ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.20
Committed: Fri Jul 24 22:05:22 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +8 -5 lines
Log Message:
warning suppression

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. When setting
31 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
32 * use with fine-grained tasks that are never joined. Otherwise, other
33 * ExecutorService implementations are typically more appropriate
34 * choices.
35 *
36 * <p>A ForkJoinPool may be constructed with a given parallelism level
37 * (target pool size), which it attempts to maintain by dynamically
38 * adding, suspending, or resuming threads, even if some tasks are
39 * waiting to join others. However, no such adjustments are performed
40 * in the face of blocked IO or other unmanaged synchronization. The
41 * nested {@code ManagedBlocker} interface enables extension of
42 * the kinds of synchronization accommodated. The target parallelism
43 * level may also be changed dynamically ({@code setParallelism})
44 * and thread construction can be limited using methods
45 * {@code setMaximumPoolSize} and/or
46 * {@code setMaintainsParallelism}.
47 *
48 * <p>In addition to execution and lifecycle control methods, this
49 * class provides status check methods (for example
50 * {@code getStealCount}) that are intended to aid in developing,
51 * tuning, and monitoring fork/join applications. Also, method
52 * {@code toString} returns indications of pool state in a
53 * convenient form for informal monitoring.
54 *
55 * <p><b>Implementation notes</b>: This implementation restricts the
56 * maximum number of running threads to 32767. Attempts to create
57 * pools with greater than the maximum result in
58 * IllegalArgumentExceptions.
59 *
60 * @since 1.7
61 * @author Doug Lea
62 */
63 public class ForkJoinPool extends AbstractExecutorService {
64
65 /*
66 * See the extended comments interspersed below for design,
67 * rationale, and walkthroughs.
68 */
69
70 /** Mask for packing and unpacking shorts */
71 private static final int shortMask = 0xffff;
72
73 /** Max pool size -- must be a power of two minus 1 */
74 private static final int MAX_THREADS = 0x7FFF;
75
76 /**
77 * Factory for creating new ForkJoinWorkerThreads. A
78 * ForkJoinWorkerThreadFactory must be defined and used for
79 * ForkJoinWorkerThread subclasses that extend base functionality
80 * or initialize threads with different contexts.
81 */
82 public static interface ForkJoinWorkerThreadFactory {
83 /**
84 * Returns a new worker thread operating in the given pool.
85 *
86 * @param pool the pool this thread works in
87 * @throws NullPointerException if pool is null
88 */
89 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
90 }
91
92 /**
93 * Default ForkJoinWorkerThreadFactory implementation; creates a
94 * new ForkJoinWorkerThread.
95 */
96 static class DefaultForkJoinWorkerThreadFactory
97 implements ForkJoinWorkerThreadFactory {
98 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
99 try {
100 return new ForkJoinWorkerThread(pool);
101 } catch (OutOfMemoryError oom) {
102 return null;
103 }
104 }
105 }
106
107 /**
108 * Creates a new ForkJoinWorkerThread. This factory is used unless
109 * overridden in ForkJoinPool constructors.
110 */
111 public static final ForkJoinWorkerThreadFactory
112 defaultForkJoinWorkerThreadFactory =
113 new DefaultForkJoinWorkerThreadFactory();
114
115 /**
116 * Permission required for callers of methods that may start or
117 * kill threads.
118 */
119 private static final RuntimePermission modifyThreadPermission =
120 new RuntimePermission("modifyThread");
121
122 /**
123 * If there is a security manager, makes sure caller has
124 * permission to modify threads.
125 */
126 private static void checkPermission() {
127 SecurityManager security = System.getSecurityManager();
128 if (security != null)
129 security.checkPermission(modifyThreadPermission);
130 }
131
132 /**
133 * Generator for assigning sequence numbers as pool names.
134 */
135 private static final AtomicInteger poolNumberGenerator =
136 new AtomicInteger();
137
138 /**
139 * Array holding all worker threads in the pool. Initialized upon
140 * first use. Array size must be a power of two. Updates and
141 * replacements are protected by workerLock, but it is always kept
142 * in a consistent enough state to be randomly accessed without
143 * locking by workers performing work-stealing.
144 */
145 volatile ForkJoinWorkerThread[] workers;
146
147 /**
148 * Lock protecting access to workers.
149 */
150 private final ReentrantLock workerLock;
151
152 /**
153 * Condition for awaitTermination.
154 */
155 private final Condition termination;
156
157 /**
158 * The uncaught exception handler used when any worker
159 * abruptly terminates
160 */
161 private Thread.UncaughtExceptionHandler ueh;
162
163 /**
164 * Creation factory for worker threads.
165 */
166 private final ForkJoinWorkerThreadFactory factory;
167
168 /**
169 * Head of stack of threads that were created to maintain
170 * parallelism when other threads blocked, but have since
171 * suspended when the parallelism level rose.
172 */
173 private volatile WaitQueueNode spareStack;
174
175 /**
176 * Sum of per-thread steal counts, updated only when threads are
177 * idle or terminating.
178 */
179 private final AtomicLong stealCount;
180
181 /**
182 * Queue for external submissions.
183 */
184 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
185
186 /**
187 * Head of Treiber stack for barrier sync. See below for explanation.
188 */
189 private volatile WaitQueueNode syncStack;
190
191 /**
192 * The count for event barrier
193 */
194 private volatile long eventCount;
195
196 /**
197 * Pool number, just for assigning useful names to worker threads
198 */
199 private final int poolNumber;
200
201 /**
202 * The maximum allowed pool size
203 */
204 private volatile int maxPoolSize;
205
206 /**
207 * The desired parallelism level, updated only under workerLock.
208 */
209 private volatile int parallelism;
210
211 /**
212 * True if use local fifo, not default lifo, for local polling
213 */
214 private volatile boolean locallyFifo;
215
216 /**
217 * Holds number of total (i.e., created and not yet terminated)
218 * and running (i.e., not blocked on joins or other managed sync)
219 * threads, packed into one int to ensure consistent snapshot when
220 * making decisions about creating and suspending spare
221 * threads. Updated only by CAS. Note: CASes in
222 * updateRunningCount and preJoin assume that running active count
223 * is in low word, so need to be modified if this changes.
224 */
225 private volatile int workerCounts;
226
227 private static int totalCountOf(int s) { return s >>> 16; }
228 private static int runningCountOf(int s) { return s & shortMask; }
229 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
230
231 /**
232 * Adds delta (which may be negative) to running count. This must
233 * be called before (with negative arg) and after (with positive)
234 * any managed synchronization (i.e., mainly, joins).
235 *
236 * @param delta the number to add
237 */
238 final void updateRunningCount(int delta) {
239 int s;
240 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
241 }
242
243 /**
244 * Adds delta (which may be negative) to both total and running
245 * count. This must be called upon creation and termination of
246 * worker threads.
247 *
248 * @param delta the number to add
249 */
250 private void updateWorkerCount(int delta) {
251 int d = delta + (delta << 16); // add to both lo and hi parts
252 int s;
253 do {} while (!casWorkerCounts(s = workerCounts, s + d));
254 }
255
256 /**
257 * Lifecycle control. High word contains runState, low word
258 * contains the number of workers that are (probably) executing
259 * tasks. This value is atomically incremented before a worker
260 * gets a task to run, and decremented when worker has no tasks
261 * and cannot find any. These two fields are bundled together to
262 * support correct termination triggering. Note: activeCount
263 * CAS'es cheat by assuming active count is in low word, so need
264 * to be modified if this changes
265 */
266 private volatile int runControl;
267
268 // RunState values. Order among values matters
269 private static final int RUNNING = 0;
270 private static final int SHUTDOWN = 1;
271 private static final int TERMINATING = 2;
272 private static final int TERMINATED = 3;
273
274 private static int runStateOf(int c) { return c >>> 16; }
275 private static int activeCountOf(int c) { return c & shortMask; }
276 private static int runControlFor(int r, int a) { return (r << 16) + a; }
277
278 /**
279 * Tries incrementing active count; fails on contention.
280 * Called by workers before/during executing tasks.
281 *
282 * @return true on success
283 */
284 final boolean tryIncrementActiveCount() {
285 int c = runControl;
286 return casRunControl(c, c+1);
287 }
288
289 /**
290 * Tries decrementing active count; fails on contention.
291 * Possibly triggers termination on success.
292 * Called by workers when they can't find tasks.
293 *
294 * @return true on success
295 */
296 final boolean tryDecrementActiveCount() {
297 int c = runControl;
298 int nextc = c - 1;
299 if (!casRunControl(c, nextc))
300 return false;
301 if (canTerminateOnShutdown(nextc))
302 terminateOnShutdown();
303 return true;
304 }
305
306 /**
307 * Returns true if argument represents zero active count and
308 * nonzero runstate, which is the triggering condition for
309 * terminating on shutdown.
310 */
311 private static boolean canTerminateOnShutdown(int c) {
312 // i.e. least bit is nonzero runState bit
313 return ((c & -c) >>> 16) != 0;
314 }
315
316 /**
317 * Transition run state to at least the given state. Return true
318 * if not already at least given state.
319 */
320 private boolean transitionRunStateTo(int state) {
321 for (;;) {
322 int c = runControl;
323 if (runStateOf(c) >= state)
324 return false;
325 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
326 return true;
327 }
328 }
329
330 /**
331 * Controls whether to add spares to maintain parallelism
332 */
333 private volatile boolean maintainsParallelism;
334
335 // Constructors
336
337 /**
338 * Creates a ForkJoinPool with a pool size equal to the number of
339 * processors available on the system, using the default
340 * ForkJoinWorkerThreadFactory.
341 *
342 * @throws SecurityException if a security manager exists and
343 * the caller is not permitted to modify threads
344 * because it does not hold {@link
345 * java.lang.RuntimePermission}{@code ("modifyThread")}
346 */
347 public ForkJoinPool() {
348 this(Runtime.getRuntime().availableProcessors(),
349 defaultForkJoinWorkerThreadFactory);
350 }
351
352 /**
353 * Creates a ForkJoinPool with the indicated parallelism level
354 * threads and using the default ForkJoinWorkerThreadFactory.
355 *
356 * @param parallelism the number of worker threads
357 * @throws IllegalArgumentException if parallelism less than or
358 * equal to zero
359 * @throws SecurityException if a security manager exists and
360 * the caller is not permitted to modify threads
361 * because it does not hold {@link
362 * java.lang.RuntimePermission}{@code ("modifyThread")}
363 */
364 public ForkJoinPool(int parallelism) {
365 this(parallelism, defaultForkJoinWorkerThreadFactory);
366 }
367
368 /**
369 * Creates a ForkJoinPool with parallelism equal to the number of
370 * processors available on the system and using the given
371 * ForkJoinWorkerThreadFactory.
372 *
373 * @param factory the factory for creating new threads
374 * @throws NullPointerException if factory is null
375 * @throws SecurityException if a security manager exists and
376 * the caller is not permitted to modify threads
377 * because it does not hold {@link
378 * java.lang.RuntimePermission}{@code ("modifyThread")}
379 */
380 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
381 this(Runtime.getRuntime().availableProcessors(), factory);
382 }
383
384 /**
385 * Creates a ForkJoinPool with the given parallelism and factory.
386 *
387 * @param parallelism the targeted number of worker threads
388 * @param factory the factory for creating new threads
389 * @throws IllegalArgumentException if parallelism less than or
390 * equal to zero, or greater than implementation limit
391 * @throws NullPointerException if factory is null
392 * @throws SecurityException if a security manager exists and
393 * the caller is not permitted to modify threads
394 * because it does not hold {@link
395 * java.lang.RuntimePermission}{@code ("modifyThread")}
396 */
397 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
398 if (parallelism <= 0 || parallelism > MAX_THREADS)
399 throw new IllegalArgumentException();
400 if (factory == null)
401 throw new NullPointerException();
402 checkPermission();
403 this.factory = factory;
404 this.parallelism = parallelism;
405 this.maxPoolSize = MAX_THREADS;
406 this.maintainsParallelism = true;
407 this.poolNumber = poolNumberGenerator.incrementAndGet();
408 this.workerLock = new ReentrantLock();
409 this.termination = workerLock.newCondition();
410 this.stealCount = new AtomicLong();
411 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
412 // worker array and workers are lazily constructed
413 }
414
415 /**
416 * Creates a new worker thread using factory.
417 *
418 * @param index the index to assign worker
419 * @return new worker, or null of factory failed
420 */
421 private ForkJoinWorkerThread createWorker(int index) {
422 Thread.UncaughtExceptionHandler h = ueh;
423 ForkJoinWorkerThread w = factory.newThread(this);
424 if (w != null) {
425 w.poolIndex = index;
426 w.setDaemon(true);
427 w.setAsyncMode(locallyFifo);
428 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
429 if (h != null)
430 w.setUncaughtExceptionHandler(h);
431 }
432 return w;
433 }
434
435 /**
436 * Returns a good size for worker array given pool size.
437 * Currently requires size to be a power of two.
438 */
439 private static int arraySizeFor(int poolSize) {
440 return (poolSize <= 1) ? 1 :
441 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
442 }
443
444 /**
445 * Creates or resizes array if necessary to hold newLength.
446 * Call only under exclusion.
447 *
448 * @return the array
449 */
450 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
451 ForkJoinWorkerThread[] ws = workers;
452 if (ws == null)
453 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
454 else if (newLength > ws.length)
455 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
456 else
457 return ws;
458 }
459
460 /**
461 * Tries to shrink workers into smaller array after one or more terminate.
462 */
463 private void tryShrinkWorkerArray() {
464 ForkJoinWorkerThread[] ws = workers;
465 if (ws != null) {
466 int len = ws.length;
467 int last = len - 1;
468 while (last >= 0 && ws[last] == null)
469 --last;
470 int newLength = arraySizeFor(last+1);
471 if (newLength < len)
472 workers = Arrays.copyOf(ws, newLength);
473 }
474 }
475
476 /**
477 * Initializes workers if necessary.
478 */
479 final void ensureWorkerInitialization() {
480 ForkJoinWorkerThread[] ws = workers;
481 if (ws == null) {
482 final ReentrantLock lock = this.workerLock;
483 lock.lock();
484 try {
485 ws = workers;
486 if (ws == null) {
487 int ps = parallelism;
488 ws = ensureWorkerArrayCapacity(ps);
489 for (int i = 0; i < ps; ++i) {
490 ForkJoinWorkerThread w = createWorker(i);
491 if (w != null) {
492 ws[i] = w;
493 w.start();
494 updateWorkerCount(1);
495 }
496 }
497 }
498 } finally {
499 lock.unlock();
500 }
501 }
502 }
503
504 /**
505 * Worker creation and startup for threads added via setParallelism.
506 */
507 private void createAndStartAddedWorkers() {
508 resumeAllSpares(); // Allow spares to convert to nonspare
509 int ps = parallelism;
510 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
511 int len = ws.length;
512 // Sweep through slots, to keep lowest indices most populated
513 int k = 0;
514 while (k < len) {
515 if (ws[k] != null) {
516 ++k;
517 continue;
518 }
519 int s = workerCounts;
520 int tc = totalCountOf(s);
521 int rc = runningCountOf(s);
522 if (rc >= ps || tc >= ps)
523 break;
524 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
525 ForkJoinWorkerThread w = createWorker(k);
526 if (w != null) {
527 ws[k++] = w;
528 w.start();
529 }
530 else {
531 updateWorkerCount(-1); // back out on failed creation
532 break;
533 }
534 }
535 }
536 }
537
538 // Execution methods
539
540 /**
541 * Common code for execute, invoke and submit
542 */
543 private <T> void doSubmit(ForkJoinTask<T> task) {
544 if (isShutdown())
545 throw new RejectedExecutionException();
546 if (workers == null)
547 ensureWorkerInitialization();
548 submissionQueue.offer(task);
549 signalIdleWorkers();
550 }
551
552 /**
553 * Performs the given task, returning its result upon completion.
554 *
555 * @param task the task
556 * @return the task's result
557 * @throws NullPointerException if task is null
558 * @throws RejectedExecutionException if pool is shut down
559 */
560 public <T> T invoke(ForkJoinTask<T> task) {
561 doSubmit(task);
562 return task.join();
563 }
564
565 /**
566 * Arranges for (asynchronous) execution of the given task.
567 *
568 * @param task the task
569 * @throws NullPointerException if task is null
570 * @throws RejectedExecutionException if pool is shut down
571 */
572 public <T> void execute(ForkJoinTask<T> task) {
573 doSubmit(task);
574 }
575
576 // AbstractExecutorService methods
577
578 public void execute(Runnable task) {
579 doSubmit(new AdaptedRunnable<Void>(task, null));
580 }
581
582 public <T> ForkJoinTask<T> submit(Callable<T> task) {
583 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
584 doSubmit(job);
585 return job;
586 }
587
588 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
589 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
590 doSubmit(job);
591 return job;
592 }
593
594 public ForkJoinTask<?> submit(Runnable task) {
595 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
596 doSubmit(job);
597 return job;
598 }
599
600 /**
601 * Adaptor for Runnables. This implements RunnableFuture
602 * to be compliant with AbstractExecutorService constraints.
603 */
604 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
605 implements RunnableFuture<T> {
606 final Runnable runnable;
607 final T resultOnCompletion;
608 T result;
609 AdaptedRunnable(Runnable runnable, T result) {
610 if (runnable == null) throw new NullPointerException();
611 this.runnable = runnable;
612 this.resultOnCompletion = result;
613 }
614 public T getRawResult() { return result; }
615 public void setRawResult(T v) { result = v; }
616 public boolean exec() {
617 runnable.run();
618 result = resultOnCompletion;
619 return true;
620 }
621 public void run() { invoke(); }
622 private static final long serialVersionUID = 5232453952276885070L;
623 }
624
625 /**
626 * Adaptor for Callables
627 */
628 static final class AdaptedCallable<T> extends ForkJoinTask<T>
629 implements RunnableFuture<T> {
630 final Callable<T> callable;
631 T result;
632 AdaptedCallable(Callable<T> callable) {
633 if (callable == null) throw new NullPointerException();
634 this.callable = callable;
635 }
636 public T getRawResult() { return result; }
637 public void setRawResult(T v) { result = v; }
638 public boolean exec() {
639 try {
640 result = callable.call();
641 return true;
642 } catch (Error err) {
643 throw err;
644 } catch (RuntimeException rex) {
645 throw rex;
646 } catch (Exception ex) {
647 throw new RuntimeException(ex);
648 }
649 }
650 public void run() { invoke(); }
651 private static final long serialVersionUID = 2838392045355241008L;
652 }
653
654 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
655 ArrayList<ForkJoinTask<T>> forkJoinTasks =
656 new ArrayList<ForkJoinTask<T>>(tasks.size());
657 for (Callable<T> task : tasks)
658 forkJoinTasks.add(new AdaptedCallable<T>(task));
659 invoke(new InvokeAll<T>(forkJoinTasks));
660
661 @SuppressWarnings({"unchecked", "rawtypes"})
662 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
663 return futures;
664 }
665
666 static final class InvokeAll<T> extends RecursiveAction {
667 final ArrayList<ForkJoinTask<T>> tasks;
668 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
669 public void compute() {
670 try { invokeAll(tasks); }
671 catch (Exception ignore) {}
672 }
673 private static final long serialVersionUID = -7914297376763021607L;
674 }
675
676 // Configuration and status settings and queries
677
678 /**
679 * Returns the factory used for constructing new workers.
680 *
681 * @return the factory used for constructing new workers
682 */
683 public ForkJoinWorkerThreadFactory getFactory() {
684 return factory;
685 }
686
687 /**
688 * Returns the handler for internal worker threads that terminate
689 * due to unrecoverable errors encountered while executing tasks.
690 *
691 * @return the handler, or null if none
692 */
693 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
694 Thread.UncaughtExceptionHandler h;
695 final ReentrantLock lock = this.workerLock;
696 lock.lock();
697 try {
698 h = ueh;
699 } finally {
700 lock.unlock();
701 }
702 return h;
703 }
704
705 /**
706 * Sets the handler for internal worker threads that terminate due
707 * to unrecoverable errors encountered while executing tasks.
708 * Unless set, the current default or ThreadGroup handler is used
709 * as handler.
710 *
711 * @param h the new handler
712 * @return the old handler, or null if none
713 * @throws SecurityException if a security manager exists and
714 * the caller is not permitted to modify threads
715 * because it does not hold {@link
716 * java.lang.RuntimePermission}{@code ("modifyThread")}
717 */
718 public Thread.UncaughtExceptionHandler
719 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
720 checkPermission();
721 Thread.UncaughtExceptionHandler old = null;
722 final ReentrantLock lock = this.workerLock;
723 lock.lock();
724 try {
725 old = ueh;
726 ueh = h;
727 ForkJoinWorkerThread[] ws = workers;
728 if (ws != null) {
729 for (int i = 0; i < ws.length; ++i) {
730 ForkJoinWorkerThread w = ws[i];
731 if (w != null)
732 w.setUncaughtExceptionHandler(h);
733 }
734 }
735 } finally {
736 lock.unlock();
737 }
738 return old;
739 }
740
741
742 /**
743 * Sets the target parallelism level of this pool.
744 *
745 * @param parallelism the target parallelism
746 * @throws IllegalArgumentException if parallelism less than or
747 * equal to zero or greater than maximum size bounds
748 * @throws SecurityException if a security manager exists and
749 * the caller is not permitted to modify threads
750 * because it does not hold {@link
751 * java.lang.RuntimePermission}{@code ("modifyThread")}
752 */
753 public void setParallelism(int parallelism) {
754 checkPermission();
755 if (parallelism <= 0 || parallelism > maxPoolSize)
756 throw new IllegalArgumentException();
757 final ReentrantLock lock = this.workerLock;
758 lock.lock();
759 try {
760 if (!isTerminating()) {
761 int p = this.parallelism;
762 this.parallelism = parallelism;
763 if (parallelism > p)
764 createAndStartAddedWorkers();
765 else
766 trimSpares();
767 }
768 } finally {
769 lock.unlock();
770 }
771 signalIdleWorkers();
772 }
773
774 /**
775 * Returns the targeted number of worker threads in this pool.
776 *
777 * @return the targeted number of worker threads in this pool
778 */
779 public int getParallelism() {
780 return parallelism;
781 }
782
783 /**
784 * Returns the number of worker threads that have started but not
785 * yet terminated. This result returned by this method may differ
786 * from {@code getParallelism} when threads are created to
787 * maintain parallelism when others are cooperatively blocked.
788 *
789 * @return the number of worker threads
790 */
791 public int getPoolSize() {
792 return totalCountOf(workerCounts);
793 }
794
795 /**
796 * Returns the maximum number of threads allowed to exist in the
797 * pool, even if there are insufficient unblocked running threads.
798 *
799 * @return the maximum
800 */
801 public int getMaximumPoolSize() {
802 return maxPoolSize;
803 }
804
805 /**
806 * Sets the maximum number of threads allowed to exist in the
807 * pool, even if there are insufficient unblocked running threads.
808 * Setting this value has no effect on current pool size. It
809 * controls construction of new threads.
810 *
811 * @throws IllegalArgumentException if negative or greater then
812 * internal implementation limit
813 */
814 public void setMaximumPoolSize(int newMax) {
815 if (newMax < 0 || newMax > MAX_THREADS)
816 throw new IllegalArgumentException();
817 maxPoolSize = newMax;
818 }
819
820
821 /**
822 * Returns true if this pool dynamically maintains its target
823 * parallelism level. If false, new threads are added only to
824 * avoid possible starvation.
825 * This setting is by default true.
826 *
827 * @return true if maintains parallelism
828 */
829 public boolean getMaintainsParallelism() {
830 return maintainsParallelism;
831 }
832
833 /**
834 * Sets whether this pool dynamically maintains its target
835 * parallelism level. If false, new threads are added only to
836 * avoid possible starvation.
837 *
838 * @param enable true to maintains parallelism
839 */
840 public void setMaintainsParallelism(boolean enable) {
841 maintainsParallelism = enable;
842 }
843
844 /**
845 * Establishes local first-in-first-out scheduling mode for forked
846 * tasks that are never joined. This mode may be more appropriate
847 * than default locally stack-based mode in applications in which
848 * worker threads only process asynchronous tasks. This method is
849 * designed to be invoked only when pool is quiescent, and
850 * typically only before any tasks are submitted. The effects of
851 * invocations at other times may be unpredictable.
852 *
853 * @param async if true, use locally FIFO scheduling
854 * @return the previous mode
855 */
856 public boolean setAsyncMode(boolean async) {
857 boolean oldMode = locallyFifo;
858 locallyFifo = async;
859 ForkJoinWorkerThread[] ws = workers;
860 if (ws != null) {
861 for (int i = 0; i < ws.length; ++i) {
862 ForkJoinWorkerThread t = ws[i];
863 if (t != null)
864 t.setAsyncMode(async);
865 }
866 }
867 return oldMode;
868 }
869
870 /**
871 * Returns true if this pool uses local first-in-first-out
872 * scheduling mode for forked tasks that are never joined.
873 *
874 * @return true if this pool uses async mode
875 */
876 public boolean getAsyncMode() {
877 return locallyFifo;
878 }
879
880 /**
881 * Returns an estimate of the number of worker threads that are
882 * not blocked waiting to join tasks or for other managed
883 * synchronization.
884 *
885 * @return the number of worker threads
886 */
887 public int getRunningThreadCount() {
888 return runningCountOf(workerCounts);
889 }
890
891 /**
892 * Returns an estimate of the number of threads that are currently
893 * stealing or executing tasks. This method may overestimate the
894 * number of active threads.
895 *
896 * @return the number of active threads
897 */
898 public int getActiveThreadCount() {
899 return activeCountOf(runControl);
900 }
901
902 /**
903 * Returns an estimate of the number of threads that are currently
904 * idle waiting for tasks. This method may underestimate the
905 * number of idle threads.
906 *
907 * @return the number of idle threads
908 */
909 final int getIdleThreadCount() {
910 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
911 return (c <= 0) ? 0 : c;
912 }
913
914 /**
915 * Returns true if all worker threads are currently idle. An idle
916 * worker is one that cannot obtain a task to execute because none
917 * are available to steal from other threads, and there are no
918 * pending submissions to the pool. This method is conservative;
919 * it might not return true immediately upon idleness of all
920 * threads, but will eventually become true if threads remain
921 * inactive.
922 *
923 * @return true if all threads are currently idle
924 */
925 public boolean isQuiescent() {
926 return activeCountOf(runControl) == 0;
927 }
928
929 /**
930 * Returns an estimate of the total number of tasks stolen from
931 * one thread's work queue by another. The reported value
932 * underestimates the actual total number of steals when the pool
933 * is not quiescent. This value may be useful for monitoring and
934 * tuning fork/join programs: in general, steal counts should be
935 * high enough to keep threads busy, but low enough to avoid
936 * overhead and contention across threads.
937 *
938 * @return the number of steals
939 */
940 public long getStealCount() {
941 return stealCount.get();
942 }
943
944 /**
945 * Accumulates steal count from a worker.
946 * Call only when worker known to be idle.
947 */
948 private void updateStealCount(ForkJoinWorkerThread w) {
949 int sc = w.getAndClearStealCount();
950 if (sc != 0)
951 stealCount.addAndGet(sc);
952 }
953
954 /**
955 * Returns an estimate of the total number of tasks currently held
956 * in queues by worker threads (but not including tasks submitted
957 * to the pool that have not begun executing). This value is only
958 * an approximation, obtained by iterating across all threads in
959 * the pool. This method may be useful for tuning task
960 * granularities.
961 *
962 * @return the number of queued tasks
963 */
964 public long getQueuedTaskCount() {
965 long count = 0;
966 ForkJoinWorkerThread[] ws = workers;
967 if (ws != null) {
968 for (int i = 0; i < ws.length; ++i) {
969 ForkJoinWorkerThread t = ws[i];
970 if (t != null)
971 count += t.getQueueSize();
972 }
973 }
974 return count;
975 }
976
977 /**
978 * Returns an estimate of the number tasks submitted to this pool
979 * that have not yet begun executing. This method takes time
980 * proportional to the number of submissions.
981 *
982 * @return the number of queued submissions
983 */
984 public int getQueuedSubmissionCount() {
985 return submissionQueue.size();
986 }
987
988 /**
989 * Returns true if there are any tasks submitted to this pool
990 * that have not yet begun executing.
991 *
992 * @return {@code true} if there are any queued submissions
993 */
994 public boolean hasQueuedSubmissions() {
995 return !submissionQueue.isEmpty();
996 }
997
998 /**
999 * Removes and returns the next unexecuted submission if one is
1000 * available. This method may be useful in extensions to this
1001 * class that re-assign work in systems with multiple pools.
1002 *
1003 * @return the next submission, or null if none
1004 */
1005 protected ForkJoinTask<?> pollSubmission() {
1006 return submissionQueue.poll();
1007 }
1008
1009 /**
1010 * Removes all available unexecuted submitted and forked tasks
1011 * from scheduling queues and adds them to the given collection,
1012 * without altering their execution status. These may include
1013 * artificially generated or wrapped tasks. This method is designed
1014 * to be invoked only when the pool is known to be
1015 * quiescent. Invocations at other times may not remove all
1016 * tasks. A failure encountered while attempting to add elements
1017 * to collection {@code c} may result in elements being in
1018 * neither, either or both collections when the associated
1019 * exception is thrown. The behavior of this operation is
1020 * undefined if the specified collection is modified while the
1021 * operation is in progress.
1022 *
1023 * @param c the collection to transfer elements into
1024 * @return the number of elements transferred
1025 */
1026 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1027 int n = submissionQueue.drainTo(c);
1028 ForkJoinWorkerThread[] ws = workers;
1029 if (ws != null) {
1030 for (int i = 0; i < ws.length; ++i) {
1031 ForkJoinWorkerThread w = ws[i];
1032 if (w != null)
1033 n += w.drainTasksTo(c);
1034 }
1035 }
1036 return n;
1037 }
1038
1039 /**
1040 * Returns a string identifying this pool, as well as its state,
1041 * including indications of run state, parallelism level, and
1042 * worker and task counts.
1043 *
1044 * @return a string identifying this pool, as well as its state
1045 */
1046 public String toString() {
1047 int ps = parallelism;
1048 int wc = workerCounts;
1049 int rc = runControl;
1050 long st = getStealCount();
1051 long qt = getQueuedTaskCount();
1052 long qs = getQueuedSubmissionCount();
1053 return super.toString() +
1054 "[" + runStateToString(runStateOf(rc)) +
1055 ", parallelism = " + ps +
1056 ", size = " + totalCountOf(wc) +
1057 ", active = " + activeCountOf(rc) +
1058 ", running = " + runningCountOf(wc) +
1059 ", steals = " + st +
1060 ", tasks = " + qt +
1061 ", submissions = " + qs +
1062 "]";
1063 }
1064
1065 private static String runStateToString(int rs) {
1066 switch(rs) {
1067 case RUNNING: return "Running";
1068 case SHUTDOWN: return "Shutting down";
1069 case TERMINATING: return "Terminating";
1070 case TERMINATED: return "Terminated";
1071 default: throw new Error("Unknown run state");
1072 }
1073 }
1074
1075 // lifecycle control
1076
1077 /**
1078 * Initiates an orderly shutdown in which previously submitted
1079 * tasks are executed, but no new tasks will be accepted.
1080 * Invocation has no additional effect if already shut down.
1081 * Tasks that are in the process of being submitted concurrently
1082 * during the course of this method may or may not be rejected.
1083 *
1084 * @throws SecurityException if a security manager exists and
1085 * the caller is not permitted to modify threads
1086 * because it does not hold {@link
1087 * java.lang.RuntimePermission}{@code ("modifyThread")}
1088 */
1089 public void shutdown() {
1090 checkPermission();
1091 transitionRunStateTo(SHUTDOWN);
1092 if (canTerminateOnShutdown(runControl))
1093 terminateOnShutdown();
1094 }
1095
1096 /**
1097 * Attempts to stop all actively executing tasks, and cancels all
1098 * waiting tasks. Tasks that are in the process of being
1099 * submitted or executed concurrently during the course of this
1100 * method may or may not be rejected. Unlike some other executors,
1101 * this method cancels rather than collects non-executed tasks
1102 * upon termination, so always returns an empty list. However, you
1103 * can use method {@code drainTasksTo} before invoking this
1104 * method to transfer unexecuted tasks to another collection.
1105 *
1106 * @return an empty list
1107 * @throws SecurityException if a security manager exists and
1108 * the caller is not permitted to modify threads
1109 * because it does not hold {@link
1110 * java.lang.RuntimePermission}{@code ("modifyThread")}
1111 */
1112 public List<Runnable> shutdownNow() {
1113 checkPermission();
1114 terminate();
1115 return Collections.emptyList();
1116 }
1117
1118 /**
1119 * Returns {@code true} if all tasks have completed following shut down.
1120 *
1121 * @return {@code true} if all tasks have completed following shut down
1122 */
1123 public boolean isTerminated() {
1124 return runStateOf(runControl) == TERMINATED;
1125 }
1126
1127 /**
1128 * Returns {@code true} if the process of termination has
1129 * commenced but possibly not yet completed.
1130 *
1131 * @return {@code true} if terminating
1132 */
1133 public boolean isTerminating() {
1134 return runStateOf(runControl) >= TERMINATING;
1135 }
1136
1137 /**
1138 * Returns {@code true} if this pool has been shut down.
1139 *
1140 * @return {@code true} if this pool has been shut down
1141 */
1142 public boolean isShutdown() {
1143 return runStateOf(runControl) >= SHUTDOWN;
1144 }
1145
1146 /**
1147 * Blocks until all tasks have completed execution after a shutdown
1148 * request, or the timeout occurs, or the current thread is
1149 * interrupted, whichever happens first.
1150 *
1151 * @param timeout the maximum time to wait
1152 * @param unit the time unit of the timeout argument
1153 * @return {@code true} if this executor terminated and
1154 * {@code false} if the timeout elapsed before termination
1155 * @throws InterruptedException if interrupted while waiting
1156 */
1157 public boolean awaitTermination(long timeout, TimeUnit unit)
1158 throws InterruptedException {
1159 long nanos = unit.toNanos(timeout);
1160 final ReentrantLock lock = this.workerLock;
1161 lock.lock();
1162 try {
1163 for (;;) {
1164 if (isTerminated())
1165 return true;
1166 if (nanos <= 0)
1167 return false;
1168 nanos = termination.awaitNanos(nanos);
1169 }
1170 } finally {
1171 lock.unlock();
1172 }
1173 }
1174
1175 // Shutdown and termination support
1176
1177 /**
1178 * Callback from terminating worker. Nulls out the corresponding
1179 * workers slot, and if terminating, tries to terminate; else
1180 * tries to shrink workers array.
1181 *
1182 * @param w the worker
1183 */
1184 final void workerTerminated(ForkJoinWorkerThread w) {
1185 updateStealCount(w);
1186 updateWorkerCount(-1);
1187 final ReentrantLock lock = this.workerLock;
1188 lock.lock();
1189 try {
1190 ForkJoinWorkerThread[] ws = workers;
1191 if (ws != null) {
1192 int idx = w.poolIndex;
1193 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1194 ws[idx] = null;
1195 if (totalCountOf(workerCounts) == 0) {
1196 terminate(); // no-op if already terminating
1197 transitionRunStateTo(TERMINATED);
1198 termination.signalAll();
1199 }
1200 else if (!isTerminating()) {
1201 tryShrinkWorkerArray();
1202 tryResumeSpare(true); // allow replacement
1203 }
1204 }
1205 } finally {
1206 lock.unlock();
1207 }
1208 signalIdleWorkers();
1209 }
1210
1211 /**
1212 * Initiates termination.
1213 */
1214 private void terminate() {
1215 if (transitionRunStateTo(TERMINATING)) {
1216 stopAllWorkers();
1217 resumeAllSpares();
1218 signalIdleWorkers();
1219 cancelQueuedSubmissions();
1220 cancelQueuedWorkerTasks();
1221 interruptUnterminatedWorkers();
1222 signalIdleWorkers(); // resignal after interrupt
1223 }
1224 }
1225
1226 /**
1227 * Possibly terminates when on shutdown state.
1228 */
1229 private void terminateOnShutdown() {
1230 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1231 terminate();
1232 }
1233
1234 /**
1235 * Clears out and cancels submissions.
1236 */
1237 private void cancelQueuedSubmissions() {
1238 ForkJoinTask<?> task;
1239 while ((task = pollSubmission()) != null)
1240 task.cancel(false);
1241 }
1242
1243 /**
1244 * Cleans out worker queues.
1245 */
1246 private void cancelQueuedWorkerTasks() {
1247 final ReentrantLock lock = this.workerLock;
1248 lock.lock();
1249 try {
1250 ForkJoinWorkerThread[] ws = workers;
1251 if (ws != null) {
1252 for (int i = 0; i < ws.length; ++i) {
1253 ForkJoinWorkerThread t = ws[i];
1254 if (t != null)
1255 t.cancelTasks();
1256 }
1257 }
1258 } finally {
1259 lock.unlock();
1260 }
1261 }
1262
1263 /**
1264 * Sets each worker's status to terminating. Requires lock to avoid
1265 * conflicts with add/remove.
1266 */
1267 private void stopAllWorkers() {
1268 final ReentrantLock lock = this.workerLock;
1269 lock.lock();
1270 try {
1271 ForkJoinWorkerThread[] ws = workers;
1272 if (ws != null) {
1273 for (int i = 0; i < ws.length; ++i) {
1274 ForkJoinWorkerThread t = ws[i];
1275 if (t != null)
1276 t.shutdownNow();
1277 }
1278 }
1279 } finally {
1280 lock.unlock();
1281 }
1282 }
1283
1284 /**
1285 * Interrupts all unterminated workers. This is not required for
1286 * sake of internal control, but may help unstick user code during
1287 * shutdown.
1288 */
1289 private void interruptUnterminatedWorkers() {
1290 final ReentrantLock lock = this.workerLock;
1291 lock.lock();
1292 try {
1293 ForkJoinWorkerThread[] ws = workers;
1294 if (ws != null) {
1295 for (int i = 0; i < ws.length; ++i) {
1296 ForkJoinWorkerThread t = ws[i];
1297 if (t != null && !t.isTerminated()) {
1298 try {
1299 t.interrupt();
1300 } catch (SecurityException ignore) {
1301 }
1302 }
1303 }
1304 }
1305 } finally {
1306 lock.unlock();
1307 }
1308 }
1309
1310
1311 /*
1312 * Nodes for event barrier to manage idle threads. Queue nodes
1313 * are basic Treiber stack nodes, also used for spare stack.
1314 *
1315 * The event barrier has an event count and a wait queue (actually
1316 * a Treiber stack). Workers are enabled to look for work when
1317 * the eventCount is incremented. If they fail to find work, they
1318 * may wait for next count. Upon release, threads help others wake
1319 * up.
1320 *
1321 * Synchronization events occur only in enough contexts to
1322 * maintain overall liveness:
1323 *
1324 * - Submission of a new task to the pool
1325 * - Resizes or other changes to the workers array
1326 * - pool termination
1327 * - A worker pushing a task on an empty queue
1328 *
1329 * The case of pushing a task occurs often enough, and is heavy
1330 * enough compared to simple stack pushes, to require special
1331 * handling: Method signalWork returns without advancing count if
1332 * the queue appears to be empty. This would ordinarily result in
1333 * races causing some queued waiters not to be woken up. To avoid
1334 * this, the first worker enqueued in method sync (see
1335 * syncIsReleasable) rescans for tasks after being enqueued, and
1336 * helps signal if any are found. This works well because the
1337 * worker has nothing better to do, and so might as well help
1338 * alleviate the overhead and contention on the threads actually
1339 * doing work. Also, since event counts increments on task
1340 * availability exist to maintain liveness (rather than to force
1341 * refreshes etc), it is OK for callers to exit early if
1342 * contending with another signaller.
1343 */
1344 static final class WaitQueueNode {
1345 WaitQueueNode next; // only written before enqueued
1346 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1347 final long count; // unused for spare stack
1348
1349 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1350 count = c;
1351 thread = w;
1352 }
1353
1354 /**
1355 * Wakes up waiter, returning false if known to already
1356 */
1357 boolean signal() {
1358 ForkJoinWorkerThread t = thread;
1359 if (t == null)
1360 return false;
1361 thread = null;
1362 LockSupport.unpark(t);
1363 return true;
1364 }
1365
1366 /**
1367 * Awaits release on sync.
1368 */
1369 void awaitSyncRelease(ForkJoinPool p) {
1370 while (thread != null && !p.syncIsReleasable(this))
1371 LockSupport.park(this);
1372 }
1373
1374 /**
1375 * Awaits resumption as spare.
1376 */
1377 void awaitSpareRelease() {
1378 while (thread != null) {
1379 if (!Thread.interrupted())
1380 LockSupport.park(this);
1381 }
1382 }
1383 }
1384
1385 /**
1386 * Ensures that no thread is waiting for count to advance from the
1387 * current value of eventCount read on entry to this method, by
1388 * releasing waiting threads if necessary.
1389 *
1390 * @return the count
1391 */
1392 final long ensureSync() {
1393 long c = eventCount;
1394 WaitQueueNode q;
1395 while ((q = syncStack) != null && q.count < c) {
1396 if (casBarrierStack(q, null)) {
1397 do {
1398 q.signal();
1399 } while ((q = q.next) != null);
1400 break;
1401 }
1402 }
1403 return c;
1404 }
1405
1406 /**
1407 * Increments event count and releases waiting threads.
1408 */
1409 private void signalIdleWorkers() {
1410 long c;
1411 do {} while (!casEventCount(c = eventCount, c+1));
1412 ensureSync();
1413 }
1414
1415 /**
1416 * Signals threads waiting to poll a task. Because method sync
1417 * rechecks availability, it is OK to only proceed if queue
1418 * appears to be non-empty, and OK to skip under contention to
1419 * increment count (since some other thread succeeded).
1420 */
1421 final void signalWork() {
1422 long c;
1423 WaitQueueNode q;
1424 if (syncStack != null &&
1425 casEventCount(c = eventCount, c+1) &&
1426 (((q = syncStack) != null && q.count <= c) &&
1427 (!casBarrierStack(q, q.next) || !q.signal())))
1428 ensureSync();
1429 }
1430
1431 /**
1432 * Waits until event count advances from last value held by
1433 * caller, or if excess threads, caller is resumed as spare, or
1434 * caller or pool is terminating. Updates caller's event on exit.
1435 *
1436 * @param w the calling worker thread
1437 */
1438 final void sync(ForkJoinWorkerThread w) {
1439 updateStealCount(w); // Transfer w's count while it is idle
1440
1441 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1442 long prev = w.lastEventCount;
1443 WaitQueueNode node = null;
1444 WaitQueueNode h;
1445 while (eventCount == prev &&
1446 ((h = syncStack) == null || h.count == prev)) {
1447 if (node == null)
1448 node = new WaitQueueNode(prev, w);
1449 if (casBarrierStack(node.next = h, node)) {
1450 node.awaitSyncRelease(this);
1451 break;
1452 }
1453 }
1454 long ec = ensureSync();
1455 if (ec != prev) {
1456 w.lastEventCount = ec;
1457 break;
1458 }
1459 }
1460 }
1461
1462 /**
1463 * Returns true if worker waiting on sync can proceed:
1464 * - on signal (thread == null)
1465 * - on event count advance (winning race to notify vs signaller)
1466 * - on interrupt
1467 * - if the first queued node, we find work available
1468 * If node was not signalled and event count not advanced on exit,
1469 * then we also help advance event count.
1470 *
1471 * @return true if node can be released
1472 */
1473 final boolean syncIsReleasable(WaitQueueNode node) {
1474 long prev = node.count;
1475 if (!Thread.interrupted() && node.thread != null &&
1476 (node.next != null ||
1477 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1478 eventCount == prev)
1479 return false;
1480 if (node.thread != null) {
1481 node.thread = null;
1482 long ec = eventCount;
1483 if (prev <= ec) // help signal
1484 casEventCount(ec, ec+1);
1485 }
1486 return true;
1487 }
1488
1489 /**
1490 * Returns true if a new sync event occurred since last call to
1491 * sync or this method, if so, updating caller's count.
1492 */
1493 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1494 long lc = w.lastEventCount;
1495 long ec = ensureSync();
1496 if (ec == lc)
1497 return false;
1498 w.lastEventCount = ec;
1499 return true;
1500 }
1501
1502 // Parallelism maintenance
1503
1504 /**
1505 * Decrements running count; if too low, adds spare.
1506 *
1507 * Conceptually, all we need to do here is add or resume a
1508 * spare thread when one is about to block (and remove or
1509 * suspend it later when unblocked -- see suspendIfSpare).
1510 * However, implementing this idea requires coping with
1511 * several problems: we have imperfect information about the
1512 * states of threads. Some count updates can and usually do
1513 * lag run state changes, despite arrangements to keep them
1514 * accurate (for example, when possible, updating counts
1515 * before signalling or resuming), especially when running on
1516 * dynamic JVMs that don't optimize the infrequent paths that
1517 * update counts. Generating too many threads can make these
1518 * problems become worse, because excess threads are more
1519 * likely to be context-switched with others, slowing them all
1520 * down, especially if there is no work available, so all are
1521 * busy scanning or idling. Also, excess spare threads can
1522 * only be suspended or removed when they are idle, not
1523 * immediately when they aren't needed. So adding threads will
1524 * raise parallelism level for longer than necessary. Also,
1525 * FJ applications often encounter highly transient peaks when
1526 * many threads are blocked joining, but for less time than it
1527 * takes to create or resume spares.
1528 *
1529 * @param joinMe if non-null, return early if done
1530 * @param maintainParallelism if true, try to stay within
1531 * target counts, else create only to avoid starvation
1532 * @return true if joinMe known to be done
1533 */
1534 final boolean preJoin(ForkJoinTask<?> joinMe,
1535 boolean maintainParallelism) {
1536 maintainParallelism &= maintainsParallelism; // overrride
1537 boolean dec = false; // true when running count decremented
1538 while (spareStack == null || !tryResumeSpare(dec)) {
1539 int counts = workerCounts;
1540 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1541 // CAS cheat
1542 if (!needSpare(counts, maintainParallelism))
1543 break;
1544 if (joinMe.status < 0)
1545 return true;
1546 if (tryAddSpare(counts))
1547 break;
1548 }
1549 }
1550 return false;
1551 }
1552
1553 /**
1554 * Same idea as preJoin
1555 */
1556 final boolean preBlock(ManagedBlocker blocker,
1557 boolean maintainParallelism) {
1558 maintainParallelism &= maintainsParallelism;
1559 boolean dec = false;
1560 while (spareStack == null || !tryResumeSpare(dec)) {
1561 int counts = workerCounts;
1562 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1563 if (!needSpare(counts, maintainParallelism))
1564 break;
1565 if (blocker.isReleasable())
1566 return true;
1567 if (tryAddSpare(counts))
1568 break;
1569 }
1570 }
1571 return false;
1572 }
1573
1574 /**
1575 * Returns true if a spare thread appears to be needed. If
1576 * maintaining parallelism, returns true when the deficit in
1577 * running threads is more than the surplus of total threads, and
1578 * there is apparently some work to do. This self-limiting rule
1579 * means that the more threads that have already been added, the
1580 * less parallelism we will tolerate before adding another.
1581 *
1582 * @param counts current worker counts
1583 * @param maintainParallelism try to maintain parallelism
1584 */
1585 private boolean needSpare(int counts, boolean maintainParallelism) {
1586 int ps = parallelism;
1587 int rc = runningCountOf(counts);
1588 int tc = totalCountOf(counts);
1589 int runningDeficit = ps - rc;
1590 int totalSurplus = tc - ps;
1591 return (tc < maxPoolSize &&
1592 (rc == 0 || totalSurplus < 0 ||
1593 (maintainParallelism &&
1594 runningDeficit > totalSurplus &&
1595 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1596 }
1597
1598 /**
1599 * Adds a spare worker if lock available and no more than the
1600 * expected numbers of threads exist.
1601 *
1602 * @return true if successful
1603 */
1604 private boolean tryAddSpare(int expectedCounts) {
1605 final ReentrantLock lock = this.workerLock;
1606 int expectedRunning = runningCountOf(expectedCounts);
1607 int expectedTotal = totalCountOf(expectedCounts);
1608 boolean success = false;
1609 boolean locked = false;
1610 // confirm counts while locking; CAS after obtaining lock
1611 try {
1612 for (;;) {
1613 int s = workerCounts;
1614 int tc = totalCountOf(s);
1615 int rc = runningCountOf(s);
1616 if (rc > expectedRunning || tc > expectedTotal)
1617 break;
1618 if (!locked && !(locked = lock.tryLock()))
1619 break;
1620 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1621 createAndStartSpare(tc);
1622 success = true;
1623 break;
1624 }
1625 }
1626 } finally {
1627 if (locked)
1628 lock.unlock();
1629 }
1630 return success;
1631 }
1632
1633 /**
1634 * Adds the kth spare worker. On entry, pool counts are already
1635 * adjusted to reflect addition.
1636 */
1637 private void createAndStartSpare(int k) {
1638 ForkJoinWorkerThread w = null;
1639 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1640 int len = ws.length;
1641 // Probably, we can place at slot k. If not, find empty slot
1642 if (k < len && ws[k] != null) {
1643 for (k = 0; k < len && ws[k] != null; ++k)
1644 ;
1645 }
1646 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1647 ws[k] = w;
1648 w.start();
1649 }
1650 else
1651 updateWorkerCount(-1); // adjust on failure
1652 signalIdleWorkers();
1653 }
1654
1655 /**
1656 * Suspends calling thread w if there are excess threads. Called
1657 * only from sync. Spares are enqueued in a Treiber stack using
1658 * the same WaitQueueNodes as barriers. They are resumed mainly
1659 * in preJoin, but are also woken on pool events that require all
1660 * threads to check run state.
1661 *
1662 * @param w the caller
1663 */
1664 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1665 WaitQueueNode node = null;
1666 int s;
1667 while (parallelism < runningCountOf(s = workerCounts)) {
1668 if (node == null)
1669 node = new WaitQueueNode(0, w);
1670 if (casWorkerCounts(s, s-1)) { // representation-dependent
1671 // push onto stack
1672 do {} while (!casSpareStack(node.next = spareStack, node));
1673 // block until released by resumeSpare
1674 node.awaitSpareRelease();
1675 return true;
1676 }
1677 }
1678 return false;
1679 }
1680
1681 /**
1682 * Tries to pop and resume a spare thread.
1683 *
1684 * @param updateCount if true, increment running count on success
1685 * @return true if successful
1686 */
1687 private boolean tryResumeSpare(boolean updateCount) {
1688 WaitQueueNode q;
1689 while ((q = spareStack) != null) {
1690 if (casSpareStack(q, q.next)) {
1691 if (updateCount)
1692 updateRunningCount(1);
1693 q.signal();
1694 return true;
1695 }
1696 }
1697 return false;
1698 }
1699
1700 /**
1701 * Pops and resumes all spare threads. Same idea as ensureSync.
1702 *
1703 * @return true if any spares released
1704 */
1705 private boolean resumeAllSpares() {
1706 WaitQueueNode q;
1707 while ( (q = spareStack) != null) {
1708 if (casSpareStack(q, null)) {
1709 do {
1710 updateRunningCount(1);
1711 q.signal();
1712 } while ((q = q.next) != null);
1713 return true;
1714 }
1715 }
1716 return false;
1717 }
1718
1719 /**
1720 * Pops and shuts down excessive spare threads. Call only while
1721 * holding lock. This is not guaranteed to eliminate all excess
1722 * threads, only those suspended as spares, which are the ones
1723 * unlikely to be needed in the future.
1724 */
1725 private void trimSpares() {
1726 int surplus = totalCountOf(workerCounts) - parallelism;
1727 WaitQueueNode q;
1728 while (surplus > 0 && (q = spareStack) != null) {
1729 if (casSpareStack(q, null)) {
1730 do {
1731 updateRunningCount(1);
1732 ForkJoinWorkerThread w = q.thread;
1733 if (w != null && surplus > 0 &&
1734 runningCountOf(workerCounts) > 0 && w.shutdown())
1735 --surplus;
1736 q.signal();
1737 } while ((q = q.next) != null);
1738 }
1739 }
1740 }
1741
1742 /**
1743 * Interface for extending managed parallelism for tasks running
1744 * in ForkJoinPools. A ManagedBlocker provides two methods.
1745 * Method {@code isReleasable} must return true if blocking is not
1746 * necessary. Method {@code block} blocks the current thread if
1747 * necessary (perhaps internally invoking {@code isReleasable}
1748 * before actually blocking.).
1749 *
1750 * <p>For example, here is a ManagedBlocker based on a
1751 * ReentrantLock:
1752 * <pre> {@code
1753 * class ManagedLocker implements ManagedBlocker {
1754 * final ReentrantLock lock;
1755 * boolean hasLock = false;
1756 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1757 * public boolean block() {
1758 * if (!hasLock)
1759 * lock.lock();
1760 * return true;
1761 * }
1762 * public boolean isReleasable() {
1763 * return hasLock || (hasLock = lock.tryLock());
1764 * }
1765 * }}</pre>
1766 */
1767 public static interface ManagedBlocker {
1768 /**
1769 * Possibly blocks the current thread, for example waiting for
1770 * a lock or condition.
1771 *
1772 * @return true if no additional blocking is necessary (i.e.,
1773 * if isReleasable would return true)
1774 * @throws InterruptedException if interrupted while waiting
1775 * (the method is not required to do so, but is allowed to)
1776 */
1777 boolean block() throws InterruptedException;
1778
1779 /**
1780 * Returns true if blocking is unnecessary.
1781 */
1782 boolean isReleasable();
1783 }
1784
1785 /**
1786 * Blocks in accord with the given blocker. If the current thread
1787 * is a ForkJoinWorkerThread, this method possibly arranges for a
1788 * spare thread to be activated if necessary to ensure parallelism
1789 * while the current thread is blocked. If
1790 * {@code maintainParallelism} is true and the pool supports
1791 * it ({@link #getMaintainsParallelism}), this method attempts to
1792 * maintain the pool's nominal parallelism. Otherwise it activates
1793 * a thread only if necessary to avoid complete starvation. This
1794 * option may be preferable when blockages use timeouts, or are
1795 * almost always brief.
1796 *
1797 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1798 * equivalent to
1799 * <pre> {@code
1800 * while (!blocker.isReleasable())
1801 * if (blocker.block())
1802 * return;
1803 * }</pre>
1804 * If the caller is a ForkJoinTask, then the pool may first
1805 * be expanded to ensure parallelism, and later adjusted.
1806 *
1807 * @param blocker the blocker
1808 * @param maintainParallelism if true and supported by this pool,
1809 * attempt to maintain the pool's nominal parallelism; otherwise
1810 * activate a thread only if necessary to avoid complete
1811 * starvation.
1812 * @throws InterruptedException if blocker.block did so
1813 */
1814 public static void managedBlock(ManagedBlocker blocker,
1815 boolean maintainParallelism)
1816 throws InterruptedException {
1817 Thread t = Thread.currentThread();
1818 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1819 ((ForkJoinWorkerThread) t).pool : null);
1820 if (!blocker.isReleasable()) {
1821 try {
1822 if (pool == null ||
1823 !pool.preBlock(blocker, maintainParallelism))
1824 awaitBlocker(blocker);
1825 } finally {
1826 if (pool != null)
1827 pool.updateRunningCount(1);
1828 }
1829 }
1830 }
1831
1832 private static void awaitBlocker(ManagedBlocker blocker)
1833 throws InterruptedException {
1834 do {} while (!blocker.isReleasable() && !blocker.block());
1835 }
1836
1837 // AbstractExecutorService overrides
1838
1839 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1840 return new AdaptedRunnable<T>(runnable, value);
1841 }
1842
1843 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1844 return new AdaptedCallable<T>(callable);
1845 }
1846
1847
1848 // Temporary Unsafe mechanics for preliminary release
1849 private static Unsafe getUnsafe() throws Throwable {
1850 try {
1851 return Unsafe.getUnsafe();
1852 } catch (SecurityException se) {
1853 try {
1854 return java.security.AccessController.doPrivileged
1855 (new java.security.PrivilegedExceptionAction<Unsafe>() {
1856 public Unsafe run() throws Exception {
1857 return getUnsafePrivileged();
1858 }});
1859 } catch (java.security.PrivilegedActionException e) {
1860 throw e.getCause();
1861 }
1862 }
1863 }
1864
1865 private static Unsafe getUnsafePrivileged()
1866 throws NoSuchFieldException, IllegalAccessException {
1867 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1868 f.setAccessible(true);
1869 return (Unsafe) f.get(null);
1870 }
1871
1872 private static long fieldOffset(String fieldName)
1873 throws NoSuchFieldException {
1874 return UNSAFE.objectFieldOffset
1875 (ForkJoinPool.class.getDeclaredField(fieldName));
1876 }
1877
1878 static final Unsafe UNSAFE;
1879 static final long eventCountOffset;
1880 static final long workerCountsOffset;
1881 static final long runControlOffset;
1882 static final long syncStackOffset;
1883 static final long spareStackOffset;
1884
1885 static {
1886 try {
1887 UNSAFE = getUnsafe();
1888 eventCountOffset = fieldOffset("eventCount");
1889 workerCountsOffset = fieldOffset("workerCounts");
1890 runControlOffset = fieldOffset("runControl");
1891 syncStackOffset = fieldOffset("syncStack");
1892 spareStackOffset = fieldOffset("spareStack");
1893 } catch (Throwable e) {
1894 throw new RuntimeException("Could not initialize intrinsics", e);
1895 }
1896 }
1897
1898 private boolean casEventCount(long cmp, long val) {
1899 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1900 }
1901 private boolean casWorkerCounts(int cmp, int val) {
1902 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1903 }
1904 private boolean casRunControl(int cmp, int val) {
1905 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1906 }
1907 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1908 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1909 }
1910 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1911 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1912 }
1913 }