ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.27
Committed: Sun Jul 26 17:33:37 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.26: +45 -42 lines
Log Message:
Unsafe mechanics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
24 * ForkJoinPool provides the entry point for submissions from
25 * non-ForkJoinTasks, as well as management and monitoring operations.
26 * Normally a single ForkJoinPool is used for a large number of
27 * submitted tasks. Otherwise, use would not usually outweigh the
28 * construction and bookkeeping overhead of creating a large set of
29 * threads.
30 *
31 * <p>ForkJoinPools differ from other kinds of Executors mainly in
32 * that they provide <em>work-stealing</em>: all threads in the pool
33 * attempt to find and execute subtasks created by other active tasks
34 * (eventually blocking if none exist). This makes them efficient when
35 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
36 * as the mixed execution of some plain Runnable- or Callable- based
37 * activities along with ForkJoinTasks. When setting
38 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
39 * use with fine-grained tasks that are never joined. Otherwise, other
40 * ExecutorService implementations are typically more appropriate
41 * choices.
42 *
43 * <p>A ForkJoinPool may be constructed with a given parallelism level
44 * (target pool size), which it attempts to maintain by dynamically
45 * adding, suspending, or resuming threads, even if some tasks are
46 * waiting to join others. However, no such adjustments are performed
47 * in the face of blocked IO or other unmanaged synchronization. The
48 * nested {@code ManagedBlocker} interface enables extension of
49 * the kinds of synchronization accommodated. The target parallelism
50 * level may also be changed dynamically ({@code setParallelism})
51 * and thread construction can be limited using methods
52 * {@code setMaximumPoolSize} and/or
53 * {@code setMaintainsParallelism}.
54 *
55 * <p>In addition to execution and lifecycle control methods, this
56 * class provides status check methods (for example
57 * {@code getStealCount}) that are intended to aid in developing,
58 * tuning, and monitoring fork/join applications. Also, method
59 * {@code toString} returns indications of pool state in a
60 * convenient form for informal monitoring.
61 *
62 * <p><b>Implementation notes</b>: This implementation restricts the
63 * maximum number of running threads to 32767. Attempts to create
64 * pools with greater than the maximum result in
65 * IllegalArgumentExceptions.
66 *
67 * @since 1.7
68 * @author Doug Lea
69 */
70 public class ForkJoinPool extends AbstractExecutorService {
71
72 /*
73 * See the extended comments interspersed below for design,
74 * rationale, and walkthroughs.
75 */
76
77 /** Mask for packing and unpacking shorts */
78 private static final int shortMask = 0xffff;
79
80 /** Max pool size -- must be a power of two minus 1 */
81 private static final int MAX_THREADS = 0x7FFF;
82
83 /**
84 * Factory for creating new ForkJoinWorkerThreads. A
85 * ForkJoinWorkerThreadFactory must be defined and used for
86 * ForkJoinWorkerThread subclasses that extend base functionality
87 * or initialize threads with different contexts.
88 */
89 public static interface ForkJoinWorkerThreadFactory {
90 /**
91 * Returns a new worker thread operating in the given pool.
92 *
93 * @param pool the pool this thread works in
94 * @throws NullPointerException if pool is null
95 */
96 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
97 }
98
99 /**
100 * Default ForkJoinWorkerThreadFactory implementation; creates a
101 * new ForkJoinWorkerThread.
102 */
103 static class DefaultForkJoinWorkerThreadFactory
104 implements ForkJoinWorkerThreadFactory {
105 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
106 try {
107 return new ForkJoinWorkerThread(pool);
108 } catch (OutOfMemoryError oom) {
109 return null;
110 }
111 }
112 }
113
114 /**
115 * Creates a new ForkJoinWorkerThread. This factory is used unless
116 * overridden in ForkJoinPool constructors.
117 */
118 public static final ForkJoinWorkerThreadFactory
119 defaultForkJoinWorkerThreadFactory =
120 new DefaultForkJoinWorkerThreadFactory();
121
122 /**
123 * Permission required for callers of methods that may start or
124 * kill threads.
125 */
126 private static final RuntimePermission modifyThreadPermission =
127 new RuntimePermission("modifyThread");
128
129 /**
130 * If there is a security manager, makes sure caller has
131 * permission to modify threads.
132 */
133 private static void checkPermission() {
134 SecurityManager security = System.getSecurityManager();
135 if (security != null)
136 security.checkPermission(modifyThreadPermission);
137 }
138
139 /**
140 * Generator for assigning sequence numbers as pool names.
141 */
142 private static final AtomicInteger poolNumberGenerator =
143 new AtomicInteger();
144
145 /**
146 * Array holding all worker threads in the pool. Initialized upon
147 * first use. Array size must be a power of two. Updates and
148 * replacements are protected by workerLock, but it is always kept
149 * in a consistent enough state to be randomly accessed without
150 * locking by workers performing work-stealing.
151 */
152 volatile ForkJoinWorkerThread[] workers;
153
154 /**
155 * Lock protecting access to workers.
156 */
157 private final ReentrantLock workerLock;
158
159 /**
160 * Condition for awaitTermination.
161 */
162 private final Condition termination;
163
164 /**
165 * The uncaught exception handler used when any worker
166 * abruptly terminates
167 */
168 private Thread.UncaughtExceptionHandler ueh;
169
170 /**
171 * Creation factory for worker threads.
172 */
173 private final ForkJoinWorkerThreadFactory factory;
174
175 /**
176 * Head of stack of threads that were created to maintain
177 * parallelism when other threads blocked, but have since
178 * suspended when the parallelism level rose.
179 */
180 private volatile WaitQueueNode spareStack;
181
182 /**
183 * Sum of per-thread steal counts, updated only when threads are
184 * idle or terminating.
185 */
186 private final AtomicLong stealCount;
187
188 /**
189 * Queue for external submissions.
190 */
191 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
192
193 /**
194 * Head of Treiber stack for barrier sync. See below for explanation.
195 */
196 private volatile WaitQueueNode syncStack;
197
198 /**
199 * The count for event barrier
200 */
201 private volatile long eventCount;
202
203 /**
204 * Pool number, just for assigning useful names to worker threads
205 */
206 private final int poolNumber;
207
208 /**
209 * The maximum allowed pool size
210 */
211 private volatile int maxPoolSize;
212
213 /**
214 * The desired parallelism level, updated only under workerLock.
215 */
216 private volatile int parallelism;
217
218 /**
219 * True if use local fifo, not default lifo, for local polling
220 */
221 private volatile boolean locallyFifo;
222
223 /**
224 * Holds number of total (i.e., created and not yet terminated)
225 * and running (i.e., not blocked on joins or other managed sync)
226 * threads, packed into one int to ensure consistent snapshot when
227 * making decisions about creating and suspending spare
228 * threads. Updated only by CAS. Note: CASes in
229 * updateRunningCount and preJoin assume that running active count
230 * is in low word, so need to be modified if this changes.
231 */
232 private volatile int workerCounts;
233
234 private static int totalCountOf(int s) { return s >>> 16; }
235 private static int runningCountOf(int s) { return s & shortMask; }
236 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
237
238 /**
239 * Adds delta (which may be negative) to running count. This must
240 * be called before (with negative arg) and after (with positive)
241 * any managed synchronization (i.e., mainly, joins).
242 *
243 * @param delta the number to add
244 */
245 final void updateRunningCount(int delta) {
246 int s;
247 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 }
249
250 /**
251 * Adds delta (which may be negative) to both total and running
252 * count. This must be called upon creation and termination of
253 * worker threads.
254 *
255 * @param delta the number to add
256 */
257 private void updateWorkerCount(int delta) {
258 int d = delta + (delta << 16); // add to both lo and hi parts
259 int s;
260 do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 }
262
263 /**
264 * Lifecycle control. High word contains runState, low word
265 * contains the number of workers that are (probably) executing
266 * tasks. This value is atomically incremented before a worker
267 * gets a task to run, and decremented when worker has no tasks
268 * and cannot find any. These two fields are bundled together to
269 * support correct termination triggering. Note: activeCount
270 * CAS'es cheat by assuming active count is in low word, so need
271 * to be modified if this changes
272 */
273 private volatile int runControl;
274
275 // RunState values. Order among values matters
276 private static final int RUNNING = 0;
277 private static final int SHUTDOWN = 1;
278 private static final int TERMINATING = 2;
279 private static final int TERMINATED = 3;
280
281 private static int runStateOf(int c) { return c >>> 16; }
282 private static int activeCountOf(int c) { return c & shortMask; }
283 private static int runControlFor(int r, int a) { return (r << 16) + a; }
284
285 /**
286 * Tries incrementing active count; fails on contention.
287 * Called by workers before/during executing tasks.
288 *
289 * @return true on success
290 */
291 final boolean tryIncrementActiveCount() {
292 int c = runControl;
293 return casRunControl(c, c+1);
294 }
295
296 /**
297 * Tries decrementing active count; fails on contention.
298 * Possibly triggers termination on success.
299 * Called by workers when they can't find tasks.
300 *
301 * @return true on success
302 */
303 final boolean tryDecrementActiveCount() {
304 int c = runControl;
305 int nextc = c - 1;
306 if (!casRunControl(c, nextc))
307 return false;
308 if (canTerminateOnShutdown(nextc))
309 terminateOnShutdown();
310 return true;
311 }
312
313 /**
314 * Returns true if argument represents zero active count and
315 * nonzero runstate, which is the triggering condition for
316 * terminating on shutdown.
317 */
318 private static boolean canTerminateOnShutdown(int c) {
319 // i.e. least bit is nonzero runState bit
320 return ((c & -c) >>> 16) != 0;
321 }
322
323 /**
324 * Transition run state to at least the given state. Return true
325 * if not already at least given state.
326 */
327 private boolean transitionRunStateTo(int state) {
328 for (;;) {
329 int c = runControl;
330 if (runStateOf(c) >= state)
331 return false;
332 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
333 return true;
334 }
335 }
336
337 /**
338 * Controls whether to add spares to maintain parallelism
339 */
340 private volatile boolean maintainsParallelism;
341
342 // Constructors
343
344 /**
345 * Creates a ForkJoinPool with a pool size equal to the number of
346 * processors available on the system, using the default
347 * ForkJoinWorkerThreadFactory.
348 *
349 * @throws SecurityException if a security manager exists and
350 * the caller is not permitted to modify threads
351 * because it does not hold {@link
352 * java.lang.RuntimePermission}{@code ("modifyThread")}
353 */
354 public ForkJoinPool() {
355 this(Runtime.getRuntime().availableProcessors(),
356 defaultForkJoinWorkerThreadFactory);
357 }
358
359 /**
360 * Creates a ForkJoinPool with the indicated parallelism level
361 * threads and using the default ForkJoinWorkerThreadFactory.
362 *
363 * @param parallelism the number of worker threads
364 * @throws IllegalArgumentException if parallelism less than or
365 * equal to zero
366 * @throws SecurityException if a security manager exists and
367 * the caller is not permitted to modify threads
368 * because it does not hold {@link
369 * java.lang.RuntimePermission}{@code ("modifyThread")}
370 */
371 public ForkJoinPool(int parallelism) {
372 this(parallelism, defaultForkJoinWorkerThreadFactory);
373 }
374
375 /**
376 * Creates a ForkJoinPool with parallelism equal to the number of
377 * processors available on the system and using the given
378 * ForkJoinWorkerThreadFactory.
379 *
380 * @param factory the factory for creating new threads
381 * @throws NullPointerException if factory is null
382 * @throws SecurityException if a security manager exists and
383 * the caller is not permitted to modify threads
384 * because it does not hold {@link
385 * java.lang.RuntimePermission}{@code ("modifyThread")}
386 */
387 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388 this(Runtime.getRuntime().availableProcessors(), factory);
389 }
390
391 /**
392 * Creates a ForkJoinPool with the given parallelism and factory.
393 *
394 * @param parallelism the targeted number of worker threads
395 * @param factory the factory for creating new threads
396 * @throws IllegalArgumentException if parallelism less than or
397 * equal to zero, or greater than implementation limit
398 * @throws NullPointerException if factory is null
399 * @throws SecurityException if a security manager exists and
400 * the caller is not permitted to modify threads
401 * because it does not hold {@link
402 * java.lang.RuntimePermission}{@code ("modifyThread")}
403 */
404 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
405 if (parallelism <= 0 || parallelism > MAX_THREADS)
406 throw new IllegalArgumentException();
407 if (factory == null)
408 throw new NullPointerException();
409 checkPermission();
410 this.factory = factory;
411 this.parallelism = parallelism;
412 this.maxPoolSize = MAX_THREADS;
413 this.maintainsParallelism = true;
414 this.poolNumber = poolNumberGenerator.incrementAndGet();
415 this.workerLock = new ReentrantLock();
416 this.termination = workerLock.newCondition();
417 this.stealCount = new AtomicLong();
418 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 // worker array and workers are lazily constructed
420 }
421
422 /**
423 * Creates a new worker thread using factory.
424 *
425 * @param index the index to assign worker
426 * @return new worker, or null of factory failed
427 */
428 private ForkJoinWorkerThread createWorker(int index) {
429 Thread.UncaughtExceptionHandler h = ueh;
430 ForkJoinWorkerThread w = factory.newThread(this);
431 if (w != null) {
432 w.poolIndex = index;
433 w.setDaemon(true);
434 w.setAsyncMode(locallyFifo);
435 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
436 if (h != null)
437 w.setUncaughtExceptionHandler(h);
438 }
439 return w;
440 }
441
442 /**
443 * Returns a good size for worker array given pool size.
444 * Currently requires size to be a power of two.
445 */
446 private static int arraySizeFor(int poolSize) {
447 return (poolSize <= 1) ? 1 :
448 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
449 }
450
451 /**
452 * Creates or resizes array if necessary to hold newLength.
453 * Call only under exclusion.
454 *
455 * @return the array
456 */
457 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
458 ForkJoinWorkerThread[] ws = workers;
459 if (ws == null)
460 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
461 else if (newLength > ws.length)
462 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
463 else
464 return ws;
465 }
466
467 /**
468 * Tries to shrink workers into smaller array after one or more terminate.
469 */
470 private void tryShrinkWorkerArray() {
471 ForkJoinWorkerThread[] ws = workers;
472 if (ws != null) {
473 int len = ws.length;
474 int last = len - 1;
475 while (last >= 0 && ws[last] == null)
476 --last;
477 int newLength = arraySizeFor(last+1);
478 if (newLength < len)
479 workers = Arrays.copyOf(ws, newLength);
480 }
481 }
482
483 /**
484 * Initializes workers if necessary.
485 */
486 final void ensureWorkerInitialization() {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null) {
489 final ReentrantLock lock = this.workerLock;
490 lock.lock();
491 try {
492 ws = workers;
493 if (ws == null) {
494 int ps = parallelism;
495 ws = ensureWorkerArrayCapacity(ps);
496 for (int i = 0; i < ps; ++i) {
497 ForkJoinWorkerThread w = createWorker(i);
498 if (w != null) {
499 ws[i] = w;
500 w.start();
501 updateWorkerCount(1);
502 }
503 }
504 }
505 } finally {
506 lock.unlock();
507 }
508 }
509 }
510
511 /**
512 * Worker creation and startup for threads added via setParallelism.
513 */
514 private void createAndStartAddedWorkers() {
515 resumeAllSpares(); // Allow spares to convert to nonspare
516 int ps = parallelism;
517 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
518 int len = ws.length;
519 // Sweep through slots, to keep lowest indices most populated
520 int k = 0;
521 while (k < len) {
522 if (ws[k] != null) {
523 ++k;
524 continue;
525 }
526 int s = workerCounts;
527 int tc = totalCountOf(s);
528 int rc = runningCountOf(s);
529 if (rc >= ps || tc >= ps)
530 break;
531 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
532 ForkJoinWorkerThread w = createWorker(k);
533 if (w != null) {
534 ws[k++] = w;
535 w.start();
536 }
537 else {
538 updateWorkerCount(-1); // back out on failed creation
539 break;
540 }
541 }
542 }
543 }
544
545 // Execution methods
546
547 /**
548 * Common code for execute, invoke and submit
549 */
550 private <T> void doSubmit(ForkJoinTask<T> task) {
551 if (task == null)
552 throw new NullPointerException();
553 if (isShutdown())
554 throw new RejectedExecutionException();
555 if (workers == null)
556 ensureWorkerInitialization();
557 submissionQueue.offer(task);
558 signalIdleWorkers();
559 }
560
561 /**
562 * Performs the given task, returning its result upon completion.
563 *
564 * @param task the task
565 * @return the task's result
566 * @throws NullPointerException if task is null
567 * @throws RejectedExecutionException if pool is shut down
568 */
569 public <T> T invoke(ForkJoinTask<T> task) {
570 doSubmit(task);
571 return task.join();
572 }
573
574 /**
575 * Arranges for (asynchronous) execution of the given task.
576 *
577 * @param task the task
578 * @throws NullPointerException if task is null
579 * @throws RejectedExecutionException if pool is shut down
580 */
581 public <T> void execute(ForkJoinTask<T> task) {
582 doSubmit(task);
583 }
584
585 // AbstractExecutorService methods
586
587 public void execute(Runnable task) {
588 ForkJoinTask<?> job;
589 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
590 job = (ForkJoinTask<?>) task;
591 else
592 job = new AdaptedRunnable<Void>(task, null);
593 doSubmit(job);
594 }
595
596 public <T> ForkJoinTask<T> submit(Callable<T> task) {
597 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
598 doSubmit(job);
599 return job;
600 }
601
602 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
603 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
604 doSubmit(job);
605 return job;
606 }
607
608 public ForkJoinTask<?> submit(Runnable task) {
609 ForkJoinTask<?> job;
610 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
611 job = (ForkJoinTask<?>) task;
612 else
613 job = new AdaptedRunnable<Void>(task, null);
614 doSubmit(job);
615 return job;
616 }
617
618 /**
619 * Submits a ForkJoinTask for execution.
620 *
621 * @param task the task to submit
622 * @return the task
623 * @throws RejectedExecutionException if the task cannot be
624 * scheduled for execution
625 * @throws NullPointerException if the task is null
626 */
627 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
628 doSubmit(task);
629 return task;
630 }
631
632 /**
633 * Adaptor for Runnables. This implements RunnableFuture
634 * to be compliant with AbstractExecutorService constraints.
635 */
636 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
637 implements RunnableFuture<T> {
638 final Runnable runnable;
639 final T resultOnCompletion;
640 T result;
641 AdaptedRunnable(Runnable runnable, T result) {
642 if (runnable == null) throw new NullPointerException();
643 this.runnable = runnable;
644 this.resultOnCompletion = result;
645 }
646 public T getRawResult() { return result; }
647 public void setRawResult(T v) { result = v; }
648 public boolean exec() {
649 runnable.run();
650 result = resultOnCompletion;
651 return true;
652 }
653 public void run() { invoke(); }
654 private static final long serialVersionUID = 5232453952276885070L;
655 }
656
657 /**
658 * Adaptor for Callables
659 */
660 static final class AdaptedCallable<T> extends ForkJoinTask<T>
661 implements RunnableFuture<T> {
662 final Callable<T> callable;
663 T result;
664 AdaptedCallable(Callable<T> callable) {
665 if (callable == null) throw new NullPointerException();
666 this.callable = callable;
667 }
668 public T getRawResult() { return result; }
669 public void setRawResult(T v) { result = v; }
670 public boolean exec() {
671 try {
672 result = callable.call();
673 return true;
674 } catch (Error err) {
675 throw err;
676 } catch (RuntimeException rex) {
677 throw rex;
678 } catch (Exception ex) {
679 throw new RuntimeException(ex);
680 }
681 }
682 public void run() { invoke(); }
683 private static final long serialVersionUID = 2838392045355241008L;
684 }
685
686 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
687 ArrayList<ForkJoinTask<T>> forkJoinTasks =
688 new ArrayList<ForkJoinTask<T>>(tasks.size());
689 for (Callable<T> task : tasks)
690 forkJoinTasks.add(new AdaptedCallable<T>(task));
691 invoke(new InvokeAll<T>(forkJoinTasks));
692
693 @SuppressWarnings({"unchecked", "rawtypes"})
694 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
695 return futures;
696 }
697
698 static final class InvokeAll<T> extends RecursiveAction {
699 final ArrayList<ForkJoinTask<T>> tasks;
700 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
701 public void compute() {
702 try { invokeAll(tasks); }
703 catch (Exception ignore) {}
704 }
705 private static final long serialVersionUID = -7914297376763021607L;
706 }
707
708 // Configuration and status settings and queries
709
710 /**
711 * Returns the factory used for constructing new workers.
712 *
713 * @return the factory used for constructing new workers
714 */
715 public ForkJoinWorkerThreadFactory getFactory() {
716 return factory;
717 }
718
719 /**
720 * Returns the handler for internal worker threads that terminate
721 * due to unrecoverable errors encountered while executing tasks.
722 *
723 * @return the handler, or null if none
724 */
725 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
726 Thread.UncaughtExceptionHandler h;
727 final ReentrantLock lock = this.workerLock;
728 lock.lock();
729 try {
730 h = ueh;
731 } finally {
732 lock.unlock();
733 }
734 return h;
735 }
736
737 /**
738 * Sets the handler for internal worker threads that terminate due
739 * to unrecoverable errors encountered while executing tasks.
740 * Unless set, the current default or ThreadGroup handler is used
741 * as handler.
742 *
743 * @param h the new handler
744 * @return the old handler, or null if none
745 * @throws SecurityException if a security manager exists and
746 * the caller is not permitted to modify threads
747 * because it does not hold {@link
748 * java.lang.RuntimePermission}{@code ("modifyThread")}
749 */
750 public Thread.UncaughtExceptionHandler
751 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
752 checkPermission();
753 Thread.UncaughtExceptionHandler old = null;
754 final ReentrantLock lock = this.workerLock;
755 lock.lock();
756 try {
757 old = ueh;
758 ueh = h;
759 ForkJoinWorkerThread[] ws = workers;
760 if (ws != null) {
761 for (int i = 0; i < ws.length; ++i) {
762 ForkJoinWorkerThread w = ws[i];
763 if (w != null)
764 w.setUncaughtExceptionHandler(h);
765 }
766 }
767 } finally {
768 lock.unlock();
769 }
770 return old;
771 }
772
773
774 /**
775 * Sets the target parallelism level of this pool.
776 *
777 * @param parallelism the target parallelism
778 * @throws IllegalArgumentException if parallelism less than or
779 * equal to zero or greater than maximum size bounds
780 * @throws SecurityException if a security manager exists and
781 * the caller is not permitted to modify threads
782 * because it does not hold {@link
783 * java.lang.RuntimePermission}{@code ("modifyThread")}
784 */
785 public void setParallelism(int parallelism) {
786 checkPermission();
787 if (parallelism <= 0 || parallelism > maxPoolSize)
788 throw new IllegalArgumentException();
789 final ReentrantLock lock = this.workerLock;
790 lock.lock();
791 try {
792 if (!isTerminating()) {
793 int p = this.parallelism;
794 this.parallelism = parallelism;
795 if (parallelism > p)
796 createAndStartAddedWorkers();
797 else
798 trimSpares();
799 }
800 } finally {
801 lock.unlock();
802 }
803 signalIdleWorkers();
804 }
805
806 /**
807 * Returns the targeted number of worker threads in this pool.
808 *
809 * @return the targeted number of worker threads in this pool
810 */
811 public int getParallelism() {
812 return parallelism;
813 }
814
815 /**
816 * Returns the number of worker threads that have started but not
817 * yet terminated. This result returned by this method may differ
818 * from {@code getParallelism} when threads are created to
819 * maintain parallelism when others are cooperatively blocked.
820 *
821 * @return the number of worker threads
822 */
823 public int getPoolSize() {
824 return totalCountOf(workerCounts);
825 }
826
827 /**
828 * Returns the maximum number of threads allowed to exist in the
829 * pool, even if there are insufficient unblocked running threads.
830 *
831 * @return the maximum
832 */
833 public int getMaximumPoolSize() {
834 return maxPoolSize;
835 }
836
837 /**
838 * Sets the maximum number of threads allowed to exist in the
839 * pool, even if there are insufficient unblocked running threads.
840 * Setting this value has no effect on current pool size. It
841 * controls construction of new threads.
842 *
843 * @throws IllegalArgumentException if negative or greater then
844 * internal implementation limit
845 */
846 public void setMaximumPoolSize(int newMax) {
847 if (newMax < 0 || newMax > MAX_THREADS)
848 throw new IllegalArgumentException();
849 maxPoolSize = newMax;
850 }
851
852
853 /**
854 * Returns true if this pool dynamically maintains its target
855 * parallelism level. If false, new threads are added only to
856 * avoid possible starvation.
857 * This setting is by default true.
858 *
859 * @return true if maintains parallelism
860 */
861 public boolean getMaintainsParallelism() {
862 return maintainsParallelism;
863 }
864
865 /**
866 * Sets whether this pool dynamically maintains its target
867 * parallelism level. If false, new threads are added only to
868 * avoid possible starvation.
869 *
870 * @param enable true to maintains parallelism
871 */
872 public void setMaintainsParallelism(boolean enable) {
873 maintainsParallelism = enable;
874 }
875
876 /**
877 * Establishes local first-in-first-out scheduling mode for forked
878 * tasks that are never joined. This mode may be more appropriate
879 * than default locally stack-based mode in applications in which
880 * worker threads only process asynchronous tasks. This method is
881 * designed to be invoked only when pool is quiescent, and
882 * typically only before any tasks are submitted. The effects of
883 * invocations at other times may be unpredictable.
884 *
885 * @param async if true, use locally FIFO scheduling
886 * @return the previous mode
887 */
888 public boolean setAsyncMode(boolean async) {
889 boolean oldMode = locallyFifo;
890 locallyFifo = async;
891 ForkJoinWorkerThread[] ws = workers;
892 if (ws != null) {
893 for (int i = 0; i < ws.length; ++i) {
894 ForkJoinWorkerThread t = ws[i];
895 if (t != null)
896 t.setAsyncMode(async);
897 }
898 }
899 return oldMode;
900 }
901
902 /**
903 * Returns true if this pool uses local first-in-first-out
904 * scheduling mode for forked tasks that are never joined.
905 *
906 * @return true if this pool uses async mode
907 */
908 public boolean getAsyncMode() {
909 return locallyFifo;
910 }
911
912 /**
913 * Returns an estimate of the number of worker threads that are
914 * not blocked waiting to join tasks or for other managed
915 * synchronization.
916 *
917 * @return the number of worker threads
918 */
919 public int getRunningThreadCount() {
920 return runningCountOf(workerCounts);
921 }
922
923 /**
924 * Returns an estimate of the number of threads that are currently
925 * stealing or executing tasks. This method may overestimate the
926 * number of active threads.
927 *
928 * @return the number of active threads
929 */
930 public int getActiveThreadCount() {
931 return activeCountOf(runControl);
932 }
933
934 /**
935 * Returns an estimate of the number of threads that are currently
936 * idle waiting for tasks. This method may underestimate the
937 * number of idle threads.
938 *
939 * @return the number of idle threads
940 */
941 final int getIdleThreadCount() {
942 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
943 return (c <= 0) ? 0 : c;
944 }
945
946 /**
947 * Returns true if all worker threads are currently idle. An idle
948 * worker is one that cannot obtain a task to execute because none
949 * are available to steal from other threads, and there are no
950 * pending submissions to the pool. This method is conservative;
951 * it might not return true immediately upon idleness of all
952 * threads, but will eventually become true if threads remain
953 * inactive.
954 *
955 * @return true if all threads are currently idle
956 */
957 public boolean isQuiescent() {
958 return activeCountOf(runControl) == 0;
959 }
960
961 /**
962 * Returns an estimate of the total number of tasks stolen from
963 * one thread's work queue by another. The reported value
964 * underestimates the actual total number of steals when the pool
965 * is not quiescent. This value may be useful for monitoring and
966 * tuning fork/join programs: in general, steal counts should be
967 * high enough to keep threads busy, but low enough to avoid
968 * overhead and contention across threads.
969 *
970 * @return the number of steals
971 */
972 public long getStealCount() {
973 return stealCount.get();
974 }
975
976 /**
977 * Accumulates steal count from a worker.
978 * Call only when worker known to be idle.
979 */
980 private void updateStealCount(ForkJoinWorkerThread w) {
981 int sc = w.getAndClearStealCount();
982 if (sc != 0)
983 stealCount.addAndGet(sc);
984 }
985
986 /**
987 * Returns an estimate of the total number of tasks currently held
988 * in queues by worker threads (but not including tasks submitted
989 * to the pool that have not begun executing). This value is only
990 * an approximation, obtained by iterating across all threads in
991 * the pool. This method may be useful for tuning task
992 * granularities.
993 *
994 * @return the number of queued tasks
995 */
996 public long getQueuedTaskCount() {
997 long count = 0;
998 ForkJoinWorkerThread[] ws = workers;
999 if (ws != null) {
1000 for (int i = 0; i < ws.length; ++i) {
1001 ForkJoinWorkerThread t = ws[i];
1002 if (t != null)
1003 count += t.getQueueSize();
1004 }
1005 }
1006 return count;
1007 }
1008
1009 /**
1010 * Returns an estimate of the number tasks submitted to this pool
1011 * that have not yet begun executing. This method takes time
1012 * proportional to the number of submissions.
1013 *
1014 * @return the number of queued submissions
1015 */
1016 public int getQueuedSubmissionCount() {
1017 return submissionQueue.size();
1018 }
1019
1020 /**
1021 * Returns true if there are any tasks submitted to this pool
1022 * that have not yet begun executing.
1023 *
1024 * @return {@code true} if there are any queued submissions
1025 */
1026 public boolean hasQueuedSubmissions() {
1027 return !submissionQueue.isEmpty();
1028 }
1029
1030 /**
1031 * Removes and returns the next unexecuted submission if one is
1032 * available. This method may be useful in extensions to this
1033 * class that re-assign work in systems with multiple pools.
1034 *
1035 * @return the next submission, or null if none
1036 */
1037 protected ForkJoinTask<?> pollSubmission() {
1038 return submissionQueue.poll();
1039 }
1040
1041 /**
1042 * Removes all available unexecuted submitted and forked tasks
1043 * from scheduling queues and adds them to the given collection,
1044 * without altering their execution status. These may include
1045 * artificially generated or wrapped tasks. This method is designed
1046 * to be invoked only when the pool is known to be
1047 * quiescent. Invocations at other times may not remove all
1048 * tasks. A failure encountered while attempting to add elements
1049 * to collection {@code c} may result in elements being in
1050 * neither, either or both collections when the associated
1051 * exception is thrown. The behavior of this operation is
1052 * undefined if the specified collection is modified while the
1053 * operation is in progress.
1054 *
1055 * @param c the collection to transfer elements into
1056 * @return the number of elements transferred
1057 */
1058 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1059 int n = submissionQueue.drainTo(c);
1060 ForkJoinWorkerThread[] ws = workers;
1061 if (ws != null) {
1062 for (int i = 0; i < ws.length; ++i) {
1063 ForkJoinWorkerThread w = ws[i];
1064 if (w != null)
1065 n += w.drainTasksTo(c);
1066 }
1067 }
1068 return n;
1069 }
1070
1071 /**
1072 * Returns a string identifying this pool, as well as its state,
1073 * including indications of run state, parallelism level, and
1074 * worker and task counts.
1075 *
1076 * @return a string identifying this pool, as well as its state
1077 */
1078 public String toString() {
1079 int ps = parallelism;
1080 int wc = workerCounts;
1081 int rc = runControl;
1082 long st = getStealCount();
1083 long qt = getQueuedTaskCount();
1084 long qs = getQueuedSubmissionCount();
1085 return super.toString() +
1086 "[" + runStateToString(runStateOf(rc)) +
1087 ", parallelism = " + ps +
1088 ", size = " + totalCountOf(wc) +
1089 ", active = " + activeCountOf(rc) +
1090 ", running = " + runningCountOf(wc) +
1091 ", steals = " + st +
1092 ", tasks = " + qt +
1093 ", submissions = " + qs +
1094 "]";
1095 }
1096
1097 private static String runStateToString(int rs) {
1098 switch(rs) {
1099 case RUNNING: return "Running";
1100 case SHUTDOWN: return "Shutting down";
1101 case TERMINATING: return "Terminating";
1102 case TERMINATED: return "Terminated";
1103 default: throw new Error("Unknown run state");
1104 }
1105 }
1106
1107 // lifecycle control
1108
1109 /**
1110 * Initiates an orderly shutdown in which previously submitted
1111 * tasks are executed, but no new tasks will be accepted.
1112 * Invocation has no additional effect if already shut down.
1113 * Tasks that are in the process of being submitted concurrently
1114 * during the course of this method may or may not be rejected.
1115 *
1116 * @throws SecurityException if a security manager exists and
1117 * the caller is not permitted to modify threads
1118 * because it does not hold {@link
1119 * java.lang.RuntimePermission}{@code ("modifyThread")}
1120 */
1121 public void shutdown() {
1122 checkPermission();
1123 transitionRunStateTo(SHUTDOWN);
1124 if (canTerminateOnShutdown(runControl))
1125 terminateOnShutdown();
1126 }
1127
1128 /**
1129 * Attempts to stop all actively executing tasks, and cancels all
1130 * waiting tasks. Tasks that are in the process of being
1131 * submitted or executed concurrently during the course of this
1132 * method may or may not be rejected. Unlike some other executors,
1133 * this method cancels rather than collects non-executed tasks
1134 * upon termination, so always returns an empty list. However, you
1135 * can use method {@code drainTasksTo} before invoking this
1136 * method to transfer unexecuted tasks to another collection.
1137 *
1138 * @return an empty list
1139 * @throws SecurityException if a security manager exists and
1140 * the caller is not permitted to modify threads
1141 * because it does not hold {@link
1142 * java.lang.RuntimePermission}{@code ("modifyThread")}
1143 */
1144 public List<Runnable> shutdownNow() {
1145 checkPermission();
1146 terminate();
1147 return Collections.emptyList();
1148 }
1149
1150 /**
1151 * Returns {@code true} if all tasks have completed following shut down.
1152 *
1153 * @return {@code true} if all tasks have completed following shut down
1154 */
1155 public boolean isTerminated() {
1156 return runStateOf(runControl) == TERMINATED;
1157 }
1158
1159 /**
1160 * Returns {@code true} if the process of termination has
1161 * commenced but possibly not yet completed.
1162 *
1163 * @return {@code true} if terminating
1164 */
1165 public boolean isTerminating() {
1166 return runStateOf(runControl) >= TERMINATING;
1167 }
1168
1169 /**
1170 * Returns {@code true} if this pool has been shut down.
1171 *
1172 * @return {@code true} if this pool has been shut down
1173 */
1174 public boolean isShutdown() {
1175 return runStateOf(runControl) >= SHUTDOWN;
1176 }
1177
1178 /**
1179 * Blocks until all tasks have completed execution after a shutdown
1180 * request, or the timeout occurs, or the current thread is
1181 * interrupted, whichever happens first.
1182 *
1183 * @param timeout the maximum time to wait
1184 * @param unit the time unit of the timeout argument
1185 * @return {@code true} if this executor terminated and
1186 * {@code false} if the timeout elapsed before termination
1187 * @throws InterruptedException if interrupted while waiting
1188 */
1189 public boolean awaitTermination(long timeout, TimeUnit unit)
1190 throws InterruptedException {
1191 long nanos = unit.toNanos(timeout);
1192 final ReentrantLock lock = this.workerLock;
1193 lock.lock();
1194 try {
1195 for (;;) {
1196 if (isTerminated())
1197 return true;
1198 if (nanos <= 0)
1199 return false;
1200 nanos = termination.awaitNanos(nanos);
1201 }
1202 } finally {
1203 lock.unlock();
1204 }
1205 }
1206
1207 // Shutdown and termination support
1208
1209 /**
1210 * Callback from terminating worker. Nulls out the corresponding
1211 * workers slot, and if terminating, tries to terminate; else
1212 * tries to shrink workers array.
1213 *
1214 * @param w the worker
1215 */
1216 final void workerTerminated(ForkJoinWorkerThread w) {
1217 updateStealCount(w);
1218 updateWorkerCount(-1);
1219 final ReentrantLock lock = this.workerLock;
1220 lock.lock();
1221 try {
1222 ForkJoinWorkerThread[] ws = workers;
1223 if (ws != null) {
1224 int idx = w.poolIndex;
1225 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1226 ws[idx] = null;
1227 if (totalCountOf(workerCounts) == 0) {
1228 terminate(); // no-op if already terminating
1229 transitionRunStateTo(TERMINATED);
1230 termination.signalAll();
1231 }
1232 else if (!isTerminating()) {
1233 tryShrinkWorkerArray();
1234 tryResumeSpare(true); // allow replacement
1235 }
1236 }
1237 } finally {
1238 lock.unlock();
1239 }
1240 signalIdleWorkers();
1241 }
1242
1243 /**
1244 * Initiates termination.
1245 */
1246 private void terminate() {
1247 if (transitionRunStateTo(TERMINATING)) {
1248 stopAllWorkers();
1249 resumeAllSpares();
1250 signalIdleWorkers();
1251 cancelQueuedSubmissions();
1252 cancelQueuedWorkerTasks();
1253 interruptUnterminatedWorkers();
1254 signalIdleWorkers(); // resignal after interrupt
1255 }
1256 }
1257
1258 /**
1259 * Possibly terminates when on shutdown state.
1260 */
1261 private void terminateOnShutdown() {
1262 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1263 terminate();
1264 }
1265
1266 /**
1267 * Clears out and cancels submissions.
1268 */
1269 private void cancelQueuedSubmissions() {
1270 ForkJoinTask<?> task;
1271 while ((task = pollSubmission()) != null)
1272 task.cancel(false);
1273 }
1274
1275 /**
1276 * Cleans out worker queues.
1277 */
1278 private void cancelQueuedWorkerTasks() {
1279 final ReentrantLock lock = this.workerLock;
1280 lock.lock();
1281 try {
1282 ForkJoinWorkerThread[] ws = workers;
1283 if (ws != null) {
1284 for (int i = 0; i < ws.length; ++i) {
1285 ForkJoinWorkerThread t = ws[i];
1286 if (t != null)
1287 t.cancelTasks();
1288 }
1289 }
1290 } finally {
1291 lock.unlock();
1292 }
1293 }
1294
1295 /**
1296 * Sets each worker's status to terminating. Requires lock to avoid
1297 * conflicts with add/remove.
1298 */
1299 private void stopAllWorkers() {
1300 final ReentrantLock lock = this.workerLock;
1301 lock.lock();
1302 try {
1303 ForkJoinWorkerThread[] ws = workers;
1304 if (ws != null) {
1305 for (int i = 0; i < ws.length; ++i) {
1306 ForkJoinWorkerThread t = ws[i];
1307 if (t != null)
1308 t.shutdownNow();
1309 }
1310 }
1311 } finally {
1312 lock.unlock();
1313 }
1314 }
1315
1316 /**
1317 * Interrupts all unterminated workers. This is not required for
1318 * sake of internal control, but may help unstick user code during
1319 * shutdown.
1320 */
1321 private void interruptUnterminatedWorkers() {
1322 final ReentrantLock lock = this.workerLock;
1323 lock.lock();
1324 try {
1325 ForkJoinWorkerThread[] ws = workers;
1326 if (ws != null) {
1327 for (int i = 0; i < ws.length; ++i) {
1328 ForkJoinWorkerThread t = ws[i];
1329 if (t != null && !t.isTerminated()) {
1330 try {
1331 t.interrupt();
1332 } catch (SecurityException ignore) {
1333 }
1334 }
1335 }
1336 }
1337 } finally {
1338 lock.unlock();
1339 }
1340 }
1341
1342
1343 /*
1344 * Nodes for event barrier to manage idle threads. Queue nodes
1345 * are basic Treiber stack nodes, also used for spare stack.
1346 *
1347 * The event barrier has an event count and a wait queue (actually
1348 * a Treiber stack). Workers are enabled to look for work when
1349 * the eventCount is incremented. If they fail to find work, they
1350 * may wait for next count. Upon release, threads help others wake
1351 * up.
1352 *
1353 * Synchronization events occur only in enough contexts to
1354 * maintain overall liveness:
1355 *
1356 * - Submission of a new task to the pool
1357 * - Resizes or other changes to the workers array
1358 * - pool termination
1359 * - A worker pushing a task on an empty queue
1360 *
1361 * The case of pushing a task occurs often enough, and is heavy
1362 * enough compared to simple stack pushes, to require special
1363 * handling: Method signalWork returns without advancing count if
1364 * the queue appears to be empty. This would ordinarily result in
1365 * races causing some queued waiters not to be woken up. To avoid
1366 * this, the first worker enqueued in method sync (see
1367 * syncIsReleasable) rescans for tasks after being enqueued, and
1368 * helps signal if any are found. This works well because the
1369 * worker has nothing better to do, and so might as well help
1370 * alleviate the overhead and contention on the threads actually
1371 * doing work. Also, since event counts increments on task
1372 * availability exist to maintain liveness (rather than to force
1373 * refreshes etc), it is OK for callers to exit early if
1374 * contending with another signaller.
1375 */
1376 static final class WaitQueueNode {
1377 WaitQueueNode next; // only written before enqueued
1378 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1379 final long count; // unused for spare stack
1380
1381 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1382 count = c;
1383 thread = w;
1384 }
1385
1386 /**
1387 * Wakes up waiter, returning false if known to already
1388 */
1389 boolean signal() {
1390 ForkJoinWorkerThread t = thread;
1391 if (t == null)
1392 return false;
1393 thread = null;
1394 LockSupport.unpark(t);
1395 return true;
1396 }
1397
1398 /**
1399 * Awaits release on sync.
1400 */
1401 void awaitSyncRelease(ForkJoinPool p) {
1402 while (thread != null && !p.syncIsReleasable(this))
1403 LockSupport.park(this);
1404 }
1405
1406 /**
1407 * Awaits resumption as spare.
1408 */
1409 void awaitSpareRelease() {
1410 while (thread != null) {
1411 if (!Thread.interrupted())
1412 LockSupport.park(this);
1413 }
1414 }
1415 }
1416
1417 /**
1418 * Ensures that no thread is waiting for count to advance from the
1419 * current value of eventCount read on entry to this method, by
1420 * releasing waiting threads if necessary.
1421 *
1422 * @return the count
1423 */
1424 final long ensureSync() {
1425 long c = eventCount;
1426 WaitQueueNode q;
1427 while ((q = syncStack) != null && q.count < c) {
1428 if (casBarrierStack(q, null)) {
1429 do {
1430 q.signal();
1431 } while ((q = q.next) != null);
1432 break;
1433 }
1434 }
1435 return c;
1436 }
1437
1438 /**
1439 * Increments event count and releases waiting threads.
1440 */
1441 private void signalIdleWorkers() {
1442 long c;
1443 do {} while (!casEventCount(c = eventCount, c+1));
1444 ensureSync();
1445 }
1446
1447 /**
1448 * Signals threads waiting to poll a task. Because method sync
1449 * rechecks availability, it is OK to only proceed if queue
1450 * appears to be non-empty, and OK to skip under contention to
1451 * increment count (since some other thread succeeded).
1452 */
1453 final void signalWork() {
1454 long c;
1455 WaitQueueNode q;
1456 if (syncStack != null &&
1457 casEventCount(c = eventCount, c+1) &&
1458 (((q = syncStack) != null && q.count <= c) &&
1459 (!casBarrierStack(q, q.next) || !q.signal())))
1460 ensureSync();
1461 }
1462
1463 /**
1464 * Waits until event count advances from last value held by
1465 * caller, or if excess threads, caller is resumed as spare, or
1466 * caller or pool is terminating. Updates caller's event on exit.
1467 *
1468 * @param w the calling worker thread
1469 */
1470 final void sync(ForkJoinWorkerThread w) {
1471 updateStealCount(w); // Transfer w's count while it is idle
1472
1473 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1474 long prev = w.lastEventCount;
1475 WaitQueueNode node = null;
1476 WaitQueueNode h;
1477 while (eventCount == prev &&
1478 ((h = syncStack) == null || h.count == prev)) {
1479 if (node == null)
1480 node = new WaitQueueNode(prev, w);
1481 if (casBarrierStack(node.next = h, node)) {
1482 node.awaitSyncRelease(this);
1483 break;
1484 }
1485 }
1486 long ec = ensureSync();
1487 if (ec != prev) {
1488 w.lastEventCount = ec;
1489 break;
1490 }
1491 }
1492 }
1493
1494 /**
1495 * Returns true if worker waiting on sync can proceed:
1496 * - on signal (thread == null)
1497 * - on event count advance (winning race to notify vs signaller)
1498 * - on interrupt
1499 * - if the first queued node, we find work available
1500 * If node was not signalled and event count not advanced on exit,
1501 * then we also help advance event count.
1502 *
1503 * @return true if node can be released
1504 */
1505 final boolean syncIsReleasable(WaitQueueNode node) {
1506 long prev = node.count;
1507 if (!Thread.interrupted() && node.thread != null &&
1508 (node.next != null ||
1509 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1510 eventCount == prev)
1511 return false;
1512 if (node.thread != null) {
1513 node.thread = null;
1514 long ec = eventCount;
1515 if (prev <= ec) // help signal
1516 casEventCount(ec, ec+1);
1517 }
1518 return true;
1519 }
1520
1521 /**
1522 * Returns true if a new sync event occurred since last call to
1523 * sync or this method, if so, updating caller's count.
1524 */
1525 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1526 long lc = w.lastEventCount;
1527 long ec = ensureSync();
1528 if (ec == lc)
1529 return false;
1530 w.lastEventCount = ec;
1531 return true;
1532 }
1533
1534 // Parallelism maintenance
1535
1536 /**
1537 * Decrements running count; if too low, adds spare.
1538 *
1539 * Conceptually, all we need to do here is add or resume a
1540 * spare thread when one is about to block (and remove or
1541 * suspend it later when unblocked -- see suspendIfSpare).
1542 * However, implementing this idea requires coping with
1543 * several problems: we have imperfect information about the
1544 * states of threads. Some count updates can and usually do
1545 * lag run state changes, despite arrangements to keep them
1546 * accurate (for example, when possible, updating counts
1547 * before signalling or resuming), especially when running on
1548 * dynamic JVMs that don't optimize the infrequent paths that
1549 * update counts. Generating too many threads can make these
1550 * problems become worse, because excess threads are more
1551 * likely to be context-switched with others, slowing them all
1552 * down, especially if there is no work available, so all are
1553 * busy scanning or idling. Also, excess spare threads can
1554 * only be suspended or removed when they are idle, not
1555 * immediately when they aren't needed. So adding threads will
1556 * raise parallelism level for longer than necessary. Also,
1557 * FJ applications often encounter highly transient peaks when
1558 * many threads are blocked joining, but for less time than it
1559 * takes to create or resume spares.
1560 *
1561 * @param joinMe if non-null, return early if done
1562 * @param maintainParallelism if true, try to stay within
1563 * target counts, else create only to avoid starvation
1564 * @return true if joinMe known to be done
1565 */
1566 final boolean preJoin(ForkJoinTask<?> joinMe,
1567 boolean maintainParallelism) {
1568 maintainParallelism &= maintainsParallelism; // overrride
1569 boolean dec = false; // true when running count decremented
1570 while (spareStack == null || !tryResumeSpare(dec)) {
1571 int counts = workerCounts;
1572 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1573 // CAS cheat
1574 if (!needSpare(counts, maintainParallelism))
1575 break;
1576 if (joinMe.status < 0)
1577 return true;
1578 if (tryAddSpare(counts))
1579 break;
1580 }
1581 }
1582 return false;
1583 }
1584
1585 /**
1586 * Same idea as preJoin
1587 */
1588 final boolean preBlock(ManagedBlocker blocker,
1589 boolean maintainParallelism) {
1590 maintainParallelism &= maintainsParallelism;
1591 boolean dec = false;
1592 while (spareStack == null || !tryResumeSpare(dec)) {
1593 int counts = workerCounts;
1594 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1595 if (!needSpare(counts, maintainParallelism))
1596 break;
1597 if (blocker.isReleasable())
1598 return true;
1599 if (tryAddSpare(counts))
1600 break;
1601 }
1602 }
1603 return false;
1604 }
1605
1606 /**
1607 * Returns true if a spare thread appears to be needed. If
1608 * maintaining parallelism, returns true when the deficit in
1609 * running threads is more than the surplus of total threads, and
1610 * there is apparently some work to do. This self-limiting rule
1611 * means that the more threads that have already been added, the
1612 * less parallelism we will tolerate before adding another.
1613 *
1614 * @param counts current worker counts
1615 * @param maintainParallelism try to maintain parallelism
1616 */
1617 private boolean needSpare(int counts, boolean maintainParallelism) {
1618 int ps = parallelism;
1619 int rc = runningCountOf(counts);
1620 int tc = totalCountOf(counts);
1621 int runningDeficit = ps - rc;
1622 int totalSurplus = tc - ps;
1623 return (tc < maxPoolSize &&
1624 (rc == 0 || totalSurplus < 0 ||
1625 (maintainParallelism &&
1626 runningDeficit > totalSurplus &&
1627 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1628 }
1629
1630 /**
1631 * Adds a spare worker if lock available and no more than the
1632 * expected numbers of threads exist.
1633 *
1634 * @return true if successful
1635 */
1636 private boolean tryAddSpare(int expectedCounts) {
1637 final ReentrantLock lock = this.workerLock;
1638 int expectedRunning = runningCountOf(expectedCounts);
1639 int expectedTotal = totalCountOf(expectedCounts);
1640 boolean success = false;
1641 boolean locked = false;
1642 // confirm counts while locking; CAS after obtaining lock
1643 try {
1644 for (;;) {
1645 int s = workerCounts;
1646 int tc = totalCountOf(s);
1647 int rc = runningCountOf(s);
1648 if (rc > expectedRunning || tc > expectedTotal)
1649 break;
1650 if (!locked && !(locked = lock.tryLock()))
1651 break;
1652 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1653 createAndStartSpare(tc);
1654 success = true;
1655 break;
1656 }
1657 }
1658 } finally {
1659 if (locked)
1660 lock.unlock();
1661 }
1662 return success;
1663 }
1664
1665 /**
1666 * Adds the kth spare worker. On entry, pool counts are already
1667 * adjusted to reflect addition.
1668 */
1669 private void createAndStartSpare(int k) {
1670 ForkJoinWorkerThread w = null;
1671 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1672 int len = ws.length;
1673 // Probably, we can place at slot k. If not, find empty slot
1674 if (k < len && ws[k] != null) {
1675 for (k = 0; k < len && ws[k] != null; ++k)
1676 ;
1677 }
1678 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1679 ws[k] = w;
1680 w.start();
1681 }
1682 else
1683 updateWorkerCount(-1); // adjust on failure
1684 signalIdleWorkers();
1685 }
1686
1687 /**
1688 * Suspends calling thread w if there are excess threads. Called
1689 * only from sync. Spares are enqueued in a Treiber stack using
1690 * the same WaitQueueNodes as barriers. They are resumed mainly
1691 * in preJoin, but are also woken on pool events that require all
1692 * threads to check run state.
1693 *
1694 * @param w the caller
1695 */
1696 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1697 WaitQueueNode node = null;
1698 int s;
1699 while (parallelism < runningCountOf(s = workerCounts)) {
1700 if (node == null)
1701 node = new WaitQueueNode(0, w);
1702 if (casWorkerCounts(s, s-1)) { // representation-dependent
1703 // push onto stack
1704 do {} while (!casSpareStack(node.next = spareStack, node));
1705 // block until released by resumeSpare
1706 node.awaitSpareRelease();
1707 return true;
1708 }
1709 }
1710 return false;
1711 }
1712
1713 /**
1714 * Tries to pop and resume a spare thread.
1715 *
1716 * @param updateCount if true, increment running count on success
1717 * @return true if successful
1718 */
1719 private boolean tryResumeSpare(boolean updateCount) {
1720 WaitQueueNode q;
1721 while ((q = spareStack) != null) {
1722 if (casSpareStack(q, q.next)) {
1723 if (updateCount)
1724 updateRunningCount(1);
1725 q.signal();
1726 return true;
1727 }
1728 }
1729 return false;
1730 }
1731
1732 /**
1733 * Pops and resumes all spare threads. Same idea as ensureSync.
1734 *
1735 * @return true if any spares released
1736 */
1737 private boolean resumeAllSpares() {
1738 WaitQueueNode q;
1739 while ( (q = spareStack) != null) {
1740 if (casSpareStack(q, null)) {
1741 do {
1742 updateRunningCount(1);
1743 q.signal();
1744 } while ((q = q.next) != null);
1745 return true;
1746 }
1747 }
1748 return false;
1749 }
1750
1751 /**
1752 * Pops and shuts down excessive spare threads. Call only while
1753 * holding lock. This is not guaranteed to eliminate all excess
1754 * threads, only those suspended as spares, which are the ones
1755 * unlikely to be needed in the future.
1756 */
1757 private void trimSpares() {
1758 int surplus = totalCountOf(workerCounts) - parallelism;
1759 WaitQueueNode q;
1760 while (surplus > 0 && (q = spareStack) != null) {
1761 if (casSpareStack(q, null)) {
1762 do {
1763 updateRunningCount(1);
1764 ForkJoinWorkerThread w = q.thread;
1765 if (w != null && surplus > 0 &&
1766 runningCountOf(workerCounts) > 0 && w.shutdown())
1767 --surplus;
1768 q.signal();
1769 } while ((q = q.next) != null);
1770 }
1771 }
1772 }
1773
1774 /**
1775 * Interface for extending managed parallelism for tasks running
1776 * in ForkJoinPools. A ManagedBlocker provides two methods.
1777 * Method {@code isReleasable} must return true if blocking is not
1778 * necessary. Method {@code block} blocks the current thread if
1779 * necessary (perhaps internally invoking {@code isReleasable}
1780 * before actually blocking.).
1781 *
1782 * <p>For example, here is a ManagedBlocker based on a
1783 * ReentrantLock:
1784 * <pre> {@code
1785 * class ManagedLocker implements ManagedBlocker {
1786 * final ReentrantLock lock;
1787 * boolean hasLock = false;
1788 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1789 * public boolean block() {
1790 * if (!hasLock)
1791 * lock.lock();
1792 * return true;
1793 * }
1794 * public boolean isReleasable() {
1795 * return hasLock || (hasLock = lock.tryLock());
1796 * }
1797 * }}</pre>
1798 */
1799 public static interface ManagedBlocker {
1800 /**
1801 * Possibly blocks the current thread, for example waiting for
1802 * a lock or condition.
1803 *
1804 * @return true if no additional blocking is necessary (i.e.,
1805 * if isReleasable would return true)
1806 * @throws InterruptedException if interrupted while waiting
1807 * (the method is not required to do so, but is allowed to)
1808 */
1809 boolean block() throws InterruptedException;
1810
1811 /**
1812 * Returns true if blocking is unnecessary.
1813 */
1814 boolean isReleasable();
1815 }
1816
1817 /**
1818 * Blocks in accord with the given blocker. If the current thread
1819 * is a ForkJoinWorkerThread, this method possibly arranges for a
1820 * spare thread to be activated if necessary to ensure parallelism
1821 * while the current thread is blocked. If
1822 * {@code maintainParallelism} is true and the pool supports
1823 * it ({@link #getMaintainsParallelism}), this method attempts to
1824 * maintain the pool's nominal parallelism. Otherwise it activates
1825 * a thread only if necessary to avoid complete starvation. This
1826 * option may be preferable when blockages use timeouts, or are
1827 * almost always brief.
1828 *
1829 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1830 * equivalent to
1831 * <pre> {@code
1832 * while (!blocker.isReleasable())
1833 * if (blocker.block())
1834 * return;
1835 * }</pre>
1836 * If the caller is a ForkJoinTask, then the pool may first
1837 * be expanded to ensure parallelism, and later adjusted.
1838 *
1839 * @param blocker the blocker
1840 * @param maintainParallelism if true and supported by this pool,
1841 * attempt to maintain the pool's nominal parallelism; otherwise
1842 * activate a thread only if necessary to avoid complete
1843 * starvation.
1844 * @throws InterruptedException if blocker.block did so
1845 */
1846 public static void managedBlock(ManagedBlocker blocker,
1847 boolean maintainParallelism)
1848 throws InterruptedException {
1849 Thread t = Thread.currentThread();
1850 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1851 ((ForkJoinWorkerThread) t).pool : null);
1852 if (!blocker.isReleasable()) {
1853 try {
1854 if (pool == null ||
1855 !pool.preBlock(blocker, maintainParallelism))
1856 awaitBlocker(blocker);
1857 } finally {
1858 if (pool != null)
1859 pool.updateRunningCount(1);
1860 }
1861 }
1862 }
1863
1864 private static void awaitBlocker(ManagedBlocker blocker)
1865 throws InterruptedException {
1866 do {} while (!blocker.isReleasable() && !blocker.block());
1867 }
1868
1869 // AbstractExecutorService overrides
1870
1871 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1872 return new AdaptedRunnable<T>(runnable, value);
1873 }
1874
1875 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1876 return new AdaptedCallable<T>(callable);
1877 }
1878
1879 // Unsafe mechanics
1880
1881 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1882 private static final long eventCountOffset =
1883 objectFieldOffset("eventCount", ForkJoinPool.class);
1884 private static final long workerCountsOffset =
1885 objectFieldOffset("workerCounts", ForkJoinPool.class);
1886 private static final long runControlOffset =
1887 objectFieldOffset("runControl", ForkJoinPool.class);
1888 private static final long syncStackOffset =
1889 objectFieldOffset("syncStack",ForkJoinPool.class);
1890 private static final long spareStackOffset =
1891 objectFieldOffset("spareStack", ForkJoinPool.class);
1892
1893 private boolean casEventCount(long cmp, long val) {
1894 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1895 }
1896 private boolean casWorkerCounts(int cmp, int val) {
1897 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1898 }
1899 private boolean casRunControl(int cmp, int val) {
1900 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1901 }
1902 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1903 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1904 }
1905 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1906 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1907 }
1908
1909 private static long objectFieldOffset(String field, Class<?> klazz) {
1910 try {
1911 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1912 } catch (NoSuchFieldException e) {
1913 // Convert Exception to corresponding Error
1914 NoSuchFieldError error = new NoSuchFieldError(field);
1915 error.initCause(e);
1916 throw error;
1917 }
1918 }
1919
1920 /**
1921 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1922 * Replace with a simple call to Unsafe.getUnsafe when integrating
1923 * into a jdk.
1924 *
1925 * @return a sun.misc.Unsafe
1926 */
1927 private static sun.misc.Unsafe getUnsafe() {
1928 try {
1929 return sun.misc.Unsafe.getUnsafe();
1930 } catch (SecurityException se) {
1931 try {
1932 return java.security.AccessController.doPrivileged
1933 (new java.security
1934 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1935 public sun.misc.Unsafe run() throws Exception {
1936 java.lang.reflect.Field f = sun.misc
1937 .Unsafe.class.getDeclaredField("theUnsafe");
1938 f.setAccessible(true);
1939 return (sun.misc.Unsafe) f.get(null);
1940 }});
1941 } catch (java.security.PrivilegedActionException e) {
1942 throw new RuntimeException("Could not initialize intrinsics",
1943 e.getCause());
1944 }
1945 }
1946 }
1947 }