ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.4
Committed: Mon Jan 12 17:16:18 2009 UTC (15 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.3: +164 -160 lines
Log Message:
Split out ThreadLocalRandom; internal refactoring pass

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.*;
9 import java.util.concurrent.*;
10 import java.util.concurrent.locks.*;
11 import java.util.concurrent.atomic.*;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
17 * ForkJoinPool provides the entry point for submissions from
18 * non-ForkJoinTasks, as well as management and monitoring operations.
19 * Normally a single ForkJoinPool is used for a large number of
20 * submitted tasks. Otherwise, use would not usually outweigh the
21 * construction and bookkeeping overhead of creating a large set of
22 * threads.
23 *
24 * <p>ForkJoinPools differ from other kinds of Executors mainly in
25 * that they provide <em>work-stealing</em>: all threads in the pool
26 * attempt to find and execute subtasks created by other active tasks
27 * (eventually blocking if none exist). This makes them efficient when
28 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
29 * as the mixed execution of some plain Runnable- or Callable- based
30 * activities along with ForkJoinTasks. Otherwise, other
31 * ExecutorService implementations are typically more appropriate
32 * choices.
33 *
34 * <p>A ForkJoinPool may be constructed with a given parallelism level
35 * (target pool size), which it attempts to maintain by dynamically
36 * adding, suspending, or resuming threads, even if some tasks are
37 * waiting to join others. However, no such adjustments are performed
38 * in the face of blocked IO or other unmanaged synchronization. The
39 * nested <code>ManagedBlocker</code> interface enables extension of
40 * the kinds of synchronization accommodated. The target parallelism
41 * level may also be changed dynamically (<code>setParallelism</code>)
42 * and dynamically thread construction can be limited using methods
43 * <code>setMaximumPoolSize</code> and/or
44 * <code>setMaintainsParallelism</code>.
45 *
46 * <p>In addition to execution and lifecycle control methods, this
47 * class provides status check methods (for example
48 * <code>getStealCount</code>) that are intended to aid in developing,
49 * tuning, and monitoring fork/join applications. Also, method
50 * <code>toString</code> returns indications of pool state in a
51 * convenient form for informal monitoring.
52 *
53 * <p><b>Implementation notes</b>: This implementation restricts the
54 * maximum number of running threads to 32767. Attempts to create
55 * pools with greater than the maximum result in
56 * IllegalArgumentExceptions.
57 */
58 public class ForkJoinPool extends AbstractExecutorService {
59
60 /*
61 * See the extended comments interspersed below for design,
62 * rationale, and walkthroughs.
63 */
64
65 /** Mask for packing and unpacking shorts */
66 private static final int shortMask = 0xffff;
67
68 /** Max pool size -- must be a power of two minus 1 */
69 private static final int MAX_THREADS = 0x7FFF;
70
71 /**
72 * Factory for creating new ForkJoinWorkerThreads. A
73 * ForkJoinWorkerThreadFactory must be defined and used for
74 * ForkJoinWorkerThread subclasses that extend base functionality
75 * or initialize threads with different contexts.
76 */
77 public static interface ForkJoinWorkerThreadFactory {
78 /**
79 * Returns a new worker thread operating in the given pool.
80 *
81 * @param pool the pool this thread works in
82 * @throws NullPointerException if pool is null;
83 */
84 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
85 }
86
87 /**
88 * Default ForkJoinWorkerThreadFactory implementation, creates a
89 * new ForkJoinWorkerThread.
90 */
91 static class DefaultForkJoinWorkerThreadFactory
92 implements ForkJoinWorkerThreadFactory {
93 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
94 try {
95 return new ForkJoinWorkerThread(pool);
96 } catch (OutOfMemoryError oom) {
97 return null;
98 }
99 }
100 }
101
102 /**
103 * Creates a new ForkJoinWorkerThread. This factory is used unless
104 * overridden in ForkJoinPool constructors.
105 */
106 public static final ForkJoinWorkerThreadFactory
107 defaultForkJoinWorkerThreadFactory =
108 new DefaultForkJoinWorkerThreadFactory();
109
110 /**
111 * Permission required for callers of methods that may start or
112 * kill threads.
113 */
114 private static final RuntimePermission modifyThreadPermission =
115 new RuntimePermission("modifyThread");
116
117 /**
118 * If there is a security manager, makes sure caller has
119 * permission to modify threads.
120 */
121 private static void checkPermission() {
122 SecurityManager security = System.getSecurityManager();
123 if (security != null)
124 security.checkPermission(modifyThreadPermission);
125 }
126
127 /**
128 * Generator for assigning sequence numbers as pool names.
129 */
130 private static final AtomicInteger poolNumberGenerator =
131 new AtomicInteger();
132
133 /**
134 * Array holding all worker threads in the pool. Array size must
135 * be a power of two. Updates and replacements are protected by
136 * workerLock, but it is always kept in a consistent enough state
137 * to be randomly accessed without locking by workers performing
138 * work-stealing.
139 */
140 volatile ForkJoinWorkerThread[] workers;
141
142 /**
143 * Lock protecting access to workers.
144 */
145 private final ReentrantLock workerLock;
146
147 /**
148 * Condition for awaitTermination.
149 */
150 private final Condition termination;
151
152 /**
153 * The uncaught exception handler used when any worker
154 * abrupty terminates
155 */
156 private Thread.UncaughtExceptionHandler ueh;
157
158 /**
159 * Creation factory for worker threads.
160 */
161 private final ForkJoinWorkerThreadFactory factory;
162
163 /**
164 * Head of stack of threads that were created to maintain
165 * parallelism when other threads blocked, but have since
166 * suspended when the parallelism level rose.
167 */
168 private volatile WaitQueueNode spareStack;
169
170 /**
171 * Sum of per-thread steal counts, updated only when threads are
172 * idle or terminating.
173 */
174 private final AtomicLong stealCount;
175
176 /**
177 * Queue for external submissions.
178 */
179 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
180
181 /**
182 * Head of Treiber stack for barrier sync. See below for explanation
183 */
184 private volatile WaitQueueNode syncStack;
185
186 /**
187 * The count for event barrier
188 */
189 private volatile long eventCount;
190
191 /**
192 * Pool number, just for assigning useful names to worker threads
193 */
194 private final int poolNumber;
195
196 /**
197 * The maximum allowed pool size
198 */
199 private volatile int maxPoolSize;
200
201 /**
202 * The desired parallelism level, updated only under workerLock.
203 */
204 private volatile int parallelism;
205
206 /**
207 * Holds number of total (i.e., created and not yet terminated)
208 * and running (i.e., not blocked on joins or other managed sync)
209 * threads, packed into one int to ensure consistent snapshot when
210 * making decisions about creating and suspending spare
211 * threads. Updated only by CAS. Note: CASes in
212 * updateRunningCount and preJoin running active count is in low
213 * word, so need to be modified if this changes
214 */
215 private volatile int workerCounts;
216
217 private static int totalCountOf(int s) { return s >>> 16; }
218 private static int runningCountOf(int s) { return s & shortMask; }
219 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
220
221 /**
222 * Add delta (which may be negative) to running count. This must
223 * be called before (with negative arg) and after (with positive)
224 * any managed synchronization (i.e., mainly, joins)
225 * @param delta the number to add
226 */
227 final void updateRunningCount(int delta) {
228 int s;
229 do;while (!casWorkerCounts(s = workerCounts, s + delta));
230 }
231
232 /**
233 * Add delta (which may be negative) to both total and running
234 * count. This must be called upon creation and termination of
235 * worker threads.
236 * @param delta the number to add
237 */
238 private void updateWorkerCount(int delta) {
239 int d = delta + (delta << 16); // add to both lo and hi parts
240 int s;
241 do;while (!casWorkerCounts(s = workerCounts, s + d));
242 }
243
244 /**
245 * Lifecycle control. High word contains runState, low word
246 * contains the number of workers that are (probably) executing
247 * tasks. This value is atomically incremented before a worker
248 * gets a task to run, and decremented when worker has no tasks
249 * and cannot find any. These two fields are bundled together to
250 * support correct termination triggering. Note: activeCount
251 * CAS'es cheat by assuming active count is in low word, so need
252 * to be modified if this changes
253 */
254 private volatile int runControl;
255
256 // RunState values. Order among values matters
257 private static final int RUNNING = 0;
258 private static final int SHUTDOWN = 1;
259 private static final int TERMINATING = 2;
260 private static final int TERMINATED = 3;
261
262 private static int runStateOf(int c) { return c >>> 16; }
263 private static int activeCountOf(int c) { return c & shortMask; }
264 private static int runControlFor(int r, int a) { return (r << 16) + a; }
265
266 /**
267 * Try incrementing active count; fail on contention. Called by
268 * workers before/during executing tasks.
269 * @return true on success;
270 */
271 final boolean tryIncrementActiveCount() {
272 int c = runControl;
273 return casRunControl(c, c+1);
274 }
275
276 /**
277 * Try decrementing active count; fail on contention.
278 * Possibly trigger termination on success
279 * Called by workers when they can't find tasks.
280 * @return true on success
281 */
282 final boolean tryDecrementActiveCount() {
283 int c = runControl;
284 int nextc = c - 1;
285 if (!casRunControl(c, nextc))
286 return false;
287 if (canTerminateOnShutdown(nextc))
288 terminateOnShutdown();
289 return true;
290 }
291
292 /**
293 * Return true if argument represents zero active count and
294 * nonzero runstate, which is the triggering condition for
295 * terminating on shutdown.
296 */
297 private static boolean canTerminateOnShutdown(int c) {
298 return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
299 }
300
301 /**
302 * Transition run state to at least the given state. Return true
303 * if not already at least given state.
304 */
305 private boolean transitionRunStateTo(int state) {
306 for (;;) {
307 int c = runControl;
308 if (runStateOf(c) >= state)
309 return false;
310 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
311 return true;
312 }
313 }
314
315 /**
316 * Controls whether to add spares to maintain parallelism
317 */
318 private volatile boolean maintainsParallelism;
319
320 // Constructors
321
322 /**
323 * Creates a ForkJoinPool with a pool size equal to the number of
324 * processors available on the system and using the default
325 * ForkJoinWorkerThreadFactory,
326 * @throws SecurityException if a security manager exists and
327 * the caller is not permitted to modify threads
328 * because it does not hold {@link
329 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
330 */
331 public ForkJoinPool() {
332 this(Runtime.getRuntime().availableProcessors(),
333 defaultForkJoinWorkerThreadFactory);
334 }
335
336 /**
337 * Creates a ForkJoinPool with the indicated parellelism level
338 * threads, and using the default ForkJoinWorkerThreadFactory,
339 * @param parallelism the number of worker threads
340 * @throws IllegalArgumentException if parallelism less than or
341 * equal to zero
342 * @throws SecurityException if a security manager exists and
343 * the caller is not permitted to modify threads
344 * because it does not hold {@link
345 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
346 */
347 public ForkJoinPool(int parallelism) {
348 this(parallelism, defaultForkJoinWorkerThreadFactory);
349 }
350
351 /**
352 * Creates a ForkJoinPool with parallelism equal to the number of
353 * processors available on the system and using the given
354 * ForkJoinWorkerThreadFactory,
355 * @param factory the factory for creating new threads
356 * @throws NullPointerException if factory is null
357 * @throws SecurityException if a security manager exists and
358 * the caller is not permitted to modify threads
359 * because it does not hold {@link
360 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
361 */
362 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
363 this(Runtime.getRuntime().availableProcessors(), factory);
364 }
365
366 /**
367 * Creates a ForkJoinPool with the given parallelism and factory.
368 *
369 * @param parallelism the targeted number of worker threads
370 * @param factory the factory for creating new threads
371 * @throws IllegalArgumentException if parallelism less than or
372 * equal to zero, or greater than implementation limit.
373 * @throws NullPointerException if factory is null
374 * @throws SecurityException if a security manager exists and
375 * the caller is not permitted to modify threads
376 * because it does not hold {@link
377 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
378 */
379 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
380 if (parallelism <= 0 || parallelism > MAX_THREADS)
381 throw new IllegalArgumentException();
382 if (factory == null)
383 throw new NullPointerException();
384 checkPermission();
385 this.factory = factory;
386 this.parallelism = parallelism;
387 this.maxPoolSize = MAX_THREADS;
388 this.maintainsParallelism = true;
389 this.poolNumber = poolNumberGenerator.incrementAndGet();
390 this.workerLock = new ReentrantLock();
391 this.termination = workerLock.newCondition();
392 this.stealCount = new AtomicLong();
393 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
394 createAndStartInitialWorkers(parallelism);
395 }
396
397 /**
398 * Create new worker using factory.
399 * @param index the index to assign worker
400 * @return new worker, or null of factory failed
401 */
402 private ForkJoinWorkerThread createWorker(int index) {
403 Thread.UncaughtExceptionHandler h = ueh;
404 ForkJoinWorkerThread w = factory.newThread(this);
405 if (w != null) {
406 w.poolIndex = index;
407 w.setDaemon(true);
408 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
409 if (h != null)
410 w.setUncaughtExceptionHandler(h);
411 }
412 return w;
413 }
414
415 /**
416 * Return a good size for worker array given pool size.
417 * Currently requires size to be a power of two.
418 */
419 private static int arraySizeFor(int ps) {
420 return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
421 }
422
423 /**
424 * Create or resize array if necessary to hold newLength
425 * @return the array
426 */
427 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
428 ForkJoinWorkerThread[] ws = workers;
429 if (ws == null)
430 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
431 else if (newLength > ws.length)
432 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
433 else
434 return ws;
435 }
436
437 /**
438 * Try to shrink workers into smaller array after one or more terminate
439 */
440 private void tryShrinkWorkerArray() {
441 ForkJoinWorkerThread[] ws = workers;
442 int len = ws.length;
443 int last = len - 1;
444 while (last >= 0 && ws[last] == null)
445 --last;
446 int newLength = arraySizeFor(last+1);
447 if (newLength < len)
448 workers = Arrays.copyOf(ws, newLength);
449 }
450
451 /**
452 * Initial worker array and worker creation and startup. (This
453 * must be done under lock to avoid interference by some of the
454 * newly started threads while creating others.)
455 */
456 private void createAndStartInitialWorkers(int ps) {
457 final ReentrantLock lock = this.workerLock;
458 lock.lock();
459 try {
460 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
461 for (int i = 0; i < ps; ++i) {
462 ForkJoinWorkerThread w = createWorker(i);
463 if (w != null) {
464 ws[i] = w;
465 w.start();
466 updateWorkerCount(1);
467 }
468 }
469 } finally {
470 lock.unlock();
471 }
472 }
473
474 /**
475 * Worker creation and startup for threads added via setParallelism.
476 */
477 private void createAndStartAddedWorkers() {
478 resumeAllSpares(); // Allow spares to convert to nonspare
479 int ps = parallelism;
480 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
481 int len = ws.length;
482 // Sweep through slots, to keep lowest indices most populated
483 int k = 0;
484 while (k < len) {
485 if (ws[k] != null) {
486 ++k;
487 continue;
488 }
489 int s = workerCounts;
490 int tc = totalCountOf(s);
491 int rc = runningCountOf(s);
492 if (rc >= ps || tc >= ps)
493 break;
494 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
495 ForkJoinWorkerThread w = createWorker(k);
496 if (w != null) {
497 ws[k++] = w;
498 w.start();
499 }
500 else {
501 updateWorkerCount(-1); // back out on failed creation
502 break;
503 }
504 }
505 }
506 }
507
508 // Execution methods
509
510 /**
511 * Common code for execute, invoke and submit
512 */
513 private <T> void doSubmit(ForkJoinTask<T> task) {
514 if (isShutdown())
515 throw new RejectedExecutionException();
516 submissionQueue.offer(task);
517 signalIdleWorkers();
518 }
519
520 /**
521 * Performs the given task; returning its result upon completion
522 * @param task the task
523 * @return the task's result
524 * @throws NullPointerException if task is null
525 * @throws RejectedExecutionException if pool is shut down
526 */
527 public <T> T invoke(ForkJoinTask<T> task) {
528 doSubmit(task);
529 return task.join();
530 }
531
532 /**
533 * Arranges for (asynchronous) execution of the given task.
534 * @param task the task
535 * @throws NullPointerException if task is null
536 * @throws RejectedExecutionException if pool is shut down
537 */
538 public <T> void execute(ForkJoinTask<T> task) {
539 doSubmit(task);
540 }
541
542 // AbstractExecutorService methods
543
544 public void execute(Runnable task) {
545 doSubmit(new AdaptedRunnable<Void>(task, null));
546 }
547
548 public <T> ForkJoinTask<T> submit(Callable<T> task) {
549 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
550 doSubmit(job);
551 return job;
552 }
553
554 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
555 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
556 doSubmit(job);
557 return job;
558 }
559
560 public ForkJoinTask<?> submit(Runnable task) {
561 ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
562 doSubmit(job);
563 return job;
564 }
565
566 /**
567 * Adaptor for Runnables. This implements RunnableFuture
568 * to be compliant with AbstractExecutorService constraints
569 */
570 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
571 implements RunnableFuture<T> {
572 final Runnable runnable;
573 final T resultOnCompletion;
574 T result;
575 AdaptedRunnable(Runnable runnable, T result) {
576 if (runnable == null) throw new NullPointerException();
577 this.runnable = runnable;
578 this.resultOnCompletion = result;
579 }
580 public T getRawResult() { return result; }
581 public void setRawResult(T v) { result = v; }
582 public boolean exec() {
583 runnable.run();
584 result = resultOnCompletion;
585 return true;
586 }
587 public void run() { invoke(); }
588 }
589
590 /**
591 * Adaptor for Callables
592 */
593 static final class AdaptedCallable<T> extends ForkJoinTask<T>
594 implements RunnableFuture<T> {
595 final Callable<T> callable;
596 T result;
597 AdaptedCallable(Callable<T> callable) {
598 if (callable == null) throw new NullPointerException();
599 this.callable = callable;
600 }
601 public T getRawResult() { return result; }
602 public void setRawResult(T v) { result = v; }
603 public boolean exec() {
604 try {
605 result = callable.call();
606 return true;
607 } catch (Error err) {
608 throw err;
609 } catch (RuntimeException rex) {
610 throw rex;
611 } catch (Exception ex) {
612 throw new RuntimeException(ex);
613 }
614 }
615 public void run() { invoke(); }
616 }
617
618 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
619 ArrayList<ForkJoinTask<T>> ts =
620 new ArrayList<ForkJoinTask<T>>(tasks.size());
621 for (Callable<T> c : tasks)
622 ts.add(new AdaptedCallable<T>(c));
623 invoke(new InvokeAll<T>(ts));
624 return (List<Future<T>>)(List)ts;
625 }
626
627 static final class InvokeAll<T> extends RecursiveAction {
628 final ArrayList<ForkJoinTask<T>> tasks;
629 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
630 public void compute() {
631 try { invokeAll(tasks); } catch(Exception ignore) {}
632 }
633 }
634
635 // Configuration and status settings and queries
636
637 /**
638 * Returns the factory used for constructing new workers
639 *
640 * @return the factory used for constructing new workers
641 */
642 public ForkJoinWorkerThreadFactory getFactory() {
643 return factory;
644 }
645
646 /**
647 * Returns the handler for internal worker threads that terminate
648 * due to unrecoverable errors encountered while executing tasks.
649 * @return the handler, or null if none
650 */
651 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
652 Thread.UncaughtExceptionHandler h;
653 final ReentrantLock lock = this.workerLock;
654 lock.lock();
655 try {
656 h = ueh;
657 } finally {
658 lock.unlock();
659 }
660 return h;
661 }
662
663 /**
664 * Sets the handler for internal worker threads that terminate due
665 * to unrecoverable errors encountered while executing tasks.
666 * Unless set, the current default or ThreadGroup handler is used
667 * as handler.
668 *
669 * @param h the new handler
670 * @return the old handler, or null if none
671 * @throws SecurityException if a security manager exists and
672 * the caller is not permitted to modify threads
673 * because it does not hold {@link
674 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
675 */
676 public Thread.UncaughtExceptionHandler
677 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
678 checkPermission();
679 Thread.UncaughtExceptionHandler old = null;
680 final ReentrantLock lock = this.workerLock;
681 lock.lock();
682 try {
683 old = ueh;
684 ueh = h;
685 ForkJoinWorkerThread[] ws = workers;
686 for (int i = 0; i < ws.length; ++i) {
687 ForkJoinWorkerThread w = ws[i];
688 if (w != null)
689 w.setUncaughtExceptionHandler(h);
690 }
691 } finally {
692 lock.unlock();
693 }
694 return old;
695 }
696
697
698 /**
699 * Sets the target paralleism level of this pool.
700 * @param parallelism the target parallelism
701 * @throws IllegalArgumentException if parallelism less than or
702 * equal to zero or greater than maximum size bounds.
703 * @throws SecurityException if a security manager exists and
704 * the caller is not permitted to modify threads
705 * because it does not hold {@link
706 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
707 */
708 public void setParallelism(int parallelism) {
709 checkPermission();
710 if (parallelism <= 0 || parallelism > maxPoolSize)
711 throw new IllegalArgumentException();
712 final ReentrantLock lock = this.workerLock;
713 lock.lock();
714 try {
715 if (!isTerminating()) {
716 int p = this.parallelism;
717 this.parallelism = parallelism;
718 if (parallelism > p)
719 createAndStartAddedWorkers();
720 else
721 trimSpares();
722 }
723 } finally {
724 lock.unlock();
725 }
726 signalIdleWorkers();
727 }
728
729 /**
730 * Returns the targeted number of worker threads in this pool.
731 *
732 * @return the targeted number of worker threads in this pool
733 */
734 public int getParallelism() {
735 return parallelism;
736 }
737
738 /**
739 * Returns the number of worker threads that have started but not
740 * yet terminated. This result returned by this method may differ
741 * from <code>getParallelism</code> when threads are created to
742 * maintain parallelism when others are cooperatively blocked.
743 *
744 * @return the number of worker threads
745 */
746 public int getPoolSize() {
747 return totalCountOf(workerCounts);
748 }
749
750 /**
751 * Returns the maximum number of threads allowed to exist in the
752 * pool, even if there are insufficient unblocked running threads.
753 * @return the maximum
754 */
755 public int getMaximumPoolSize() {
756 return maxPoolSize;
757 }
758
759 /**
760 * Sets the maximum number of threads allowed to exist in the
761 * pool, even if there are insufficient unblocked running threads.
762 * Setting this value has no effect on current pool size. It
763 * controls construction of new threads.
764 * @throws IllegalArgumentException if negative or greater then
765 * internal implementation limit.
766 */
767 public void setMaximumPoolSize(int newMax) {
768 if (newMax < 0 || newMax > MAX_THREADS)
769 throw new IllegalArgumentException();
770 maxPoolSize = newMax;
771 }
772
773
774 /**
775 * Returns true if this pool dynamically maintains its target
776 * parallelism level. If false, new threads are added only to
777 * avoid possible starvation.
778 * This setting is by default true;
779 * @return true if maintains parallelism
780 */
781 public boolean getMaintainsParallelism() {
782 return maintainsParallelism;
783 }
784
785 /**
786 * Sets whether this pool dynamically maintains its target
787 * parallelism level. If false, new threads are added only to
788 * avoid possible starvation.
789 * @param enable true to maintains parallelism
790 */
791 public void setMaintainsParallelism(boolean enable) {
792 maintainsParallelism = enable;
793 }
794
795 /**
796 * Returns an estimate of the number of worker threads that are
797 * not blocked waiting to join tasks or for other managed
798 * synchronization.
799 *
800 * @return the number of worker threads
801 */
802 public int getRunningThreadCount() {
803 return runningCountOf(workerCounts);
804 }
805
806 /**
807 * Returns an estimate of the number of threads that are currently
808 * stealing or executing tasks. This method may overestimate the
809 * number of active threads.
810 * @return the number of active threads.
811 */
812 public int getActiveThreadCount() {
813 return activeCountOf(runControl);
814 }
815
816 /**
817 * Returns an estimate of the number of threads that are currently
818 * idle waiting for tasks. This method may underestimate the
819 * number of idle threads.
820 * @return the number of idle threads.
821 */
822 final int getIdleThreadCount() {
823 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
824 return (c <= 0)? 0 : c;
825 }
826
827 /**
828 * Returns true if all worker threads are currently idle. An idle
829 * worker is one that cannot obtain a task to execute because none
830 * are available to steal from other threads, and there are no
831 * pending submissions to the pool. This method is conservative:
832 * It might not return true immediately upon idleness of all
833 * threads, but will eventually become true if threads remain
834 * inactive.
835 * @return true if all threads are currently idle
836 */
837 public boolean isQuiescent() {
838 return activeCountOf(runControl) == 0;
839 }
840
841 /**
842 * Returns an estimate of the total number of tasks stolen from
843 * one thread's work queue by another. The reported value
844 * underestimates the actual total number of steals when the pool
845 * is not quiescent. This value may be useful for monitoring and
846 * tuning fork/join programs: In general, steal counts should be
847 * high enough to keep threads busy, but low enough to avoid
848 * overhead and contention across threads.
849 * @return the number of steals.
850 */
851 public long getStealCount() {
852 return stealCount.get();
853 }
854
855 /**
856 * Accumulate steal count from a worker. Call only
857 * when worker known to be idle.
858 */
859 private void updateStealCount(ForkJoinWorkerThread w) {
860 int sc = w.getAndClearStealCount();
861 if (sc != 0)
862 stealCount.addAndGet(sc);
863 }
864
865 /**
866 * Returns an estimate of the total number of tasks currently held
867 * in queues by worker threads (but not including tasks submitted
868 * to the pool that have not begun executing). This value is only
869 * an approximation, obtained by iterating across all threads in
870 * the pool. This method may be useful for tuning task
871 * granularities.
872 * @return the number of queued tasks.
873 */
874 public long getQueuedTaskCount() {
875 long count = 0;
876 ForkJoinWorkerThread[] ws = workers;
877 for (int i = 0; i < ws.length; ++i) {
878 ForkJoinWorkerThread t = ws[i];
879 if (t != null)
880 count += t.getQueueSize();
881 }
882 return count;
883 }
884
885 /**
886 * Returns an estimate of the number tasks submitted to this pool
887 * that have not yet begun executing. This method takes time
888 * proportional to the number of submissions.
889 * @return the number of queued submissions.
890 */
891 public int getQueuedSubmissionCount() {
892 return submissionQueue.size();
893 }
894
895 /**
896 * Returns true if there are any tasks submitted to this pool
897 * that have not yet begun executing.
898 * @return <code>true</code> if there are any queued submissions.
899 */
900 public boolean hasQueuedSubmissions() {
901 return !submissionQueue.isEmpty();
902 }
903
904 /**
905 * Removes and returns the next unexecuted submission if one is
906 * available. This method may be useful in extensions to this
907 * class that re-assign work in systems with multiple pools.
908 * @return the next submission, or null if none
909 */
910 protected ForkJoinTask<?> pollSubmission() {
911 return submissionQueue.poll();
912 }
913
914 /**
915 * Returns a string identifying this pool, as well as its state,
916 * including indications of run state, parallelism level, and
917 * worker and task counts.
918 *
919 * @return a string identifying this pool, as well as its state
920 */
921 public String toString() {
922 int ps = parallelism;
923 int wc = workerCounts;
924 int rc = runControl;
925 long st = getStealCount();
926 long qt = getQueuedTaskCount();
927 long qs = getQueuedSubmissionCount();
928 return super.toString() +
929 "[" + runStateToString(runStateOf(rc)) +
930 ", parallelism = " + ps +
931 ", size = " + totalCountOf(wc) +
932 ", active = " + activeCountOf(rc) +
933 ", running = " + runningCountOf(wc) +
934 ", steals = " + st +
935 ", tasks = " + qt +
936 ", submissions = " + qs +
937 "]";
938 }
939
940 private static String runStateToString(int rs) {
941 switch(rs) {
942 case RUNNING: return "Running";
943 case SHUTDOWN: return "Shutting down";
944 case TERMINATING: return "Terminating";
945 case TERMINATED: return "Terminated";
946 default: throw new Error("Unknown run state");
947 }
948 }
949
950 // lifecycle control
951
952 /**
953 * Initiates an orderly shutdown in which previously submitted
954 * tasks are executed, but no new tasks will be accepted.
955 * Invocation has no additional effect if already shut down.
956 * Tasks that are in the process of being submitted concurrently
957 * during the course of this method may or may not be rejected.
958 * @throws SecurityException if a security manager exists and
959 * the caller is not permitted to modify threads
960 * because it does not hold {@link
961 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
962 */
963 public void shutdown() {
964 checkPermission();
965 transitionRunStateTo(SHUTDOWN);
966 if (canTerminateOnShutdown(runControl))
967 terminateOnShutdown();
968 }
969
970 /**
971 * Attempts to stop all actively executing tasks, and cancels all
972 * waiting tasks. Tasks that are in the process of being
973 * submitted or executed concurrently during the course of this
974 * method may or may not be rejected. Unlike some other executors,
975 * this method cancels rather than collects non-executed tasks,
976 * so always returns an empty list.
977 * @return an empty list
978 * @throws SecurityException if a security manager exists and
979 * the caller is not permitted to modify threads
980 * because it does not hold {@link
981 * java.lang.RuntimePermission}<code>("modifyThread")</code>,
982 */
983 public List<Runnable> shutdownNow() {
984 checkPermission();
985 terminate();
986 return Collections.emptyList();
987 }
988
989 /**
990 * Returns <code>true</code> if all tasks have completed following shut down.
991 *
992 * @return <code>true</code> if all tasks have completed following shut down
993 */
994 public boolean isTerminated() {
995 return runStateOf(runControl) == TERMINATED;
996 }
997
998 /**
999 * Returns <code>true</code> if the process of termination has
1000 * commenced but possibly not yet completed.
1001 *
1002 * @return <code>true</code> if terminating
1003 */
1004 public boolean isTerminating() {
1005 return runStateOf(runControl) >= TERMINATING;
1006 }
1007
1008 /**
1009 * Returns <code>true</code> if this pool has been shut down.
1010 *
1011 * @return <code>true</code> if this pool has been shut down
1012 */
1013 public boolean isShutdown() {
1014 return runStateOf(runControl) >= SHUTDOWN;
1015 }
1016
1017 /**
1018 * Blocks until all tasks have completed execution after a shutdown
1019 * request, or the timeout occurs, or the current thread is
1020 * interrupted, whichever happens first.
1021 *
1022 * @param timeout the maximum time to wait
1023 * @param unit the time unit of the timeout argument
1024 * @return <code>true</code> if this executor terminated and
1025 * <code>false</code> if the timeout elapsed before termination
1026 * @throws InterruptedException if interrupted while waiting
1027 */
1028 public boolean awaitTermination(long timeout, TimeUnit unit)
1029 throws InterruptedException {
1030 long nanos = unit.toNanos(timeout);
1031 final ReentrantLock lock = this.workerLock;
1032 lock.lock();
1033 try {
1034 for (;;) {
1035 if (isTerminated())
1036 return true;
1037 if (nanos <= 0)
1038 return false;
1039 nanos = termination.awaitNanos(nanos);
1040 }
1041 } finally {
1042 lock.unlock();
1043 }
1044 }
1045
1046 // Shutdown and termination support
1047
1048 /**
1049 * Callback from terminating worker. Null out the corresponding
1050 * workers slot, and if terminating, try to terminate, else try to
1051 * shrink workers array.
1052 * @param w the worker
1053 */
1054 final void workerTerminated(ForkJoinWorkerThread w) {
1055 updateStealCount(w);
1056 updateWorkerCount(-1);
1057 final ReentrantLock lock = this.workerLock;
1058 lock.lock();
1059 try {
1060 ForkJoinWorkerThread[] ws = workers;
1061 int idx = w.poolIndex;
1062 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1063 ws[idx] = null;
1064 if (totalCountOf(workerCounts) == 0) {
1065 terminate(); // no-op if already terminating
1066 transitionRunStateTo(TERMINATED);
1067 termination.signalAll();
1068 }
1069 else if (!isTerminating()) {
1070 tryShrinkWorkerArray();
1071 tryResumeSpare(true); // allow replacement
1072 }
1073 } finally {
1074 lock.unlock();
1075 }
1076 signalIdleWorkers();
1077 }
1078
1079 /**
1080 * Initiate termination.
1081 */
1082 private void terminate() {
1083 if (transitionRunStateTo(TERMINATING)) {
1084 stopAllWorkers();
1085 resumeAllSpares();
1086 signalIdleWorkers();
1087 cancelQueuedSubmissions();
1088 cancelQueuedWorkerTasks();
1089 interruptUnterminatedWorkers();
1090 signalIdleWorkers(); // resignal after interrupt
1091 }
1092 }
1093
1094 /**
1095 * Possibly terminate when on shutdown state
1096 */
1097 private void terminateOnShutdown() {
1098 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1099 terminate();
1100 }
1101
1102 /**
1103 * Clear out and cancel submissions
1104 */
1105 private void cancelQueuedSubmissions() {
1106 ForkJoinTask<?> task;
1107 while ((task = pollSubmission()) != null)
1108 task.cancel(false);
1109 }
1110
1111 /**
1112 * Clean out worker queues.
1113 */
1114 private void cancelQueuedWorkerTasks() {
1115 final ReentrantLock lock = this.workerLock;
1116 lock.lock();
1117 try {
1118 ForkJoinWorkerThread[] ws = workers;
1119 for (int i = 0; i < ws.length; ++i) {
1120 ForkJoinWorkerThread t = ws[i];
1121 if (t != null)
1122 t.cancelTasks();
1123 }
1124 } finally {
1125 lock.unlock();
1126 }
1127 }
1128
1129 /**
1130 * Set each worker's status to terminating. Requires lock to avoid
1131 * conflicts with add/remove
1132 */
1133 private void stopAllWorkers() {
1134 final ReentrantLock lock = this.workerLock;
1135 lock.lock();
1136 try {
1137 ForkJoinWorkerThread[] ws = workers;
1138 for (int i = 0; i < ws.length; ++i) {
1139 ForkJoinWorkerThread t = ws[i];
1140 if (t != null)
1141 t.shutdownNow();
1142 }
1143 } finally {
1144 lock.unlock();
1145 }
1146 }
1147
1148 /**
1149 * Interrupt all unterminated workers. This is not required for
1150 * sake of internal control, but may help unstick user code during
1151 * shutdown.
1152 */
1153 private void interruptUnterminatedWorkers() {
1154 final ReentrantLock lock = this.workerLock;
1155 lock.lock();
1156 try {
1157 ForkJoinWorkerThread[] ws = workers;
1158 for (int i = 0; i < ws.length; ++i) {
1159 ForkJoinWorkerThread t = ws[i];
1160 if (t != null && !t.isTerminated()) {
1161 try {
1162 t.interrupt();
1163 } catch (SecurityException ignore) {
1164 }
1165 }
1166 }
1167 } finally {
1168 lock.unlock();
1169 }
1170 }
1171
1172
1173 /*
1174 * Nodes for event barrier to manage idle threads. Queue nodes
1175 * are basic Treiber stack nodes, also used for spare stack.
1176 *
1177 * The event barrier has an event count and a wait queue (actually
1178 * a Treiber stack). Workers are enabled to look for work when
1179 * the eventCount is incremented. If they fail to find work, they
1180 * may wait for next count. Upon release, threads help others wake
1181 * up.
1182 *
1183 * Synchronization events occur only in enough contexts to
1184 * maintain overall liveness:
1185 *
1186 * - Submission of a new task to the pool
1187 * - Resizes or other changes to the workers array
1188 * - pool termination
1189 * - A worker pushing a task on an empty queue
1190 *
1191 * The case of pushing a task occurs often enough, and is heavy
1192 * enough compared to simple stack pushes, to require special
1193 * handling: Method signalWork returns without advancing count if
1194 * the queue appears to be empty. This would ordinarily result in
1195 * races causing some queued waiters not to be woken up. To avoid
1196 * this, the first worker enqueued in method sync (see
1197 * syncIsReleasable) rescans for tasks after being enqueued, and
1198 * helps signal if any are found. This works well because the
1199 * worker has nothing better to do, and so might as well help
1200 * alleviate the overhead and contention on the threads actually
1201 * doing work. Also, since event counts increments on task
1202 * availability exist to maintain liveness (rather than to force
1203 * refreshes etc), it is OK for callers to exit early if
1204 * contending with another signaller.
1205 */
1206 static final class WaitQueueNode {
1207 WaitQueueNode next; // only written before enqueued
1208 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1209 final long count; // unused for spare stack
1210
1211 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1212 count = c;
1213 thread = w;
1214 }
1215
1216 /**
1217 * Wake up waiter, returning false if known to already
1218 */
1219 boolean signal() {
1220 ForkJoinWorkerThread t = thread;
1221 if (t == null)
1222 return false;
1223 thread = null;
1224 LockSupport.unpark(t);
1225 return true;
1226 }
1227
1228 /**
1229 * Await release on sync
1230 */
1231 void awaitSyncRelease(ForkJoinPool p) {
1232 while (thread != null && !p.syncIsReleasable(this))
1233 LockSupport.park(this);
1234 }
1235
1236 /**
1237 * Await resumption as spare
1238 */
1239 void awaitSpareRelease() {
1240 while (thread != null) {
1241 if (!Thread.interrupted())
1242 LockSupport.park(this);
1243 }
1244 }
1245 }
1246
1247 /**
1248 * Ensures that no thread is waiting for count to advance from the
1249 * current value of eventCount read on entry to this method, by
1250 * releasing waiting threads if necessary.
1251 * @return the count
1252 */
1253 final long ensureSync() {
1254 long c = eventCount;
1255 WaitQueueNode q;
1256 while ((q = syncStack) != null && q.count < c) {
1257 if (casBarrierStack(q, null)) {
1258 do {
1259 q.signal();
1260 } while ((q = q.next) != null);
1261 break;
1262 }
1263 }
1264 return c;
1265 }
1266
1267 /**
1268 * Increments event count and releases waiting threads.
1269 */
1270 private void signalIdleWorkers() {
1271 long c;
1272 do;while (!casEventCount(c = eventCount, c+1));
1273 ensureSync();
1274 }
1275
1276 /**
1277 * Signal threads waiting to poll a task. Because method sync
1278 * rechecks availability, it is OK to only proceed if queue
1279 * appears to be non-empty, and OK to skip under contention to
1280 * increment count (since some other thread succeeded).
1281 */
1282 final void signalWork() {
1283 long c;
1284 WaitQueueNode q;
1285 if (syncStack != null &&
1286 casEventCount(c = eventCount, c+1) &&
1287 (((q = syncStack) != null && q.count <= c) &&
1288 (!casBarrierStack(q, q.next) || !q.signal())))
1289 ensureSync();
1290 }
1291
1292 /**
1293 * Waits until event count advances from last value held by
1294 * caller, or if excess threads, caller is resumed as spare, or
1295 * caller or pool is terminating. Updates caller's event on exit.
1296 * @param w the calling worker thread
1297 */
1298 final void sync(ForkJoinWorkerThread w) {
1299 updateStealCount(w); // Transfer w's count while it is idle
1300
1301 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1302 long prev = w.lastEventCount;
1303 WaitQueueNode node = null;
1304 WaitQueueNode h;
1305 while (eventCount == prev &&
1306 ((h = syncStack) == null || h.count == prev)) {
1307 if (node == null)
1308 node = new WaitQueueNode(prev, w);
1309 if (casBarrierStack(node.next = h, node)) {
1310 node.awaitSyncRelease(this);
1311 break;
1312 }
1313 }
1314 long ec = ensureSync();
1315 if (ec != prev) {
1316 w.lastEventCount = ec;
1317 break;
1318 }
1319 }
1320 }
1321
1322 /**
1323 * Returns true if worker waiting on sync can proceed:
1324 * - on signal (thread == null)
1325 * - on event count advance (winning race to notify vs signaller)
1326 * - on Interrupt
1327 * - if the first queued node, we find work available
1328 * If node was not signalled and event count not advanced on exit,
1329 * then we also help advance event count.
1330 * @return true if node can be released
1331 */
1332 final boolean syncIsReleasable(WaitQueueNode node) {
1333 long prev = node.count;
1334 if (!Thread.interrupted() && node.thread != null &&
1335 (node.next != null ||
1336 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1337 eventCount == prev)
1338 return false;
1339 if (node.thread != null) {
1340 node.thread = null;
1341 long ec = eventCount;
1342 if (prev <= ec) // help signal
1343 casEventCount(ec, ec+1);
1344 }
1345 return true;
1346 }
1347
1348 /**
1349 * Returns true if a new sync event occurred since last call to
1350 * sync or this method, if so, updating caller's count.
1351 */
1352 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1353 long lc = w.lastEventCount;
1354 long ec = ensureSync();
1355 if (ec == lc)
1356 return false;
1357 w.lastEventCount = ec;
1358 return true;
1359 }
1360
1361 // Parallelism maintenance
1362
1363 /**
1364 * Decrement running count; if too low, add spare.
1365 *
1366 * Conceptually, all we need to do here is add or resume a
1367 * spare thread when one is about to block (and remove or
1368 * suspend it later when unblocked -- see suspendIfSpare).
1369 * However, implementing this idea requires coping with
1370 * several problems: We have imperfect information about the
1371 * states of threads. Some count updates can and usually do
1372 * lag run state changes, despite arrangements to keep them
1373 * accurate (for example, when possible, updating counts
1374 * before signalling or resuming), especially when running on
1375 * dynamic JVMs that don't optimize the infrequent paths that
1376 * update counts. Generating too many threads can make these
1377 * problems become worse, because excess threads are more
1378 * likely to be context-switched with others, slowing them all
1379 * down, especially if there is no work available, so all are
1380 * busy scanning or idling. Also, excess spare threads can
1381 * only be suspended or removed when they are idle, not
1382 * immediately when they aren't needed. So adding threads will
1383 * raise parallelism level for longer than necessary. Also,
1384 * FJ applications often enounter highly transient peaks when
1385 * many threads are blocked joining, but for less time than it
1386 * takes to create or resume spares.
1387 *
1388 * @param joinMe if non-null, return early if done
1389 * @param maintainParallelism if true, try to stay within
1390 * target counts, else create only to avoid starvation
1391 * @return true if joinMe known to be done
1392 */
1393 final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1394 maintainParallelism &= maintainsParallelism; // overrride
1395 boolean dec = false; // true when running count decremented
1396 while (spareStack == null || !tryResumeSpare(dec)) {
1397 int counts = workerCounts;
1398 if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1399 if (!needSpare(counts, maintainParallelism))
1400 break;
1401 if (joinMe.status < 0)
1402 return true;
1403 if (tryAddSpare(counts))
1404 break;
1405 }
1406 }
1407 return false;
1408 }
1409
1410 /**
1411 * Same idea as preJoin
1412 */
1413 final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1414 maintainParallelism &= maintainsParallelism;
1415 boolean dec = false;
1416 while (spareStack == null || !tryResumeSpare(dec)) {
1417 int counts = workerCounts;
1418 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1419 if (!needSpare(counts, maintainParallelism))
1420 break;
1421 if (blocker.isReleasable())
1422 return true;
1423 if (tryAddSpare(counts))
1424 break;
1425 }
1426 }
1427 return false;
1428 }
1429
1430 /**
1431 * Returns true if a spare thread appears to be needed. If
1432 * maintaining parallelism, returns true when the deficit in
1433 * running threads is more than the surplus of total threads, and
1434 * there is apparently some work to do. This self-limiting rule
1435 * means that the more threads that have already been added, the
1436 * less parallelism we will tolerate before adding another.
1437 * @param counts current worker counts
1438 * @param maintainParallelism try to maintain parallelism
1439 */
1440 private boolean needSpare(int counts, boolean maintainParallelism) {
1441 int ps = parallelism;
1442 int rc = runningCountOf(counts);
1443 int tc = totalCountOf(counts);
1444 int runningDeficit = ps - rc;
1445 int totalSurplus = tc - ps;
1446 return (tc < maxPoolSize &&
1447 (rc == 0 || totalSurplus < 0 ||
1448 (maintainParallelism &&
1449 runningDeficit > totalSurplus &&
1450 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1451 }
1452
1453 /**
1454 * Add a spare worker if lock available and no more than the
1455 * expected numbers of threads exist
1456 * @return true if successful
1457 */
1458 private boolean tryAddSpare(int expectedCounts) {
1459 final ReentrantLock lock = this.workerLock;
1460 int expectedRunning = runningCountOf(expectedCounts);
1461 int expectedTotal = totalCountOf(expectedCounts);
1462 boolean success = false;
1463 boolean locked = false;
1464 // confirm counts while locking; CAS after obtaining lock
1465 try {
1466 for (;;) {
1467 int s = workerCounts;
1468 int tc = totalCountOf(s);
1469 int rc = runningCountOf(s);
1470 if (rc > expectedRunning || tc > expectedTotal)
1471 break;
1472 if (!locked && !(locked = lock.tryLock()))
1473 break;
1474 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1475 createAndStartSpare(tc);
1476 success = true;
1477 break;
1478 }
1479 }
1480 } finally {
1481 if (locked)
1482 lock.unlock();
1483 }
1484 return success;
1485 }
1486
1487 /**
1488 * Add the kth spare worker. On entry, pool coounts are already
1489 * adjusted to reflect addition.
1490 */
1491 private void createAndStartSpare(int k) {
1492 ForkJoinWorkerThread w = null;
1493 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1494 int len = ws.length;
1495 // Probably, we can place at slot k. If not, find empty slot
1496 if (k < len && ws[k] != null) {
1497 for (k = 0; k < len && ws[k] != null; ++k)
1498 ;
1499 }
1500 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1501 ws[k] = w;
1502 w.start();
1503 }
1504 else
1505 updateWorkerCount(-1); // adjust on failure
1506 signalIdleWorkers();
1507 }
1508
1509 /**
1510 * Suspend calling thread w if there are excess threads. Called
1511 * only from sync. Spares are enqueued in a Treiber stack
1512 * using the same WaitQueueNodes as barriers. They are resumed
1513 * mainly in preJoin, but are also woken on pool events that
1514 * require all threads to check run state.
1515 * @param w the caller
1516 */
1517 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1518 WaitQueueNode node = null;
1519 int s;
1520 while (parallelism < runningCountOf(s = workerCounts)) {
1521 if (node == null)
1522 node = new WaitQueueNode(0, w);
1523 if (casWorkerCounts(s, s-1)) { // representation-dependent
1524 // push onto stack
1525 do;while (!casSpareStack(node.next = spareStack, node));
1526 // block until released by resumeSpare
1527 node.awaitSpareRelease();
1528 return true;
1529 }
1530 }
1531 return false;
1532 }
1533
1534 /**
1535 * Try to pop and resume a spare thread.
1536 * @param updateCount if true, increment running count on success
1537 * @return true if successful
1538 */
1539 private boolean tryResumeSpare(boolean updateCount) {
1540 WaitQueueNode q;
1541 while ((q = spareStack) != null) {
1542 if (casSpareStack(q, q.next)) {
1543 if (updateCount)
1544 updateRunningCount(1);
1545 q.signal();
1546 return true;
1547 }
1548 }
1549 return false;
1550 }
1551
1552 /**
1553 * Pop and resume all spare threads. Same idea as ensureSync.
1554 * @return true if any spares released
1555 */
1556 private boolean resumeAllSpares() {
1557 WaitQueueNode q;
1558 while ( (q = spareStack) != null) {
1559 if (casSpareStack(q, null)) {
1560 do {
1561 updateRunningCount(1);
1562 q.signal();
1563 } while ((q = q.next) != null);
1564 return true;
1565 }
1566 }
1567 return false;
1568 }
1569
1570 /**
1571 * Pop and shutdown excessive spare threads. Call only while
1572 * holding lock. This is not guaranteed to eliminate all excess
1573 * threads, only those suspended as spares, which are the ones
1574 * unlikely to be needed in the future.
1575 */
1576 private void trimSpares() {
1577 int surplus = totalCountOf(workerCounts) - parallelism;
1578 WaitQueueNode q;
1579 while (surplus > 0 && (q = spareStack) != null) {
1580 if (casSpareStack(q, null)) {
1581 do {
1582 updateRunningCount(1);
1583 ForkJoinWorkerThread w = q.thread;
1584 if (w != null && surplus > 0 &&
1585 runningCountOf(workerCounts) > 0 && w.shutdown())
1586 --surplus;
1587 q.signal();
1588 } while ((q = q.next) != null);
1589 }
1590 }
1591 }
1592
1593 /**
1594 * Interface for extending managed parallelism for tasks running
1595 * in ForkJoinPools. A ManagedBlocker provides two methods.
1596 * Method <code>isReleasable</code> must return true if blocking is not
1597 * necessary. Method <code>block</code> blocks the current thread
1598 * if necessary (perhaps internally invoking isReleasable before
1599 * actually blocking.).
1600 * <p>For example, here is a ManagedBlocker based on a
1601 * ReentrantLock:
1602 * <pre>
1603 * class ManagedLocker implements ManagedBlocker {
1604 * final ReentrantLock lock;
1605 * boolean hasLock = false;
1606 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1607 * public boolean block() {
1608 * if (!hasLock)
1609 * lock.lock();
1610 * return true;
1611 * }
1612 * public boolean isReleasable() {
1613 * return hasLock || (hasLock = lock.tryLock());
1614 * }
1615 * }
1616 * </pre>
1617 */
1618 public static interface ManagedBlocker {
1619 /**
1620 * Possibly blocks the current thread, for example waiting for
1621 * a lock or condition.
1622 * @return true if no additional blocking is necessary (i.e.,
1623 * if isReleasable would return true).
1624 * @throws InterruptedException if interrupted while waiting
1625 * (the method is not required to do so, but is allowe to).
1626 */
1627 boolean block() throws InterruptedException;
1628
1629 /**
1630 * Returns true if blocking is unnecessary.
1631 */
1632 boolean isReleasable();
1633 }
1634
1635 /**
1636 * Blocks in accord with the given blocker. If the current thread
1637 * is a ForkJoinWorkerThread, this method possibly arranges for a
1638 * spare thread to be activated if necessary to ensure parallelism
1639 * while the current thread is blocked. If
1640 * <code>maintainParallelism</code> is true and the pool supports
1641 * it ({@link #getMaintainsParallelism}), this method attempts to
1642 * maintain the pool's nominal parallelism. Otherwise if activates
1643 * a thread only if necessary to avoid complete starvation. This
1644 * option may be preferable when blockages use timeouts, or are
1645 * almost always brief.
1646 *
1647 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1648 * equivalent to
1649 * <pre>
1650 * while (!blocker.isReleasable())
1651 * if (blocker.block())
1652 * return;
1653 * </pre>
1654 * If the caller is a ForkJoinTask, then the pool may first
1655 * be expanded to ensure parallelism, and later adjusted.
1656 *
1657 * @param blocker the blocker
1658 * @param maintainParallelism if true and supported by this pool,
1659 * attempt to maintain the pool's nominal parallelism; otherwise
1660 * activate a thread only if necessary to avoid complete
1661 * starvation.
1662 * @throws InterruptedException if blocker.block did so.
1663 */
1664 public static void managedBlock(ManagedBlocker blocker,
1665 boolean maintainParallelism)
1666 throws InterruptedException {
1667 Thread t = Thread.currentThread();
1668 ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1669 ((ForkJoinWorkerThread)t).pool : null);
1670 if (!blocker.isReleasable()) {
1671 try {
1672 if (pool == null ||
1673 !pool.preBlock(blocker, maintainParallelism))
1674 awaitBlocker(blocker);
1675 } finally {
1676 if (pool != null)
1677 pool.updateRunningCount(1);
1678 }
1679 }
1680 }
1681
1682 private static void awaitBlocker(ManagedBlocker blocker)
1683 throws InterruptedException {
1684 do;while (!blocker.isReleasable() && !blocker.block());
1685 }
1686
1687 // AbstractExecutorService overrides
1688
1689 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1690 return new AdaptedRunnable(runnable, value);
1691 }
1692
1693 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1694 return new AdaptedCallable(callable);
1695 }
1696
1697
1698 // Temporary Unsafe mechanics for preliminary release
1699
1700 static final Unsafe _unsafe;
1701 static final long eventCountOffset;
1702 static final long workerCountsOffset;
1703 static final long runControlOffset;
1704 static final long syncStackOffset;
1705 static final long spareStackOffset;
1706
1707 static {
1708 try {
1709 if (ForkJoinPool.class.getClassLoader() != null) {
1710 Field f = Unsafe.class.getDeclaredField("theUnsafe");
1711 f.setAccessible(true);
1712 _unsafe = (Unsafe)f.get(null);
1713 }
1714 else
1715 _unsafe = Unsafe.getUnsafe();
1716 eventCountOffset = _unsafe.objectFieldOffset
1717 (ForkJoinPool.class.getDeclaredField("eventCount"));
1718 workerCountsOffset = _unsafe.objectFieldOffset
1719 (ForkJoinPool.class.getDeclaredField("workerCounts"));
1720 runControlOffset = _unsafe.objectFieldOffset
1721 (ForkJoinPool.class.getDeclaredField("runControl"));
1722 syncStackOffset = _unsafe.objectFieldOffset
1723 (ForkJoinPool.class.getDeclaredField("syncStack"));
1724 spareStackOffset = _unsafe.objectFieldOffset
1725 (ForkJoinPool.class.getDeclaredField("spareStack"));
1726 } catch (Exception e) {
1727 throw new RuntimeException("Could not initialize intrinsics", e);
1728 }
1729 }
1730
1731 private boolean casEventCount(long cmp, long val) {
1732 return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1733 }
1734 private boolean casWorkerCounts(int cmp, int val) {
1735 return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1736 }
1737 private boolean casRunControl(int cmp, int val) {
1738 return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1739 }
1740 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1741 return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1742 }
1743 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1744 return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1745 }
1746 }