ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.23
Committed: Sat Jul 25 15:50:57 2009 UTC (14 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.22: +31 -2 lines
Log Message:
Export adaptors; change some signatures to simplify usage

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
24 * ForkJoinPool provides the entry point for submissions from
25 * non-ForkJoinTasks, as well as management and monitoring operations.
26 * Normally a single ForkJoinPool is used for a large number of
27 * submitted tasks. Otherwise, use would not usually outweigh the
28 * construction and bookkeeping overhead of creating a large set of
29 * threads.
30 *
31 * <p>ForkJoinPools differ from other kinds of Executors mainly in
32 * that they provide <em>work-stealing</em>: all threads in the pool
33 * attempt to find and execute subtasks created by other active tasks
34 * (eventually blocking if none exist). This makes them efficient when
35 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
36 * as the mixed execution of some plain Runnable- or Callable- based
37 * activities along with ForkJoinTasks. When setting
38 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
39 * use with fine-grained tasks that are never joined. Otherwise, other
40 * ExecutorService implementations are typically more appropriate
41 * choices.
42 *
43 * <p>A ForkJoinPool may be constructed with a given parallelism level
44 * (target pool size), which it attempts to maintain by dynamically
45 * adding, suspending, or resuming threads, even if some tasks are
46 * waiting to join others. However, no such adjustments are performed
47 * in the face of blocked IO or other unmanaged synchronization. The
48 * nested {@code ManagedBlocker} interface enables extension of
49 * the kinds of synchronization accommodated. The target parallelism
50 * level may also be changed dynamically ({@code setParallelism})
51 * and thread construction can be limited using methods
52 * {@code setMaximumPoolSize} and/or
53 * {@code setMaintainsParallelism}.
54 *
55 * <p>In addition to execution and lifecycle control methods, this
56 * class provides status check methods (for example
57 * {@code getStealCount}) that are intended to aid in developing,
58 * tuning, and monitoring fork/join applications. Also, method
59 * {@code toString} returns indications of pool state in a
60 * convenient form for informal monitoring.
61 *
62 * <p><b>Implementation notes</b>: This implementation restricts the
63 * maximum number of running threads to 32767. Attempts to create
64 * pools with greater than the maximum result in
65 * IllegalArgumentExceptions.
66 *
67 * @since 1.7
68 * @author Doug Lea
69 */
70 public class ForkJoinPool extends AbstractExecutorService {
71
72 /*
73 * See the extended comments interspersed below for design,
74 * rationale, and walkthroughs.
75 */
76
77 /** Mask for packing and unpacking shorts */
78 private static final int shortMask = 0xffff;
79
80 /** Max pool size -- must be a power of two minus 1 */
81 private static final int MAX_THREADS = 0x7FFF;
82
83 /**
84 * Factory for creating new ForkJoinWorkerThreads. A
85 * ForkJoinWorkerThreadFactory must be defined and used for
86 * ForkJoinWorkerThread subclasses that extend base functionality
87 * or initialize threads with different contexts.
88 */
89 public static interface ForkJoinWorkerThreadFactory {
90 /**
91 * Returns a new worker thread operating in the given pool.
92 *
93 * @param pool the pool this thread works in
94 * @throws NullPointerException if pool is null
95 */
96 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
97 }
98
99 /**
100 * Default ForkJoinWorkerThreadFactory implementation; creates a
101 * new ForkJoinWorkerThread.
102 */
103 static class DefaultForkJoinWorkerThreadFactory
104 implements ForkJoinWorkerThreadFactory {
105 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
106 try {
107 return new ForkJoinWorkerThread(pool);
108 } catch (OutOfMemoryError oom) {
109 return null;
110 }
111 }
112 }
113
114 /**
115 * Creates a new ForkJoinWorkerThread. This factory is used unless
116 * overridden in ForkJoinPool constructors.
117 */
118 public static final ForkJoinWorkerThreadFactory
119 defaultForkJoinWorkerThreadFactory =
120 new DefaultForkJoinWorkerThreadFactory();
121
122 /**
123 * Permission required for callers of methods that may start or
124 * kill threads.
125 */
126 private static final RuntimePermission modifyThreadPermission =
127 new RuntimePermission("modifyThread");
128
129 /**
130 * If there is a security manager, makes sure caller has
131 * permission to modify threads.
132 */
133 private static void checkPermission() {
134 SecurityManager security = System.getSecurityManager();
135 if (security != null)
136 security.checkPermission(modifyThreadPermission);
137 }
138
139 /**
140 * Generator for assigning sequence numbers as pool names.
141 */
142 private static final AtomicInteger poolNumberGenerator =
143 new AtomicInteger();
144
145 /**
146 * Array holding all worker threads in the pool. Initialized upon
147 * first use. Array size must be a power of two. Updates and
148 * replacements are protected by workerLock, but it is always kept
149 * in a consistent enough state to be randomly accessed without
150 * locking by workers performing work-stealing.
151 */
152 volatile ForkJoinWorkerThread[] workers;
153
154 /**
155 * Lock protecting access to workers.
156 */
157 private final ReentrantLock workerLock;
158
159 /**
160 * Condition for awaitTermination.
161 */
162 private final Condition termination;
163
164 /**
165 * The uncaught exception handler used when any worker
166 * abruptly terminates
167 */
168 private Thread.UncaughtExceptionHandler ueh;
169
170 /**
171 * Creation factory for worker threads.
172 */
173 private final ForkJoinWorkerThreadFactory factory;
174
175 /**
176 * Head of stack of threads that were created to maintain
177 * parallelism when other threads blocked, but have since
178 * suspended when the parallelism level rose.
179 */
180 private volatile WaitQueueNode spareStack;
181
182 /**
183 * Sum of per-thread steal counts, updated only when threads are
184 * idle or terminating.
185 */
186 private final AtomicLong stealCount;
187
188 /**
189 * Queue for external submissions.
190 */
191 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
192
193 /**
194 * Head of Treiber stack for barrier sync. See below for explanation.
195 */
196 private volatile WaitQueueNode syncStack;
197
198 /**
199 * The count for event barrier
200 */
201 private volatile long eventCount;
202
203 /**
204 * Pool number, just for assigning useful names to worker threads
205 */
206 private final int poolNumber;
207
208 /**
209 * The maximum allowed pool size
210 */
211 private volatile int maxPoolSize;
212
213 /**
214 * The desired parallelism level, updated only under workerLock.
215 */
216 private volatile int parallelism;
217
218 /**
219 * True if use local fifo, not default lifo, for local polling
220 */
221 private volatile boolean locallyFifo;
222
223 /**
224 * Holds number of total (i.e., created and not yet terminated)
225 * and running (i.e., not blocked on joins or other managed sync)
226 * threads, packed into one int to ensure consistent snapshot when
227 * making decisions about creating and suspending spare
228 * threads. Updated only by CAS. Note: CASes in
229 * updateRunningCount and preJoin assume that running active count
230 * is in low word, so need to be modified if this changes.
231 */
232 private volatile int workerCounts;
233
234 private static int totalCountOf(int s) { return s >>> 16; }
235 private static int runningCountOf(int s) { return s & shortMask; }
236 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
237
238 /**
239 * Adds delta (which may be negative) to running count. This must
240 * be called before (with negative arg) and after (with positive)
241 * any managed synchronization (i.e., mainly, joins).
242 *
243 * @param delta the number to add
244 */
245 final void updateRunningCount(int delta) {
246 int s;
247 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 }
249
250 /**
251 * Adds delta (which may be negative) to both total and running
252 * count. This must be called upon creation and termination of
253 * worker threads.
254 *
255 * @param delta the number to add
256 */
257 private void updateWorkerCount(int delta) {
258 int d = delta + (delta << 16); // add to both lo and hi parts
259 int s;
260 do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 }
262
263 /**
264 * Lifecycle control. High word contains runState, low word
265 * contains the number of workers that are (probably) executing
266 * tasks. This value is atomically incremented before a worker
267 * gets a task to run, and decremented when worker has no tasks
268 * and cannot find any. These two fields are bundled together to
269 * support correct termination triggering. Note: activeCount
270 * CAS'es cheat by assuming active count is in low word, so need
271 * to be modified if this changes
272 */
273 private volatile int runControl;
274
275 // RunState values. Order among values matters
276 private static final int RUNNING = 0;
277 private static final int SHUTDOWN = 1;
278 private static final int TERMINATING = 2;
279 private static final int TERMINATED = 3;
280
281 private static int runStateOf(int c) { return c >>> 16; }
282 private static int activeCountOf(int c) { return c & shortMask; }
283 private static int runControlFor(int r, int a) { return (r << 16) + a; }
284
285 /**
286 * Tries incrementing active count; fails on contention.
287 * Called by workers before/during executing tasks.
288 *
289 * @return true on success
290 */
291 final boolean tryIncrementActiveCount() {
292 int c = runControl;
293 return casRunControl(c, c+1);
294 }
295
296 /**
297 * Tries decrementing active count; fails on contention.
298 * Possibly triggers termination on success.
299 * Called by workers when they can't find tasks.
300 *
301 * @return true on success
302 */
303 final boolean tryDecrementActiveCount() {
304 int c = runControl;
305 int nextc = c - 1;
306 if (!casRunControl(c, nextc))
307 return false;
308 if (canTerminateOnShutdown(nextc))
309 terminateOnShutdown();
310 return true;
311 }
312
313 /**
314 * Returns true if argument represents zero active count and
315 * nonzero runstate, which is the triggering condition for
316 * terminating on shutdown.
317 */
318 private static boolean canTerminateOnShutdown(int c) {
319 // i.e. least bit is nonzero runState bit
320 return ((c & -c) >>> 16) != 0;
321 }
322
323 /**
324 * Transition run state to at least the given state. Return true
325 * if not already at least given state.
326 */
327 private boolean transitionRunStateTo(int state) {
328 for (;;) {
329 int c = runControl;
330 if (runStateOf(c) >= state)
331 return false;
332 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
333 return true;
334 }
335 }
336
337 /**
338 * Controls whether to add spares to maintain parallelism
339 */
340 private volatile boolean maintainsParallelism;
341
342 // Constructors
343
344 /**
345 * Creates a ForkJoinPool with a pool size equal to the number of
346 * processors available on the system, using the default
347 * ForkJoinWorkerThreadFactory.
348 *
349 * @throws SecurityException if a security manager exists and
350 * the caller is not permitted to modify threads
351 * because it does not hold {@link
352 * java.lang.RuntimePermission}{@code ("modifyThread")}
353 */
354 public ForkJoinPool() {
355 this(Runtime.getRuntime().availableProcessors(),
356 defaultForkJoinWorkerThreadFactory);
357 }
358
359 /**
360 * Creates a ForkJoinPool with the indicated parallelism level
361 * threads and using the default ForkJoinWorkerThreadFactory.
362 *
363 * @param parallelism the number of worker threads
364 * @throws IllegalArgumentException if parallelism less than or
365 * equal to zero
366 * @throws SecurityException if a security manager exists and
367 * the caller is not permitted to modify threads
368 * because it does not hold {@link
369 * java.lang.RuntimePermission}{@code ("modifyThread")}
370 */
371 public ForkJoinPool(int parallelism) {
372 this(parallelism, defaultForkJoinWorkerThreadFactory);
373 }
374
375 /**
376 * Creates a ForkJoinPool with parallelism equal to the number of
377 * processors available on the system and using the given
378 * ForkJoinWorkerThreadFactory.
379 *
380 * @param factory the factory for creating new threads
381 * @throws NullPointerException if factory is null
382 * @throws SecurityException if a security manager exists and
383 * the caller is not permitted to modify threads
384 * because it does not hold {@link
385 * java.lang.RuntimePermission}{@code ("modifyThread")}
386 */
387 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388 this(Runtime.getRuntime().availableProcessors(), factory);
389 }
390
391 /**
392 * Creates a ForkJoinPool with the given parallelism and factory.
393 *
394 * @param parallelism the targeted number of worker threads
395 * @param factory the factory for creating new threads
396 * @throws IllegalArgumentException if parallelism less than or
397 * equal to zero, or greater than implementation limit
398 * @throws NullPointerException if factory is null
399 * @throws SecurityException if a security manager exists and
400 * the caller is not permitted to modify threads
401 * because it does not hold {@link
402 * java.lang.RuntimePermission}{@code ("modifyThread")}
403 */
404 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
405 if (parallelism <= 0 || parallelism > MAX_THREADS)
406 throw new IllegalArgumentException();
407 if (factory == null)
408 throw new NullPointerException();
409 checkPermission();
410 this.factory = factory;
411 this.parallelism = parallelism;
412 this.maxPoolSize = MAX_THREADS;
413 this.maintainsParallelism = true;
414 this.poolNumber = poolNumberGenerator.incrementAndGet();
415 this.workerLock = new ReentrantLock();
416 this.termination = workerLock.newCondition();
417 this.stealCount = new AtomicLong();
418 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 // worker array and workers are lazily constructed
420 }
421
422 /**
423 * Creates a new worker thread using factory.
424 *
425 * @param index the index to assign worker
426 * @return new worker, or null of factory failed
427 */
428 private ForkJoinWorkerThread createWorker(int index) {
429 Thread.UncaughtExceptionHandler h = ueh;
430 ForkJoinWorkerThread w = factory.newThread(this);
431 if (w != null) {
432 w.poolIndex = index;
433 w.setDaemon(true);
434 w.setAsyncMode(locallyFifo);
435 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
436 if (h != null)
437 w.setUncaughtExceptionHandler(h);
438 }
439 return w;
440 }
441
442 /**
443 * Returns a good size for worker array given pool size.
444 * Currently requires size to be a power of two.
445 */
446 private static int arraySizeFor(int poolSize) {
447 return (poolSize <= 1) ? 1 :
448 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
449 }
450
451 /**
452 * Creates or resizes array if necessary to hold newLength.
453 * Call only under exclusion.
454 *
455 * @return the array
456 */
457 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
458 ForkJoinWorkerThread[] ws = workers;
459 if (ws == null)
460 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
461 else if (newLength > ws.length)
462 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
463 else
464 return ws;
465 }
466
467 /**
468 * Tries to shrink workers into smaller array after one or more terminate.
469 */
470 private void tryShrinkWorkerArray() {
471 ForkJoinWorkerThread[] ws = workers;
472 if (ws != null) {
473 int len = ws.length;
474 int last = len - 1;
475 while (last >= 0 && ws[last] == null)
476 --last;
477 int newLength = arraySizeFor(last+1);
478 if (newLength < len)
479 workers = Arrays.copyOf(ws, newLength);
480 }
481 }
482
483 /**
484 * Initializes workers if necessary.
485 */
486 final void ensureWorkerInitialization() {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null) {
489 final ReentrantLock lock = this.workerLock;
490 lock.lock();
491 try {
492 ws = workers;
493 if (ws == null) {
494 int ps = parallelism;
495 ws = ensureWorkerArrayCapacity(ps);
496 for (int i = 0; i < ps; ++i) {
497 ForkJoinWorkerThread w = createWorker(i);
498 if (w != null) {
499 ws[i] = w;
500 w.start();
501 updateWorkerCount(1);
502 }
503 }
504 }
505 } finally {
506 lock.unlock();
507 }
508 }
509 }
510
511 /**
512 * Worker creation and startup for threads added via setParallelism.
513 */
514 private void createAndStartAddedWorkers() {
515 resumeAllSpares(); // Allow spares to convert to nonspare
516 int ps = parallelism;
517 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
518 int len = ws.length;
519 // Sweep through slots, to keep lowest indices most populated
520 int k = 0;
521 while (k < len) {
522 if (ws[k] != null) {
523 ++k;
524 continue;
525 }
526 int s = workerCounts;
527 int tc = totalCountOf(s);
528 int rc = runningCountOf(s);
529 if (rc >= ps || tc >= ps)
530 break;
531 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
532 ForkJoinWorkerThread w = createWorker(k);
533 if (w != null) {
534 ws[k++] = w;
535 w.start();
536 }
537 else {
538 updateWorkerCount(-1); // back out on failed creation
539 break;
540 }
541 }
542 }
543 }
544
545 // Execution methods
546
547 /**
548 * Common code for execute, invoke and submit
549 */
550 private <T> void doSubmit(ForkJoinTask<T> task) {
551 if (task == null)
552 throw new NullPointerException();
553 if (isShutdown())
554 throw new RejectedExecutionException();
555 if (workers == null)
556 ensureWorkerInitialization();
557 submissionQueue.offer(task);
558 signalIdleWorkers();
559 }
560
561 /**
562 * Performs the given task, returning its result upon completion.
563 *
564 * @param task the task
565 * @return the task's result
566 * @throws NullPointerException if task is null
567 * @throws RejectedExecutionException if pool is shut down
568 */
569 public <T> T invoke(ForkJoinTask<T> task) {
570 doSubmit(task);
571 return task.join();
572 }
573
574 /**
575 * Arranges for (asynchronous) execution of the given task.
576 *
577 * @param task the task
578 * @throws NullPointerException if task is null
579 * @throws RejectedExecutionException if pool is shut down
580 */
581 public <T> void execute(ForkJoinTask<T> task) {
582 doSubmit(task);
583 }
584
585 // AbstractExecutorService methods
586
587 public void execute(Runnable task) {
588 ForkJoinTask<?> job;
589 if (task instanceof AdaptedCallable) // avoid re-wrap
590 job = (AdaptedCallable<?>)task;
591 else if (task instanceof AdaptedRunnable)
592 job = (AdaptedRunnable<?>)task;
593 else
594 job = new AdaptedRunnable<Void>(task, null);
595 doSubmit(job);
596 }
597
598 public <T> ForkJoinTask<T> submit(Callable<T> task) {
599 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
600 doSubmit(job);
601 return job;
602 }
603
604 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
605 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
606 doSubmit(job);
607 return job;
608 }
609
610 public ForkJoinTask<?> submit(Runnable task) {
611 ForkJoinTask<?> job;
612 if (task instanceof AdaptedCallable) // avoid re-wrap
613 job = (AdaptedCallable<?>)task;
614 else if (task instanceof AdaptedRunnable)
615 job = (AdaptedRunnable<?>)task;
616 else
617 job = new AdaptedRunnable<Void>(task, null);
618 doSubmit(job);
619 return job;
620 }
621
622 /**
623 * Submits a ForkJoinTask for execution.
624 *
625 * @param task the task to submit
626 * @return the task
627 * @throws RejectedExecutionException if the task cannot be
628 * scheduled for execution
629 * @throws NullPointerException if the task is null
630 */
631 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
632 doSubmit(task);
633 return task;
634 }
635
636 /**
637 * Adaptor for Runnables. This implements RunnableFuture
638 * to be compliant with AbstractExecutorService constraints.
639 */
640 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
641 implements RunnableFuture<T> {
642 final Runnable runnable;
643 final T resultOnCompletion;
644 T result;
645 AdaptedRunnable(Runnable runnable, T result) {
646 if (runnable == null) throw new NullPointerException();
647 this.runnable = runnable;
648 this.resultOnCompletion = result;
649 }
650 public T getRawResult() { return result; }
651 public void setRawResult(T v) { result = v; }
652 public boolean exec() {
653 runnable.run();
654 result = resultOnCompletion;
655 return true;
656 }
657 public void run() { invoke(); }
658 private static final long serialVersionUID = 5232453952276885070L;
659 }
660
661 /**
662 * Adaptor for Callables
663 */
664 static final class AdaptedCallable<T> extends ForkJoinTask<T>
665 implements RunnableFuture<T> {
666 final Callable<T> callable;
667 T result;
668 AdaptedCallable(Callable<T> callable) {
669 if (callable == null) throw new NullPointerException();
670 this.callable = callable;
671 }
672 public T getRawResult() { return result; }
673 public void setRawResult(T v) { result = v; }
674 public boolean exec() {
675 try {
676 result = callable.call();
677 return true;
678 } catch (Error err) {
679 throw err;
680 } catch (RuntimeException rex) {
681 throw rex;
682 } catch (Exception ex) {
683 throw new RuntimeException(ex);
684 }
685 }
686 public void run() { invoke(); }
687 private static final long serialVersionUID = 2838392045355241008L;
688 }
689
690 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
691 ArrayList<ForkJoinTask<T>> forkJoinTasks =
692 new ArrayList<ForkJoinTask<T>>(tasks.size());
693 for (Callable<T> task : tasks)
694 forkJoinTasks.add(new AdaptedCallable<T>(task));
695 invoke(new InvokeAll<T>(forkJoinTasks));
696
697 @SuppressWarnings({"unchecked", "rawtypes"})
698 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
699 return futures;
700 }
701
702 static final class InvokeAll<T> extends RecursiveAction {
703 final ArrayList<ForkJoinTask<T>> tasks;
704 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
705 public void compute() {
706 try { invokeAll(tasks); }
707 catch (Exception ignore) {}
708 }
709 private static final long serialVersionUID = -7914297376763021607L;
710 }
711
712 // Configuration and status settings and queries
713
714 /**
715 * Returns the factory used for constructing new workers.
716 *
717 * @return the factory used for constructing new workers
718 */
719 public ForkJoinWorkerThreadFactory getFactory() {
720 return factory;
721 }
722
723 /**
724 * Returns the handler for internal worker threads that terminate
725 * due to unrecoverable errors encountered while executing tasks.
726 *
727 * @return the handler, or null if none
728 */
729 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
730 Thread.UncaughtExceptionHandler h;
731 final ReentrantLock lock = this.workerLock;
732 lock.lock();
733 try {
734 h = ueh;
735 } finally {
736 lock.unlock();
737 }
738 return h;
739 }
740
741 /**
742 * Sets the handler for internal worker threads that terminate due
743 * to unrecoverable errors encountered while executing tasks.
744 * Unless set, the current default or ThreadGroup handler is used
745 * as handler.
746 *
747 * @param h the new handler
748 * @return the old handler, or null if none
749 * @throws SecurityException if a security manager exists and
750 * the caller is not permitted to modify threads
751 * because it does not hold {@link
752 * java.lang.RuntimePermission}{@code ("modifyThread")}
753 */
754 public Thread.UncaughtExceptionHandler
755 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
756 checkPermission();
757 Thread.UncaughtExceptionHandler old = null;
758 final ReentrantLock lock = this.workerLock;
759 lock.lock();
760 try {
761 old = ueh;
762 ueh = h;
763 ForkJoinWorkerThread[] ws = workers;
764 if (ws != null) {
765 for (int i = 0; i < ws.length; ++i) {
766 ForkJoinWorkerThread w = ws[i];
767 if (w != null)
768 w.setUncaughtExceptionHandler(h);
769 }
770 }
771 } finally {
772 lock.unlock();
773 }
774 return old;
775 }
776
777
778 /**
779 * Sets the target parallelism level of this pool.
780 *
781 * @param parallelism the target parallelism
782 * @throws IllegalArgumentException if parallelism less than or
783 * equal to zero or greater than maximum size bounds
784 * @throws SecurityException if a security manager exists and
785 * the caller is not permitted to modify threads
786 * because it does not hold {@link
787 * java.lang.RuntimePermission}{@code ("modifyThread")}
788 */
789 public void setParallelism(int parallelism) {
790 checkPermission();
791 if (parallelism <= 0 || parallelism > maxPoolSize)
792 throw new IllegalArgumentException();
793 final ReentrantLock lock = this.workerLock;
794 lock.lock();
795 try {
796 if (!isTerminating()) {
797 int p = this.parallelism;
798 this.parallelism = parallelism;
799 if (parallelism > p)
800 createAndStartAddedWorkers();
801 else
802 trimSpares();
803 }
804 } finally {
805 lock.unlock();
806 }
807 signalIdleWorkers();
808 }
809
810 /**
811 * Returns the targeted number of worker threads in this pool.
812 *
813 * @return the targeted number of worker threads in this pool
814 */
815 public int getParallelism() {
816 return parallelism;
817 }
818
819 /**
820 * Returns the number of worker threads that have started but not
821 * yet terminated. This result returned by this method may differ
822 * from {@code getParallelism} when threads are created to
823 * maintain parallelism when others are cooperatively blocked.
824 *
825 * @return the number of worker threads
826 */
827 public int getPoolSize() {
828 return totalCountOf(workerCounts);
829 }
830
831 /**
832 * Returns the maximum number of threads allowed to exist in the
833 * pool, even if there are insufficient unblocked running threads.
834 *
835 * @return the maximum
836 */
837 public int getMaximumPoolSize() {
838 return maxPoolSize;
839 }
840
841 /**
842 * Sets the maximum number of threads allowed to exist in the
843 * pool, even if there are insufficient unblocked running threads.
844 * Setting this value has no effect on current pool size. It
845 * controls construction of new threads.
846 *
847 * @throws IllegalArgumentException if negative or greater then
848 * internal implementation limit
849 */
850 public void setMaximumPoolSize(int newMax) {
851 if (newMax < 0 || newMax > MAX_THREADS)
852 throw new IllegalArgumentException();
853 maxPoolSize = newMax;
854 }
855
856
857 /**
858 * Returns true if this pool dynamically maintains its target
859 * parallelism level. If false, new threads are added only to
860 * avoid possible starvation.
861 * This setting is by default true.
862 *
863 * @return true if maintains parallelism
864 */
865 public boolean getMaintainsParallelism() {
866 return maintainsParallelism;
867 }
868
869 /**
870 * Sets whether this pool dynamically maintains its target
871 * parallelism level. If false, new threads are added only to
872 * avoid possible starvation.
873 *
874 * @param enable true to maintains parallelism
875 */
876 public void setMaintainsParallelism(boolean enable) {
877 maintainsParallelism = enable;
878 }
879
880 /**
881 * Establishes local first-in-first-out scheduling mode for forked
882 * tasks that are never joined. This mode may be more appropriate
883 * than default locally stack-based mode in applications in which
884 * worker threads only process asynchronous tasks. This method is
885 * designed to be invoked only when pool is quiescent, and
886 * typically only before any tasks are submitted. The effects of
887 * invocations at other times may be unpredictable.
888 *
889 * @param async if true, use locally FIFO scheduling
890 * @return the previous mode
891 */
892 public boolean setAsyncMode(boolean async) {
893 boolean oldMode = locallyFifo;
894 locallyFifo = async;
895 ForkJoinWorkerThread[] ws = workers;
896 if (ws != null) {
897 for (int i = 0; i < ws.length; ++i) {
898 ForkJoinWorkerThread t = ws[i];
899 if (t != null)
900 t.setAsyncMode(async);
901 }
902 }
903 return oldMode;
904 }
905
906 /**
907 * Returns true if this pool uses local first-in-first-out
908 * scheduling mode for forked tasks that are never joined.
909 *
910 * @return true if this pool uses async mode
911 */
912 public boolean getAsyncMode() {
913 return locallyFifo;
914 }
915
916 /**
917 * Returns an estimate of the number of worker threads that are
918 * not blocked waiting to join tasks or for other managed
919 * synchronization.
920 *
921 * @return the number of worker threads
922 */
923 public int getRunningThreadCount() {
924 return runningCountOf(workerCounts);
925 }
926
927 /**
928 * Returns an estimate of the number of threads that are currently
929 * stealing or executing tasks. This method may overestimate the
930 * number of active threads.
931 *
932 * @return the number of active threads
933 */
934 public int getActiveThreadCount() {
935 return activeCountOf(runControl);
936 }
937
938 /**
939 * Returns an estimate of the number of threads that are currently
940 * idle waiting for tasks. This method may underestimate the
941 * number of idle threads.
942 *
943 * @return the number of idle threads
944 */
945 final int getIdleThreadCount() {
946 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
947 return (c <= 0) ? 0 : c;
948 }
949
950 /**
951 * Returns true if all worker threads are currently idle. An idle
952 * worker is one that cannot obtain a task to execute because none
953 * are available to steal from other threads, and there are no
954 * pending submissions to the pool. This method is conservative;
955 * it might not return true immediately upon idleness of all
956 * threads, but will eventually become true if threads remain
957 * inactive.
958 *
959 * @return true if all threads are currently idle
960 */
961 public boolean isQuiescent() {
962 return activeCountOf(runControl) == 0;
963 }
964
965 /**
966 * Returns an estimate of the total number of tasks stolen from
967 * one thread's work queue by another. The reported value
968 * underestimates the actual total number of steals when the pool
969 * is not quiescent. This value may be useful for monitoring and
970 * tuning fork/join programs: in general, steal counts should be
971 * high enough to keep threads busy, but low enough to avoid
972 * overhead and contention across threads.
973 *
974 * @return the number of steals
975 */
976 public long getStealCount() {
977 return stealCount.get();
978 }
979
980 /**
981 * Accumulates steal count from a worker.
982 * Call only when worker known to be idle.
983 */
984 private void updateStealCount(ForkJoinWorkerThread w) {
985 int sc = w.getAndClearStealCount();
986 if (sc != 0)
987 stealCount.addAndGet(sc);
988 }
989
990 /**
991 * Returns an estimate of the total number of tasks currently held
992 * in queues by worker threads (but not including tasks submitted
993 * to the pool that have not begun executing). This value is only
994 * an approximation, obtained by iterating across all threads in
995 * the pool. This method may be useful for tuning task
996 * granularities.
997 *
998 * @return the number of queued tasks
999 */
1000 public long getQueuedTaskCount() {
1001 long count = 0;
1002 ForkJoinWorkerThread[] ws = workers;
1003 if (ws != null) {
1004 for (int i = 0; i < ws.length; ++i) {
1005 ForkJoinWorkerThread t = ws[i];
1006 if (t != null)
1007 count += t.getQueueSize();
1008 }
1009 }
1010 return count;
1011 }
1012
1013 /**
1014 * Returns an estimate of the number tasks submitted to this pool
1015 * that have not yet begun executing. This method takes time
1016 * proportional to the number of submissions.
1017 *
1018 * @return the number of queued submissions
1019 */
1020 public int getQueuedSubmissionCount() {
1021 return submissionQueue.size();
1022 }
1023
1024 /**
1025 * Returns true if there are any tasks submitted to this pool
1026 * that have not yet begun executing.
1027 *
1028 * @return {@code true} if there are any queued submissions
1029 */
1030 public boolean hasQueuedSubmissions() {
1031 return !submissionQueue.isEmpty();
1032 }
1033
1034 /**
1035 * Removes and returns the next unexecuted submission if one is
1036 * available. This method may be useful in extensions to this
1037 * class that re-assign work in systems with multiple pools.
1038 *
1039 * @return the next submission, or null if none
1040 */
1041 protected ForkJoinTask<?> pollSubmission() {
1042 return submissionQueue.poll();
1043 }
1044
1045 /**
1046 * Removes all available unexecuted submitted and forked tasks
1047 * from scheduling queues and adds them to the given collection,
1048 * without altering their execution status. These may include
1049 * artificially generated or wrapped tasks. This method is designed
1050 * to be invoked only when the pool is known to be
1051 * quiescent. Invocations at other times may not remove all
1052 * tasks. A failure encountered while attempting to add elements
1053 * to collection {@code c} may result in elements being in
1054 * neither, either or both collections when the associated
1055 * exception is thrown. The behavior of this operation is
1056 * undefined if the specified collection is modified while the
1057 * operation is in progress.
1058 *
1059 * @param c the collection to transfer elements into
1060 * @return the number of elements transferred
1061 */
1062 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1063 int n = submissionQueue.drainTo(c);
1064 ForkJoinWorkerThread[] ws = workers;
1065 if (ws != null) {
1066 for (int i = 0; i < ws.length; ++i) {
1067 ForkJoinWorkerThread w = ws[i];
1068 if (w != null)
1069 n += w.drainTasksTo(c);
1070 }
1071 }
1072 return n;
1073 }
1074
1075 /**
1076 * Returns a string identifying this pool, as well as its state,
1077 * including indications of run state, parallelism level, and
1078 * worker and task counts.
1079 *
1080 * @return a string identifying this pool, as well as its state
1081 */
1082 public String toString() {
1083 int ps = parallelism;
1084 int wc = workerCounts;
1085 int rc = runControl;
1086 long st = getStealCount();
1087 long qt = getQueuedTaskCount();
1088 long qs = getQueuedSubmissionCount();
1089 return super.toString() +
1090 "[" + runStateToString(runStateOf(rc)) +
1091 ", parallelism = " + ps +
1092 ", size = " + totalCountOf(wc) +
1093 ", active = " + activeCountOf(rc) +
1094 ", running = " + runningCountOf(wc) +
1095 ", steals = " + st +
1096 ", tasks = " + qt +
1097 ", submissions = " + qs +
1098 "]";
1099 }
1100
1101 private static String runStateToString(int rs) {
1102 switch(rs) {
1103 case RUNNING: return "Running";
1104 case SHUTDOWN: return "Shutting down";
1105 case TERMINATING: return "Terminating";
1106 case TERMINATED: return "Terminated";
1107 default: throw new Error("Unknown run state");
1108 }
1109 }
1110
1111 // lifecycle control
1112
1113 /**
1114 * Initiates an orderly shutdown in which previously submitted
1115 * tasks are executed, but no new tasks will be accepted.
1116 * Invocation has no additional effect if already shut down.
1117 * Tasks that are in the process of being submitted concurrently
1118 * during the course of this method may or may not be rejected.
1119 *
1120 * @throws SecurityException if a security manager exists and
1121 * the caller is not permitted to modify threads
1122 * because it does not hold {@link
1123 * java.lang.RuntimePermission}{@code ("modifyThread")}
1124 */
1125 public void shutdown() {
1126 checkPermission();
1127 transitionRunStateTo(SHUTDOWN);
1128 if (canTerminateOnShutdown(runControl))
1129 terminateOnShutdown();
1130 }
1131
1132 /**
1133 * Attempts to stop all actively executing tasks, and cancels all
1134 * waiting tasks. Tasks that are in the process of being
1135 * submitted or executed concurrently during the course of this
1136 * method may or may not be rejected. Unlike some other executors,
1137 * this method cancels rather than collects non-executed tasks
1138 * upon termination, so always returns an empty list. However, you
1139 * can use method {@code drainTasksTo} before invoking this
1140 * method to transfer unexecuted tasks to another collection.
1141 *
1142 * @return an empty list
1143 * @throws SecurityException if a security manager exists and
1144 * the caller is not permitted to modify threads
1145 * because it does not hold {@link
1146 * java.lang.RuntimePermission}{@code ("modifyThread")}
1147 */
1148 public List<Runnable> shutdownNow() {
1149 checkPermission();
1150 terminate();
1151 return Collections.emptyList();
1152 }
1153
1154 /**
1155 * Returns {@code true} if all tasks have completed following shut down.
1156 *
1157 * @return {@code true} if all tasks have completed following shut down
1158 */
1159 public boolean isTerminated() {
1160 return runStateOf(runControl) == TERMINATED;
1161 }
1162
1163 /**
1164 * Returns {@code true} if the process of termination has
1165 * commenced but possibly not yet completed.
1166 *
1167 * @return {@code true} if terminating
1168 */
1169 public boolean isTerminating() {
1170 return runStateOf(runControl) >= TERMINATING;
1171 }
1172
1173 /**
1174 * Returns {@code true} if this pool has been shut down.
1175 *
1176 * @return {@code true} if this pool has been shut down
1177 */
1178 public boolean isShutdown() {
1179 return runStateOf(runControl) >= SHUTDOWN;
1180 }
1181
1182 /**
1183 * Blocks until all tasks have completed execution after a shutdown
1184 * request, or the timeout occurs, or the current thread is
1185 * interrupted, whichever happens first.
1186 *
1187 * @param timeout the maximum time to wait
1188 * @param unit the time unit of the timeout argument
1189 * @return {@code true} if this executor terminated and
1190 * {@code false} if the timeout elapsed before termination
1191 * @throws InterruptedException if interrupted while waiting
1192 */
1193 public boolean awaitTermination(long timeout, TimeUnit unit)
1194 throws InterruptedException {
1195 long nanos = unit.toNanos(timeout);
1196 final ReentrantLock lock = this.workerLock;
1197 lock.lock();
1198 try {
1199 for (;;) {
1200 if (isTerminated())
1201 return true;
1202 if (nanos <= 0)
1203 return false;
1204 nanos = termination.awaitNanos(nanos);
1205 }
1206 } finally {
1207 lock.unlock();
1208 }
1209 }
1210
1211 // Shutdown and termination support
1212
1213 /**
1214 * Callback from terminating worker. Nulls out the corresponding
1215 * workers slot, and if terminating, tries to terminate; else
1216 * tries to shrink workers array.
1217 *
1218 * @param w the worker
1219 */
1220 final void workerTerminated(ForkJoinWorkerThread w) {
1221 updateStealCount(w);
1222 updateWorkerCount(-1);
1223 final ReentrantLock lock = this.workerLock;
1224 lock.lock();
1225 try {
1226 ForkJoinWorkerThread[] ws = workers;
1227 if (ws != null) {
1228 int idx = w.poolIndex;
1229 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1230 ws[idx] = null;
1231 if (totalCountOf(workerCounts) == 0) {
1232 terminate(); // no-op if already terminating
1233 transitionRunStateTo(TERMINATED);
1234 termination.signalAll();
1235 }
1236 else if (!isTerminating()) {
1237 tryShrinkWorkerArray();
1238 tryResumeSpare(true); // allow replacement
1239 }
1240 }
1241 } finally {
1242 lock.unlock();
1243 }
1244 signalIdleWorkers();
1245 }
1246
1247 /**
1248 * Initiates termination.
1249 */
1250 private void terminate() {
1251 if (transitionRunStateTo(TERMINATING)) {
1252 stopAllWorkers();
1253 resumeAllSpares();
1254 signalIdleWorkers();
1255 cancelQueuedSubmissions();
1256 cancelQueuedWorkerTasks();
1257 interruptUnterminatedWorkers();
1258 signalIdleWorkers(); // resignal after interrupt
1259 }
1260 }
1261
1262 /**
1263 * Possibly terminates when on shutdown state.
1264 */
1265 private void terminateOnShutdown() {
1266 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1267 terminate();
1268 }
1269
1270 /**
1271 * Clears out and cancels submissions.
1272 */
1273 private void cancelQueuedSubmissions() {
1274 ForkJoinTask<?> task;
1275 while ((task = pollSubmission()) != null)
1276 task.cancel(false);
1277 }
1278
1279 /**
1280 * Cleans out worker queues.
1281 */
1282 private void cancelQueuedWorkerTasks() {
1283 final ReentrantLock lock = this.workerLock;
1284 lock.lock();
1285 try {
1286 ForkJoinWorkerThread[] ws = workers;
1287 if (ws != null) {
1288 for (int i = 0; i < ws.length; ++i) {
1289 ForkJoinWorkerThread t = ws[i];
1290 if (t != null)
1291 t.cancelTasks();
1292 }
1293 }
1294 } finally {
1295 lock.unlock();
1296 }
1297 }
1298
1299 /**
1300 * Sets each worker's status to terminating. Requires lock to avoid
1301 * conflicts with add/remove.
1302 */
1303 private void stopAllWorkers() {
1304 final ReentrantLock lock = this.workerLock;
1305 lock.lock();
1306 try {
1307 ForkJoinWorkerThread[] ws = workers;
1308 if (ws != null) {
1309 for (int i = 0; i < ws.length; ++i) {
1310 ForkJoinWorkerThread t = ws[i];
1311 if (t != null)
1312 t.shutdownNow();
1313 }
1314 }
1315 } finally {
1316 lock.unlock();
1317 }
1318 }
1319
1320 /**
1321 * Interrupts all unterminated workers. This is not required for
1322 * sake of internal control, but may help unstick user code during
1323 * shutdown.
1324 */
1325 private void interruptUnterminatedWorkers() {
1326 final ReentrantLock lock = this.workerLock;
1327 lock.lock();
1328 try {
1329 ForkJoinWorkerThread[] ws = workers;
1330 if (ws != null) {
1331 for (int i = 0; i < ws.length; ++i) {
1332 ForkJoinWorkerThread t = ws[i];
1333 if (t != null && !t.isTerminated()) {
1334 try {
1335 t.interrupt();
1336 } catch (SecurityException ignore) {
1337 }
1338 }
1339 }
1340 }
1341 } finally {
1342 lock.unlock();
1343 }
1344 }
1345
1346
1347 /*
1348 * Nodes for event barrier to manage idle threads. Queue nodes
1349 * are basic Treiber stack nodes, also used for spare stack.
1350 *
1351 * The event barrier has an event count and a wait queue (actually
1352 * a Treiber stack). Workers are enabled to look for work when
1353 * the eventCount is incremented. If they fail to find work, they
1354 * may wait for next count. Upon release, threads help others wake
1355 * up.
1356 *
1357 * Synchronization events occur only in enough contexts to
1358 * maintain overall liveness:
1359 *
1360 * - Submission of a new task to the pool
1361 * - Resizes or other changes to the workers array
1362 * - pool termination
1363 * - A worker pushing a task on an empty queue
1364 *
1365 * The case of pushing a task occurs often enough, and is heavy
1366 * enough compared to simple stack pushes, to require special
1367 * handling: Method signalWork returns without advancing count if
1368 * the queue appears to be empty. This would ordinarily result in
1369 * races causing some queued waiters not to be woken up. To avoid
1370 * this, the first worker enqueued in method sync (see
1371 * syncIsReleasable) rescans for tasks after being enqueued, and
1372 * helps signal if any are found. This works well because the
1373 * worker has nothing better to do, and so might as well help
1374 * alleviate the overhead and contention on the threads actually
1375 * doing work. Also, since event counts increments on task
1376 * availability exist to maintain liveness (rather than to force
1377 * refreshes etc), it is OK for callers to exit early if
1378 * contending with another signaller.
1379 */
1380 static final class WaitQueueNode {
1381 WaitQueueNode next; // only written before enqueued
1382 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1383 final long count; // unused for spare stack
1384
1385 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1386 count = c;
1387 thread = w;
1388 }
1389
1390 /**
1391 * Wakes up waiter, returning false if known to already
1392 */
1393 boolean signal() {
1394 ForkJoinWorkerThread t = thread;
1395 if (t == null)
1396 return false;
1397 thread = null;
1398 LockSupport.unpark(t);
1399 return true;
1400 }
1401
1402 /**
1403 * Awaits release on sync.
1404 */
1405 void awaitSyncRelease(ForkJoinPool p) {
1406 while (thread != null && !p.syncIsReleasable(this))
1407 LockSupport.park(this);
1408 }
1409
1410 /**
1411 * Awaits resumption as spare.
1412 */
1413 void awaitSpareRelease() {
1414 while (thread != null) {
1415 if (!Thread.interrupted())
1416 LockSupport.park(this);
1417 }
1418 }
1419 }
1420
1421 /**
1422 * Ensures that no thread is waiting for count to advance from the
1423 * current value of eventCount read on entry to this method, by
1424 * releasing waiting threads if necessary.
1425 *
1426 * @return the count
1427 */
1428 final long ensureSync() {
1429 long c = eventCount;
1430 WaitQueueNode q;
1431 while ((q = syncStack) != null && q.count < c) {
1432 if (casBarrierStack(q, null)) {
1433 do {
1434 q.signal();
1435 } while ((q = q.next) != null);
1436 break;
1437 }
1438 }
1439 return c;
1440 }
1441
1442 /**
1443 * Increments event count and releases waiting threads.
1444 */
1445 private void signalIdleWorkers() {
1446 long c;
1447 do {} while (!casEventCount(c = eventCount, c+1));
1448 ensureSync();
1449 }
1450
1451 /**
1452 * Signals threads waiting to poll a task. Because method sync
1453 * rechecks availability, it is OK to only proceed if queue
1454 * appears to be non-empty, and OK to skip under contention to
1455 * increment count (since some other thread succeeded).
1456 */
1457 final void signalWork() {
1458 long c;
1459 WaitQueueNode q;
1460 if (syncStack != null &&
1461 casEventCount(c = eventCount, c+1) &&
1462 (((q = syncStack) != null && q.count <= c) &&
1463 (!casBarrierStack(q, q.next) || !q.signal())))
1464 ensureSync();
1465 }
1466
1467 /**
1468 * Waits until event count advances from last value held by
1469 * caller, or if excess threads, caller is resumed as spare, or
1470 * caller or pool is terminating. Updates caller's event on exit.
1471 *
1472 * @param w the calling worker thread
1473 */
1474 final void sync(ForkJoinWorkerThread w) {
1475 updateStealCount(w); // Transfer w's count while it is idle
1476
1477 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1478 long prev = w.lastEventCount;
1479 WaitQueueNode node = null;
1480 WaitQueueNode h;
1481 while (eventCount == prev &&
1482 ((h = syncStack) == null || h.count == prev)) {
1483 if (node == null)
1484 node = new WaitQueueNode(prev, w);
1485 if (casBarrierStack(node.next = h, node)) {
1486 node.awaitSyncRelease(this);
1487 break;
1488 }
1489 }
1490 long ec = ensureSync();
1491 if (ec != prev) {
1492 w.lastEventCount = ec;
1493 break;
1494 }
1495 }
1496 }
1497
1498 /**
1499 * Returns true if worker waiting on sync can proceed:
1500 * - on signal (thread == null)
1501 * - on event count advance (winning race to notify vs signaller)
1502 * - on interrupt
1503 * - if the first queued node, we find work available
1504 * If node was not signalled and event count not advanced on exit,
1505 * then we also help advance event count.
1506 *
1507 * @return true if node can be released
1508 */
1509 final boolean syncIsReleasable(WaitQueueNode node) {
1510 long prev = node.count;
1511 if (!Thread.interrupted() && node.thread != null &&
1512 (node.next != null ||
1513 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1514 eventCount == prev)
1515 return false;
1516 if (node.thread != null) {
1517 node.thread = null;
1518 long ec = eventCount;
1519 if (prev <= ec) // help signal
1520 casEventCount(ec, ec+1);
1521 }
1522 return true;
1523 }
1524
1525 /**
1526 * Returns true if a new sync event occurred since last call to
1527 * sync or this method, if so, updating caller's count.
1528 */
1529 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530 long lc = w.lastEventCount;
1531 long ec = ensureSync();
1532 if (ec == lc)
1533 return false;
1534 w.lastEventCount = ec;
1535 return true;
1536 }
1537
1538 // Parallelism maintenance
1539
1540 /**
1541 * Decrements running count; if too low, adds spare.
1542 *
1543 * Conceptually, all we need to do here is add or resume a
1544 * spare thread when one is about to block (and remove or
1545 * suspend it later when unblocked -- see suspendIfSpare).
1546 * However, implementing this idea requires coping with
1547 * several problems: we have imperfect information about the
1548 * states of threads. Some count updates can and usually do
1549 * lag run state changes, despite arrangements to keep them
1550 * accurate (for example, when possible, updating counts
1551 * before signalling or resuming), especially when running on
1552 * dynamic JVMs that don't optimize the infrequent paths that
1553 * update counts. Generating too many threads can make these
1554 * problems become worse, because excess threads are more
1555 * likely to be context-switched with others, slowing them all
1556 * down, especially if there is no work available, so all are
1557 * busy scanning or idling. Also, excess spare threads can
1558 * only be suspended or removed when they are idle, not
1559 * immediately when they aren't needed. So adding threads will
1560 * raise parallelism level for longer than necessary. Also,
1561 * FJ applications often encounter highly transient peaks when
1562 * many threads are blocked joining, but for less time than it
1563 * takes to create or resume spares.
1564 *
1565 * @param joinMe if non-null, return early if done
1566 * @param maintainParallelism if true, try to stay within
1567 * target counts, else create only to avoid starvation
1568 * @return true if joinMe known to be done
1569 */
1570 final boolean preJoin(ForkJoinTask<?> joinMe,
1571 boolean maintainParallelism) {
1572 maintainParallelism &= maintainsParallelism; // overrride
1573 boolean dec = false; // true when running count decremented
1574 while (spareStack == null || !tryResumeSpare(dec)) {
1575 int counts = workerCounts;
1576 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577 // CAS cheat
1578 if (!needSpare(counts, maintainParallelism))
1579 break;
1580 if (joinMe.status < 0)
1581 return true;
1582 if (tryAddSpare(counts))
1583 break;
1584 }
1585 }
1586 return false;
1587 }
1588
1589 /**
1590 * Same idea as preJoin
1591 */
1592 final boolean preBlock(ManagedBlocker blocker,
1593 boolean maintainParallelism) {
1594 maintainParallelism &= maintainsParallelism;
1595 boolean dec = false;
1596 while (spareStack == null || !tryResumeSpare(dec)) {
1597 int counts = workerCounts;
1598 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1599 if (!needSpare(counts, maintainParallelism))
1600 break;
1601 if (blocker.isReleasable())
1602 return true;
1603 if (tryAddSpare(counts))
1604 break;
1605 }
1606 }
1607 return false;
1608 }
1609
1610 /**
1611 * Returns true if a spare thread appears to be needed. If
1612 * maintaining parallelism, returns true when the deficit in
1613 * running threads is more than the surplus of total threads, and
1614 * there is apparently some work to do. This self-limiting rule
1615 * means that the more threads that have already been added, the
1616 * less parallelism we will tolerate before adding another.
1617 *
1618 * @param counts current worker counts
1619 * @param maintainParallelism try to maintain parallelism
1620 */
1621 private boolean needSpare(int counts, boolean maintainParallelism) {
1622 int ps = parallelism;
1623 int rc = runningCountOf(counts);
1624 int tc = totalCountOf(counts);
1625 int runningDeficit = ps - rc;
1626 int totalSurplus = tc - ps;
1627 return (tc < maxPoolSize &&
1628 (rc == 0 || totalSurplus < 0 ||
1629 (maintainParallelism &&
1630 runningDeficit > totalSurplus &&
1631 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1632 }
1633
1634 /**
1635 * Adds a spare worker if lock available and no more than the
1636 * expected numbers of threads exist.
1637 *
1638 * @return true if successful
1639 */
1640 private boolean tryAddSpare(int expectedCounts) {
1641 final ReentrantLock lock = this.workerLock;
1642 int expectedRunning = runningCountOf(expectedCounts);
1643 int expectedTotal = totalCountOf(expectedCounts);
1644 boolean success = false;
1645 boolean locked = false;
1646 // confirm counts while locking; CAS after obtaining lock
1647 try {
1648 for (;;) {
1649 int s = workerCounts;
1650 int tc = totalCountOf(s);
1651 int rc = runningCountOf(s);
1652 if (rc > expectedRunning || tc > expectedTotal)
1653 break;
1654 if (!locked && !(locked = lock.tryLock()))
1655 break;
1656 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1657 createAndStartSpare(tc);
1658 success = true;
1659 break;
1660 }
1661 }
1662 } finally {
1663 if (locked)
1664 lock.unlock();
1665 }
1666 return success;
1667 }
1668
1669 /**
1670 * Adds the kth spare worker. On entry, pool counts are already
1671 * adjusted to reflect addition.
1672 */
1673 private void createAndStartSpare(int k) {
1674 ForkJoinWorkerThread w = null;
1675 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1676 int len = ws.length;
1677 // Probably, we can place at slot k. If not, find empty slot
1678 if (k < len && ws[k] != null) {
1679 for (k = 0; k < len && ws[k] != null; ++k)
1680 ;
1681 }
1682 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1683 ws[k] = w;
1684 w.start();
1685 }
1686 else
1687 updateWorkerCount(-1); // adjust on failure
1688 signalIdleWorkers();
1689 }
1690
1691 /**
1692 * Suspends calling thread w if there are excess threads. Called
1693 * only from sync. Spares are enqueued in a Treiber stack using
1694 * the same WaitQueueNodes as barriers. They are resumed mainly
1695 * in preJoin, but are also woken on pool events that require all
1696 * threads to check run state.
1697 *
1698 * @param w the caller
1699 */
1700 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1701 WaitQueueNode node = null;
1702 int s;
1703 while (parallelism < runningCountOf(s = workerCounts)) {
1704 if (node == null)
1705 node = new WaitQueueNode(0, w);
1706 if (casWorkerCounts(s, s-1)) { // representation-dependent
1707 // push onto stack
1708 do {} while (!casSpareStack(node.next = spareStack, node));
1709 // block until released by resumeSpare
1710 node.awaitSpareRelease();
1711 return true;
1712 }
1713 }
1714 return false;
1715 }
1716
1717 /**
1718 * Tries to pop and resume a spare thread.
1719 *
1720 * @param updateCount if true, increment running count on success
1721 * @return true if successful
1722 */
1723 private boolean tryResumeSpare(boolean updateCount) {
1724 WaitQueueNode q;
1725 while ((q = spareStack) != null) {
1726 if (casSpareStack(q, q.next)) {
1727 if (updateCount)
1728 updateRunningCount(1);
1729 q.signal();
1730 return true;
1731 }
1732 }
1733 return false;
1734 }
1735
1736 /**
1737 * Pops and resumes all spare threads. Same idea as ensureSync.
1738 *
1739 * @return true if any spares released
1740 */
1741 private boolean resumeAllSpares() {
1742 WaitQueueNode q;
1743 while ( (q = spareStack) != null) {
1744 if (casSpareStack(q, null)) {
1745 do {
1746 updateRunningCount(1);
1747 q.signal();
1748 } while ((q = q.next) != null);
1749 return true;
1750 }
1751 }
1752 return false;
1753 }
1754
1755 /**
1756 * Pops and shuts down excessive spare threads. Call only while
1757 * holding lock. This is not guaranteed to eliminate all excess
1758 * threads, only those suspended as spares, which are the ones
1759 * unlikely to be needed in the future.
1760 */
1761 private void trimSpares() {
1762 int surplus = totalCountOf(workerCounts) - parallelism;
1763 WaitQueueNode q;
1764 while (surplus > 0 && (q = spareStack) != null) {
1765 if (casSpareStack(q, null)) {
1766 do {
1767 updateRunningCount(1);
1768 ForkJoinWorkerThread w = q.thread;
1769 if (w != null && surplus > 0 &&
1770 runningCountOf(workerCounts) > 0 && w.shutdown())
1771 --surplus;
1772 q.signal();
1773 } while ((q = q.next) != null);
1774 }
1775 }
1776 }
1777
1778 /**
1779 * Interface for extending managed parallelism for tasks running
1780 * in ForkJoinPools. A ManagedBlocker provides two methods.
1781 * Method {@code isReleasable} must return true if blocking is not
1782 * necessary. Method {@code block} blocks the current thread if
1783 * necessary (perhaps internally invoking {@code isReleasable}
1784 * before actually blocking.).
1785 *
1786 * <p>For example, here is a ManagedBlocker based on a
1787 * ReentrantLock:
1788 * <pre> {@code
1789 * class ManagedLocker implements ManagedBlocker {
1790 * final ReentrantLock lock;
1791 * boolean hasLock = false;
1792 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1793 * public boolean block() {
1794 * if (!hasLock)
1795 * lock.lock();
1796 * return true;
1797 * }
1798 * public boolean isReleasable() {
1799 * return hasLock || (hasLock = lock.tryLock());
1800 * }
1801 * }}</pre>
1802 */
1803 public static interface ManagedBlocker {
1804 /**
1805 * Possibly blocks the current thread, for example waiting for
1806 * a lock or condition.
1807 *
1808 * @return true if no additional blocking is necessary (i.e.,
1809 * if isReleasable would return true)
1810 * @throws InterruptedException if interrupted while waiting
1811 * (the method is not required to do so, but is allowed to)
1812 */
1813 boolean block() throws InterruptedException;
1814
1815 /**
1816 * Returns true if blocking is unnecessary.
1817 */
1818 boolean isReleasable();
1819 }
1820
1821 /**
1822 * Blocks in accord with the given blocker. If the current thread
1823 * is a ForkJoinWorkerThread, this method possibly arranges for a
1824 * spare thread to be activated if necessary to ensure parallelism
1825 * while the current thread is blocked. If
1826 * {@code maintainParallelism} is true and the pool supports
1827 * it ({@link #getMaintainsParallelism}), this method attempts to
1828 * maintain the pool's nominal parallelism. Otherwise it activates
1829 * a thread only if necessary to avoid complete starvation. This
1830 * option may be preferable when blockages use timeouts, or are
1831 * almost always brief.
1832 *
1833 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1834 * equivalent to
1835 * <pre> {@code
1836 * while (!blocker.isReleasable())
1837 * if (blocker.block())
1838 * return;
1839 * }</pre>
1840 * If the caller is a ForkJoinTask, then the pool may first
1841 * be expanded to ensure parallelism, and later adjusted.
1842 *
1843 * @param blocker the blocker
1844 * @param maintainParallelism if true and supported by this pool,
1845 * attempt to maintain the pool's nominal parallelism; otherwise
1846 * activate a thread only if necessary to avoid complete
1847 * starvation.
1848 * @throws InterruptedException if blocker.block did so
1849 */
1850 public static void managedBlock(ManagedBlocker blocker,
1851 boolean maintainParallelism)
1852 throws InterruptedException {
1853 Thread t = Thread.currentThread();
1854 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1855 ((ForkJoinWorkerThread) t).pool : null);
1856 if (!blocker.isReleasable()) {
1857 try {
1858 if (pool == null ||
1859 !pool.preBlock(blocker, maintainParallelism))
1860 awaitBlocker(blocker);
1861 } finally {
1862 if (pool != null)
1863 pool.updateRunningCount(1);
1864 }
1865 }
1866 }
1867
1868 private static void awaitBlocker(ManagedBlocker blocker)
1869 throws InterruptedException {
1870 do {} while (!blocker.isReleasable() && !blocker.block());
1871 }
1872
1873 // AbstractExecutorService overrides
1874
1875 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1876 return new AdaptedRunnable<T>(runnable, value);
1877 }
1878
1879 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1880 return new AdaptedCallable<T>(callable);
1881 }
1882
1883
1884 // Unsafe mechanics for jsr166y 3rd party package.
1885 private static sun.misc.Unsafe getUnsafe() {
1886 try {
1887 return sun.misc.Unsafe.getUnsafe();
1888 } catch (SecurityException se) {
1889 try {
1890 return java.security.AccessController.doPrivileged
1891 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1892 public sun.misc.Unsafe run() throws Exception {
1893 return getUnsafeByReflection();
1894 }});
1895 } catch (java.security.PrivilegedActionException e) {
1896 throw new RuntimeException("Could not initialize intrinsics",
1897 e.getCause());
1898 }
1899 }
1900 }
1901
1902 private static sun.misc.Unsafe getUnsafeByReflection()
1903 throws NoSuchFieldException, IllegalAccessException {
1904 java.lang.reflect.Field f =
1905 sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
1906 f.setAccessible(true);
1907 return (sun.misc.Unsafe) f.get(null);
1908 }
1909
1910 private static long fieldOffset(String fieldName, Class<?> klazz) {
1911 try {
1912 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
1913 } catch (NoSuchFieldException e) {
1914 // Convert Exception to Error
1915 NoSuchFieldError error = new NoSuchFieldError(fieldName);
1916 error.initCause(e);
1917 throw error;
1918 }
1919 }
1920
1921 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1922 static final long eventCountOffset =
1923 fieldOffset("eventCount", ForkJoinPool.class);
1924 static final long workerCountsOffset =
1925 fieldOffset("workerCounts", ForkJoinPool.class);
1926 static final long runControlOffset =
1927 fieldOffset("runControl", ForkJoinPool.class);
1928 static final long syncStackOffset =
1929 fieldOffset("syncStack",ForkJoinPool.class);
1930 static final long spareStackOffset =
1931 fieldOffset("spareStack", ForkJoinPool.class);
1932
1933 private boolean casEventCount(long cmp, long val) {
1934 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1935 }
1936 private boolean casWorkerCounts(int cmp, int val) {
1937 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1938 }
1939 private boolean casRunControl(int cmp, int val) {
1940 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1941 }
1942 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1943 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1944 }
1945 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1946 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1947 }
1948 }