ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.30
Committed: Wed Jul 29 12:05:55 2009 UTC (14 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.29: +1 -1 lines
Log Message:
Improve drainTasksTo signature; update example

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A ForkJoinPool provides the entry point for submissions from
25 * non-ForkJoinTasks, as well as management and monitoring operations.
26 * Normally a single ForkJoinPool is used for a large number of
27 * submitted tasks. Otherwise, use would not usually outweigh the
28 * construction and bookkeeping overhead of creating a large set of
29 * threads.
30 *
31 * <p>ForkJoinPools differ from other kinds of Executors mainly in
32 * that they provide <em>work-stealing</em>: all threads in the pool
33 * attempt to find and execute subtasks created by other active tasks
34 * (eventually blocking if none exist). This makes them efficient when
35 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
36 * as the mixed execution of some plain Runnable- or Callable- based
37 * activities along with ForkJoinTasks. When setting {@linkplain
38 * #setAsyncMode async mode}, a ForkJoinPool may also be appropriate
39 * for use with fine-grained tasks that are never joined. Otherwise,
40 * other ExecutorService implementations are typically more
41 * appropriate choices.
42 *
43 * <p>A ForkJoinPool may be constructed with a given parallelism level
44 * (target pool size), which it attempts to maintain by dynamically
45 * adding, suspending, or resuming threads, even if some tasks are
46 * waiting to join others. However, no such adjustments are performed
47 * in the face of blocked IO or other unmanaged synchronization. The
48 * nested {@link ManagedBlocker} interface enables extension of
49 * the kinds of synchronization accommodated. The target parallelism
50 * level may also be changed dynamically ({@link #setParallelism})
51 * and thread construction can be limited using methods
52 * {@link #setMaximumPoolSize} and/or
53 * {@link #setMaintainsParallelism}.
54 *
55 * <p>In addition to execution and lifecycle control methods, this
56 * class provides status check methods (for example
57 * {@link #getStealCount}) that are intended to aid in developing,
58 * tuning, and monitoring fork/join applications. Also, method
59 * {@link #toString} returns indications of pool state in a
60 * convenient form for informal monitoring.
61 *
62 * <p><b>Implementation notes</b>: This implementation restricts the
63 * maximum number of running threads to 32767. Attempts to create
64 * pools with greater than the maximum result in
65 * IllegalArgumentExceptions.
66 *
67 * @since 1.7
68 * @author Doug Lea
69 */
70 public class ForkJoinPool extends AbstractExecutorService {
71
72 /*
73 * See the extended comments interspersed below for design,
74 * rationale, and walkthroughs.
75 */
76
77 /** Mask for packing and unpacking shorts */
78 private static final int shortMask = 0xffff;
79
80 /** Max pool size -- must be a power of two minus 1 */
81 private static final int MAX_THREADS = 0x7FFF;
82
83 /**
84 * Factory for creating new ForkJoinWorkerThreads. A
85 * ForkJoinWorkerThreadFactory must be defined and used for
86 * ForkJoinWorkerThread subclasses that extend base functionality
87 * or initialize threads with different contexts.
88 */
89 public static interface ForkJoinWorkerThreadFactory {
90 /**
91 * Returns a new worker thread operating in the given pool.
92 *
93 * @param pool the pool this thread works in
94 * @throws NullPointerException if pool is null
95 */
96 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
97 }
98
99 /**
100 * Default ForkJoinWorkerThreadFactory implementation; creates a
101 * new ForkJoinWorkerThread.
102 */
103 static class DefaultForkJoinWorkerThreadFactory
104 implements ForkJoinWorkerThreadFactory {
105 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
106 try {
107 return new ForkJoinWorkerThread(pool);
108 } catch (OutOfMemoryError oom) {
109 return null;
110 }
111 }
112 }
113
114 /**
115 * Creates a new ForkJoinWorkerThread. This factory is used unless
116 * overridden in ForkJoinPool constructors.
117 */
118 public static final ForkJoinWorkerThreadFactory
119 defaultForkJoinWorkerThreadFactory =
120 new DefaultForkJoinWorkerThreadFactory();
121
122 /**
123 * Permission required for callers of methods that may start or
124 * kill threads.
125 */
126 private static final RuntimePermission modifyThreadPermission =
127 new RuntimePermission("modifyThread");
128
129 /**
130 * If there is a security manager, makes sure caller has
131 * permission to modify threads.
132 */
133 private static void checkPermission() {
134 SecurityManager security = System.getSecurityManager();
135 if (security != null)
136 security.checkPermission(modifyThreadPermission);
137 }
138
139 /**
140 * Generator for assigning sequence numbers as pool names.
141 */
142 private static final AtomicInteger poolNumberGenerator =
143 new AtomicInteger();
144
145 /**
146 * Array holding all worker threads in the pool. Initialized upon
147 * first use. Array size must be a power of two. Updates and
148 * replacements are protected by workerLock, but it is always kept
149 * in a consistent enough state to be randomly accessed without
150 * locking by workers performing work-stealing.
151 */
152 volatile ForkJoinWorkerThread[] workers;
153
154 /**
155 * Lock protecting access to workers.
156 */
157 private final ReentrantLock workerLock;
158
159 /**
160 * Condition for awaitTermination.
161 */
162 private final Condition termination;
163
164 /**
165 * The uncaught exception handler used when any worker
166 * abruptly terminates
167 */
168 private Thread.UncaughtExceptionHandler ueh;
169
170 /**
171 * Creation factory for worker threads.
172 */
173 private final ForkJoinWorkerThreadFactory factory;
174
175 /**
176 * Head of stack of threads that were created to maintain
177 * parallelism when other threads blocked, but have since
178 * suspended when the parallelism level rose.
179 */
180 private volatile WaitQueueNode spareStack;
181
182 /**
183 * Sum of per-thread steal counts, updated only when threads are
184 * idle or terminating.
185 */
186 private final AtomicLong stealCount;
187
188 /**
189 * Queue for external submissions.
190 */
191 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
192
193 /**
194 * Head of Treiber stack for barrier sync. See below for explanation.
195 */
196 private volatile WaitQueueNode syncStack;
197
198 /**
199 * The count for event barrier
200 */
201 private volatile long eventCount;
202
203 /**
204 * Pool number, just for assigning useful names to worker threads
205 */
206 private final int poolNumber;
207
208 /**
209 * The maximum allowed pool size
210 */
211 private volatile int maxPoolSize;
212
213 /**
214 * The desired parallelism level, updated only under workerLock.
215 */
216 private volatile int parallelism;
217
218 /**
219 * True if use local fifo, not default lifo, for local polling
220 */
221 private volatile boolean locallyFifo;
222
223 /**
224 * Holds number of total (i.e., created and not yet terminated)
225 * and running (i.e., not blocked on joins or other managed sync)
226 * threads, packed into one int to ensure consistent snapshot when
227 * making decisions about creating and suspending spare
228 * threads. Updated only by CAS. Note: CASes in
229 * updateRunningCount and preJoin assume that running active count
230 * is in low word, so need to be modified if this changes.
231 */
232 private volatile int workerCounts;
233
234 private static int totalCountOf(int s) { return s >>> 16; }
235 private static int runningCountOf(int s) { return s & shortMask; }
236 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
237
238 /**
239 * Adds delta (which may be negative) to running count. This must
240 * be called before (with negative arg) and after (with positive)
241 * any managed synchronization (i.e., mainly, joins).
242 *
243 * @param delta the number to add
244 */
245 final void updateRunningCount(int delta) {
246 int s;
247 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 }
249
250 /**
251 * Adds delta (which may be negative) to both total and running
252 * count. This must be called upon creation and termination of
253 * worker threads.
254 *
255 * @param delta the number to add
256 */
257 private void updateWorkerCount(int delta) {
258 int d = delta + (delta << 16); // add to both lo and hi parts
259 int s;
260 do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 }
262
263 /**
264 * Lifecycle control. High word contains runState, low word
265 * contains the number of workers that are (probably) executing
266 * tasks. This value is atomically incremented before a worker
267 * gets a task to run, and decremented when worker has no tasks
268 * and cannot find any. These two fields are bundled together to
269 * support correct termination triggering. Note: activeCount
270 * CAS'es cheat by assuming active count is in low word, so need
271 * to be modified if this changes
272 */
273 private volatile int runControl;
274
275 // RunState values. Order among values matters
276 private static final int RUNNING = 0;
277 private static final int SHUTDOWN = 1;
278 private static final int TERMINATING = 2;
279 private static final int TERMINATED = 3;
280
281 private static int runStateOf(int c) { return c >>> 16; }
282 private static int activeCountOf(int c) { return c & shortMask; }
283 private static int runControlFor(int r, int a) { return (r << 16) + a; }
284
285 /**
286 * Tries incrementing active count; fails on contention.
287 * Called by workers before/during executing tasks.
288 *
289 * @return true on success
290 */
291 final boolean tryIncrementActiveCount() {
292 int c = runControl;
293 return casRunControl(c, c+1);
294 }
295
296 /**
297 * Tries decrementing active count; fails on contention.
298 * Possibly triggers termination on success.
299 * Called by workers when they can't find tasks.
300 *
301 * @return true on success
302 */
303 final boolean tryDecrementActiveCount() {
304 int c = runControl;
305 int nextc = c - 1;
306 if (!casRunControl(c, nextc))
307 return false;
308 if (canTerminateOnShutdown(nextc))
309 terminateOnShutdown();
310 return true;
311 }
312
313 /**
314 * Returns {@code true} if argument represents zero active count
315 * and nonzero runstate, which is the triggering condition for
316 * terminating on shutdown.
317 */
318 private static boolean canTerminateOnShutdown(int c) {
319 // i.e. least bit is nonzero runState bit
320 return ((c & -c) >>> 16) != 0;
321 }
322
323 /**
324 * Transition run state to at least the given state. Return true
325 * if not already at least given state.
326 */
327 private boolean transitionRunStateTo(int state) {
328 for (;;) {
329 int c = runControl;
330 if (runStateOf(c) >= state)
331 return false;
332 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
333 return true;
334 }
335 }
336
337 /**
338 * Controls whether to add spares to maintain parallelism
339 */
340 private volatile boolean maintainsParallelism;
341
342 // Constructors
343
344 /**
345 * Creates a ForkJoinPool with a pool size equal to the number of
346 * processors available on the system, using the default
347 * ForkJoinWorkerThreadFactory.
348 *
349 * @throws SecurityException if a security manager exists and
350 * the caller is not permitted to modify threads
351 * because it does not hold {@link
352 * java.lang.RuntimePermission}{@code ("modifyThread")}
353 */
354 public ForkJoinPool() {
355 this(Runtime.getRuntime().availableProcessors(),
356 defaultForkJoinWorkerThreadFactory);
357 }
358
359 /**
360 * Creates a ForkJoinPool with the indicated parallelism level
361 * threads and using the default ForkJoinWorkerThreadFactory.
362 *
363 * @param parallelism the number of worker threads
364 * @throws IllegalArgumentException if parallelism less than or
365 * equal to zero
366 * @throws SecurityException if a security manager exists and
367 * the caller is not permitted to modify threads
368 * because it does not hold {@link
369 * java.lang.RuntimePermission}{@code ("modifyThread")}
370 */
371 public ForkJoinPool(int parallelism) {
372 this(parallelism, defaultForkJoinWorkerThreadFactory);
373 }
374
375 /**
376 * Creates a ForkJoinPool with parallelism equal to the number of
377 * processors available on the system and using the given
378 * ForkJoinWorkerThreadFactory.
379 *
380 * @param factory the factory for creating new threads
381 * @throws NullPointerException if factory is null
382 * @throws SecurityException if a security manager exists and
383 * the caller is not permitted to modify threads
384 * because it does not hold {@link
385 * java.lang.RuntimePermission}{@code ("modifyThread")}
386 */
387 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388 this(Runtime.getRuntime().availableProcessors(), factory);
389 }
390
391 /**
392 * Creates a ForkJoinPool with the given parallelism and factory.
393 *
394 * @param parallelism the targeted number of worker threads
395 * @param factory the factory for creating new threads
396 * @throws IllegalArgumentException if parallelism less than or
397 * equal to zero, or greater than implementation limit
398 * @throws NullPointerException if factory is null
399 * @throws SecurityException if a security manager exists and
400 * the caller is not permitted to modify threads
401 * because it does not hold {@link
402 * java.lang.RuntimePermission}{@code ("modifyThread")}
403 */
404 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
405 if (parallelism <= 0 || parallelism > MAX_THREADS)
406 throw new IllegalArgumentException();
407 if (factory == null)
408 throw new NullPointerException();
409 checkPermission();
410 this.factory = factory;
411 this.parallelism = parallelism;
412 this.maxPoolSize = MAX_THREADS;
413 this.maintainsParallelism = true;
414 this.poolNumber = poolNumberGenerator.incrementAndGet();
415 this.workerLock = new ReentrantLock();
416 this.termination = workerLock.newCondition();
417 this.stealCount = new AtomicLong();
418 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 // worker array and workers are lazily constructed
420 }
421
422 /**
423 * Creates a new worker thread using factory.
424 *
425 * @param index the index to assign worker
426 * @return new worker, or null of factory failed
427 */
428 private ForkJoinWorkerThread createWorker(int index) {
429 Thread.UncaughtExceptionHandler h = ueh;
430 ForkJoinWorkerThread w = factory.newThread(this);
431 if (w != null) {
432 w.poolIndex = index;
433 w.setDaemon(true);
434 w.setAsyncMode(locallyFifo);
435 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
436 if (h != null)
437 w.setUncaughtExceptionHandler(h);
438 }
439 return w;
440 }
441
442 /**
443 * Returns a good size for worker array given pool size.
444 * Currently requires size to be a power of two.
445 */
446 private static int arraySizeFor(int poolSize) {
447 return (poolSize <= 1) ? 1 :
448 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
449 }
450
451 /**
452 * Creates or resizes array if necessary to hold newLength.
453 * Call only under exclusion.
454 *
455 * @return the array
456 */
457 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
458 ForkJoinWorkerThread[] ws = workers;
459 if (ws == null)
460 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
461 else if (newLength > ws.length)
462 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
463 else
464 return ws;
465 }
466
467 /**
468 * Tries to shrink workers into smaller array after one or more terminate.
469 */
470 private void tryShrinkWorkerArray() {
471 ForkJoinWorkerThread[] ws = workers;
472 if (ws != null) {
473 int len = ws.length;
474 int last = len - 1;
475 while (last >= 0 && ws[last] == null)
476 --last;
477 int newLength = arraySizeFor(last+1);
478 if (newLength < len)
479 workers = Arrays.copyOf(ws, newLength);
480 }
481 }
482
483 /**
484 * Initializes workers if necessary.
485 */
486 final void ensureWorkerInitialization() {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null) {
489 final ReentrantLock lock = this.workerLock;
490 lock.lock();
491 try {
492 ws = workers;
493 if (ws == null) {
494 int ps = parallelism;
495 ws = ensureWorkerArrayCapacity(ps);
496 for (int i = 0; i < ps; ++i) {
497 ForkJoinWorkerThread w = createWorker(i);
498 if (w != null) {
499 ws[i] = w;
500 w.start();
501 updateWorkerCount(1);
502 }
503 }
504 }
505 } finally {
506 lock.unlock();
507 }
508 }
509 }
510
511 /**
512 * Worker creation and startup for threads added via setParallelism.
513 */
514 private void createAndStartAddedWorkers() {
515 resumeAllSpares(); // Allow spares to convert to nonspare
516 int ps = parallelism;
517 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
518 int len = ws.length;
519 // Sweep through slots, to keep lowest indices most populated
520 int k = 0;
521 while (k < len) {
522 if (ws[k] != null) {
523 ++k;
524 continue;
525 }
526 int s = workerCounts;
527 int tc = totalCountOf(s);
528 int rc = runningCountOf(s);
529 if (rc >= ps || tc >= ps)
530 break;
531 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
532 ForkJoinWorkerThread w = createWorker(k);
533 if (w != null) {
534 ws[k++] = w;
535 w.start();
536 }
537 else {
538 updateWorkerCount(-1); // back out on failed creation
539 break;
540 }
541 }
542 }
543 }
544
545 // Execution methods
546
547 /**
548 * Common code for execute, invoke and submit
549 */
550 private <T> void doSubmit(ForkJoinTask<T> task) {
551 if (task == null)
552 throw new NullPointerException();
553 if (isShutdown())
554 throw new RejectedExecutionException();
555 if (workers == null)
556 ensureWorkerInitialization();
557 submissionQueue.offer(task);
558 signalIdleWorkers();
559 }
560
561 /**
562 * Performs the given task, returning its result upon completion.
563 *
564 * @param task the task
565 * @return the task's result
566 * @throws NullPointerException if task is null
567 * @throws RejectedExecutionException if pool is shut down
568 */
569 public <T> T invoke(ForkJoinTask<T> task) {
570 doSubmit(task);
571 return task.join();
572 }
573
574 /**
575 * Arranges for (asynchronous) execution of the given task.
576 *
577 * @param task the task
578 * @throws NullPointerException if task is null
579 * @throws RejectedExecutionException if pool is shut down
580 */
581 public <T> void execute(ForkJoinTask<T> task) {
582 doSubmit(task);
583 }
584
585 // AbstractExecutorService methods
586
587 public void execute(Runnable task) {
588 ForkJoinTask<?> job;
589 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
590 job = (ForkJoinTask<?>) task;
591 else
592 job = new AdaptedRunnable<Void>(task, null);
593 doSubmit(job);
594 }
595
596 public <T> ForkJoinTask<T> submit(Callable<T> task) {
597 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
598 doSubmit(job);
599 return job;
600 }
601
602 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
603 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
604 doSubmit(job);
605 return job;
606 }
607
608 public ForkJoinTask<?> submit(Runnable task) {
609 ForkJoinTask<?> job;
610 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
611 job = (ForkJoinTask<?>) task;
612 else
613 job = new AdaptedRunnable<Void>(task, null);
614 doSubmit(job);
615 return job;
616 }
617
618 /**
619 * Submits a ForkJoinTask for execution.
620 *
621 * @param task the task to submit
622 * @return the task
623 * @throws RejectedExecutionException if the task cannot be
624 * scheduled for execution
625 * @throws NullPointerException if the task is null
626 */
627 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
628 doSubmit(task);
629 return task;
630 }
631
632 /**
633 * Adaptor for Runnables. This implements RunnableFuture
634 * to be compliant with AbstractExecutorService constraints.
635 */
636 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
637 implements RunnableFuture<T> {
638 final Runnable runnable;
639 final T resultOnCompletion;
640 T result;
641 AdaptedRunnable(Runnable runnable, T result) {
642 if (runnable == null) throw new NullPointerException();
643 this.runnable = runnable;
644 this.resultOnCompletion = result;
645 }
646 public T getRawResult() { return result; }
647 public void setRawResult(T v) { result = v; }
648 public boolean exec() {
649 runnable.run();
650 result = resultOnCompletion;
651 return true;
652 }
653 public void run() { invoke(); }
654 private static final long serialVersionUID = 5232453952276885070L;
655 }
656
657 /**
658 * Adaptor for Callables
659 */
660 static final class AdaptedCallable<T> extends ForkJoinTask<T>
661 implements RunnableFuture<T> {
662 final Callable<T> callable;
663 T result;
664 AdaptedCallable(Callable<T> callable) {
665 if (callable == null) throw new NullPointerException();
666 this.callable = callable;
667 }
668 public T getRawResult() { return result; }
669 public void setRawResult(T v) { result = v; }
670 public boolean exec() {
671 try {
672 result = callable.call();
673 return true;
674 } catch (Error err) {
675 throw err;
676 } catch (RuntimeException rex) {
677 throw rex;
678 } catch (Exception ex) {
679 throw new RuntimeException(ex);
680 }
681 }
682 public void run() { invoke(); }
683 private static final long serialVersionUID = 2838392045355241008L;
684 }
685
686 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
687 ArrayList<ForkJoinTask<T>> forkJoinTasks =
688 new ArrayList<ForkJoinTask<T>>(tasks.size());
689 for (Callable<T> task : tasks)
690 forkJoinTasks.add(new AdaptedCallable<T>(task));
691 invoke(new InvokeAll<T>(forkJoinTasks));
692
693 @SuppressWarnings({"unchecked", "rawtypes"})
694 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
695 return futures;
696 }
697
698 static final class InvokeAll<T> extends RecursiveAction {
699 final ArrayList<ForkJoinTask<T>> tasks;
700 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
701 public void compute() {
702 try { invokeAll(tasks); }
703 catch (Exception ignore) {}
704 }
705 private static final long serialVersionUID = -7914297376763021607L;
706 }
707
708 // Configuration and status settings and queries
709
710 /**
711 * Returns the factory used for constructing new workers.
712 *
713 * @return the factory used for constructing new workers
714 */
715 public ForkJoinWorkerThreadFactory getFactory() {
716 return factory;
717 }
718
719 /**
720 * Returns the handler for internal worker threads that terminate
721 * due to unrecoverable errors encountered while executing tasks.
722 *
723 * @return the handler, or {@code null} if none
724 */
725 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
726 Thread.UncaughtExceptionHandler h;
727 final ReentrantLock lock = this.workerLock;
728 lock.lock();
729 try {
730 h = ueh;
731 } finally {
732 lock.unlock();
733 }
734 return h;
735 }
736
737 /**
738 * Sets the handler for internal worker threads that terminate due
739 * to unrecoverable errors encountered while executing tasks.
740 * Unless set, the current default or ThreadGroup handler is used
741 * as handler.
742 *
743 * @param h the new handler
744 * @return the old handler, or {@code null} if none
745 * @throws SecurityException if a security manager exists and
746 * the caller is not permitted to modify threads
747 * because it does not hold {@link
748 * java.lang.RuntimePermission}{@code ("modifyThread")}
749 */
750 public Thread.UncaughtExceptionHandler
751 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
752 checkPermission();
753 Thread.UncaughtExceptionHandler old = null;
754 final ReentrantLock lock = this.workerLock;
755 lock.lock();
756 try {
757 old = ueh;
758 ueh = h;
759 ForkJoinWorkerThread[] ws = workers;
760 if (ws != null) {
761 for (int i = 0; i < ws.length; ++i) {
762 ForkJoinWorkerThread w = ws[i];
763 if (w != null)
764 w.setUncaughtExceptionHandler(h);
765 }
766 }
767 } finally {
768 lock.unlock();
769 }
770 return old;
771 }
772
773
774 /**
775 * Sets the target parallelism level of this pool.
776 *
777 * @param parallelism the target parallelism
778 * @throws IllegalArgumentException if parallelism less than or
779 * equal to zero or greater than maximum size bounds
780 * @throws SecurityException if a security manager exists and
781 * the caller is not permitted to modify threads
782 * because it does not hold {@link
783 * java.lang.RuntimePermission}{@code ("modifyThread")}
784 */
785 public void setParallelism(int parallelism) {
786 checkPermission();
787 if (parallelism <= 0 || parallelism > maxPoolSize)
788 throw new IllegalArgumentException();
789 final ReentrantLock lock = this.workerLock;
790 lock.lock();
791 try {
792 if (!isTerminating()) {
793 int p = this.parallelism;
794 this.parallelism = parallelism;
795 if (parallelism > p)
796 createAndStartAddedWorkers();
797 else
798 trimSpares();
799 }
800 } finally {
801 lock.unlock();
802 }
803 signalIdleWorkers();
804 }
805
806 /**
807 * Returns the targeted number of worker threads in this pool.
808 *
809 * @return the targeted number of worker threads in this pool
810 */
811 public int getParallelism() {
812 return parallelism;
813 }
814
815 /**
816 * Returns the number of worker threads that have started but not
817 * yet terminated. This result returned by this method may differ
818 * from {@link #getParallelism} when threads are created to
819 * maintain parallelism when others are cooperatively blocked.
820 *
821 * @return the number of worker threads
822 */
823 public int getPoolSize() {
824 return totalCountOf(workerCounts);
825 }
826
827 /**
828 * Returns the maximum number of threads allowed to exist in the
829 * pool, even if there are insufficient unblocked running threads.
830 *
831 * @return the maximum
832 */
833 public int getMaximumPoolSize() {
834 return maxPoolSize;
835 }
836
837 /**
838 * Sets the maximum number of threads allowed to exist in the
839 * pool, even if there are insufficient unblocked running threads.
840 * Setting this value has no effect on current pool size. It
841 * controls construction of new threads.
842 *
843 * @throws IllegalArgumentException if negative or greater then
844 * internal implementation limit
845 */
846 public void setMaximumPoolSize(int newMax) {
847 if (newMax < 0 || newMax > MAX_THREADS)
848 throw new IllegalArgumentException();
849 maxPoolSize = newMax;
850 }
851
852
853 /**
854 * Returns {@code true} if this pool dynamically maintains its
855 * target parallelism level. If false, new threads are added only
856 * to avoid possible starvation. This setting is by default true.
857 *
858 * @return {@code true} if maintains parallelism
859 */
860 public boolean getMaintainsParallelism() {
861 return maintainsParallelism;
862 }
863
864 /**
865 * Sets whether this pool dynamically maintains its target
866 * parallelism level. If false, new threads are added only to
867 * avoid possible starvation.
868 *
869 * @param enable {@code true} to maintain parallelism
870 */
871 public void setMaintainsParallelism(boolean enable) {
872 maintainsParallelism = enable;
873 }
874
875 /**
876 * Establishes local first-in-first-out scheduling mode for forked
877 * tasks that are never joined. This mode may be more appropriate
878 * than default locally stack-based mode in applications in which
879 * worker threads only process asynchronous tasks. This method is
880 * designed to be invoked only when the pool is quiescent, and
881 * typically only before any tasks are submitted. The effects of
882 * invocations at other times may be unpredictable.
883 *
884 * @param async if {@code true}, use locally FIFO scheduling
885 * @return the previous mode
886 * @see #getAsyncMode
887 */
888 public boolean setAsyncMode(boolean async) {
889 boolean oldMode = locallyFifo;
890 locallyFifo = async;
891 ForkJoinWorkerThread[] ws = workers;
892 if (ws != null) {
893 for (int i = 0; i < ws.length; ++i) {
894 ForkJoinWorkerThread t = ws[i];
895 if (t != null)
896 t.setAsyncMode(async);
897 }
898 }
899 return oldMode;
900 }
901
902 /**
903 * Returns {@code true} if this pool uses local first-in-first-out
904 * scheduling mode for forked tasks that are never joined.
905 *
906 * @return {@code true} if this pool uses async mode
907 * @see #setAsyncMode
908 */
909 public boolean getAsyncMode() {
910 return locallyFifo;
911 }
912
913 /**
914 * Returns an estimate of the number of worker threads that are
915 * not blocked waiting to join tasks or for other managed
916 * synchronization.
917 *
918 * @return the number of worker threads
919 */
920 public int getRunningThreadCount() {
921 return runningCountOf(workerCounts);
922 }
923
924 /**
925 * Returns an estimate of the number of threads that are currently
926 * stealing or executing tasks. This method may overestimate the
927 * number of active threads.
928 *
929 * @return the number of active threads
930 */
931 public int getActiveThreadCount() {
932 return activeCountOf(runControl);
933 }
934
935 /**
936 * Returns an estimate of the number of threads that are currently
937 * idle waiting for tasks. This method may underestimate the
938 * number of idle threads.
939 *
940 * @return the number of idle threads
941 */
942 final int getIdleThreadCount() {
943 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
944 return (c <= 0) ? 0 : c;
945 }
946
947 /**
948 * Returns {@code true} if all worker threads are currently idle.
949 * An idle worker is one that cannot obtain a task to execute
950 * because none are available to steal from other threads, and
951 * there are no pending submissions to the pool. This method is
952 * conservative; it might not return {@code true} immediately upon
953 * idleness of all threads, but will eventually become true if
954 * threads remain inactive.
955 *
956 * @return {@code true} if all threads are currently idle
957 */
958 public boolean isQuiescent() {
959 return activeCountOf(runControl) == 0;
960 }
961
962 /**
963 * Returns an estimate of the total number of tasks stolen from
964 * one thread's work queue by another. The reported value
965 * underestimates the actual total number of steals when the pool
966 * is not quiescent. This value may be useful for monitoring and
967 * tuning fork/join programs: in general, steal counts should be
968 * high enough to keep threads busy, but low enough to avoid
969 * overhead and contention across threads.
970 *
971 * @return the number of steals
972 */
973 public long getStealCount() {
974 return stealCount.get();
975 }
976
977 /**
978 * Accumulates steal count from a worker.
979 * Call only when worker known to be idle.
980 */
981 private void updateStealCount(ForkJoinWorkerThread w) {
982 int sc = w.getAndClearStealCount();
983 if (sc != 0)
984 stealCount.addAndGet(sc);
985 }
986
987 /**
988 * Returns an estimate of the total number of tasks currently held
989 * in queues by worker threads (but not including tasks submitted
990 * to the pool that have not begun executing). This value is only
991 * an approximation, obtained by iterating across all threads in
992 * the pool. This method may be useful for tuning task
993 * granularities.
994 *
995 * @return the number of queued tasks
996 */
997 public long getQueuedTaskCount() {
998 long count = 0;
999 ForkJoinWorkerThread[] ws = workers;
1000 if (ws != null) {
1001 for (int i = 0; i < ws.length; ++i) {
1002 ForkJoinWorkerThread t = ws[i];
1003 if (t != null)
1004 count += t.getQueueSize();
1005 }
1006 }
1007 return count;
1008 }
1009
1010 /**
1011 * Returns an estimate of the number tasks submitted to this pool
1012 * that have not yet begun executing. This method takes time
1013 * proportional to the number of submissions.
1014 *
1015 * @return the number of queued submissions
1016 */
1017 public int getQueuedSubmissionCount() {
1018 return submissionQueue.size();
1019 }
1020
1021 /**
1022 * Returns {@code true} if there are any tasks submitted to this
1023 * pool that have not yet begun executing.
1024 *
1025 * @return {@code true} if there are any queued submissions
1026 */
1027 public boolean hasQueuedSubmissions() {
1028 return !submissionQueue.isEmpty();
1029 }
1030
1031 /**
1032 * Removes and returns the next unexecuted submission if one is
1033 * available. This method may be useful in extensions to this
1034 * class that re-assign work in systems with multiple pools.
1035 *
1036 * @return the next submission, or {@code null} if none
1037 */
1038 protected ForkJoinTask<?> pollSubmission() {
1039 return submissionQueue.poll();
1040 }
1041
1042 /**
1043 * Removes all available unexecuted submitted and forked tasks
1044 * from scheduling queues and adds them to the given collection,
1045 * without altering their execution status. These may include
1046 * artificially generated or wrapped tasks. This method is designed
1047 * to be invoked only when the pool is known to be
1048 * quiescent. Invocations at other times may not remove all
1049 * tasks. A failure encountered while attempting to add elements
1050 * to collection {@code c} may result in elements being in
1051 * neither, either or both collections when the associated
1052 * exception is thrown. The behavior of this operation is
1053 * undefined if the specified collection is modified while the
1054 * operation is in progress.
1055 *
1056 * @param c the collection to transfer elements into
1057 * @return the number of elements transferred
1058 */
1059 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1060 int n = submissionQueue.drainTo(c);
1061 ForkJoinWorkerThread[] ws = workers;
1062 if (ws != null) {
1063 for (int i = 0; i < ws.length; ++i) {
1064 ForkJoinWorkerThread w = ws[i];
1065 if (w != null)
1066 n += w.drainTasksTo(c);
1067 }
1068 }
1069 return n;
1070 }
1071
1072 /**
1073 * Returns a string identifying this pool, as well as its state,
1074 * including indications of run state, parallelism level, and
1075 * worker and task counts.
1076 *
1077 * @return a string identifying this pool, as well as its state
1078 */
1079 public String toString() {
1080 int ps = parallelism;
1081 int wc = workerCounts;
1082 int rc = runControl;
1083 long st = getStealCount();
1084 long qt = getQueuedTaskCount();
1085 long qs = getQueuedSubmissionCount();
1086 return super.toString() +
1087 "[" + runStateToString(runStateOf(rc)) +
1088 ", parallelism = " + ps +
1089 ", size = " + totalCountOf(wc) +
1090 ", active = " + activeCountOf(rc) +
1091 ", running = " + runningCountOf(wc) +
1092 ", steals = " + st +
1093 ", tasks = " + qt +
1094 ", submissions = " + qs +
1095 "]";
1096 }
1097
1098 private static String runStateToString(int rs) {
1099 switch(rs) {
1100 case RUNNING: return "Running";
1101 case SHUTDOWN: return "Shutting down";
1102 case TERMINATING: return "Terminating";
1103 case TERMINATED: return "Terminated";
1104 default: throw new Error("Unknown run state");
1105 }
1106 }
1107
1108 // lifecycle control
1109
1110 /**
1111 * Initiates an orderly shutdown in which previously submitted
1112 * tasks are executed, but no new tasks will be accepted.
1113 * Invocation has no additional effect if already shut down.
1114 * Tasks that are in the process of being submitted concurrently
1115 * during the course of this method may or may not be rejected.
1116 *
1117 * @throws SecurityException if a security manager exists and
1118 * the caller is not permitted to modify threads
1119 * because it does not hold {@link
1120 * java.lang.RuntimePermission}{@code ("modifyThread")}
1121 */
1122 public void shutdown() {
1123 checkPermission();
1124 transitionRunStateTo(SHUTDOWN);
1125 if (canTerminateOnShutdown(runControl))
1126 terminateOnShutdown();
1127 }
1128
1129 /**
1130 * Attempts to stop all actively executing tasks, and cancels all
1131 * waiting tasks. Tasks that are in the process of being
1132 * submitted or executed concurrently during the course of this
1133 * method may or may not be rejected. Unlike some other executors,
1134 * this method cancels rather than collects non-executed tasks
1135 * upon termination, so always returns an empty list. However, you
1136 * can use method {@link #drainTasksTo} before invoking this
1137 * method to transfer unexecuted tasks to another collection.
1138 *
1139 * @return an empty list
1140 * @throws SecurityException if a security manager exists and
1141 * the caller is not permitted to modify threads
1142 * because it does not hold {@link
1143 * java.lang.RuntimePermission}{@code ("modifyThread")}
1144 */
1145 public List<Runnable> shutdownNow() {
1146 checkPermission();
1147 terminate();
1148 return Collections.emptyList();
1149 }
1150
1151 /**
1152 * Returns {@code true} if all tasks have completed following shut down.
1153 *
1154 * @return {@code true} if all tasks have completed following shut down
1155 */
1156 public boolean isTerminated() {
1157 return runStateOf(runControl) == TERMINATED;
1158 }
1159
1160 /**
1161 * Returns {@code true} if the process of termination has
1162 * commenced but possibly not yet completed.
1163 *
1164 * @return {@code true} if terminating
1165 */
1166 public boolean isTerminating() {
1167 return runStateOf(runControl) >= TERMINATING;
1168 }
1169
1170 /**
1171 * Returns {@code true} if this pool has been shut down.
1172 *
1173 * @return {@code true} if this pool has been shut down
1174 */
1175 public boolean isShutdown() {
1176 return runStateOf(runControl) >= SHUTDOWN;
1177 }
1178
1179 /**
1180 * Blocks until all tasks have completed execution after a shutdown
1181 * request, or the timeout occurs, or the current thread is
1182 * interrupted, whichever happens first.
1183 *
1184 * @param timeout the maximum time to wait
1185 * @param unit the time unit of the timeout argument
1186 * @return {@code true} if this executor terminated and
1187 * {@code false} if the timeout elapsed before termination
1188 * @throws InterruptedException if interrupted while waiting
1189 */
1190 public boolean awaitTermination(long timeout, TimeUnit unit)
1191 throws InterruptedException {
1192 long nanos = unit.toNanos(timeout);
1193 final ReentrantLock lock = this.workerLock;
1194 lock.lock();
1195 try {
1196 for (;;) {
1197 if (isTerminated())
1198 return true;
1199 if (nanos <= 0)
1200 return false;
1201 nanos = termination.awaitNanos(nanos);
1202 }
1203 } finally {
1204 lock.unlock();
1205 }
1206 }
1207
1208 // Shutdown and termination support
1209
1210 /**
1211 * Callback from terminating worker. Nulls out the corresponding
1212 * workers slot, and if terminating, tries to terminate; else
1213 * tries to shrink workers array.
1214 *
1215 * @param w the worker
1216 */
1217 final void workerTerminated(ForkJoinWorkerThread w) {
1218 updateStealCount(w);
1219 updateWorkerCount(-1);
1220 final ReentrantLock lock = this.workerLock;
1221 lock.lock();
1222 try {
1223 ForkJoinWorkerThread[] ws = workers;
1224 if (ws != null) {
1225 int idx = w.poolIndex;
1226 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1227 ws[idx] = null;
1228 if (totalCountOf(workerCounts) == 0) {
1229 terminate(); // no-op if already terminating
1230 transitionRunStateTo(TERMINATED);
1231 termination.signalAll();
1232 }
1233 else if (!isTerminating()) {
1234 tryShrinkWorkerArray();
1235 tryResumeSpare(true); // allow replacement
1236 }
1237 }
1238 } finally {
1239 lock.unlock();
1240 }
1241 signalIdleWorkers();
1242 }
1243
1244 /**
1245 * Initiates termination.
1246 */
1247 private void terminate() {
1248 if (transitionRunStateTo(TERMINATING)) {
1249 stopAllWorkers();
1250 resumeAllSpares();
1251 signalIdleWorkers();
1252 cancelQueuedSubmissions();
1253 cancelQueuedWorkerTasks();
1254 interruptUnterminatedWorkers();
1255 signalIdleWorkers(); // resignal after interrupt
1256 }
1257 }
1258
1259 /**
1260 * Possibly terminates when on shutdown state.
1261 */
1262 private void terminateOnShutdown() {
1263 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1264 terminate();
1265 }
1266
1267 /**
1268 * Clears out and cancels submissions.
1269 */
1270 private void cancelQueuedSubmissions() {
1271 ForkJoinTask<?> task;
1272 while ((task = pollSubmission()) != null)
1273 task.cancel(false);
1274 }
1275
1276 /**
1277 * Cleans out worker queues.
1278 */
1279 private void cancelQueuedWorkerTasks() {
1280 final ReentrantLock lock = this.workerLock;
1281 lock.lock();
1282 try {
1283 ForkJoinWorkerThread[] ws = workers;
1284 if (ws != null) {
1285 for (int i = 0; i < ws.length; ++i) {
1286 ForkJoinWorkerThread t = ws[i];
1287 if (t != null)
1288 t.cancelTasks();
1289 }
1290 }
1291 } finally {
1292 lock.unlock();
1293 }
1294 }
1295
1296 /**
1297 * Sets each worker's status to terminating. Requires lock to avoid
1298 * conflicts with add/remove.
1299 */
1300 private void stopAllWorkers() {
1301 final ReentrantLock lock = this.workerLock;
1302 lock.lock();
1303 try {
1304 ForkJoinWorkerThread[] ws = workers;
1305 if (ws != null) {
1306 for (int i = 0; i < ws.length; ++i) {
1307 ForkJoinWorkerThread t = ws[i];
1308 if (t != null)
1309 t.shutdownNow();
1310 }
1311 }
1312 } finally {
1313 lock.unlock();
1314 }
1315 }
1316
1317 /**
1318 * Interrupts all unterminated workers. This is not required for
1319 * sake of internal control, but may help unstick user code during
1320 * shutdown.
1321 */
1322 private void interruptUnterminatedWorkers() {
1323 final ReentrantLock lock = this.workerLock;
1324 lock.lock();
1325 try {
1326 ForkJoinWorkerThread[] ws = workers;
1327 if (ws != null) {
1328 for (int i = 0; i < ws.length; ++i) {
1329 ForkJoinWorkerThread t = ws[i];
1330 if (t != null && !t.isTerminated()) {
1331 try {
1332 t.interrupt();
1333 } catch (SecurityException ignore) {
1334 }
1335 }
1336 }
1337 }
1338 } finally {
1339 lock.unlock();
1340 }
1341 }
1342
1343
1344 /*
1345 * Nodes for event barrier to manage idle threads. Queue nodes
1346 * are basic Treiber stack nodes, also used for spare stack.
1347 *
1348 * The event barrier has an event count and a wait queue (actually
1349 * a Treiber stack). Workers are enabled to look for work when
1350 * the eventCount is incremented. If they fail to find work, they
1351 * may wait for next count. Upon release, threads help others wake
1352 * up.
1353 *
1354 * Synchronization events occur only in enough contexts to
1355 * maintain overall liveness:
1356 *
1357 * - Submission of a new task to the pool
1358 * - Resizes or other changes to the workers array
1359 * - pool termination
1360 * - A worker pushing a task on an empty queue
1361 *
1362 * The case of pushing a task occurs often enough, and is heavy
1363 * enough compared to simple stack pushes, to require special
1364 * handling: Method signalWork returns without advancing count if
1365 * the queue appears to be empty. This would ordinarily result in
1366 * races causing some queued waiters not to be woken up. To avoid
1367 * this, the first worker enqueued in method sync (see
1368 * syncIsReleasable) rescans for tasks after being enqueued, and
1369 * helps signal if any are found. This works well because the
1370 * worker has nothing better to do, and so might as well help
1371 * alleviate the overhead and contention on the threads actually
1372 * doing work. Also, since event counts increments on task
1373 * availability exist to maintain liveness (rather than to force
1374 * refreshes etc), it is OK for callers to exit early if
1375 * contending with another signaller.
1376 */
1377 static final class WaitQueueNode {
1378 WaitQueueNode next; // only written before enqueued
1379 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1380 final long count; // unused for spare stack
1381
1382 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1383 count = c;
1384 thread = w;
1385 }
1386
1387 /**
1388 * Wakes up waiter, returning false if known to already
1389 */
1390 boolean signal() {
1391 ForkJoinWorkerThread t = thread;
1392 if (t == null)
1393 return false;
1394 thread = null;
1395 LockSupport.unpark(t);
1396 return true;
1397 }
1398
1399 /**
1400 * Awaits release on sync.
1401 */
1402 void awaitSyncRelease(ForkJoinPool p) {
1403 while (thread != null && !p.syncIsReleasable(this))
1404 LockSupport.park(this);
1405 }
1406
1407 /**
1408 * Awaits resumption as spare.
1409 */
1410 void awaitSpareRelease() {
1411 while (thread != null) {
1412 if (!Thread.interrupted())
1413 LockSupport.park(this);
1414 }
1415 }
1416 }
1417
1418 /**
1419 * Ensures that no thread is waiting for count to advance from the
1420 * current value of eventCount read on entry to this method, by
1421 * releasing waiting threads if necessary.
1422 *
1423 * @return the count
1424 */
1425 final long ensureSync() {
1426 long c = eventCount;
1427 WaitQueueNode q;
1428 while ((q = syncStack) != null && q.count < c) {
1429 if (casBarrierStack(q, null)) {
1430 do {
1431 q.signal();
1432 } while ((q = q.next) != null);
1433 break;
1434 }
1435 }
1436 return c;
1437 }
1438
1439 /**
1440 * Increments event count and releases waiting threads.
1441 */
1442 private void signalIdleWorkers() {
1443 long c;
1444 do {} while (!casEventCount(c = eventCount, c+1));
1445 ensureSync();
1446 }
1447
1448 /**
1449 * Signals threads waiting to poll a task. Because method sync
1450 * rechecks availability, it is OK to only proceed if queue
1451 * appears to be non-empty, and OK to skip under contention to
1452 * increment count (since some other thread succeeded).
1453 */
1454 final void signalWork() {
1455 long c;
1456 WaitQueueNode q;
1457 if (syncStack != null &&
1458 casEventCount(c = eventCount, c+1) &&
1459 (((q = syncStack) != null && q.count <= c) &&
1460 (!casBarrierStack(q, q.next) || !q.signal())))
1461 ensureSync();
1462 }
1463
1464 /**
1465 * Waits until event count advances from last value held by
1466 * caller, or if excess threads, caller is resumed as spare, or
1467 * caller or pool is terminating. Updates caller's event on exit.
1468 *
1469 * @param w the calling worker thread
1470 */
1471 final void sync(ForkJoinWorkerThread w) {
1472 updateStealCount(w); // Transfer w's count while it is idle
1473
1474 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1475 long prev = w.lastEventCount;
1476 WaitQueueNode node = null;
1477 WaitQueueNode h;
1478 while (eventCount == prev &&
1479 ((h = syncStack) == null || h.count == prev)) {
1480 if (node == null)
1481 node = new WaitQueueNode(prev, w);
1482 if (casBarrierStack(node.next = h, node)) {
1483 node.awaitSyncRelease(this);
1484 break;
1485 }
1486 }
1487 long ec = ensureSync();
1488 if (ec != prev) {
1489 w.lastEventCount = ec;
1490 break;
1491 }
1492 }
1493 }
1494
1495 /**
1496 * Returns {@code true} if worker waiting on sync can proceed:
1497 * - on signal (thread == null)
1498 * - on event count advance (winning race to notify vs signaller)
1499 * - on interrupt
1500 * - if the first queued node, we find work available
1501 * If node was not signalled and event count not advanced on exit,
1502 * then we also help advance event count.
1503 *
1504 * @return {@code true} if node can be released
1505 */
1506 final boolean syncIsReleasable(WaitQueueNode node) {
1507 long prev = node.count;
1508 if (!Thread.interrupted() && node.thread != null &&
1509 (node.next != null ||
1510 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1511 eventCount == prev)
1512 return false;
1513 if (node.thread != null) {
1514 node.thread = null;
1515 long ec = eventCount;
1516 if (prev <= ec) // help signal
1517 casEventCount(ec, ec+1);
1518 }
1519 return true;
1520 }
1521
1522 /**
1523 * Returns {@code true} if a new sync event occurred since last
1524 * call to sync or this method, if so, updating caller's count.
1525 */
1526 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1527 long lc = w.lastEventCount;
1528 long ec = ensureSync();
1529 if (ec == lc)
1530 return false;
1531 w.lastEventCount = ec;
1532 return true;
1533 }
1534
1535 // Parallelism maintenance
1536
1537 /**
1538 * Decrements running count; if too low, adds spare.
1539 *
1540 * Conceptually, all we need to do here is add or resume a
1541 * spare thread when one is about to block (and remove or
1542 * suspend it later when unblocked -- see suspendIfSpare).
1543 * However, implementing this idea requires coping with
1544 * several problems: we have imperfect information about the
1545 * states of threads. Some count updates can and usually do
1546 * lag run state changes, despite arrangements to keep them
1547 * accurate (for example, when possible, updating counts
1548 * before signalling or resuming), especially when running on
1549 * dynamic JVMs that don't optimize the infrequent paths that
1550 * update counts. Generating too many threads can make these
1551 * problems become worse, because excess threads are more
1552 * likely to be context-switched with others, slowing them all
1553 * down, especially if there is no work available, so all are
1554 * busy scanning or idling. Also, excess spare threads can
1555 * only be suspended or removed when they are idle, not
1556 * immediately when they aren't needed. So adding threads will
1557 * raise parallelism level for longer than necessary. Also,
1558 * FJ applications often encounter highly transient peaks when
1559 * many threads are blocked joining, but for less time than it
1560 * takes to create or resume spares.
1561 *
1562 * @param joinMe if non-null, return early if done
1563 * @param maintainParallelism if true, try to stay within
1564 * target counts, else create only to avoid starvation
1565 * @return true if joinMe known to be done
1566 */
1567 final boolean preJoin(ForkJoinTask<?> joinMe,
1568 boolean maintainParallelism) {
1569 maintainParallelism &= maintainsParallelism; // overrride
1570 boolean dec = false; // true when running count decremented
1571 while (spareStack == null || !tryResumeSpare(dec)) {
1572 int counts = workerCounts;
1573 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1574 // CAS cheat
1575 if (!needSpare(counts, maintainParallelism))
1576 break;
1577 if (joinMe.status < 0)
1578 return true;
1579 if (tryAddSpare(counts))
1580 break;
1581 }
1582 }
1583 return false;
1584 }
1585
1586 /**
1587 * Same idea as preJoin
1588 */
1589 final boolean preBlock(ManagedBlocker blocker,
1590 boolean maintainParallelism) {
1591 maintainParallelism &= maintainsParallelism;
1592 boolean dec = false;
1593 while (spareStack == null || !tryResumeSpare(dec)) {
1594 int counts = workerCounts;
1595 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1596 if (!needSpare(counts, maintainParallelism))
1597 break;
1598 if (blocker.isReleasable())
1599 return true;
1600 if (tryAddSpare(counts))
1601 break;
1602 }
1603 }
1604 return false;
1605 }
1606
1607 /**
1608 * Returns {@code true} if a spare thread appears to be needed.
1609 * If maintaining parallelism, returns true when the deficit in
1610 * running threads is more than the surplus of total threads, and
1611 * there is apparently some work to do. This self-limiting rule
1612 * means that the more threads that have already been added, the
1613 * less parallelism we will tolerate before adding another.
1614 *
1615 * @param counts current worker counts
1616 * @param maintainParallelism try to maintain parallelism
1617 */
1618 private boolean needSpare(int counts, boolean maintainParallelism) {
1619 int ps = parallelism;
1620 int rc = runningCountOf(counts);
1621 int tc = totalCountOf(counts);
1622 int runningDeficit = ps - rc;
1623 int totalSurplus = tc - ps;
1624 return (tc < maxPoolSize &&
1625 (rc == 0 || totalSurplus < 0 ||
1626 (maintainParallelism &&
1627 runningDeficit > totalSurplus &&
1628 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1629 }
1630
1631 /**
1632 * Adds a spare worker if lock available and no more than the
1633 * expected numbers of threads exist.
1634 *
1635 * @return true if successful
1636 */
1637 private boolean tryAddSpare(int expectedCounts) {
1638 final ReentrantLock lock = this.workerLock;
1639 int expectedRunning = runningCountOf(expectedCounts);
1640 int expectedTotal = totalCountOf(expectedCounts);
1641 boolean success = false;
1642 boolean locked = false;
1643 // confirm counts while locking; CAS after obtaining lock
1644 try {
1645 for (;;) {
1646 int s = workerCounts;
1647 int tc = totalCountOf(s);
1648 int rc = runningCountOf(s);
1649 if (rc > expectedRunning || tc > expectedTotal)
1650 break;
1651 if (!locked && !(locked = lock.tryLock()))
1652 break;
1653 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1654 createAndStartSpare(tc);
1655 success = true;
1656 break;
1657 }
1658 }
1659 } finally {
1660 if (locked)
1661 lock.unlock();
1662 }
1663 return success;
1664 }
1665
1666 /**
1667 * Adds the kth spare worker. On entry, pool counts are already
1668 * adjusted to reflect addition.
1669 */
1670 private void createAndStartSpare(int k) {
1671 ForkJoinWorkerThread w = null;
1672 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1673 int len = ws.length;
1674 // Probably, we can place at slot k. If not, find empty slot
1675 if (k < len && ws[k] != null) {
1676 for (k = 0; k < len && ws[k] != null; ++k)
1677 ;
1678 }
1679 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1680 ws[k] = w;
1681 w.start();
1682 }
1683 else
1684 updateWorkerCount(-1); // adjust on failure
1685 signalIdleWorkers();
1686 }
1687
1688 /**
1689 * Suspends calling thread w if there are excess threads. Called
1690 * only from sync. Spares are enqueued in a Treiber stack using
1691 * the same WaitQueueNodes as barriers. They are resumed mainly
1692 * in preJoin, but are also woken on pool events that require all
1693 * threads to check run state.
1694 *
1695 * @param w the caller
1696 */
1697 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1698 WaitQueueNode node = null;
1699 int s;
1700 while (parallelism < runningCountOf(s = workerCounts)) {
1701 if (node == null)
1702 node = new WaitQueueNode(0, w);
1703 if (casWorkerCounts(s, s-1)) { // representation-dependent
1704 // push onto stack
1705 do {} while (!casSpareStack(node.next = spareStack, node));
1706 // block until released by resumeSpare
1707 node.awaitSpareRelease();
1708 return true;
1709 }
1710 }
1711 return false;
1712 }
1713
1714 /**
1715 * Tries to pop and resume a spare thread.
1716 *
1717 * @param updateCount if true, increment running count on success
1718 * @return true if successful
1719 */
1720 private boolean tryResumeSpare(boolean updateCount) {
1721 WaitQueueNode q;
1722 while ((q = spareStack) != null) {
1723 if (casSpareStack(q, q.next)) {
1724 if (updateCount)
1725 updateRunningCount(1);
1726 q.signal();
1727 return true;
1728 }
1729 }
1730 return false;
1731 }
1732
1733 /**
1734 * Pops and resumes all spare threads. Same idea as ensureSync.
1735 *
1736 * @return true if any spares released
1737 */
1738 private boolean resumeAllSpares() {
1739 WaitQueueNode q;
1740 while ( (q = spareStack) != null) {
1741 if (casSpareStack(q, null)) {
1742 do {
1743 updateRunningCount(1);
1744 q.signal();
1745 } while ((q = q.next) != null);
1746 return true;
1747 }
1748 }
1749 return false;
1750 }
1751
1752 /**
1753 * Pops and shuts down excessive spare threads. Call only while
1754 * holding lock. This is not guaranteed to eliminate all excess
1755 * threads, only those suspended as spares, which are the ones
1756 * unlikely to be needed in the future.
1757 */
1758 private void trimSpares() {
1759 int surplus = totalCountOf(workerCounts) - parallelism;
1760 WaitQueueNode q;
1761 while (surplus > 0 && (q = spareStack) != null) {
1762 if (casSpareStack(q, null)) {
1763 do {
1764 updateRunningCount(1);
1765 ForkJoinWorkerThread w = q.thread;
1766 if (w != null && surplus > 0 &&
1767 runningCountOf(workerCounts) > 0 && w.shutdown())
1768 --surplus;
1769 q.signal();
1770 } while ((q = q.next) != null);
1771 }
1772 }
1773 }
1774
1775 /**
1776 * Interface for extending managed parallelism for tasks running
1777 * in ForkJoinPools. A ManagedBlocker provides two methods.
1778 * Method {@code isReleasable} must return {@code true} if
1779 * blocking is not necessary. Method {@code block} blocks the
1780 * current thread if necessary (perhaps internally invoking
1781 * {@code isReleasable} before actually blocking.).
1782 *
1783 * <p>For example, here is a ManagedBlocker based on a
1784 * ReentrantLock:
1785 * <pre> {@code
1786 * class ManagedLocker implements ManagedBlocker {
1787 * final ReentrantLock lock;
1788 * boolean hasLock = false;
1789 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1790 * public boolean block() {
1791 * if (!hasLock)
1792 * lock.lock();
1793 * return true;
1794 * }
1795 * public boolean isReleasable() {
1796 * return hasLock || (hasLock = lock.tryLock());
1797 * }
1798 * }}</pre>
1799 */
1800 public static interface ManagedBlocker {
1801 /**
1802 * Possibly blocks the current thread, for example waiting for
1803 * a lock or condition.
1804 *
1805 * @return {@code true} if no additional blocking is necessary
1806 * (i.e., if isReleasable would return true)
1807 * @throws InterruptedException if interrupted while waiting
1808 * (the method is not required to do so, but is allowed to)
1809 */
1810 boolean block() throws InterruptedException;
1811
1812 /**
1813 * Returns {@code true} if blocking is unnecessary.
1814 */
1815 boolean isReleasable();
1816 }
1817
1818 /**
1819 * Blocks in accord with the given blocker. If the current thread
1820 * is a ForkJoinWorkerThread, this method possibly arranges for a
1821 * spare thread to be activated if necessary to ensure parallelism
1822 * while the current thread is blocked. If
1823 * {@code maintainParallelism} is {@code true} and the pool supports
1824 * it ({@link #getMaintainsParallelism}), this method attempts to
1825 * maintain the pool's nominal parallelism. Otherwise it activates
1826 * a thread only if necessary to avoid complete starvation. This
1827 * option may be preferable when blockages use timeouts, or are
1828 * almost always brief.
1829 *
1830 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1831 * equivalent to
1832 * <pre> {@code
1833 * while (!blocker.isReleasable())
1834 * if (blocker.block())
1835 * return;
1836 * }</pre>
1837 * If the caller is a ForkJoinTask, then the pool may first
1838 * be expanded to ensure parallelism, and later adjusted.
1839 *
1840 * @param blocker the blocker
1841 * @param maintainParallelism if {@code true} and supported by
1842 * this pool, attempt to maintain the pool's nominal parallelism;
1843 * otherwise activate a thread only if necessary to avoid
1844 * complete starvation.
1845 * @throws InterruptedException if blocker.block did so
1846 */
1847 public static void managedBlock(ManagedBlocker blocker,
1848 boolean maintainParallelism)
1849 throws InterruptedException {
1850 Thread t = Thread.currentThread();
1851 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1852 ((ForkJoinWorkerThread) t).pool : null);
1853 if (!blocker.isReleasable()) {
1854 try {
1855 if (pool == null ||
1856 !pool.preBlock(blocker, maintainParallelism))
1857 awaitBlocker(blocker);
1858 } finally {
1859 if (pool != null)
1860 pool.updateRunningCount(1);
1861 }
1862 }
1863 }
1864
1865 private static void awaitBlocker(ManagedBlocker blocker)
1866 throws InterruptedException {
1867 do {} while (!blocker.isReleasable() && !blocker.block());
1868 }
1869
1870 // AbstractExecutorService overrides
1871
1872 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1873 return new AdaptedRunnable<T>(runnable, value);
1874 }
1875
1876 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1877 return new AdaptedCallable<T>(callable);
1878 }
1879
1880 // Unsafe mechanics
1881
1882 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1883 private static final long eventCountOffset =
1884 objectFieldOffset("eventCount", ForkJoinPool.class);
1885 private static final long workerCountsOffset =
1886 objectFieldOffset("workerCounts", ForkJoinPool.class);
1887 private static final long runControlOffset =
1888 objectFieldOffset("runControl", ForkJoinPool.class);
1889 private static final long syncStackOffset =
1890 objectFieldOffset("syncStack",ForkJoinPool.class);
1891 private static final long spareStackOffset =
1892 objectFieldOffset("spareStack", ForkJoinPool.class);
1893
1894 private boolean casEventCount(long cmp, long val) {
1895 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1896 }
1897 private boolean casWorkerCounts(int cmp, int val) {
1898 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1899 }
1900 private boolean casRunControl(int cmp, int val) {
1901 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1902 }
1903 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1904 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1905 }
1906 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1907 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1908 }
1909
1910 private static long objectFieldOffset(String field, Class<?> klazz) {
1911 try {
1912 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1913 } catch (NoSuchFieldException e) {
1914 // Convert Exception to corresponding Error
1915 NoSuchFieldError error = new NoSuchFieldError(field);
1916 error.initCause(e);
1917 throw error;
1918 }
1919 }
1920
1921 /**
1922 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1923 * Replace with a simple call to Unsafe.getUnsafe when integrating
1924 * into a jdk.
1925 *
1926 * @return a sun.misc.Unsafe
1927 */
1928 private static sun.misc.Unsafe getUnsafe() {
1929 try {
1930 return sun.misc.Unsafe.getUnsafe();
1931 } catch (SecurityException se) {
1932 try {
1933 return java.security.AccessController.doPrivileged
1934 (new java.security
1935 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1936 public sun.misc.Unsafe run() throws Exception {
1937 java.lang.reflect.Field f = sun.misc
1938 .Unsafe.class.getDeclaredField("theUnsafe");
1939 f.setAccessible(true);
1940 return (sun.misc.Unsafe) f.get(null);
1941 }});
1942 } catch (java.security.PrivilegedActionException e) {
1943 throw new RuntimeException("Could not initialize intrinsics",
1944 e.getCause());
1945 }
1946 }
1947 }
1948 }