ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.32
Committed: Thu Jul 30 22:05:19 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.31: +0 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A ForkJoinPool provides the entry point for submissions from
25 * non-ForkJoinTasks, as well as management and monitoring operations.
26 * Normally a single ForkJoinPool is used for a large number of
27 * submitted tasks. Otherwise, use would not usually outweigh the
28 * construction and bookkeeping overhead of creating a large set of
29 * threads.
30 *
31 * <p>ForkJoinPools differ from other kinds of Executors mainly in
32 * that they provide <em>work-stealing</em>: all threads in the pool
33 * attempt to find and execute subtasks created by other active tasks
34 * (eventually blocking if none exist). This makes them efficient when
35 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
36 * as the mixed execution of some plain Runnable- or Callable- based
37 * activities along with ForkJoinTasks. When setting {@linkplain
38 * #setAsyncMode async mode}, a ForkJoinPool may also be appropriate
39 * for use with fine-grained tasks that are never joined. Otherwise,
40 * other ExecutorService implementations are typically more
41 * appropriate choices.
42 *
43 * <p>A ForkJoinPool may be constructed with a given parallelism level
44 * (target pool size), which it attempts to maintain by dynamically
45 * adding, suspending, or resuming threads, even if some tasks are
46 * waiting to join others. However, no such adjustments are performed
47 * in the face of blocked IO or other unmanaged synchronization. The
48 * nested {@link ManagedBlocker} interface enables extension of
49 * the kinds of synchronization accommodated. The target parallelism
50 * level may also be changed dynamically ({@link #setParallelism})
51 * and thread construction can be limited using methods
52 * {@link #setMaximumPoolSize} and/or
53 * {@link #setMaintainsParallelism}.
54 *
55 * <p>In addition to execution and lifecycle control methods, this
56 * class provides status check methods (for example
57 * {@link #getStealCount}) that are intended to aid in developing,
58 * tuning, and monitoring fork/join applications. Also, method
59 * {@link #toString} returns indications of pool state in a
60 * convenient form for informal monitoring.
61 *
62 * <p><b>Implementation notes</b>: This implementation restricts the
63 * maximum number of running threads to 32767. Attempts to create
64 * pools with greater than the maximum result in
65 * IllegalArgumentExceptions.
66 *
67 * @since 1.7
68 * @author Doug Lea
69 */
70 public class ForkJoinPool extends AbstractExecutorService {
71
72 /*
73 * See the extended comments interspersed below for design,
74 * rationale, and walkthroughs.
75 */
76
77 /** Mask for packing and unpacking shorts */
78 private static final int shortMask = 0xffff;
79
80 /** Max pool size -- must be a power of two minus 1 */
81 private static final int MAX_THREADS = 0x7FFF;
82
83 /**
84 * Factory for creating new ForkJoinWorkerThreads. A
85 * ForkJoinWorkerThreadFactory must be defined and used for
86 * ForkJoinWorkerThread subclasses that extend base functionality
87 * or initialize threads with different contexts.
88 */
89 public static interface ForkJoinWorkerThreadFactory {
90 /**
91 * Returns a new worker thread operating in the given pool.
92 *
93 * @param pool the pool this thread works in
94 * @throws NullPointerException if pool is null
95 */
96 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
97 }
98
99 /**
100 * Default ForkJoinWorkerThreadFactory implementation; creates a
101 * new ForkJoinWorkerThread.
102 */
103 static class DefaultForkJoinWorkerThreadFactory
104 implements ForkJoinWorkerThreadFactory {
105 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
106 try {
107 return new ForkJoinWorkerThread(pool);
108 } catch (OutOfMemoryError oom) {
109 return null;
110 }
111 }
112 }
113
114 /**
115 * Creates a new ForkJoinWorkerThread. This factory is used unless
116 * overridden in ForkJoinPool constructors.
117 */
118 public static final ForkJoinWorkerThreadFactory
119 defaultForkJoinWorkerThreadFactory =
120 new DefaultForkJoinWorkerThreadFactory();
121
122 /**
123 * Permission required for callers of methods that may start or
124 * kill threads.
125 */
126 private static final RuntimePermission modifyThreadPermission =
127 new RuntimePermission("modifyThread");
128
129 /**
130 * If there is a security manager, makes sure caller has
131 * permission to modify threads.
132 */
133 private static void checkPermission() {
134 SecurityManager security = System.getSecurityManager();
135 if (security != null)
136 security.checkPermission(modifyThreadPermission);
137 }
138
139 /**
140 * Generator for assigning sequence numbers as pool names.
141 */
142 private static final AtomicInteger poolNumberGenerator =
143 new AtomicInteger();
144
145 /**
146 * Array holding all worker threads in the pool. Initialized upon
147 * first use. Array size must be a power of two. Updates and
148 * replacements are protected by workerLock, but it is always kept
149 * in a consistent enough state to be randomly accessed without
150 * locking by workers performing work-stealing.
151 */
152 volatile ForkJoinWorkerThread[] workers;
153
154 /**
155 * Lock protecting access to workers.
156 */
157 private final ReentrantLock workerLock;
158
159 /**
160 * Condition for awaitTermination.
161 */
162 private final Condition termination;
163
164 /**
165 * The uncaught exception handler used when any worker
166 * abruptly terminates
167 */
168 private Thread.UncaughtExceptionHandler ueh;
169
170 /**
171 * Creation factory for worker threads.
172 */
173 private final ForkJoinWorkerThreadFactory factory;
174
175 /**
176 * Head of stack of threads that were created to maintain
177 * parallelism when other threads blocked, but have since
178 * suspended when the parallelism level rose.
179 */
180 private volatile WaitQueueNode spareStack;
181
182 /**
183 * Sum of per-thread steal counts, updated only when threads are
184 * idle or terminating.
185 */
186 private final AtomicLong stealCount;
187
188 /**
189 * Queue for external submissions.
190 */
191 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
192
193 /**
194 * Head of Treiber stack for barrier sync. See below for explanation.
195 */
196 private volatile WaitQueueNode syncStack;
197
198 /**
199 * The count for event barrier
200 */
201 private volatile long eventCount;
202
203 /**
204 * Pool number, just for assigning useful names to worker threads
205 */
206 private final int poolNumber;
207
208 /**
209 * The maximum allowed pool size
210 */
211 private volatile int maxPoolSize;
212
213 /**
214 * The desired parallelism level, updated only under workerLock.
215 */
216 private volatile int parallelism;
217
218 /**
219 * True if use local fifo, not default lifo, for local polling
220 */
221 private volatile boolean locallyFifo;
222
223 /**
224 * Holds number of total (i.e., created and not yet terminated)
225 * and running (i.e., not blocked on joins or other managed sync)
226 * threads, packed into one int to ensure consistent snapshot when
227 * making decisions about creating and suspending spare
228 * threads. Updated only by CAS. Note: CASes in
229 * updateRunningCount and preJoin assume that running active count
230 * is in low word, so need to be modified if this changes.
231 */
232 private volatile int workerCounts;
233
234 private static int totalCountOf(int s) { return s >>> 16; }
235 private static int runningCountOf(int s) { return s & shortMask; }
236 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
237
238 /**
239 * Adds delta (which may be negative) to running count. This must
240 * be called before (with negative arg) and after (with positive)
241 * any managed synchronization (i.e., mainly, joins).
242 *
243 * @param delta the number to add
244 */
245 final void updateRunningCount(int delta) {
246 int s;
247 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 }
249
250 /**
251 * Adds delta (which may be negative) to both total and running
252 * count. This must be called upon creation and termination of
253 * worker threads.
254 *
255 * @param delta the number to add
256 */
257 private void updateWorkerCount(int delta) {
258 int d = delta + (delta << 16); // add to both lo and hi parts
259 int s;
260 do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 }
262
263 /**
264 * Lifecycle control. High word contains runState, low word
265 * contains the number of workers that are (probably) executing
266 * tasks. This value is atomically incremented before a worker
267 * gets a task to run, and decremented when worker has no tasks
268 * and cannot find any. These two fields are bundled together to
269 * support correct termination triggering. Note: activeCount
270 * CAS'es cheat by assuming active count is in low word, so need
271 * to be modified if this changes
272 */
273 private volatile int runControl;
274
275 // RunState values. Order among values matters
276 private static final int RUNNING = 0;
277 private static final int SHUTDOWN = 1;
278 private static final int TERMINATING = 2;
279 private static final int TERMINATED = 3;
280
281 private static int runStateOf(int c) { return c >>> 16; }
282 private static int activeCountOf(int c) { return c & shortMask; }
283 private static int runControlFor(int r, int a) { return (r << 16) + a; }
284
285 /**
286 * Tries incrementing active count; fails on contention.
287 * Called by workers before/during executing tasks.
288 *
289 * @return true on success
290 */
291 final boolean tryIncrementActiveCount() {
292 int c = runControl;
293 return casRunControl(c, c+1);
294 }
295
296 /**
297 * Tries decrementing active count; fails on contention.
298 * Possibly triggers termination on success.
299 * Called by workers when they can't find tasks.
300 *
301 * @return true on success
302 */
303 final boolean tryDecrementActiveCount() {
304 int c = runControl;
305 int nextc = c - 1;
306 if (!casRunControl(c, nextc))
307 return false;
308 if (canTerminateOnShutdown(nextc))
309 terminateOnShutdown();
310 return true;
311 }
312
313 /**
314 * Returns {@code true} if argument represents zero active count
315 * and nonzero runstate, which is the triggering condition for
316 * terminating on shutdown.
317 */
318 private static boolean canTerminateOnShutdown(int c) {
319 // i.e. least bit is nonzero runState bit
320 return ((c & -c) >>> 16) != 0;
321 }
322
323 /**
324 * Transition run state to at least the given state. Return true
325 * if not already at least given state.
326 */
327 private boolean transitionRunStateTo(int state) {
328 for (;;) {
329 int c = runControl;
330 if (runStateOf(c) >= state)
331 return false;
332 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
333 return true;
334 }
335 }
336
337 /**
338 * Controls whether to add spares to maintain parallelism
339 */
340 private volatile boolean maintainsParallelism;
341
342 // Constructors
343
344 /**
345 * Creates a ForkJoinPool with a pool size equal to the number of
346 * processors available on the system, using the default
347 * ForkJoinWorkerThreadFactory.
348 *
349 * @throws SecurityException if a security manager exists and
350 * the caller is not permitted to modify threads
351 * because it does not hold {@link
352 * java.lang.RuntimePermission}{@code ("modifyThread")}
353 */
354 public ForkJoinPool() {
355 this(Runtime.getRuntime().availableProcessors(),
356 defaultForkJoinWorkerThreadFactory);
357 }
358
359 /**
360 * Creates a ForkJoinPool with the indicated parallelism level
361 * threads and using the default ForkJoinWorkerThreadFactory.
362 *
363 * @param parallelism the number of worker threads
364 * @throws IllegalArgumentException if parallelism less than or
365 * equal to zero
366 * @throws SecurityException if a security manager exists and
367 * the caller is not permitted to modify threads
368 * because it does not hold {@link
369 * java.lang.RuntimePermission}{@code ("modifyThread")}
370 */
371 public ForkJoinPool(int parallelism) {
372 this(parallelism, defaultForkJoinWorkerThreadFactory);
373 }
374
375 /**
376 * Creates a ForkJoinPool with parallelism equal to the number of
377 * processors available on the system and using the given
378 * ForkJoinWorkerThreadFactory.
379 *
380 * @param factory the factory for creating new threads
381 * @throws NullPointerException if factory is null
382 * @throws SecurityException if a security manager exists and
383 * the caller is not permitted to modify threads
384 * because it does not hold {@link
385 * java.lang.RuntimePermission}{@code ("modifyThread")}
386 */
387 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
388 this(Runtime.getRuntime().availableProcessors(), factory);
389 }
390
391 /**
392 * Creates a ForkJoinPool with the given parallelism and factory.
393 *
394 * @param parallelism the targeted number of worker threads
395 * @param factory the factory for creating new threads
396 * @throws IllegalArgumentException if parallelism less than or
397 * equal to zero, or greater than implementation limit
398 * @throws NullPointerException if factory is null
399 * @throws SecurityException if a security manager exists and
400 * the caller is not permitted to modify threads
401 * because it does not hold {@link
402 * java.lang.RuntimePermission}{@code ("modifyThread")}
403 */
404 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
405 if (parallelism <= 0 || parallelism > MAX_THREADS)
406 throw new IllegalArgumentException();
407 if (factory == null)
408 throw new NullPointerException();
409 checkPermission();
410 this.factory = factory;
411 this.parallelism = parallelism;
412 this.maxPoolSize = MAX_THREADS;
413 this.maintainsParallelism = true;
414 this.poolNumber = poolNumberGenerator.incrementAndGet();
415 this.workerLock = new ReentrantLock();
416 this.termination = workerLock.newCondition();
417 this.stealCount = new AtomicLong();
418 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 // worker array and workers are lazily constructed
420 }
421
422 /**
423 * Creates a new worker thread using factory.
424 *
425 * @param index the index to assign worker
426 * @return new worker, or null of factory failed
427 */
428 private ForkJoinWorkerThread createWorker(int index) {
429 Thread.UncaughtExceptionHandler h = ueh;
430 ForkJoinWorkerThread w = factory.newThread(this);
431 if (w != null) {
432 w.poolIndex = index;
433 w.setDaemon(true);
434 w.setAsyncMode(locallyFifo);
435 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
436 if (h != null)
437 w.setUncaughtExceptionHandler(h);
438 }
439 return w;
440 }
441
442 /**
443 * Returns a good size for worker array given pool size.
444 * Currently requires size to be a power of two.
445 */
446 private static int arraySizeFor(int poolSize) {
447 return (poolSize <= 1) ? 1 :
448 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
449 }
450
451 /**
452 * Creates or resizes array if necessary to hold newLength.
453 * Call only under exclusion.
454 *
455 * @return the array
456 */
457 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
458 ForkJoinWorkerThread[] ws = workers;
459 if (ws == null)
460 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
461 else if (newLength > ws.length)
462 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
463 else
464 return ws;
465 }
466
467 /**
468 * Tries to shrink workers into smaller array after one or more terminate.
469 */
470 private void tryShrinkWorkerArray() {
471 ForkJoinWorkerThread[] ws = workers;
472 if (ws != null) {
473 int len = ws.length;
474 int last = len - 1;
475 while (last >= 0 && ws[last] == null)
476 --last;
477 int newLength = arraySizeFor(last+1);
478 if (newLength < len)
479 workers = Arrays.copyOf(ws, newLength);
480 }
481 }
482
483 /**
484 * Initializes workers if necessary.
485 */
486 final void ensureWorkerInitialization() {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null) {
489 final ReentrantLock lock = this.workerLock;
490 lock.lock();
491 try {
492 ws = workers;
493 if (ws == null) {
494 int ps = parallelism;
495 ws = ensureWorkerArrayCapacity(ps);
496 for (int i = 0; i < ps; ++i) {
497 ForkJoinWorkerThread w = createWorker(i);
498 if (w != null) {
499 ws[i] = w;
500 w.start();
501 updateWorkerCount(1);
502 }
503 }
504 }
505 } finally {
506 lock.unlock();
507 }
508 }
509 }
510
511 /**
512 * Worker creation and startup for threads added via setParallelism.
513 */
514 private void createAndStartAddedWorkers() {
515 resumeAllSpares(); // Allow spares to convert to nonspare
516 int ps = parallelism;
517 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
518 int len = ws.length;
519 // Sweep through slots, to keep lowest indices most populated
520 int k = 0;
521 while (k < len) {
522 if (ws[k] != null) {
523 ++k;
524 continue;
525 }
526 int s = workerCounts;
527 int tc = totalCountOf(s);
528 int rc = runningCountOf(s);
529 if (rc >= ps || tc >= ps)
530 break;
531 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
532 ForkJoinWorkerThread w = createWorker(k);
533 if (w != null) {
534 ws[k++] = w;
535 w.start();
536 }
537 else {
538 updateWorkerCount(-1); // back out on failed creation
539 break;
540 }
541 }
542 }
543 }
544
545 // Execution methods
546
547 /**
548 * Common code for execute, invoke and submit
549 */
550 private <T> void doSubmit(ForkJoinTask<T> task) {
551 if (task == null)
552 throw new NullPointerException();
553 if (isShutdown())
554 throw new RejectedExecutionException();
555 if (workers == null)
556 ensureWorkerInitialization();
557 submissionQueue.offer(task);
558 signalIdleWorkers();
559 }
560
561 /**
562 * Performs the given task, returning its result upon completion.
563 *
564 * @param task the task
565 * @return the task's result
566 * @throws NullPointerException if task is null
567 * @throws RejectedExecutionException if pool is shut down
568 */
569 public <T> T invoke(ForkJoinTask<T> task) {
570 doSubmit(task);
571 return task.join();
572 }
573
574 /**
575 * Arranges for (asynchronous) execution of the given task.
576 *
577 * @param task the task
578 * @throws NullPointerException if task is null
579 * @throws RejectedExecutionException if pool is shut down
580 */
581 public <T> void execute(ForkJoinTask<T> task) {
582 doSubmit(task);
583 }
584
585 // AbstractExecutorService methods
586
587 public void execute(Runnable task) {
588 ForkJoinTask<?> job;
589 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
590 job = (ForkJoinTask<?>) task;
591 else
592 job = new AdaptedRunnable<Void>(task, null);
593 doSubmit(job);
594 }
595
596 public <T> ForkJoinTask<T> submit(Callable<T> task) {
597 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
598 doSubmit(job);
599 return job;
600 }
601
602 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
603 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
604 doSubmit(job);
605 return job;
606 }
607
608 public ForkJoinTask<?> submit(Runnable task) {
609 ForkJoinTask<?> job;
610 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
611 job = (ForkJoinTask<?>) task;
612 else
613 job = new AdaptedRunnable<Void>(task, null);
614 doSubmit(job);
615 return job;
616 }
617
618 /**
619 * Submits a ForkJoinTask for execution.
620 *
621 * @param task the task to submit
622 * @return the task
623 * @throws RejectedExecutionException if the task cannot be
624 * scheduled for execution
625 * @throws NullPointerException if the task is null
626 */
627 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
628 doSubmit(task);
629 return task;
630 }
631
632 /**
633 * Adaptor for Runnables. This implements RunnableFuture
634 * to be compliant with AbstractExecutorService constraints.
635 */
636 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
637 implements RunnableFuture<T> {
638 final Runnable runnable;
639 final T resultOnCompletion;
640 T result;
641 AdaptedRunnable(Runnable runnable, T result) {
642 if (runnable == null) throw new NullPointerException();
643 this.runnable = runnable;
644 this.resultOnCompletion = result;
645 }
646 public T getRawResult() { return result; }
647 public void setRawResult(T v) { result = v; }
648 public boolean exec() {
649 runnable.run();
650 result = resultOnCompletion;
651 return true;
652 }
653 public void run() { invoke(); }
654 private static final long serialVersionUID = 5232453952276885070L;
655 }
656
657 /**
658 * Adaptor for Callables
659 */
660 static final class AdaptedCallable<T> extends ForkJoinTask<T>
661 implements RunnableFuture<T> {
662 final Callable<T> callable;
663 T result;
664 AdaptedCallable(Callable<T> callable) {
665 if (callable == null) throw new NullPointerException();
666 this.callable = callable;
667 }
668 public T getRawResult() { return result; }
669 public void setRawResult(T v) { result = v; }
670 public boolean exec() {
671 try {
672 result = callable.call();
673 return true;
674 } catch (Error err) {
675 throw err;
676 } catch (RuntimeException rex) {
677 throw rex;
678 } catch (Exception ex) {
679 throw new RuntimeException(ex);
680 }
681 }
682 public void run() { invoke(); }
683 private static final long serialVersionUID = 2838392045355241008L;
684 }
685
686 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
687 ArrayList<ForkJoinTask<T>> forkJoinTasks =
688 new ArrayList<ForkJoinTask<T>>(tasks.size());
689 for (Callable<T> task : tasks)
690 forkJoinTasks.add(new AdaptedCallable<T>(task));
691 invoke(new InvokeAll<T>(forkJoinTasks));
692
693 @SuppressWarnings({"unchecked", "rawtypes"})
694 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
695 return futures;
696 }
697
698 static final class InvokeAll<T> extends RecursiveAction {
699 final ArrayList<ForkJoinTask<T>> tasks;
700 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
701 public void compute() {
702 try { invokeAll(tasks); }
703 catch (Exception ignore) {}
704 }
705 private static final long serialVersionUID = -7914297376763021607L;
706 }
707
708 // Configuration and status settings and queries
709
710 /**
711 * Returns the factory used for constructing new workers.
712 *
713 * @return the factory used for constructing new workers
714 */
715 public ForkJoinWorkerThreadFactory getFactory() {
716 return factory;
717 }
718
719 /**
720 * Returns the handler for internal worker threads that terminate
721 * due to unrecoverable errors encountered while executing tasks.
722 *
723 * @return the handler, or {@code null} if none
724 */
725 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
726 Thread.UncaughtExceptionHandler h;
727 final ReentrantLock lock = this.workerLock;
728 lock.lock();
729 try {
730 h = ueh;
731 } finally {
732 lock.unlock();
733 }
734 return h;
735 }
736
737 /**
738 * Sets the handler for internal worker threads that terminate due
739 * to unrecoverable errors encountered while executing tasks.
740 * Unless set, the current default or ThreadGroup handler is used
741 * as handler.
742 *
743 * @param h the new handler
744 * @return the old handler, or {@code null} if none
745 * @throws SecurityException if a security manager exists and
746 * the caller is not permitted to modify threads
747 * because it does not hold {@link
748 * java.lang.RuntimePermission}{@code ("modifyThread")}
749 */
750 public Thread.UncaughtExceptionHandler
751 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
752 checkPermission();
753 Thread.UncaughtExceptionHandler old = null;
754 final ReentrantLock lock = this.workerLock;
755 lock.lock();
756 try {
757 old = ueh;
758 ueh = h;
759 ForkJoinWorkerThread[] ws = workers;
760 if (ws != null) {
761 for (int i = 0; i < ws.length; ++i) {
762 ForkJoinWorkerThread w = ws[i];
763 if (w != null)
764 w.setUncaughtExceptionHandler(h);
765 }
766 }
767 } finally {
768 lock.unlock();
769 }
770 return old;
771 }
772
773
774 /**
775 * Sets the target parallelism level of this pool.
776 *
777 * @param parallelism the target parallelism
778 * @throws IllegalArgumentException if parallelism less than or
779 * equal to zero or greater than maximum size bounds
780 * @throws SecurityException if a security manager exists and
781 * the caller is not permitted to modify threads
782 * because it does not hold {@link
783 * java.lang.RuntimePermission}{@code ("modifyThread")}
784 */
785 public void setParallelism(int parallelism) {
786 checkPermission();
787 if (parallelism <= 0 || parallelism > maxPoolSize)
788 throw new IllegalArgumentException();
789 final ReentrantLock lock = this.workerLock;
790 lock.lock();
791 try {
792 if (!isTerminating()) {
793 int p = this.parallelism;
794 this.parallelism = parallelism;
795 if (parallelism > p)
796 createAndStartAddedWorkers();
797 else
798 trimSpares();
799 }
800 } finally {
801 lock.unlock();
802 }
803 signalIdleWorkers();
804 }
805
806 /**
807 * Returns the targeted number of worker threads in this pool.
808 *
809 * @return the targeted number of worker threads in this pool
810 */
811 public int getParallelism() {
812 return parallelism;
813 }
814
815 /**
816 * Returns the number of worker threads that have started but not
817 * yet terminated. This result returned by this method may differ
818 * from {@link #getParallelism} when threads are created to
819 * maintain parallelism when others are cooperatively blocked.
820 *
821 * @return the number of worker threads
822 */
823 public int getPoolSize() {
824 return totalCountOf(workerCounts);
825 }
826
827 /**
828 * Returns the maximum number of threads allowed to exist in the
829 * pool, even if there are insufficient unblocked running threads.
830 *
831 * @return the maximum
832 */
833 public int getMaximumPoolSize() {
834 return maxPoolSize;
835 }
836
837 /**
838 * Sets the maximum number of threads allowed to exist in the
839 * pool, even if there are insufficient unblocked running threads.
840 * Setting this value has no effect on current pool size. It
841 * controls construction of new threads.
842 *
843 * @throws IllegalArgumentException if negative or greater then
844 * internal implementation limit
845 */
846 public void setMaximumPoolSize(int newMax) {
847 if (newMax < 0 || newMax > MAX_THREADS)
848 throw new IllegalArgumentException();
849 maxPoolSize = newMax;
850 }
851
852
853 /**
854 * Returns {@code true} if this pool dynamically maintains its
855 * target parallelism level. If false, new threads are added only
856 * to avoid possible starvation. This setting is by default true.
857 *
858 * @return {@code true} if maintains parallelism
859 */
860 public boolean getMaintainsParallelism() {
861 return maintainsParallelism;
862 }
863
864 /**
865 * Sets whether this pool dynamically maintains its target
866 * parallelism level. If false, new threads are added only to
867 * avoid possible starvation.
868 *
869 * @param enable {@code true} to maintain parallelism
870 */
871 public void setMaintainsParallelism(boolean enable) {
872 maintainsParallelism = enable;
873 }
874
875 /**
876 * Establishes local first-in-first-out scheduling mode for forked
877 * tasks that are never joined. This mode may be more appropriate
878 * than default locally stack-based mode in applications in which
879 * worker threads only process asynchronous tasks. This method is
880 * designed to be invoked only when the pool is quiescent, and
881 * typically only before any tasks are submitted. The effects of
882 * invocations at other times may be unpredictable.
883 *
884 * @param async if {@code true}, use locally FIFO scheduling
885 * @return the previous mode
886 * @see #getAsyncMode
887 */
888 public boolean setAsyncMode(boolean async) {
889 boolean oldMode = locallyFifo;
890 locallyFifo = async;
891 ForkJoinWorkerThread[] ws = workers;
892 if (ws != null) {
893 for (int i = 0; i < ws.length; ++i) {
894 ForkJoinWorkerThread t = ws[i];
895 if (t != null)
896 t.setAsyncMode(async);
897 }
898 }
899 return oldMode;
900 }
901
902 /**
903 * Returns {@code true} if this pool uses local first-in-first-out
904 * scheduling mode for forked tasks that are never joined.
905 *
906 * @return {@code true} if this pool uses async mode
907 * @see #setAsyncMode
908 */
909 public boolean getAsyncMode() {
910 return locallyFifo;
911 }
912
913 /**
914 * Returns an estimate of the number of worker threads that are
915 * not blocked waiting to join tasks or for other managed
916 * synchronization.
917 *
918 * @return the number of worker threads
919 */
920 public int getRunningThreadCount() {
921 return runningCountOf(workerCounts);
922 }
923
924 /**
925 * Returns an estimate of the number of threads that are currently
926 * stealing or executing tasks. This method may overestimate the
927 * number of active threads.
928 *
929 * @return the number of active threads
930 */
931 public int getActiveThreadCount() {
932 return activeCountOf(runControl);
933 }
934
935 /**
936 * Returns an estimate of the number of threads that are currently
937 * idle waiting for tasks. This method may underestimate the
938 * number of idle threads.
939 *
940 * @return the number of idle threads
941 */
942 final int getIdleThreadCount() {
943 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
944 return (c <= 0) ? 0 : c;
945 }
946
947 /**
948 * Returns {@code true} if all worker threads are currently idle.
949 * An idle worker is one that cannot obtain a task to execute
950 * because none are available to steal from other threads, and
951 * there are no pending submissions to the pool. This method is
952 * conservative; it might not return {@code true} immediately upon
953 * idleness of all threads, but will eventually become true if
954 * threads remain inactive.
955 *
956 * @return {@code true} if all threads are currently idle
957 */
958 public boolean isQuiescent() {
959 return activeCountOf(runControl) == 0;
960 }
961
962 /**
963 * Returns an estimate of the total number of tasks stolen from
964 * one thread's work queue by another. The reported value
965 * underestimates the actual total number of steals when the pool
966 * is not quiescent. This value may be useful for monitoring and
967 * tuning fork/join programs: in general, steal counts should be
968 * high enough to keep threads busy, but low enough to avoid
969 * overhead and contention across threads.
970 *
971 * @return the number of steals
972 */
973 public long getStealCount() {
974 return stealCount.get();
975 }
976
977 /**
978 * Accumulates steal count from a worker.
979 * Call only when worker known to be idle.
980 */
981 private void updateStealCount(ForkJoinWorkerThread w) {
982 int sc = w.getAndClearStealCount();
983 if (sc != 0)
984 stealCount.addAndGet(sc);
985 }
986
987 /**
988 * Returns an estimate of the total number of tasks currently held
989 * in queues by worker threads (but not including tasks submitted
990 * to the pool that have not begun executing). This value is only
991 * an approximation, obtained by iterating across all threads in
992 * the pool. This method may be useful for tuning task
993 * granularities.
994 *
995 * @return the number of queued tasks
996 */
997 public long getQueuedTaskCount() {
998 long count = 0;
999 ForkJoinWorkerThread[] ws = workers;
1000 if (ws != null) {
1001 for (int i = 0; i < ws.length; ++i) {
1002 ForkJoinWorkerThread t = ws[i];
1003 if (t != null)
1004 count += t.getQueueSize();
1005 }
1006 }
1007 return count;
1008 }
1009
1010 /**
1011 * Returns an estimate of the number tasks submitted to this pool
1012 * that have not yet begun executing. This method takes time
1013 * proportional to the number of submissions.
1014 *
1015 * @return the number of queued submissions
1016 */
1017 public int getQueuedSubmissionCount() {
1018 return submissionQueue.size();
1019 }
1020
1021 /**
1022 * Returns {@code true} if there are any tasks submitted to this
1023 * pool that have not yet begun executing.
1024 *
1025 * @return {@code true} if there are any queued submissions
1026 */
1027 public boolean hasQueuedSubmissions() {
1028 return !submissionQueue.isEmpty();
1029 }
1030
1031 /**
1032 * Removes and returns the next unexecuted submission if one is
1033 * available. This method may be useful in extensions to this
1034 * class that re-assign work in systems with multiple pools.
1035 *
1036 * @return the next submission, or {@code null} if none
1037 */
1038 protected ForkJoinTask<?> pollSubmission() {
1039 return submissionQueue.poll();
1040 }
1041
1042 /**
1043 * Removes all available unexecuted submitted and forked tasks
1044 * from scheduling queues and adds them to the given collection,
1045 * without altering their execution status. These may include
1046 * artificially generated or wrapped tasks. This method is designed
1047 * to be invoked only when the pool is known to be
1048 * quiescent. Invocations at other times may not remove all
1049 * tasks. A failure encountered while attempting to add elements
1050 * to collection {@code c} may result in elements being in
1051 * neither, either or both collections when the associated
1052 * exception is thrown. The behavior of this operation is
1053 * undefined if the specified collection is modified while the
1054 * operation is in progress.
1055 *
1056 * @param c the collection to transfer elements into
1057 * @return the number of elements transferred
1058 */
1059 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1060 int n = submissionQueue.drainTo(c);
1061 ForkJoinWorkerThread[] ws = workers;
1062 if (ws != null) {
1063 for (int i = 0; i < ws.length; ++i) {
1064 ForkJoinWorkerThread w = ws[i];
1065 if (w != null)
1066 n += w.drainTasksTo(c);
1067 }
1068 }
1069 return n;
1070 }
1071
1072 /**
1073 * Returns a string identifying this pool, as well as its state,
1074 * including indications of run state, parallelism level, and
1075 * worker and task counts.
1076 *
1077 * @return a string identifying this pool, as well as its state
1078 */
1079 public String toString() {
1080 int ps = parallelism;
1081 int wc = workerCounts;
1082 int rc = runControl;
1083 long st = getStealCount();
1084 long qt = getQueuedTaskCount();
1085 long qs = getQueuedSubmissionCount();
1086 return super.toString() +
1087 "[" + runStateToString(runStateOf(rc)) +
1088 ", parallelism = " + ps +
1089 ", size = " + totalCountOf(wc) +
1090 ", active = " + activeCountOf(rc) +
1091 ", running = " + runningCountOf(wc) +
1092 ", steals = " + st +
1093 ", tasks = " + qt +
1094 ", submissions = " + qs +
1095 "]";
1096 }
1097
1098 private static String runStateToString(int rs) {
1099 switch(rs) {
1100 case RUNNING: return "Running";
1101 case SHUTDOWN: return "Shutting down";
1102 case TERMINATING: return "Terminating";
1103 case TERMINATED: return "Terminated";
1104 default: throw new Error("Unknown run state");
1105 }
1106 }
1107
1108 // lifecycle control
1109
1110 /**
1111 * Initiates an orderly shutdown in which previously submitted
1112 * tasks are executed, but no new tasks will be accepted.
1113 * Invocation has no additional effect if already shut down.
1114 * Tasks that are in the process of being submitted concurrently
1115 * during the course of this method may or may not be rejected.
1116 *
1117 * @throws SecurityException if a security manager exists and
1118 * the caller is not permitted to modify threads
1119 * because it does not hold {@link
1120 * java.lang.RuntimePermission}{@code ("modifyThread")}
1121 */
1122 public void shutdown() {
1123 checkPermission();
1124 transitionRunStateTo(SHUTDOWN);
1125 if (canTerminateOnShutdown(runControl)) {
1126 if (workers == null) { // shutting down before workers created
1127 final ReentrantLock lock = this.workerLock;
1128 lock.lock();
1129 try {
1130 if (workers == null) {
1131 terminate();
1132 transitionRunStateTo(TERMINATED);
1133 termination.signalAll();
1134 }
1135 } finally {
1136 lock.unlock();
1137 }
1138 }
1139 terminateOnShutdown();
1140 }
1141 }
1142
1143 /**
1144 * Attempts to stop all actively executing tasks, and cancels all
1145 * waiting tasks. Tasks that are in the process of being
1146 * submitted or executed concurrently during the course of this
1147 * method may or may not be rejected. Unlike some other executors,
1148 * this method cancels rather than collects non-executed tasks
1149 * upon termination, so always returns an empty list. However, you
1150 * can use method {@link #drainTasksTo} before invoking this
1151 * method to transfer unexecuted tasks to another collection.
1152 *
1153 * @return an empty list
1154 * @throws SecurityException if a security manager exists and
1155 * the caller is not permitted to modify threads
1156 * because it does not hold {@link
1157 * java.lang.RuntimePermission}{@code ("modifyThread")}
1158 */
1159 public List<Runnable> shutdownNow() {
1160 checkPermission();
1161 terminate();
1162 return Collections.emptyList();
1163 }
1164
1165 /**
1166 * Returns {@code true} if all tasks have completed following shut down.
1167 *
1168 * @return {@code true} if all tasks have completed following shut down
1169 */
1170 public boolean isTerminated() {
1171 return runStateOf(runControl) == TERMINATED;
1172 }
1173
1174 /**
1175 * Returns {@code true} if the process of termination has
1176 * commenced but possibly not yet completed.
1177 *
1178 * @return {@code true} if terminating
1179 */
1180 public boolean isTerminating() {
1181 return runStateOf(runControl) >= TERMINATING;
1182 }
1183
1184 /**
1185 * Returns {@code true} if this pool has been shut down.
1186 *
1187 * @return {@code true} if this pool has been shut down
1188 */
1189 public boolean isShutdown() {
1190 return runStateOf(runControl) >= SHUTDOWN;
1191 }
1192
1193 /**
1194 * Blocks until all tasks have completed execution after a shutdown
1195 * request, or the timeout occurs, or the current thread is
1196 * interrupted, whichever happens first.
1197 *
1198 * @param timeout the maximum time to wait
1199 * @param unit the time unit of the timeout argument
1200 * @return {@code true} if this executor terminated and
1201 * {@code false} if the timeout elapsed before termination
1202 * @throws InterruptedException if interrupted while waiting
1203 */
1204 public boolean awaitTermination(long timeout, TimeUnit unit)
1205 throws InterruptedException {
1206 long nanos = unit.toNanos(timeout);
1207 final ReentrantLock lock = this.workerLock;
1208 lock.lock();
1209 try {
1210 for (;;) {
1211 if (isTerminated())
1212 return true;
1213 if (nanos <= 0)
1214 return false;
1215 nanos = termination.awaitNanos(nanos);
1216 }
1217 } finally {
1218 lock.unlock();
1219 }
1220 }
1221
1222 // Shutdown and termination support
1223
1224 /**
1225 * Callback from terminating worker. Nulls out the corresponding
1226 * workers slot, and if terminating, tries to terminate; else
1227 * tries to shrink workers array.
1228 *
1229 * @param w the worker
1230 */
1231 final void workerTerminated(ForkJoinWorkerThread w) {
1232 updateStealCount(w);
1233 updateWorkerCount(-1);
1234 final ReentrantLock lock = this.workerLock;
1235 lock.lock();
1236 try {
1237 ForkJoinWorkerThread[] ws = workers;
1238 if (ws != null) {
1239 int idx = w.poolIndex;
1240 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1241 ws[idx] = null;
1242 if (totalCountOf(workerCounts) == 0) {
1243 terminate(); // no-op if already terminating
1244 transitionRunStateTo(TERMINATED);
1245 termination.signalAll();
1246 }
1247 else if (!isTerminating()) {
1248 tryShrinkWorkerArray();
1249 tryResumeSpare(true); // allow replacement
1250 }
1251 }
1252 } finally {
1253 lock.unlock();
1254 }
1255 signalIdleWorkers();
1256 }
1257
1258 /**
1259 * Initiates termination.
1260 */
1261 private void terminate() {
1262 if (transitionRunStateTo(TERMINATING)) {
1263 stopAllWorkers();
1264 resumeAllSpares();
1265 signalIdleWorkers();
1266 cancelQueuedSubmissions();
1267 cancelQueuedWorkerTasks();
1268 interruptUnterminatedWorkers();
1269 signalIdleWorkers(); // resignal after interrupt
1270 }
1271 }
1272
1273 /**
1274 * Possibly terminates when on shutdown state.
1275 */
1276 private void terminateOnShutdown() {
1277 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1278 terminate();
1279 }
1280
1281 /**
1282 * Clears out and cancels submissions.
1283 */
1284 private void cancelQueuedSubmissions() {
1285 ForkJoinTask<?> task;
1286 while ((task = pollSubmission()) != null)
1287 task.cancel(false);
1288 }
1289
1290 /**
1291 * Cleans out worker queues.
1292 */
1293 private void cancelQueuedWorkerTasks() {
1294 final ReentrantLock lock = this.workerLock;
1295 lock.lock();
1296 try {
1297 ForkJoinWorkerThread[] ws = workers;
1298 if (ws != null) {
1299 for (int i = 0; i < ws.length; ++i) {
1300 ForkJoinWorkerThread t = ws[i];
1301 if (t != null)
1302 t.cancelTasks();
1303 }
1304 }
1305 } finally {
1306 lock.unlock();
1307 }
1308 }
1309
1310 /**
1311 * Sets each worker's status to terminating. Requires lock to avoid
1312 * conflicts with add/remove.
1313 */
1314 private void stopAllWorkers() {
1315 final ReentrantLock lock = this.workerLock;
1316 lock.lock();
1317 try {
1318 ForkJoinWorkerThread[] ws = workers;
1319 if (ws != null) {
1320 for (int i = 0; i < ws.length; ++i) {
1321 ForkJoinWorkerThread t = ws[i];
1322 if (t != null)
1323 t.shutdownNow();
1324 }
1325 }
1326 } finally {
1327 lock.unlock();
1328 }
1329 }
1330
1331 /**
1332 * Interrupts all unterminated workers. This is not required for
1333 * sake of internal control, but may help unstick user code during
1334 * shutdown.
1335 */
1336 private void interruptUnterminatedWorkers() {
1337 final ReentrantLock lock = this.workerLock;
1338 lock.lock();
1339 try {
1340 ForkJoinWorkerThread[] ws = workers;
1341 if (ws != null) {
1342 for (int i = 0; i < ws.length; ++i) {
1343 ForkJoinWorkerThread t = ws[i];
1344 if (t != null && !t.isTerminated()) {
1345 try {
1346 t.interrupt();
1347 } catch (SecurityException ignore) {
1348 }
1349 }
1350 }
1351 }
1352 } finally {
1353 lock.unlock();
1354 }
1355 }
1356
1357
1358 /*
1359 * Nodes for event barrier to manage idle threads. Queue nodes
1360 * are basic Treiber stack nodes, also used for spare stack.
1361 *
1362 * The event barrier has an event count and a wait queue (actually
1363 * a Treiber stack). Workers are enabled to look for work when
1364 * the eventCount is incremented. If they fail to find work, they
1365 * may wait for next count. Upon release, threads help others wake
1366 * up.
1367 *
1368 * Synchronization events occur only in enough contexts to
1369 * maintain overall liveness:
1370 *
1371 * - Submission of a new task to the pool
1372 * - Resizes or other changes to the workers array
1373 * - pool termination
1374 * - A worker pushing a task on an empty queue
1375 *
1376 * The case of pushing a task occurs often enough, and is heavy
1377 * enough compared to simple stack pushes, to require special
1378 * handling: Method signalWork returns without advancing count if
1379 * the queue appears to be empty. This would ordinarily result in
1380 * races causing some queued waiters not to be woken up. To avoid
1381 * this, the first worker enqueued in method sync (see
1382 * syncIsReleasable) rescans for tasks after being enqueued, and
1383 * helps signal if any are found. This works well because the
1384 * worker has nothing better to do, and so might as well help
1385 * alleviate the overhead and contention on the threads actually
1386 * doing work. Also, since event counts increments on task
1387 * availability exist to maintain liveness (rather than to force
1388 * refreshes etc), it is OK for callers to exit early if
1389 * contending with another signaller.
1390 */
1391 static final class WaitQueueNode {
1392 WaitQueueNode next; // only written before enqueued
1393 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1394 final long count; // unused for spare stack
1395
1396 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1397 count = c;
1398 thread = w;
1399 }
1400
1401 /**
1402 * Wakes up waiter, returning false if known to already
1403 */
1404 boolean signal() {
1405 ForkJoinWorkerThread t = thread;
1406 if (t == null)
1407 return false;
1408 thread = null;
1409 LockSupport.unpark(t);
1410 return true;
1411 }
1412
1413 /**
1414 * Awaits release on sync.
1415 */
1416 void awaitSyncRelease(ForkJoinPool p) {
1417 while (thread != null && !p.syncIsReleasable(this))
1418 LockSupport.park(this);
1419 }
1420
1421 /**
1422 * Awaits resumption as spare.
1423 */
1424 void awaitSpareRelease() {
1425 while (thread != null) {
1426 if (!Thread.interrupted())
1427 LockSupport.park(this);
1428 }
1429 }
1430 }
1431
1432 /**
1433 * Ensures that no thread is waiting for count to advance from the
1434 * current value of eventCount read on entry to this method, by
1435 * releasing waiting threads if necessary.
1436 *
1437 * @return the count
1438 */
1439 final long ensureSync() {
1440 long c = eventCount;
1441 WaitQueueNode q;
1442 while ((q = syncStack) != null && q.count < c) {
1443 if (casBarrierStack(q, null)) {
1444 do {
1445 q.signal();
1446 } while ((q = q.next) != null);
1447 break;
1448 }
1449 }
1450 return c;
1451 }
1452
1453 /**
1454 * Increments event count and releases waiting threads.
1455 */
1456 private void signalIdleWorkers() {
1457 long c;
1458 do {} while (!casEventCount(c = eventCount, c+1));
1459 ensureSync();
1460 }
1461
1462 /**
1463 * Signals threads waiting to poll a task. Because method sync
1464 * rechecks availability, it is OK to only proceed if queue
1465 * appears to be non-empty, and OK to skip under contention to
1466 * increment count (since some other thread succeeded).
1467 */
1468 final void signalWork() {
1469 long c;
1470 WaitQueueNode q;
1471 if (syncStack != null &&
1472 casEventCount(c = eventCount, c+1) &&
1473 (((q = syncStack) != null && q.count <= c) &&
1474 (!casBarrierStack(q, q.next) || !q.signal())))
1475 ensureSync();
1476 }
1477
1478 /**
1479 * Waits until event count advances from last value held by
1480 * caller, or if excess threads, caller is resumed as spare, or
1481 * caller or pool is terminating. Updates caller's event on exit.
1482 *
1483 * @param w the calling worker thread
1484 */
1485 final void sync(ForkJoinWorkerThread w) {
1486 updateStealCount(w); // Transfer w's count while it is idle
1487
1488 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1489 long prev = w.lastEventCount;
1490 WaitQueueNode node = null;
1491 WaitQueueNode h;
1492 while (eventCount == prev &&
1493 ((h = syncStack) == null || h.count == prev)) {
1494 if (node == null)
1495 node = new WaitQueueNode(prev, w);
1496 if (casBarrierStack(node.next = h, node)) {
1497 node.awaitSyncRelease(this);
1498 break;
1499 }
1500 }
1501 long ec = ensureSync();
1502 if (ec != prev) {
1503 w.lastEventCount = ec;
1504 break;
1505 }
1506 }
1507 }
1508
1509 /**
1510 * Returns {@code true} if worker waiting on sync can proceed:
1511 * - on signal (thread == null)
1512 * - on event count advance (winning race to notify vs signaller)
1513 * - on interrupt
1514 * - if the first queued node, we find work available
1515 * If node was not signalled and event count not advanced on exit,
1516 * then we also help advance event count.
1517 *
1518 * @return {@code true} if node can be released
1519 */
1520 final boolean syncIsReleasable(WaitQueueNode node) {
1521 long prev = node.count;
1522 if (!Thread.interrupted() && node.thread != null &&
1523 (node.next != null ||
1524 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1525 eventCount == prev)
1526 return false;
1527 if (node.thread != null) {
1528 node.thread = null;
1529 long ec = eventCount;
1530 if (prev <= ec) // help signal
1531 casEventCount(ec, ec+1);
1532 }
1533 return true;
1534 }
1535
1536 /**
1537 * Returns {@code true} if a new sync event occurred since last
1538 * call to sync or this method, if so, updating caller's count.
1539 */
1540 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1541 long lc = w.lastEventCount;
1542 long ec = ensureSync();
1543 if (ec == lc)
1544 return false;
1545 w.lastEventCount = ec;
1546 return true;
1547 }
1548
1549 // Parallelism maintenance
1550
1551 /**
1552 * Decrements running count; if too low, adds spare.
1553 *
1554 * Conceptually, all we need to do here is add or resume a
1555 * spare thread when one is about to block (and remove or
1556 * suspend it later when unblocked -- see suspendIfSpare).
1557 * However, implementing this idea requires coping with
1558 * several problems: we have imperfect information about the
1559 * states of threads. Some count updates can and usually do
1560 * lag run state changes, despite arrangements to keep them
1561 * accurate (for example, when possible, updating counts
1562 * before signalling or resuming), especially when running on
1563 * dynamic JVMs that don't optimize the infrequent paths that
1564 * update counts. Generating too many threads can make these
1565 * problems become worse, because excess threads are more
1566 * likely to be context-switched with others, slowing them all
1567 * down, especially if there is no work available, so all are
1568 * busy scanning or idling. Also, excess spare threads can
1569 * only be suspended or removed when they are idle, not
1570 * immediately when they aren't needed. So adding threads will
1571 * raise parallelism level for longer than necessary. Also,
1572 * FJ applications often encounter highly transient peaks when
1573 * many threads are blocked joining, but for less time than it
1574 * takes to create or resume spares.
1575 *
1576 * @param joinMe if non-null, return early if done
1577 * @param maintainParallelism if true, try to stay within
1578 * target counts, else create only to avoid starvation
1579 * @return true if joinMe known to be done
1580 */
1581 final boolean preJoin(ForkJoinTask<?> joinMe,
1582 boolean maintainParallelism) {
1583 maintainParallelism &= maintainsParallelism; // overrride
1584 boolean dec = false; // true when running count decremented
1585 while (spareStack == null || !tryResumeSpare(dec)) {
1586 int counts = workerCounts;
1587 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1588 // CAS cheat
1589 if (!needSpare(counts, maintainParallelism))
1590 break;
1591 if (joinMe.status < 0)
1592 return true;
1593 if (tryAddSpare(counts))
1594 break;
1595 }
1596 }
1597 return false;
1598 }
1599
1600 /**
1601 * Same idea as preJoin
1602 */
1603 final boolean preBlock(ManagedBlocker blocker,
1604 boolean maintainParallelism) {
1605 maintainParallelism &= maintainsParallelism;
1606 boolean dec = false;
1607 while (spareStack == null || !tryResumeSpare(dec)) {
1608 int counts = workerCounts;
1609 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1610 if (!needSpare(counts, maintainParallelism))
1611 break;
1612 if (blocker.isReleasable())
1613 return true;
1614 if (tryAddSpare(counts))
1615 break;
1616 }
1617 }
1618 return false;
1619 }
1620
1621 /**
1622 * Returns {@code true} if a spare thread appears to be needed.
1623 * If maintaining parallelism, returns true when the deficit in
1624 * running threads is more than the surplus of total threads, and
1625 * there is apparently some work to do. This self-limiting rule
1626 * means that the more threads that have already been added, the
1627 * less parallelism we will tolerate before adding another.
1628 *
1629 * @param counts current worker counts
1630 * @param maintainParallelism try to maintain parallelism
1631 */
1632 private boolean needSpare(int counts, boolean maintainParallelism) {
1633 int ps = parallelism;
1634 int rc = runningCountOf(counts);
1635 int tc = totalCountOf(counts);
1636 int runningDeficit = ps - rc;
1637 int totalSurplus = tc - ps;
1638 return (tc < maxPoolSize &&
1639 (rc == 0 || totalSurplus < 0 ||
1640 (maintainParallelism &&
1641 runningDeficit > totalSurplus &&
1642 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1643 }
1644
1645 /**
1646 * Adds a spare worker if lock available and no more than the
1647 * expected numbers of threads exist.
1648 *
1649 * @return true if successful
1650 */
1651 private boolean tryAddSpare(int expectedCounts) {
1652 final ReentrantLock lock = this.workerLock;
1653 int expectedRunning = runningCountOf(expectedCounts);
1654 int expectedTotal = totalCountOf(expectedCounts);
1655 boolean success = false;
1656 boolean locked = false;
1657 // confirm counts while locking; CAS after obtaining lock
1658 try {
1659 for (;;) {
1660 int s = workerCounts;
1661 int tc = totalCountOf(s);
1662 int rc = runningCountOf(s);
1663 if (rc > expectedRunning || tc > expectedTotal)
1664 break;
1665 if (!locked && !(locked = lock.tryLock()))
1666 break;
1667 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1668 createAndStartSpare(tc);
1669 success = true;
1670 break;
1671 }
1672 }
1673 } finally {
1674 if (locked)
1675 lock.unlock();
1676 }
1677 return success;
1678 }
1679
1680 /**
1681 * Adds the kth spare worker. On entry, pool counts are already
1682 * adjusted to reflect addition.
1683 */
1684 private void createAndStartSpare(int k) {
1685 ForkJoinWorkerThread w = null;
1686 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1687 int len = ws.length;
1688 // Probably, we can place at slot k. If not, find empty slot
1689 if (k < len && ws[k] != null) {
1690 for (k = 0; k < len && ws[k] != null; ++k)
1691 ;
1692 }
1693 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1694 ws[k] = w;
1695 w.start();
1696 }
1697 else
1698 updateWorkerCount(-1); // adjust on failure
1699 signalIdleWorkers();
1700 }
1701
1702 /**
1703 * Suspends calling thread w if there are excess threads. Called
1704 * only from sync. Spares are enqueued in a Treiber stack using
1705 * the same WaitQueueNodes as barriers. They are resumed mainly
1706 * in preJoin, but are also woken on pool events that require all
1707 * threads to check run state.
1708 *
1709 * @param w the caller
1710 */
1711 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1712 WaitQueueNode node = null;
1713 int s;
1714 while (parallelism < runningCountOf(s = workerCounts)) {
1715 if (node == null)
1716 node = new WaitQueueNode(0, w);
1717 if (casWorkerCounts(s, s-1)) { // representation-dependent
1718 // push onto stack
1719 do {} while (!casSpareStack(node.next = spareStack, node));
1720 // block until released by resumeSpare
1721 node.awaitSpareRelease();
1722 return true;
1723 }
1724 }
1725 return false;
1726 }
1727
1728 /**
1729 * Tries to pop and resume a spare thread.
1730 *
1731 * @param updateCount if true, increment running count on success
1732 * @return true if successful
1733 */
1734 private boolean tryResumeSpare(boolean updateCount) {
1735 WaitQueueNode q;
1736 while ((q = spareStack) != null) {
1737 if (casSpareStack(q, q.next)) {
1738 if (updateCount)
1739 updateRunningCount(1);
1740 q.signal();
1741 return true;
1742 }
1743 }
1744 return false;
1745 }
1746
1747 /**
1748 * Pops and resumes all spare threads. Same idea as ensureSync.
1749 *
1750 * @return true if any spares released
1751 */
1752 private boolean resumeAllSpares() {
1753 WaitQueueNode q;
1754 while ( (q = spareStack) != null) {
1755 if (casSpareStack(q, null)) {
1756 do {
1757 updateRunningCount(1);
1758 q.signal();
1759 } while ((q = q.next) != null);
1760 return true;
1761 }
1762 }
1763 return false;
1764 }
1765
1766 /**
1767 * Pops and shuts down excessive spare threads. Call only while
1768 * holding lock. This is not guaranteed to eliminate all excess
1769 * threads, only those suspended as spares, which are the ones
1770 * unlikely to be needed in the future.
1771 */
1772 private void trimSpares() {
1773 int surplus = totalCountOf(workerCounts) - parallelism;
1774 WaitQueueNode q;
1775 while (surplus > 0 && (q = spareStack) != null) {
1776 if (casSpareStack(q, null)) {
1777 do {
1778 updateRunningCount(1);
1779 ForkJoinWorkerThread w = q.thread;
1780 if (w != null && surplus > 0 &&
1781 runningCountOf(workerCounts) > 0 && w.shutdown())
1782 --surplus;
1783 q.signal();
1784 } while ((q = q.next) != null);
1785 }
1786 }
1787 }
1788
1789 /**
1790 * Interface for extending managed parallelism for tasks running
1791 * in ForkJoinPools. A ManagedBlocker provides two methods.
1792 * Method {@code isReleasable} must return {@code true} if
1793 * blocking is not necessary. Method {@code block} blocks the
1794 * current thread if necessary (perhaps internally invoking
1795 * {@code isReleasable} before actually blocking.).
1796 *
1797 * <p>For example, here is a ManagedBlocker based on a
1798 * ReentrantLock:
1799 * <pre> {@code
1800 * class ManagedLocker implements ManagedBlocker {
1801 * final ReentrantLock lock;
1802 * boolean hasLock = false;
1803 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1804 * public boolean block() {
1805 * if (!hasLock)
1806 * lock.lock();
1807 * return true;
1808 * }
1809 * public boolean isReleasable() {
1810 * return hasLock || (hasLock = lock.tryLock());
1811 * }
1812 * }}</pre>
1813 */
1814 public static interface ManagedBlocker {
1815 /**
1816 * Possibly blocks the current thread, for example waiting for
1817 * a lock or condition.
1818 *
1819 * @return {@code true} if no additional blocking is necessary
1820 * (i.e., if isReleasable would return true)
1821 * @throws InterruptedException if interrupted while waiting
1822 * (the method is not required to do so, but is allowed to)
1823 */
1824 boolean block() throws InterruptedException;
1825
1826 /**
1827 * Returns {@code true} if blocking is unnecessary.
1828 */
1829 boolean isReleasable();
1830 }
1831
1832 /**
1833 * Blocks in accord with the given blocker. If the current thread
1834 * is a ForkJoinWorkerThread, this method possibly arranges for a
1835 * spare thread to be activated if necessary to ensure parallelism
1836 * while the current thread is blocked. If
1837 * {@code maintainParallelism} is {@code true} and the pool supports
1838 * it ({@link #getMaintainsParallelism}), this method attempts to
1839 * maintain the pool's nominal parallelism. Otherwise it activates
1840 * a thread only if necessary to avoid complete starvation. This
1841 * option may be preferable when blockages use timeouts, or are
1842 * almost always brief.
1843 *
1844 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1845 * equivalent to
1846 * <pre> {@code
1847 * while (!blocker.isReleasable())
1848 * if (blocker.block())
1849 * return;
1850 * }</pre>
1851 * If the caller is a ForkJoinTask, then the pool may first
1852 * be expanded to ensure parallelism, and later adjusted.
1853 *
1854 * @param blocker the blocker
1855 * @param maintainParallelism if {@code true} and supported by
1856 * this pool, attempt to maintain the pool's nominal parallelism;
1857 * otherwise activate a thread only if necessary to avoid
1858 * complete starvation.
1859 * @throws InterruptedException if blocker.block did so
1860 */
1861 public static void managedBlock(ManagedBlocker blocker,
1862 boolean maintainParallelism)
1863 throws InterruptedException {
1864 Thread t = Thread.currentThread();
1865 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1866 ((ForkJoinWorkerThread) t).pool : null);
1867 if (!blocker.isReleasable()) {
1868 try {
1869 if (pool == null ||
1870 !pool.preBlock(blocker, maintainParallelism))
1871 awaitBlocker(blocker);
1872 } finally {
1873 if (pool != null)
1874 pool.updateRunningCount(1);
1875 }
1876 }
1877 }
1878
1879 private static void awaitBlocker(ManagedBlocker blocker)
1880 throws InterruptedException {
1881 do {} while (!blocker.isReleasable() && !blocker.block());
1882 }
1883
1884 // AbstractExecutorService overrides
1885
1886 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1887 return new AdaptedRunnable<T>(runnable, value);
1888 }
1889
1890 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1891 return new AdaptedCallable<T>(callable);
1892 }
1893
1894 // Unsafe mechanics
1895
1896 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1897 private static final long eventCountOffset =
1898 objectFieldOffset("eventCount", ForkJoinPool.class);
1899 private static final long workerCountsOffset =
1900 objectFieldOffset("workerCounts", ForkJoinPool.class);
1901 private static final long runControlOffset =
1902 objectFieldOffset("runControl", ForkJoinPool.class);
1903 private static final long syncStackOffset =
1904 objectFieldOffset("syncStack",ForkJoinPool.class);
1905 private static final long spareStackOffset =
1906 objectFieldOffset("spareStack", ForkJoinPool.class);
1907
1908 private boolean casEventCount(long cmp, long val) {
1909 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1910 }
1911 private boolean casWorkerCounts(int cmp, int val) {
1912 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1913 }
1914 private boolean casRunControl(int cmp, int val) {
1915 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1916 }
1917 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1919 }
1920 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1921 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1922 }
1923
1924 private static long objectFieldOffset(String field, Class<?> klazz) {
1925 try {
1926 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1927 } catch (NoSuchFieldException e) {
1928 // Convert Exception to corresponding Error
1929 NoSuchFieldError error = new NoSuchFieldError(field);
1930 error.initCause(e);
1931 throw error;
1932 }
1933 }
1934
1935 /**
1936 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1937 * Replace with a simple call to Unsafe.getUnsafe when integrating
1938 * into a jdk.
1939 *
1940 * @return a sun.misc.Unsafe
1941 */
1942 private static sun.misc.Unsafe getUnsafe() {
1943 try {
1944 return sun.misc.Unsafe.getUnsafe();
1945 } catch (SecurityException se) {
1946 try {
1947 return java.security.AccessController.doPrivileged
1948 (new java.security
1949 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1950 public sun.misc.Unsafe run() throws Exception {
1951 java.lang.reflect.Field f = sun.misc
1952 .Unsafe.class.getDeclaredField("theUnsafe");
1953 f.setAccessible(true);
1954 return (sun.misc.Unsafe) f.get(null);
1955 }});
1956 } catch (java.security.PrivilegedActionException e) {
1957 throw new RuntimeException("Could not initialize intrinsics",
1958 e.getCause());
1959 }
1960 }
1961 }
1962 }