ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.19
Committed: Fri Jul 24 18:57:56 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.18: +2 -2 lines
Log Message:
add missing generification

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. When setting
31 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
32 * use with fine-grained tasks that are never joined. Otherwise, other
33 * ExecutorService implementations are typically more appropriate
34 * choices.
35 *
36 * <p>A ForkJoinPool may be constructed with a given parallelism level
37 * (target pool size), which it attempts to maintain by dynamically
38 * adding, suspending, or resuming threads, even if some tasks are
39 * waiting to join others. However, no such adjustments are performed
40 * in the face of blocked IO or other unmanaged synchronization. The
41 * nested {@code ManagedBlocker} interface enables extension of
42 * the kinds of synchronization accommodated. The target parallelism
43 * level may also be changed dynamically ({@code setParallelism})
44 * and thread construction can be limited using methods
45 * {@code setMaximumPoolSize} and/or
46 * {@code setMaintainsParallelism}.
47 *
48 * <p>In addition to execution and lifecycle control methods, this
49 * class provides status check methods (for example
50 * {@code getStealCount}) that are intended to aid in developing,
51 * tuning, and monitoring fork/join applications. Also, method
52 * {@code toString} returns indications of pool state in a
53 * convenient form for informal monitoring.
54 *
55 * <p><b>Implementation notes</b>: This implementation restricts the
56 * maximum number of running threads to 32767. Attempts to create
57 * pools with greater than the maximum result in
58 * IllegalArgumentExceptions.
59 *
60 * @since 1.7
61 * @author Doug Lea
62 */
63 public class ForkJoinPool extends AbstractExecutorService {
64
65 /*
66 * See the extended comments interspersed below for design,
67 * rationale, and walkthroughs.
68 */
69
70 /** Mask for packing and unpacking shorts */
71 private static final int shortMask = 0xffff;
72
73 /** Max pool size -- must be a power of two minus 1 */
74 private static final int MAX_THREADS = 0x7FFF;
75
76 /**
77 * Factory for creating new ForkJoinWorkerThreads. A
78 * ForkJoinWorkerThreadFactory must be defined and used for
79 * ForkJoinWorkerThread subclasses that extend base functionality
80 * or initialize threads with different contexts.
81 */
82 public static interface ForkJoinWorkerThreadFactory {
83 /**
84 * Returns a new worker thread operating in the given pool.
85 *
86 * @param pool the pool this thread works in
87 * @throws NullPointerException if pool is null
88 */
89 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
90 }
91
92 /**
93 * Default ForkJoinWorkerThreadFactory implementation; creates a
94 * new ForkJoinWorkerThread.
95 */
96 static class DefaultForkJoinWorkerThreadFactory
97 implements ForkJoinWorkerThreadFactory {
98 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
99 try {
100 return new ForkJoinWorkerThread(pool);
101 } catch (OutOfMemoryError oom) {
102 return null;
103 }
104 }
105 }
106
107 /**
108 * Creates a new ForkJoinWorkerThread. This factory is used unless
109 * overridden in ForkJoinPool constructors.
110 */
111 public static final ForkJoinWorkerThreadFactory
112 defaultForkJoinWorkerThreadFactory =
113 new DefaultForkJoinWorkerThreadFactory();
114
115 /**
116 * Permission required for callers of methods that may start or
117 * kill threads.
118 */
119 private static final RuntimePermission modifyThreadPermission =
120 new RuntimePermission("modifyThread");
121
122 /**
123 * If there is a security manager, makes sure caller has
124 * permission to modify threads.
125 */
126 private static void checkPermission() {
127 SecurityManager security = System.getSecurityManager();
128 if (security != null)
129 security.checkPermission(modifyThreadPermission);
130 }
131
132 /**
133 * Generator for assigning sequence numbers as pool names.
134 */
135 private static final AtomicInteger poolNumberGenerator =
136 new AtomicInteger();
137
138 /**
139 * Array holding all worker threads in the pool. Initialized upon
140 * first use. Array size must be a power of two. Updates and
141 * replacements are protected by workerLock, but it is always kept
142 * in a consistent enough state to be randomly accessed without
143 * locking by workers performing work-stealing.
144 */
145 volatile ForkJoinWorkerThread[] workers;
146
147 /**
148 * Lock protecting access to workers.
149 */
150 private final ReentrantLock workerLock;
151
152 /**
153 * Condition for awaitTermination.
154 */
155 private final Condition termination;
156
157 /**
158 * The uncaught exception handler used when any worker
159 * abruptly terminates
160 */
161 private Thread.UncaughtExceptionHandler ueh;
162
163 /**
164 * Creation factory for worker threads.
165 */
166 private final ForkJoinWorkerThreadFactory factory;
167
168 /**
169 * Head of stack of threads that were created to maintain
170 * parallelism when other threads blocked, but have since
171 * suspended when the parallelism level rose.
172 */
173 private volatile WaitQueueNode spareStack;
174
175 /**
176 * Sum of per-thread steal counts, updated only when threads are
177 * idle or terminating.
178 */
179 private final AtomicLong stealCount;
180
181 /**
182 * Queue for external submissions.
183 */
184 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
185
186 /**
187 * Head of Treiber stack for barrier sync. See below for explanation.
188 */
189 private volatile WaitQueueNode syncStack;
190
191 /**
192 * The count for event barrier
193 */
194 private volatile long eventCount;
195
196 /**
197 * Pool number, just for assigning useful names to worker threads
198 */
199 private final int poolNumber;
200
201 /**
202 * The maximum allowed pool size
203 */
204 private volatile int maxPoolSize;
205
206 /**
207 * The desired parallelism level, updated only under workerLock.
208 */
209 private volatile int parallelism;
210
211 /**
212 * True if use local fifo, not default lifo, for local polling
213 */
214 private volatile boolean locallyFifo;
215
216 /**
217 * Holds number of total (i.e., created and not yet terminated)
218 * and running (i.e., not blocked on joins or other managed sync)
219 * threads, packed into one int to ensure consistent snapshot when
220 * making decisions about creating and suspending spare
221 * threads. Updated only by CAS. Note: CASes in
222 * updateRunningCount and preJoin assume that running active count
223 * is in low word, so need to be modified if this changes.
224 */
225 private volatile int workerCounts;
226
227 private static int totalCountOf(int s) { return s >>> 16; }
228 private static int runningCountOf(int s) { return s & shortMask; }
229 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
230
231 /**
232 * Adds delta (which may be negative) to running count. This must
233 * be called before (with negative arg) and after (with positive)
234 * any managed synchronization (i.e., mainly, joins).
235 *
236 * @param delta the number to add
237 */
238 final void updateRunningCount(int delta) {
239 int s;
240 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
241 }
242
243 /**
244 * Adds delta (which may be negative) to both total and running
245 * count. This must be called upon creation and termination of
246 * worker threads.
247 *
248 * @param delta the number to add
249 */
250 private void updateWorkerCount(int delta) {
251 int d = delta + (delta << 16); // add to both lo and hi parts
252 int s;
253 do {} while (!casWorkerCounts(s = workerCounts, s + d));
254 }
255
256 /**
257 * Lifecycle control. High word contains runState, low word
258 * contains the number of workers that are (probably) executing
259 * tasks. This value is atomically incremented before a worker
260 * gets a task to run, and decremented when worker has no tasks
261 * and cannot find any. These two fields are bundled together to
262 * support correct termination triggering. Note: activeCount
263 * CAS'es cheat by assuming active count is in low word, so need
264 * to be modified if this changes
265 */
266 private volatile int runControl;
267
268 // RunState values. Order among values matters
269 private static final int RUNNING = 0;
270 private static final int SHUTDOWN = 1;
271 private static final int TERMINATING = 2;
272 private static final int TERMINATED = 3;
273
274 private static int runStateOf(int c) { return c >>> 16; }
275 private static int activeCountOf(int c) { return c & shortMask; }
276 private static int runControlFor(int r, int a) { return (r << 16) + a; }
277
278 /**
279 * Tries incrementing active count; fails on contention.
280 * Called by workers before/during executing tasks.
281 *
282 * @return true on success
283 */
284 final boolean tryIncrementActiveCount() {
285 int c = runControl;
286 return casRunControl(c, c+1);
287 }
288
289 /**
290 * Tries decrementing active count; fails on contention.
291 * Possibly triggers termination on success.
292 * Called by workers when they can't find tasks.
293 *
294 * @return true on success
295 */
296 final boolean tryDecrementActiveCount() {
297 int c = runControl;
298 int nextc = c - 1;
299 if (!casRunControl(c, nextc))
300 return false;
301 if (canTerminateOnShutdown(nextc))
302 terminateOnShutdown();
303 return true;
304 }
305
306 /**
307 * Returns true if argument represents zero active count and
308 * nonzero runstate, which is the triggering condition for
309 * terminating on shutdown.
310 */
311 private static boolean canTerminateOnShutdown(int c) {
312 // i.e. least bit is nonzero runState bit
313 return ((c & -c) >>> 16) != 0;
314 }
315
316 /**
317 * Transition run state to at least the given state. Return true
318 * if not already at least given state.
319 */
320 private boolean transitionRunStateTo(int state) {
321 for (;;) {
322 int c = runControl;
323 if (runStateOf(c) >= state)
324 return false;
325 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
326 return true;
327 }
328 }
329
330 /**
331 * Controls whether to add spares to maintain parallelism
332 */
333 private volatile boolean maintainsParallelism;
334
335 // Constructors
336
337 /**
338 * Creates a ForkJoinPool with a pool size equal to the number of
339 * processors available on the system, using the default
340 * ForkJoinWorkerThreadFactory.
341 *
342 * @throws SecurityException if a security manager exists and
343 * the caller is not permitted to modify threads
344 * because it does not hold {@link
345 * java.lang.RuntimePermission}{@code ("modifyThread")}
346 */
347 public ForkJoinPool() {
348 this(Runtime.getRuntime().availableProcessors(),
349 defaultForkJoinWorkerThreadFactory);
350 }
351
352 /**
353 * Creates a ForkJoinPool with the indicated parallelism level
354 * threads and using the default ForkJoinWorkerThreadFactory.
355 *
356 * @param parallelism the number of worker threads
357 * @throws IllegalArgumentException if parallelism less than or
358 * equal to zero
359 * @throws SecurityException if a security manager exists and
360 * the caller is not permitted to modify threads
361 * because it does not hold {@link
362 * java.lang.RuntimePermission}{@code ("modifyThread")}
363 */
364 public ForkJoinPool(int parallelism) {
365 this(parallelism, defaultForkJoinWorkerThreadFactory);
366 }
367
368 /**
369 * Creates a ForkJoinPool with parallelism equal to the number of
370 * processors available on the system and using the given
371 * ForkJoinWorkerThreadFactory.
372 *
373 * @param factory the factory for creating new threads
374 * @throws NullPointerException if factory is null
375 * @throws SecurityException if a security manager exists and
376 * the caller is not permitted to modify threads
377 * because it does not hold {@link
378 * java.lang.RuntimePermission}{@code ("modifyThread")}
379 */
380 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
381 this(Runtime.getRuntime().availableProcessors(), factory);
382 }
383
384 /**
385 * Creates a ForkJoinPool with the given parallelism and factory.
386 *
387 * @param parallelism the targeted number of worker threads
388 * @param factory the factory for creating new threads
389 * @throws IllegalArgumentException if parallelism less than or
390 * equal to zero, or greater than implementation limit
391 * @throws NullPointerException if factory is null
392 * @throws SecurityException if a security manager exists and
393 * the caller is not permitted to modify threads
394 * because it does not hold {@link
395 * java.lang.RuntimePermission}{@code ("modifyThread")}
396 */
397 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
398 if (parallelism <= 0 || parallelism > MAX_THREADS)
399 throw new IllegalArgumentException();
400 if (factory == null)
401 throw new NullPointerException();
402 checkPermission();
403 this.factory = factory;
404 this.parallelism = parallelism;
405 this.maxPoolSize = MAX_THREADS;
406 this.maintainsParallelism = true;
407 this.poolNumber = poolNumberGenerator.incrementAndGet();
408 this.workerLock = new ReentrantLock();
409 this.termination = workerLock.newCondition();
410 this.stealCount = new AtomicLong();
411 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
412 // worker array and workers are lazily constructed
413 }
414
415 /**
416 * Creates a new worker thread using factory.
417 *
418 * @param index the index to assign worker
419 * @return new worker, or null of factory failed
420 */
421 private ForkJoinWorkerThread createWorker(int index) {
422 Thread.UncaughtExceptionHandler h = ueh;
423 ForkJoinWorkerThread w = factory.newThread(this);
424 if (w != null) {
425 w.poolIndex = index;
426 w.setDaemon(true);
427 w.setAsyncMode(locallyFifo);
428 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
429 if (h != null)
430 w.setUncaughtExceptionHandler(h);
431 }
432 return w;
433 }
434
435 /**
436 * Returns a good size for worker array given pool size.
437 * Currently requires size to be a power of two.
438 */
439 private static int arraySizeFor(int poolSize) {
440 return (poolSize <= 1) ? 1 :
441 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
442 }
443
444 /**
445 * Creates or resizes array if necessary to hold newLength.
446 * Call only under exclusion.
447 *
448 * @return the array
449 */
450 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
451 ForkJoinWorkerThread[] ws = workers;
452 if (ws == null)
453 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
454 else if (newLength > ws.length)
455 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
456 else
457 return ws;
458 }
459
460 /**
461 * Tries to shrink workers into smaller array after one or more terminate.
462 */
463 private void tryShrinkWorkerArray() {
464 ForkJoinWorkerThread[] ws = workers;
465 if (ws != null) {
466 int len = ws.length;
467 int last = len - 1;
468 while (last >= 0 && ws[last] == null)
469 --last;
470 int newLength = arraySizeFor(last+1);
471 if (newLength < len)
472 workers = Arrays.copyOf(ws, newLength);
473 }
474 }
475
476 /**
477 * Initializes workers if necessary.
478 */
479 final void ensureWorkerInitialization() {
480 ForkJoinWorkerThread[] ws = workers;
481 if (ws == null) {
482 final ReentrantLock lock = this.workerLock;
483 lock.lock();
484 try {
485 ws = workers;
486 if (ws == null) {
487 int ps = parallelism;
488 ws = ensureWorkerArrayCapacity(ps);
489 for (int i = 0; i < ps; ++i) {
490 ForkJoinWorkerThread w = createWorker(i);
491 if (w != null) {
492 ws[i] = w;
493 w.start();
494 updateWorkerCount(1);
495 }
496 }
497 }
498 } finally {
499 lock.unlock();
500 }
501 }
502 }
503
504 /**
505 * Worker creation and startup for threads added via setParallelism.
506 */
507 private void createAndStartAddedWorkers() {
508 resumeAllSpares(); // Allow spares to convert to nonspare
509 int ps = parallelism;
510 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
511 int len = ws.length;
512 // Sweep through slots, to keep lowest indices most populated
513 int k = 0;
514 while (k < len) {
515 if (ws[k] != null) {
516 ++k;
517 continue;
518 }
519 int s = workerCounts;
520 int tc = totalCountOf(s);
521 int rc = runningCountOf(s);
522 if (rc >= ps || tc >= ps)
523 break;
524 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
525 ForkJoinWorkerThread w = createWorker(k);
526 if (w != null) {
527 ws[k++] = w;
528 w.start();
529 }
530 else {
531 updateWorkerCount(-1); // back out on failed creation
532 break;
533 }
534 }
535 }
536 }
537
538 // Execution methods
539
540 /**
541 * Common code for execute, invoke and submit
542 */
543 private <T> void doSubmit(ForkJoinTask<T> task) {
544 if (isShutdown())
545 throw new RejectedExecutionException();
546 if (workers == null)
547 ensureWorkerInitialization();
548 submissionQueue.offer(task);
549 signalIdleWorkers();
550 }
551
552 /**
553 * Performs the given task, returning its result upon completion.
554 *
555 * @param task the task
556 * @return the task's result
557 * @throws NullPointerException if task is null
558 * @throws RejectedExecutionException if pool is shut down
559 */
560 public <T> T invoke(ForkJoinTask<T> task) {
561 doSubmit(task);
562 return task.join();
563 }
564
565 /**
566 * Arranges for (asynchronous) execution of the given task.
567 *
568 * @param task the task
569 * @throws NullPointerException if task is null
570 * @throws RejectedExecutionException if pool is shut down
571 */
572 public <T> void execute(ForkJoinTask<T> task) {
573 doSubmit(task);
574 }
575
576 // AbstractExecutorService methods
577
578 public void execute(Runnable task) {
579 doSubmit(new AdaptedRunnable<Void>(task, null));
580 }
581
582 public <T> ForkJoinTask<T> submit(Callable<T> task) {
583 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
584 doSubmit(job);
585 return job;
586 }
587
588 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
589 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
590 doSubmit(job);
591 return job;
592 }
593
594 public ForkJoinTask<?> submit(Runnable task) {
595 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
596 doSubmit(job);
597 return job;
598 }
599
600 /**
601 * Adaptor for Runnables. This implements RunnableFuture
602 * to be compliant with AbstractExecutorService constraints.
603 */
604 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
605 implements RunnableFuture<T> {
606 final Runnable runnable;
607 final T resultOnCompletion;
608 T result;
609 AdaptedRunnable(Runnable runnable, T result) {
610 if (runnable == null) throw new NullPointerException();
611 this.runnable = runnable;
612 this.resultOnCompletion = result;
613 }
614 public T getRawResult() { return result; }
615 public void setRawResult(T v) { result = v; }
616 public boolean exec() {
617 runnable.run();
618 result = resultOnCompletion;
619 return true;
620 }
621 public void run() { invoke(); }
622 private static final long serialVersionUID = 5232453952276885070L;
623 }
624
625 /**
626 * Adaptor for Callables
627 */
628 static final class AdaptedCallable<T> extends ForkJoinTask<T>
629 implements RunnableFuture<T> {
630 final Callable<T> callable;
631 T result;
632 AdaptedCallable(Callable<T> callable) {
633 if (callable == null) throw new NullPointerException();
634 this.callable = callable;
635 }
636 public T getRawResult() { return result; }
637 public void setRawResult(T v) { result = v; }
638 public boolean exec() {
639 try {
640 result = callable.call();
641 return true;
642 } catch (Error err) {
643 throw err;
644 } catch (RuntimeException rex) {
645 throw rex;
646 } catch (Exception ex) {
647 throw new RuntimeException(ex);
648 }
649 }
650 public void run() { invoke(); }
651 private static final long serialVersionUID = 2838392045355241008L;
652 }
653
654 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
655 ArrayList<ForkJoinTask<T>> ts =
656 new ArrayList<ForkJoinTask<T>>(tasks.size());
657 for (Callable<T> c : tasks)
658 ts.add(new AdaptedCallable<T>(c));
659 invoke(new InvokeAll<T>(ts));
660 return (List<Future<T>>) (List) ts;
661 }
662
663 static final class InvokeAll<T> extends RecursiveAction {
664 final ArrayList<ForkJoinTask<T>> tasks;
665 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
666 public void compute() {
667 try { invokeAll(tasks); }
668 catch (Exception ignore) {}
669 }
670 private static final long serialVersionUID = -7914297376763021607L;
671 }
672
673 // Configuration and status settings and queries
674
675 /**
676 * Returns the factory used for constructing new workers.
677 *
678 * @return the factory used for constructing new workers
679 */
680 public ForkJoinWorkerThreadFactory getFactory() {
681 return factory;
682 }
683
684 /**
685 * Returns the handler for internal worker threads that terminate
686 * due to unrecoverable errors encountered while executing tasks.
687 *
688 * @return the handler, or null if none
689 */
690 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
691 Thread.UncaughtExceptionHandler h;
692 final ReentrantLock lock = this.workerLock;
693 lock.lock();
694 try {
695 h = ueh;
696 } finally {
697 lock.unlock();
698 }
699 return h;
700 }
701
702 /**
703 * Sets the handler for internal worker threads that terminate due
704 * to unrecoverable errors encountered while executing tasks.
705 * Unless set, the current default or ThreadGroup handler is used
706 * as handler.
707 *
708 * @param h the new handler
709 * @return the old handler, or null if none
710 * @throws SecurityException if a security manager exists and
711 * the caller is not permitted to modify threads
712 * because it does not hold {@link
713 * java.lang.RuntimePermission}{@code ("modifyThread")}
714 */
715 public Thread.UncaughtExceptionHandler
716 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
717 checkPermission();
718 Thread.UncaughtExceptionHandler old = null;
719 final ReentrantLock lock = this.workerLock;
720 lock.lock();
721 try {
722 old = ueh;
723 ueh = h;
724 ForkJoinWorkerThread[] ws = workers;
725 if (ws != null) {
726 for (int i = 0; i < ws.length; ++i) {
727 ForkJoinWorkerThread w = ws[i];
728 if (w != null)
729 w.setUncaughtExceptionHandler(h);
730 }
731 }
732 } finally {
733 lock.unlock();
734 }
735 return old;
736 }
737
738
739 /**
740 * Sets the target parallelism level of this pool.
741 *
742 * @param parallelism the target parallelism
743 * @throws IllegalArgumentException if parallelism less than or
744 * equal to zero or greater than maximum size bounds
745 * @throws SecurityException if a security manager exists and
746 * the caller is not permitted to modify threads
747 * because it does not hold {@link
748 * java.lang.RuntimePermission}{@code ("modifyThread")}
749 */
750 public void setParallelism(int parallelism) {
751 checkPermission();
752 if (parallelism <= 0 || parallelism > maxPoolSize)
753 throw new IllegalArgumentException();
754 final ReentrantLock lock = this.workerLock;
755 lock.lock();
756 try {
757 if (!isTerminating()) {
758 int p = this.parallelism;
759 this.parallelism = parallelism;
760 if (parallelism > p)
761 createAndStartAddedWorkers();
762 else
763 trimSpares();
764 }
765 } finally {
766 lock.unlock();
767 }
768 signalIdleWorkers();
769 }
770
771 /**
772 * Returns the targeted number of worker threads in this pool.
773 *
774 * @return the targeted number of worker threads in this pool
775 */
776 public int getParallelism() {
777 return parallelism;
778 }
779
780 /**
781 * Returns the number of worker threads that have started but not
782 * yet terminated. This result returned by this method may differ
783 * from {@code getParallelism} when threads are created to
784 * maintain parallelism when others are cooperatively blocked.
785 *
786 * @return the number of worker threads
787 */
788 public int getPoolSize() {
789 return totalCountOf(workerCounts);
790 }
791
792 /**
793 * Returns the maximum number of threads allowed to exist in the
794 * pool, even if there are insufficient unblocked running threads.
795 *
796 * @return the maximum
797 */
798 public int getMaximumPoolSize() {
799 return maxPoolSize;
800 }
801
802 /**
803 * Sets the maximum number of threads allowed to exist in the
804 * pool, even if there are insufficient unblocked running threads.
805 * Setting this value has no effect on current pool size. It
806 * controls construction of new threads.
807 *
808 * @throws IllegalArgumentException if negative or greater then
809 * internal implementation limit
810 */
811 public void setMaximumPoolSize(int newMax) {
812 if (newMax < 0 || newMax > MAX_THREADS)
813 throw new IllegalArgumentException();
814 maxPoolSize = newMax;
815 }
816
817
818 /**
819 * Returns true if this pool dynamically maintains its target
820 * parallelism level. If false, new threads are added only to
821 * avoid possible starvation.
822 * This setting is by default true.
823 *
824 * @return true if maintains parallelism
825 */
826 public boolean getMaintainsParallelism() {
827 return maintainsParallelism;
828 }
829
830 /**
831 * Sets whether this pool dynamically maintains its target
832 * parallelism level. If false, new threads are added only to
833 * avoid possible starvation.
834 *
835 * @param enable true to maintains parallelism
836 */
837 public void setMaintainsParallelism(boolean enable) {
838 maintainsParallelism = enable;
839 }
840
841 /**
842 * Establishes local first-in-first-out scheduling mode for forked
843 * tasks that are never joined. This mode may be more appropriate
844 * than default locally stack-based mode in applications in which
845 * worker threads only process asynchronous tasks. This method is
846 * designed to be invoked only when pool is quiescent, and
847 * typically only before any tasks are submitted. The effects of
848 * invocations at other times may be unpredictable.
849 *
850 * @param async if true, use locally FIFO scheduling
851 * @return the previous mode
852 */
853 public boolean setAsyncMode(boolean async) {
854 boolean oldMode = locallyFifo;
855 locallyFifo = async;
856 ForkJoinWorkerThread[] ws = workers;
857 if (ws != null) {
858 for (int i = 0; i < ws.length; ++i) {
859 ForkJoinWorkerThread t = ws[i];
860 if (t != null)
861 t.setAsyncMode(async);
862 }
863 }
864 return oldMode;
865 }
866
867 /**
868 * Returns true if this pool uses local first-in-first-out
869 * scheduling mode for forked tasks that are never joined.
870 *
871 * @return true if this pool uses async mode
872 */
873 public boolean getAsyncMode() {
874 return locallyFifo;
875 }
876
877 /**
878 * Returns an estimate of the number of worker threads that are
879 * not blocked waiting to join tasks or for other managed
880 * synchronization.
881 *
882 * @return the number of worker threads
883 */
884 public int getRunningThreadCount() {
885 return runningCountOf(workerCounts);
886 }
887
888 /**
889 * Returns an estimate of the number of threads that are currently
890 * stealing or executing tasks. This method may overestimate the
891 * number of active threads.
892 *
893 * @return the number of active threads
894 */
895 public int getActiveThreadCount() {
896 return activeCountOf(runControl);
897 }
898
899 /**
900 * Returns an estimate of the number of threads that are currently
901 * idle waiting for tasks. This method may underestimate the
902 * number of idle threads.
903 *
904 * @return the number of idle threads
905 */
906 final int getIdleThreadCount() {
907 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
908 return (c <= 0) ? 0 : c;
909 }
910
911 /**
912 * Returns true if all worker threads are currently idle. An idle
913 * worker is one that cannot obtain a task to execute because none
914 * are available to steal from other threads, and there are no
915 * pending submissions to the pool. This method is conservative;
916 * it might not return true immediately upon idleness of all
917 * threads, but will eventually become true if threads remain
918 * inactive.
919 *
920 * @return true if all threads are currently idle
921 */
922 public boolean isQuiescent() {
923 return activeCountOf(runControl) == 0;
924 }
925
926 /**
927 * Returns an estimate of the total number of tasks stolen from
928 * one thread's work queue by another. The reported value
929 * underestimates the actual total number of steals when the pool
930 * is not quiescent. This value may be useful for monitoring and
931 * tuning fork/join programs: in general, steal counts should be
932 * high enough to keep threads busy, but low enough to avoid
933 * overhead and contention across threads.
934 *
935 * @return the number of steals
936 */
937 public long getStealCount() {
938 return stealCount.get();
939 }
940
941 /**
942 * Accumulates steal count from a worker.
943 * Call only when worker known to be idle.
944 */
945 private void updateStealCount(ForkJoinWorkerThread w) {
946 int sc = w.getAndClearStealCount();
947 if (sc != 0)
948 stealCount.addAndGet(sc);
949 }
950
951 /**
952 * Returns an estimate of the total number of tasks currently held
953 * in queues by worker threads (but not including tasks submitted
954 * to the pool that have not begun executing). This value is only
955 * an approximation, obtained by iterating across all threads in
956 * the pool. This method may be useful for tuning task
957 * granularities.
958 *
959 * @return the number of queued tasks
960 */
961 public long getQueuedTaskCount() {
962 long count = 0;
963 ForkJoinWorkerThread[] ws = workers;
964 if (ws != null) {
965 for (int i = 0; i < ws.length; ++i) {
966 ForkJoinWorkerThread t = ws[i];
967 if (t != null)
968 count += t.getQueueSize();
969 }
970 }
971 return count;
972 }
973
974 /**
975 * Returns an estimate of the number tasks submitted to this pool
976 * that have not yet begun executing. This method takes time
977 * proportional to the number of submissions.
978 *
979 * @return the number of queued submissions
980 */
981 public int getQueuedSubmissionCount() {
982 return submissionQueue.size();
983 }
984
985 /**
986 * Returns true if there are any tasks submitted to this pool
987 * that have not yet begun executing.
988 *
989 * @return {@code true} if there are any queued submissions
990 */
991 public boolean hasQueuedSubmissions() {
992 return !submissionQueue.isEmpty();
993 }
994
995 /**
996 * Removes and returns the next unexecuted submission if one is
997 * available. This method may be useful in extensions to this
998 * class that re-assign work in systems with multiple pools.
999 *
1000 * @return the next submission, or null if none
1001 */
1002 protected ForkJoinTask<?> pollSubmission() {
1003 return submissionQueue.poll();
1004 }
1005
1006 /**
1007 * Removes all available unexecuted submitted and forked tasks
1008 * from scheduling queues and adds them to the given collection,
1009 * without altering their execution status. These may include
1010 * artificially generated or wrapped tasks. This method is designed
1011 * to be invoked only when the pool is known to be
1012 * quiescent. Invocations at other times may not remove all
1013 * tasks. A failure encountered while attempting to add elements
1014 * to collection {@code c} may result in elements being in
1015 * neither, either or both collections when the associated
1016 * exception is thrown. The behavior of this operation is
1017 * undefined if the specified collection is modified while the
1018 * operation is in progress.
1019 *
1020 * @param c the collection to transfer elements into
1021 * @return the number of elements transferred
1022 */
1023 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1024 int n = submissionQueue.drainTo(c);
1025 ForkJoinWorkerThread[] ws = workers;
1026 if (ws != null) {
1027 for (int i = 0; i < ws.length; ++i) {
1028 ForkJoinWorkerThread w = ws[i];
1029 if (w != null)
1030 n += w.drainTasksTo(c);
1031 }
1032 }
1033 return n;
1034 }
1035
1036 /**
1037 * Returns a string identifying this pool, as well as its state,
1038 * including indications of run state, parallelism level, and
1039 * worker and task counts.
1040 *
1041 * @return a string identifying this pool, as well as its state
1042 */
1043 public String toString() {
1044 int ps = parallelism;
1045 int wc = workerCounts;
1046 int rc = runControl;
1047 long st = getStealCount();
1048 long qt = getQueuedTaskCount();
1049 long qs = getQueuedSubmissionCount();
1050 return super.toString() +
1051 "[" + runStateToString(runStateOf(rc)) +
1052 ", parallelism = " + ps +
1053 ", size = " + totalCountOf(wc) +
1054 ", active = " + activeCountOf(rc) +
1055 ", running = " + runningCountOf(wc) +
1056 ", steals = " + st +
1057 ", tasks = " + qt +
1058 ", submissions = " + qs +
1059 "]";
1060 }
1061
1062 private static String runStateToString(int rs) {
1063 switch(rs) {
1064 case RUNNING: return "Running";
1065 case SHUTDOWN: return "Shutting down";
1066 case TERMINATING: return "Terminating";
1067 case TERMINATED: return "Terminated";
1068 default: throw new Error("Unknown run state");
1069 }
1070 }
1071
1072 // lifecycle control
1073
1074 /**
1075 * Initiates an orderly shutdown in which previously submitted
1076 * tasks are executed, but no new tasks will be accepted.
1077 * Invocation has no additional effect if already shut down.
1078 * Tasks that are in the process of being submitted concurrently
1079 * during the course of this method may or may not be rejected.
1080 *
1081 * @throws SecurityException if a security manager exists and
1082 * the caller is not permitted to modify threads
1083 * because it does not hold {@link
1084 * java.lang.RuntimePermission}{@code ("modifyThread")}
1085 */
1086 public void shutdown() {
1087 checkPermission();
1088 transitionRunStateTo(SHUTDOWN);
1089 if (canTerminateOnShutdown(runControl))
1090 terminateOnShutdown();
1091 }
1092
1093 /**
1094 * Attempts to stop all actively executing tasks, and cancels all
1095 * waiting tasks. Tasks that are in the process of being
1096 * submitted or executed concurrently during the course of this
1097 * method may or may not be rejected. Unlike some other executors,
1098 * this method cancels rather than collects non-executed tasks
1099 * upon termination, so always returns an empty list. However, you
1100 * can use method {@code drainTasksTo} before invoking this
1101 * method to transfer unexecuted tasks to another collection.
1102 *
1103 * @return an empty list
1104 * @throws SecurityException if a security manager exists and
1105 * the caller is not permitted to modify threads
1106 * because it does not hold {@link
1107 * java.lang.RuntimePermission}{@code ("modifyThread")}
1108 */
1109 public List<Runnable> shutdownNow() {
1110 checkPermission();
1111 terminate();
1112 return Collections.emptyList();
1113 }
1114
1115 /**
1116 * Returns {@code true} if all tasks have completed following shut down.
1117 *
1118 * @return {@code true} if all tasks have completed following shut down
1119 */
1120 public boolean isTerminated() {
1121 return runStateOf(runControl) == TERMINATED;
1122 }
1123
1124 /**
1125 * Returns {@code true} if the process of termination has
1126 * commenced but possibly not yet completed.
1127 *
1128 * @return {@code true} if terminating
1129 */
1130 public boolean isTerminating() {
1131 return runStateOf(runControl) >= TERMINATING;
1132 }
1133
1134 /**
1135 * Returns {@code true} if this pool has been shut down.
1136 *
1137 * @return {@code true} if this pool has been shut down
1138 */
1139 public boolean isShutdown() {
1140 return runStateOf(runControl) >= SHUTDOWN;
1141 }
1142
1143 /**
1144 * Blocks until all tasks have completed execution after a shutdown
1145 * request, or the timeout occurs, or the current thread is
1146 * interrupted, whichever happens first.
1147 *
1148 * @param timeout the maximum time to wait
1149 * @param unit the time unit of the timeout argument
1150 * @return {@code true} if this executor terminated and
1151 * {@code false} if the timeout elapsed before termination
1152 * @throws InterruptedException if interrupted while waiting
1153 */
1154 public boolean awaitTermination(long timeout, TimeUnit unit)
1155 throws InterruptedException {
1156 long nanos = unit.toNanos(timeout);
1157 final ReentrantLock lock = this.workerLock;
1158 lock.lock();
1159 try {
1160 for (;;) {
1161 if (isTerminated())
1162 return true;
1163 if (nanos <= 0)
1164 return false;
1165 nanos = termination.awaitNanos(nanos);
1166 }
1167 } finally {
1168 lock.unlock();
1169 }
1170 }
1171
1172 // Shutdown and termination support
1173
1174 /**
1175 * Callback from terminating worker. Nulls out the corresponding
1176 * workers slot, and if terminating, tries to terminate; else
1177 * tries to shrink workers array.
1178 *
1179 * @param w the worker
1180 */
1181 final void workerTerminated(ForkJoinWorkerThread w) {
1182 updateStealCount(w);
1183 updateWorkerCount(-1);
1184 final ReentrantLock lock = this.workerLock;
1185 lock.lock();
1186 try {
1187 ForkJoinWorkerThread[] ws = workers;
1188 if (ws != null) {
1189 int idx = w.poolIndex;
1190 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1191 ws[idx] = null;
1192 if (totalCountOf(workerCounts) == 0) {
1193 terminate(); // no-op if already terminating
1194 transitionRunStateTo(TERMINATED);
1195 termination.signalAll();
1196 }
1197 else if (!isTerminating()) {
1198 tryShrinkWorkerArray();
1199 tryResumeSpare(true); // allow replacement
1200 }
1201 }
1202 } finally {
1203 lock.unlock();
1204 }
1205 signalIdleWorkers();
1206 }
1207
1208 /**
1209 * Initiates termination.
1210 */
1211 private void terminate() {
1212 if (transitionRunStateTo(TERMINATING)) {
1213 stopAllWorkers();
1214 resumeAllSpares();
1215 signalIdleWorkers();
1216 cancelQueuedSubmissions();
1217 cancelQueuedWorkerTasks();
1218 interruptUnterminatedWorkers();
1219 signalIdleWorkers(); // resignal after interrupt
1220 }
1221 }
1222
1223 /**
1224 * Possibly terminates when on shutdown state.
1225 */
1226 private void terminateOnShutdown() {
1227 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1228 terminate();
1229 }
1230
1231 /**
1232 * Clears out and cancels submissions.
1233 */
1234 private void cancelQueuedSubmissions() {
1235 ForkJoinTask<?> task;
1236 while ((task = pollSubmission()) != null)
1237 task.cancel(false);
1238 }
1239
1240 /**
1241 * Cleans out worker queues.
1242 */
1243 private void cancelQueuedWorkerTasks() {
1244 final ReentrantLock lock = this.workerLock;
1245 lock.lock();
1246 try {
1247 ForkJoinWorkerThread[] ws = workers;
1248 if (ws != null) {
1249 for (int i = 0; i < ws.length; ++i) {
1250 ForkJoinWorkerThread t = ws[i];
1251 if (t != null)
1252 t.cancelTasks();
1253 }
1254 }
1255 } finally {
1256 lock.unlock();
1257 }
1258 }
1259
1260 /**
1261 * Sets each worker's status to terminating. Requires lock to avoid
1262 * conflicts with add/remove.
1263 */
1264 private void stopAllWorkers() {
1265 final ReentrantLock lock = this.workerLock;
1266 lock.lock();
1267 try {
1268 ForkJoinWorkerThread[] ws = workers;
1269 if (ws != null) {
1270 for (int i = 0; i < ws.length; ++i) {
1271 ForkJoinWorkerThread t = ws[i];
1272 if (t != null)
1273 t.shutdownNow();
1274 }
1275 }
1276 } finally {
1277 lock.unlock();
1278 }
1279 }
1280
1281 /**
1282 * Interrupts all unterminated workers. This is not required for
1283 * sake of internal control, but may help unstick user code during
1284 * shutdown.
1285 */
1286 private void interruptUnterminatedWorkers() {
1287 final ReentrantLock lock = this.workerLock;
1288 lock.lock();
1289 try {
1290 ForkJoinWorkerThread[] ws = workers;
1291 if (ws != null) {
1292 for (int i = 0; i < ws.length; ++i) {
1293 ForkJoinWorkerThread t = ws[i];
1294 if (t != null && !t.isTerminated()) {
1295 try {
1296 t.interrupt();
1297 } catch (SecurityException ignore) {
1298 }
1299 }
1300 }
1301 }
1302 } finally {
1303 lock.unlock();
1304 }
1305 }
1306
1307
1308 /*
1309 * Nodes for event barrier to manage idle threads. Queue nodes
1310 * are basic Treiber stack nodes, also used for spare stack.
1311 *
1312 * The event barrier has an event count and a wait queue (actually
1313 * a Treiber stack). Workers are enabled to look for work when
1314 * the eventCount is incremented. If they fail to find work, they
1315 * may wait for next count. Upon release, threads help others wake
1316 * up.
1317 *
1318 * Synchronization events occur only in enough contexts to
1319 * maintain overall liveness:
1320 *
1321 * - Submission of a new task to the pool
1322 * - Resizes or other changes to the workers array
1323 * - pool termination
1324 * - A worker pushing a task on an empty queue
1325 *
1326 * The case of pushing a task occurs often enough, and is heavy
1327 * enough compared to simple stack pushes, to require special
1328 * handling: Method signalWork returns without advancing count if
1329 * the queue appears to be empty. This would ordinarily result in
1330 * races causing some queued waiters not to be woken up. To avoid
1331 * this, the first worker enqueued in method sync (see
1332 * syncIsReleasable) rescans for tasks after being enqueued, and
1333 * helps signal if any are found. This works well because the
1334 * worker has nothing better to do, and so might as well help
1335 * alleviate the overhead and contention on the threads actually
1336 * doing work. Also, since event counts increments on task
1337 * availability exist to maintain liveness (rather than to force
1338 * refreshes etc), it is OK for callers to exit early if
1339 * contending with another signaller.
1340 */
1341 static final class WaitQueueNode {
1342 WaitQueueNode next; // only written before enqueued
1343 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1344 final long count; // unused for spare stack
1345
1346 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1347 count = c;
1348 thread = w;
1349 }
1350
1351 /**
1352 * Wakes up waiter, returning false if known to already
1353 */
1354 boolean signal() {
1355 ForkJoinWorkerThread t = thread;
1356 if (t == null)
1357 return false;
1358 thread = null;
1359 LockSupport.unpark(t);
1360 return true;
1361 }
1362
1363 /**
1364 * Awaits release on sync.
1365 */
1366 void awaitSyncRelease(ForkJoinPool p) {
1367 while (thread != null && !p.syncIsReleasable(this))
1368 LockSupport.park(this);
1369 }
1370
1371 /**
1372 * Awaits resumption as spare.
1373 */
1374 void awaitSpareRelease() {
1375 while (thread != null) {
1376 if (!Thread.interrupted())
1377 LockSupport.park(this);
1378 }
1379 }
1380 }
1381
1382 /**
1383 * Ensures that no thread is waiting for count to advance from the
1384 * current value of eventCount read on entry to this method, by
1385 * releasing waiting threads if necessary.
1386 *
1387 * @return the count
1388 */
1389 final long ensureSync() {
1390 long c = eventCount;
1391 WaitQueueNode q;
1392 while ((q = syncStack) != null && q.count < c) {
1393 if (casBarrierStack(q, null)) {
1394 do {
1395 q.signal();
1396 } while ((q = q.next) != null);
1397 break;
1398 }
1399 }
1400 return c;
1401 }
1402
1403 /**
1404 * Increments event count and releases waiting threads.
1405 */
1406 private void signalIdleWorkers() {
1407 long c;
1408 do {} while (!casEventCount(c = eventCount, c+1));
1409 ensureSync();
1410 }
1411
1412 /**
1413 * Signals threads waiting to poll a task. Because method sync
1414 * rechecks availability, it is OK to only proceed if queue
1415 * appears to be non-empty, and OK to skip under contention to
1416 * increment count (since some other thread succeeded).
1417 */
1418 final void signalWork() {
1419 long c;
1420 WaitQueueNode q;
1421 if (syncStack != null &&
1422 casEventCount(c = eventCount, c+1) &&
1423 (((q = syncStack) != null && q.count <= c) &&
1424 (!casBarrierStack(q, q.next) || !q.signal())))
1425 ensureSync();
1426 }
1427
1428 /**
1429 * Waits until event count advances from last value held by
1430 * caller, or if excess threads, caller is resumed as spare, or
1431 * caller or pool is terminating. Updates caller's event on exit.
1432 *
1433 * @param w the calling worker thread
1434 */
1435 final void sync(ForkJoinWorkerThread w) {
1436 updateStealCount(w); // Transfer w's count while it is idle
1437
1438 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1439 long prev = w.lastEventCount;
1440 WaitQueueNode node = null;
1441 WaitQueueNode h;
1442 while (eventCount == prev &&
1443 ((h = syncStack) == null || h.count == prev)) {
1444 if (node == null)
1445 node = new WaitQueueNode(prev, w);
1446 if (casBarrierStack(node.next = h, node)) {
1447 node.awaitSyncRelease(this);
1448 break;
1449 }
1450 }
1451 long ec = ensureSync();
1452 if (ec != prev) {
1453 w.lastEventCount = ec;
1454 break;
1455 }
1456 }
1457 }
1458
1459 /**
1460 * Returns true if worker waiting on sync can proceed:
1461 * - on signal (thread == null)
1462 * - on event count advance (winning race to notify vs signaller)
1463 * - on interrupt
1464 * - if the first queued node, we find work available
1465 * If node was not signalled and event count not advanced on exit,
1466 * then we also help advance event count.
1467 *
1468 * @return true if node can be released
1469 */
1470 final boolean syncIsReleasable(WaitQueueNode node) {
1471 long prev = node.count;
1472 if (!Thread.interrupted() && node.thread != null &&
1473 (node.next != null ||
1474 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1475 eventCount == prev)
1476 return false;
1477 if (node.thread != null) {
1478 node.thread = null;
1479 long ec = eventCount;
1480 if (prev <= ec) // help signal
1481 casEventCount(ec, ec+1);
1482 }
1483 return true;
1484 }
1485
1486 /**
1487 * Returns true if a new sync event occurred since last call to
1488 * sync or this method, if so, updating caller's count.
1489 */
1490 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1491 long lc = w.lastEventCount;
1492 long ec = ensureSync();
1493 if (ec == lc)
1494 return false;
1495 w.lastEventCount = ec;
1496 return true;
1497 }
1498
1499 // Parallelism maintenance
1500
1501 /**
1502 * Decrements running count; if too low, adds spare.
1503 *
1504 * Conceptually, all we need to do here is add or resume a
1505 * spare thread when one is about to block (and remove or
1506 * suspend it later when unblocked -- see suspendIfSpare).
1507 * However, implementing this idea requires coping with
1508 * several problems: we have imperfect information about the
1509 * states of threads. Some count updates can and usually do
1510 * lag run state changes, despite arrangements to keep them
1511 * accurate (for example, when possible, updating counts
1512 * before signalling or resuming), especially when running on
1513 * dynamic JVMs that don't optimize the infrequent paths that
1514 * update counts. Generating too many threads can make these
1515 * problems become worse, because excess threads are more
1516 * likely to be context-switched with others, slowing them all
1517 * down, especially if there is no work available, so all are
1518 * busy scanning or idling. Also, excess spare threads can
1519 * only be suspended or removed when they are idle, not
1520 * immediately when they aren't needed. So adding threads will
1521 * raise parallelism level for longer than necessary. Also,
1522 * FJ applications often encounter highly transient peaks when
1523 * many threads are blocked joining, but for less time than it
1524 * takes to create or resume spares.
1525 *
1526 * @param joinMe if non-null, return early if done
1527 * @param maintainParallelism if true, try to stay within
1528 * target counts, else create only to avoid starvation
1529 * @return true if joinMe known to be done
1530 */
1531 final boolean preJoin(ForkJoinTask<?> joinMe,
1532 boolean maintainParallelism) {
1533 maintainParallelism &= maintainsParallelism; // overrride
1534 boolean dec = false; // true when running count decremented
1535 while (spareStack == null || !tryResumeSpare(dec)) {
1536 int counts = workerCounts;
1537 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1538 // CAS cheat
1539 if (!needSpare(counts, maintainParallelism))
1540 break;
1541 if (joinMe.status < 0)
1542 return true;
1543 if (tryAddSpare(counts))
1544 break;
1545 }
1546 }
1547 return false;
1548 }
1549
1550 /**
1551 * Same idea as preJoin
1552 */
1553 final boolean preBlock(ManagedBlocker blocker,
1554 boolean maintainParallelism) {
1555 maintainParallelism &= maintainsParallelism;
1556 boolean dec = false;
1557 while (spareStack == null || !tryResumeSpare(dec)) {
1558 int counts = workerCounts;
1559 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1560 if (!needSpare(counts, maintainParallelism))
1561 break;
1562 if (blocker.isReleasable())
1563 return true;
1564 if (tryAddSpare(counts))
1565 break;
1566 }
1567 }
1568 return false;
1569 }
1570
1571 /**
1572 * Returns true if a spare thread appears to be needed. If
1573 * maintaining parallelism, returns true when the deficit in
1574 * running threads is more than the surplus of total threads, and
1575 * there is apparently some work to do. This self-limiting rule
1576 * means that the more threads that have already been added, the
1577 * less parallelism we will tolerate before adding another.
1578 *
1579 * @param counts current worker counts
1580 * @param maintainParallelism try to maintain parallelism
1581 */
1582 private boolean needSpare(int counts, boolean maintainParallelism) {
1583 int ps = parallelism;
1584 int rc = runningCountOf(counts);
1585 int tc = totalCountOf(counts);
1586 int runningDeficit = ps - rc;
1587 int totalSurplus = tc - ps;
1588 return (tc < maxPoolSize &&
1589 (rc == 0 || totalSurplus < 0 ||
1590 (maintainParallelism &&
1591 runningDeficit > totalSurplus &&
1592 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1593 }
1594
1595 /**
1596 * Adds a spare worker if lock available and no more than the
1597 * expected numbers of threads exist.
1598 *
1599 * @return true if successful
1600 */
1601 private boolean tryAddSpare(int expectedCounts) {
1602 final ReentrantLock lock = this.workerLock;
1603 int expectedRunning = runningCountOf(expectedCounts);
1604 int expectedTotal = totalCountOf(expectedCounts);
1605 boolean success = false;
1606 boolean locked = false;
1607 // confirm counts while locking; CAS after obtaining lock
1608 try {
1609 for (;;) {
1610 int s = workerCounts;
1611 int tc = totalCountOf(s);
1612 int rc = runningCountOf(s);
1613 if (rc > expectedRunning || tc > expectedTotal)
1614 break;
1615 if (!locked && !(locked = lock.tryLock()))
1616 break;
1617 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1618 createAndStartSpare(tc);
1619 success = true;
1620 break;
1621 }
1622 }
1623 } finally {
1624 if (locked)
1625 lock.unlock();
1626 }
1627 return success;
1628 }
1629
1630 /**
1631 * Adds the kth spare worker. On entry, pool counts are already
1632 * adjusted to reflect addition.
1633 */
1634 private void createAndStartSpare(int k) {
1635 ForkJoinWorkerThread w = null;
1636 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1637 int len = ws.length;
1638 // Probably, we can place at slot k. If not, find empty slot
1639 if (k < len && ws[k] != null) {
1640 for (k = 0; k < len && ws[k] != null; ++k)
1641 ;
1642 }
1643 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1644 ws[k] = w;
1645 w.start();
1646 }
1647 else
1648 updateWorkerCount(-1); // adjust on failure
1649 signalIdleWorkers();
1650 }
1651
1652 /**
1653 * Suspends calling thread w if there are excess threads. Called
1654 * only from sync. Spares are enqueued in a Treiber stack using
1655 * the same WaitQueueNodes as barriers. They are resumed mainly
1656 * in preJoin, but are also woken on pool events that require all
1657 * threads to check run state.
1658 *
1659 * @param w the caller
1660 */
1661 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1662 WaitQueueNode node = null;
1663 int s;
1664 while (parallelism < runningCountOf(s = workerCounts)) {
1665 if (node == null)
1666 node = new WaitQueueNode(0, w);
1667 if (casWorkerCounts(s, s-1)) { // representation-dependent
1668 // push onto stack
1669 do {} while (!casSpareStack(node.next = spareStack, node));
1670 // block until released by resumeSpare
1671 node.awaitSpareRelease();
1672 return true;
1673 }
1674 }
1675 return false;
1676 }
1677
1678 /**
1679 * Tries to pop and resume a spare thread.
1680 *
1681 * @param updateCount if true, increment running count on success
1682 * @return true if successful
1683 */
1684 private boolean tryResumeSpare(boolean updateCount) {
1685 WaitQueueNode q;
1686 while ((q = spareStack) != null) {
1687 if (casSpareStack(q, q.next)) {
1688 if (updateCount)
1689 updateRunningCount(1);
1690 q.signal();
1691 return true;
1692 }
1693 }
1694 return false;
1695 }
1696
1697 /**
1698 * Pops and resumes all spare threads. Same idea as ensureSync.
1699 *
1700 * @return true if any spares released
1701 */
1702 private boolean resumeAllSpares() {
1703 WaitQueueNode q;
1704 while ( (q = spareStack) != null) {
1705 if (casSpareStack(q, null)) {
1706 do {
1707 updateRunningCount(1);
1708 q.signal();
1709 } while ((q = q.next) != null);
1710 return true;
1711 }
1712 }
1713 return false;
1714 }
1715
1716 /**
1717 * Pops and shuts down excessive spare threads. Call only while
1718 * holding lock. This is not guaranteed to eliminate all excess
1719 * threads, only those suspended as spares, which are the ones
1720 * unlikely to be needed in the future.
1721 */
1722 private void trimSpares() {
1723 int surplus = totalCountOf(workerCounts) - parallelism;
1724 WaitQueueNode q;
1725 while (surplus > 0 && (q = spareStack) != null) {
1726 if (casSpareStack(q, null)) {
1727 do {
1728 updateRunningCount(1);
1729 ForkJoinWorkerThread w = q.thread;
1730 if (w != null && surplus > 0 &&
1731 runningCountOf(workerCounts) > 0 && w.shutdown())
1732 --surplus;
1733 q.signal();
1734 } while ((q = q.next) != null);
1735 }
1736 }
1737 }
1738
1739 /**
1740 * Interface for extending managed parallelism for tasks running
1741 * in ForkJoinPools. A ManagedBlocker provides two methods.
1742 * Method {@code isReleasable} must return true if blocking is not
1743 * necessary. Method {@code block} blocks the current thread if
1744 * necessary (perhaps internally invoking {@code isReleasable}
1745 * before actually blocking.).
1746 *
1747 * <p>For example, here is a ManagedBlocker based on a
1748 * ReentrantLock:
1749 * <pre> {@code
1750 * class ManagedLocker implements ManagedBlocker {
1751 * final ReentrantLock lock;
1752 * boolean hasLock = false;
1753 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1754 * public boolean block() {
1755 * if (!hasLock)
1756 * lock.lock();
1757 * return true;
1758 * }
1759 * public boolean isReleasable() {
1760 * return hasLock || (hasLock = lock.tryLock());
1761 * }
1762 * }}</pre>
1763 */
1764 public static interface ManagedBlocker {
1765 /**
1766 * Possibly blocks the current thread, for example waiting for
1767 * a lock or condition.
1768 *
1769 * @return true if no additional blocking is necessary (i.e.,
1770 * if isReleasable would return true)
1771 * @throws InterruptedException if interrupted while waiting
1772 * (the method is not required to do so, but is allowed to)
1773 */
1774 boolean block() throws InterruptedException;
1775
1776 /**
1777 * Returns true if blocking is unnecessary.
1778 */
1779 boolean isReleasable();
1780 }
1781
1782 /**
1783 * Blocks in accord with the given blocker. If the current thread
1784 * is a ForkJoinWorkerThread, this method possibly arranges for a
1785 * spare thread to be activated if necessary to ensure parallelism
1786 * while the current thread is blocked. If
1787 * {@code maintainParallelism} is true and the pool supports
1788 * it ({@link #getMaintainsParallelism}), this method attempts to
1789 * maintain the pool's nominal parallelism. Otherwise it activates
1790 * a thread only if necessary to avoid complete starvation. This
1791 * option may be preferable when blockages use timeouts, or are
1792 * almost always brief.
1793 *
1794 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1795 * equivalent to
1796 * <pre> {@code
1797 * while (!blocker.isReleasable())
1798 * if (blocker.block())
1799 * return;
1800 * }</pre>
1801 * If the caller is a ForkJoinTask, then the pool may first
1802 * be expanded to ensure parallelism, and later adjusted.
1803 *
1804 * @param blocker the blocker
1805 * @param maintainParallelism if true and supported by this pool,
1806 * attempt to maintain the pool's nominal parallelism; otherwise
1807 * activate a thread only if necessary to avoid complete
1808 * starvation.
1809 * @throws InterruptedException if blocker.block did so
1810 */
1811 public static void managedBlock(ManagedBlocker blocker,
1812 boolean maintainParallelism)
1813 throws InterruptedException {
1814 Thread t = Thread.currentThread();
1815 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1816 ((ForkJoinWorkerThread) t).pool : null);
1817 if (!blocker.isReleasable()) {
1818 try {
1819 if (pool == null ||
1820 !pool.preBlock(blocker, maintainParallelism))
1821 awaitBlocker(blocker);
1822 } finally {
1823 if (pool != null)
1824 pool.updateRunningCount(1);
1825 }
1826 }
1827 }
1828
1829 private static void awaitBlocker(ManagedBlocker blocker)
1830 throws InterruptedException {
1831 do {} while (!blocker.isReleasable() && !blocker.block());
1832 }
1833
1834 // AbstractExecutorService overrides
1835
1836 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1837 return new AdaptedRunnable<T>(runnable, value);
1838 }
1839
1840 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1841 return new AdaptedCallable<T>(callable);
1842 }
1843
1844
1845 // Temporary Unsafe mechanics for preliminary release
1846 private static Unsafe getUnsafe() throws Throwable {
1847 try {
1848 return Unsafe.getUnsafe();
1849 } catch (SecurityException se) {
1850 try {
1851 return java.security.AccessController.doPrivileged
1852 (new java.security.PrivilegedExceptionAction<Unsafe>() {
1853 public Unsafe run() throws Exception {
1854 return getUnsafePrivileged();
1855 }});
1856 } catch (java.security.PrivilegedActionException e) {
1857 throw e.getCause();
1858 }
1859 }
1860 }
1861
1862 private static Unsafe getUnsafePrivileged()
1863 throws NoSuchFieldException, IllegalAccessException {
1864 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1865 f.setAccessible(true);
1866 return (Unsafe) f.get(null);
1867 }
1868
1869 private static long fieldOffset(String fieldName)
1870 throws NoSuchFieldException {
1871 return UNSAFE.objectFieldOffset
1872 (ForkJoinPool.class.getDeclaredField(fieldName));
1873 }
1874
1875 static final Unsafe UNSAFE;
1876 static final long eventCountOffset;
1877 static final long workerCountsOffset;
1878 static final long runControlOffset;
1879 static final long syncStackOffset;
1880 static final long spareStackOffset;
1881
1882 static {
1883 try {
1884 UNSAFE = getUnsafe();
1885 eventCountOffset = fieldOffset("eventCount");
1886 workerCountsOffset = fieldOffset("workerCounts");
1887 runControlOffset = fieldOffset("runControl");
1888 syncStackOffset = fieldOffset("syncStack");
1889 spareStackOffset = fieldOffset("spareStack");
1890 } catch (Throwable e) {
1891 throw new RuntimeException("Could not initialize intrinsics", e);
1892 }
1893 }
1894
1895 private boolean casEventCount(long cmp, long val) {
1896 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1897 }
1898 private boolean casWorkerCounts(int cmp, int val) {
1899 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1900 }
1901 private boolean casRunControl(int cmp, int val) {
1902 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1903 }
1904 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1905 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1906 }
1907 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1908 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1909 }
1910 }