number of total (i.e., created and not yet terminated)
218 * and running (i.e., not blocked on joins or other managed sync)
219 * threads, packed into one int to ensure consistent snapshot when
220 * making decisions about creating and suspending spare
221 * threads. Updated only by CAS. Note: CASes in
222 * updateRunningCount and preJoin assume that running active count
223 * is in low word, so need to be modified if this changes.
224 */
225 private volatile int workerCounts;
226
227 private static int totalCountOf(int s) { return s >>> 16; }
228 private static int runningCountOf(int s) { return s & shortMask; }
229 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
230
231 /**
232 * Adds delta (which may be negative) to running count. This must
233 * be called before (with negative arg) and after (with positive)
234 * any managed synchronization (i.e., mainly, joins).
235 *
236 * @param delta the number to add
237 */
238 final void updateRunningCount(int delta) {
239 int s;
240 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
241 }
242
243 /**
244 * Adds delta (which may be negative) to both total and running
245 * count. This must be called upon creation and termination of
246 * worker threads.
247 *
248 * @param delta the number to add
249 */
250 private void updateWorkerCount(int delta) {
251 int d = delta + (delta << 16); // add to both lo and hi parts
252 int s;
253 do {} while (!casWorkerCounts(s = workerCounts, s + d));
254 }
255
256 /**
257 * Lifecycle control. High word contains runState, low word
258 * contains the number of workers that are (probably) executing
259 * tasks. This value is atomically incremented before a worker
260 * gets a task to run, and decremented when worker has no tasks
261 * and cannot find any. These two fields are bundled together to
262 * support correct termination triggering. Note: activeCount
263 * CAS'es cheat by assuming active count is in low word, so need
264 * to be modified if this changes
265 */
266 private volatile int runControl;
267
268 // RunState values. Order among values matters
269 private static final int RUNNING = 0;
270 private static final int SHUTDOWN = 1;
271 private static final int TERMINATING = 2;
272 private static final int TERMINATED = 3;
273
274 private static int runStateOf(int c) { return c >>> 16; }
275 private static int activeCountOf(int c) { return c & shortMask; }
276 private static int runControlFor(int r, int a) { return (r << 16) + a; }
277
278 /**
279 * Tries incrementing active count; fails on contention.
280 * Called by workers before/during executing tasks.
281 *
282 * @return true on success
283 */
284 final boolean tryIncrementActiveCount() {
285 int c = runControl;
286 return casRunControl(c, c+1);
287 }
288
289 /**
290 * Tries decrementing active count; fails on contention.
291 * Possibly triggers termination on success.
292 * Called by workers when they can't find tasks.
293 *
294 * @return true on success
295 */
296 final boolean tryDecrementActiveCount() {
297 int c = runControl;
298 int nextc = c - 1;
299 if (!casRunControl(c, nextc))
300 return false;
301 if (canTerminateOnShutdown(nextc))
302 terminateOnShutdown();
303 return true;
304 }
305
306 /**
307 * Returns true if argument represents zero active count and
308 * nonzero runstate, which is the triggering condition for
309 * terminating on shutdown.
310 */
311 private static boolean canTerminateOnShutdown(int c) {
312 // i.e. least bit is nonzero runState bit
313 return ((c & -c) >>> 16) != 0;
314 }
315
316 /**
317 * Transition run state to at least the given state. Return true
318 * if not already at least given state.
319 */
320 private boolean transitionRunStateTo(int state) {
321 for (;;) {
322 int c = runControl;
323 if (runStateOf(c) >= state)
324 return false;
325 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
326 return true;
327 }
328 }
329
330 /**
331 * Controls whether to add spares to maintain parallelism
332 */
333 private volatile boolean maintainsParallelism;
334
335 // Constructors
336
337 /**
338 * Creates a ForkJoinPool with a pool size equal to the number of
339 * processors available on the system, using the default
340 * ForkJoinWorkerThreadFactory.
341 *
342 * @throws SecurityException if a security manager exists and
343 * the caller is not permitted to modify threads
344 * because it does not hold {@link
345 * java.lang.RuntimePermission}{@code ("modifyThread")}
346 */
347 public ForkJoinPool() {
348 this(Runtime.getRuntime().availableProcessors(),
349 defaultForkJoinWorkerThreadFactory);
350 }
351
352 /**
353 * Creates a ForkJoinPool with the indicated parallelism level
354 * threads and using the default ForkJoinWorkerThreadFactory.
355 *
356 * @param parallelism the number of worker threads
357 * @throws IllegalArgumentException if parallelism less than or
358 * equal to zero
359 * @throws SecurityException if a security manager exists and
360 * the caller is not permitted to modify threads
361 * because it does not hold {@link
362 * java.lang.RuntimePermission}{@code ("modifyThread")}
363 */
364 public ForkJoinPool(int parallelism) {
365 this(parallelism, defaultForkJoinWorkerThreadFactory);
366 }
367
368 /**
369 * Creates a ForkJoinPool with parallelism equal to the number of
370 * processors available on the system and using the given
371 * ForkJoinWorkerThreadFactory.
372 *
373 * @param factory the factory for creating new threads
374 * @throws NullPointerException if factory is null
375 * @throws SecurityException if a security manager exists and
376 * the caller is not permitted to modify threads
377 * because it does not hold {@link
378 * java.lang.RuntimePermission}{@code ("modifyThread")}
379 */
380 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
381 this(Runtime.getRuntime().availableProcessors(), factory);
382 }
383
384 /**
385 * Creates a ForkJoinPool with the given parallelism and factory.
386 *
387 * @param parallelism the targeted number of worker threads
388 * @param factory the factory for creating new threads
389 * @throws IllegalArgumentException if parallelism less than or
390 * equal to zero, or greater than implementation limit
391 * @throws NullPointerException if factory is null
392 * @throws SecurityException if a security manager exists and
393 * the caller is not permitted to modify threads
394 * because it does not hold {@link
395 * java.lang.RuntimePermission}{@code ("modifyThread")}
396 */
397 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
398 if (parallelism <= 0 || parallelism > MAX_THREADS)
399 throw new IllegalArgumentException();
400 if (factory == null)
401 throw new NullPointerException();
402 checkPermission();
403 this.factory = factory;
404 this.parallelism = parallelism;
405 this.maxPoolSize = MAX_THREADS;
406 this.maintainsParallelism = true;
407 this.poolNumber = poolNumberGenerator.incrementAndGet();
408 this.workerLock = new ReentrantLock();
409 this.termination = workerLock.newCondition();
410 this.stealCount = new AtomicLong();
411 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
412 // worker array and workers are lazily constructed
413 }
414
415 /**
416 * Creates a new worker thread using factory.
417 *
418 * @param index the index to assign worker
419 * @return new worker, or null of factory failed
420 */
421 private ForkJoinWorkerThread createWorker(int index) {
422 Thread.UncaughtExceptionHandler h = ueh;
423 ForkJoinWorkerThread w = factory.newThread(this);
424 if (w != null) {
425 w.poolIndex = index;
426 w.setDaemon(true);
427 w.setAsyncMode(locallyFifo);
428 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
429 if (h != null)
430 w.setUncaughtExceptionHandler(h);
431 }
432 return w;
433 }
434
435 /**
436 * Returns a good size for worker array given pool size.
437 * Currently requires size to be a power of two.
438 */
439 private static int arraySizeFor(int poolSize) {
440 return (poolSize <= 1) ? 1 :
441 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
442 }
443
444 /**
445 * Creates or resizes array if necessary to hold newLength.
446 * Call only under exclusion.
447 *
448 * @return the array
449 */
450 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
451 ForkJoinWorkerThread[] ws = workers;
452 if (ws == null)
453 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
454 else if (newLength > ws.length)
455 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
456 else
457 return ws;
458 }
459
460 /**
461 * Tries to shrink workers into smaller array after one or more terminate.
462 */
463 private void tryShrinkWorkerArray() {
464 ForkJoinWorkerThread[] ws = workers;
465 if (ws != null) {
466 int len = ws.length;
467 int last = len - 1;
468 while (last >= 0 && ws[last] == null)
469 --last;
470 int newLength = arraySizeFor(last+1);
471 if (newLength < len)
472 workers = Arrays.copyOf(ws, newLength);
473 }
474 }
475
476 /**
477 * Initializes workers if necessary.
478 */
479 final void ensureWorkerInitialization() {
480 ForkJoinWorkerThread[] ws = workers;
481 if (ws == null) {
482 final ReentrantLock lock = this.workerLock;
483 lock.lock();
484 try {
485 ws = workers;
486 if (ws == null) {
487 int ps = parallelism;
488 ws = ensureWorkerArrayCapacity(ps);
489 for (int i = 0; i < ps; ++i) {
490 ForkJoinWorkerThread w = createWorker(i);
491 if (w != null) {
492 ws[i] = w;
493 w.start();
494 updateWorkerCount(1);
495 }
496 }
497 }
498 } finally {
499 lock.unlock();
500 }
501 }
502 }
503
504 /**
505 * Worker creation and startup for threads added via setParallelism.
506 */
507 private void createAndStartAddedWorkers() {
508 resumeAllSpares(); // Allow spares to convert to nonspare
509 int ps = parallelism;
510 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
511 int len = ws.length;
512 // Sweep through slots, to keep lowest indices most populated
513 int k = 0;
514 while (k < len) {
515 if (ws[k] != null) {
516 ++k;
517 continue;
518 }
519 int s = workerCounts;
520 int tc = totalCountOf(s);
521 int rc = runningCountOf(s);
522 if (rc >= ps || tc >= ps)
523 break;
524 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
525 ForkJoinWorkerThread w = createWorker(k);
526 if (w != null) {
527 ws[k++] = w;
528 w.start();
529 }
530 else {
531 updateWorkerCount(-1); // back out on failed creation
532 break;
533 }
534 }
535 }
536 }
537
538 // Execution methods
539
540 /**
541 * Common code for execute, invoke and submit
542 */
543 private <T> void doSubmit(ForkJoinTask<T> task) {
544 if (isShutdown())
545 throw new RejectedExecutionException();
546 if (workers == null)
547 ensureWorkerInitialization();
548 submissionQueue.offer(task);
549 signalIdleWorkers();
550 }
551
552 /**
553 * Performs the given task, returning its result upon completion.
554 *
555 * @param task the task
556 * @return the task's result
557 * @throws NullPointerException if task is null
558 * @throws RejectedExecutionException if pool is shut down
559 */
560 public <T> T invoke(ForkJoinTask<T> task) {
561 doSubmit(task);
562 return task.join();
563 }
564
565 /**
566 * Arranges for (asynchronous) execution of the given task.
567 *
568 * @param task the task
569 * @throws NullPointerException if task is null
570 * @throws RejectedExecutionException if pool is shut down
571 */
572 public <T> void execute(ForkJoinTask<T> task) {
573 doSubmit(task);
574 }
575
576 // AbstractExecutorService methods
577
578 public void execute(Runnable task) {
579 doSubmit(new AdaptedRunnable<Void>(task, null));
580 }
581
582 public <T> ForkJoinTask<T> submit(Callable<T> task) {
583 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
584 doSubmit(job);
585 return job;
586 }
587
588 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
589 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
590 doSubmit(job);
591 return job;
592 }
593
594 public ForkJoinTask<?> submit(Runnable task) {
595 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
596 doSubmit(job);
597 return job;
598 }
599
600 /**
601 * Adaptor for Runnables. This implements RunnableFuture
602 * to be compliant with AbstractExecutorService constraints.
603 */
604 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
605 implements RunnableFuture<T> {
606 final Runnable runnable;
607 final T resultOnCompletion;
608 T result;
609 AdaptedRunnable(Runnable runnable, T result) {
610 if (runnable == null) throw new NullPointerException();
611 this.runnable = runnable;
612 this.resultOnCompletion = result;
613 }
614 public T getRawResult() { return result; }
615 public void setRawResult(T v) { result = v; }
616 public boolean exec() {
617 runnable.run();
618 result = resultOnCompletion;
619 return true;
620 }
621 public void run() { invoke(); }
622 }
623
624 /**
625 * Adaptor for Callables
626 */
627 static final class AdaptedCallable<T> extends ForkJoinTask<T>
628 implements RunnableFuture<T> {
629 final Callable<T> callable;
630 T result;
631 AdaptedCallable(Callable<T> callable) {
632 if (callable == null) throw new NullPointerException();
633 this.callable = callable;
634 }
635 public T getRawResult() { return result; }
636 public void setRawResult(T v) { result = v; }
637 public boolean exec() {
638 try {
639 result = callable.call();
640 return true;
641 } catch (Error err) {
642 throw err;
643 } catch (RuntimeException rex) {
644 throw rex;
645 } catch (Exception ex) {
646 throw new RuntimeException(ex);
647 }
648 }
649 public void run() { invoke(); }
650 }
651
652 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
653 ArrayList<ForkJoinTask<T>> ts =
654 new ArrayList<ForkJoinTask<T>>(tasks.size());
655 for (Callable<T> c : tasks)
656 ts.add(new AdaptedCallable<T>(c));
657 invoke(new InvokeAll<T>(ts));
658 return (List<Future<T>>) (List) ts;
659 }
660
661 static final class InvokeAll<T> extends RecursiveAction {
662 final ArrayList<ForkJoinTask<T>> tasks;
663 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
664 public void compute() {
665 try { invokeAll(tasks); }
666 catch (Exception ignore) {}
667 }
668 }
669
670 // Configuration and status settings and queries
671
672 /**
673 * Returns the factory used for constructing new workers.
674 *
675 * @return the factory used for constructing new workers
676 */
677 public ForkJoinWorkerThreadFactory getFactory() {
678 return factory;
679 }
680
681 /**
682 * Returns the handler for internal worker threads that terminate
683 * due to unrecoverable errors encountered while executing tasks.
684 *
685 * @return the handler, or null if none
686 */
687 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
688 Thread.UncaughtExceptionHandler h;
689 final ReentrantLock lock = this.workerLock;
690 lock.lock();
691 try {
692 h = ueh;
693 } finally {
694 lock.unlock();
695 }
696 return h;
697 }
698
699 /**
700 * Sets the handler for internal worker threads that terminate due
701 * to unrecoverable errors encountered while executing tasks.
702 * Unless set, the current default or ThreadGroup handler is used
703 * as handler.
704 *
705 * @param h the new handler
706 * @return the old handler, or null if none
707 * @throws SecurityException if a security manager exists and
708 * the caller is not permitted to modify threads
709 * because it does not hold {@link
710 * java.lang.RuntimePermission}{@code ("modifyThread")}
711 */
712 public Thread.UncaughtExceptionHandler
713 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
714 checkPermission();
715 Thread.UncaughtExceptionHandler old = null;
716 final ReentrantLock lock = this.workerLock;
717 lock.lock();
718 try {
719 old = ueh;
720 ueh = h;
721 ForkJoinWorkerThread[] ws = workers;
722 if (ws != null) {
723 for (int i = 0; i < ws.length; ++i) {
724 ForkJoinWorkerThread w = ws[i];
725 if (w != null)
726 w.setUncaughtExceptionHandler(h);
727 }
728 }
729 } finally {
730 lock.unlock();
731 }
732 return old;
733 }
734
735
736 /**
737 * Sets the target parallelism level of this pool.
738 *
739 * @param parallelism the target parallelism
740 * @throws IllegalArgumentException if parallelism less than or
741 * equal to zero or greater than maximum size bounds
742 * @throws SecurityException if a security manager exists and
743 * the caller is not permitted to modify threads
744 * because it does not hold {@link
745 * java.lang.RuntimePermission}{@code ("modifyThread")}
746 */
747 public void setParallelism(int parallelism) {
748 checkPermission();
749 if (parallelism <= 0 || parallelism > maxPoolSize)
750 throw new IllegalArgumentException();
751 final ReentrantLock lock = this.workerLock;
752 lock.lock();
753 try {
754 if (!isTerminating()) {
755 int p = this.parallelism;
756 this.parallelism = parallelism;
757 if (parallelism > p)
758 createAndStartAddedWorkers();
759 else
760 trimSpares();
761 }
762 } finally {
763 lock.unlock();
764 }
765 signalIdleWorkers();
766 }
767
768 /**
769 * Returns the targeted number of worker threads in this pool.
770 *
771 * @return the targeted number of worker threads in this pool
772 */
773 public int getParallelism() {
774 return parallelism;
775 }
776
777 /**
778 * Returns the number of worker threads that have started but not
779 * yet terminated. This result returned by this method may differ
780 * from {@code getParallelism} when threads are created to
781 * maintain parallelism when others are cooperatively blocked.
782 *
783 * @return the number of worker threads
784 */
785 public int getPoolSize() {
786 return totalCountOf(workerCounts);
787 }
788
789 /**
790 * Returns the maximum number of threads allowed to exist in the
791 * pool, even if there are insufficient unblocked running threads.
792 *
793 * @return the maximum
794 */
795 public int getMaximumPoolSize() {
796 return maxPoolSize;
797 }
798
799 /**
800 * Sets the maximum number of threads allowed to exist in the
801 * pool, even if there are insufficient unblocked running threads.
802 * Setting this value has no effect on current pool size. It
803 * controls construction of new threads.
804 *
805 * @throws IllegalArgumentException if negative or greater then
806 * internal implementation limit
807 */
808 public void setMaximumPoolSize(int newMax) {
809 if (newMax < 0 || newMax > MAX_THREADS)
810 throw new IllegalArgumentException();
811 maxPoolSize = newMax;
812 }
813
814
815 /**
816 * Returns true if this pool dynamically maintains its target
817 * parallelism level. If false, new threads are added only to
818 * avoid possible starvation.
819 * This setting is by default true.
820 *
821 * @return true if maintains parallelism
822 */
823 public boolean getMaintainsParallelism() {
824 return maintainsParallelism;
825 }
826
827 /**
828 * Sets whether this pool dynamically maintains its target
829 * parallelism level. If false, new threads are added only to
830 * avoid possible starvation.
831 *
832 * @param enable true to maintains parallelism
833 */
834 public void setMaintainsParallelism(boolean enable) {
835 maintainsParallelism = enable;
836 }
837
838 /**
839 * Establishes local first-in-first-out scheduling mode for forked
840 * tasks that are never joined. This mode may be more appropriate
841 * than default locally stack-based mode in applications in which
842 * worker threads only process asynchronous tasks. This method is
843 * designed to be invoked only when pool is quiescent, and
844 * typically only before any tasks are submitted. The effects of
845 * invocations at other times may be unpredictable.
846 *
847 * @param async if true, use locally FIFO scheduling
848 * @return the previous mode
849 */
850 public boolean setAsyncMode(boolean async) {
851 boolean oldMode = locallyFifo;
852 locallyFifo = async;
853 ForkJoinWorkerThread[] ws = workers;
854 if (ws != null) {
855 for (int i = 0; i < ws.length; ++i) {
856 ForkJoinWorkerThread t = ws[i];
857 if (t != null)
858 t.setAsyncMode(async);
859 }
860 }
861 return oldMode;
862 }
863
864 /**
865 * Returns true if this pool uses local first-in-first-out
866 * scheduling mode for forked tasks that are never joined.
867 *
868 * @return true if this pool uses async mode
869 */
870 public boolean getAsyncMode() {
871 return locallyFifo;
872 }
873
874 /**
875 * Returns an estimate of the number of worker threads that are
876 * not blocked waiting to join tasks or for other managed
877 * synchronization.
878 *
879 * @return the number of worker threads
880 */
881 public int getRunningThreadCount() {
882 return runningCountOf(workerCounts);
883 }
884
885 /**
886 * Returns an estimate of the number of threads that are currently
887 * stealing or executing tasks. This method may overestimate the
888 * number of active threads.
889 *
890 * @return the number of active threads
891 */
892 public int getActiveThreadCount() {
893 return activeCountOf(runControl);
894 }
895
896 /**
897 * Returns an estimate of the number of threads that are currently
898 * idle waiting for tasks. This method may underestimate the
899 * number of idle threads.
900 *
901 * @return the number of idle threads
902 */
903 final int getIdleThreadCount() {
904 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
905 return (c <= 0) ? 0 : c;
906 }
907
908 /**
909 * Returns true if all worker threads are currently idle. An idle
910 * worker is one that cannot obtain a task to execute because none
911 * are available to steal from other threads, and there are no
912 * pending submissions to the pool. This method is conservative;
913 * it might not return true immediately upon idleness of all
914 * threads, but will eventually become true if threads remain
915 * inactive.
916 *
917 * @return true if all threads are currently idle
918 */
919 public boolean isQuiescent() {
920 return activeCountOf(runControl) == 0;
921 }
922
923 /**
924 * Returns an estimate of the total number of tasks stolen from
925 * one thread's work queue by another. The reported value
926 * underestimates the actual total number of steals when the pool
927 * is not quiescent. This value may be useful for monitoring and
928 * tuning fork/join programs: in general, steal counts should be
929 * high enough to keep threads busy, but low enough to avoid
930 * overhead and contention across threads.
931 *
932 * @return the number of steals
933 */
934 public long getStealCount() {
935 return stealCount.get();
936 }
937
938 /**
939 * Accumulates steal count from a worker.
940 * Call only when worker known to be idle.
941 */
942 private void updateStealCount(ForkJoinWorkerThread w) {
943 int sc = w.getAndClearStealCount();
944 if (sc != 0)
945 stealCount.addAndGet(sc);
946 }
947
948 /**
949 * Returns an estimate of the total number of tasks currently held
950 * in queues by worker threads (but not including tasks submitted
951 * to the pool that have not begun executing). This value is only
952 * an approximation, obtained by iterating across all threads in
953 * the pool. This method may be useful for tuning task
954 * granularities.
955 *
956 * @return the number of queued tasks
957 */
958 public long getQueuedTaskCount() {
959 long count = 0;
960 ForkJoinWorkerThread[] ws = workers;
961 if (ws != null) {
962 for (int i = 0; i < ws.length; ++i) {
963 ForkJoinWorkerThread t = ws[i];
964 if (t != null)
965 count += t.getQueueSize();
966 }
967 }
968 return count;
969 }
970
971 /**
972 * Returns an estimate of the number tasks submitted to this pool
973 * that have not yet begun executing. This method takes time
974 * proportional to the number of submissions.
975 *
976 * @return the number of queued submissions
977 */
978 public int getQueuedSubmissionCount() {
979 return submissionQueue.size();
980 }
981
982 /**
983 * Returns true if there are any tasks submitted to this pool
984 * that have not yet begun executing.
985 *
986 * @return {@code true} if there are any queued submissions
987 */
988 public boolean hasQueuedSubmissions() {
989 return !submissionQueue.isEmpty();
990 }
991
992 /**
993 * Removes and returns the next unexecuted submission if one is
994 * available. This method may be useful in extensions to this
995 * class that re-assign work in systems with multiple pools.
996 *
997 * @return the next submission, or null if none
998 */
999 protected ForkJoinTask<?> pollSubmission() {
1000 return submissionQueue.poll();
1001 }
1002
1003 /**
1004 * Removes all available unexecuted submitted and forked tasks
1005 * from scheduling queues and adds them to the given collection,
1006 * without altering their execution status. These may include
1007 * artificially generated or wrapped tasks. This method is designed
1008 * to be invoked only when the pool is known to be
1009 * quiescent. Invocations at other times may not remove all
1010 * tasks. A failure encountered while attempting to add elements
1011 * to collection {@code c} may result in elements being in
1012 * neither, either or both collections when the associated
1013 * exception is thrown. The behavior of this operation is
1014 * undefined if the specified collection is modified while the
1015 * operation is in progress.
1016 *
1017 * @param c the collection to transfer elements into
1018 * @return the number of elements transferred
1019 */
1020 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1021 int n = submissionQueue.drainTo(c);
1022 ForkJoinWorkerThread[] ws = workers;
1023 if (ws != null) {
1024 for (int i = 0; i < ws.length; ++i) {
1025 ForkJoinWorkerThread w = ws[i];
1026 if (w != null)
1027 n += w.drainTasksTo(c);
1028 }
1029 }
1030 return n;
1031 }
1032
1033 /**
1034 * Returns a string identifying this pool, as well as its state,
1035 * including indications of run state, parallelism level, and
1036 * worker and task counts.
1037 *
1038 * @return a string identifying this pool, as well as its state
1039 */
1040 public String toString() {
1041 int ps = parallelism;
1042 int wc = workerCounts;
1043 int rc = runControl;
1044 long st = getStealCount();
1045 long qt = getQueuedTaskCount();
1046 long qs = getQueuedSubmissionCount();
1047 return super.toString() +
1048 "[" + runStateToString(runStateOf(rc)) +
1049 ", parallelism = " + ps +
1050 ", size = " + totalCountOf(wc) +
1051 ", active = " + activeCountOf(rc) +
1052 ", running = " + runningCountOf(wc) +
1053 ", steals = " + st +
1054 ", tasks = " + qt +
1055 ", submissions = " + qs +
1056 "]";
1057 }
1058
1059 private static String runStateToString(int rs) {
1060 switch(rs) {
1061 case RUNNING: return "Running";
1062 case SHUTDOWN: return "Shutting down";
1063 case TERMINATING: return "Terminating";
1064 case TERMINATED: return "Terminated";
1065 default: throw new Error("Unknown run state");
1066 }
1067 }
1068
1069 // lifecycle control
1070
1071 /**
1072 * Initiates an orderly shutdown in which previously submitted
1073 * tasks are executed, but no new tasks will be accepted.
1074 * Invocation has no additional effect if already shut down.
1075 * Tasks that are in the process of being submitted concurrently
1076 * during the course of this method may or may not be rejected.
1077 *
1078 * @throws SecurityException if a security manager exists and
1079 * the caller is not permitted to modify threads
1080 * because it does not hold {@link
1081 * java.lang.RuntimePermission}{@code ("modifyThread")}
1082 */
1083 public void shutdown() {
1084 checkPermission();
1085 transitionRunStateTo(SHUTDOWN);
1086 if (canTerminateOnShutdown(runControl))
1087 terminateOnShutdown();
1088 }
1089
1090 /**
1091 * Attempts to stop all actively executing tasks, and cancels all
1092 * waiting tasks. Tasks that are in the process of being
1093 * submitted or executed concurrently during the course of this
1094 * method may or may not be rejected. Unlike some other executors,
1095 * this method cancels rather than collects non-executed tasks
1096 * upon termination, so always returns an empty list. However, you
1097 * can use method {@code drainTasksTo} before invoking this
1098 * method to transfer unexecuted tasks to another collection.
1099 *
1100 * @return an empty list
1101 * @throws SecurityException if a security manager exists and
1102 * the caller is not permitted to modify threads
1103 * because it does not hold {@link
1104 * java.lang.RuntimePermission}{@code ("modifyThread")}
1105 */
1106 public List<Runnable> shutdownNow() {
1107 checkPermission();
1108 terminate();
1109 return Collections.emptyList();
1110 }
1111
1112 /**
1113 * Returns {@code true} if all tasks have completed following shut down.
1114 *
1115 * @return {@code true} if all tasks have completed following shut down
1116 */
1117 public boolean isTerminated() {
1118 return runStateOf(runControl) == TERMINATED;
1119 }
1120
1121 /**
1122 * Returns {@code true} if the process of termination has
1123 * commenced but possibly not yet completed.
1124 *
1125 * @return {@code true} if terminating
1126 */
1127 public boolean isTerminating() {
1128 return runStateOf(runControl) >= TERMINATING;
1129 }
1130
1131 /**
1132 * Returns {@code true} if this pool has been shut down.
1133 *
1134 * @return {@code true} if this pool has been shut down
1135 */
1136 public boolean isShutdown() {
1137 return runStateOf(runControl) >= SHUTDOWN;
1138 }
1139
1140 /**
1141 * Blocks until all tasks have completed execution after a shutdown
1142 * request, or the timeout occurs, or the current thread is
1143 * interrupted, whichever happens first.
1144 *
1145 * @param timeout the maximum time to wait
1146 * @param unit the time unit of the timeout argument
1147 * @return {@code true} if this executor terminated and
1148 * {@code false} if the timeout elapsed before termination
1149 * @throws InterruptedException if interrupted while waiting
1150 */
1151 public boolean awaitTermination(long timeout, TimeUnit unit)
1152 throws InterruptedException {
1153 long nanos = unit.toNanos(timeout);
1154 final ReentrantLock lock = this.workerLock;
1155 lock.lock();
1156 try {
1157 for (;;) {
1158 if (isTerminated())
1159 return true;
1160 if (nanos <= 0)
1161 return false;
1162 nanos = termination.awaitNanos(nanos);
1163 }
1164 } finally {
1165 lock.unlock();
1166 }
1167 }
1168
1169 // Shutdown and termination support
1170
1171 /**
1172 * Callback from terminating worker. Nulls out the corresponding
1173 * workers slot, and if terminating, tries to terminate; else
1174 * tries to shrink workers array.
1175 *
1176 * @param w the worker
1177 */
1178 final void workerTerminated(ForkJoinWorkerThread w) {
1179 updateStealCount(w);
1180 updateWorkerCount(-1);
1181 final ReentrantLock lock = this.workerLock;
1182 lock.lock();
1183 try {
1184 ForkJoinWorkerThread[] ws = workers;
1185 if (ws != null) {
1186 int idx = w.poolIndex;
1187 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1188 ws[idx] = null;
1189 if (totalCountOf(workerCounts) == 0) {
1190 terminate(); // no-op if already terminating
1191 transitionRunStateTo(TERMINATED);
1192 termination.signalAll();
1193 }
1194 else if (!isTerminating()) {
1195 tryShrinkWorkerArray();
1196 tryResumeSpare(true); // allow replacement
1197 }
1198 }
1199 } finally {
1200 lock.unlock();
1201 }
1202 signalIdleWorkers();
1203 }
1204
1205 /**
1206 * Initiates termination.
1207 */
1208 private void terminate() {
1209 if (transitionRunStateTo(TERMINATING)) {
1210 stopAllWorkers();
1211 resumeAllSpares();
1212 signalIdleWorkers();
1213 cancelQueuedSubmissions();
1214 cancelQueuedWorkerTasks();
1215 interruptUnterminatedWorkers();
1216 signalIdleWorkers(); // resignal after interrupt
1217 }
1218 }
1219
1220 /**
1221 * Possibly terminates when on shutdown state.
1222 */
1223 private void terminateOnShutdown() {
1224 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1225 terminate();
1226 }
1227
1228 /**
1229 * Clears out and cancels submissions.
1230 */
1231 private void cancelQueuedSubmissions() {
1232 ForkJoinTask<?> task;
1233 while ((task = pollSubmission()) != null)
1234 task.cancel(false);
1235 }
1236
1237 /**
1238 * Cleans out worker queues.
1239 */
1240 private void cancelQueuedWorkerTasks() {
1241 final ReentrantLock lock = this.workerLock;
1242 lock.lock();
1243 try {
1244 ForkJoinWorkerThread[] ws = workers;
1245 if (ws != null) {
1246 for (int i = 0; i < ws.length; ++i) {
1247 ForkJoinWorkerThread t = ws[i];
1248 if (t != null)
1249 t.cancelTasks();
1250 }
1251 }
1252 } finally {
1253 lock.unlock();
1254 }
1255 }
1256
1257 /**
1258 * Sets each worker's status to terminating. Requires lock to avoid
1259 * conflicts with add/remove.
1260 */
1261 private void stopAllWorkers() {
1262 final ReentrantLock lock = this.workerLock;
1263 lock.lock();
1264 try {
1265 ForkJoinWorkerThread[] ws = workers;
1266 if (ws != null) {
1267 for (int i = 0; i < ws.length; ++i) {
1268 ForkJoinWorkerThread t = ws[i];
1269 if (t != null)
1270 t.shutdownNow();
1271 }
1272 }
1273 } finally {
1274 lock.unlock();
1275 }
1276 }
1277
1278 /**
1279 * Interrupts all unterminated workers. This is not required for
1280 * sake of internal control, but may help unstick user code during
1281 * shutdown.
1282 */
1283 private void interruptUnterminatedWorkers() {
1284 final ReentrantLock lock = this.workerLock;
1285 lock.lock();
1286 try {
1287 ForkJoinWorkerThread[] ws = workers;
1288 if (ws != null) {
1289 for (int i = 0; i < ws.length; ++i) {
1290 ForkJoinWorkerThread t = ws[i];
1291 if (t != null && !t.isTerminated()) {
1292 try {
1293 t.interrupt();
1294 } catch (SecurityException ignore) {
1295 }
1296 }
1297 }
1298 }
1299 } finally {
1300 lock.unlock();
1301 }
1302 }
1303
1304
1305 /*
1306 * Nodes for event barrier to manage idle threads. Queue nodes
1307 * are basic Treiber stack nodes, also used for spare stack.
1308 *
1309 * The event barrier has an event count and a wait queue (actually
1310 * a Treiber stack). Workers are enabled to look for work when
1311 * the eventCount is incremented. If they fail to find work, they
1312 * may wait for next count. Upon release, threads help others wake
1313 * up.
1314 *
1315 * Synchronization events occur only in enough contexts to
1316 * maintain overall liveness:
1317 *
1318 * - Submission of a new task to the pool
1319 * - Resizes or other changes to the workers array
1320 * - pool termination
1321 * - A worker pushing a task on an empty queue
1322 *
1323 * The case of pushing a task occurs often enough, and is heavy
1324 * enough compared to simple stack pushes, to require special
1325 * handling: Method signalWork returns without advancing count if
1326 * the queue appears to be empty. This would ordinarily result in
1327 * races causing some queued waiters not to be woken up. To avoid
1328 * this, the first worker enqueued in method sync (see
1329 * syncIsReleasable) rescans for tasks after being enqueued, and
1330 * helps signal if any are found. This works well because the
1331 * worker has nothing better to do, and so might as well help
1332 * alleviate the overhead and contention on the threads actually
1333 * doing work. Also, since event counts increments on task
1334 * availability exist to maintain liveness (rather than to force
1335 * refreshes etc), it is OK for callers to exit early if
1336 * contending with another signaller.
1337 */
1338 static final class WaitQueueNode {
1339 WaitQueueNode next; // only written before enqueued
1340 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1341 final long count; // unused for spare stack
1342
1343 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1344 count = c;
1345 thread = w;
1346 }
1347
1348 /**
1349 * Wakes up waiter, returning false if known to already
1350 */
1351 boolean signal() {
1352 ForkJoinWorkerThread t = thread;
1353 if (t == null)
1354 return false;
1355 thread = null;
1356 LockSupport.unpark(t);
1357 return true;
1358 }
1359
1360 /**
1361 * Awaits release on sync.
1362 */
1363 void awaitSyncRelease(ForkJoinPool p) {
1364 while (thread != null && !p.syncIsReleasable(this))
1365 LockSupport.park(this);
1366 }
1367
1368 /**
1369 * Awaits resumption as spare.
1370 */
1371 void awaitSpareRelease() {
1372 while (thread != null) {
1373 if (!Thread.interrupted())
1374 LockSupport.park(this);
1375 }
1376 }
1377 }
1378
1379 /**
1380 * Ensures that no thread is waiting for count to advance from the
1381 * current value of eventCount read on entry to this method, by
1382 * releasing waiting threads if necessary.
1383 *
1384 * @return the count
1385 */
1386 final long ensureSync() {
1387 long c = eventCount;
1388 WaitQueueNode q;
1389 while ((q = syncStack) != null && q.count < c) {
1390 if (casBarrierStack(q, null)) {
1391 do {
1392 q.signal();
1393 } while ((q = q.next) != null);
1394 break;
1395 }
1396 }
1397 return c;
1398 }
1399
1400 /**
1401 * Increments event count and releases waiting threads.
1402 */
1403 private void signalIdleWorkers() {
1404 long c;
1405 do {} while (!casEventCount(c = eventCount, c+1));
1406 ensureSync();
1407 }
1408
1409 /**
1410 * Signals threads waiting to poll a task. Because method sync
1411 * rechecks availability, it is OK to only proceed if queue
1412 * appears to be non-empty, and OK to skip under contention to
1413 * increment count (since some other thread succeeded).
1414 */
1415 final void signalWork() {
1416 long c;
1417 WaitQueueNode q;
1418 if (syncStack != null &&
1419 casEventCount(c = eventCount, c+1) &&
1420 (((q = syncStack) != null && q.count <= c) &&
1421 (!casBarrierStack(q, q.next) || !q.signal())))
1422 ensureSync();
1423 }
1424
1425 /**
1426 * Waits until event count advances from last value held by
1427 * caller, or if excess threads, caller is resumed as spare, or
1428 * caller or pool is terminating. Updates caller's event on exit.
1429 *
1430 * @param w the calling worker thread
1431 */
1432 final void sync(ForkJoinWorkerThread w) {
1433 updateStealCount(w); // Transfer w's count while it is idle
1434
1435 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1436 long prev = w.lastEventCount;
1437 WaitQueueNode node = null;
1438 WaitQueueNode h;
1439 while (eventCount == prev &&
1440 ((h = syncStack) == null || h.count == prev)) {
1441 if (node == null)
1442 node = new WaitQueueNode(prev, w);
1443 if (casBarrierStack(node.next = h, node)) {
1444 node.awaitSyncRelease(this);
1445 break;
1446 }
1447 }
1448 long ec = ensureSync();
1449 if (ec != prev) {
1450 w.lastEventCount = ec;
1451 break;
1452 }
1453 }
1454 }
1455
1456 /**
1457 * Returns true if worker waiting on sync can proceed:
1458 * - on signal (thread == null)
1459 * - on event count advance (winning race to notify vs signaller)
1460 * - on interrupt
1461 * - if the first queued node, we find work available
1462 * If node was not signalled and event count not advanced on exit,
1463 * then we also help advance event count.
1464 *
1465 * @return true if node can be released
1466 */
1467 final boolean syncIsReleasable(WaitQueueNode node) {
1468 long prev = node.count;
1469 if (!Thread.interrupted() && node.thread != null &&
1470 (node.next != null ||
1471 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1472 eventCount == prev)
1473 return false;
1474 if (node.thread != null) {
1475 node.thread = null;
1476 long ec = eventCount;
1477 if (prev <= ec) // help signal
1478 casEventCount(ec, ec+1);
1479 }
1480 return true;
1481 }
1482
1483 /**
1484 * Returns true if a new sync event occurred since last call to
1485 * sync or this method, if so, updating caller's count.
1486 */
1487 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1488 long lc = w.lastEventCount;
1489 long ec = ensureSync();
1490 if (ec == lc)
1491 return false;
1492 w.lastEventCount = ec;
1493 return true;
1494 }
1495
1496 // Parallelism maintenance
1497
1498 /**
1499 * Decrements running count; if too low, adds spare.
1500 *
1501 * Conceptually, all we need to do here is add or resume a
1502 * spare thread when one is about to block (and remove or
1503 * suspend it later when unblocked -- see suspendIfSpare).
1504 * However, implementing this idea requires coping with
1505 * several problems: we have imperfect information about the
1506 * states of threads. Some count updates can and usually do
1507 * lag run state changes, despite arrangements to keep them
1508 * accurate (for example, when possible, updating counts
1509 * before signalling or resuming), especially when running on
1510 * dynamic JVMs that don't optimize the infrequent paths that
1511 * update counts. Generating too many threads can make these
1512 * problems become worse, because excess threads are more
1513 * likely to be context-switched with others, slowing them all
1514 * down, especially if there is no work available, so all are
1515 * busy scanning or idling. Also, excess spare threads can
1516 * only be suspended or removed when they are idle, not
1517 * immediately when they aren't needed. So adding threads will
1518 * raise parallelism level for longer than necessary. Also,
1519 * FJ applications often encounter highly transient peaks when
1520 * many threads are blocked joining, but for less time than it
1521 * takes to create or resume spares.
1522 *
1523 * @param joinMe if non-null, return early if done
1524 * @param maintainParallelism if true, try to stay within
1525 * target counts, else create only to avoid starvation
1526 * @return true if joinMe known to be done
1527 */
1528 final boolean preJoin(ForkJoinTask<?> joinMe,
1529 boolean maintainParallelism) {
1530 maintainParallelism &= maintainsParallelism; // overrride
1531 boolean dec = false; // true when running count decremented
1532 while (spareStack == null || !tryResumeSpare(dec)) {
1533 int counts = workerCounts;
1534 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1535 // CAS cheat
1536 if (!needSpare(counts, maintainParallelism))
1537 break;
1538 if (joinMe.status < 0)
1539 return true;
1540 if (tryAddSpare(counts))
1541 break;
1542 }
1543 }
1544 return false;
1545 }
1546
1547 /**
1548 * Same idea as preJoin
1549 */
1550 final boolean preBlock(ManagedBlocker blocker,
1551 boolean maintainParallelism) {
1552 maintainParallelism &= maintainsParallelism;
1553 boolean dec = false;
1554 while (spareStack == null || !tryResumeSpare(dec)) {
1555 int counts = workerCounts;
1556 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1557 if (!needSpare(counts, maintainParallelism))
1558 break;
1559 if (blocker.isReleasable())
1560 return true;
1561 if (tryAddSpare(counts))
1562 break;
1563 }
1564 }
1565 return false;
1566 }
1567
1568 /**
1569 * Returns true if a spare thread appears to be needed. If
1570 * maintaining parallelism, returns true when the deficit in
1571 * running threads is more than the surplus of total threads, and
1572 * there is apparently some work to do. This self-limiting rule
1573 * means that the more threads that have already been added, the
1574 * less parallelism we will tolerate before adding another.
1575 *
1576 * @param counts current worker counts
1577 * @param maintainParallelism try to maintain parallelism
1578 */
1579 private boolean needSpare(int counts, boolean maintainParallelism) {
1580 int ps = parallelism;
1581 int rc = runningCountOf(counts);
1582 int tc = totalCountOf(counts);
1583 int runningDeficit = ps - rc;
1584 int totalSurplus = tc - ps;
1585 return (tc < maxPoolSize &&
1586 (rc == 0 || totalSurplus < 0 ||
1587 (maintainParallelism &&
1588 runningDeficit > totalSurplus &&
1589 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1590 }
1591
1592 /**
1593 * Adds a spare worker if lock available and no more than the
1594 * expected numbers of threads exist.
1595 *
1596 * @return true if successful
1597 */
1598 private boolean tryAddSpare(int expectedCounts) {
1599 final ReentrantLock lock = this.workerLock;
1600 int expectedRunning = runningCountOf(expectedCounts);
1601 int expectedTotal = totalCountOf(expectedCounts);
1602 boolean success = false;
1603 boolean locked = false;
1604 // confirm counts while locking; CAS after obtaining lock
1605 try {
1606 for (;;) {
1607 int s = workerCounts;
1608 int tc = totalCountOf(s);
1609 int rc = runningCountOf(s);
1610 if (rc > expectedRunning || tc > expectedTotal)
1611 break;
1612 if (!locked && !(locked = lock.tryLock()))
1613 break;
1614 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1615 createAndStartSpare(tc);
1616 success = true;
1617 break;
1618 }
1619 }
1620 } finally {
1621 if (locked)
1622 lock.unlock();
1623 }
1624 return success;
1625 }
1626
1627 /**
1628 * Adds the kth spare worker. On entry, pool counts are already
1629 * adjusted to reflect addition.
1630 */
1631 private void createAndStartSpare(int k) {
1632 ForkJoinWorkerThread w = null;
1633 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1634 int len = ws.length;
1635 // Probably, we can place at slot k. If not, find empty slot
1636 if (k < len && ws[k] != null) {
1637 for (k = 0; k < len && ws[k] != null; ++k)
1638 ;
1639 }
1640 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1641 ws[k] = w;
1642 w.start();
1643 }
1644 else
1645 updateWorkerCount(-1); // adjust on failure
1646 signalIdleWorkers();
1647 }
1648
1649 /**
1650 * Suspends calling thread w if there are excess threads. Called
1651 * only from sync. Spares are enqueued in a Treiber stack using
1652 * the same WaitQueueNodes as barriers. They are resumed mainly
1653 * in preJoin, but are also woken on pool events that require all
1654 * threads to check run state.
1655 *
1656 * @param w the caller
1657 */
1658 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1659 WaitQueueNode node = null;
1660 int s;
1661 while (parallelism < runningCountOf(s = workerCounts)) {
1662 if (node == null)
1663 node = new WaitQueueNode(0, w);
1664 if (casWorkerCounts(s, s-1)) { // representation-dependent
1665 // push onto stack
1666 do {} while (!casSpareStack(node.next = spareStack, node));
1667 // block until released by resumeSpare
1668 node.awaitSpareRelease();
1669 return true;
1670 }
1671 }
1672 return false;
1673 }
1674
1675 /**
1676 * Tries to pop and resume a spare thread.
1677 *
1678 * @param updateCount if true, increment running count on success
1679 * @return true if successful
1680 */
1681 private boolean tryResumeSpare(boolean updateCount) {
1682 WaitQueueNode q;
1683 while ((q = spareStack) != null) {
1684 if (casSpareStack(q, q.next)) {
1685 if (updateCount)
1686 updateRunningCount(1);
1687 q.signal();
1688 return true;
1689 }
1690 }
1691 return false;
1692 }
1693
1694 /**
1695 * Pops and resumes all spare threads. Same idea as ensureSync.
1696 *
1697 * @return true if any spares released
1698 */
1699 private boolean resumeAllSpares() {
1700 WaitQueueNode q;
1701 while ( (q = spareStack) != null) {
1702 if (casSpareStack(q, null)) {
1703 do {
1704 updateRunningCount(1);
1705 q.signal();
1706 } while ((q = q.next) != null);
1707 return true;
1708 }
1709 }
1710 return false;
1711 }
1712
1713 /**
1714 * Pops and shuts down excessive spare threads. Call only while
1715 * holding lock. This is not guaranteed to eliminate all excess
1716 * threads, only those suspended as spares, which are the ones
1717 * unlikely to be needed in the future.
1718 */
1719 private void trimSpares() {
1720 int surplus = totalCountOf(workerCounts) - parallelism;
1721 WaitQueueNode q;
1722 while (surplus > 0 && (q = spareStack) != null) {
1723 if (casSpareStack(q, null)) {
1724 do {
1725 updateRunningCount(1);
1726 ForkJoinWorkerThread w = q.thread;
1727 if (w != null && surplus > 0 &&
1728 runningCountOf(workerCounts) > 0 && w.shutdown())
1729 --surplus;
1730 q.signal();
1731 } while ((q = q.next) != null);
1732 }
1733 }
1734 }
1735
1736 /**
1737 * Interface for extending managed parallelism for tasks running
1738 * in ForkJoinPools. A ManagedBlocker provides two methods.
1739 * Method {@code isReleasable} must return true if blocking is not
1740 * necessary. Method {@code block} blocks the current thread if
1741 * necessary (perhaps internally invoking {@code isReleasable}
1742 * before actually blocking.).
1743 *
1744 * <p>For example, here is a ManagedBlocker based on a
1745 * ReentrantLock:
1746 * <pre> {@code
1747 * class ManagedLocker implements ManagedBlocker {
1748 * final ReentrantLock lock;
1749 * boolean hasLock = false;
1750 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1751 * public boolean block() {
1752 * if (!hasLock)
1753 * lock.lock();
1754 * return true;
1755 * }
1756 * public boolean isReleasable() {
1757 * return hasLock || (hasLock = lock.tryLock());
1758 * }
1759 * }}</pre>
1760 */
1761 public static interface ManagedBlocker {
1762 /**
1763 * Possibly blocks the current thread, for example waiting for
1764 * a lock or condition.
1765 *
1766 * @return true if no additional blocking is necessary (i.e.,
1767 * if isReleasable would return true)
1768 * @throws InterruptedException if interrupted while waiting
1769 * (the method is not required to do so, but is allowed to)
1770 */
1771 boolean block() throws InterruptedException;
1772
1773 /**
1774 * Returns true if blocking is unnecessary.
1775 */
1776 boolean isReleasable();
1777 }
1778
1779 /**
1780 * Blocks in accord with the given blocker. If the current thread
1781 * is a ForkJoinWorkerThread, this method possibly arranges for a
1782 * spare thread to be activated if necessary to ensure parallelism
1783 * while the current thread is blocked. If
1784 * {@code maintainParallelism} is true and the pool supports
1785 * it ({@link #getMaintainsParallelism}), this method attempts to
1786 * maintain the pool's nominal parallelism. Otherwise it activates
1787 * a thread only if necessary to avoid complete starvation. This
1788 * option may be preferable when blockages use timeouts, or are
1789 * almost always brief.
1790 *
1791 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1792 * equivalent to
1793 * <pre> {@code
1794 * while (!blocker.isReleasable())
1795 * if (blocker.block())
1796 * return;
1797 * }</pre>
1798 * If the caller is a ForkJoinTask, then the pool may first
1799 * be expanded to ensure parallelism, and later adjusted.
1800 *
1801 * @param blocker the blocker
1802 * @param maintainParallelism if true and supported by this pool,
1803 * attempt to maintain the pool's nominal parallelism; otherwise
1804 * activate a thread only if necessary to avoid complete
1805 * starvation.
1806 * @throws InterruptedException if blocker.block did so
1807 */
1808 public static void managedBlock(ManagedBlocker blocker,
1809 boolean maintainParallelism)
1810 throws InterruptedException {
1811 Thread t = Thread.currentThread();
1812 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1813 ((ForkJoinWorkerThread) t).pool : null);
1814 if (!blocker.isReleasable()) {
1815 try {
1816 if (pool == null ||
1817 !pool.preBlock(blocker, maintainParallelism))
1818 awaitBlocker(blocker);
1819 } finally {
1820 if (pool != null)
1821 pool.updateRunningCount(1);
1822 }
1823 }
1824 }
1825
1826 private static void awaitBlocker(ManagedBlocker blocker)
1827 throws InterruptedException {
1828 do {} while (!blocker.isReleasable() && !blocker.block());
1829 }
1830
1831 // AbstractExecutorService overrides
1832
1833 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1834 return new AdaptedRunnable(runnable, value);
1835 }
1836
1837 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1838 return new AdaptedCallable(callable);
1839 }
1840
1841
1842 // Temporary Unsafe mechanics for preliminary release
1843 private static Unsafe getUnsafe() throws Throwable {
1844 try {
1845 return Unsafe.getUnsafe();
1846 } catch (SecurityException se) {
1847 try {
1848 return java.security.AccessController.doPrivileged
1849 (new java.security.PrivilegedExceptionAction<Unsafe>() {
1850 public Unsafe run() throws Exception {
1851 return getUnsafePrivileged();
1852 }});
1853 } catch (java.security.PrivilegedActionException e) {
1854 throw e.getCause();
1855 }
1856 }
1857 }
1858
1859 private static Unsafe getUnsafePrivileged()
1860 throws NoSuchFieldException, IllegalAccessException {
1861 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1862 f.setAccessible(true);
1863 return (Unsafe) f.get(null);
1864 }
1865
1866 private static long fieldOffset(String fieldName)
1867 throws NoSuchFieldException {
1868 return UNSAFE.objectFieldOffset
1869 (ForkJoinPool.class.getDeclaredField(fieldName));
1870 }
1871
1872 static final Unsafe UNSAFE;
1873 static final long eventCountOffset;
1874 static final long workerCountsOffset;
1875 static final long runControlOffset;
1876 static final long syncStackOffset;
1877 static final long spareStackOffset;
1878
1879 static {
1880 try {
1881 UNSAFE = getUnsafe();
1882 eventCountOffset = fieldOffset("eventCount");
1883 workerCountsOffset = fieldOffset("workerCounts");
1884 runControlOffset = fieldOffset("runControl");
1885 syncStackOffset = fieldOffset("syncStack");
1886 spareStackOffset = fieldOffset("spareStack");
1887 } catch (Throwable e) {
1888 throw new RuntimeException("Could not initialize intrinsics", e);
1889 }
1890 }
1891
1892 private boolean casEventCount(long cmp, long val) {
1893 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1894 }
1895 private boolean casWorkerCounts(int cmp, int val) {
1896 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1897 }
1898 private boolean casRunControl(int cmp, int val) {
1899 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1900 }
1901 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1902 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1903 }
1904 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1905 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1906 }
1907 }