ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.3
Committed: Wed Jan 7 19:12:36 2009 UTC (15 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.2: +1 -1 lines
Log Message:
More misc cleanup

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. Otherwise, other
31 * ExecutorService implementations are typically more appropriate
32 * choices.
33 *
34 * <p>A ForkJoinPool may be constructed with a given parallelism level
35 * (target pool size), which it attempts to maintain by dynamically
36 * adding, suspending, or resuming threads, even if some tasks are
37 * waiting to join others. However, no such adjustments are performed
38 * in the face of blocked IO or other unmanaged synchronization. The
39 * nested <code>ManagedBlocker</code> interface enables extension of
40 * the kinds of synchronization accommodated. The target parallelism
41 * level may also be changed dynamically (<code>setParallelism</code>)
42 * and dynamically thread construction can be limited using methods
43 * <code>setMaximumPoolSize</code> and/or
44 * <code>setMaintainsParallelism</code>.
45 *
46 * <p>In addition to execution and lifecycle control methods, this
47 * class provides status check methods (for example
48 * <code>getStealCount</code>) that are intended to aid in developing,
49 * tuning, and monitoring fork/join applications. Also, method
50 * <code>toString</code> returns indications of pool state in a
51 * convenient form for informal monitoring.
52 *
53 * <p><b>Implementation notes</b>: This implementation restricts the
54 * maximum number of running threads to 32767. Attempts to create
55 * pools with greater than the maximum result in
56 * IllegalArgumentExceptions.
57 */
58 public class ForkJoinPool extends AbstractExecutorService {
59
60 /*
61 * See the extended comments interspersed below for design,
62 * rationale, and walkthroughs.
63 */
64
65 /** Mask for packing and unpacking shorts */
66 private static final int shortMask = 0xffff;
67
68 /** Max pool size -- must be a power of two minus 1 */
69 private static final int MAX_THREADS = 0x7FFF;
70
71 /**
72 * Factory for creating new ForkJoinWorkerThreads. A
73 * ForkJoinWorkerThreadFactory must be defined and used for
74 * ForkJoinWorkerThread subclasses that extend base functionality
75 * or initialize threads with different contexts.
76 */
77 public static interface ForkJoinWorkerThreadFactory {
78 /**
79 * Returns a new worker thread operating in the given pool.
80 *
81 * @param pool the pool this thread works in
82 * @throws NullPointerException if pool is null;
83 */
84 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
85 }
86
87 /**
88 * Default ForkJoinWorkerThreadFactory implementation, creates a
89 * new ForkJoinWorkerThread.
90 */
91 static class DefaultForkJoinWorkerThreadFactory
92 implements ForkJoinWorkerThreadFactory {
93 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
94 try {
95 return new ForkJoinWorkerThread(pool);
96 } catch (OutOfMemoryError oom) {
97 return null;
98 }
99 }
100 }
101
102 /**
103 * Creates a new ForkJoinWorkerThread. This factory is used unless
104 * overridden in ForkJoinPool constructors.
105 */
106 public static final ForkJoinWorkerThreadFactory
107 defaultForkJoinWorkerThreadFactory =
108 new DefaultForkJoinWorkerThreadFactory();
109
110 /**
111 * Permission required for callers of methods that may start or
112 * kill threads.
113 */
114 private static final RuntimePermission modifyThreadPermission =
115 new RuntimePermission("modifyThread");
116
117 /**
118 * If there is a security manager, makes sure caller has
119 * permission to modify threads.
120 */
121 private static void checkPermission() {
122 SecurityManager security = System.getSecurityManager();
123 if (security != null)
124 security.checkPermission(modifyThreadPermission);
125 }
126
127 /**
128 * Generator for assigning sequence numbers as pool names.
129 */
130 private static final AtomicInteger poolNumberGenerator =
131 new AtomicInteger();
132
133 /**
134 * Array holding all worker threads in the pool. Array size must
135 * be a power of two. Updates and replacements are protected by
136 * workerLock, but it is always kept in a consistent enough state
137 * to be randomly accessed without locking by workers performing
138 * work-stealing.
139 */
140 volatile ForkJoinWorkerThread[] workers;
141
142 /**
143 * Lock protecting access to workers.
144 */
145 private final ReentrantLock workerLock;
146
147 /**
148 * Condition for awaitTermination.
149 */
150 private final Condition termination;
151
152 /**
153 * The uncaught exception handler used when any worker
154 * abrupty terminates
155 */
156 private Thread.UncaughtExceptionHandler ueh;
157
158 /**
159 * Creation factory for worker threads.
160 */
161 private final ForkJoinWorkerThreadFactory factory;
162
163 /**
164 * Head of stack of threads that were created to maintain
165 * parallelism when other threads blocked, but have since
166 * suspended when the parallelism level rose.
167 */
168 private volatile WaitQueueNode spareStack;
169
170 /**
171 * Sum of per-thread steal counts, updated only when threads are
172 * idle or terminating.
173 */
174 private final AtomicLong stealCount;
175
176 /**
177 * Queue for external submissions.
178 */
179 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
180
181 /**
182 * Head of Treiber stack for barrier sync. See below for explanation
183 */
184 private volatile WaitQueueNode barrierStack;
185
186 /**
187 * The count for event barrier
188 */
189 private volatile long eventCount;
190
191 /**
192 * Pool number, just for assigning useful names to worker threads
193 */
194 private final int poolNumber;
195
196 /**
197 * The maximum allowed pool size
198 */
199 private volatile int maxPoolSize;
200
201 /**
202 * The desired parallelism level, updated only under workerLock.
203 */
204 private volatile int parallelism;
205
206 /**
207 * Holds number of total (i.e., created and not yet terminated)
208 * and running (i.e., not blocked on joins or other managed sync)
209 * threads, packed into one int to ensure consistent snapshot when
210 * making decisions about creating and suspending spare
211 * threads. Updated only by CAS. Note: CASes in
212 * updateRunningCount and preJoin running active count is in low
213 * word, so need to be modified if this changes
214 */
215 private volatile int workerCounts;
216
217 private static int totalCountOf(int s) { return s >>> 16; }
218 private static int runningCountOf(int s) { return s & shortMask; }
219 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
220
221 /**
222 * Add delta (which may be negative) to running count. This must
223 * be called before (with negative arg) and after (with positive)
224 * any managed synchronization (i.e., mainly, joins)
225 * @param delta the number to add
226 */
227 final void updateRunningCount(int delta) {
228 int s;
229 do;while (!casWorkerCounts(s = workerCounts, s + delta));
230 }
231
232 /**
233 * Add delta (which may be negative) to both total and running
234 * count. This must be called upon creation and termination of
235 * worker threads.
236 * @param delta the number to add
237 */
238 private void updateWorkerCount(int delta) {
239 int d = delta + (delta << 16); // add to both lo and hi parts
240 int s;
241 do;while (!casWorkerCounts(s = workerCounts, s + d));
242 }
243
244 /**
245 * Lifecycle control. High word contains runState, low word
246 * contains the number of workers that are (probably) executing
247 * tasks. This value is atomically incremented before a worker
248 * gets a task to run, and decremented when worker has no tasks
249 * and cannot find any. These two fields are bundled together to
250 * support correct termination triggering. Note: activeCount
251 * CAS'es cheat by assuming active count is in low word, so need
252 * to be modified if this changes
253 */
254 private volatile int runControl;
255
256 // RunState values. Order among values matters
257 private static final int RUNNING = 0;
258 private static final int SHUTDOWN = 1;
259 private static final int TERMINATING = 2;
260 private static final int TERMINATED = 3;
261
262 private static int runStateOf(int c) { return c >>> 16; }
263 private static int activeCountOf(int c) { return c & shortMask; }
264 private static int runControlFor(int r, int a) { return (r << 16) + a; }
265
266 /**
267 * Increment active count. Called by workers before/during
268 * executing tasks.
269 */
270 final void incrementActiveCount() {
271 int c;
272 do;while (!casRunControl(c = runControl, c+1));
273 }
274
275 /**
276 * Decrement active count; possibly trigger termination.
277 * Called by workers when they can't find tasks.
278 */
279 final void decrementActiveCount() {
280 int c, nextc;
281 do;while (!casRunControl(c = runControl, nextc = c-1));
282 if (canTerminateOnShutdown(nextc))
283 terminateOnShutdown();
284 }
285
286 /**
287 * Return true if argument represents zero active count and
288 * nonzero runstate, which is the triggering condition for
289 * terminating on shutdown.
290 */
291 private static boolean canTerminateOnShutdown(int c) {
292 return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
293 }
294
295 /**
296 * Transition run state to at least the given state. Return true
297 * if not already at least given state.
298 */
299 private boolean transitionRunStateTo(int state) {
300 for (;;) {
301 int c = runControl;
302 if (runStateOf(c) >= state)
303 return false;
304 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
305 return true;
306 }
307 }
308
309 /**
310 * Controls whether to add spares to maintain parallelism
311 */
312 private volatile boolean maintainsParallelism;
313
314 // Constructors
315
316 /**
317 * Creates a ForkJoinPool with a pool size equal to the number of
318 * processors available on the system and using the default
319 * ForkJoinWorkerThreadFactory,
320 * @throws SecurityException if a security manager exists and
321 * the caller is not permitted to modify threads
322 * because it does not hold {@link
323 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
324 */
325 public ForkJoinPool() {
326 this(Runtime.getRuntime().availableProcessors(),
327 defaultForkJoinWorkerThreadFactory);
328 }
329
330 /**
331 * Creates a ForkJoinPool with the indicated parellelism level
332 * threads, and using the default ForkJoinWorkerThreadFactory,
333 * @param parallelism the number of worker threads
334 * @throws IllegalArgumentException if parallelism less than or
335 * equal to zero
336 * @throws SecurityException if a security manager exists and
337 * the caller is not permitted to modify threads
338 * because it does not hold {@link
339 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
340 */
341 public ForkJoinPool(int parallelism) {
342 this(parallelism, defaultForkJoinWorkerThreadFactory);
343 }
344
345 /**
346 * Creates a ForkJoinPool with parallelism equal to the number of
347 * processors available on the system and using the given
348 * ForkJoinWorkerThreadFactory,
349 * @param factory the factory for creating new threads
350 * @throws NullPointerException if factory is null
351 * @throws SecurityException if a security manager exists and
352 * the caller is not permitted to modify threads
353 * because it does not hold {@link
354 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
355 */
356 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
357 this(Runtime.getRuntime().availableProcessors(), factory);
358 }
359
360 /**
361 * Creates a ForkJoinPool with the given parallelism and factory.
362 *
363 * @param parallelism the targeted number of worker threads
364 * @param factory the factory for creating new threads
365 * @throws IllegalArgumentException if parallelism less than or
366 * equal to zero, or greater than implementation limit.
367 * @throws NullPointerException if factory is null
368 * @throws SecurityException if a security manager exists and
369 * the caller is not permitted to modify threads
370 * because it does not hold {@link
371 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
372 */
373 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
374 if (parallelism <= 0 || parallelism > MAX_THREADS)
375 throw new IllegalArgumentException();
376 if (factory == null)
377 throw new NullPointerException();
378 checkPermission();
379 this.factory = factory;
380 this.parallelism = parallelism;
381 this.maxPoolSize = MAX_THREADS;
382 this.maintainsParallelism = true;
383 this.poolNumber = poolNumberGenerator.incrementAndGet();
384 this.workerLock = new ReentrantLock();
385 this.termination = workerLock.newCondition();
386 this.stealCount = new AtomicLong();
387 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
388 createAndStartInitialWorkers(parallelism);
389 }
390
391 /**
392 * Create new worker using factory.
393 * @param index the index to assign worker
394 * @return new worker, or null of factory failed
395 */
396 private ForkJoinWorkerThread createWorker(int index) {
397 Thread.UncaughtExceptionHandler h = ueh;
398 ForkJoinWorkerThread w = factory.newThread(this);
399 if (w != null) {
400 w.poolIndex = index;
401 w.setDaemon(true);
402 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
403 if (h != null)
404 w.setUncaughtExceptionHandler(h);
405 }
406 return w;
407 }
408
409 /**
410 * Return a good size for worker array given pool size.
411 * Currently requires size to be a power of two.
412 */
413 private static int arraySizeFor(int ps) {
414 return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
415 }
416
417 /**
418 * Create or resize array if necessary to hold newLength
419 * @return the array
420 */
421 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
422 ForkJoinWorkerThread[] ws = workers;
423 if (ws == null)
424 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
425 else if (newLength > ws.length)
426 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
427 else
428 return ws;
429 }
430
431 /**
432 * Try to shrink workers into smaller array after one or more terminate
433 */
434 private void tryShrinkWorkerArray() {
435 ForkJoinWorkerThread[] ws = workers;
436 int len = ws.length;
437 int last = len - 1;
438 while (last >= 0 && ws[last] == null)
439 --last;
440 int newLength = arraySizeFor(last+1);
441 if (newLength < len)
442 workers = Arrays.copyOf(ws, newLength);
443 }
444
445 /**
446 * Initial worker array and worker creation and startup. (This
447 * must be done under lock to avoid interference by some of the
448 * newly started threads while creating others.)
449 */
450 private void createAndStartInitialWorkers(int ps) {
451 final ReentrantLock lock = this.workerLock;
452 lock.lock();
453 try {
454 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
455 for (int i = 0; i < ps; ++i) {
456 ForkJoinWorkerThread w = createWorker(i);
457 if (w != null) {
458 ws[i] = w;
459 w.start();
460 updateWorkerCount(1);
461 }
462 }
463 } finally {
464 lock.unlock();
465 }
466 }
467
468 /**
469 * Worker creation and startup for threads added via setParallelism.
470 */
471 private void createAndStartAddedWorkers() {
472 resumeAllSpares(); // Allow spares to convert to nonspare
473 int ps = parallelism;
474 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
475 int len = ws.length;
476 // Sweep through slots, to keep lowest indices most populated
477 int k = 0;
478 while (k < len) {
479 if (ws[k] != null) {
480 ++k;
481 continue;
482 }
483 int s = workerCounts;
484 int tc = totalCountOf(s);
485 int rc = runningCountOf(s);
486 if (rc >= ps || tc >= ps)
487 break;
488 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
489 ForkJoinWorkerThread w = createWorker(k);
490 if (w != null) {
491 ws[k++] = w;
492 w.start();
493 }
494 else {
495 updateWorkerCount(-1); // back out on failed creation
496 break;
497 }
498 }
499 }
500 }
501
502 // Execution methods
503
504 /**
505 * Common code for execute, invoke and submit
506 */
507 private <T> void doSubmit(ForkJoinTask<T> task) {
508 if (isShutdown())
509 throw new RejectedExecutionException();
510 submissionQueue.offer(task);
511 signalIdleWorkers(true);
512 }
513
514 /**
515 * Performs the given task; returning its result upon completion
516 * @param task the task
517 * @return the task's result
518 * @throws NullPointerException if task is null
519 * @throws RejectedExecutionException if pool is shut down
520 */
521 public <T> T invoke(ForkJoinTask<T> task) {
522 doSubmit(task);
523 return task.join();
524 }
525
526 /**
527 * Arranges for (asynchronous) execution of the given task.
528 * @param task the task
529 * @throws NullPointerException if task is null
530 * @throws RejectedExecutionException if pool is shut down
531 */
532 public <T> void execute(ForkJoinTask<T> task) {
533 doSubmit(task);
534 }
535
536 // AbstractExecutorService methods
537
538 public void execute(Runnable task) {
539 doSubmit(new AdaptedRunnable<Void>(task, null));
540 }
541
542 public <T> ForkJoinTask<T> submit(Callable<T> task) {
543 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
544 doSubmit(job);
545 return job;
546 }
547
548 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
549 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
550 doSubmit(job);
551 return job;
552 }
553
554 public ForkJoinTask<?> submit(Runnable task) {
555 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
556 doSubmit(job);
557 return job;
558 }
559
560 /**
561 * Adaptor for Runnables. This implements RunnableFuture
562 * to be compliant with AbstractExecutorService constraints
563 */
564 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
565 implements RunnableFuture<T> {
566 final Runnable runnable;
567 final T resultOnCompletion;
568 T result;
569 AdaptedRunnable(Runnable runnable, T result) {
570 if (runnable == null) throw new NullPointerException();
571 this.runnable = runnable;
572 this.resultOnCompletion = result;
573 }
574 public T getRawResult() { return result; }
575 public void setRawResult(T v) { result = v; }
576 public boolean exec() {
577 runnable.run();
578 result = resultOnCompletion;
579 return true;
580 }
581 public void run() { invoke(); }
582 }
583
584 /**
585 * Adaptor for Callables
586 */
587 static final class AdaptedCallable<T> extends ForkJoinTask<T>
588 implements RunnableFuture<T> {
589 final Callable<T> callable;
590 T result;
591 AdaptedCallable(Callable<T> callable) {
592 if (callable == null) throw new NullPointerException();
593 this.callable = callable;
594 }
595 public T getRawResult() { return result; }
596 public void setRawResult(T v) { result = v; }
597 public boolean exec() {
598 try {
599 result = callable.call();
600 return true;
601 } catch (Error err) {
602 throw err;
603 } catch (RuntimeException rex) {
604 throw rex;
605 } catch (Exception ex) {
606 throw new RuntimeException(ex);
607 }
608 }
609 public void run() { invoke(); }
610 }
611
612 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
613 ArrayList<ForkJoinTask<T>> ts =
614 new ArrayList<ForkJoinTask<T>>(tasks.size());
615 for (Callable<T> c : tasks)
616 ts.add(new AdaptedCallable<T>(c));
617 invoke(new InvokeAll<T>(ts));
618 return (List<Future<T>>)(List)ts;
619 }
620
621 static final class InvokeAll<T> extends RecursiveAction {
622 final ArrayList<ForkJoinTask<T>> tasks;
623 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
624 public void compute() {
625 try { invokeAll(tasks); } catch(Exception ignore) {}
626 }
627 }
628
629 // Configuration and status settings and queries
630
631 /**
632 * Returns the factory used for constructing new workers
633 *
634 * @return the factory used for constructing new workers
635 */
636 public ForkJoinWorkerThreadFactory getFactory() {
637 return factory;
638 }
639
640 /**
641 * Returns the handler for internal worker threads that terminate
642 * due to unrecoverable errors encountered while executing tasks.
643 * @return the handler, or null if none
644 */
645 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
646 Thread.UncaughtExceptionHandler h;
647 final ReentrantLock lock = this.workerLock;
648 lock.lock();
649 try {
650 h = ueh;
651 } finally {
652 lock.unlock();
653 }
654 return h;
655 }
656
657 /**
658 * Sets the handler for internal worker threads that terminate due
659 * to unrecoverable errors encountered while executing tasks.
660 * Unless set, the current default or ThreadGroup handler is used
661 * as handler.
662 *
663 * @param h the new handler
664 * @return the old handler, or null if none
665 * @throws SecurityException if a security manager exists and
666 * the caller is not permitted to modify threads
667 * because it does not hold {@link
668 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
669 */
670 public Thread.UncaughtExceptionHandler
671 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
672 checkPermission();
673 Thread.UncaughtExceptionHandler old = null;
674 final ReentrantLock lock = this.workerLock;
675 lock.lock();
676 try {
677 old = ueh;
678 ueh = h;
679 ForkJoinWorkerThread[] ws = workers;
680 for (int i = 0; i < ws.length; ++i) {
681 ForkJoinWorkerThread w = ws[i];
682 if (w != null)
683 w.setUncaughtExceptionHandler(h);
684 }
685 } finally {
686 lock.unlock();
687 }
688 return old;
689 }
690
691
692 /**
693 * Sets the target paralleism level of this pool.
694 * @param parallelism the target parallelism
695 * @throws IllegalArgumentException if parallelism less than or
696 * equal to zero or greater than maximum size bounds.
697 * @throws SecurityException if a security manager exists and
698 * the caller is not permitted to modify threads
699 * because it does not hold {@link
700 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
701 */
702 public void setParallelism(int parallelism) {
703 checkPermission();
704 if (parallelism <= 0 || parallelism > maxPoolSize)
705 throw new IllegalArgumentException();
706 final ReentrantLock lock = this.workerLock;
707 lock.lock();
708 try {
709 if (!isTerminating()) {
710 int p = this.parallelism;
711 this.parallelism = parallelism;
712 if (parallelism > p)
713 createAndStartAddedWorkers();
714 else
715 trimSpares();
716 }
717 } finally {
718 lock.unlock();
719 }
720 signalIdleWorkers(false);
721 }
722
723 /**
724 * Returns the targeted number of worker threads in this pool.
725 *
726 * @return the targeted number of worker threads in this pool
727 */
728 public int getParallelism() {
729 return parallelism;
730 }
731
732 /**
733 * Returns the number of worker threads that have started but not
734 * yet terminated. This result returned by this method may differ
735 * from <code>getParallelism</code> when threads are created to
736 * maintain parallelism when others are cooperatively blocked.
737 *
738 * @return the number of worker threads
739 */
740 public int getPoolSize() {
741 return totalCountOf(workerCounts);
742 }
743
744 /**
745 * Returns the maximum number of threads allowed to exist in the
746 * pool, even if there are insufficient unblocked running threads.
747 * @return the maximum
748 */
749 public int getMaximumPoolSize() {
750 return maxPoolSize;
751 }
752
753 /**
754 * Sets the maximum number of threads allowed to exist in the
755 * pool, even if there are insufficient unblocked running threads.
756 * Setting this value has no effect on current pool size. It
757 * controls construction of new threads.
758 * @throws IllegalArgumentException if negative or greater then
759 * internal implementation limit.
760 */
761 public void setMaximumPoolSize(int newMax) {
762 if (newMax < 0 || newMax > MAX_THREADS)
763 throw new IllegalArgumentException();
764 maxPoolSize = newMax;
765 }
766
767
768 /**
769 * Returns true if this pool dynamically maintains its target
770 * parallelism level. If false, new threads are added only to
771 * avoid possible starvation.
772 * This setting is by default true;
773 * @return true if maintains parallelism
774 */
775 public boolean getMaintainsParallelism() {
776 return maintainsParallelism;
777 }
778
779 /**
780 * Sets whether this pool dynamically maintains its target
781 * parallelism level. If false, new threads are added only to
782 * avoid possible starvation.
783 * @param enable true to maintains parallelism
784 */
785 public void setMaintainsParallelism(boolean enable) {
786 maintainsParallelism = enable;
787 }
788
789 /**
790 * Returns an estimate of the number of worker threads that are
791 * not blocked waiting to join tasks or for other managed
792 * synchronization.
793 *
794 * @return the number of worker threads
795 */
796 public int getRunningThreadCount() {
797 return runningCountOf(workerCounts);
798 }
799
800 /**
801 * Returns an estimate of the number of threads that are currently
802 * stealing or executing tasks. This method may overestimate the
803 * number of active threads.
804 * @return the number of active threads.
805 */
806 public int getActiveThreadCount() {
807 return activeCountOf(runControl);
808 }
809
810 /**
811 * Returns an estimate of the number of threads that are currently
812 * idle waiting for tasks. This method may underestimate the
813 * number of idle threads.
814 * @return the number of idle threads.
815 */
816 final int getIdleThreadCount() {
817 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
818 return (c <= 0)? 0 : c;
819 }
820
821 /**
822 * Returns true if all worker threads are currently idle. An idle
823 * worker is one that cannot obtain a task to execute because none
824 * are available to steal from other threads, and there are no
825 * pending submissions to the pool. This method is conservative:
826 * It might not return true immediately upon idleness of all
827 * threads, but will eventually become true if threads remain
828 * inactive.
829 * @return true if all threads are currently idle
830 */
831 public boolean isQuiescent() {
832 return activeCountOf(runControl) == 0;
833 }
834
835 /**
836 * Returns an estimate of the total number of tasks stolen from
837 * one thread's work queue by another. The reported value
838 * underestimates the actual total number of steals when the pool
839 * is not quiescent. This value may be useful for monitoring and
840 * tuning fork/join programs: In general, steal counts should be
841 * high enough to keep threads busy, but low enough to avoid
842 * overhead and contention across threads.
843 * @return the number of steals.
844 */
845 public long getStealCount() {
846 return stealCount.get();
847 }
848
849 /**
850 * Accumulate steal count from a worker. Call only
851 * when worker known to be idle.
852 */
853 private void updateStealCount(ForkJoinWorkerThread w) {
854 int sc = w.getAndClearStealCount();
855 if (sc != 0)
856 stealCount.addAndGet(sc);
857 }
858
859 /**
860 * Returns an estimate of the total number of tasks currently held
861 * in queues by worker threads (but not including tasks submitted
862 * to the pool that have not begun executing). This value is only
863 * an approximation, obtained by iterating across all threads in
864 * the pool. This method may be useful for tuning task
865 * granularities.
866 * @return the number of queued tasks.
867 */
868 public long getQueuedTaskCount() {
869 long count = 0;
870 ForkJoinWorkerThread[] ws = workers;
871 for (int i = 0; i < ws.length; ++i) {
872 ForkJoinWorkerThread t = ws[i];
873 if (t != null)
874 count += t.getQueueSize();
875 }
876 return count;
877 }
878
879 /**
880 * Returns an estimate of the number tasks submitted to this pool
881 * that have not yet begun executing. This method takes time
882 * proportional to the number of submissions.
883 * @return the number of queued submissions.
884 */
885 public int getQueuedSubmissionCount() {
886 return submissionQueue.size();
887 }
888
889 /**
890 * Returns true if there are any tasks submitted to this pool
891 * that have not yet begun executing.
892 * @return <code>true</code> if there are any queued submissions.
893 */
894 public boolean hasQueuedSubmissions() {
895 return !submissionQueue.isEmpty();
896 }
897
898 /**
899 * Removes and returns the next unexecuted submission if one is
900 * available. This method may be useful in extensions to this
901 * class that re-assign work in systems with multiple pools.
902 * @return the next submission, or null if none
903 */
904 protected ForkJoinTask<?> pollSubmission() {
905 return submissionQueue.poll();
906 }
907
908 /**
909 * Returns a string identifying this pool, as well as its state,
910 * including indications of run state, parallelism level, and
911 * worker and task counts.
912 *
913 * @return a string identifying this pool, as well as its state
914 */
915 public String toString() {
916 int ps = parallelism;
917 int wc = workerCounts;
918 int rc = runControl;
919 long st = getStealCount();
920 long qt = getQueuedTaskCount();
921 long qs = getQueuedSubmissionCount();
922 return super.toString() +
923 "[" + runStateToString(runStateOf(rc)) +
924 ", parallelism = " + ps +
925 ", size = " + totalCountOf(wc) +
926 ", active = " + activeCountOf(rc) +
927 ", running = " + runningCountOf(wc) +
928 ", steals = " + st +
929 ", tasks = " + qt +
930 ", submissions = " + qs +
931 "]";
932 }
933
934 private static String runStateToString(int rs) {
935 switch(rs) {
936 case RUNNING: return "Running";
937 case SHUTDOWN: return "Shutting down";
938 case TERMINATING: return "Terminating";
939 case TERMINATED: return "Terminated";
940 default: throw new Error("Unknown run state");
941 }
942 }
943
944 // lifecycle control
945
946 /**
947 * Initiates an orderly shutdown in which previously submitted
948 * tasks are executed, but no new tasks will be accepted.
949 * Invocation has no additional effect if already shut down.
950 * Tasks that are in the process of being submitted concurrently
951 * during the course of this method may or may not be rejected.
952 * @throws SecurityException if a security manager exists and
953 * the caller is not permitted to modify threads
954 * because it does not hold {@link
955 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
956 */
957 public void shutdown() {
958 checkPermission();
959 transitionRunStateTo(SHUTDOWN);
960 if (canTerminateOnShutdown(runControl))
961 terminateOnShutdown();
962 }
963
964 /**
965 * Attempts to stop all actively executing tasks, and cancels all
966 * waiting tasks. Tasks that are in the process of being
967 * submitted or executed concurrently during the course of this
968 * method may or may not be rejected. Unlike some other executors,
969 * this method cancels rather than collects non-executed tasks,
970 * so always returns an empty list.
971 * @return an empty list
972 * @throws SecurityException if a security manager exists and
973 * the caller is not permitted to modify threads
974 * because it does not hold {@link
975 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
976 */
977 public List<Runnable> shutdownNow() {
978 checkPermission();
979 terminate();
980 return Collections.emptyList();
981 }
982
983 /**
984 * Returns <code>true</code> if all tasks have completed following shut down.
985 *
986 * @return <code>true</code> if all tasks have completed following shut down
987 */
988 public boolean isTerminated() {
989 return runStateOf(runControl) == TERMINATED;
990 }
991
992 /**
993 * Returns <code>true</code> if the process of termination has
994 * commenced but possibly not yet completed.
995 *
996 * @return <code>true</code> if terminating
997 */
998 public boolean isTerminating() {
999 return runStateOf(runControl) >= TERMINATING;
1000 }
1001
1002 /**
1003 * Returns <code>true</code> if this pool has been shut down.
1004 *
1005 * @return <code>true</code> if this pool has been shut down
1006 */
1007 public boolean isShutdown() {
1008 return runStateOf(runControl) >= SHUTDOWN;
1009 }
1010
1011 /**
1012 * Blocks until all tasks have completed execution after a shutdown
1013 * request, or the timeout occurs, or the current thread is
1014 * interrupted, whichever happens first.
1015 *
1016 * @param timeout the maximum time to wait
1017 * @param unit the time unit of the timeout argument
1018 * @return <code>true</code> if this executor terminated and
1019 * <code>false</code> if the timeout elapsed before termination
1020 * @throws InterruptedException if interrupted while waiting
1021 */
1022 public boolean awaitTermination(long timeout, TimeUnit unit)
1023 throws InterruptedException {
1024 long nanos = unit.toNanos(timeout);
1025 final ReentrantLock lock = this.workerLock;
1026 lock.lock();
1027 try {
1028 for (;;) {
1029 if (isTerminated())
1030 return true;
1031 if (nanos <= 0)
1032 return false;
1033 nanos = termination.awaitNanos(nanos);
1034 }
1035 } finally {
1036 lock.unlock();
1037 }
1038 }
1039
1040 // Shutdown and termination support
1041
1042 /**
1043 * Callback from terminating worker. Null out the corresponding
1044 * workers slot, and if terminating, try to terminate, else try to
1045 * shrink workers array.
1046 * @param w the worker
1047 */
1048 final void workerTerminated(ForkJoinWorkerThread w) {
1049 updateStealCount(w);
1050 updateWorkerCount(-1);
1051 final ReentrantLock lock = this.workerLock;
1052 lock.lock();
1053 try {
1054 ForkJoinWorkerThread[] ws = workers;
1055 int idx = w.poolIndex;
1056 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1057 ws[idx] = null;
1058 if (totalCountOf(workerCounts) == 0) {
1059 terminate(); // no-op if already terminating
1060 transitionRunStateTo(TERMINATED);
1061 termination.signalAll();
1062 }
1063 else if (!isTerminating()) {
1064 tryShrinkWorkerArray();
1065 tryResumeSpare(true); // allow replacement
1066 }
1067 } finally {
1068 lock.unlock();
1069 }
1070 signalIdleWorkers(false);
1071 }
1072
1073 /**
1074 * Initiate termination.
1075 */
1076 private void terminate() {
1077 if (transitionRunStateTo(TERMINATING)) {
1078 stopAllWorkers();
1079 resumeAllSpares();
1080 signalIdleWorkers(true);
1081 cancelQueuedSubmissions();
1082 cancelQueuedWorkerTasks();
1083 interruptUnterminatedWorkers();
1084 signalIdleWorkers(true); // resignal after interrupt
1085 }
1086 }
1087
1088 /**
1089 * Possibly terminate when on shutdown state
1090 */
1091 private void terminateOnShutdown() {
1092 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1093 terminate();
1094 }
1095
1096 /**
1097 * Clear out and cancel submissions
1098 */
1099 private void cancelQueuedSubmissions() {
1100 ForkJoinTask<?> task;
1101 while ((task = pollSubmission()) != null)
1102 task.cancel(false);
1103 }
1104
1105 /**
1106 * Clean out worker queues.
1107 */
1108 private void cancelQueuedWorkerTasks() {
1109 final ReentrantLock lock = this.workerLock;
1110 lock.lock();
1111 try {
1112 ForkJoinWorkerThread[] ws = workers;
1113 for (int i = 0; i < ws.length; ++i) {
1114 ForkJoinWorkerThread t = ws[i];
1115 if (t != null)
1116 t.cancelTasks();
1117 }
1118 } finally {
1119 lock.unlock();
1120 }
1121 }
1122
1123 /**
1124 * Set each worker's status to terminating. Requires lock to avoid
1125 * conflicts with add/remove
1126 */
1127 private void stopAllWorkers() {
1128 final ReentrantLock lock = this.workerLock;
1129 lock.lock();
1130 try {
1131 ForkJoinWorkerThread[] ws = workers;
1132 for (int i = 0; i < ws.length; ++i) {
1133 ForkJoinWorkerThread t = ws[i];
1134 if (t != null)
1135 t.shutdownNow();
1136 }
1137 } finally {
1138 lock.unlock();
1139 }
1140 }
1141
1142 /**
1143 * Interrupt all unterminated workers. This is not required for
1144 * sake of internal control, but may help unstick user code during
1145 * shutdown.
1146 */
1147 private void interruptUnterminatedWorkers() {
1148 final ReentrantLock lock = this.workerLock;
1149 lock.lock();
1150 try {
1151 ForkJoinWorkerThread[] ws = workers;
1152 for (int i = 0; i < ws.length; ++i) {
1153 ForkJoinWorkerThread t = ws[i];
1154 if (t != null && !t.isTerminated()) {
1155 try {
1156 t.interrupt();
1157 } catch (SecurityException ignore) {
1158 }
1159 }
1160 }
1161 } finally {
1162 lock.unlock();
1163 }
1164 }
1165
1166
1167 /*
1168 * Nodes for event barrier to manage idle threads.
1169 *
1170 * The event barrier has an event count and a wait queue (actually
1171 * a Treiber stack). Workers are enabled to look for work when
1172 * the eventCount is incremented. If they fail to find some,
1173 * they may wait for next count. Synchronization events occur only
1174 * in enough contexts to maintain overall liveness:
1175 *
1176 * - Submission of a new task to the pool
1177 * - Creation or termination of a worker
1178 * - pool termination
1179 * - A worker pushing a task on an empty queue
1180 *
1181 * The last case (pushing a task) occurs often enough, and is
1182 * heavy enough compared to simple stack pushes to require some
1183 * special handling: Method signalNonEmptyWorkerQueue returns
1184 * without advancing count if the queue appears to be empty. This
1185 * would ordinarily result in races causing some queued waiters
1186 * not to be woken up. To avoid this, a worker in sync
1187 * rescans for tasks after being enqueued if it was the first to
1188 * enqueue, and aborts the wait if finding one, also helping to
1189 * signal others. This works well because the worker has nothing
1190 * better to do anyway, and so might as well help alleviate the
1191 * overhead and contention on the threads actually doing work.
1192 *
1193 * Queue nodes are basic Treiber stack nodes, also used for spare
1194 * stack.
1195 */
1196 static final class WaitQueueNode {
1197 WaitQueueNode next; // only written before enqueued
1198 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1199 final long count; // unused for spare stack
1200 WaitQueueNode(ForkJoinWorkerThread w, long c) {
1201 count = c;
1202 thread = w;
1203 }
1204 final boolean signal() {
1205 ForkJoinWorkerThread t = thread;
1206 thread = null;
1207 if (t != null) {
1208 LockSupport.unpark(t);
1209 return true;
1210 }
1211 return false;
1212 }
1213 }
1214
1215 /**
1216 * Release at least one thread waiting for event count to advance,
1217 * if one exists. If initial attempt fails, release all threads.
1218 * @param all if false, at first try to only release one thread
1219 * @return current event
1220 */
1221 private long releaseIdleWorkers(boolean all) {
1222 long c;
1223 for (;;) {
1224 WaitQueueNode q = barrierStack;
1225 c = eventCount;
1226 long qc;
1227 if (q == null || (qc = q.count) >= c)
1228 break;
1229 if (!all) {
1230 if (casBarrierStack(q, q.next) && q.signal())
1231 break;
1232 all = true;
1233 }
1234 else if (casBarrierStack(q, null)) {
1235 do {
1236 q.signal();
1237 } while ((q = q.next) != null);
1238 break;
1239 }
1240 }
1241 return c;
1242 }
1243
1244 /**
1245 * Returns current barrier event count
1246 * @return current barrier event count
1247 */
1248 final long getEventCount() {
1249 long ec = eventCount;
1250 releaseIdleWorkers(true); // release to ensure accurate result
1251 return ec;
1252 }
1253
1254 /**
1255 * Increment event count and release at least one waiting thread,
1256 * if one exists (released threads will in turn wake up others).
1257 * @param all if true, try to wake up all
1258 */
1259 final void signalIdleWorkers(boolean all) {
1260 long c;
1261 do;while (!casEventCount(c = eventCount, c+1));
1262 releaseIdleWorkers(all);
1263 }
1264
1265 /**
1266 * Wake up threads waiting to steal a task. Because method
1267 * sync rechecks availability, it is OK to only proceed if
1268 * queue appears to be non-empty.
1269 */
1270 final void signalNonEmptyWorkerQueue() {
1271 // If CAS fails another signaller must have succeeded
1272 long c;
1273 if (barrierStack != null && casEventCount(c = eventCount, c+1))
1274 releaseIdleWorkers(false);
1275 }
1276
1277 /**
1278 * Waits until event count advances from count, or some thread is
1279 * waiting on a previous count, or there is stealable work
1280 * available. Help wake up others on release.
1281 * @param w the calling worker thread
1282 * @param prev previous value returned by sync (or 0)
1283 * @return current event count
1284 */
1285 final long sync(ForkJoinWorkerThread w, long prev) {
1286 updateStealCount(w);
1287
1288 while (!w.isShutdown() && !isTerminating() &&
1289 (parallelism >= runningCountOf(workerCounts) ||
1290 !suspendIfSpare(w))) { // prefer suspend to waiting here
1291 WaitQueueNode node = null;
1292 boolean queued = false;
1293 for (;;) {
1294 if (!queued) {
1295 if (eventCount != prev)
1296 break;
1297 WaitQueueNode h = barrierStack;
1298 if (h != null && h.count != prev)
1299 break; // release below and maybe retry
1300 if (node == null)
1301 node = new WaitQueueNode(w, prev);
1302 queued = casBarrierStack(node.next = h, node);
1303 }
1304 else if (Thread.interrupted() ||
1305 node.thread == null ||
1306 (node.next == null && w.prescan()) ||
1307 eventCount != prev) {
1308 node.thread = null;
1309 if (eventCount == prev) // help trigger
1310 casEventCount(prev, prev+1);
1311 break;
1312 }
1313 else
1314 LockSupport.park(this);
1315 }
1316 long ec = eventCount;
1317 if (releaseIdleWorkers(false) != prev)
1318 return ec;
1319 }
1320 return prev; // return old count if aborted
1321 }
1322
1323 // Parallelism maintenance
1324
1325 /**
1326 * Decrement running count; if too low, add spare.
1327 *
1328 * Conceptually, all we need to do here is add or resume a
1329 * spare thread when one is about to block (and remove or
1330 * suspend it later when unblocked -- see suspendIfSpare).
1331 * However, implementing this idea requires coping with
1332 * several problems: We have imperfect information about the
1333 * states of threads. Some count updates can and usually do
1334 * lag run state changes, despite arrangements to keep them
1335 * accurate (for example, when possible, updating counts
1336 * before signalling or resuming), especially when running on
1337 * dynamic JVMs that don't optimize the infrequent paths that
1338 * update counts. Generating too many threads can make these
1339 * problems become worse, because excess threads are more
1340 * likely to be context-switched with others, slowing them all
1341 * down, especially if there is no work available, so all are
1342 * busy scanning or idling. Also, excess spare threads can
1343 * only be suspended or removed when they are idle, not
1344 * immediately when they aren't needed. So adding threads will
1345 * raise parallelism level for longer than necessary. Also,
1346 * FJ applications often enounter highly transient peaks when
1347 * many threads are blocked joining, but for less time than it
1348 * takes to create or resume spares.
1349 *
1350 * @param joinMe if non-null, return early if done
1351 * @param maintainParallelism if true, try to stay within
1352 * target counts, else create only to avoid starvation
1353 * @return true if joinMe known to be done
1354 */
1355 final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1356 maintainParallelism &= maintainsParallelism; // overrride
1357 boolean dec = false; // true when running count decremented
1358 while (spareStack == null || !tryResumeSpare(dec)) {
1359 int counts = workerCounts;
1360 if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1361 if (!needSpare(counts, maintainParallelism))
1362 break;
1363 if (joinMe.status < 0)
1364 return true;
1365 if (tryAddSpare(counts))
1366 break;
1367 }
1368 }
1369 return false;
1370 }
1371
1372 /**
1373 * Same idea as preJoin
1374 */
1375 final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1376 maintainParallelism &= maintainsParallelism;
1377 boolean dec = false;
1378 while (spareStack == null || !tryResumeSpare(dec)) {
1379 int counts = workerCounts;
1380 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1381 if (!needSpare(counts, maintainParallelism))
1382 break;
1383 if (blocker.isReleasable())
1384 return true;
1385 if (tryAddSpare(counts))
1386 break;
1387 }
1388 }
1389 return false;
1390 }
1391
1392 /**
1393 * Returns true if a spare thread appears to be needed. If
1394 * maintaining parallelism, returns true when the deficit in
1395 * running threads is more than the surplus of total threads, and
1396 * there is apparently some work to do. This self-limiting rule
1397 * means that the more threads that have already been added, the
1398 * less parallelism we will tolerate before adding another.
1399 * @param counts current worker counts
1400 * @param maintainParallelism try to maintain parallelism
1401 */
1402 private boolean needSpare(int counts, boolean maintainParallelism) {
1403 int ps = parallelism;
1404 int rc = runningCountOf(counts);
1405 int tc = totalCountOf(counts);
1406 int runningDeficit = ps - rc;
1407 int totalSurplus = tc - ps;
1408 return (tc < maxPoolSize &&
1409 (rc == 0 || totalSurplus < 0 ||
1410 (maintainParallelism &&
1411 runningDeficit > totalSurplus && mayHaveQueuedWork())));
1412 }
1413
1414 /**
1415 * Returns true if at least one worker queue appears to be
1416 * nonempty. This is expensive but not often called. It is not
1417 * critical that this be accurate, but if not, more or fewer
1418 * running threads than desired might be maintained.
1419 */
1420 private boolean mayHaveQueuedWork() {
1421 ForkJoinWorkerThread[] ws = workers;
1422 int len = ws.length;
1423 ForkJoinWorkerThread v;
1424 for (int i = 0; i < len; ++i) {
1425 if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1426 releaseIdleWorkers(false); // help wake up stragglers
1427 return true;
1428 }
1429 }
1430 return false;
1431 }
1432
1433 /**
1434 * Add a spare worker if lock available and no more than the
1435 * expected numbers of threads exist
1436 * @return true if successful
1437 */
1438 private boolean tryAddSpare(int expectedCounts) {
1439 final ReentrantLock lock = this.workerLock;
1440 int expectedRunning = runningCountOf(expectedCounts);
1441 int expectedTotal = totalCountOf(expectedCounts);
1442 boolean success = false;
1443 boolean locked = false;
1444 // confirm counts while locking; CAS after obtaining lock
1445 try {
1446 for (;;) {
1447 int s = workerCounts;
1448 int tc = totalCountOf(s);
1449 int rc = runningCountOf(s);
1450 if (rc > expectedRunning || tc > expectedTotal)
1451 break;
1452 if (!locked && !(locked = lock.tryLock()))
1453 break;
1454 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1455 createAndStartSpare(tc);
1456 success = true;
1457 break;
1458 }
1459 }
1460 } finally {
1461 if (locked)
1462 lock.unlock();
1463 }
1464 return success;
1465 }
1466
1467 /**
1468 * Add the kth spare worker. On entry, pool coounts are already
1469 * adjusted to reflect addition.
1470 */
1471 private void createAndStartSpare(int k) {
1472 ForkJoinWorkerThread w = null;
1473 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1474 int len = ws.length;
1475 // Probably, we can place at slot k. If not, find empty slot
1476 if (k < len && ws[k] != null) {
1477 for (k = 0; k < len && ws[k] != null; ++k)
1478 ;
1479 }
1480 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1481 ws[k] = w;
1482 w.start();
1483 }
1484 else
1485 updateWorkerCount(-1); // adjust on failure
1486 signalIdleWorkers(false);
1487 }
1488
1489 /**
1490 * Suspend calling thread w if there are excess threads. Called
1491 * only from sync. Spares are enqueued in a Treiber stack
1492 * using the same WaitQueueNodes as barriers. They are resumed
1493 * mainly in preJoin, but are also woken on pool events that
1494 * require all threads to check run state.
1495 * @param w the caller
1496 */
1497 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1498 WaitQueueNode node = null;
1499 int s;
1500 while (parallelism < runningCountOf(s = workerCounts)) {
1501 if (node == null)
1502 node = new WaitQueueNode(w, 0);
1503 if (casWorkerCounts(s, s-1)) { // representation-dependent
1504 // push onto stack
1505 do;while (!casSpareStack(node.next = spareStack, node));
1506
1507 // block until released by resumeSpare
1508 while (node.thread != null) {
1509 if (!Thread.interrupted())
1510 LockSupport.park(this);
1511 }
1512 w.activate(); // help warm up
1513 return true;
1514 }
1515 }
1516 return false;
1517 }
1518
1519 /**
1520 * Try to pop and resume a spare thread.
1521 * @param updateCount if true, increment running count on success
1522 * @return true if successful
1523 */
1524 private boolean tryResumeSpare(boolean updateCount) {
1525 WaitQueueNode q;
1526 while ((q = spareStack) != null) {
1527 if (casSpareStack(q, q.next)) {
1528 if (updateCount)
1529 updateRunningCount(1);
1530 q.signal();
1531 return true;
1532 }
1533 }
1534 return false;
1535 }
1536
1537 /**
1538 * Pop and resume all spare threads. Same idea as
1539 * releaseIdleWorkers.
1540 * @return true if any spares released
1541 */
1542 private boolean resumeAllSpares() {
1543 WaitQueueNode q;
1544 while ( (q = spareStack) != null) {
1545 if (casSpareStack(q, null)) {
1546 do {
1547 updateRunningCount(1);
1548 q.signal();
1549 } while ((q = q.next) != null);
1550 return true;
1551 }
1552 }
1553 return false;
1554 }
1555
1556 /**
1557 * Pop and shutdown excessive spare threads. Call only while
1558 * holding lock. This is not guaranteed to eliminate all excess
1559 * threads, only those suspended as spares, which are the ones
1560 * unlikely to be needed in the future.
1561 */
1562 private void trimSpares() {
1563 int surplus = totalCountOf(workerCounts) - parallelism;
1564 WaitQueueNode q;
1565 while (surplus > 0 && (q = spareStack) != null) {
1566 if (casSpareStack(q, null)) {
1567 do {
1568 updateRunningCount(1);
1569 ForkJoinWorkerThread w = q.thread;
1570 if (w != null && surplus > 0 &&
1571 runningCountOf(workerCounts) > 0 && w.shutdown())
1572 --surplus;
1573 q.signal();
1574 } while ((q = q.next) != null);
1575 }
1576 }
1577 }
1578
1579 /**
1580 * Returns approximate number of spares, just for diagnostics.
1581 */
1582 private int countSpares() {
1583 int sum = 0;
1584 for (WaitQueueNode q = spareStack; q != null; q = q.next)
1585 ++sum;
1586 return sum;
1587 }
1588
1589 /**
1590 * Interface for extending managed parallelism for tasks running
1591 * in ForkJoinPools. A ManagedBlocker provides two methods.
1592 * Method <code>isReleasable</code> must return true if blocking is not
1593 * necessary. Method <code>block</code> blocks the current thread
1594 * if necessary (perhaps internally invoking isReleasable before
1595 * actually blocking.).
1596 * <p>For example, here is a ManagedBlocker based on a
1597 * ReentrantLock:
1598 * <pre>
1599 * class ManagedLocker implements ManagedBlocker {
1600 * final ReentrantLock lock;
1601 * boolean hasLock = false;
1602 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1603 * public boolean block() {
1604 * if (!hasLock)
1605 * lock.lock();
1606 * return true;
1607 * }
1608 * public boolean isReleasable() {
1609 * return hasLock || (hasLock = lock.tryLock());
1610 * }
1611 * }
1612 * </pre>
1613 */
1614 public static interface ManagedBlocker {
1615 /**
1616 * Possibly blocks the current thread, for example waiting for
1617 * a lock or condition.
1618 * @return true if no additional blocking is necessary (i.e.,
1619 * if isReleasable would return true).
1620 * @throws InterruptedException if interrupted while waiting
1621 * (the method is not required to do so, but is allowe to).
1622 */
1623 boolean block() throws InterruptedException;
1624
1625 /**
1626 * Returns true if blocking is unnecessary.
1627 */
1628 boolean isReleasable();
1629 }
1630
1631 /**
1632 * Blocks in accord with the given blocker. If the current thread
1633 * is a ForkJoinWorkerThread, this method possibly arranges for a
1634 * spare thread to be activated if necessary to ensure parallelism
1635 * while the current thread is blocked. If
1636 * <code>maintainParallelism</code> is true and the pool supports
1637 * it ({@link #getMaintainsParallelism}), this method attempts to
1638 * maintain the pool's nominal parallelism. Otherwise if activates
1639 * a thread only if necessary to avoid complete starvation. This
1640 * option may be preferable when blockages use timeouts, or are
1641 * almost always brief.
1642 *
1643 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1644 * equivalent to
1645 * <pre>
1646 * while (!blocker.isReleasable())
1647 * if (blocker.block())
1648 * return;
1649 * </pre>
1650 * If the caller is a ForkJoinTask, then the pool may first
1651 * be expanded to ensure parallelism, and later adjusted.
1652 *
1653 * @param blocker the blocker
1654 * @param maintainParallelism if true and supported by this pool,
1655 * attempt to maintain the pool's nominal parallelism; otherwise
1656 * activate a thread only if necessary to avoid complete
1657 * starvation.
1658 * @throws InterruptedException if blocker.block did so.
1659 */
1660 public static void managedBlock(ManagedBlocker blocker,
1661 boolean maintainParallelism)
1662 throws InterruptedException {
1663 Thread t = Thread.currentThread();
1664 ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1665 ((ForkJoinWorkerThread)t).pool : null);
1666 if (!blocker.isReleasable()) {
1667 try {
1668 if (pool == null ||
1669 !pool.preBlock(blocker, maintainParallelism))
1670 awaitBlocker(blocker);
1671 } finally {
1672 if (pool != null)
1673 pool.updateRunningCount(1);
1674 }
1675 }
1676 }
1677
1678 private static void awaitBlocker(ManagedBlocker blocker)
1679 throws InterruptedException {
1680 do;while (!blocker.isReleasable() && !blocker.block());
1681 }
1682
1683 // AbstractExecutorService overrides
1684
1685 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1686 return new AdaptedRunnable(runnable, value);
1687 }
1688
1689 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1690 return new AdaptedCallable(callable);
1691 }
1692
1693
1694 // Temporary Unsafe mechanics for preliminary release
1695
1696 static final Unsafe _unsafe;
1697 static final long eventCountOffset;
1698 static final long workerCountsOffset;
1699 static final long runControlOffset;
1700 static final long barrierStackOffset;
1701 static final long spareStackOffset;
1702
1703 static {
1704 try {
1705 if (ForkJoinPool.class.getClassLoader() != null) {
1706 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1707 f.setAccessible(true);
1708 _unsafe = (Unsafe)f.get(null);
1709 }
1710 else
1711 _unsafe = Unsafe.getUnsafe();
1712 eventCountOffset = _unsafe.objectFieldOffset
1713 (ForkJoinPool.class.getDeclaredField("eventCount"));
1714 workerCountsOffset = _unsafe.objectFieldOffset
1715 (ForkJoinPool.class.getDeclaredField("workerCounts"));
1716 runControlOffset = _unsafe.objectFieldOffset
1717 (ForkJoinPool.class.getDeclaredField("runControl"));
1718 barrierStackOffset = _unsafe.objectFieldOffset
1719 (ForkJoinPool.class.getDeclaredField("barrierStack"));
1720 spareStackOffset = _unsafe.objectFieldOffset
1721 (ForkJoinPool.class.getDeclaredField("spareStack"));
1722 } catch (Exception e) {
1723 throw new RuntimeException("Could not initialize intrinsics", e);
1724 }
1725 }
1726
1727 private boolean casEventCount(long cmp, long val) {
1728 return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1729 }
1730 private boolean casWorkerCounts(int cmp, int val) {
1731 return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1732 }
1733 private boolean casRunControl(int cmp, int val) {
1734 return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1735 }
1736 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1737 return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1738 }
1739 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1740 return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1741 }
1742 }