ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.41
Committed: Mon Aug 3 01:11:58 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.40: +14 -12 lines
Log Message:
javadoc cleanup

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask}s, as well as management and
26 * monitoring operations. Normally a single {@code ForkJoinPool} is
27 * used for a large number of submitted tasks. Otherwise, use would
28 * not usually outweigh the construction and bookkeeping overhead of
29 * creating a large set of threads.
30 *
31 * <p>{@code ForkJoinPool}s differ from other kinds of {@link
32 * Executor}s mainly in that they provide <em>work-stealing</em>: all
33 * threads in the pool attempt to find and execute subtasks created by
34 * other active tasks (eventually blocking if none exist). This makes
35 * them efficient when most tasks spawn other subtasks (as do most
36 * {@code ForkJoinTask}s), as well as the mixed execution of some
37 * plain {@code Runnable}- or {@code Callable}- based activities along
38 * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
39 * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 * with fine-grained tasks that are never joined. Otherwise, other
41 * {@code ExecutorService} implementations are typically more
42 * appropriate choices.
43 *
44 * <p>A {@code ForkJoinPool} may be constructed with a given
45 * parallelism level (target pool size), which it attempts to maintain
46 * by dynamically adding, suspending, or resuming threads, even if
47 * some tasks are waiting to join others. However, no such adjustments
48 * are performed in the face of blocked IO or other unmanaged
49 * synchronization. The nested {@link ManagedBlocker} interface
50 * enables extension of the kinds of synchronization accommodated.
51 * The target parallelism level may also be changed dynamically
52 * ({@link #setParallelism}) and thread construction can be limited
53 * using methods {@link #setMaximumPoolSize} and/or {@link
54 * #setMaintainsParallelism}.
55 *
56 * <p>In addition to execution and lifecycle control methods, this
57 * class provides status check methods (for example
58 * {@link #getStealCount}) that are intended to aid in developing,
59 * tuning, and monitoring fork/join applications. Also, method
60 * {@link #toString} returns indications of pool state in a
61 * convenient form for informal monitoring.
62 *
63 * <p><b>Implementation notes</b>: This implementation restricts the
64 * maximum number of running threads to 32767. Attempts to create
65 * pools with greater than the maximum result in
66 * {@code IllegalArgumentException}.
67 *
68 * @since 1.7
69 * @author Doug Lea
70 */
71 public class ForkJoinPool extends AbstractExecutorService {
72
73 /*
74 * See the extended comments interspersed below for design,
75 * rationale, and walkthroughs.
76 */
77
78 /** Mask for packing and unpacking shorts */
79 private static final int shortMask = 0xffff;
80
81 /** Max pool size -- must be a power of two minus 1 */
82 private static final int MAX_THREADS = 0x7FFF;
83
84 /**
85 * Factory for creating new {@link ForkJoinWorkerThread}s.
86 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
87 * for {@code ForkJoinWorkerThread} subclasses that extend base
88 * functionality or initialize threads with different contexts.
89 */
90 public static interface ForkJoinWorkerThreadFactory {
91 /**
92 * Returns a new worker thread operating in the given pool.
93 *
94 * @param pool the pool this thread works in
95 * @throws NullPointerException if pool is null
96 */
97 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
98 }
99
100 /**
101 * Default ForkJoinWorkerThreadFactory implementation; creates a
102 * new ForkJoinWorkerThread.
103 */
104 static class DefaultForkJoinWorkerThreadFactory
105 implements ForkJoinWorkerThreadFactory {
106 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
107 try {
108 return new ForkJoinWorkerThread(pool);
109 } catch (OutOfMemoryError oom) {
110 return null;
111 }
112 }
113 }
114
115 /**
116 * Creates a new ForkJoinWorkerThread. This factory is used unless
117 * overridden in ForkJoinPool constructors.
118 */
119 public static final ForkJoinWorkerThreadFactory
120 defaultForkJoinWorkerThreadFactory =
121 new DefaultForkJoinWorkerThreadFactory();
122
123 /**
124 * Permission required for callers of methods that may start or
125 * kill threads.
126 */
127 private static final RuntimePermission modifyThreadPermission =
128 new RuntimePermission("modifyThread");
129
130 /**
131 * If there is a security manager, makes sure caller has
132 * permission to modify threads.
133 */
134 private static void checkPermission() {
135 SecurityManager security = System.getSecurityManager();
136 if (security != null)
137 security.checkPermission(modifyThreadPermission);
138 }
139
140 /**
141 * Generator for assigning sequence numbers as pool names.
142 */
143 private static final AtomicInteger poolNumberGenerator =
144 new AtomicInteger();
145
146 /**
147 * Array holding all worker threads in the pool. Initialized upon
148 * first use. Array size must be a power of two. Updates and
149 * replacements are protected by workerLock, but it is always kept
150 * in a consistent enough state to be randomly accessed without
151 * locking by workers performing work-stealing.
152 */
153 volatile ForkJoinWorkerThread[] workers;
154
155 /**
156 * Lock protecting access to workers.
157 */
158 private final ReentrantLock workerLock;
159
160 /**
161 * Condition for awaitTermination.
162 */
163 private final Condition termination;
164
165 /**
166 * The uncaught exception handler used when any worker
167 * abruptly terminates
168 */
169 private Thread.UncaughtExceptionHandler ueh;
170
171 /**
172 * Creation factory for worker threads.
173 */
174 private final ForkJoinWorkerThreadFactory factory;
175
176 /**
177 * Head of stack of threads that were created to maintain
178 * parallelism when other threads blocked, but have since
179 * suspended when the parallelism level rose.
180 */
181 private volatile WaitQueueNode spareStack;
182
183 /**
184 * Sum of per-thread steal counts, updated only when threads are
185 * idle or terminating.
186 */
187 private final AtomicLong stealCount;
188
189 /**
190 * Queue for external submissions.
191 */
192 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
193
194 /**
195 * Head of Treiber stack for barrier sync. See below for explanation.
196 */
197 private volatile WaitQueueNode syncStack;
198
199 /**
200 * The count for event barrier
201 */
202 private volatile long eventCount;
203
204 /**
205 * Pool number, just for assigning useful names to worker threads
206 */
207 private final int poolNumber;
208
209 /**
210 * The maximum allowed pool size
211 */
212 private volatile int maxPoolSize;
213
214 /**
215 * The desired parallelism level, updated only under workerLock.
216 */
217 private volatile int parallelism;
218
219 /**
220 * True if use local fifo, not default lifo, for local polling
221 */
222 private volatile boolean locallyFifo;
223
224 /**
225 * Holds number of total (i.e., created and not yet terminated)
226 * and running (i.e., not blocked on joins or other managed sync)
227 * threads, packed into one int to ensure consistent snapshot when
228 * making decisions about creating and suspending spare
229 * threads. Updated only by CAS. Note: CASes in
230 * updateRunningCount and preJoin assume that running active count
231 * is in low word, so need to be modified if this changes.
232 */
233 private volatile int workerCounts;
234
235 private static int totalCountOf(int s) { return s >>> 16; }
236 private static int runningCountOf(int s) { return s & shortMask; }
237 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
238
239 /**
240 * Adds delta (which may be negative) to running count. This must
241 * be called before (with negative arg) and after (with positive)
242 * any managed synchronization (i.e., mainly, joins).
243 *
244 * @param delta the number to add
245 */
246 final void updateRunningCount(int delta) {
247 int s;
248 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
249 }
250
251 /**
252 * Adds delta (which may be negative) to both total and running
253 * count. This must be called upon creation and termination of
254 * worker threads.
255 *
256 * @param delta the number to add
257 */
258 private void updateWorkerCount(int delta) {
259 int d = delta + (delta << 16); // add to both lo and hi parts
260 int s;
261 do {} while (!casWorkerCounts(s = workerCounts, s + d));
262 }
263
264 /**
265 * Lifecycle control. High word contains runState, low word
266 * contains the number of workers that are (probably) executing
267 * tasks. This value is atomically incremented before a worker
268 * gets a task to run, and decremented when worker has no tasks
269 * and cannot find any. These two fields are bundled together to
270 * support correct termination triggering. Note: activeCount
271 * CAS'es cheat by assuming active count is in low word, so need
272 * to be modified if this changes
273 */
274 private volatile int runControl;
275
276 // RunState values. Order among values matters
277 private static final int RUNNING = 0;
278 private static final int SHUTDOWN = 1;
279 private static final int TERMINATING = 2;
280 private static final int TERMINATED = 3;
281
282 private static int runStateOf(int c) { return c >>> 16; }
283 private static int activeCountOf(int c) { return c & shortMask; }
284 private static int runControlFor(int r, int a) { return (r << 16) + a; }
285
286 /**
287 * Tries incrementing active count; fails on contention.
288 * Called by workers before/during executing tasks.
289 *
290 * @return true on success
291 */
292 final boolean tryIncrementActiveCount() {
293 int c = runControl;
294 return casRunControl(c, c+1);
295 }
296
297 /**
298 * Tries decrementing active count; fails on contention.
299 * Possibly triggers termination on success.
300 * Called by workers when they can't find tasks.
301 *
302 * @return true on success
303 */
304 final boolean tryDecrementActiveCount() {
305 int c = runControl;
306 int nextc = c - 1;
307 if (!casRunControl(c, nextc))
308 return false;
309 if (canTerminateOnShutdown(nextc))
310 terminateOnShutdown();
311 return true;
312 }
313
314 /**
315 * Returns {@code true} if argument represents zero active count
316 * and nonzero runstate, which is the triggering condition for
317 * terminating on shutdown.
318 */
319 private static boolean canTerminateOnShutdown(int c) {
320 // i.e. least bit is nonzero runState bit
321 return ((c & -c) >>> 16) != 0;
322 }
323
324 /**
325 * Transition run state to at least the given state. Return true
326 * if not already at least given state.
327 */
328 private boolean transitionRunStateTo(int state) {
329 for (;;) {
330 int c = runControl;
331 if (runStateOf(c) >= state)
332 return false;
333 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
334 return true;
335 }
336 }
337
338 /**
339 * Controls whether to add spares to maintain parallelism
340 */
341 private volatile boolean maintainsParallelism;
342
343 // Constructors
344
345 /**
346 * Creates a {@code ForkJoinPool} with a pool size equal to the
347 * number of processors available on the system, using the
348 * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
349 *
350 * @throws SecurityException if a security manager exists and
351 * the caller is not permitted to modify threads
352 * because it does not hold {@link
353 * java.lang.RuntimePermission}{@code ("modifyThread")}
354 */
355 public ForkJoinPool() {
356 this(Runtime.getRuntime().availableProcessors(),
357 defaultForkJoinWorkerThreadFactory);
358 }
359
360 /**
361 * Creates a {@code ForkJoinPool} with the indicated parallelism level
362 * threads and using the
363 * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
364 *
365 * @param parallelism the number of worker threads
366 * @throws IllegalArgumentException if parallelism less than or
367 * equal to zero
368 * @throws SecurityException if a security manager exists and
369 * the caller is not permitted to modify threads
370 * because it does not hold {@link
371 * java.lang.RuntimePermission}{@code ("modifyThread")}
372 */
373 public ForkJoinPool(int parallelism) {
374 this(parallelism, defaultForkJoinWorkerThreadFactory);
375 }
376
377 /**
378 * Creates a {@code ForkJoinPool} with parallelism equal to the
379 * number of processors available on the system and using the
380 * given thread factory.
381 *
382 * @param factory the factory for creating new threads
383 * @throws NullPointerException if factory is null
384 * @throws SecurityException if a security manager exists and
385 * the caller is not permitted to modify threads
386 * because it does not hold {@link
387 * java.lang.RuntimePermission}{@code ("modifyThread")}
388 */
389 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
390 this(Runtime.getRuntime().availableProcessors(), factory);
391 }
392
393 /**
394 * Creates a {@code ForkJoinPool} with the given parallelism and
395 * thread factory.
396 *
397 * @param parallelism the targeted number of worker threads
398 * @param factory the factory for creating new threads
399 * @throws IllegalArgumentException if parallelism less than or
400 * equal to zero, or greater than implementation limit
401 * @throws NullPointerException if factory is null
402 * @throws SecurityException if a security manager exists and
403 * the caller is not permitted to modify threads
404 * because it does not hold {@link
405 * java.lang.RuntimePermission}{@code ("modifyThread")}
406 */
407 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
408 if (parallelism <= 0 || parallelism > MAX_THREADS)
409 throw new IllegalArgumentException();
410 if (factory == null)
411 throw new NullPointerException();
412 checkPermission();
413 this.factory = factory;
414 this.parallelism = parallelism;
415 this.maxPoolSize = MAX_THREADS;
416 this.maintainsParallelism = true;
417 this.poolNumber = poolNumberGenerator.incrementAndGet();
418 this.workerLock = new ReentrantLock();
419 this.termination = workerLock.newCondition();
420 this.stealCount = new AtomicLong();
421 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
422 // worker array and workers are lazily constructed
423 }
424
425 /**
426 * Creates a new worker thread using factory.
427 *
428 * @param index the index to assign worker
429 * @return new worker, or null if factory failed
430 */
431 private ForkJoinWorkerThread createWorker(int index) {
432 Thread.UncaughtExceptionHandler h = ueh;
433 ForkJoinWorkerThread w = factory.newThread(this);
434 if (w != null) {
435 w.poolIndex = index;
436 w.setDaemon(true);
437 w.setAsyncMode(locallyFifo);
438 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
439 if (h != null)
440 w.setUncaughtExceptionHandler(h);
441 }
442 return w;
443 }
444
445 /**
446 * Returns a good size for worker array given pool size.
447 * Currently requires size to be a power of two.
448 */
449 private static int arraySizeFor(int poolSize) {
450 return (poolSize <= 1) ? 1 :
451 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
452 }
453
454 /**
455 * Creates or resizes array if necessary to hold newLength.
456 * Call only under exclusion.
457 *
458 * @return the array
459 */
460 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
461 ForkJoinWorkerThread[] ws = workers;
462 if (ws == null)
463 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
464 else if (newLength > ws.length)
465 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
466 else
467 return ws;
468 }
469
470 /**
471 * Tries to shrink workers into smaller array after one or more terminate.
472 */
473 private void tryShrinkWorkerArray() {
474 ForkJoinWorkerThread[] ws = workers;
475 if (ws != null) {
476 int len = ws.length;
477 int last = len - 1;
478 while (last >= 0 && ws[last] == null)
479 --last;
480 int newLength = arraySizeFor(last+1);
481 if (newLength < len)
482 workers = Arrays.copyOf(ws, newLength);
483 }
484 }
485
486 /**
487 * Initializes workers if necessary.
488 */
489 final void ensureWorkerInitialization() {
490 ForkJoinWorkerThread[] ws = workers;
491 if (ws == null) {
492 final ReentrantLock lock = this.workerLock;
493 lock.lock();
494 try {
495 ws = workers;
496 if (ws == null) {
497 int ps = parallelism;
498 ws = ensureWorkerArrayCapacity(ps);
499 for (int i = 0; i < ps; ++i) {
500 ForkJoinWorkerThread w = createWorker(i);
501 if (w != null) {
502 ws[i] = w;
503 w.start();
504 updateWorkerCount(1);
505 }
506 }
507 }
508 } finally {
509 lock.unlock();
510 }
511 }
512 }
513
514 /**
515 * Worker creation and startup for threads added via setParallelism.
516 */
517 private void createAndStartAddedWorkers() {
518 resumeAllSpares(); // Allow spares to convert to nonspare
519 int ps = parallelism;
520 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
521 int len = ws.length;
522 // Sweep through slots, to keep lowest indices most populated
523 int k = 0;
524 while (k < len) {
525 if (ws[k] != null) {
526 ++k;
527 continue;
528 }
529 int s = workerCounts;
530 int tc = totalCountOf(s);
531 int rc = runningCountOf(s);
532 if (rc >= ps || tc >= ps)
533 break;
534 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
535 ForkJoinWorkerThread w = createWorker(k);
536 if (w != null) {
537 ws[k++] = w;
538 w.start();
539 }
540 else {
541 updateWorkerCount(-1); // back out on failed creation
542 break;
543 }
544 }
545 }
546 }
547
548 // Execution methods
549
550 /**
551 * Common code for execute, invoke and submit
552 */
553 private <T> void doSubmit(ForkJoinTask<T> task) {
554 if (task == null)
555 throw new NullPointerException();
556 if (isShutdown())
557 throw new RejectedExecutionException();
558 if (workers == null)
559 ensureWorkerInitialization();
560 submissionQueue.offer(task);
561 signalIdleWorkers();
562 }
563
564 /**
565 * Performs the given task, returning its result upon completion.
566 *
567 * @param task the task
568 * @return the task's result
569 * @throws NullPointerException if task is null
570 * @throws RejectedExecutionException if pool is shut down
571 */
572 public <T> T invoke(ForkJoinTask<T> task) {
573 doSubmit(task);
574 return task.join();
575 }
576
577 /**
578 * Arranges for (asynchronous) execution of the given task.
579 *
580 * @param task the task
581 * @throws NullPointerException if task is null
582 * @throws RejectedExecutionException if pool is shut down
583 */
584 public void execute(ForkJoinTask<?> task) {
585 doSubmit(task);
586 }
587
588 // AbstractExecutorService methods
589
590 public void execute(Runnable task) {
591 ForkJoinTask<?> job;
592 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
593 job = (ForkJoinTask<?>) task;
594 else
595 job = ForkJoinTask.adapt(task, null);
596 doSubmit(job);
597 }
598
599 public <T> ForkJoinTask<T> submit(Callable<T> task) {
600 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
601 doSubmit(job);
602 return job;
603 }
604
605 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
606 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
607 doSubmit(job);
608 return job;
609 }
610
611 public ForkJoinTask<?> submit(Runnable task) {
612 ForkJoinTask<?> job;
613 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
614 job = (ForkJoinTask<?>) task;
615 else
616 job = ForkJoinTask.adapt(task, null);
617 doSubmit(job);
618 return job;
619 }
620
621 /**
622 * Submits a ForkJoinTask for execution.
623 *
624 * @param task the task to submit
625 * @return the task
626 * @throws RejectedExecutionException if the task cannot be
627 * scheduled for execution
628 * @throws NullPointerException if the task is null
629 */
630 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
631 doSubmit(task);
632 return task;
633 }
634
635
636 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
637 ArrayList<ForkJoinTask<T>> forkJoinTasks =
638 new ArrayList<ForkJoinTask<T>>(tasks.size());
639 for (Callable<T> task : tasks)
640 forkJoinTasks.add(ForkJoinTask.adapt(task));
641 invoke(new InvokeAll<T>(forkJoinTasks));
642
643 @SuppressWarnings({"unchecked", "rawtypes"})
644 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
645 return futures;
646 }
647
648 static final class InvokeAll<T> extends RecursiveAction {
649 final ArrayList<ForkJoinTask<T>> tasks;
650 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
651 public void compute() {
652 try { invokeAll(tasks); }
653 catch (Exception ignore) {}
654 }
655 private static final long serialVersionUID = -7914297376763021607L;
656 }
657
658 // Configuration and status settings and queries
659
660 /**
661 * Returns the factory used for constructing new workers.
662 *
663 * @return the factory used for constructing new workers
664 */
665 public ForkJoinWorkerThreadFactory getFactory() {
666 return factory;
667 }
668
669 /**
670 * Returns the handler for internal worker threads that terminate
671 * due to unrecoverable errors encountered while executing tasks.
672 *
673 * @return the handler, or {@code null} if none
674 */
675 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
676 Thread.UncaughtExceptionHandler h;
677 final ReentrantLock lock = this.workerLock;
678 lock.lock();
679 try {
680 h = ueh;
681 } finally {
682 lock.unlock();
683 }
684 return h;
685 }
686
687 /**
688 * Sets the handler for internal worker threads that terminate due
689 * to unrecoverable errors encountered while executing tasks.
690 * Unless set, the current default or ThreadGroup handler is used
691 * as handler.
692 *
693 * @param h the new handler
694 * @return the old handler, or {@code null} if none
695 * @throws SecurityException if a security manager exists and
696 * the caller is not permitted to modify threads
697 * because it does not hold {@link
698 * java.lang.RuntimePermission}{@code ("modifyThread")}
699 */
700 public Thread.UncaughtExceptionHandler
701 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
702 checkPermission();
703 Thread.UncaughtExceptionHandler old = null;
704 final ReentrantLock lock = this.workerLock;
705 lock.lock();
706 try {
707 old = ueh;
708 ueh = h;
709 ForkJoinWorkerThread[] ws = workers;
710 if (ws != null) {
711 for (int i = 0; i < ws.length; ++i) {
712 ForkJoinWorkerThread w = ws[i];
713 if (w != null)
714 w.setUncaughtExceptionHandler(h);
715 }
716 }
717 } finally {
718 lock.unlock();
719 }
720 return old;
721 }
722
723
724 /**
725 * Sets the target parallelism level of this pool.
726 *
727 * @param parallelism the target parallelism
728 * @throws IllegalArgumentException if parallelism less than or
729 * equal to zero or greater than maximum size bounds
730 * @throws SecurityException if a security manager exists and
731 * the caller is not permitted to modify threads
732 * because it does not hold {@link
733 * java.lang.RuntimePermission}{@code ("modifyThread")}
734 */
735 public void setParallelism(int parallelism) {
736 checkPermission();
737 if (parallelism <= 0 || parallelism > maxPoolSize)
738 throw new IllegalArgumentException();
739 final ReentrantLock lock = this.workerLock;
740 lock.lock();
741 try {
742 if (!isTerminating()) {
743 int p = this.parallelism;
744 this.parallelism = parallelism;
745 if (parallelism > p)
746 createAndStartAddedWorkers();
747 else
748 trimSpares();
749 }
750 } finally {
751 lock.unlock();
752 }
753 signalIdleWorkers();
754 }
755
756 /**
757 * Returns the targeted number of worker threads in this pool.
758 *
759 * @return the targeted number of worker threads in this pool
760 */
761 public int getParallelism() {
762 return parallelism;
763 }
764
765 /**
766 * Returns the number of worker threads that have started but not
767 * yet terminated. This result returned by this method may differ
768 * from {@link #getParallelism} when threads are created to
769 * maintain parallelism when others are cooperatively blocked.
770 *
771 * @return the number of worker threads
772 */
773 public int getPoolSize() {
774 return totalCountOf(workerCounts);
775 }
776
777 /**
778 * Returns the maximum number of threads allowed to exist in the
779 * pool, even if there are insufficient unblocked running threads.
780 *
781 * @return the maximum
782 */
783 public int getMaximumPoolSize() {
784 return maxPoolSize;
785 }
786
787 /**
788 * Sets the maximum number of threads allowed to exist in the
789 * pool, even if there are insufficient unblocked running threads.
790 * Setting this value has no effect on current pool size. It
791 * controls construction of new threads.
792 *
793 * @throws IllegalArgumentException if negative or greater than
794 * internal implementation limit
795 */
796 public void setMaximumPoolSize(int newMax) {
797 if (newMax < 0 || newMax > MAX_THREADS)
798 throw new IllegalArgumentException();
799 maxPoolSize = newMax;
800 }
801
802
803 /**
804 * Returns {@code true} if this pool dynamically maintains its
805 * target parallelism level. If false, new threads are added only
806 * to avoid possible starvation. This setting is by default true.
807 *
808 * @return {@code true} if maintains parallelism
809 */
810 public boolean getMaintainsParallelism() {
811 return maintainsParallelism;
812 }
813
814 /**
815 * Sets whether this pool dynamically maintains its target
816 * parallelism level. If false, new threads are added only to
817 * avoid possible starvation.
818 *
819 * @param enable {@code true} to maintain parallelism
820 */
821 public void setMaintainsParallelism(boolean enable) {
822 maintainsParallelism = enable;
823 }
824
825 /**
826 * Establishes local first-in-first-out scheduling mode for forked
827 * tasks that are never joined. This mode may be more appropriate
828 * than default locally stack-based mode in applications in which
829 * worker threads only process asynchronous tasks. This method is
830 * designed to be invoked only when the pool is quiescent, and
831 * typically only before any tasks are submitted. The effects of
832 * invocations at other times may be unpredictable.
833 *
834 * @param async if {@code true}, use locally FIFO scheduling
835 * @return the previous mode
836 * @see #getAsyncMode
837 */
838 public boolean setAsyncMode(boolean async) {
839 boolean oldMode = locallyFifo;
840 locallyFifo = async;
841 ForkJoinWorkerThread[] ws = workers;
842 if (ws != null) {
843 for (int i = 0; i < ws.length; ++i) {
844 ForkJoinWorkerThread t = ws[i];
845 if (t != null)
846 t.setAsyncMode(async);
847 }
848 }
849 return oldMode;
850 }
851
852 /**
853 * Returns {@code true} if this pool uses local first-in-first-out
854 * scheduling mode for forked tasks that are never joined.
855 *
856 * @return {@code true} if this pool uses async mode
857 * @see #setAsyncMode
858 */
859 public boolean getAsyncMode() {
860 return locallyFifo;
861 }
862
863 /**
864 * Returns an estimate of the number of worker threads that are
865 * not blocked waiting to join tasks or for other managed
866 * synchronization.
867 *
868 * @return the number of worker threads
869 */
870 public int getRunningThreadCount() {
871 return runningCountOf(workerCounts);
872 }
873
874 /**
875 * Returns an estimate of the number of threads that are currently
876 * stealing or executing tasks. This method may overestimate the
877 * number of active threads.
878 *
879 * @return the number of active threads
880 */
881 public int getActiveThreadCount() {
882 return activeCountOf(runControl);
883 }
884
885 /**
886 * Returns an estimate of the number of threads that are currently
887 * idle waiting for tasks. This method may underestimate the
888 * number of idle threads.
889 *
890 * @return the number of idle threads
891 */
892 final int getIdleThreadCount() {
893 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
894 return (c <= 0) ? 0 : c;
895 }
896
897 /**
898 * Returns {@code true} if all worker threads are currently idle.
899 * An idle worker is one that cannot obtain a task to execute
900 * because none are available to steal from other threads, and
901 * there are no pending submissions to the pool. This method is
902 * conservative; it might not return {@code true} immediately upon
903 * idleness of all threads, but will eventually become true if
904 * threads remain inactive.
905 *
906 * @return {@code true} if all threads are currently idle
907 */
908 public boolean isQuiescent() {
909 return activeCountOf(runControl) == 0;
910 }
911
912 /**
913 * Returns an estimate of the total number of tasks stolen from
914 * one thread's work queue by another. The reported value
915 * underestimates the actual total number of steals when the pool
916 * is not quiescent. This value may be useful for monitoring and
917 * tuning fork/join programs: in general, steal counts should be
918 * high enough to keep threads busy, but low enough to avoid
919 * overhead and contention across threads.
920 *
921 * @return the number of steals
922 */
923 public long getStealCount() {
924 return stealCount.get();
925 }
926
927 /**
928 * Accumulates steal count from a worker.
929 * Call only when worker known to be idle.
930 */
931 private void updateStealCount(ForkJoinWorkerThread w) {
932 int sc = w.getAndClearStealCount();
933 if (sc != 0)
934 stealCount.addAndGet(sc);
935 }
936
937 /**
938 * Returns an estimate of the total number of tasks currently held
939 * in queues by worker threads (but not including tasks submitted
940 * to the pool that have not begun executing). This value is only
941 * an approximation, obtained by iterating across all threads in
942 * the pool. This method may be useful for tuning task
943 * granularities.
944 *
945 * @return the number of queued tasks
946 */
947 public long getQueuedTaskCount() {
948 long count = 0;
949 ForkJoinWorkerThread[] ws = workers;
950 if (ws != null) {
951 for (int i = 0; i < ws.length; ++i) {
952 ForkJoinWorkerThread t = ws[i];
953 if (t != null)
954 count += t.getQueueSize();
955 }
956 }
957 return count;
958 }
959
960 /**
961 * Returns an estimate of the number of tasks submitted to this
962 * pool that have not yet begun executing. This method takes time
963 * proportional to the number of submissions.
964 *
965 * @return the number of queued submissions
966 */
967 public int getQueuedSubmissionCount() {
968 return submissionQueue.size();
969 }
970
971 /**
972 * Returns {@code true} if there are any tasks submitted to this
973 * pool that have not yet begun executing.
974 *
975 * @return {@code true} if there are any queued submissions
976 */
977 public boolean hasQueuedSubmissions() {
978 return !submissionQueue.isEmpty();
979 }
980
981 /**
982 * Removes and returns the next unexecuted submission if one is
983 * available. This method may be useful in extensions to this
984 * class that re-assign work in systems with multiple pools.
985 *
986 * @return the next submission, or {@code null} if none
987 */
988 protected ForkJoinTask<?> pollSubmission() {
989 return submissionQueue.poll();
990 }
991
992 /**
993 * Removes all available unexecuted submitted and forked tasks
994 * from scheduling queues and adds them to the given collection,
995 * without altering their execution status. These may include
996 * artificially generated or wrapped tasks. This method is
997 * designed to be invoked only when the pool is known to be
998 * quiescent. Invocations at other times may not remove all
999 * tasks. A failure encountered while attempting to add elements
1000 * to collection {@code c} may result in elements being in
1001 * neither, either or both collections when the associated
1002 * exception is thrown. The behavior of this operation is
1003 * undefined if the specified collection is modified while the
1004 * operation is in progress.
1005 *
1006 * @param c the collection to transfer elements into
1007 * @return the number of elements transferred
1008 */
1009 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1010 int n = submissionQueue.drainTo(c);
1011 ForkJoinWorkerThread[] ws = workers;
1012 if (ws != null) {
1013 for (int i = 0; i < ws.length; ++i) {
1014 ForkJoinWorkerThread w = ws[i];
1015 if (w != null)
1016 n += w.drainTasksTo(c);
1017 }
1018 }
1019 return n;
1020 }
1021
1022 /**
1023 * Returns a string identifying this pool, as well as its state,
1024 * including indications of run state, parallelism level, and
1025 * worker and task counts.
1026 *
1027 * @return a string identifying this pool, as well as its state
1028 */
1029 public String toString() {
1030 int ps = parallelism;
1031 int wc = workerCounts;
1032 int rc = runControl;
1033 long st = getStealCount();
1034 long qt = getQueuedTaskCount();
1035 long qs = getQueuedSubmissionCount();
1036 return super.toString() +
1037 "[" + runStateToString(runStateOf(rc)) +
1038 ", parallelism = " + ps +
1039 ", size = " + totalCountOf(wc) +
1040 ", active = " + activeCountOf(rc) +
1041 ", running = " + runningCountOf(wc) +
1042 ", steals = " + st +
1043 ", tasks = " + qt +
1044 ", submissions = " + qs +
1045 "]";
1046 }
1047
1048 private static String runStateToString(int rs) {
1049 switch(rs) {
1050 case RUNNING: return "Running";
1051 case SHUTDOWN: return "Shutting down";
1052 case TERMINATING: return "Terminating";
1053 case TERMINATED: return "Terminated";
1054 default: throw new Error("Unknown run state");
1055 }
1056 }
1057
1058 // lifecycle control
1059
1060 /**
1061 * Initiates an orderly shutdown in which previously submitted
1062 * tasks are executed, but no new tasks will be accepted.
1063 * Invocation has no additional effect if already shut down.
1064 * Tasks that are in the process of being submitted concurrently
1065 * during the course of this method may or may not be rejected.
1066 *
1067 * @throws SecurityException if a security manager exists and
1068 * the caller is not permitted to modify threads
1069 * because it does not hold {@link
1070 * java.lang.RuntimePermission}{@code ("modifyThread")}
1071 */
1072 public void shutdown() {
1073 checkPermission();
1074 transitionRunStateTo(SHUTDOWN);
1075 if (canTerminateOnShutdown(runControl)) {
1076 if (workers == null) { // shutting down before workers created
1077 final ReentrantLock lock = this.workerLock;
1078 lock.lock();
1079 try {
1080 if (workers == null) {
1081 terminate();
1082 transitionRunStateTo(TERMINATED);
1083 termination.signalAll();
1084 }
1085 } finally {
1086 lock.unlock();
1087 }
1088 }
1089 terminateOnShutdown();
1090 }
1091 }
1092
1093 /**
1094 * Attempts to stop all actively executing tasks, and cancels all
1095 * waiting tasks. Tasks that are in the process of being
1096 * submitted or executed concurrently during the course of this
1097 * method may or may not be rejected. Unlike some other executors,
1098 * this method cancels rather than collects non-executed tasks
1099 * upon termination, so always returns an empty list. However, you
1100 * can use method {@link #drainTasksTo} before invoking this
1101 * method to transfer unexecuted tasks to another collection.
1102 *
1103 * @return an empty list
1104 * @throws SecurityException if a security manager exists and
1105 * the caller is not permitted to modify threads
1106 * because it does not hold {@link
1107 * java.lang.RuntimePermission}{@code ("modifyThread")}
1108 */
1109 public List<Runnable> shutdownNow() {
1110 checkPermission();
1111 terminate();
1112 return Collections.emptyList();
1113 }
1114
1115 /**
1116 * Returns {@code true} if all tasks have completed following shut down.
1117 *
1118 * @return {@code true} if all tasks have completed following shut down
1119 */
1120 public boolean isTerminated() {
1121 return runStateOf(runControl) == TERMINATED;
1122 }
1123
1124 /**
1125 * Returns {@code true} if the process of termination has
1126 * commenced but possibly not yet completed.
1127 *
1128 * @return {@code true} if terminating
1129 */
1130 public boolean isTerminating() {
1131 return runStateOf(runControl) >= TERMINATING;
1132 }
1133
1134 /**
1135 * Returns {@code true} if this pool has been shut down.
1136 *
1137 * @return {@code true} if this pool has been shut down
1138 */
1139 public boolean isShutdown() {
1140 return runStateOf(runControl) >= SHUTDOWN;
1141 }
1142
1143 /**
1144 * Blocks until all tasks have completed execution after a shutdown
1145 * request, or the timeout occurs, or the current thread is
1146 * interrupted, whichever happens first.
1147 *
1148 * @param timeout the maximum time to wait
1149 * @param unit the time unit of the timeout argument
1150 * @return {@code true} if this executor terminated and
1151 * {@code false} if the timeout elapsed before termination
1152 * @throws InterruptedException if interrupted while waiting
1153 */
1154 public boolean awaitTermination(long timeout, TimeUnit unit)
1155 throws InterruptedException {
1156 long nanos = unit.toNanos(timeout);
1157 final ReentrantLock lock = this.workerLock;
1158 lock.lock();
1159 try {
1160 for (;;) {
1161 if (isTerminated())
1162 return true;
1163 if (nanos <= 0)
1164 return false;
1165 nanos = termination.awaitNanos(nanos);
1166 }
1167 } finally {
1168 lock.unlock();
1169 }
1170 }
1171
1172 // Shutdown and termination support
1173
1174 /**
1175 * Callback from terminating worker. Nulls out the corresponding
1176 * workers slot, and if terminating, tries to terminate; else
1177 * tries to shrink workers array.
1178 *
1179 * @param w the worker
1180 */
1181 final void workerTerminated(ForkJoinWorkerThread w) {
1182 updateStealCount(w);
1183 updateWorkerCount(-1);
1184 final ReentrantLock lock = this.workerLock;
1185 lock.lock();
1186 try {
1187 ForkJoinWorkerThread[] ws = workers;
1188 if (ws != null) {
1189 int idx = w.poolIndex;
1190 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1191 ws[idx] = null;
1192 if (totalCountOf(workerCounts) == 0) {
1193 terminate(); // no-op if already terminating
1194 transitionRunStateTo(TERMINATED);
1195 termination.signalAll();
1196 }
1197 else if (!isTerminating()) {
1198 tryShrinkWorkerArray();
1199 tryResumeSpare(true); // allow replacement
1200 }
1201 }
1202 } finally {
1203 lock.unlock();
1204 }
1205 signalIdleWorkers();
1206 }
1207
1208 /**
1209 * Initiates termination.
1210 */
1211 private void terminate() {
1212 if (transitionRunStateTo(TERMINATING)) {
1213 stopAllWorkers();
1214 resumeAllSpares();
1215 signalIdleWorkers();
1216 cancelQueuedSubmissions();
1217 cancelQueuedWorkerTasks();
1218 interruptUnterminatedWorkers();
1219 signalIdleWorkers(); // resignal after interrupt
1220 }
1221 }
1222
1223 /**
1224 * Possibly terminates when on shutdown state.
1225 */
1226 private void terminateOnShutdown() {
1227 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1228 terminate();
1229 }
1230
1231 /**
1232 * Clears out and cancels submissions.
1233 */
1234 private void cancelQueuedSubmissions() {
1235 ForkJoinTask<?> task;
1236 while ((task = pollSubmission()) != null)
1237 task.cancel(false);
1238 }
1239
1240 /**
1241 * Cleans out worker queues.
1242 */
1243 private void cancelQueuedWorkerTasks() {
1244 final ReentrantLock lock = this.workerLock;
1245 lock.lock();
1246 try {
1247 ForkJoinWorkerThread[] ws = workers;
1248 if (ws != null) {
1249 for (int i = 0; i < ws.length; ++i) {
1250 ForkJoinWorkerThread t = ws[i];
1251 if (t != null)
1252 t.cancelTasks();
1253 }
1254 }
1255 } finally {
1256 lock.unlock();
1257 }
1258 }
1259
1260 /**
1261 * Sets each worker's status to terminating. Requires lock to avoid
1262 * conflicts with add/remove.
1263 */
1264 private void stopAllWorkers() {
1265 final ReentrantLock lock = this.workerLock;
1266 lock.lock();
1267 try {
1268 ForkJoinWorkerThread[] ws = workers;
1269 if (ws != null) {
1270 for (int i = 0; i < ws.length; ++i) {
1271 ForkJoinWorkerThread t = ws[i];
1272 if (t != null)
1273 t.shutdownNow();
1274 }
1275 }
1276 } finally {
1277 lock.unlock();
1278 }
1279 }
1280
1281 /**
1282 * Interrupts all unterminated workers. This is not required for
1283 * sake of internal control, but may help unstick user code during
1284 * shutdown.
1285 */
1286 private void interruptUnterminatedWorkers() {
1287 final ReentrantLock lock = this.workerLock;
1288 lock.lock();
1289 try {
1290 ForkJoinWorkerThread[] ws = workers;
1291 if (ws != null) {
1292 for (int i = 0; i < ws.length; ++i) {
1293 ForkJoinWorkerThread t = ws[i];
1294 if (t != null && !t.isTerminated()) {
1295 try {
1296 t.interrupt();
1297 } catch (SecurityException ignore) {
1298 }
1299 }
1300 }
1301 }
1302 } finally {
1303 lock.unlock();
1304 }
1305 }
1306
1307
1308 /*
1309 * Nodes for event barrier to manage idle threads. Queue nodes
1310 * are basic Treiber stack nodes, also used for spare stack.
1311 *
1312 * The event barrier has an event count and a wait queue (actually
1313 * a Treiber stack). Workers are enabled to look for work when
1314 * the eventCount is incremented. If they fail to find work, they
1315 * may wait for next count. Upon release, threads help others wake
1316 * up.
1317 *
1318 * Synchronization events occur only in enough contexts to
1319 * maintain overall liveness:
1320 *
1321 * - Submission of a new task to the pool
1322 * - Resizes or other changes to the workers array
1323 * - pool termination
1324 * - A worker pushing a task on an empty queue
1325 *
1326 * The case of pushing a task occurs often enough, and is heavy
1327 * enough compared to simple stack pushes, to require special
1328 * handling: Method signalWork returns without advancing count if
1329 * the queue appears to be empty. This would ordinarily result in
1330 * races causing some queued waiters not to be woken up. To avoid
1331 * this, the first worker enqueued in method sync (see
1332 * syncIsReleasable) rescans for tasks after being enqueued, and
1333 * helps signal if any are found. This works well because the
1334 * worker has nothing better to do, and so might as well help
1335 * alleviate the overhead and contention on the threads actually
1336 * doing work. Also, since event counts increments on task
1337 * availability exist to maintain liveness (rather than to force
1338 * refreshes etc), it is OK for callers to exit early if
1339 * contending with another signaller.
1340 */
1341 static final class WaitQueueNode {
1342 WaitQueueNode next; // only written before enqueued
1343 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1344 final long count; // unused for spare stack
1345
1346 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1347 count = c;
1348 thread = w;
1349 }
1350
1351 /**
1352 * Wakes up waiter, returning false if known to already
1353 */
1354 boolean signal() {
1355 ForkJoinWorkerThread t = thread;
1356 if (t == null)
1357 return false;
1358 thread = null;
1359 LockSupport.unpark(t);
1360 return true;
1361 }
1362
1363 /**
1364 * Awaits release on sync.
1365 */
1366 void awaitSyncRelease(ForkJoinPool p) {
1367 while (thread != null && !p.syncIsReleasable(this))
1368 LockSupport.park(this);
1369 }
1370
1371 /**
1372 * Awaits resumption as spare.
1373 */
1374 void awaitSpareRelease() {
1375 while (thread != null) {
1376 if (!Thread.interrupted())
1377 LockSupport.park(this);
1378 }
1379 }
1380 }
1381
1382 /**
1383 * Ensures that no thread is waiting for count to advance from the
1384 * current value of eventCount read on entry to this method, by
1385 * releasing waiting threads if necessary.
1386 *
1387 * @return the count
1388 */
1389 final long ensureSync() {
1390 long c = eventCount;
1391 WaitQueueNode q;
1392 while ((q = syncStack) != null && q.count < c) {
1393 if (casBarrierStack(q, null)) {
1394 do {
1395 q.signal();
1396 } while ((q = q.next) != null);
1397 break;
1398 }
1399 }
1400 return c;
1401 }
1402
1403 /**
1404 * Increments event count and releases waiting threads.
1405 */
1406 private void signalIdleWorkers() {
1407 long c;
1408 do {} while (!casEventCount(c = eventCount, c+1));
1409 ensureSync();
1410 }
1411
1412 /**
1413 * Signals threads waiting to poll a task. Because method sync
1414 * rechecks availability, it is OK to only proceed if queue
1415 * appears to be non-empty, and OK to skip under contention to
1416 * increment count (since some other thread succeeded).
1417 */
1418 final void signalWork() {
1419 long c;
1420 WaitQueueNode q;
1421 if (syncStack != null &&
1422 casEventCount(c = eventCount, c+1) &&
1423 (((q = syncStack) != null && q.count <= c) &&
1424 (!casBarrierStack(q, q.next) || !q.signal())))
1425 ensureSync();
1426 }
1427
1428 /**
1429 * Waits until event count advances from last value held by
1430 * caller, or if excess threads, caller is resumed as spare, or
1431 * caller or pool is terminating. Updates caller's event on exit.
1432 *
1433 * @param w the calling worker thread
1434 */
1435 final void sync(ForkJoinWorkerThread w) {
1436 updateStealCount(w); // Transfer w's count while it is idle
1437
1438 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1439 long prev = w.lastEventCount;
1440 WaitQueueNode node = null;
1441 WaitQueueNode h;
1442 while (eventCount == prev &&
1443 ((h = syncStack) == null || h.count == prev)) {
1444 if (node == null)
1445 node = new WaitQueueNode(prev, w);
1446 if (casBarrierStack(node.next = h, node)) {
1447 node.awaitSyncRelease(this);
1448 break;
1449 }
1450 }
1451 long ec = ensureSync();
1452 if (ec != prev) {
1453 w.lastEventCount = ec;
1454 break;
1455 }
1456 }
1457 }
1458
1459 /**
1460 * Returns {@code true} if worker waiting on sync can proceed:
1461 * - on signal (thread == null)
1462 * - on event count advance (winning race to notify vs signaller)
1463 * - on interrupt
1464 * - if the first queued node, we find work available
1465 * If node was not signalled and event count not advanced on exit,
1466 * then we also help advance event count.
1467 *
1468 * @return {@code true} if node can be released
1469 */
1470 final boolean syncIsReleasable(WaitQueueNode node) {
1471 long prev = node.count;
1472 if (!Thread.interrupted() && node.thread != null &&
1473 (node.next != null ||
1474 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1475 eventCount == prev)
1476 return false;
1477 if (node.thread != null) {
1478 node.thread = null;
1479 long ec = eventCount;
1480 if (prev <= ec) // help signal
1481 casEventCount(ec, ec+1);
1482 }
1483 return true;
1484 }
1485
1486 /**
1487 * Returns {@code true} if a new sync event occurred since last
1488 * call to sync or this method, if so, updating caller's count.
1489 */
1490 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1491 long lc = w.lastEventCount;
1492 long ec = ensureSync();
1493 if (ec == lc)
1494 return false;
1495 w.lastEventCount = ec;
1496 return true;
1497 }
1498
1499 // Parallelism maintenance
1500
1501 /**
1502 * Decrements running count; if too low, adds spare.
1503 *
1504 * Conceptually, all we need to do here is add or resume a
1505 * spare thread when one is about to block (and remove or
1506 * suspend it later when unblocked -- see suspendIfSpare).
1507 * However, implementing this idea requires coping with
1508 * several problems: we have imperfect information about the
1509 * states of threads. Some count updates can and usually do
1510 * lag run state changes, despite arrangements to keep them
1511 * accurate (for example, when possible, updating counts
1512 * before signalling or resuming), especially when running on
1513 * dynamic JVMs that don't optimize the infrequent paths that
1514 * update counts. Generating too many threads can make these
1515 * problems become worse, because excess threads are more
1516 * likely to be context-switched with others, slowing them all
1517 * down, especially if there is no work available, so all are
1518 * busy scanning or idling. Also, excess spare threads can
1519 * only be suspended or removed when they are idle, not
1520 * immediately when they aren't needed. So adding threads will
1521 * raise parallelism level for longer than necessary. Also,
1522 * FJ applications often encounter highly transient peaks when
1523 * many threads are blocked joining, but for less time than it
1524 * takes to create or resume spares.
1525 *
1526 * @param joinMe if non-null, return early if done
1527 * @param maintainParallelism if true, try to stay within
1528 * target counts, else create only to avoid starvation
1529 * @return true if joinMe known to be done
1530 */
1531 final boolean preJoin(ForkJoinTask<?> joinMe,
1532 boolean maintainParallelism) {
1533 maintainParallelism &= maintainsParallelism; // overrride
1534 boolean dec = false; // true when running count decremented
1535 while (spareStack == null || !tryResumeSpare(dec)) {
1536 int counts = workerCounts;
1537 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1538 // CAS cheat
1539 if (!needSpare(counts, maintainParallelism))
1540 break;
1541 if (joinMe.status < 0)
1542 return true;
1543 if (tryAddSpare(counts))
1544 break;
1545 }
1546 }
1547 return false;
1548 }
1549
1550 /**
1551 * Same idea as preJoin
1552 */
1553 final boolean preBlock(ManagedBlocker blocker,
1554 boolean maintainParallelism) {
1555 maintainParallelism &= maintainsParallelism;
1556 boolean dec = false;
1557 while (spareStack == null || !tryResumeSpare(dec)) {
1558 int counts = workerCounts;
1559 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1560 if (!needSpare(counts, maintainParallelism))
1561 break;
1562 if (blocker.isReleasable())
1563 return true;
1564 if (tryAddSpare(counts))
1565 break;
1566 }
1567 }
1568 return false;
1569 }
1570
1571 /**
1572 * Returns {@code true} if a spare thread appears to be needed.
1573 * If maintaining parallelism, returns true when the deficit in
1574 * running threads is more than the surplus of total threads, and
1575 * there is apparently some work to do. This self-limiting rule
1576 * means that the more threads that have already been added, the
1577 * less parallelism we will tolerate before adding another.
1578 *
1579 * @param counts current worker counts
1580 * @param maintainParallelism try to maintain parallelism
1581 */
1582 private boolean needSpare(int counts, boolean maintainParallelism) {
1583 int ps = parallelism;
1584 int rc = runningCountOf(counts);
1585 int tc = totalCountOf(counts);
1586 int runningDeficit = ps - rc;
1587 int totalSurplus = tc - ps;
1588 return (tc < maxPoolSize &&
1589 (rc == 0 || totalSurplus < 0 ||
1590 (maintainParallelism &&
1591 runningDeficit > totalSurplus &&
1592 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1593 }
1594
1595 /**
1596 * Adds a spare worker if lock available and no more than the
1597 * expected numbers of threads exist.
1598 *
1599 * @return true if successful
1600 */
1601 private boolean tryAddSpare(int expectedCounts) {
1602 final ReentrantLock lock = this.workerLock;
1603 int expectedRunning = runningCountOf(expectedCounts);
1604 int expectedTotal = totalCountOf(expectedCounts);
1605 boolean success = false;
1606 boolean locked = false;
1607 // confirm counts while locking; CAS after obtaining lock
1608 try {
1609 for (;;) {
1610 int s = workerCounts;
1611 int tc = totalCountOf(s);
1612 int rc = runningCountOf(s);
1613 if (rc > expectedRunning || tc > expectedTotal)
1614 break;
1615 if (!locked && !(locked = lock.tryLock()))
1616 break;
1617 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1618 createAndStartSpare(tc);
1619 success = true;
1620 break;
1621 }
1622 }
1623 } finally {
1624 if (locked)
1625 lock.unlock();
1626 }
1627 return success;
1628 }
1629
1630 /**
1631 * Adds the kth spare worker. On entry, pool counts are already
1632 * adjusted to reflect addition.
1633 */
1634 private void createAndStartSpare(int k) {
1635 ForkJoinWorkerThread w = null;
1636 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1637 int len = ws.length;
1638 // Probably, we can place at slot k. If not, find empty slot
1639 if (k < len && ws[k] != null) {
1640 for (k = 0; k < len && ws[k] != null; ++k)
1641 ;
1642 }
1643 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1644 ws[k] = w;
1645 w.start();
1646 }
1647 else
1648 updateWorkerCount(-1); // adjust on failure
1649 signalIdleWorkers();
1650 }
1651
1652 /**
1653 * Suspends calling thread w if there are excess threads. Called
1654 * only from sync. Spares are enqueued in a Treiber stack using
1655 * the same WaitQueueNodes as barriers. They are resumed mainly
1656 * in preJoin, but are also woken on pool events that require all
1657 * threads to check run state.
1658 *
1659 * @param w the caller
1660 */
1661 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1662 WaitQueueNode node = null;
1663 int s;
1664 while (parallelism < runningCountOf(s = workerCounts)) {
1665 if (node == null)
1666 node = new WaitQueueNode(0, w);
1667 if (casWorkerCounts(s, s-1)) { // representation-dependent
1668 // push onto stack
1669 do {} while (!casSpareStack(node.next = spareStack, node));
1670 // block until released by resumeSpare
1671 node.awaitSpareRelease();
1672 return true;
1673 }
1674 }
1675 return false;
1676 }
1677
1678 /**
1679 * Tries to pop and resume a spare thread.
1680 *
1681 * @param updateCount if true, increment running count on success
1682 * @return true if successful
1683 */
1684 private boolean tryResumeSpare(boolean updateCount) {
1685 WaitQueueNode q;
1686 while ((q = spareStack) != null) {
1687 if (casSpareStack(q, q.next)) {
1688 if (updateCount)
1689 updateRunningCount(1);
1690 q.signal();
1691 return true;
1692 }
1693 }
1694 return false;
1695 }
1696
1697 /**
1698 * Pops and resumes all spare threads. Same idea as ensureSync.
1699 *
1700 * @return true if any spares released
1701 */
1702 private boolean resumeAllSpares() {
1703 WaitQueueNode q;
1704 while ( (q = spareStack) != null) {
1705 if (casSpareStack(q, null)) {
1706 do {
1707 updateRunningCount(1);
1708 q.signal();
1709 } while ((q = q.next) != null);
1710 return true;
1711 }
1712 }
1713 return false;
1714 }
1715
1716 /**
1717 * Pops and shuts down excessive spare threads. Call only while
1718 * holding lock. This is not guaranteed to eliminate all excess
1719 * threads, only those suspended as spares, which are the ones
1720 * unlikely to be needed in the future.
1721 */
1722 private void trimSpares() {
1723 int surplus = totalCountOf(workerCounts) - parallelism;
1724 WaitQueueNode q;
1725 while (surplus > 0 && (q = spareStack) != null) {
1726 if (casSpareStack(q, null)) {
1727 do {
1728 updateRunningCount(1);
1729 ForkJoinWorkerThread w = q.thread;
1730 if (w != null && surplus > 0 &&
1731 runningCountOf(workerCounts) > 0 && w.shutdown())
1732 --surplus;
1733 q.signal();
1734 } while ((q = q.next) != null);
1735 }
1736 }
1737 }
1738
1739 /**
1740 * Interface for extending managed parallelism for tasks running
1741 * in {@link ForkJoinPool}s.
1742 *
1743 * <p>A {@code ManagedBlocker} provides two methods.
1744 * Method {@code isReleasable} must return {@code true} if
1745 * blocking is not necessary. Method {@code block} blocks the
1746 * current thread if necessary (perhaps internally invoking
1747 * {@code isReleasable} before actually blocking).
1748 *
1749 * <p>For example, here is a ManagedBlocker based on a
1750 * ReentrantLock:
1751 * <pre> {@code
1752 * class ManagedLocker implements ManagedBlocker {
1753 * final ReentrantLock lock;
1754 * boolean hasLock = false;
1755 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1756 * public boolean block() {
1757 * if (!hasLock)
1758 * lock.lock();
1759 * return true;
1760 * }
1761 * public boolean isReleasable() {
1762 * return hasLock || (hasLock = lock.tryLock());
1763 * }
1764 * }}</pre>
1765 */
1766 public static interface ManagedBlocker {
1767 /**
1768 * Possibly blocks the current thread, for example waiting for
1769 * a lock or condition.
1770 *
1771 * @return {@code true} if no additional blocking is necessary
1772 * (i.e., if isReleasable would return true)
1773 * @throws InterruptedException if interrupted while waiting
1774 * (the method is not required to do so, but is allowed to)
1775 */
1776 boolean block() throws InterruptedException;
1777
1778 /**
1779 * Returns {@code true} if blocking is unnecessary.
1780 */
1781 boolean isReleasable();
1782 }
1783
1784 /**
1785 * Blocks in accord with the given blocker. If the current thread
1786 * is a {@link ForkJoinWorkerThread}, this method possibly
1787 * arranges for a spare thread to be activated if necessary to
1788 * ensure parallelism while the current thread is blocked.
1789 *
1790 * <p>If {@code maintainParallelism} is {@code true} and the pool
1791 * supports it ({@link #getMaintainsParallelism}), this method
1792 * attempts to maintain the pool's nominal parallelism. Otherwise
1793 * it activates a thread only if necessary to avoid complete
1794 * starvation. This option may be preferable when blockages use
1795 * timeouts, or are almost always brief.
1796 *
1797 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1798 * behaviorally equivalent to
1799 * <pre> {@code
1800 * while (!blocker.isReleasable())
1801 * if (blocker.block())
1802 * return;
1803 * }</pre>
1804 *
1805 * If the caller is a {@code ForkJoinTask}, then the pool may
1806 * first be expanded to ensure parallelism, and later adjusted.
1807 *
1808 * @param blocker the blocker
1809 * @param maintainParallelism if {@code true} and supported by
1810 * this pool, attempt to maintain the pool's nominal parallelism;
1811 * otherwise activate a thread only if necessary to avoid
1812 * complete starvation.
1813 * @throws InterruptedException if blocker.block did so
1814 */
1815 public static void managedBlock(ManagedBlocker blocker,
1816 boolean maintainParallelism)
1817 throws InterruptedException {
1818 Thread t = Thread.currentThread();
1819 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1820 ((ForkJoinWorkerThread) t).pool : null);
1821 if (!blocker.isReleasable()) {
1822 try {
1823 if (pool == null ||
1824 !pool.preBlock(blocker, maintainParallelism))
1825 awaitBlocker(blocker);
1826 } finally {
1827 if (pool != null)
1828 pool.updateRunningCount(1);
1829 }
1830 }
1831 }
1832
1833 private static void awaitBlocker(ManagedBlocker blocker)
1834 throws InterruptedException {
1835 do {} while (!blocker.isReleasable() && !blocker.block());
1836 }
1837
1838 // AbstractExecutorService overrides. These rely on undocumented
1839 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1840 // implement RunnableFuture.
1841
1842 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1843 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1844 }
1845
1846 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1847 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1848 }
1849
1850 // Unsafe mechanics
1851
1852 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1853 private static final long eventCountOffset =
1854 objectFieldOffset("eventCount", ForkJoinPool.class);
1855 private static final long workerCountsOffset =
1856 objectFieldOffset("workerCounts", ForkJoinPool.class);
1857 private static final long runControlOffset =
1858 objectFieldOffset("runControl", ForkJoinPool.class);
1859 private static final long syncStackOffset =
1860 objectFieldOffset("syncStack",ForkJoinPool.class);
1861 private static final long spareStackOffset =
1862 objectFieldOffset("spareStack", ForkJoinPool.class);
1863
1864 private boolean casEventCount(long cmp, long val) {
1865 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1866 }
1867 private boolean casWorkerCounts(int cmp, int val) {
1868 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1869 }
1870 private boolean casRunControl(int cmp, int val) {
1871 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1872 }
1873 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1874 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1875 }
1876 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1877 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1878 }
1879
1880 private static long objectFieldOffset(String field, Class<?> klazz) {
1881 try {
1882 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1883 } catch (NoSuchFieldException e) {
1884 // Convert Exception to corresponding Error
1885 NoSuchFieldError error = new NoSuchFieldError(field);
1886 error.initCause(e);
1887 throw error;
1888 }
1889 }
1890
1891 /**
1892 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1893 * Replace with a simple call to Unsafe.getUnsafe when integrating
1894 * into a jdk.
1895 *
1896 * @return a sun.misc.Unsafe
1897 */
1898 private static sun.misc.Unsafe getUnsafe() {
1899 try {
1900 return sun.misc.Unsafe.getUnsafe();
1901 } catch (SecurityException se) {
1902 try {
1903 return java.security.AccessController.doPrivileged
1904 (new java.security
1905 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1906 public sun.misc.Unsafe run() throws Exception {
1907 java.lang.reflect.Field f = sun.misc
1908 .Unsafe.class.getDeclaredField("theUnsafe");
1909 f.setAccessible(true);
1910 return (sun.misc.Unsafe) f.get(null);
1911 }});
1912 } catch (java.security.PrivilegedActionException e) {
1913 throw new RuntimeException("Could not initialize intrinsics",
1914 e.getCause());
1915 }
1916 }
1917 }
1918 }