ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.39
Committed: Sun Aug 2 17:55:51 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.38: +29 -28 lines
Log Message:
@code-ify

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask}s, as well as management and
26 * monitoring operations. Normally a single {@code ForkJoinPool} is
27 * used for a large number of submitted tasks. Otherwise, use would
28 * not usually outweigh the construction and bookkeeping overhead of
29 * creating a large set of threads.
30 *
31 * <p>{@code ForkJoinPool}s differ from other kinds of {@link
32 * Executor}s mainly in that they provide <em>work-stealing</em>: all
33 * threads in the pool attempt to find and execute subtasks created by
34 * other active tasks (eventually blocking if none exist). This makes
35 * them efficient when most tasks spawn other subtasks (as do most
36 * {@code ForkJoinTask}s), as well as the mixed execution of some
37 * plain {@code Runnable}- or {@code Callable}- based activities along
38 * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
39 * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 * with fine-grained tasks that are never joined. Otherwise, other
41 * {@code ExecutorService} implementations are typically more
42 * appropriate choices.
43 *
44 * <p>A {@code ForkJoinPool} may be constructed with a given
45 * parallelism level (target pool size), which it attempts to maintain
46 * by dynamically adding, suspending, or resuming threads, even if
47 * some tasks are waiting to join others. However, no such adjustments
48 * are performed in the face of blocked IO or other unmanaged
49 * synchronization. The nested {@link ManagedBlocker} interface
50 * enables extension of the kinds of synchronization accommodated.
51 * The target parallelism level may also be changed dynamically
52 * ({@link #setParallelism}) and thread construction can be limited
53 * using methods {@link #setMaximumPoolSize} and/or {@link
54 * #setMaintainsParallelism}.
55 *
56 * <p>In addition to execution and lifecycle control methods, this
57 * class provides status check methods (for example
58 * {@link #getStealCount}) that are intended to aid in developing,
59 * tuning, and monitoring fork/join applications. Also, method
60 * {@link #toString} returns indications of pool state in a
61 * convenient form for informal monitoring.
62 *
63 * <p><b>Implementation notes</b>: This implementation restricts the
64 * maximum number of running threads to 32767. Attempts to create
65 * pools with greater than the maximum result in
66 * {@code IllegalArgumentException}.
67 *
68 * @since 1.7
69 * @author Doug Lea
70 */
71 public class ForkJoinPool extends AbstractExecutorService {
72
73 /*
74 * See the extended comments interspersed below for design,
75 * rationale, and walkthroughs.
76 */
77
78 /** Mask for packing and unpacking shorts */
79 private static final int shortMask = 0xffff;
80
81 /** Max pool size -- must be a power of two minus 1 */
82 private static final int MAX_THREADS = 0x7FFF;
83
84 /**
85 * Factory for creating new {@link ForkJoinWorkerThread}s.
86 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
87 * for {@code ForkJoinWorkerThread} subclasses that extend base
88 * functionality or initialize threads with different contexts.
89 */
90 public static interface ForkJoinWorkerThreadFactory {
91 /**
92 * Returns a new worker thread operating in the given pool.
93 *
94 * @param pool the pool this thread works in
95 * @throws NullPointerException if pool is null
96 */
97 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
98 }
99
100 /**
101 * Default ForkJoinWorkerThreadFactory implementation; creates a
102 * new ForkJoinWorkerThread.
103 */
104 static class DefaultForkJoinWorkerThreadFactory
105 implements ForkJoinWorkerThreadFactory {
106 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
107 try {
108 return new ForkJoinWorkerThread(pool);
109 } catch (OutOfMemoryError oom) {
110 return null;
111 }
112 }
113 }
114
115 /**
116 * Creates a new ForkJoinWorkerThread. This factory is used unless
117 * overridden in ForkJoinPool constructors.
118 */
119 public static final ForkJoinWorkerThreadFactory
120 defaultForkJoinWorkerThreadFactory =
121 new DefaultForkJoinWorkerThreadFactory();
122
123 /**
124 * Permission required for callers of methods that may start or
125 * kill threads.
126 */
127 private static final RuntimePermission modifyThreadPermission =
128 new RuntimePermission("modifyThread");
129
130 /**
131 * If there is a security manager, makes sure caller has
132 * permission to modify threads.
133 */
134 private static void checkPermission() {
135 SecurityManager security = System.getSecurityManager();
136 if (security != null)
137 security.checkPermission(modifyThreadPermission);
138 }
139
140 /**
141 * Generator for assigning sequence numbers as pool names.
142 */
143 private static final AtomicInteger poolNumberGenerator =
144 new AtomicInteger();
145
146 /**
147 * Array holding all worker threads in the pool. Initialized upon
148 * first use. Array size must be a power of two. Updates and
149 * replacements are protected by workerLock, but it is always kept
150 * in a consistent enough state to be randomly accessed without
151 * locking by workers performing work-stealing.
152 */
153 volatile ForkJoinWorkerThread[] workers;
154
155 /**
156 * Lock protecting access to workers.
157 */
158 private final ReentrantLock workerLock;
159
160 /**
161 * Condition for awaitTermination.
162 */
163 private final Condition termination;
164
165 /**
166 * The uncaught exception handler used when any worker
167 * abruptly terminates
168 */
169 private Thread.UncaughtExceptionHandler ueh;
170
171 /**
172 * Creation factory for worker threads.
173 */
174 private final ForkJoinWorkerThreadFactory factory;
175
176 /**
177 * Head of stack of threads that were created to maintain
178 * parallelism when other threads blocked, but have since
179 * suspended when the parallelism level rose.
180 */
181 private volatile WaitQueueNode spareStack;
182
183 /**
184 * Sum of per-thread steal counts, updated only when threads are
185 * idle or terminating.
186 */
187 private final AtomicLong stealCount;
188
189 /**
190 * Queue for external submissions.
191 */
192 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
193
194 /**
195 * Head of Treiber stack for barrier sync. See below for explanation.
196 */
197 private volatile WaitQueueNode syncStack;
198
199 /**
200 * The count for event barrier
201 */
202 private volatile long eventCount;
203
204 /**
205 * Pool number, just for assigning useful names to worker threads
206 */
207 private final int poolNumber;
208
209 /**
210 * The maximum allowed pool size
211 */
212 private volatile int maxPoolSize;
213
214 /**
215 * The desired parallelism level, updated only under workerLock.
216 */
217 private volatile int parallelism;
218
219 /**
220 * True if use local fifo, not default lifo, for local polling
221 */
222 private volatile boolean locallyFifo;
223
224 /**
225 * Holds number of total (i.e., created and not yet terminated)
226 * and running (i.e., not blocked on joins or other managed sync)
227 * threads, packed into one int to ensure consistent snapshot when
228 * making decisions about creating and suspending spare
229 * threads. Updated only by CAS. Note: CASes in
230 * updateRunningCount and preJoin assume that running active count
231 * is in low word, so need to be modified if this changes.
232 */
233 private volatile int workerCounts;
234
235 private static int totalCountOf(int s) { return s >>> 16; }
236 private static int runningCountOf(int s) { return s & shortMask; }
237 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
238
239 /**
240 * Adds delta (which may be negative) to running count. This must
241 * be called before (with negative arg) and after (with positive)
242 * any managed synchronization (i.e., mainly, joins).
243 *
244 * @param delta the number to add
245 */
246 final void updateRunningCount(int delta) {
247 int s;
248 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
249 }
250
251 /**
252 * Adds delta (which may be negative) to both total and running
253 * count. This must be called upon creation and termination of
254 * worker threads.
255 *
256 * @param delta the number to add
257 */
258 private void updateWorkerCount(int delta) {
259 int d = delta + (delta << 16); // add to both lo and hi parts
260 int s;
261 do {} while (!casWorkerCounts(s = workerCounts, s + d));
262 }
263
264 /**
265 * Lifecycle control. High word contains runState, low word
266 * contains the number of workers that are (probably) executing
267 * tasks. This value is atomically incremented before a worker
268 * gets a task to run, and decremented when worker has no tasks
269 * and cannot find any. These two fields are bundled together to
270 * support correct termination triggering. Note: activeCount
271 * CAS'es cheat by assuming active count is in low word, so need
272 * to be modified if this changes
273 */
274 private volatile int runControl;
275
276 // RunState values. Order among values matters
277 private static final int RUNNING = 0;
278 private static final int SHUTDOWN = 1;
279 private static final int TERMINATING = 2;
280 private static final int TERMINATED = 3;
281
282 private static int runStateOf(int c) { return c >>> 16; }
283 private static int activeCountOf(int c) { return c & shortMask; }
284 private static int runControlFor(int r, int a) { return (r << 16) + a; }
285
286 /**
287 * Tries incrementing active count; fails on contention.
288 * Called by workers before/during executing tasks.
289 *
290 * @return true on success
291 */
292 final boolean tryIncrementActiveCount() {
293 int c = runControl;
294 return casRunControl(c, c+1);
295 }
296
297 /**
298 * Tries decrementing active count; fails on contention.
299 * Possibly triggers termination on success.
300 * Called by workers when they can't find tasks.
301 *
302 * @return true on success
303 */
304 final boolean tryDecrementActiveCount() {
305 int c = runControl;
306 int nextc = c - 1;
307 if (!casRunControl(c, nextc))
308 return false;
309 if (canTerminateOnShutdown(nextc))
310 terminateOnShutdown();
311 return true;
312 }
313
314 /**
315 * Returns {@code true} if argument represents zero active count
316 * and nonzero runstate, which is the triggering condition for
317 * terminating on shutdown.
318 */
319 private static boolean canTerminateOnShutdown(int c) {
320 // i.e. least bit is nonzero runState bit
321 return ((c & -c) >>> 16) != 0;
322 }
323
324 /**
325 * Transition run state to at least the given state. Return true
326 * if not already at least given state.
327 */
328 private boolean transitionRunStateTo(int state) {
329 for (;;) {
330 int c = runControl;
331 if (runStateOf(c) >= state)
332 return false;
333 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
334 return true;
335 }
336 }
337
338 /**
339 * Controls whether to add spares to maintain parallelism
340 */
341 private volatile boolean maintainsParallelism;
342
343 // Constructors
344
345 /**
346 * Creates a ForkJoinPool with a pool size equal to the number of
347 * processors available on the system, using the default
348 * ForkJoinWorkerThreadFactory.
349 *
350 * @throws SecurityException if a security manager exists and
351 * the caller is not permitted to modify threads
352 * because it does not hold {@link
353 * java.lang.RuntimePermission}{@code ("modifyThread")}
354 */
355 public ForkJoinPool() {
356 this(Runtime.getRuntime().availableProcessors(),
357 defaultForkJoinWorkerThreadFactory);
358 }
359
360 /**
361 * Creates a ForkJoinPool with the indicated parallelism level
362 * threads and using the default ForkJoinWorkerThreadFactory.
363 *
364 * @param parallelism the number of worker threads
365 * @throws IllegalArgumentException if parallelism less than or
366 * equal to zero
367 * @throws SecurityException if a security manager exists and
368 * the caller is not permitted to modify threads
369 * because it does not hold {@link
370 * java.lang.RuntimePermission}{@code ("modifyThread")}
371 */
372 public ForkJoinPool(int parallelism) {
373 this(parallelism, defaultForkJoinWorkerThreadFactory);
374 }
375
376 /**
377 * Creates a ForkJoinPool with parallelism equal to the number of
378 * processors available on the system and using the given
379 * ForkJoinWorkerThreadFactory.
380 *
381 * @param factory the factory for creating new threads
382 * @throws NullPointerException if factory is null
383 * @throws SecurityException if a security manager exists and
384 * the caller is not permitted to modify threads
385 * because it does not hold {@link
386 * java.lang.RuntimePermission}{@code ("modifyThread")}
387 */
388 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
389 this(Runtime.getRuntime().availableProcessors(), factory);
390 }
391
392 /**
393 * Creates a ForkJoinPool with the given parallelism and factory.
394 *
395 * @param parallelism the targeted number of worker threads
396 * @param factory the factory for creating new threads
397 * @throws IllegalArgumentException if parallelism less than or
398 * equal to zero, or greater than implementation limit
399 * @throws NullPointerException if factory is null
400 * @throws SecurityException if a security manager exists and
401 * the caller is not permitted to modify threads
402 * because it does not hold {@link
403 * java.lang.RuntimePermission}{@code ("modifyThread")}
404 */
405 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
406 if (parallelism <= 0 || parallelism > MAX_THREADS)
407 throw new IllegalArgumentException();
408 if (factory == null)
409 throw new NullPointerException();
410 checkPermission();
411 this.factory = factory;
412 this.parallelism = parallelism;
413 this.maxPoolSize = MAX_THREADS;
414 this.maintainsParallelism = true;
415 this.poolNumber = poolNumberGenerator.incrementAndGet();
416 this.workerLock = new ReentrantLock();
417 this.termination = workerLock.newCondition();
418 this.stealCount = new AtomicLong();
419 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
420 // worker array and workers are lazily constructed
421 }
422
423 /**
424 * Creates a new worker thread using factory.
425 *
426 * @param index the index to assign worker
427 * @return new worker, or null of factory failed
428 */
429 private ForkJoinWorkerThread createWorker(int index) {
430 Thread.UncaughtExceptionHandler h = ueh;
431 ForkJoinWorkerThread w = factory.newThread(this);
432 if (w != null) {
433 w.poolIndex = index;
434 w.setDaemon(true);
435 w.setAsyncMode(locallyFifo);
436 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
437 if (h != null)
438 w.setUncaughtExceptionHandler(h);
439 }
440 return w;
441 }
442
443 /**
444 * Returns a good size for worker array given pool size.
445 * Currently requires size to be a power of two.
446 */
447 private static int arraySizeFor(int poolSize) {
448 return (poolSize <= 1) ? 1 :
449 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
450 }
451
452 /**
453 * Creates or resizes array if necessary to hold newLength.
454 * Call only under exclusion.
455 *
456 * @return the array
457 */
458 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
459 ForkJoinWorkerThread[] ws = workers;
460 if (ws == null)
461 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
462 else if (newLength > ws.length)
463 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
464 else
465 return ws;
466 }
467
468 /**
469 * Tries to shrink workers into smaller array after one or more terminate.
470 */
471 private void tryShrinkWorkerArray() {
472 ForkJoinWorkerThread[] ws = workers;
473 if (ws != null) {
474 int len = ws.length;
475 int last = len - 1;
476 while (last >= 0 && ws[last] == null)
477 --last;
478 int newLength = arraySizeFor(last+1);
479 if (newLength < len)
480 workers = Arrays.copyOf(ws, newLength);
481 }
482 }
483
484 /**
485 * Initializes workers if necessary.
486 */
487 final void ensureWorkerInitialization() {
488 ForkJoinWorkerThread[] ws = workers;
489 if (ws == null) {
490 final ReentrantLock lock = this.workerLock;
491 lock.lock();
492 try {
493 ws = workers;
494 if (ws == null) {
495 int ps = parallelism;
496 ws = ensureWorkerArrayCapacity(ps);
497 for (int i = 0; i < ps; ++i) {
498 ForkJoinWorkerThread w = createWorker(i);
499 if (w != null) {
500 ws[i] = w;
501 w.start();
502 updateWorkerCount(1);
503 }
504 }
505 }
506 } finally {
507 lock.unlock();
508 }
509 }
510 }
511
512 /**
513 * Worker creation and startup for threads added via setParallelism.
514 */
515 private void createAndStartAddedWorkers() {
516 resumeAllSpares(); // Allow spares to convert to nonspare
517 int ps = parallelism;
518 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
519 int len = ws.length;
520 // Sweep through slots, to keep lowest indices most populated
521 int k = 0;
522 while (k < len) {
523 if (ws[k] != null) {
524 ++k;
525 continue;
526 }
527 int s = workerCounts;
528 int tc = totalCountOf(s);
529 int rc = runningCountOf(s);
530 if (rc >= ps || tc >= ps)
531 break;
532 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
533 ForkJoinWorkerThread w = createWorker(k);
534 if (w != null) {
535 ws[k++] = w;
536 w.start();
537 }
538 else {
539 updateWorkerCount(-1); // back out on failed creation
540 break;
541 }
542 }
543 }
544 }
545
546 // Execution methods
547
548 /**
549 * Common code for execute, invoke and submit
550 */
551 private <T> void doSubmit(ForkJoinTask<T> task) {
552 if (task == null)
553 throw new NullPointerException();
554 if (isShutdown())
555 throw new RejectedExecutionException();
556 if (workers == null)
557 ensureWorkerInitialization();
558 submissionQueue.offer(task);
559 signalIdleWorkers();
560 }
561
562 /**
563 * Performs the given task, returning its result upon completion.
564 *
565 * @param task the task
566 * @return the task's result
567 * @throws NullPointerException if task is null
568 * @throws RejectedExecutionException if pool is shut down
569 */
570 public <T> T invoke(ForkJoinTask<T> task) {
571 doSubmit(task);
572 return task.join();
573 }
574
575 /**
576 * Arranges for (asynchronous) execution of the given task.
577 *
578 * @param task the task
579 * @throws NullPointerException if task is null
580 * @throws RejectedExecutionException if pool is shut down
581 */
582 public void execute(ForkJoinTask<?> task) {
583 doSubmit(task);
584 }
585
586 // AbstractExecutorService methods
587
588 public void execute(Runnable task) {
589 ForkJoinTask<?> job;
590 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
591 job = (ForkJoinTask<?>) task;
592 else
593 job = ForkJoinTask.adapt(task, null);
594 doSubmit(job);
595 }
596
597 public <T> ForkJoinTask<T> submit(Callable<T> task) {
598 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
599 doSubmit(job);
600 return job;
601 }
602
603 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
604 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
605 doSubmit(job);
606 return job;
607 }
608
609 public ForkJoinTask<?> submit(Runnable task) {
610 ForkJoinTask<?> job;
611 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
612 job = (ForkJoinTask<?>) task;
613 else
614 job = ForkJoinTask.adapt(task, null);
615 doSubmit(job);
616 return job;
617 }
618
619 /**
620 * Submits a ForkJoinTask for execution.
621 *
622 * @param task the task to submit
623 * @return the task
624 * @throws RejectedExecutionException if the task cannot be
625 * scheduled for execution
626 * @throws NullPointerException if the task is null
627 */
628 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
629 doSubmit(task);
630 return task;
631 }
632
633
634 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
635 ArrayList<ForkJoinTask<T>> forkJoinTasks =
636 new ArrayList<ForkJoinTask<T>>(tasks.size());
637 for (Callable<T> task : tasks)
638 forkJoinTasks.add(ForkJoinTask.adapt(task));
639 invoke(new InvokeAll<T>(forkJoinTasks));
640
641 @SuppressWarnings({"unchecked", "rawtypes"})
642 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
643 return futures;
644 }
645
646 static final class InvokeAll<T> extends RecursiveAction {
647 final ArrayList<ForkJoinTask<T>> tasks;
648 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
649 public void compute() {
650 try { invokeAll(tasks); }
651 catch (Exception ignore) {}
652 }
653 private static final long serialVersionUID = -7914297376763021607L;
654 }
655
656 // Configuration and status settings and queries
657
658 /**
659 * Returns the factory used for constructing new workers.
660 *
661 * @return the factory used for constructing new workers
662 */
663 public ForkJoinWorkerThreadFactory getFactory() {
664 return factory;
665 }
666
667 /**
668 * Returns the handler for internal worker threads that terminate
669 * due to unrecoverable errors encountered while executing tasks.
670 *
671 * @return the handler, or {@code null} if none
672 */
673 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
674 Thread.UncaughtExceptionHandler h;
675 final ReentrantLock lock = this.workerLock;
676 lock.lock();
677 try {
678 h = ueh;
679 } finally {
680 lock.unlock();
681 }
682 return h;
683 }
684
685 /**
686 * Sets the handler for internal worker threads that terminate due
687 * to unrecoverable errors encountered while executing tasks.
688 * Unless set, the current default or ThreadGroup handler is used
689 * as handler.
690 *
691 * @param h the new handler
692 * @return the old handler, or {@code null} if none
693 * @throws SecurityException if a security manager exists and
694 * the caller is not permitted to modify threads
695 * because it does not hold {@link
696 * java.lang.RuntimePermission}{@code ("modifyThread")}
697 */
698 public Thread.UncaughtExceptionHandler
699 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700 checkPermission();
701 Thread.UncaughtExceptionHandler old = null;
702 final ReentrantLock lock = this.workerLock;
703 lock.lock();
704 try {
705 old = ueh;
706 ueh = h;
707 ForkJoinWorkerThread[] ws = workers;
708 if (ws != null) {
709 for (int i = 0; i < ws.length; ++i) {
710 ForkJoinWorkerThread w = ws[i];
711 if (w != null)
712 w.setUncaughtExceptionHandler(h);
713 }
714 }
715 } finally {
716 lock.unlock();
717 }
718 return old;
719 }
720
721
722 /**
723 * Sets the target parallelism level of this pool.
724 *
725 * @param parallelism the target parallelism
726 * @throws IllegalArgumentException if parallelism less than or
727 * equal to zero or greater than maximum size bounds
728 * @throws SecurityException if a security manager exists and
729 * the caller is not permitted to modify threads
730 * because it does not hold {@link
731 * java.lang.RuntimePermission}{@code ("modifyThread")}
732 */
733 public void setParallelism(int parallelism) {
734 checkPermission();
735 if (parallelism <= 0 || parallelism > maxPoolSize)
736 throw new IllegalArgumentException();
737 final ReentrantLock lock = this.workerLock;
738 lock.lock();
739 try {
740 if (!isTerminating()) {
741 int p = this.parallelism;
742 this.parallelism = parallelism;
743 if (parallelism > p)
744 createAndStartAddedWorkers();
745 else
746 trimSpares();
747 }
748 } finally {
749 lock.unlock();
750 }
751 signalIdleWorkers();
752 }
753
754 /**
755 * Returns the targeted number of worker threads in this pool.
756 *
757 * @return the targeted number of worker threads in this pool
758 */
759 public int getParallelism() {
760 return parallelism;
761 }
762
763 /**
764 * Returns the number of worker threads that have started but not
765 * yet terminated. This result returned by this method may differ
766 * from {@link #getParallelism} when threads are created to
767 * maintain parallelism when others are cooperatively blocked.
768 *
769 * @return the number of worker threads
770 */
771 public int getPoolSize() {
772 return totalCountOf(workerCounts);
773 }
774
775 /**
776 * Returns the maximum number of threads allowed to exist in the
777 * pool, even if there are insufficient unblocked running threads.
778 *
779 * @return the maximum
780 */
781 public int getMaximumPoolSize() {
782 return maxPoolSize;
783 }
784
785 /**
786 * Sets the maximum number of threads allowed to exist in the
787 * pool, even if there are insufficient unblocked running threads.
788 * Setting this value has no effect on current pool size. It
789 * controls construction of new threads.
790 *
791 * @throws IllegalArgumentException if negative or greater than
792 * internal implementation limit
793 */
794 public void setMaximumPoolSize(int newMax) {
795 if (newMax < 0 || newMax > MAX_THREADS)
796 throw new IllegalArgumentException();
797 maxPoolSize = newMax;
798 }
799
800
801 /**
802 * Returns {@code true} if this pool dynamically maintains its
803 * target parallelism level. If false, new threads are added only
804 * to avoid possible starvation. This setting is by default true.
805 *
806 * @return {@code true} if maintains parallelism
807 */
808 public boolean getMaintainsParallelism() {
809 return maintainsParallelism;
810 }
811
812 /**
813 * Sets whether this pool dynamically maintains its target
814 * parallelism level. If false, new threads are added only to
815 * avoid possible starvation.
816 *
817 * @param enable {@code true} to maintain parallelism
818 */
819 public void setMaintainsParallelism(boolean enable) {
820 maintainsParallelism = enable;
821 }
822
823 /**
824 * Establishes local first-in-first-out scheduling mode for forked
825 * tasks that are never joined. This mode may be more appropriate
826 * than default locally stack-based mode in applications in which
827 * worker threads only process asynchronous tasks. This method is
828 * designed to be invoked only when the pool is quiescent, and
829 * typically only before any tasks are submitted. The effects of
830 * invocations at other times may be unpredictable.
831 *
832 * @param async if {@code true}, use locally FIFO scheduling
833 * @return the previous mode
834 * @see #getAsyncMode
835 */
836 public boolean setAsyncMode(boolean async) {
837 boolean oldMode = locallyFifo;
838 locallyFifo = async;
839 ForkJoinWorkerThread[] ws = workers;
840 if (ws != null) {
841 for (int i = 0; i < ws.length; ++i) {
842 ForkJoinWorkerThread t = ws[i];
843 if (t != null)
844 t.setAsyncMode(async);
845 }
846 }
847 return oldMode;
848 }
849
850 /**
851 * Returns {@code true} if this pool uses local first-in-first-out
852 * scheduling mode for forked tasks that are never joined.
853 *
854 * @return {@code true} if this pool uses async mode
855 * @see #setAsyncMode
856 */
857 public boolean getAsyncMode() {
858 return locallyFifo;
859 }
860
861 /**
862 * Returns an estimate of the number of worker threads that are
863 * not blocked waiting to join tasks or for other managed
864 * synchronization.
865 *
866 * @return the number of worker threads
867 */
868 public int getRunningThreadCount() {
869 return runningCountOf(workerCounts);
870 }
871
872 /**
873 * Returns an estimate of the number of threads that are currently
874 * stealing or executing tasks. This method may overestimate the
875 * number of active threads.
876 *
877 * @return the number of active threads
878 */
879 public int getActiveThreadCount() {
880 return activeCountOf(runControl);
881 }
882
883 /**
884 * Returns an estimate of the number of threads that are currently
885 * idle waiting for tasks. This method may underestimate the
886 * number of idle threads.
887 *
888 * @return the number of idle threads
889 */
890 final int getIdleThreadCount() {
891 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
892 return (c <= 0) ? 0 : c;
893 }
894
895 /**
896 * Returns {@code true} if all worker threads are currently idle.
897 * An idle worker is one that cannot obtain a task to execute
898 * because none are available to steal from other threads, and
899 * there are no pending submissions to the pool. This method is
900 * conservative; it might not return {@code true} immediately upon
901 * idleness of all threads, but will eventually become true if
902 * threads remain inactive.
903 *
904 * @return {@code true} if all threads are currently idle
905 */
906 public boolean isQuiescent() {
907 return activeCountOf(runControl) == 0;
908 }
909
910 /**
911 * Returns an estimate of the total number of tasks stolen from
912 * one thread's work queue by another. The reported value
913 * underestimates the actual total number of steals when the pool
914 * is not quiescent. This value may be useful for monitoring and
915 * tuning fork/join programs: in general, steal counts should be
916 * high enough to keep threads busy, but low enough to avoid
917 * overhead and contention across threads.
918 *
919 * @return the number of steals
920 */
921 public long getStealCount() {
922 return stealCount.get();
923 }
924
925 /**
926 * Accumulates steal count from a worker.
927 * Call only when worker known to be idle.
928 */
929 private void updateStealCount(ForkJoinWorkerThread w) {
930 int sc = w.getAndClearStealCount();
931 if (sc != 0)
932 stealCount.addAndGet(sc);
933 }
934
935 /**
936 * Returns an estimate of the total number of tasks currently held
937 * in queues by worker threads (but not including tasks submitted
938 * to the pool that have not begun executing). This value is only
939 * an approximation, obtained by iterating across all threads in
940 * the pool. This method may be useful for tuning task
941 * granularities.
942 *
943 * @return the number of queued tasks
944 */
945 public long getQueuedTaskCount() {
946 long count = 0;
947 ForkJoinWorkerThread[] ws = workers;
948 if (ws != null) {
949 for (int i = 0; i < ws.length; ++i) {
950 ForkJoinWorkerThread t = ws[i];
951 if (t != null)
952 count += t.getQueueSize();
953 }
954 }
955 return count;
956 }
957
958 /**
959 * Returns an estimate of the number tasks submitted to this pool
960 * that have not yet begun executing. This method takes time
961 * proportional to the number of submissions.
962 *
963 * @return the number of queued submissions
964 */
965 public int getQueuedSubmissionCount() {
966 return submissionQueue.size();
967 }
968
969 /**
970 * Returns {@code true} if there are any tasks submitted to this
971 * pool that have not yet begun executing.
972 *
973 * @return {@code true} if there are any queued submissions
974 */
975 public boolean hasQueuedSubmissions() {
976 return !submissionQueue.isEmpty();
977 }
978
979 /**
980 * Removes and returns the next unexecuted submission if one is
981 * available. This method may be useful in extensions to this
982 * class that re-assign work in systems with multiple pools.
983 *
984 * @return the next submission, or {@code null} if none
985 */
986 protected ForkJoinTask<?> pollSubmission() {
987 return submissionQueue.poll();
988 }
989
990 /**
991 * Removes all available unexecuted submitted and forked tasks
992 * from scheduling queues and adds them to the given collection,
993 * without altering their execution status. These may include
994 * artificially generated or wrapped tasks. This method is designed
995 * to be invoked only when the pool is known to be
996 * quiescent. Invocations at other times may not remove all
997 * tasks. A failure encountered while attempting to add elements
998 * to collection {@code c} may result in elements being in
999 * neither, either or both collections when the associated
1000 * exception is thrown. The behavior of this operation is
1001 * undefined if the specified collection is modified while the
1002 * operation is in progress.
1003 *
1004 * @param c the collection to transfer elements into
1005 * @return the number of elements transferred
1006 */
1007 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1008 int n = submissionQueue.drainTo(c);
1009 ForkJoinWorkerThread[] ws = workers;
1010 if (ws != null) {
1011 for (int i = 0; i < ws.length; ++i) {
1012 ForkJoinWorkerThread w = ws[i];
1013 if (w != null)
1014 n += w.drainTasksTo(c);
1015 }
1016 }
1017 return n;
1018 }
1019
1020 /**
1021 * Returns a string identifying this pool, as well as its state,
1022 * including indications of run state, parallelism level, and
1023 * worker and task counts.
1024 *
1025 * @return a string identifying this pool, as well as its state
1026 */
1027 public String toString() {
1028 int ps = parallelism;
1029 int wc = workerCounts;
1030 int rc = runControl;
1031 long st = getStealCount();
1032 long qt = getQueuedTaskCount();
1033 long qs = getQueuedSubmissionCount();
1034 return super.toString() +
1035 "[" + runStateToString(runStateOf(rc)) +
1036 ", parallelism = " + ps +
1037 ", size = " + totalCountOf(wc) +
1038 ", active = " + activeCountOf(rc) +
1039 ", running = " + runningCountOf(wc) +
1040 ", steals = " + st +
1041 ", tasks = " + qt +
1042 ", submissions = " + qs +
1043 "]";
1044 }
1045
1046 private static String runStateToString(int rs) {
1047 switch(rs) {
1048 case RUNNING: return "Running";
1049 case SHUTDOWN: return "Shutting down";
1050 case TERMINATING: return "Terminating";
1051 case TERMINATED: return "Terminated";
1052 default: throw new Error("Unknown run state");
1053 }
1054 }
1055
1056 // lifecycle control
1057
1058 /**
1059 * Initiates an orderly shutdown in which previously submitted
1060 * tasks are executed, but no new tasks will be accepted.
1061 * Invocation has no additional effect if already shut down.
1062 * Tasks that are in the process of being submitted concurrently
1063 * during the course of this method may or may not be rejected.
1064 *
1065 * @throws SecurityException if a security manager exists and
1066 * the caller is not permitted to modify threads
1067 * because it does not hold {@link
1068 * java.lang.RuntimePermission}{@code ("modifyThread")}
1069 */
1070 public void shutdown() {
1071 checkPermission();
1072 transitionRunStateTo(SHUTDOWN);
1073 if (canTerminateOnShutdown(runControl)) {
1074 if (workers == null) { // shutting down before workers created
1075 final ReentrantLock lock = this.workerLock;
1076 lock.lock();
1077 try {
1078 if (workers == null) {
1079 terminate();
1080 transitionRunStateTo(TERMINATED);
1081 termination.signalAll();
1082 }
1083 } finally {
1084 lock.unlock();
1085 }
1086 }
1087 terminateOnShutdown();
1088 }
1089 }
1090
1091 /**
1092 * Attempts to stop all actively executing tasks, and cancels all
1093 * waiting tasks. Tasks that are in the process of being
1094 * submitted or executed concurrently during the course of this
1095 * method may or may not be rejected. Unlike some other executors,
1096 * this method cancels rather than collects non-executed tasks
1097 * upon termination, so always returns an empty list. However, you
1098 * can use method {@link #drainTasksTo} before invoking this
1099 * method to transfer unexecuted tasks to another collection.
1100 *
1101 * @return an empty list
1102 * @throws SecurityException if a security manager exists and
1103 * the caller is not permitted to modify threads
1104 * because it does not hold {@link
1105 * java.lang.RuntimePermission}{@code ("modifyThread")}
1106 */
1107 public List<Runnable> shutdownNow() {
1108 checkPermission();
1109 terminate();
1110 return Collections.emptyList();
1111 }
1112
1113 /**
1114 * Returns {@code true} if all tasks have completed following shut down.
1115 *
1116 * @return {@code true} if all tasks have completed following shut down
1117 */
1118 public boolean isTerminated() {
1119 return runStateOf(runControl) == TERMINATED;
1120 }
1121
1122 /**
1123 * Returns {@code true} if the process of termination has
1124 * commenced but possibly not yet completed.
1125 *
1126 * @return {@code true} if terminating
1127 */
1128 public boolean isTerminating() {
1129 return runStateOf(runControl) >= TERMINATING;
1130 }
1131
1132 /**
1133 * Returns {@code true} if this pool has been shut down.
1134 *
1135 * @return {@code true} if this pool has been shut down
1136 */
1137 public boolean isShutdown() {
1138 return runStateOf(runControl) >= SHUTDOWN;
1139 }
1140
1141 /**
1142 * Blocks until all tasks have completed execution after a shutdown
1143 * request, or the timeout occurs, or the current thread is
1144 * interrupted, whichever happens first.
1145 *
1146 * @param timeout the maximum time to wait
1147 * @param unit the time unit of the timeout argument
1148 * @return {@code true} if this executor terminated and
1149 * {@code false} if the timeout elapsed before termination
1150 * @throws InterruptedException if interrupted while waiting
1151 */
1152 public boolean awaitTermination(long timeout, TimeUnit unit)
1153 throws InterruptedException {
1154 long nanos = unit.toNanos(timeout);
1155 final ReentrantLock lock = this.workerLock;
1156 lock.lock();
1157 try {
1158 for (;;) {
1159 if (isTerminated())
1160 return true;
1161 if (nanos <= 0)
1162 return false;
1163 nanos = termination.awaitNanos(nanos);
1164 }
1165 } finally {
1166 lock.unlock();
1167 }
1168 }
1169
1170 // Shutdown and termination support
1171
1172 /**
1173 * Callback from terminating worker. Nulls out the corresponding
1174 * workers slot, and if terminating, tries to terminate; else
1175 * tries to shrink workers array.
1176 *
1177 * @param w the worker
1178 */
1179 final void workerTerminated(ForkJoinWorkerThread w) {
1180 updateStealCount(w);
1181 updateWorkerCount(-1);
1182 final ReentrantLock lock = this.workerLock;
1183 lock.lock();
1184 try {
1185 ForkJoinWorkerThread[] ws = workers;
1186 if (ws != null) {
1187 int idx = w.poolIndex;
1188 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1189 ws[idx] = null;
1190 if (totalCountOf(workerCounts) == 0) {
1191 terminate(); // no-op if already terminating
1192 transitionRunStateTo(TERMINATED);
1193 termination.signalAll();
1194 }
1195 else if (!isTerminating()) {
1196 tryShrinkWorkerArray();
1197 tryResumeSpare(true); // allow replacement
1198 }
1199 }
1200 } finally {
1201 lock.unlock();
1202 }
1203 signalIdleWorkers();
1204 }
1205
1206 /**
1207 * Initiates termination.
1208 */
1209 private void terminate() {
1210 if (transitionRunStateTo(TERMINATING)) {
1211 stopAllWorkers();
1212 resumeAllSpares();
1213 signalIdleWorkers();
1214 cancelQueuedSubmissions();
1215 cancelQueuedWorkerTasks();
1216 interruptUnterminatedWorkers();
1217 signalIdleWorkers(); // resignal after interrupt
1218 }
1219 }
1220
1221 /**
1222 * Possibly terminates when on shutdown state.
1223 */
1224 private void terminateOnShutdown() {
1225 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1226 terminate();
1227 }
1228
1229 /**
1230 * Clears out and cancels submissions.
1231 */
1232 private void cancelQueuedSubmissions() {
1233 ForkJoinTask<?> task;
1234 while ((task = pollSubmission()) != null)
1235 task.cancel(false);
1236 }
1237
1238 /**
1239 * Cleans out worker queues.
1240 */
1241 private void cancelQueuedWorkerTasks() {
1242 final ReentrantLock lock = this.workerLock;
1243 lock.lock();
1244 try {
1245 ForkJoinWorkerThread[] ws = workers;
1246 if (ws != null) {
1247 for (int i = 0; i < ws.length; ++i) {
1248 ForkJoinWorkerThread t = ws[i];
1249 if (t != null)
1250 t.cancelTasks();
1251 }
1252 }
1253 } finally {
1254 lock.unlock();
1255 }
1256 }
1257
1258 /**
1259 * Sets each worker's status to terminating. Requires lock to avoid
1260 * conflicts with add/remove.
1261 */
1262 private void stopAllWorkers() {
1263 final ReentrantLock lock = this.workerLock;
1264 lock.lock();
1265 try {
1266 ForkJoinWorkerThread[] ws = workers;
1267 if (ws != null) {
1268 for (int i = 0; i < ws.length; ++i) {
1269 ForkJoinWorkerThread t = ws[i];
1270 if (t != null)
1271 t.shutdownNow();
1272 }
1273 }
1274 } finally {
1275 lock.unlock();
1276 }
1277 }
1278
1279 /**
1280 * Interrupts all unterminated workers. This is not required for
1281 * sake of internal control, but may help unstick user code during
1282 * shutdown.
1283 */
1284 private void interruptUnterminatedWorkers() {
1285 final ReentrantLock lock = this.workerLock;
1286 lock.lock();
1287 try {
1288 ForkJoinWorkerThread[] ws = workers;
1289 if (ws != null) {
1290 for (int i = 0; i < ws.length; ++i) {
1291 ForkJoinWorkerThread t = ws[i];
1292 if (t != null && !t.isTerminated()) {
1293 try {
1294 t.interrupt();
1295 } catch (SecurityException ignore) {
1296 }
1297 }
1298 }
1299 }
1300 } finally {
1301 lock.unlock();
1302 }
1303 }
1304
1305
1306 /*
1307 * Nodes for event barrier to manage idle threads. Queue nodes
1308 * are basic Treiber stack nodes, also used for spare stack.
1309 *
1310 * The event barrier has an event count and a wait queue (actually
1311 * a Treiber stack). Workers are enabled to look for work when
1312 * the eventCount is incremented. If they fail to find work, they
1313 * may wait for next count. Upon release, threads help others wake
1314 * up.
1315 *
1316 * Synchronization events occur only in enough contexts to
1317 * maintain overall liveness:
1318 *
1319 * - Submission of a new task to the pool
1320 * - Resizes or other changes to the workers array
1321 * - pool termination
1322 * - A worker pushing a task on an empty queue
1323 *
1324 * The case of pushing a task occurs often enough, and is heavy
1325 * enough compared to simple stack pushes, to require special
1326 * handling: Method signalWork returns without advancing count if
1327 * the queue appears to be empty. This would ordinarily result in
1328 * races causing some queued waiters not to be woken up. To avoid
1329 * this, the first worker enqueued in method sync (see
1330 * syncIsReleasable) rescans for tasks after being enqueued, and
1331 * helps signal if any are found. This works well because the
1332 * worker has nothing better to do, and so might as well help
1333 * alleviate the overhead and contention on the threads actually
1334 * doing work. Also, since event counts increments on task
1335 * availability exist to maintain liveness (rather than to force
1336 * refreshes etc), it is OK for callers to exit early if
1337 * contending with another signaller.
1338 */
1339 static final class WaitQueueNode {
1340 WaitQueueNode next; // only written before enqueued
1341 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1342 final long count; // unused for spare stack
1343
1344 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1345 count = c;
1346 thread = w;
1347 }
1348
1349 /**
1350 * Wakes up waiter, returning false if known to already
1351 */
1352 boolean signal() {
1353 ForkJoinWorkerThread t = thread;
1354 if (t == null)
1355 return false;
1356 thread = null;
1357 LockSupport.unpark(t);
1358 return true;
1359 }
1360
1361 /**
1362 * Awaits release on sync.
1363 */
1364 void awaitSyncRelease(ForkJoinPool p) {
1365 while (thread != null && !p.syncIsReleasable(this))
1366 LockSupport.park(this);
1367 }
1368
1369 /**
1370 * Awaits resumption as spare.
1371 */
1372 void awaitSpareRelease() {
1373 while (thread != null) {
1374 if (!Thread.interrupted())
1375 LockSupport.park(this);
1376 }
1377 }
1378 }
1379
1380 /**
1381 * Ensures that no thread is waiting for count to advance from the
1382 * current value of eventCount read on entry to this method, by
1383 * releasing waiting threads if necessary.
1384 *
1385 * @return the count
1386 */
1387 final long ensureSync() {
1388 long c = eventCount;
1389 WaitQueueNode q;
1390 while ((q = syncStack) != null && q.count < c) {
1391 if (casBarrierStack(q, null)) {
1392 do {
1393 q.signal();
1394 } while ((q = q.next) != null);
1395 break;
1396 }
1397 }
1398 return c;
1399 }
1400
1401 /**
1402 * Increments event count and releases waiting threads.
1403 */
1404 private void signalIdleWorkers() {
1405 long c;
1406 do {} while (!casEventCount(c = eventCount, c+1));
1407 ensureSync();
1408 }
1409
1410 /**
1411 * Signals threads waiting to poll a task. Because method sync
1412 * rechecks availability, it is OK to only proceed if queue
1413 * appears to be non-empty, and OK to skip under contention to
1414 * increment count (since some other thread succeeded).
1415 */
1416 final void signalWork() {
1417 long c;
1418 WaitQueueNode q;
1419 if (syncStack != null &&
1420 casEventCount(c = eventCount, c+1) &&
1421 (((q = syncStack) != null && q.count <= c) &&
1422 (!casBarrierStack(q, q.next) || !q.signal())))
1423 ensureSync();
1424 }
1425
1426 /**
1427 * Waits until event count advances from last value held by
1428 * caller, or if excess threads, caller is resumed as spare, or
1429 * caller or pool is terminating. Updates caller's event on exit.
1430 *
1431 * @param w the calling worker thread
1432 */
1433 final void sync(ForkJoinWorkerThread w) {
1434 updateStealCount(w); // Transfer w's count while it is idle
1435
1436 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1437 long prev = w.lastEventCount;
1438 WaitQueueNode node = null;
1439 WaitQueueNode h;
1440 while (eventCount == prev &&
1441 ((h = syncStack) == null || h.count == prev)) {
1442 if (node == null)
1443 node = new WaitQueueNode(prev, w);
1444 if (casBarrierStack(node.next = h, node)) {
1445 node.awaitSyncRelease(this);
1446 break;
1447 }
1448 }
1449 long ec = ensureSync();
1450 if (ec != prev) {
1451 w.lastEventCount = ec;
1452 break;
1453 }
1454 }
1455 }
1456
1457 /**
1458 * Returns {@code true} if worker waiting on sync can proceed:
1459 * - on signal (thread == null)
1460 * - on event count advance (winning race to notify vs signaller)
1461 * - on interrupt
1462 * - if the first queued node, we find work available
1463 * If node was not signalled and event count not advanced on exit,
1464 * then we also help advance event count.
1465 *
1466 * @return {@code true} if node can be released
1467 */
1468 final boolean syncIsReleasable(WaitQueueNode node) {
1469 long prev = node.count;
1470 if (!Thread.interrupted() && node.thread != null &&
1471 (node.next != null ||
1472 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1473 eventCount == prev)
1474 return false;
1475 if (node.thread != null) {
1476 node.thread = null;
1477 long ec = eventCount;
1478 if (prev <= ec) // help signal
1479 casEventCount(ec, ec+1);
1480 }
1481 return true;
1482 }
1483
1484 /**
1485 * Returns {@code true} if a new sync event occurred since last
1486 * call to sync or this method, if so, updating caller's count.
1487 */
1488 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1489 long lc = w.lastEventCount;
1490 long ec = ensureSync();
1491 if (ec == lc)
1492 return false;
1493 w.lastEventCount = ec;
1494 return true;
1495 }
1496
1497 // Parallelism maintenance
1498
1499 /**
1500 * Decrements running count; if too low, adds spare.
1501 *
1502 * Conceptually, all we need to do here is add or resume a
1503 * spare thread when one is about to block (and remove or
1504 * suspend it later when unblocked -- see suspendIfSpare).
1505 * However, implementing this idea requires coping with
1506 * several problems: we have imperfect information about the
1507 * states of threads. Some count updates can and usually do
1508 * lag run state changes, despite arrangements to keep them
1509 * accurate (for example, when possible, updating counts
1510 * before signalling or resuming), especially when running on
1511 * dynamic JVMs that don't optimize the infrequent paths that
1512 * update counts. Generating too many threads can make these
1513 * problems become worse, because excess threads are more
1514 * likely to be context-switched with others, slowing them all
1515 * down, especially if there is no work available, so all are
1516 * busy scanning or idling. Also, excess spare threads can
1517 * only be suspended or removed when they are idle, not
1518 * immediately when they aren't needed. So adding threads will
1519 * raise parallelism level for longer than necessary. Also,
1520 * FJ applications often encounter highly transient peaks when
1521 * many threads are blocked joining, but for less time than it
1522 * takes to create or resume spares.
1523 *
1524 * @param joinMe if non-null, return early if done
1525 * @param maintainParallelism if true, try to stay within
1526 * target counts, else create only to avoid starvation
1527 * @return true if joinMe known to be done
1528 */
1529 final boolean preJoin(ForkJoinTask<?> joinMe,
1530 boolean maintainParallelism) {
1531 maintainParallelism &= maintainsParallelism; // overrride
1532 boolean dec = false; // true when running count decremented
1533 while (spareStack == null || !tryResumeSpare(dec)) {
1534 int counts = workerCounts;
1535 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1536 // CAS cheat
1537 if (!needSpare(counts, maintainParallelism))
1538 break;
1539 if (joinMe.status < 0)
1540 return true;
1541 if (tryAddSpare(counts))
1542 break;
1543 }
1544 }
1545 return false;
1546 }
1547
1548 /**
1549 * Same idea as preJoin
1550 */
1551 final boolean preBlock(ManagedBlocker blocker,
1552 boolean maintainParallelism) {
1553 maintainParallelism &= maintainsParallelism;
1554 boolean dec = false;
1555 while (spareStack == null || !tryResumeSpare(dec)) {
1556 int counts = workerCounts;
1557 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1558 if (!needSpare(counts, maintainParallelism))
1559 break;
1560 if (blocker.isReleasable())
1561 return true;
1562 if (tryAddSpare(counts))
1563 break;
1564 }
1565 }
1566 return false;
1567 }
1568
1569 /**
1570 * Returns {@code true} if a spare thread appears to be needed.
1571 * If maintaining parallelism, returns true when the deficit in
1572 * running threads is more than the surplus of total threads, and
1573 * there is apparently some work to do. This self-limiting rule
1574 * means that the more threads that have already been added, the
1575 * less parallelism we will tolerate before adding another.
1576 *
1577 * @param counts current worker counts
1578 * @param maintainParallelism try to maintain parallelism
1579 */
1580 private boolean needSpare(int counts, boolean maintainParallelism) {
1581 int ps = parallelism;
1582 int rc = runningCountOf(counts);
1583 int tc = totalCountOf(counts);
1584 int runningDeficit = ps - rc;
1585 int totalSurplus = tc - ps;
1586 return (tc < maxPoolSize &&
1587 (rc == 0 || totalSurplus < 0 ||
1588 (maintainParallelism &&
1589 runningDeficit > totalSurplus &&
1590 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1591 }
1592
1593 /**
1594 * Adds a spare worker if lock available and no more than the
1595 * expected numbers of threads exist.
1596 *
1597 * @return true if successful
1598 */
1599 private boolean tryAddSpare(int expectedCounts) {
1600 final ReentrantLock lock = this.workerLock;
1601 int expectedRunning = runningCountOf(expectedCounts);
1602 int expectedTotal = totalCountOf(expectedCounts);
1603 boolean success = false;
1604 boolean locked = false;
1605 // confirm counts while locking; CAS after obtaining lock
1606 try {
1607 for (;;) {
1608 int s = workerCounts;
1609 int tc = totalCountOf(s);
1610 int rc = runningCountOf(s);
1611 if (rc > expectedRunning || tc > expectedTotal)
1612 break;
1613 if (!locked && !(locked = lock.tryLock()))
1614 break;
1615 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1616 createAndStartSpare(tc);
1617 success = true;
1618 break;
1619 }
1620 }
1621 } finally {
1622 if (locked)
1623 lock.unlock();
1624 }
1625 return success;
1626 }
1627
1628 /**
1629 * Adds the kth spare worker. On entry, pool counts are already
1630 * adjusted to reflect addition.
1631 */
1632 private void createAndStartSpare(int k) {
1633 ForkJoinWorkerThread w = null;
1634 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1635 int len = ws.length;
1636 // Probably, we can place at slot k. If not, find empty slot
1637 if (k < len && ws[k] != null) {
1638 for (k = 0; k < len && ws[k] != null; ++k)
1639 ;
1640 }
1641 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1642 ws[k] = w;
1643 w.start();
1644 }
1645 else
1646 updateWorkerCount(-1); // adjust on failure
1647 signalIdleWorkers();
1648 }
1649
1650 /**
1651 * Suspends calling thread w if there are excess threads. Called
1652 * only from sync. Spares are enqueued in a Treiber stack using
1653 * the same WaitQueueNodes as barriers. They are resumed mainly
1654 * in preJoin, but are also woken on pool events that require all
1655 * threads to check run state.
1656 *
1657 * @param w the caller
1658 */
1659 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1660 WaitQueueNode node = null;
1661 int s;
1662 while (parallelism < runningCountOf(s = workerCounts)) {
1663 if (node == null)
1664 node = new WaitQueueNode(0, w);
1665 if (casWorkerCounts(s, s-1)) { // representation-dependent
1666 // push onto stack
1667 do {} while (!casSpareStack(node.next = spareStack, node));
1668 // block until released by resumeSpare
1669 node.awaitSpareRelease();
1670 return true;
1671 }
1672 }
1673 return false;
1674 }
1675
1676 /**
1677 * Tries to pop and resume a spare thread.
1678 *
1679 * @param updateCount if true, increment running count on success
1680 * @return true if successful
1681 */
1682 private boolean tryResumeSpare(boolean updateCount) {
1683 WaitQueueNode q;
1684 while ((q = spareStack) != null) {
1685 if (casSpareStack(q, q.next)) {
1686 if (updateCount)
1687 updateRunningCount(1);
1688 q.signal();
1689 return true;
1690 }
1691 }
1692 return false;
1693 }
1694
1695 /**
1696 * Pops and resumes all spare threads. Same idea as ensureSync.
1697 *
1698 * @return true if any spares released
1699 */
1700 private boolean resumeAllSpares() {
1701 WaitQueueNode q;
1702 while ( (q = spareStack) != null) {
1703 if (casSpareStack(q, null)) {
1704 do {
1705 updateRunningCount(1);
1706 q.signal();
1707 } while ((q = q.next) != null);
1708 return true;
1709 }
1710 }
1711 return false;
1712 }
1713
1714 /**
1715 * Pops and shuts down excessive spare threads. Call only while
1716 * holding lock. This is not guaranteed to eliminate all excess
1717 * threads, only those suspended as spares, which are the ones
1718 * unlikely to be needed in the future.
1719 */
1720 private void trimSpares() {
1721 int surplus = totalCountOf(workerCounts) - parallelism;
1722 WaitQueueNode q;
1723 while (surplus > 0 && (q = spareStack) != null) {
1724 if (casSpareStack(q, null)) {
1725 do {
1726 updateRunningCount(1);
1727 ForkJoinWorkerThread w = q.thread;
1728 if (w != null && surplus > 0 &&
1729 runningCountOf(workerCounts) > 0 && w.shutdown())
1730 --surplus;
1731 q.signal();
1732 } while ((q = q.next) != null);
1733 }
1734 }
1735 }
1736
1737 /**
1738 * Interface for extending managed parallelism for tasks running
1739 * in {@link ForkJoinPool}s.
1740 *
1741 * <p>A {@code ManagedBlocker} provides two methods.
1742 * Method {@code isReleasable} must return {@code true} if
1743 * blocking is not necessary. Method {@code block} blocks the
1744 * current thread if necessary (perhaps internally invoking
1745 * {@code isReleasable} before actually blocking.).
1746 *
1747 * <p>For example, here is a ManagedBlocker based on a
1748 * ReentrantLock:
1749 * <pre> {@code
1750 * class ManagedLocker implements ManagedBlocker {
1751 * final ReentrantLock lock;
1752 * boolean hasLock = false;
1753 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1754 * public boolean block() {
1755 * if (!hasLock)
1756 * lock.lock();
1757 * return true;
1758 * }
1759 * public boolean isReleasable() {
1760 * return hasLock || (hasLock = lock.tryLock());
1761 * }
1762 * }}</pre>
1763 */
1764 public static interface ManagedBlocker {
1765 /**
1766 * Possibly blocks the current thread, for example waiting for
1767 * a lock or condition.
1768 *
1769 * @return {@code true} if no additional blocking is necessary
1770 * (i.e., if isReleasable would return true)
1771 * @throws InterruptedException if interrupted while waiting
1772 * (the method is not required to do so, but is allowed to)
1773 */
1774 boolean block() throws InterruptedException;
1775
1776 /**
1777 * Returns {@code true} if blocking is unnecessary.
1778 */
1779 boolean isReleasable();
1780 }
1781
1782 /**
1783 * Blocks in accord with the given blocker. If the current thread
1784 * is a {@link ForkJoinWorkerThread}, this method possibly
1785 * arranges for a spare thread to be activated if necessary to
1786 * ensure parallelism while the current thread is blocked.
1787 *
1788 * <p>If {@code maintainParallelism} is {@code true} and the pool
1789 * supports it ({@link #getMaintainsParallelism}), this method
1790 * attempts to maintain the pool's nominal parallelism. Otherwise
1791 * it activates a thread only if necessary to avoid complete
1792 * starvation. This option may be preferable when blockages use
1793 * timeouts, or are almost always brief.
1794 *
1795 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1796 * behaviorally equivalent to
1797 * <pre> {@code
1798 * while (!blocker.isReleasable())
1799 * if (blocker.block())
1800 * return;
1801 * }</pre>
1802 *
1803 * If the caller is a {@code ForkJoinTask}, then the pool may
1804 * first be expanded to ensure parallelism, and later adjusted.
1805 *
1806 * @param blocker the blocker
1807 * @param maintainParallelism if {@code true} and supported by
1808 * this pool, attempt to maintain the pool's nominal parallelism;
1809 * otherwise activate a thread only if necessary to avoid
1810 * complete starvation.
1811 * @throws InterruptedException if blocker.block did so
1812 */
1813 public static void managedBlock(ManagedBlocker blocker,
1814 boolean maintainParallelism)
1815 throws InterruptedException {
1816 Thread t = Thread.currentThread();
1817 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1818 ((ForkJoinWorkerThread) t).pool : null);
1819 if (!blocker.isReleasable()) {
1820 try {
1821 if (pool == null ||
1822 !pool.preBlock(blocker, maintainParallelism))
1823 awaitBlocker(blocker);
1824 } finally {
1825 if (pool != null)
1826 pool.updateRunningCount(1);
1827 }
1828 }
1829 }
1830
1831 private static void awaitBlocker(ManagedBlocker blocker)
1832 throws InterruptedException {
1833 do {} while (!blocker.isReleasable() && !blocker.block());
1834 }
1835
1836 // AbstractExecutorService overrides. These rely on undocumented
1837 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1838 // implement RunnableFuture.
1839
1840 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1841 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1842 }
1843
1844 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1845 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1846 }
1847
1848 // Unsafe mechanics
1849
1850 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1851 private static final long eventCountOffset =
1852 objectFieldOffset("eventCount", ForkJoinPool.class);
1853 private static final long workerCountsOffset =
1854 objectFieldOffset("workerCounts", ForkJoinPool.class);
1855 private static final long runControlOffset =
1856 objectFieldOffset("runControl", ForkJoinPool.class);
1857 private static final long syncStackOffset =
1858 objectFieldOffset("syncStack",ForkJoinPool.class);
1859 private static final long spareStackOffset =
1860 objectFieldOffset("spareStack", ForkJoinPool.class);
1861
1862 private boolean casEventCount(long cmp, long val) {
1863 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1864 }
1865 private boolean casWorkerCounts(int cmp, int val) {
1866 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1867 }
1868 private boolean casRunControl(int cmp, int val) {
1869 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1870 }
1871 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1872 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1873 }
1874 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1875 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1876 }
1877
1878 private static long objectFieldOffset(String field, Class<?> klazz) {
1879 try {
1880 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1881 } catch (NoSuchFieldException e) {
1882 // Convert Exception to corresponding Error
1883 NoSuchFieldError error = new NoSuchFieldError(field);
1884 error.initCause(e);
1885 throw error;
1886 }
1887 }
1888
1889 /**
1890 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1891 * Replace with a simple call to Unsafe.getUnsafe when integrating
1892 * into a jdk.
1893 *
1894 * @return a sun.misc.Unsafe
1895 */
1896 private static sun.misc.Unsafe getUnsafe() {
1897 try {
1898 return sun.misc.Unsafe.getUnsafe();
1899 } catch (SecurityException se) {
1900 try {
1901 return java.security.AccessController.doPrivileged
1902 (new java.security
1903 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1904 public sun.misc.Unsafe run() throws Exception {
1905 java.lang.reflect.Field f = sun.misc
1906 .Unsafe.class.getDeclaredField("theUnsafe");
1907 f.setAccessible(true);
1908 return (sun.misc.Unsafe) f.get(null);
1909 }});
1910 } catch (java.security.PrivilegedActionException e) {
1911 throw new RuntimeException("Could not initialize intrinsics",
1912 e.getCause());
1913 }
1914 }
1915 }
1916 }