ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.22
Committed: Sat Jul 25 00:34:00 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.21: +12 -3 lines
Log Message:
Avoid wildcard imports

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
24 * ForkJoinPool provides the entry point for submissions from
25 * non-ForkJoinTasks, as well as management and monitoring operations.
26 * Normally a single ForkJoinPool is used for a large number of
27 * submitted tasks. Otherwise, use would not usually outweigh the
28 * construction and bookkeeping overhead of creating a large set of
29 * threads.
30 *
31 * <p>ForkJoinPools differ from other kinds of Executors mainly in
32 * that they provide <em>work-stealing</em>: all threads in the pool
33 * attempt to find and execute subtasks created by other active tasks
34 * (eventually blocking if none exist). This makes them efficient when
35 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
36 * as the mixed execution of some plain Runnable- or Callable- based
37 * activities along with ForkJoinTasks. When setting
38 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
39 * use with fine-grained tasks that are never joined. Otherwise, other
40 * ExecutorService implementations are typically more appropriate
41 * choices.
42 *
43 * <p>A ForkJoinPool may be constructed with a given parallelism level
44 * (target pool size), which it attempts to maintain by dynamically
45 * adding, suspending, or resuming threads, even if some tasks are
46 * waiting to join others. However, no such adjustments are performed
47 * in the face of blocked IO or other unmanaged synchronization. The
48 * nested {@code ManagedBlocker} interface enables extension of
49 * the kinds of synchronization accommodated. The target parallelism
50 * level may also be changed dynamically ({@code setParallelism})
51 * and thread construction can be limited using methods
52 * {@code setMaximumPoolSize} and/or
53 * {@code setMaintainsParallelism}.
54 *
55 * <p>In addition to execution and lifecycle control methods, this
56 * class provides status check methods (for example
57 * {@code getStealCount}) that are intended to aid in developing,
58 * tuning, and monitoring fork/join applications. Also, method
59 * {@code toString} returns indications of pool state in a
60 * convenient form for informal monitoring.
61 *
62 * <p><b>Implementation notes</b>: This implementation restricts the
63 * maximum number of running threads to 32767. Attempts to create
64 * pools with greater than the maximum result in
65 * IllegalArgumentExceptions.
66 *
67 * @since 1.7
68 * @author Doug Lea
69 */
70 public class ForkJoinPool extends AbstractExecutorService {
71
72 /*
73 * See the extended comments interspersed below for design,
74 * rationale, and walkthroughs.
75 */
76
77 /** Mask for packing and unpacking shorts */
78 private static final int shortMask = 0xffff;
79
80 /** Max pool size -- must be a power of two minus 1 */
81 private static final int MAX_THREADS = 0x7FFF;
82
83 /**
84 * Factory for creating new ForkJoinWorkerThreads. A
85 * ForkJoinWorkerThreadFactory must be defined and used for
86 * ForkJoinWorkerThread subclasses that extend base functionality
87 * or initialize threads with different contexts.
88 */
89 public static interface ForkJoinWorkerThreadFactory {
90 /**
91 * Returns a new worker thread operating in the given pool.
92 *
93 * @param pool the pool this thread works in
94 * @throws NullPointerException if pool is null
95 */
96 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
97 }
98
99 /**
100 * Default ForkJoinWorkerThreadFactory implementation; creates a
101 * new ForkJoinWorkerThread.
102 */
103 static class DefaultForkJoinWorkerThreadFactory
104 implements ForkJoinWorkerThreadFactory {
105 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
106 try {
107 return new ForkJoinWorkerThread(pool);
108 } catch (OutOfMemoryError oom) {
109 return null;
110 }
111 }
112 }
113
114 /**
115 * Creates a new ForkJoinWorkerThread. This factory is used unless
116 * overridden in ForkJoinPool constructors.
117 */
118 public static final ForkJoinWorkerThreadFactory
119 defaultForkJoinWorkerThreadFactory =
120 new DefaultForkJoinWorkerThreadFactory();
121
122 /**
123 * Permission required for callers of methods that may start or
124 * kill threads.
125 */
126 private static final RuntimePermission modifyThreadPermission =
127 new RuntimePermission("modifyThread");
128
129 /**
130 * If there is a security manager, makes sure caller has
131 * permission to modify threads.
132 */
133 private static void checkPermission() {
134 SecurityManager security = System.getSecurityManager();
135 if (security != null)
136 security.checkPermission(modifyThreadPermission);
137 }
138
139 /**
140 * Generator for assigning sequence numbers as pool names.
141 */
142 private static final AtomicInteger poolNumberGenerator =
143 new AtomicInteger();
144
145 /**
146 * Array holding all worker threads in the pool. Initialized upon
147 * first use. Array size must be a power of two. Updates and
148 * replacements are protected by workerLock, but it is always kept
149 * in a consistent enough state to be randomly accessed without
150 * locking by workers performing work-stealing.
151 */
152 volatile ForkJoinWorkerThread[] workers;
153
154 /**
155 * Lock protecting access to workers.
156 */
157 private final ReentrantLock workerLock;
158
159 /**
160 * Condition for awaitTermination.
161 */
162 private final Condition termination;
163
164 /**
165 * The uncaught exception handler used when any worker
166 * abruptly terminates
167 */
168 private Thread.UncaughtExceptionHandler ueh;
169
170 /**
171 * Creation factory for worker threads.
172 */
173 private final ForkJoinWorkerThreadFactory factory;
174
175 /**
176 * Head of stack of threads that were created to maintain
177 * parallelism when other threads blocked, but have since
178 * suspended when the parallelism level rose.
179 */
180 private volatile WaitQueueNode spareStack;
181
182 /**
183 * Sum of per-thread steal counts, updated only when threads are
184 * idle or terminating.
185 */
186 private final AtomicLong stealCount;
187
188 /**
189 * Queue for external submissions.
190 */
191 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
192
193 /**
194 * Head of Treiber stack for barrier sync. See below for explanation.
195 */
196 private volatile WaitQueueNode syncStack;
197
198 /**
199 * The count for event barrier
200 */
201 private volatile long eventCount;
202
203 /**
204 * Pool number, just for assigning useful names to worker threads
205 */
206 private final int poolNumber;
207
208 /**
209 * The maximum allowed pool size
210 */
211 private volatile int maxPoolSize;
212
213 /**
214 * The desired parallelism level, updated only under workerLock.
215 */
216 private volatile int parallelism;
217
218 /**
219 * True if use local fifo, not default lifo, for local polling
220 */
221 private volatile boolean locallyFifo;
222
223 /**
224 * Holds number of total (i.e., created and not yet terminated)
225 * and running (i.e., not blocked on joins or other managed sync)
226 * threads, packed into one int to ensure consistent snapshot when
227 * making decisions about creating and suspending spare
228 * threads. Updated only by CAS. Note: CASes in
229 * updateRunningCount and preJoin assume that running active count
230 * is in low word, so need to be modified if this changes.
231 */
232 private volatile int workerCounts;
233
234 private static int totalCountOf(int s) { return s >>> 16; }
235 private static int runningCountOf(int s) { return s & shortMask; }
236 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
237
238 /**
239 * Adds delta (which may be negative) to running count. This must
240 * be called before (with negative arg) and after (with positive)
241 * any managed synchronization (i.e., mainly, joins).
242 *
243 * @param delta the number to add
244 */
245 final void updateRunningCount(int delta) {
246 int s;
247 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 }
249
250 /**
251 * Adds delta (which may be negative) to both total and running
252 * count. This must be called upon creation and termination of
253 * worker threads.
254 *
255 * @param delta the number to add
256 */
257 private void updateWorkerCount(int delta) {
258 int d = delta + (delta << 16); // add to both lo and hi parts
259 int s;
260 do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 }
262
263 /**
264 * Lifecycle control. High word contains runState, low word
265 * contains the number of workers that are (probably) executing
266 * tasks. This value is atomically incremented before a worker
267 * gets a task to run, and decremented when worker has no tasks
268 * and cannot find any. These two fields are bundled together to
269 * support correct termination triggering. Note: activeCount
270 * CAS'es cheat by assuming active count is in low word, so need
271 * to be modified if this changes
272 */
273 private volatile int runControl;
274
275 // RunState values. Order among values matters
276 private static final int RUNNING = 0;
277 private static final int SHUTDOWN = 1;
278 private static final int TERMINATING = 2;
279 private static final int TERMINATED = 3;
280
281 private static int runStateOf(int c) { return c >>> 16; }
282 private static int activeCountOf(int c) { return c & shortMask; }
283 private static int runControlFor(int r, int a) { return (r << 16) + a; }
284
285 /**
286 * Tries incrementing active count; fails on contention.
287 * Called by workers before/during executing tasks.
288 *
289 * @return true on success
290 */
291 final boolean tryIncrementActiveCount() {
292 int c = runControl;
293 return casRunControl(c, c+1);
294 }
295
296 /**
297 * Tries decrementing active count; fails on contention.
298 * Possibly triggers termination on success.
299 * Called by workers when they can't find tasks.
300 *
301 * @return true on success
302 */
303 final boolean tryDecrementActiveCount() {
304 int c = runControl;
305 int nextc = c - 1;
306 if (!casRunControl(c, nextc))
307 return false;
308 if (canTerminateOnShutdown(nextc))
309 terminateOnShutdown();
310 return true;
311 }
312
313 /**
314 * Returns true if argument represents zero active count and
315 * nonzero runstate, which is the triggering condition for
316 * terminating on shutdown.
317 */
318 private static boolean canTerminateOnShutdown(int c) {
319 // i.e. least bit is nonzero runState bit
320 return ((c & -c) >>> 16) != 0;
321 }
322
323 /**
324 * Transition run state to at least the given state. Return true
325 * if not already at least given state.
326 */
327 private boolean transitionRunStateTo(int state) {
328 for (;;) {
329 int c = runControl;
330 if (runStateOf(c) >= state)
331 return false;
332 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
333 return true;
334 }
335 }
336
337 /**
338 * Controls whether to add spares to maintain parallelism
339 */
340 private volatile boolean maintainsParallelism;
341
342 // Constructors
343
344 /**
345 * Creates a ForkJoinPool with a pool size equal to the number of
346 * processors available on the system, using the default
347 * ForkJoinWorkerThreadFactory.
348 *
349 * @throws SecurityException if a security manager exists and
350 * the caller is not permitted to modify threads
351 * because it does not hold {@link
352 * java.lang.RuntimePermission}{@code ("modifyThread")}
353 */
354 public ForkJoinPool() {
355 this(Runtime.getRuntime().availableProcessors(),
356 defaultForkJoinWorkerThreadFactory);
357 }
358
359 /**
360 * Creates a ForkJoinPool with the indicated parallelism level
361 * threads and using the default ForkJoinWorkerThreadFactory.
362 *
363 * @param parallelism the number of worker threads
364 * @throws IllegalArgumentException if parallelism less than or
365 * equal to zero
366 * @throws SecurityException if a security manager exists and
367 * the caller is not permitted to modify threads
368 * because it does not hold {@link
369 * java.lang.RuntimePermission}{@code ("modifyThread")}
370 */
371 public ForkJoinPool(int parallelism) {
372 this(parallelism, defaultForkJoinWorkerThreadFactory);
373 }
374
375 /**
376 * Creates a ForkJoinPool with parallelism equal to the number of
377 * processors available on the system and using the given
378 * ForkJoinWorkerThreadFactory.
379 *
380 * @param factory the factory for creating new threads
381 * @throws NullPointerException if factory is null
382 * @throws SecurityException if a security manager exists and
383 * the caller is not permitted to modify threads
384 * because it does not hold {@link
385 * java.lang.RuntimePermission}{@code ("modifyThread")}
386 */
387 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388 this(Runtime.getRuntime().availableProcessors(), factory);
389 }
390
391 /**
392 * Creates a ForkJoinPool with the given parallelism and factory.
393 *
394 * @param parallelism the targeted number of worker threads
395 * @param factory the factory for creating new threads
396 * @throws IllegalArgumentException if parallelism less than or
397 * equal to zero, or greater than implementation limit
398 * @throws NullPointerException if factory is null
399 * @throws SecurityException if a security manager exists and
400 * the caller is not permitted to modify threads
401 * because it does not hold {@link
402 * java.lang.RuntimePermission}{@code ("modifyThread")}
403 */
404 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
405 if (parallelism <= 0 || parallelism > MAX_THREADS)
406 throw new IllegalArgumentException();
407 if (factory == null)
408 throw new NullPointerException();
409 checkPermission();
410 this.factory = factory;
411 this.parallelism = parallelism;
412 this.maxPoolSize = MAX_THREADS;
413 this.maintainsParallelism = true;
414 this.poolNumber = poolNumberGenerator.incrementAndGet();
415 this.workerLock = new ReentrantLock();
416 this.termination = workerLock.newCondition();
417 this.stealCount = new AtomicLong();
418 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 // worker array and workers are lazily constructed
420 }
421
422 /**
423 * Creates a new worker thread using factory.
424 *
425 * @param index the index to assign worker
426 * @return new worker, or null of factory failed
427 */
428 private ForkJoinWorkerThread createWorker(int index) {
429 Thread.UncaughtExceptionHandler h = ueh;
430 ForkJoinWorkerThread w = factory.newThread(this);
431 if (w != null) {
432 w.poolIndex = index;
433 w.setDaemon(true);
434 w.setAsyncMode(locallyFifo);
435 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
436 if (h != null)
437 w.setUncaughtExceptionHandler(h);
438 }
439 return w;
440 }
441
442 /**
443 * Returns a good size for worker array given pool size.
444 * Currently requires size to be a power of two.
445 */
446 private static int arraySizeFor(int poolSize) {
447 return (poolSize <= 1) ? 1 :
448 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
449 }
450
451 /**
452 * Creates or resizes array if necessary to hold newLength.
453 * Call only under exclusion.
454 *
455 * @return the array
456 */
457 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
458 ForkJoinWorkerThread[] ws = workers;
459 if (ws == null)
460 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
461 else if (newLength > ws.length)
462 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
463 else
464 return ws;
465 }
466
467 /**
468 * Tries to shrink workers into smaller array after one or more terminate.
469 */
470 private void tryShrinkWorkerArray() {
471 ForkJoinWorkerThread[] ws = workers;
472 if (ws != null) {
473 int len = ws.length;
474 int last = len - 1;
475 while (last >= 0 && ws[last] == null)
476 --last;
477 int newLength = arraySizeFor(last+1);
478 if (newLength < len)
479 workers = Arrays.copyOf(ws, newLength);
480 }
481 }
482
483 /**
484 * Initializes workers if necessary.
485 */
486 final void ensureWorkerInitialization() {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null) {
489 final ReentrantLock lock = this.workerLock;
490 lock.lock();
491 try {
492 ws = workers;
493 if (ws == null) {
494 int ps = parallelism;
495 ws = ensureWorkerArrayCapacity(ps);
496 for (int i = 0; i < ps; ++i) {
497 ForkJoinWorkerThread w = createWorker(i);
498 if (w != null) {
499 ws[i] = w;
500 w.start();
501 updateWorkerCount(1);
502 }
503 }
504 }
505 } finally {
506 lock.unlock();
507 }
508 }
509 }
510
511 /**
512 * Worker creation and startup for threads added via setParallelism.
513 */
514 private void createAndStartAddedWorkers() {
515 resumeAllSpares(); // Allow spares to convert to nonspare
516 int ps = parallelism;
517 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
518 int len = ws.length;
519 // Sweep through slots, to keep lowest indices most populated
520 int k = 0;
521 while (k < len) {
522 if (ws[k] != null) {
523 ++k;
524 continue;
525 }
526 int s = workerCounts;
527 int tc = totalCountOf(s);
528 int rc = runningCountOf(s);
529 if (rc >= ps || tc >= ps)
530 break;
531 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
532 ForkJoinWorkerThread w = createWorker(k);
533 if (w != null) {
534 ws[k++] = w;
535 w.start();
536 }
537 else {
538 updateWorkerCount(-1); // back out on failed creation
539 break;
540 }
541 }
542 }
543 }
544
545 // Execution methods
546
547 /**
548 * Common code for execute, invoke and submit
549 */
550 private <T> void doSubmit(ForkJoinTask<T> task) {
551 if (isShutdown())
552 throw new RejectedExecutionException();
553 if (workers == null)
554 ensureWorkerInitialization();
555 submissionQueue.offer(task);
556 signalIdleWorkers();
557 }
558
559 /**
560 * Performs the given task, returning its result upon completion.
561 *
562 * @param task the task
563 * @return the task's result
564 * @throws NullPointerException if task is null
565 * @throws RejectedExecutionException if pool is shut down
566 */
567 public <T> T invoke(ForkJoinTask<T> task) {
568 doSubmit(task);
569 return task.join();
570 }
571
572 /**
573 * Arranges for (asynchronous) execution of the given task.
574 *
575 * @param task the task
576 * @throws NullPointerException if task is null
577 * @throws RejectedExecutionException if pool is shut down
578 */
579 public <T> void execute(ForkJoinTask<T> task) {
580 doSubmit(task);
581 }
582
583 // AbstractExecutorService methods
584
585 public void execute(Runnable task) {
586 doSubmit(new AdaptedRunnable<Void>(task, null));
587 }
588
589 public <T> ForkJoinTask<T> submit(Callable<T> task) {
590 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
591 doSubmit(job);
592 return job;
593 }
594
595 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
596 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
597 doSubmit(job);
598 return job;
599 }
600
601 public ForkJoinTask<?> submit(Runnable task) {
602 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
603 doSubmit(job);
604 return job;
605 }
606
607 /**
608 * Adaptor for Runnables. This implements RunnableFuture
609 * to be compliant with AbstractExecutorService constraints.
610 */
611 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
612 implements RunnableFuture<T> {
613 final Runnable runnable;
614 final T resultOnCompletion;
615 T result;
616 AdaptedRunnable(Runnable runnable, T result) {
617 if (runnable == null) throw new NullPointerException();
618 this.runnable = runnable;
619 this.resultOnCompletion = result;
620 }
621 public T getRawResult() { return result; }
622 public void setRawResult(T v) { result = v; }
623 public boolean exec() {
624 runnable.run();
625 result = resultOnCompletion;
626 return true;
627 }
628 public void run() { invoke(); }
629 private static final long serialVersionUID = 5232453952276885070L;
630 }
631
632 /**
633 * Adaptor for Callables
634 */
635 static final class AdaptedCallable<T> extends ForkJoinTask<T>
636 implements RunnableFuture<T> {
637 final Callable<T> callable;
638 T result;
639 AdaptedCallable(Callable<T> callable) {
640 if (callable == null) throw new NullPointerException();
641 this.callable = callable;
642 }
643 public T getRawResult() { return result; }
644 public void setRawResult(T v) { result = v; }
645 public boolean exec() {
646 try {
647 result = callable.call();
648 return true;
649 } catch (Error err) {
650 throw err;
651 } catch (RuntimeException rex) {
652 throw rex;
653 } catch (Exception ex) {
654 throw new RuntimeException(ex);
655 }
656 }
657 public void run() { invoke(); }
658 private static final long serialVersionUID = 2838392045355241008L;
659 }
660
661 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
662 ArrayList<ForkJoinTask<T>> forkJoinTasks =
663 new ArrayList<ForkJoinTask<T>>(tasks.size());
664 for (Callable<T> task : tasks)
665 forkJoinTasks.add(new AdaptedCallable<T>(task));
666 invoke(new InvokeAll<T>(forkJoinTasks));
667
668 @SuppressWarnings({"unchecked", "rawtypes"})
669 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
670 return futures;
671 }
672
673 static final class InvokeAll<T> extends RecursiveAction {
674 final ArrayList<ForkJoinTask<T>> tasks;
675 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
676 public void compute() {
677 try { invokeAll(tasks); }
678 catch (Exception ignore) {}
679 }
680 private static final long serialVersionUID = -7914297376763021607L;
681 }
682
683 // Configuration and status settings and queries
684
685 /**
686 * Returns the factory used for constructing new workers.
687 *
688 * @return the factory used for constructing new workers
689 */
690 public ForkJoinWorkerThreadFactory getFactory() {
691 return factory;
692 }
693
694 /**
695 * Returns the handler for internal worker threads that terminate
696 * due to unrecoverable errors encountered while executing tasks.
697 *
698 * @return the handler, or null if none
699 */
700 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
701 Thread.UncaughtExceptionHandler h;
702 final ReentrantLock lock = this.workerLock;
703 lock.lock();
704 try {
705 h = ueh;
706 } finally {
707 lock.unlock();
708 }
709 return h;
710 }
711
712 /**
713 * Sets the handler for internal worker threads that terminate due
714 * to unrecoverable errors encountered while executing tasks.
715 * Unless set, the current default or ThreadGroup handler is used
716 * as handler.
717 *
718 * @param h the new handler
719 * @return the old handler, or null if none
720 * @throws SecurityException if a security manager exists and
721 * the caller is not permitted to modify threads
722 * because it does not hold {@link
723 * java.lang.RuntimePermission}{@code ("modifyThread")}
724 */
725 public Thread.UncaughtExceptionHandler
726 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
727 checkPermission();
728 Thread.UncaughtExceptionHandler old = null;
729 final ReentrantLock lock = this.workerLock;
730 lock.lock();
731 try {
732 old = ueh;
733 ueh = h;
734 ForkJoinWorkerThread[] ws = workers;
735 if (ws != null) {
736 for (int i = 0; i < ws.length; ++i) {
737 ForkJoinWorkerThread w = ws[i];
738 if (w != null)
739 w.setUncaughtExceptionHandler(h);
740 }
741 }
742 } finally {
743 lock.unlock();
744 }
745 return old;
746 }
747
748
749 /**
750 * Sets the target parallelism level of this pool.
751 *
752 * @param parallelism the target parallelism
753 * @throws IllegalArgumentException if parallelism less than or
754 * equal to zero or greater than maximum size bounds
755 * @throws SecurityException if a security manager exists and
756 * the caller is not permitted to modify threads
757 * because it does not hold {@link
758 * java.lang.RuntimePermission}{@code ("modifyThread")}
759 */
760 public void setParallelism(int parallelism) {
761 checkPermission();
762 if (parallelism <= 0 || parallelism > maxPoolSize)
763 throw new IllegalArgumentException();
764 final ReentrantLock lock = this.workerLock;
765 lock.lock();
766 try {
767 if (!isTerminating()) {
768 int p = this.parallelism;
769 this.parallelism = parallelism;
770 if (parallelism > p)
771 createAndStartAddedWorkers();
772 else
773 trimSpares();
774 }
775 } finally {
776 lock.unlock();
777 }
778 signalIdleWorkers();
779 }
780
781 /**
782 * Returns the targeted number of worker threads in this pool.
783 *
784 * @return the targeted number of worker threads in this pool
785 */
786 public int getParallelism() {
787 return parallelism;
788 }
789
790 /**
791 * Returns the number of worker threads that have started but not
792 * yet terminated. This result returned by this method may differ
793 * from {@code getParallelism} when threads are created to
794 * maintain parallelism when others are cooperatively blocked.
795 *
796 * @return the number of worker threads
797 */
798 public int getPoolSize() {
799 return totalCountOf(workerCounts);
800 }
801
802 /**
803 * Returns the maximum number of threads allowed to exist in the
804 * pool, even if there are insufficient unblocked running threads.
805 *
806 * @return the maximum
807 */
808 public int getMaximumPoolSize() {
809 return maxPoolSize;
810 }
811
812 /**
813 * Sets the maximum number of threads allowed to exist in the
814 * pool, even if there are insufficient unblocked running threads.
815 * Setting this value has no effect on current pool size. It
816 * controls construction of new threads.
817 *
818 * @throws IllegalArgumentException if negative or greater then
819 * internal implementation limit
820 */
821 public void setMaximumPoolSize(int newMax) {
822 if (newMax < 0 || newMax > MAX_THREADS)
823 throw new IllegalArgumentException();
824 maxPoolSize = newMax;
825 }
826
827
828 /**
829 * Returns true if this pool dynamically maintains its target
830 * parallelism level. If false, new threads are added only to
831 * avoid possible starvation.
832 * This setting is by default true.
833 *
834 * @return true if maintains parallelism
835 */
836 public boolean getMaintainsParallelism() {
837 return maintainsParallelism;
838 }
839
840 /**
841 * Sets whether this pool dynamically maintains its target
842 * parallelism level. If false, new threads are added only to
843 * avoid possible starvation.
844 *
845 * @param enable true to maintains parallelism
846 */
847 public void setMaintainsParallelism(boolean enable) {
848 maintainsParallelism = enable;
849 }
850
851 /**
852 * Establishes local first-in-first-out scheduling mode for forked
853 * tasks that are never joined. This mode may be more appropriate
854 * than default locally stack-based mode in applications in which
855 * worker threads only process asynchronous tasks. This method is
856 * designed to be invoked only when pool is quiescent, and
857 * typically only before any tasks are submitted. The effects of
858 * invocations at other times may be unpredictable.
859 *
860 * @param async if true, use locally FIFO scheduling
861 * @return the previous mode
862 */
863 public boolean setAsyncMode(boolean async) {
864 boolean oldMode = locallyFifo;
865 locallyFifo = async;
866 ForkJoinWorkerThread[] ws = workers;
867 if (ws != null) {
868 for (int i = 0; i < ws.length; ++i) {
869 ForkJoinWorkerThread t = ws[i];
870 if (t != null)
871 t.setAsyncMode(async);
872 }
873 }
874 return oldMode;
875 }
876
877 /**
878 * Returns true if this pool uses local first-in-first-out
879 * scheduling mode for forked tasks that are never joined.
880 *
881 * @return true if this pool uses async mode
882 */
883 public boolean getAsyncMode() {
884 return locallyFifo;
885 }
886
887 /**
888 * Returns an estimate of the number of worker threads that are
889 * not blocked waiting to join tasks or for other managed
890 * synchronization.
891 *
892 * @return the number of worker threads
893 */
894 public int getRunningThreadCount() {
895 return runningCountOf(workerCounts);
896 }
897
898 /**
899 * Returns an estimate of the number of threads that are currently
900 * stealing or executing tasks. This method may overestimate the
901 * number of active threads.
902 *
903 * @return the number of active threads
904 */
905 public int getActiveThreadCount() {
906 return activeCountOf(runControl);
907 }
908
909 /**
910 * Returns an estimate of the number of threads that are currently
911 * idle waiting for tasks. This method may underestimate the
912 * number of idle threads.
913 *
914 * @return the number of idle threads
915 */
916 final int getIdleThreadCount() {
917 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
918 return (c <= 0) ? 0 : c;
919 }
920
921 /**
922 * Returns true if all worker threads are currently idle. An idle
923 * worker is one that cannot obtain a task to execute because none
924 * are available to steal from other threads, and there are no
925 * pending submissions to the pool. This method is conservative;
926 * it might not return true immediately upon idleness of all
927 * threads, but will eventually become true if threads remain
928 * inactive.
929 *
930 * @return true if all threads are currently idle
931 */
932 public boolean isQuiescent() {
933 return activeCountOf(runControl) == 0;
934 }
935
936 /**
937 * Returns an estimate of the total number of tasks stolen from
938 * one thread's work queue by another. The reported value
939 * underestimates the actual total number of steals when the pool
940 * is not quiescent. This value may be useful for monitoring and
941 * tuning fork/join programs: in general, steal counts should be
942 * high enough to keep threads busy, but low enough to avoid
943 * overhead and contention across threads.
944 *
945 * @return the number of steals
946 */
947 public long getStealCount() {
948 return stealCount.get();
949 }
950
951 /**
952 * Accumulates steal count from a worker.
953 * Call only when worker known to be idle.
954 */
955 private void updateStealCount(ForkJoinWorkerThread w) {
956 int sc = w.getAndClearStealCount();
957 if (sc != 0)
958 stealCount.addAndGet(sc);
959 }
960
961 /**
962 * Returns an estimate of the total number of tasks currently held
963 * in queues by worker threads (but not including tasks submitted
964 * to the pool that have not begun executing). This value is only
965 * an approximation, obtained by iterating across all threads in
966 * the pool. This method may be useful for tuning task
967 * granularities.
968 *
969 * @return the number of queued tasks
970 */
971 public long getQueuedTaskCount() {
972 long count = 0;
973 ForkJoinWorkerThread[] ws = workers;
974 if (ws != null) {
975 for (int i = 0; i < ws.length; ++i) {
976 ForkJoinWorkerThread t = ws[i];
977 if (t != null)
978 count += t.getQueueSize();
979 }
980 }
981 return count;
982 }
983
984 /**
985 * Returns an estimate of the number tasks submitted to this pool
986 * that have not yet begun executing. This method takes time
987 * proportional to the number of submissions.
988 *
989 * @return the number of queued submissions
990 */
991 public int getQueuedSubmissionCount() {
992 return submissionQueue.size();
993 }
994
995 /**
996 * Returns true if there are any tasks submitted to this pool
997 * that have not yet begun executing.
998 *
999 * @return {@code true} if there are any queued submissions
1000 */
1001 public boolean hasQueuedSubmissions() {
1002 return !submissionQueue.isEmpty();
1003 }
1004
1005 /**
1006 * Removes and returns the next unexecuted submission if one is
1007 * available. This method may be useful in extensions to this
1008 * class that re-assign work in systems with multiple pools.
1009 *
1010 * @return the next submission, or null if none
1011 */
1012 protected ForkJoinTask<?> pollSubmission() {
1013 return submissionQueue.poll();
1014 }
1015
1016 /**
1017 * Removes all available unexecuted submitted and forked tasks
1018 * from scheduling queues and adds them to the given collection,
1019 * without altering their execution status. These may include
1020 * artificially generated or wrapped tasks. This method is designed
1021 * to be invoked only when the pool is known to be
1022 * quiescent. Invocations at other times may not remove all
1023 * tasks. A failure encountered while attempting to add elements
1024 * to collection {@code c} may result in elements being in
1025 * neither, either or both collections when the associated
1026 * exception is thrown. The behavior of this operation is
1027 * undefined if the specified collection is modified while the
1028 * operation is in progress.
1029 *
1030 * @param c the collection to transfer elements into
1031 * @return the number of elements transferred
1032 */
1033 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1034 int n = submissionQueue.drainTo(c);
1035 ForkJoinWorkerThread[] ws = workers;
1036 if (ws != null) {
1037 for (int i = 0; i < ws.length; ++i) {
1038 ForkJoinWorkerThread w = ws[i];
1039 if (w != null)
1040 n += w.drainTasksTo(c);
1041 }
1042 }
1043 return n;
1044 }
1045
1046 /**
1047 * Returns a string identifying this pool, as well as its state,
1048 * including indications of run state, parallelism level, and
1049 * worker and task counts.
1050 *
1051 * @return a string identifying this pool, as well as its state
1052 */
1053 public String toString() {
1054 int ps = parallelism;
1055 int wc = workerCounts;
1056 int rc = runControl;
1057 long st = getStealCount();
1058 long qt = getQueuedTaskCount();
1059 long qs = getQueuedSubmissionCount();
1060 return super.toString() +
1061 "[" + runStateToString(runStateOf(rc)) +
1062 ", parallelism = " + ps +
1063 ", size = " + totalCountOf(wc) +
1064 ", active = " + activeCountOf(rc) +
1065 ", running = " + runningCountOf(wc) +
1066 ", steals = " + st +
1067 ", tasks = " + qt +
1068 ", submissions = " + qs +
1069 "]";
1070 }
1071
1072 private static String runStateToString(int rs) {
1073 switch(rs) {
1074 case RUNNING: return "Running";
1075 case SHUTDOWN: return "Shutting down";
1076 case TERMINATING: return "Terminating";
1077 case TERMINATED: return "Terminated";
1078 default: throw new Error("Unknown run state");
1079 }
1080 }
1081
1082 // lifecycle control
1083
1084 /**
1085 * Initiates an orderly shutdown in which previously submitted
1086 * tasks are executed, but no new tasks will be accepted.
1087 * Invocation has no additional effect if already shut down.
1088 * Tasks that are in the process of being submitted concurrently
1089 * during the course of this method may or may not be rejected.
1090 *
1091 * @throws SecurityException if a security manager exists and
1092 * the caller is not permitted to modify threads
1093 * because it does not hold {@link
1094 * java.lang.RuntimePermission}{@code ("modifyThread")}
1095 */
1096 public void shutdown() {
1097 checkPermission();
1098 transitionRunStateTo(SHUTDOWN);
1099 if (canTerminateOnShutdown(runControl))
1100 terminateOnShutdown();
1101 }
1102
1103 /**
1104 * Attempts to stop all actively executing tasks, and cancels all
1105 * waiting tasks. Tasks that are in the process of being
1106 * submitted or executed concurrently during the course of this
1107 * method may or may not be rejected. Unlike some other executors,
1108 * this method cancels rather than collects non-executed tasks
1109 * upon termination, so always returns an empty list. However, you
1110 * can use method {@code drainTasksTo} before invoking this
1111 * method to transfer unexecuted tasks to another collection.
1112 *
1113 * @return an empty list
1114 * @throws SecurityException if a security manager exists and
1115 * the caller is not permitted to modify threads
1116 * because it does not hold {@link
1117 * java.lang.RuntimePermission}{@code ("modifyThread")}
1118 */
1119 public List<Runnable> shutdownNow() {
1120 checkPermission();
1121 terminate();
1122 return Collections.emptyList();
1123 }
1124
1125 /**
1126 * Returns {@code true} if all tasks have completed following shut down.
1127 *
1128 * @return {@code true} if all tasks have completed following shut down
1129 */
1130 public boolean isTerminated() {
1131 return runStateOf(runControl) == TERMINATED;
1132 }
1133
1134 /**
1135 * Returns {@code true} if the process of termination has
1136 * commenced but possibly not yet completed.
1137 *
1138 * @return {@code true} if terminating
1139 */
1140 public boolean isTerminating() {
1141 return runStateOf(runControl) >= TERMINATING;
1142 }
1143
1144 /**
1145 * Returns {@code true} if this pool has been shut down.
1146 *
1147 * @return {@code true} if this pool has been shut down
1148 */
1149 public boolean isShutdown() {
1150 return runStateOf(runControl) >= SHUTDOWN;
1151 }
1152
1153 /**
1154 * Blocks until all tasks have completed execution after a shutdown
1155 * request, or the timeout occurs, or the current thread is
1156 * interrupted, whichever happens first.
1157 *
1158 * @param timeout the maximum time to wait
1159 * @param unit the time unit of the timeout argument
1160 * @return {@code true} if this executor terminated and
1161 * {@code false} if the timeout elapsed before termination
1162 * @throws InterruptedException if interrupted while waiting
1163 */
1164 public boolean awaitTermination(long timeout, TimeUnit unit)
1165 throws InterruptedException {
1166 long nanos = unit.toNanos(timeout);
1167 final ReentrantLock lock = this.workerLock;
1168 lock.lock();
1169 try {
1170 for (;;) {
1171 if (isTerminated())
1172 return true;
1173 if (nanos <= 0)
1174 return false;
1175 nanos = termination.awaitNanos(nanos);
1176 }
1177 } finally {
1178 lock.unlock();
1179 }
1180 }
1181
1182 // Shutdown and termination support
1183
1184 /**
1185 * Callback from terminating worker. Nulls out the corresponding
1186 * workers slot, and if terminating, tries to terminate; else
1187 * tries to shrink workers array.
1188 *
1189 * @param w the worker
1190 */
1191 final void workerTerminated(ForkJoinWorkerThread w) {
1192 updateStealCount(w);
1193 updateWorkerCount(-1);
1194 final ReentrantLock lock = this.workerLock;
1195 lock.lock();
1196 try {
1197 ForkJoinWorkerThread[] ws = workers;
1198 if (ws != null) {
1199 int idx = w.poolIndex;
1200 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1201 ws[idx] = null;
1202 if (totalCountOf(workerCounts) == 0) {
1203 terminate(); // no-op if already terminating
1204 transitionRunStateTo(TERMINATED);
1205 termination.signalAll();
1206 }
1207 else if (!isTerminating()) {
1208 tryShrinkWorkerArray();
1209 tryResumeSpare(true); // allow replacement
1210 }
1211 }
1212 } finally {
1213 lock.unlock();
1214 }
1215 signalIdleWorkers();
1216 }
1217
1218 /**
1219 * Initiates termination.
1220 */
1221 private void terminate() {
1222 if (transitionRunStateTo(TERMINATING)) {
1223 stopAllWorkers();
1224 resumeAllSpares();
1225 signalIdleWorkers();
1226 cancelQueuedSubmissions();
1227 cancelQueuedWorkerTasks();
1228 interruptUnterminatedWorkers();
1229 signalIdleWorkers(); // resignal after interrupt
1230 }
1231 }
1232
1233 /**
1234 * Possibly terminates when on shutdown state.
1235 */
1236 private void terminateOnShutdown() {
1237 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1238 terminate();
1239 }
1240
1241 /**
1242 * Clears out and cancels submissions.
1243 */
1244 private void cancelQueuedSubmissions() {
1245 ForkJoinTask<?> task;
1246 while ((task = pollSubmission()) != null)
1247 task.cancel(false);
1248 }
1249
1250 /**
1251 * Cleans out worker queues.
1252 */
1253 private void cancelQueuedWorkerTasks() {
1254 final ReentrantLock lock = this.workerLock;
1255 lock.lock();
1256 try {
1257 ForkJoinWorkerThread[] ws = workers;
1258 if (ws != null) {
1259 for (int i = 0; i < ws.length; ++i) {
1260 ForkJoinWorkerThread t = ws[i];
1261 if (t != null)
1262 t.cancelTasks();
1263 }
1264 }
1265 } finally {
1266 lock.unlock();
1267 }
1268 }
1269
1270 /**
1271 * Sets each worker's status to terminating. Requires lock to avoid
1272 * conflicts with add/remove.
1273 */
1274 private void stopAllWorkers() {
1275 final ReentrantLock lock = this.workerLock;
1276 lock.lock();
1277 try {
1278 ForkJoinWorkerThread[] ws = workers;
1279 if (ws != null) {
1280 for (int i = 0; i < ws.length; ++i) {
1281 ForkJoinWorkerThread t = ws[i];
1282 if (t != null)
1283 t.shutdownNow();
1284 }
1285 }
1286 } finally {
1287 lock.unlock();
1288 }
1289 }
1290
1291 /**
1292 * Interrupts all unterminated workers. This is not required for
1293 * sake of internal control, but may help unstick user code during
1294 * shutdown.
1295 */
1296 private void interruptUnterminatedWorkers() {
1297 final ReentrantLock lock = this.workerLock;
1298 lock.lock();
1299 try {
1300 ForkJoinWorkerThread[] ws = workers;
1301 if (ws != null) {
1302 for (int i = 0; i < ws.length; ++i) {
1303 ForkJoinWorkerThread t = ws[i];
1304 if (t != null && !t.isTerminated()) {
1305 try {
1306 t.interrupt();
1307 } catch (SecurityException ignore) {
1308 }
1309 }
1310 }
1311 }
1312 } finally {
1313 lock.unlock();
1314 }
1315 }
1316
1317
1318 /*
1319 * Nodes for event barrier to manage idle threads. Queue nodes
1320 * are basic Treiber stack nodes, also used for spare stack.
1321 *
1322 * The event barrier has an event count and a wait queue (actually
1323 * a Treiber stack). Workers are enabled to look for work when
1324 * the eventCount is incremented. If they fail to find work, they
1325 * may wait for next count. Upon release, threads help others wake
1326 * up.
1327 *
1328 * Synchronization events occur only in enough contexts to
1329 * maintain overall liveness:
1330 *
1331 * - Submission of a new task to the pool
1332 * - Resizes or other changes to the workers array
1333 * - pool termination
1334 * - A worker pushing a task on an empty queue
1335 *
1336 * The case of pushing a task occurs often enough, and is heavy
1337 * enough compared to simple stack pushes, to require special
1338 * handling: Method signalWork returns without advancing count if
1339 * the queue appears to be empty. This would ordinarily result in
1340 * races causing some queued waiters not to be woken up. To avoid
1341 * this, the first worker enqueued in method sync (see
1342 * syncIsReleasable) rescans for tasks after being enqueued, and
1343 * helps signal if any are found. This works well because the
1344 * worker has nothing better to do, and so might as well help
1345 * alleviate the overhead and contention on the threads actually
1346 * doing work. Also, since event counts increments on task
1347 * availability exist to maintain liveness (rather than to force
1348 * refreshes etc), it is OK for callers to exit early if
1349 * contending with another signaller.
1350 */
1351 static final class WaitQueueNode {
1352 WaitQueueNode next; // only written before enqueued
1353 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1354 final long count; // unused for spare stack
1355
1356 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1357 count = c;
1358 thread = w;
1359 }
1360
1361 /**
1362 * Wakes up waiter, returning false if known to already
1363 */
1364 boolean signal() {
1365 ForkJoinWorkerThread t = thread;
1366 if (t == null)
1367 return false;
1368 thread = null;
1369 LockSupport.unpark(t);
1370 return true;
1371 }
1372
1373 /**
1374 * Awaits release on sync.
1375 */
1376 void awaitSyncRelease(ForkJoinPool p) {
1377 while (thread != null && !p.syncIsReleasable(this))
1378 LockSupport.park(this);
1379 }
1380
1381 /**
1382 * Awaits resumption as spare.
1383 */
1384 void awaitSpareRelease() {
1385 while (thread != null) {
1386 if (!Thread.interrupted())
1387 LockSupport.park(this);
1388 }
1389 }
1390 }
1391
1392 /**
1393 * Ensures that no thread is waiting for count to advance from the
1394 * current value of eventCount read on entry to this method, by
1395 * releasing waiting threads if necessary.
1396 *
1397 * @return the count
1398 */
1399 final long ensureSync() {
1400 long c = eventCount;
1401 WaitQueueNode q;
1402 while ((q = syncStack) != null && q.count < c) {
1403 if (casBarrierStack(q, null)) {
1404 do {
1405 q.signal();
1406 } while ((q = q.next) != null);
1407 break;
1408 }
1409 }
1410 return c;
1411 }
1412
1413 /**
1414 * Increments event count and releases waiting threads.
1415 */
1416 private void signalIdleWorkers() {
1417 long c;
1418 do {} while (!casEventCount(c = eventCount, c+1));
1419 ensureSync();
1420 }
1421
1422 /**
1423 * Signals threads waiting to poll a task. Because method sync
1424 * rechecks availability, it is OK to only proceed if queue
1425 * appears to be non-empty, and OK to skip under contention to
1426 * increment count (since some other thread succeeded).
1427 */
1428 final void signalWork() {
1429 long c;
1430 WaitQueueNode q;
1431 if (syncStack != null &&
1432 casEventCount(c = eventCount, c+1) &&
1433 (((q = syncStack) != null && q.count <= c) &&
1434 (!casBarrierStack(q, q.next) || !q.signal())))
1435 ensureSync();
1436 }
1437
1438 /**
1439 * Waits until event count advances from last value held by
1440 * caller, or if excess threads, caller is resumed as spare, or
1441 * caller or pool is terminating. Updates caller's event on exit.
1442 *
1443 * @param w the calling worker thread
1444 */
1445 final void sync(ForkJoinWorkerThread w) {
1446 updateStealCount(w); // Transfer w's count while it is idle
1447
1448 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1449 long prev = w.lastEventCount;
1450 WaitQueueNode node = null;
1451 WaitQueueNode h;
1452 while (eventCount == prev &&
1453 ((h = syncStack) == null || h.count == prev)) {
1454 if (node == null)
1455 node = new WaitQueueNode(prev, w);
1456 if (casBarrierStack(node.next = h, node)) {
1457 node.awaitSyncRelease(this);
1458 break;
1459 }
1460 }
1461 long ec = ensureSync();
1462 if (ec != prev) {
1463 w.lastEventCount = ec;
1464 break;
1465 }
1466 }
1467 }
1468
1469 /**
1470 * Returns true if worker waiting on sync can proceed:
1471 * - on signal (thread == null)
1472 * - on event count advance (winning race to notify vs signaller)
1473 * - on interrupt
1474 * - if the first queued node, we find work available
1475 * If node was not signalled and event count not advanced on exit,
1476 * then we also help advance event count.
1477 *
1478 * @return true if node can be released
1479 */
1480 final boolean syncIsReleasable(WaitQueueNode node) {
1481 long prev = node.count;
1482 if (!Thread.interrupted() && node.thread != null &&
1483 (node.next != null ||
1484 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1485 eventCount == prev)
1486 return false;
1487 if (node.thread != null) {
1488 node.thread = null;
1489 long ec = eventCount;
1490 if (prev <= ec) // help signal
1491 casEventCount(ec, ec+1);
1492 }
1493 return true;
1494 }
1495
1496 /**
1497 * Returns true if a new sync event occurred since last call to
1498 * sync or this method, if so, updating caller's count.
1499 */
1500 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1501 long lc = w.lastEventCount;
1502 long ec = ensureSync();
1503 if (ec == lc)
1504 return false;
1505 w.lastEventCount = ec;
1506 return true;
1507 }
1508
1509 // Parallelism maintenance
1510
1511 /**
1512 * Decrements running count; if too low, adds spare.
1513 *
1514 * Conceptually, all we need to do here is add or resume a
1515 * spare thread when one is about to block (and remove or
1516 * suspend it later when unblocked -- see suspendIfSpare).
1517 * However, implementing this idea requires coping with
1518 * several problems: we have imperfect information about the
1519 * states of threads. Some count updates can and usually do
1520 * lag run state changes, despite arrangements to keep them
1521 * accurate (for example, when possible, updating counts
1522 * before signalling or resuming), especially when running on
1523 * dynamic JVMs that don't optimize the infrequent paths that
1524 * update counts. Generating too many threads can make these
1525 * problems become worse, because excess threads are more
1526 * likely to be context-switched with others, slowing them all
1527 * down, especially if there is no work available, so all are
1528 * busy scanning or idling. Also, excess spare threads can
1529 * only be suspended or removed when they are idle, not
1530 * immediately when they aren't needed. So adding threads will
1531 * raise parallelism level for longer than necessary. Also,
1532 * FJ applications often encounter highly transient peaks when
1533 * many threads are blocked joining, but for less time than it
1534 * takes to create or resume spares.
1535 *
1536 * @param joinMe if non-null, return early if done
1537 * @param maintainParallelism if true, try to stay within
1538 * target counts, else create only to avoid starvation
1539 * @return true if joinMe known to be done
1540 */
1541 final boolean preJoin(ForkJoinTask<?> joinMe,
1542 boolean maintainParallelism) {
1543 maintainParallelism &= maintainsParallelism; // overrride
1544 boolean dec = false; // true when running count decremented
1545 while (spareStack == null || !tryResumeSpare(dec)) {
1546 int counts = workerCounts;
1547 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1548 // CAS cheat
1549 if (!needSpare(counts, maintainParallelism))
1550 break;
1551 if (joinMe.status < 0)
1552 return true;
1553 if (tryAddSpare(counts))
1554 break;
1555 }
1556 }
1557 return false;
1558 }
1559
1560 /**
1561 * Same idea as preJoin
1562 */
1563 final boolean preBlock(ManagedBlocker blocker,
1564 boolean maintainParallelism) {
1565 maintainParallelism &= maintainsParallelism;
1566 boolean dec = false;
1567 while (spareStack == null || !tryResumeSpare(dec)) {
1568 int counts = workerCounts;
1569 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1570 if (!needSpare(counts, maintainParallelism))
1571 break;
1572 if (blocker.isReleasable())
1573 return true;
1574 if (tryAddSpare(counts))
1575 break;
1576 }
1577 }
1578 return false;
1579 }
1580
1581 /**
1582 * Returns true if a spare thread appears to be needed. If
1583 * maintaining parallelism, returns true when the deficit in
1584 * running threads is more than the surplus of total threads, and
1585 * there is apparently some work to do. This self-limiting rule
1586 * means that the more threads that have already been added, the
1587 * less parallelism we will tolerate before adding another.
1588 *
1589 * @param counts current worker counts
1590 * @param maintainParallelism try to maintain parallelism
1591 */
1592 private boolean needSpare(int counts, boolean maintainParallelism) {
1593 int ps = parallelism;
1594 int rc = runningCountOf(counts);
1595 int tc = totalCountOf(counts);
1596 int runningDeficit = ps - rc;
1597 int totalSurplus = tc - ps;
1598 return (tc < maxPoolSize &&
1599 (rc == 0 || totalSurplus < 0 ||
1600 (maintainParallelism &&
1601 runningDeficit > totalSurplus &&
1602 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1603 }
1604
1605 /**
1606 * Adds a spare worker if lock available and no more than the
1607 * expected numbers of threads exist.
1608 *
1609 * @return true if successful
1610 */
1611 private boolean tryAddSpare(int expectedCounts) {
1612 final ReentrantLock lock = this.workerLock;
1613 int expectedRunning = runningCountOf(expectedCounts);
1614 int expectedTotal = totalCountOf(expectedCounts);
1615 boolean success = false;
1616 boolean locked = false;
1617 // confirm counts while locking; CAS after obtaining lock
1618 try {
1619 for (;;) {
1620 int s = workerCounts;
1621 int tc = totalCountOf(s);
1622 int rc = runningCountOf(s);
1623 if (rc > expectedRunning || tc > expectedTotal)
1624 break;
1625 if (!locked && !(locked = lock.tryLock()))
1626 break;
1627 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1628 createAndStartSpare(tc);
1629 success = true;
1630 break;
1631 }
1632 }
1633 } finally {
1634 if (locked)
1635 lock.unlock();
1636 }
1637 return success;
1638 }
1639
1640 /**
1641 * Adds the kth spare worker. On entry, pool counts are already
1642 * adjusted to reflect addition.
1643 */
1644 private void createAndStartSpare(int k) {
1645 ForkJoinWorkerThread w = null;
1646 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1647 int len = ws.length;
1648 // Probably, we can place at slot k. If not, find empty slot
1649 if (k < len && ws[k] != null) {
1650 for (k = 0; k < len && ws[k] != null; ++k)
1651 ;
1652 }
1653 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1654 ws[k] = w;
1655 w.start();
1656 }
1657 else
1658 updateWorkerCount(-1); // adjust on failure
1659 signalIdleWorkers();
1660 }
1661
1662 /**
1663 * Suspends calling thread w if there are excess threads. Called
1664 * only from sync. Spares are enqueued in a Treiber stack using
1665 * the same WaitQueueNodes as barriers. They are resumed mainly
1666 * in preJoin, but are also woken on pool events that require all
1667 * threads to check run state.
1668 *
1669 * @param w the caller
1670 */
1671 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1672 WaitQueueNode node = null;
1673 int s;
1674 while (parallelism < runningCountOf(s = workerCounts)) {
1675 if (node == null)
1676 node = new WaitQueueNode(0, w);
1677 if (casWorkerCounts(s, s-1)) { // representation-dependent
1678 // push onto stack
1679 do {} while (!casSpareStack(node.next = spareStack, node));
1680 // block until released by resumeSpare
1681 node.awaitSpareRelease();
1682 return true;
1683 }
1684 }
1685 return false;
1686 }
1687
1688 /**
1689 * Tries to pop and resume a spare thread.
1690 *
1691 * @param updateCount if true, increment running count on success
1692 * @return true if successful
1693 */
1694 private boolean tryResumeSpare(boolean updateCount) {
1695 WaitQueueNode q;
1696 while ((q = spareStack) != null) {
1697 if (casSpareStack(q, q.next)) {
1698 if (updateCount)
1699 updateRunningCount(1);
1700 q.signal();
1701 return true;
1702 }
1703 }
1704 return false;
1705 }
1706
1707 /**
1708 * Pops and resumes all spare threads. Same idea as ensureSync.
1709 *
1710 * @return true if any spares released
1711 */
1712 private boolean resumeAllSpares() {
1713 WaitQueueNode q;
1714 while ( (q = spareStack) != null) {
1715 if (casSpareStack(q, null)) {
1716 do {
1717 updateRunningCount(1);
1718 q.signal();
1719 } while ((q = q.next) != null);
1720 return true;
1721 }
1722 }
1723 return false;
1724 }
1725
1726 /**
1727 * Pops and shuts down excessive spare threads. Call only while
1728 * holding lock. This is not guaranteed to eliminate all excess
1729 * threads, only those suspended as spares, which are the ones
1730 * unlikely to be needed in the future.
1731 */
1732 private void trimSpares() {
1733 int surplus = totalCountOf(workerCounts) - parallelism;
1734 WaitQueueNode q;
1735 while (surplus > 0 && (q = spareStack) != null) {
1736 if (casSpareStack(q, null)) {
1737 do {
1738 updateRunningCount(1);
1739 ForkJoinWorkerThread w = q.thread;
1740 if (w != null && surplus > 0 &&
1741 runningCountOf(workerCounts) > 0 && w.shutdown())
1742 --surplus;
1743 q.signal();
1744 } while ((q = q.next) != null);
1745 }
1746 }
1747 }
1748
1749 /**
1750 * Interface for extending managed parallelism for tasks running
1751 * in ForkJoinPools. A ManagedBlocker provides two methods.
1752 * Method {@code isReleasable} must return true if blocking is not
1753 * necessary. Method {@code block} blocks the current thread if
1754 * necessary (perhaps internally invoking {@code isReleasable}
1755 * before actually blocking.).
1756 *
1757 * <p>For example, here is a ManagedBlocker based on a
1758 * ReentrantLock:
1759 * <pre> {@code
1760 * class ManagedLocker implements ManagedBlocker {
1761 * final ReentrantLock lock;
1762 * boolean hasLock = false;
1763 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1764 * public boolean block() {
1765 * if (!hasLock)
1766 * lock.lock();
1767 * return true;
1768 * }
1769 * public boolean isReleasable() {
1770 * return hasLock || (hasLock = lock.tryLock());
1771 * }
1772 * }}</pre>
1773 */
1774 public static interface ManagedBlocker {
1775 /**
1776 * Possibly blocks the current thread, for example waiting for
1777 * a lock or condition.
1778 *
1779 * @return true if no additional blocking is necessary (i.e.,
1780 * if isReleasable would return true)
1781 * @throws InterruptedException if interrupted while waiting
1782 * (the method is not required to do so, but is allowed to)
1783 */
1784 boolean block() throws InterruptedException;
1785
1786 /**
1787 * Returns true if blocking is unnecessary.
1788 */
1789 boolean isReleasable();
1790 }
1791
1792 /**
1793 * Blocks in accord with the given blocker. If the current thread
1794 * is a ForkJoinWorkerThread, this method possibly arranges for a
1795 * spare thread to be activated if necessary to ensure parallelism
1796 * while the current thread is blocked. If
1797 * {@code maintainParallelism} is true and the pool supports
1798 * it ({@link #getMaintainsParallelism}), this method attempts to
1799 * maintain the pool's nominal parallelism. Otherwise it activates
1800 * a thread only if necessary to avoid complete starvation. This
1801 * option may be preferable when blockages use timeouts, or are
1802 * almost always brief.
1803 *
1804 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1805 * equivalent to
1806 * <pre> {@code
1807 * while (!blocker.isReleasable())
1808 * if (blocker.block())
1809 * return;
1810 * }</pre>
1811 * If the caller is a ForkJoinTask, then the pool may first
1812 * be expanded to ensure parallelism, and later adjusted.
1813 *
1814 * @param blocker the blocker
1815 * @param maintainParallelism if true and supported by this pool,
1816 * attempt to maintain the pool's nominal parallelism; otherwise
1817 * activate a thread only if necessary to avoid complete
1818 * starvation.
1819 * @throws InterruptedException if blocker.block did so
1820 */
1821 public static void managedBlock(ManagedBlocker blocker,
1822 boolean maintainParallelism)
1823 throws InterruptedException {
1824 Thread t = Thread.currentThread();
1825 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1826 ((ForkJoinWorkerThread) t).pool : null);
1827 if (!blocker.isReleasable()) {
1828 try {
1829 if (pool == null ||
1830 !pool.preBlock(blocker, maintainParallelism))
1831 awaitBlocker(blocker);
1832 } finally {
1833 if (pool != null)
1834 pool.updateRunningCount(1);
1835 }
1836 }
1837 }
1838
1839 private static void awaitBlocker(ManagedBlocker blocker)
1840 throws InterruptedException {
1841 do {} while (!blocker.isReleasable() && !blocker.block());
1842 }
1843
1844 // AbstractExecutorService overrides
1845
1846 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1847 return new AdaptedRunnable<T>(runnable, value);
1848 }
1849
1850 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1851 return new AdaptedCallable<T>(callable);
1852 }
1853
1854
1855 // Unsafe mechanics for jsr166y 3rd party package.
1856 private static sun.misc.Unsafe getUnsafe() {
1857 try {
1858 return sun.misc.Unsafe.getUnsafe();
1859 } catch (SecurityException se) {
1860 try {
1861 return java.security.AccessController.doPrivileged
1862 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1863 public sun.misc.Unsafe run() throws Exception {
1864 return getUnsafeByReflection();
1865 }});
1866 } catch (java.security.PrivilegedActionException e) {
1867 throw new RuntimeException("Could not initialize intrinsics",
1868 e.getCause());
1869 }
1870 }
1871 }
1872
1873 private static sun.misc.Unsafe getUnsafeByReflection()
1874 throws NoSuchFieldException, IllegalAccessException {
1875 java.lang.reflect.Field f =
1876 sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
1877 f.setAccessible(true);
1878 return (sun.misc.Unsafe) f.get(null);
1879 }
1880
1881 private static long fieldOffset(String fieldName, Class<?> klazz) {
1882 try {
1883 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
1884 } catch (NoSuchFieldException e) {
1885 // Convert Exception to Error
1886 NoSuchFieldError error = new NoSuchFieldError(fieldName);
1887 error.initCause(e);
1888 throw error;
1889 }
1890 }
1891
1892 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1893 static final long eventCountOffset =
1894 fieldOffset("eventCount", ForkJoinPool.class);
1895 static final long workerCountsOffset =
1896 fieldOffset("workerCounts", ForkJoinPool.class);
1897 static final long runControlOffset =
1898 fieldOffset("runControl", ForkJoinPool.class);
1899 static final long syncStackOffset =
1900 fieldOffset("syncStack",ForkJoinPool.class);
1901 static final long spareStackOffset =
1902 fieldOffset("spareStack", ForkJoinPool.class);
1903
1904 private boolean casEventCount(long cmp, long val) {
1905 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1906 }
1907 private boolean casWorkerCounts(int cmp, int val) {
1908 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1909 }
1910 private boolean casRunControl(int cmp, int val) {
1911 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1912 }
1913 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1914 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1915 }
1916 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1917 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1918 }
1919 }