ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.43
Committed: Tue Aug 4 00:55:13 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.42: +2 -2 lines
Log Message:
typos

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask}s, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute subtasks created by other active tasks (eventually blocking
32 * waiting for work if none exist). This enables efficient processing
33 * when most tasks spawn other subtasks (as do most {@code
34 * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
35 * execution of some plain {@code Runnable}- or {@code Callable}-
36 * based activities along with {@code ForkJoinTask}s. When setting
37 * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 * also be appropriate for use with fine-grained tasks of any form
39 * that are never joined. Otherwise, other {@code ExecutorService}
40 * implementations are typically more appropriate choices.
41 *
42 * <p>A {@code ForkJoinPool} is constructed with a given target
43 * parallelism level; by default, equal to the number of available
44 * processors. Unless configured otherwise via {@link
45 * #setMaintainsParallelism}, the pool attempts to maintain this
46 * number of active (or available) threads by dynamically adding,
47 * suspending, or resuming internal worker threads, even if some tasks
48 * are waiting to join others. However, no such adjustments are
49 * performed in the face of blocked IO or other unmanaged
50 * synchronization. The nested {@link ManagedBlocker} interface
51 * enables extension of the kinds of synchronization accommodated.
52 * The target parallelism level may also be changed dynamically
53 * ({@link #setParallelism}). The total number of threads may be
54 * limited using method {@link #setMaximumPoolSize}, in which case it
55 * may become possible for the activities of a pool to stall due to
56 * the lack of available threads to process new tasks.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
66 * used for all parallel task execution in a program or subsystem.
67 * Otherwise, use would not usually outweigh the construction and
68 * bookkeeping overhead of creating a large set of threads. For
69 * example, a common pool could be used for the {@code SortTasks}
70 * illustrated in {@link RecursiveAction}. Because {@code
71 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
72 * daemon} mode, there is typically no need to explicitly {@link
73 * #shutdown} such a pool upon program exit.
74 *
75 * <pre>
76 * static final ForkJoinPool mainPool = new ForkJoinPool();
77 * ...
78 * public void sort(long[] array) {
79 * mainPool.invoke(new SortTask(array, 0, array.length));
80 * }
81 * </pre>
82 *
83 * <p><b>Implementation notes</b>: This implementation restricts the
84 * maximum number of running threads to 32767. Attempts to create
85 * pools with greater than the maximum result in
86 * {@code IllegalArgumentException}.
87 *
88 * @since 1.7
89 * @author Doug Lea
90 */
91 public class ForkJoinPool extends AbstractExecutorService {
92
93 /*
94 * See the extended comments interspersed below for design,
95 * rationale, and walkthroughs.
96 */
97
98 /** Mask for packing and unpacking shorts */
99 private static final int shortMask = 0xffff;
100
101 /** Max pool size -- must be a power of two minus 1 */
102 private static final int MAX_THREADS = 0x7FFF;
103
104 /**
105 * Factory for creating new {@link ForkJoinWorkerThread}s.
106 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
107 * for {@code ForkJoinWorkerThread} subclasses that extend base
108 * functionality or initialize threads with different contexts.
109 */
110 public static interface ForkJoinWorkerThreadFactory {
111 /**
112 * Returns a new worker thread operating in the given pool.
113 *
114 * @param pool the pool this thread works in
115 * @throws NullPointerException if pool is null
116 */
117 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
118 }
119
120 /**
121 * Default ForkJoinWorkerThreadFactory implementation; creates a
122 * new ForkJoinWorkerThread.
123 */
124 static class DefaultForkJoinWorkerThreadFactory
125 implements ForkJoinWorkerThreadFactory {
126 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
127 try {
128 return new ForkJoinWorkerThread(pool);
129 } catch (OutOfMemoryError oom) {
130 return null;
131 }
132 }
133 }
134
135 /**
136 * Creates a new ForkJoinWorkerThread. This factory is used unless
137 * overridden in ForkJoinPool constructors.
138 */
139 public static final ForkJoinWorkerThreadFactory
140 defaultForkJoinWorkerThreadFactory =
141 new DefaultForkJoinWorkerThreadFactory();
142
143 /**
144 * Permission required for callers of methods that may start or
145 * kill threads.
146 */
147 private static final RuntimePermission modifyThreadPermission =
148 new RuntimePermission("modifyThread");
149
150 /**
151 * If there is a security manager, makes sure caller has
152 * permission to modify threads.
153 */
154 private static void checkPermission() {
155 SecurityManager security = System.getSecurityManager();
156 if (security != null)
157 security.checkPermission(modifyThreadPermission);
158 }
159
160 /**
161 * Generator for assigning sequence numbers as pool names.
162 */
163 private static final AtomicInteger poolNumberGenerator =
164 new AtomicInteger();
165
166 /**
167 * Array holding all worker threads in the pool. Initialized upon
168 * first use. Array size must be a power of two. Updates and
169 * replacements are protected by workerLock, but it is always kept
170 * in a consistent enough state to be randomly accessed without
171 * locking by workers performing work-stealing.
172 */
173 volatile ForkJoinWorkerThread[] workers;
174
175 /**
176 * Lock protecting access to workers.
177 */
178 private final ReentrantLock workerLock;
179
180 /**
181 * Condition for awaitTermination.
182 */
183 private final Condition termination;
184
185 /**
186 * The uncaught exception handler used when any worker
187 * abruptly terminates
188 */
189 private Thread.UncaughtExceptionHandler ueh;
190
191 /**
192 * Creation factory for worker threads.
193 */
194 private final ForkJoinWorkerThreadFactory factory;
195
196 /**
197 * Head of stack of threads that were created to maintain
198 * parallelism when other threads blocked, but have since
199 * suspended when the parallelism level rose.
200 */
201 private volatile WaitQueueNode spareStack;
202
203 /**
204 * Sum of per-thread steal counts, updated only when threads are
205 * idle or terminating.
206 */
207 private final AtomicLong stealCount;
208
209 /**
210 * Queue for external submissions.
211 */
212 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
213
214 /**
215 * Head of Treiber stack for barrier sync. See below for explanation.
216 */
217 private volatile WaitQueueNode syncStack;
218
219 /**
220 * The count for event barrier
221 */
222 private volatile long eventCount;
223
224 /**
225 * Pool number, just for assigning useful names to worker threads
226 */
227 private final int poolNumber;
228
229 /**
230 * The maximum allowed pool size
231 */
232 private volatile int maxPoolSize;
233
234 /**
235 * The desired parallelism level, updated only under workerLock.
236 */
237 private volatile int parallelism;
238
239 /**
240 * True if use local fifo, not default lifo, for local polling
241 */
242 private volatile boolean locallyFifo;
243
244 /**
245 * Holds number of total (i.e., created and not yet terminated)
246 * and running (i.e., not blocked on joins or other managed sync)
247 * threads, packed into one int to ensure consistent snapshot when
248 * making decisions about creating and suspending spare
249 * threads. Updated only by CAS. Note: CASes in
250 * updateRunningCount and preJoin assume that running active count
251 * is in low word, so need to be modified if this changes.
252 */
253 private volatile int workerCounts;
254
255 private static int totalCountOf(int s) { return s >>> 16; }
256 private static int runningCountOf(int s) { return s & shortMask; }
257 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
258
259 /**
260 * Adds delta (which may be negative) to running count. This must
261 * be called before (with negative arg) and after (with positive)
262 * any managed synchronization (i.e., mainly, joins).
263 *
264 * @param delta the number to add
265 */
266 final void updateRunningCount(int delta) {
267 int s;
268 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
269 }
270
271 /**
272 * Adds delta (which may be negative) to both total and running
273 * count. This must be called upon creation and termination of
274 * worker threads.
275 *
276 * @param delta the number to add
277 */
278 private void updateWorkerCount(int delta) {
279 int d = delta + (delta << 16); // add to both lo and hi parts
280 int s;
281 do {} while (!casWorkerCounts(s = workerCounts, s + d));
282 }
283
284 /**
285 * Lifecycle control. High word contains runState, low word
286 * contains the number of workers that are (probably) executing
287 * tasks. This value is atomically incremented before a worker
288 * gets a task to run, and decremented when worker has no tasks
289 * and cannot find any. These two fields are bundled together to
290 * support correct termination triggering. Note: activeCount
291 * CAS'es cheat by assuming active count is in low word, so need
292 * to be modified if this changes
293 */
294 private volatile int runControl;
295
296 // RunState values. Order among values matters
297 private static final int RUNNING = 0;
298 private static final int SHUTDOWN = 1;
299 private static final int TERMINATING = 2;
300 private static final int TERMINATED = 3;
301
302 private static int runStateOf(int c) { return c >>> 16; }
303 private static int activeCountOf(int c) { return c & shortMask; }
304 private static int runControlFor(int r, int a) { return (r << 16) + a; }
305
306 /**
307 * Tries incrementing active count; fails on contention.
308 * Called by workers before/during executing tasks.
309 *
310 * @return true on success
311 */
312 final boolean tryIncrementActiveCount() {
313 int c = runControl;
314 return casRunControl(c, c+1);
315 }
316
317 /**
318 * Tries decrementing active count; fails on contention.
319 * Possibly triggers termination on success.
320 * Called by workers when they can't find tasks.
321 *
322 * @return true on success
323 */
324 final boolean tryDecrementActiveCount() {
325 int c = runControl;
326 int nextc = c - 1;
327 if (!casRunControl(c, nextc))
328 return false;
329 if (canTerminateOnShutdown(nextc))
330 terminateOnShutdown();
331 return true;
332 }
333
334 /**
335 * Returns {@code true} if argument represents zero active count
336 * and nonzero runstate, which is the triggering condition for
337 * terminating on shutdown.
338 */
339 private static boolean canTerminateOnShutdown(int c) {
340 // i.e. least bit is nonzero runState bit
341 return ((c & -c) >>> 16) != 0;
342 }
343
344 /**
345 * Transition run state to at least the given state. Return true
346 * if not already at least given state.
347 */
348 private boolean transitionRunStateTo(int state) {
349 for (;;) {
350 int c = runControl;
351 if (runStateOf(c) >= state)
352 return false;
353 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
354 return true;
355 }
356 }
357
358 /**
359 * Controls whether to add spares to maintain parallelism
360 */
361 private volatile boolean maintainsParallelism;
362
363 // Constructors
364
365 /**
366 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
367 * java.lang.Runtime#availableProcessors}, and using the {@linkplain
368 * #defaultForkJoinWorkerThreadFactory default thread factory}.
369 *
370 * @throws SecurityException if a security manager exists and
371 * the caller is not permitted to modify threads
372 * because it does not hold {@link
373 * java.lang.RuntimePermission}{@code ("modifyThread")}
374 */
375 public ForkJoinPool() {
376 this(Runtime.getRuntime().availableProcessors(),
377 defaultForkJoinWorkerThreadFactory);
378 }
379
380 /**
381 * Creates a {@code ForkJoinPool} with the indicated parallelism
382 * level and using the {@linkplain
383 * #defaultForkJoinWorkerThreadFactory default thread factory}.
384 *
385 * @param parallelism the parallelism level
386 * @throws IllegalArgumentException if parallelism less than or
387 * equal to zero
388 * @throws SecurityException if a security manager exists and
389 * the caller is not permitted to modify threads
390 * because it does not hold {@link
391 * java.lang.RuntimePermission}{@code ("modifyThread")}
392 */
393 public ForkJoinPool(int parallelism) {
394 this(parallelism, defaultForkJoinWorkerThreadFactory);
395 }
396
397 /**
398 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
399 * java.lang.Runtime#availableProcessors}, and using the given
400 * thread factory.
401 *
402 * @param factory the factory for creating new threads
403 * @throws NullPointerException if factory is null
404 * @throws SecurityException if a security manager exists and
405 * the caller is not permitted to modify threads
406 * because it does not hold {@link
407 * java.lang.RuntimePermission}{@code ("modifyThread")}
408 */
409 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
410 this(Runtime.getRuntime().availableProcessors(), factory);
411 }
412
413 /**
414 * Creates a {@code ForkJoinPool} with the given parallelism and
415 * thread factory.
416 *
417 * @param parallelism the parallelism level
418 * @param factory the factory for creating new threads
419 * @throws IllegalArgumentException if parallelism less than or
420 * equal to zero, or greater than implementation limit
421 * @throws NullPointerException if factory is null
422 * @throws SecurityException if a security manager exists and
423 * the caller is not permitted to modify threads
424 * because it does not hold {@link
425 * java.lang.RuntimePermission}{@code ("modifyThread")}
426 */
427 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
428 if (parallelism <= 0 || parallelism > MAX_THREADS)
429 throw new IllegalArgumentException();
430 if (factory == null)
431 throw new NullPointerException();
432 checkPermission();
433 this.factory = factory;
434 this.parallelism = parallelism;
435 this.maxPoolSize = MAX_THREADS;
436 this.maintainsParallelism = true;
437 this.poolNumber = poolNumberGenerator.incrementAndGet();
438 this.workerLock = new ReentrantLock();
439 this.termination = workerLock.newCondition();
440 this.stealCount = new AtomicLong();
441 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
442 // worker array and workers are lazily constructed
443 }
444
445 /**
446 * Creates a new worker thread using factory.
447 *
448 * @param index the index to assign worker
449 * @return new worker, or null if factory failed
450 */
451 private ForkJoinWorkerThread createWorker(int index) {
452 Thread.UncaughtExceptionHandler h = ueh;
453 ForkJoinWorkerThread w = factory.newThread(this);
454 if (w != null) {
455 w.poolIndex = index;
456 w.setDaemon(true);
457 w.setAsyncMode(locallyFifo);
458 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
459 if (h != null)
460 w.setUncaughtExceptionHandler(h);
461 }
462 return w;
463 }
464
465 /**
466 * Returns a good size for worker array given pool size.
467 * Currently requires size to be a power of two.
468 */
469 private static int arraySizeFor(int poolSize) {
470 if (poolSize <= 1)
471 return 1;
472 // See Hackers Delight, sec 3.2
473 int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
474 c |= c >>> 1;
475 c |= c >>> 2;
476 c |= c >>> 4;
477 c |= c >>> 8;
478 c |= c >>> 16;
479 return c + 1;
480 }
481
482 /**
483 * Creates or resizes array if necessary to hold newLength.
484 * Call only under exclusion.
485 *
486 * @return the array
487 */
488 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
489 ForkJoinWorkerThread[] ws = workers;
490 if (ws == null)
491 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
492 else if (newLength > ws.length)
493 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
494 else
495 return ws;
496 }
497
498 /**
499 * Tries to shrink workers into smaller array after one or more terminate.
500 */
501 private void tryShrinkWorkerArray() {
502 ForkJoinWorkerThread[] ws = workers;
503 if (ws != null) {
504 int len = ws.length;
505 int last = len - 1;
506 while (last >= 0 && ws[last] == null)
507 --last;
508 int newLength = arraySizeFor(last+1);
509 if (newLength < len)
510 workers = Arrays.copyOf(ws, newLength);
511 }
512 }
513
514 /**
515 * Initializes workers if necessary.
516 */
517 final void ensureWorkerInitialization() {
518 ForkJoinWorkerThread[] ws = workers;
519 if (ws == null) {
520 final ReentrantLock lock = this.workerLock;
521 lock.lock();
522 try {
523 ws = workers;
524 if (ws == null) {
525 int ps = parallelism;
526 ws = ensureWorkerArrayCapacity(ps);
527 for (int i = 0; i < ps; ++i) {
528 ForkJoinWorkerThread w = createWorker(i);
529 if (w != null) {
530 ws[i] = w;
531 w.start();
532 updateWorkerCount(1);
533 }
534 }
535 }
536 } finally {
537 lock.unlock();
538 }
539 }
540 }
541
542 /**
543 * Worker creation and startup for threads added via setParallelism.
544 */
545 private void createAndStartAddedWorkers() {
546 resumeAllSpares(); // Allow spares to convert to nonspare
547 int ps = parallelism;
548 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
549 int len = ws.length;
550 // Sweep through slots, to keep lowest indices most populated
551 int k = 0;
552 while (k < len) {
553 if (ws[k] != null) {
554 ++k;
555 continue;
556 }
557 int s = workerCounts;
558 int tc = totalCountOf(s);
559 int rc = runningCountOf(s);
560 if (rc >= ps || tc >= ps)
561 break;
562 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
563 ForkJoinWorkerThread w = createWorker(k);
564 if (w != null) {
565 ws[k++] = w;
566 w.start();
567 }
568 else {
569 updateWorkerCount(-1); // back out on failed creation
570 break;
571 }
572 }
573 }
574 }
575
576 // Execution methods
577
578 /**
579 * Common code for execute, invoke and submit
580 */
581 private <T> void doSubmit(ForkJoinTask<T> task) {
582 if (task == null)
583 throw new NullPointerException();
584 if (isShutdown())
585 throw new RejectedExecutionException();
586 if (workers == null)
587 ensureWorkerInitialization();
588 submissionQueue.offer(task);
589 signalIdleWorkers();
590 }
591
592 /**
593 * Performs the given task, returning its result upon completion.
594 *
595 * @param task the task
596 * @return the task's result
597 * @throws NullPointerException if task is null
598 * @throws RejectedExecutionException if pool is shut down
599 */
600 public <T> T invoke(ForkJoinTask<T> task) {
601 doSubmit(task);
602 return task.join();
603 }
604
605 /**
606 * Arranges for (asynchronous) execution of the given task.
607 *
608 * @param task the task
609 * @throws NullPointerException if task is null
610 * @throws RejectedExecutionException if pool is shut down
611 */
612 public void execute(ForkJoinTask<?> task) {
613 doSubmit(task);
614 }
615
616 // AbstractExecutorService methods
617
618 public void execute(Runnable task) {
619 ForkJoinTask<?> job;
620 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
621 job = (ForkJoinTask<?>) task;
622 else
623 job = ForkJoinTask.adapt(task, null);
624 doSubmit(job);
625 }
626
627 public <T> ForkJoinTask<T> submit(Callable<T> task) {
628 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
629 doSubmit(job);
630 return job;
631 }
632
633 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
634 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
635 doSubmit(job);
636 return job;
637 }
638
639 public ForkJoinTask<?> submit(Runnable task) {
640 ForkJoinTask<?> job;
641 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
642 job = (ForkJoinTask<?>) task;
643 else
644 job = ForkJoinTask.adapt(task, null);
645 doSubmit(job);
646 return job;
647 }
648
649 /**
650 * Submits a ForkJoinTask for execution.
651 *
652 * @param task the task to submit
653 * @return the task
654 * @throws RejectedExecutionException if the task cannot be
655 * scheduled for execution
656 * @throws NullPointerException if the task is null
657 */
658 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
659 doSubmit(task);
660 return task;
661 }
662
663
664 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
665 ArrayList<ForkJoinTask<T>> forkJoinTasks =
666 new ArrayList<ForkJoinTask<T>>(tasks.size());
667 for (Callable<T> task : tasks)
668 forkJoinTasks.add(ForkJoinTask.adapt(task));
669 invoke(new InvokeAll<T>(forkJoinTasks));
670
671 @SuppressWarnings({"unchecked", "rawtypes"})
672 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
673 return futures;
674 }
675
676 static final class InvokeAll<T> extends RecursiveAction {
677 final ArrayList<ForkJoinTask<T>> tasks;
678 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
679 public void compute() {
680 try { invokeAll(tasks); }
681 catch (Exception ignore) {}
682 }
683 private static final long serialVersionUID = -7914297376763021607L;
684 }
685
686 // Configuration and status settings and queries
687
688 /**
689 * Returns the factory used for constructing new workers.
690 *
691 * @return the factory used for constructing new workers
692 */
693 public ForkJoinWorkerThreadFactory getFactory() {
694 return factory;
695 }
696
697 /**
698 * Returns the handler for internal worker threads that terminate
699 * due to unrecoverable errors encountered while executing tasks.
700 *
701 * @return the handler, or {@code null} if none
702 */
703 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
704 Thread.UncaughtExceptionHandler h;
705 final ReentrantLock lock = this.workerLock;
706 lock.lock();
707 try {
708 h = ueh;
709 } finally {
710 lock.unlock();
711 }
712 return h;
713 }
714
715 /**
716 * Sets the handler for internal worker threads that terminate due
717 * to unrecoverable errors encountered while executing tasks.
718 * Unless set, the current default or ThreadGroup handler is used
719 * as handler.
720 *
721 * @param h the new handler
722 * @return the old handler, or {@code null} if none
723 * @throws SecurityException if a security manager exists and
724 * the caller is not permitted to modify threads
725 * because it does not hold {@link
726 * java.lang.RuntimePermission}{@code ("modifyThread")}
727 */
728 public Thread.UncaughtExceptionHandler
729 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
730 checkPermission();
731 Thread.UncaughtExceptionHandler old = null;
732 final ReentrantLock lock = this.workerLock;
733 lock.lock();
734 try {
735 old = ueh;
736 ueh = h;
737 ForkJoinWorkerThread[] ws = workers;
738 if (ws != null) {
739 for (int i = 0; i < ws.length; ++i) {
740 ForkJoinWorkerThread w = ws[i];
741 if (w != null)
742 w.setUncaughtExceptionHandler(h);
743 }
744 }
745 } finally {
746 lock.unlock();
747 }
748 return old;
749 }
750
751
752 /**
753 * Sets the target parallelism level of this pool.
754 *
755 * @param parallelism the target parallelism
756 * @throws IllegalArgumentException if parallelism less than or
757 * equal to zero or greater than maximum size bounds
758 * @throws SecurityException if a security manager exists and
759 * the caller is not permitted to modify threads
760 * because it does not hold {@link
761 * java.lang.RuntimePermission}{@code ("modifyThread")}
762 */
763 public void setParallelism(int parallelism) {
764 checkPermission();
765 if (parallelism <= 0 || parallelism > maxPoolSize)
766 throw new IllegalArgumentException();
767 final ReentrantLock lock = this.workerLock;
768 lock.lock();
769 try {
770 if (isProcessingTasks()) {
771 int p = this.parallelism;
772 this.parallelism = parallelism;
773 if (parallelism > p)
774 createAndStartAddedWorkers();
775 else
776 trimSpares();
777 }
778 } finally {
779 lock.unlock();
780 }
781 signalIdleWorkers();
782 }
783
784 /**
785 * Returns the targeted parallelism level of this pool.
786 *
787 * @return the targeted parallelism level of this pool
788 */
789 public int getParallelism() {
790 return parallelism;
791 }
792
793 /**
794 * Returns the number of worker threads that have started but not
795 * yet terminated. This result returned by this method may differ
796 * from {@link #getParallelism} when threads are created to
797 * maintain parallelism when others are cooperatively blocked.
798 *
799 * @return the number of worker threads
800 */
801 public int getPoolSize() {
802 return totalCountOf(workerCounts);
803 }
804
805 /**
806 * Returns the maximum number of threads allowed to exist in the
807 * pool. Unless set using {@link #setMaximumPoolSize}, the
808 * maximum is an implementation-defined value designed only to
809 * prevent runaway growth.
810 *
811 * @return the maximum
812 */
813 public int getMaximumPoolSize() {
814 return maxPoolSize;
815 }
816
817 /**
818 * Sets the maximum number of threads allowed to exist in the
819 * pool. Setting this value has no effect on current pool
820 * size. It controls construction of new threads.
821 *
822 * @throws IllegalArgumentException if negative or greater than
823 * internal implementation limit
824 */
825 public void setMaximumPoolSize(int newMax) {
826 if (newMax < 0 || newMax > MAX_THREADS)
827 throw new IllegalArgumentException();
828 maxPoolSize = newMax;
829 }
830
831
832 /**
833 * Returns {@code true} if this pool dynamically maintains its
834 * target parallelism level. If false, new threads are added only
835 * to avoid possible starvation. This setting is by default true.
836 *
837 * @return {@code true} if maintains parallelism
838 */
839 public boolean getMaintainsParallelism() {
840 return maintainsParallelism;
841 }
842
843 /**
844 * Sets whether this pool dynamically maintains its target
845 * parallelism level. If false, new threads are added only to
846 * avoid possible starvation.
847 *
848 * @param enable {@code true} to maintain parallelism
849 */
850 public void setMaintainsParallelism(boolean enable) {
851 maintainsParallelism = enable;
852 }
853
854 /**
855 * Establishes local first-in-first-out scheduling mode for forked
856 * tasks that are never joined. This mode may be more appropriate
857 * than default locally stack-based mode in applications in which
858 * worker threads only process asynchronous tasks. This method is
859 * designed to be invoked only when the pool is quiescent, and
860 * typically only before any tasks are submitted. The effects of
861 * invocations at other times may be unpredictable.
862 *
863 * @param async if {@code true}, use locally FIFO scheduling
864 * @return the previous mode
865 * @see #getAsyncMode
866 */
867 public boolean setAsyncMode(boolean async) {
868 boolean oldMode = locallyFifo;
869 locallyFifo = async;
870 ForkJoinWorkerThread[] ws = workers;
871 if (ws != null) {
872 for (int i = 0; i < ws.length; ++i) {
873 ForkJoinWorkerThread t = ws[i];
874 if (t != null)
875 t.setAsyncMode(async);
876 }
877 }
878 return oldMode;
879 }
880
881 /**
882 * Returns {@code true} if this pool uses local first-in-first-out
883 * scheduling mode for forked tasks that are never joined.
884 *
885 * @return {@code true} if this pool uses async mode
886 * @see #setAsyncMode
887 */
888 public boolean getAsyncMode() {
889 return locallyFifo;
890 }
891
892 /**
893 * Returns an estimate of the number of worker threads that are
894 * not blocked waiting to join tasks or for other managed
895 * synchronization.
896 *
897 * @return the number of worker threads
898 */
899 public int getRunningThreadCount() {
900 return runningCountOf(workerCounts);
901 }
902
903 /**
904 * Returns an estimate of the number of threads that are currently
905 * stealing or executing tasks. This method may overestimate the
906 * number of active threads.
907 *
908 * @return the number of active threads
909 */
910 public int getActiveThreadCount() {
911 return activeCountOf(runControl);
912 }
913
914 /**
915 * Returns an estimate of the number of threads that are currently
916 * idle waiting for tasks. This method may underestimate the
917 * number of idle threads.
918 *
919 * @return the number of idle threads
920 */
921 final int getIdleThreadCount() {
922 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
923 return (c <= 0) ? 0 : c;
924 }
925
926 /**
927 * Returns {@code true} if all worker threads are currently idle.
928 * An idle worker is one that cannot obtain a task to execute
929 * because none are available to steal from other threads, and
930 * there are no pending submissions to the pool. This method is
931 * conservative; it might not return {@code true} immediately upon
932 * idleness of all threads, but will eventually become true if
933 * threads remain inactive.
934 *
935 * @return {@code true} if all threads are currently idle
936 */
937 public boolean isQuiescent() {
938 return activeCountOf(runControl) == 0;
939 }
940
941 /**
942 * Returns an estimate of the total number of tasks stolen from
943 * one thread's work queue by another. The reported value
944 * underestimates the actual total number of steals when the pool
945 * is not quiescent. This value may be useful for monitoring and
946 * tuning fork/join programs: in general, steal counts should be
947 * high enough to keep threads busy, but low enough to avoid
948 * overhead and contention across threads.
949 *
950 * @return the number of steals
951 */
952 public long getStealCount() {
953 return stealCount.get();
954 }
955
956 /**
957 * Accumulates steal count from a worker.
958 * Call only when worker known to be idle.
959 */
960 private void updateStealCount(ForkJoinWorkerThread w) {
961 int sc = w.getAndClearStealCount();
962 if (sc != 0)
963 stealCount.addAndGet(sc);
964 }
965
966 /**
967 * Returns an estimate of the total number of tasks currently held
968 * in queues by worker threads (but not including tasks submitted
969 * to the pool that have not begun executing). This value is only
970 * an approximation, obtained by iterating across all threads in
971 * the pool. This method may be useful for tuning task
972 * granularities.
973 *
974 * @return the number of queued tasks
975 */
976 public long getQueuedTaskCount() {
977 long count = 0;
978 ForkJoinWorkerThread[] ws = workers;
979 if (ws != null) {
980 for (int i = 0; i < ws.length; ++i) {
981 ForkJoinWorkerThread t = ws[i];
982 if (t != null)
983 count += t.getQueueSize();
984 }
985 }
986 return count;
987 }
988
989 /**
990 * Returns an estimate of the number of tasks submitted to this
991 * pool that have not yet begun executing. This method takes time
992 * proportional to the number of submissions.
993 *
994 * @return the number of queued submissions
995 */
996 public int getQueuedSubmissionCount() {
997 return submissionQueue.size();
998 }
999
1000 /**
1001 * Returns {@code true} if there are any tasks submitted to this
1002 * pool that have not yet begun executing.
1003 *
1004 * @return {@code true} if there are any queued submissions
1005 */
1006 public boolean hasQueuedSubmissions() {
1007 return !submissionQueue.isEmpty();
1008 }
1009
1010 /**
1011 * Removes and returns the next unexecuted submission if one is
1012 * available. This method may be useful in extensions to this
1013 * class that re-assign work in systems with multiple pools.
1014 *
1015 * @return the next submission, or {@code null} if none
1016 */
1017 protected ForkJoinTask<?> pollSubmission() {
1018 return submissionQueue.poll();
1019 }
1020
1021 /**
1022 * Removes all available unexecuted submitted and forked tasks
1023 * from scheduling queues and adds them to the given collection,
1024 * without altering their execution status. These may include
1025 * artificially generated or wrapped tasks. This method is
1026 * designed to be invoked only when the pool is known to be
1027 * quiescent. Invocations at other times may not remove all
1028 * tasks. A failure encountered while attempting to add elements
1029 * to collection {@code c} may result in elements being in
1030 * neither, either or both collections when the associated
1031 * exception is thrown. The behavior of this operation is
1032 * undefined if the specified collection is modified while the
1033 * operation is in progress.
1034 *
1035 * @param c the collection to transfer elements into
1036 * @return the number of elements transferred
1037 */
1038 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1039 int n = submissionQueue.drainTo(c);
1040 ForkJoinWorkerThread[] ws = workers;
1041 if (ws != null) {
1042 for (int i = 0; i < ws.length; ++i) {
1043 ForkJoinWorkerThread w = ws[i];
1044 if (w != null)
1045 n += w.drainTasksTo(c);
1046 }
1047 }
1048 return n;
1049 }
1050
1051 /**
1052 * Returns a string identifying this pool, as well as its state,
1053 * including indications of run state, parallelism level, and
1054 * worker and task counts.
1055 *
1056 * @return a string identifying this pool, as well as its state
1057 */
1058 public String toString() {
1059 int ps = parallelism;
1060 int wc = workerCounts;
1061 int rc = runControl;
1062 long st = getStealCount();
1063 long qt = getQueuedTaskCount();
1064 long qs = getQueuedSubmissionCount();
1065 return super.toString() +
1066 "[" + runStateToString(runStateOf(rc)) +
1067 ", parallelism = " + ps +
1068 ", size = " + totalCountOf(wc) +
1069 ", active = " + activeCountOf(rc) +
1070 ", running = " + runningCountOf(wc) +
1071 ", steals = " + st +
1072 ", tasks = " + qt +
1073 ", submissions = " + qs +
1074 "]";
1075 }
1076
1077 private static String runStateToString(int rs) {
1078 switch(rs) {
1079 case RUNNING: return "Running";
1080 case SHUTDOWN: return "Shutting down";
1081 case TERMINATING: return "Terminating";
1082 case TERMINATED: return "Terminated";
1083 default: throw new Error("Unknown run state");
1084 }
1085 }
1086
1087 // lifecycle control
1088
1089 /**
1090 * Initiates an orderly shutdown in which previously submitted
1091 * tasks are executed, but no new tasks will be accepted.
1092 * Invocation has no additional effect if already shut down.
1093 * Tasks that are in the process of being submitted concurrently
1094 * during the course of this method may or may not be rejected.
1095 *
1096 * @throws SecurityException if a security manager exists and
1097 * the caller is not permitted to modify threads
1098 * because it does not hold {@link
1099 * java.lang.RuntimePermission}{@code ("modifyThread")}
1100 */
1101 public void shutdown() {
1102 checkPermission();
1103 transitionRunStateTo(SHUTDOWN);
1104 if (canTerminateOnShutdown(runControl)) {
1105 if (workers == null) { // shutting down before workers created
1106 final ReentrantLock lock = this.workerLock;
1107 lock.lock();
1108 try {
1109 if (workers == null) {
1110 terminate();
1111 transitionRunStateTo(TERMINATED);
1112 termination.signalAll();
1113 }
1114 } finally {
1115 lock.unlock();
1116 }
1117 }
1118 terminateOnShutdown();
1119 }
1120 }
1121
1122 /**
1123 * Attempts to cancel and/or stop all tasks, and reject all
1124 * subsequently submitted tasks. Tasks that are in the process of
1125 * being submitted or executed concurrently during the course of
1126 * this method may or may not be rejected. This method cancels
1127 * both existing and unexecuted tasks, in order to permit
1128 * termination in the presence of task dependencies. So the method
1129 * always returns an empty list (unlike the case for some other
1130 * Executors).
1131 *
1132 * @return an empty list
1133 * @throws SecurityException if a security manager exists and
1134 * the caller is not permitted to modify threads
1135 * because it does not hold {@link
1136 * java.lang.RuntimePermission}{@code ("modifyThread")}
1137 */
1138 public List<Runnable> shutdownNow() {
1139 checkPermission();
1140 terminate();
1141 return Collections.emptyList();
1142 }
1143
1144 /**
1145 * Returns {@code true} if all tasks have completed following shut down.
1146 *
1147 * @return {@code true} if all tasks have completed following shut down
1148 */
1149 public boolean isTerminated() {
1150 return runStateOf(runControl) == TERMINATED;
1151 }
1152
1153 /**
1154 * Returns {@code true} if the process of termination has
1155 * commenced but not yet completed. This method may be useful for
1156 * debugging. A return of {@code true} reported a sufficient
1157 * period after shutdown may indicate that submitted tasks have
1158 * ignored or suppressed interruption, causing this executor not
1159 * to properly terminate.
1160 *
1161 * @return {@code true} if terminating but not yet terminated
1162 */
1163 public boolean isTerminating() {
1164 return runStateOf(runControl) == TERMINATING;
1165 }
1166
1167 /**
1168 * Returns {@code true} if this pool has been shut down.
1169 *
1170 * @return {@code true} if this pool has been shut down
1171 */
1172 public boolean isShutdown() {
1173 return runStateOf(runControl) >= SHUTDOWN;
1174 }
1175
1176 /**
1177 * Returns true if pool is not terminating or terminated.
1178 * Used internally to suppress execution when terminating.
1179 */
1180 final boolean isProcessingTasks() {
1181 return runStateOf(runControl) < TERMINATING;
1182 }
1183
1184 /**
1185 * Blocks until all tasks have completed execution after a shutdown
1186 * request, or the timeout occurs, or the current thread is
1187 * interrupted, whichever happens first.
1188 *
1189 * @param timeout the maximum time to wait
1190 * @param unit the time unit of the timeout argument
1191 * @return {@code true} if this executor terminated and
1192 * {@code false} if the timeout elapsed before termination
1193 * @throws InterruptedException if interrupted while waiting
1194 */
1195 public boolean awaitTermination(long timeout, TimeUnit unit)
1196 throws InterruptedException {
1197 long nanos = unit.toNanos(timeout);
1198 final ReentrantLock lock = this.workerLock;
1199 lock.lock();
1200 try {
1201 for (;;) {
1202 if (isTerminated())
1203 return true;
1204 if (nanos <= 0)
1205 return false;
1206 nanos = termination.awaitNanos(nanos);
1207 }
1208 } finally {
1209 lock.unlock();
1210 }
1211 }
1212
1213 // Shutdown and termination support
1214
1215 /**
1216 * Callback from terminating worker. Nulls out the corresponding
1217 * workers slot, and if terminating, tries to terminate; else
1218 * tries to shrink workers array.
1219 *
1220 * @param w the worker
1221 */
1222 final void workerTerminated(ForkJoinWorkerThread w) {
1223 updateStealCount(w);
1224 updateWorkerCount(-1);
1225 final ReentrantLock lock = this.workerLock;
1226 lock.lock();
1227 try {
1228 ForkJoinWorkerThread[] ws = workers;
1229 if (ws != null) {
1230 int idx = w.poolIndex;
1231 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1232 ws[idx] = null;
1233 if (totalCountOf(workerCounts) == 0) {
1234 terminate(); // no-op if already terminating
1235 transitionRunStateTo(TERMINATED);
1236 termination.signalAll();
1237 }
1238 else if (isProcessingTasks()) {
1239 tryShrinkWorkerArray();
1240 tryResumeSpare(true); // allow replacement
1241 }
1242 }
1243 } finally {
1244 lock.unlock();
1245 }
1246 signalIdleWorkers();
1247 }
1248
1249 /**
1250 * Initiates termination.
1251 */
1252 private void terminate() {
1253 if (transitionRunStateTo(TERMINATING)) {
1254 stopAllWorkers();
1255 resumeAllSpares();
1256 signalIdleWorkers();
1257 cancelQueuedSubmissions();
1258 cancelQueuedWorkerTasks();
1259 interruptUnterminatedWorkers();
1260 signalIdleWorkers(); // resignal after interrupt
1261 }
1262 }
1263
1264 /**
1265 * Possibly terminates when on shutdown state.
1266 */
1267 private void terminateOnShutdown() {
1268 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1269 terminate();
1270 }
1271
1272 /**
1273 * Clears out and cancels submissions.
1274 */
1275 private void cancelQueuedSubmissions() {
1276 ForkJoinTask<?> task;
1277 while ((task = pollSubmission()) != null)
1278 task.cancel(false);
1279 }
1280
1281 /**
1282 * Cleans out worker queues.
1283 */
1284 private void cancelQueuedWorkerTasks() {
1285 final ReentrantLock lock = this.workerLock;
1286 lock.lock();
1287 try {
1288 ForkJoinWorkerThread[] ws = workers;
1289 if (ws != null) {
1290 for (int i = 0; i < ws.length; ++i) {
1291 ForkJoinWorkerThread t = ws[i];
1292 if (t != null)
1293 t.cancelTasks();
1294 }
1295 }
1296 } finally {
1297 lock.unlock();
1298 }
1299 }
1300
1301 /**
1302 * Sets each worker's status to terminating. Requires lock to avoid
1303 * conflicts with add/remove.
1304 */
1305 private void stopAllWorkers() {
1306 final ReentrantLock lock = this.workerLock;
1307 lock.lock();
1308 try {
1309 ForkJoinWorkerThread[] ws = workers;
1310 if (ws != null) {
1311 for (int i = 0; i < ws.length; ++i) {
1312 ForkJoinWorkerThread t = ws[i];
1313 if (t != null)
1314 t.shutdownNow();
1315 }
1316 }
1317 } finally {
1318 lock.unlock();
1319 }
1320 }
1321
1322 /**
1323 * Interrupts all unterminated workers. This is not required for
1324 * sake of internal control, but may help unstick user code during
1325 * shutdown.
1326 */
1327 private void interruptUnterminatedWorkers() {
1328 final ReentrantLock lock = this.workerLock;
1329 lock.lock();
1330 try {
1331 ForkJoinWorkerThread[] ws = workers;
1332 if (ws != null) {
1333 for (int i = 0; i < ws.length; ++i) {
1334 ForkJoinWorkerThread t = ws[i];
1335 if (t != null && !t.isTerminated()) {
1336 try {
1337 t.interrupt();
1338 } catch (SecurityException ignore) {
1339 }
1340 }
1341 }
1342 }
1343 } finally {
1344 lock.unlock();
1345 }
1346 }
1347
1348
1349 /*
1350 * Nodes for event barrier to manage idle threads. Queue nodes
1351 * are basic Treiber stack nodes, also used for spare stack.
1352 *
1353 * The event barrier has an event count and a wait queue (actually
1354 * a Treiber stack). Workers are enabled to look for work when
1355 * the eventCount is incremented. If they fail to find work, they
1356 * may wait for next count. Upon release, threads help others wake
1357 * up.
1358 *
1359 * Synchronization events occur only in enough contexts to
1360 * maintain overall liveness:
1361 *
1362 * - Submission of a new task to the pool
1363 * - Resizes or other changes to the workers array
1364 * - pool termination
1365 * - A worker pushing a task on an empty queue
1366 *
1367 * The case of pushing a task occurs often enough, and is heavy
1368 * enough compared to simple stack pushes, to require special
1369 * handling: Method signalWork returns without advancing count if
1370 * the queue appears to be empty. This would ordinarily result in
1371 * races causing some queued waiters not to be woken up. To avoid
1372 * this, the first worker enqueued in method sync (see
1373 * syncIsReleasable) rescans for tasks after being enqueued, and
1374 * helps signal if any are found. This works well because the
1375 * worker has nothing better to do, and so might as well help
1376 * alleviate the overhead and contention on the threads actually
1377 * doing work. Also, since event counts increments on task
1378 * availability exist to maintain liveness (rather than to force
1379 * refreshes etc), it is OK for callers to exit early if
1380 * contending with another signaller.
1381 */
1382 static final class WaitQueueNode {
1383 WaitQueueNode next; // only written before enqueued
1384 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1385 final long count; // unused for spare stack
1386
1387 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1388 count = c;
1389 thread = w;
1390 }
1391
1392 /**
1393 * Wakes up waiter, returning false if known to already
1394 */
1395 boolean signal() {
1396 ForkJoinWorkerThread t = thread;
1397 if (t == null)
1398 return false;
1399 thread = null;
1400 LockSupport.unpark(t);
1401 return true;
1402 }
1403
1404 /**
1405 * Awaits release on sync.
1406 */
1407 void awaitSyncRelease(ForkJoinPool p) {
1408 while (thread != null && !p.syncIsReleasable(this))
1409 LockSupport.park(this);
1410 }
1411
1412 /**
1413 * Awaits resumption as spare.
1414 */
1415 void awaitSpareRelease() {
1416 while (thread != null) {
1417 if (!Thread.interrupted())
1418 LockSupport.park(this);
1419 }
1420 }
1421 }
1422
1423 /**
1424 * Ensures that no thread is waiting for count to advance from the
1425 * current value of eventCount read on entry to this method, by
1426 * releasing waiting threads if necessary.
1427 *
1428 * @return the count
1429 */
1430 final long ensureSync() {
1431 long c = eventCount;
1432 WaitQueueNode q;
1433 while ((q = syncStack) != null && q.count < c) {
1434 if (casBarrierStack(q, null)) {
1435 do {
1436 q.signal();
1437 } while ((q = q.next) != null);
1438 break;
1439 }
1440 }
1441 return c;
1442 }
1443
1444 /**
1445 * Increments event count and releases waiting threads.
1446 */
1447 private void signalIdleWorkers() {
1448 long c;
1449 do {} while (!casEventCount(c = eventCount, c+1));
1450 ensureSync();
1451 }
1452
1453 /**
1454 * Signals threads waiting to poll a task. Because method sync
1455 * rechecks availability, it is OK to only proceed if queue
1456 * appears to be non-empty, and OK to skip under contention to
1457 * increment count (since some other thread succeeded).
1458 */
1459 final void signalWork() {
1460 long c;
1461 WaitQueueNode q;
1462 if (syncStack != null &&
1463 casEventCount(c = eventCount, c+1) &&
1464 (((q = syncStack) != null && q.count <= c) &&
1465 (!casBarrierStack(q, q.next) || !q.signal())))
1466 ensureSync();
1467 }
1468
1469 /**
1470 * Waits until event count advances from last value held by
1471 * caller, or if excess threads, caller is resumed as spare, or
1472 * caller or pool is terminating. Updates caller's event on exit.
1473 *
1474 * @param w the calling worker thread
1475 */
1476 final void sync(ForkJoinWorkerThread w) {
1477 updateStealCount(w); // Transfer w's count while it is idle
1478
1479 while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1480 long prev = w.lastEventCount;
1481 WaitQueueNode node = null;
1482 WaitQueueNode h;
1483 while (eventCount == prev &&
1484 ((h = syncStack) == null || h.count == prev)) {
1485 if (node == null)
1486 node = new WaitQueueNode(prev, w);
1487 if (casBarrierStack(node.next = h, node)) {
1488 node.awaitSyncRelease(this);
1489 break;
1490 }
1491 }
1492 long ec = ensureSync();
1493 if (ec != prev) {
1494 w.lastEventCount = ec;
1495 break;
1496 }
1497 }
1498 }
1499
1500 /**
1501 * Returns {@code true} if worker waiting on sync can proceed:
1502 * - on signal (thread == null)
1503 * - on event count advance (winning race to notify vs signaller)
1504 * - on interrupt
1505 * - if the first queued node, we find work available
1506 * If node was not signalled and event count not advanced on exit,
1507 * then we also help advance event count.
1508 *
1509 * @return {@code true} if node can be released
1510 */
1511 final boolean syncIsReleasable(WaitQueueNode node) {
1512 long prev = node.count;
1513 if (!Thread.interrupted() && node.thread != null &&
1514 (node.next != null ||
1515 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1516 eventCount == prev)
1517 return false;
1518 if (node.thread != null) {
1519 node.thread = null;
1520 long ec = eventCount;
1521 if (prev <= ec) // help signal
1522 casEventCount(ec, ec+1);
1523 }
1524 return true;
1525 }
1526
1527 /**
1528 * Returns {@code true} if a new sync event occurred since last
1529 * call to sync or this method, if so, updating caller's count.
1530 */
1531 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1532 long lc = w.lastEventCount;
1533 long ec = ensureSync();
1534 if (ec == lc)
1535 return false;
1536 w.lastEventCount = ec;
1537 return true;
1538 }
1539
1540 // Parallelism maintenance
1541
1542 /**
1543 * Decrements running count; if too low, adds spare.
1544 *
1545 * Conceptually, all we need to do here is add or resume a
1546 * spare thread when one is about to block (and remove or
1547 * suspend it later when unblocked -- see suspendIfSpare).
1548 * However, implementing this idea requires coping with
1549 * several problems: we have imperfect information about the
1550 * states of threads. Some count updates can and usually do
1551 * lag run state changes, despite arrangements to keep them
1552 * accurate (for example, when possible, updating counts
1553 * before signalling or resuming), especially when running on
1554 * dynamic JVMs that don't optimize the infrequent paths that
1555 * update counts. Generating too many threads can make these
1556 * problems become worse, because excess threads are more
1557 * likely to be context-switched with others, slowing them all
1558 * down, especially if there is no work available, so all are
1559 * busy scanning or idling. Also, excess spare threads can
1560 * only be suspended or removed when they are idle, not
1561 * immediately when they aren't needed. So adding threads will
1562 * raise parallelism level for longer than necessary. Also,
1563 * FJ applications often encounter highly transient peaks when
1564 * many threads are blocked joining, but for less time than it
1565 * takes to create or resume spares.
1566 *
1567 * @param joinMe if non-null, return early if done
1568 * @param maintainParallelism if true, try to stay within
1569 * target counts, else create only to avoid starvation
1570 * @return true if joinMe known to be done
1571 */
1572 final boolean preJoin(ForkJoinTask<?> joinMe,
1573 boolean maintainParallelism) {
1574 maintainParallelism &= maintainsParallelism; // overrride
1575 boolean dec = false; // true when running count decremented
1576 while (spareStack == null || !tryResumeSpare(dec)) {
1577 int counts = workerCounts;
1578 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1579 // CAS cheat
1580 if (!needSpare(counts, maintainParallelism))
1581 break;
1582 if (joinMe.status < 0)
1583 return true;
1584 if (tryAddSpare(counts))
1585 break;
1586 }
1587 }
1588 return false;
1589 }
1590
1591 /**
1592 * Same idea as preJoin
1593 */
1594 final boolean preBlock(ManagedBlocker blocker,
1595 boolean maintainParallelism) {
1596 maintainParallelism &= maintainsParallelism;
1597 boolean dec = false;
1598 while (spareStack == null || !tryResumeSpare(dec)) {
1599 int counts = workerCounts;
1600 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1601 if (!needSpare(counts, maintainParallelism))
1602 break;
1603 if (blocker.isReleasable())
1604 return true;
1605 if (tryAddSpare(counts))
1606 break;
1607 }
1608 }
1609 return false;
1610 }
1611
1612 /**
1613 * Returns {@code true} if a spare thread appears to be needed.
1614 * If maintaining parallelism, returns true when the deficit in
1615 * running threads is more than the surplus of total threads, and
1616 * there is apparently some work to do. This self-limiting rule
1617 * means that the more threads that have already been added, the
1618 * less parallelism we will tolerate before adding another.
1619 *
1620 * @param counts current worker counts
1621 * @param maintainParallelism try to maintain parallelism
1622 */
1623 private boolean needSpare(int counts, boolean maintainParallelism) {
1624 int ps = parallelism;
1625 int rc = runningCountOf(counts);
1626 int tc = totalCountOf(counts);
1627 int runningDeficit = ps - rc;
1628 int totalSurplus = tc - ps;
1629 return (tc < maxPoolSize &&
1630 (rc == 0 || totalSurplus < 0 ||
1631 (maintainParallelism &&
1632 runningDeficit > totalSurplus &&
1633 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1634 }
1635
1636 /**
1637 * Adds a spare worker if lock available and no more than the
1638 * expected numbers of threads exist.
1639 *
1640 * @return true if successful
1641 */
1642 private boolean tryAddSpare(int expectedCounts) {
1643 final ReentrantLock lock = this.workerLock;
1644 int expectedRunning = runningCountOf(expectedCounts);
1645 int expectedTotal = totalCountOf(expectedCounts);
1646 boolean success = false;
1647 boolean locked = false;
1648 // confirm counts while locking; CAS after obtaining lock
1649 try {
1650 for (;;) {
1651 int s = workerCounts;
1652 int tc = totalCountOf(s);
1653 int rc = runningCountOf(s);
1654 if (rc > expectedRunning || tc > expectedTotal)
1655 break;
1656 if (!locked && !(locked = lock.tryLock()))
1657 break;
1658 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1659 createAndStartSpare(tc);
1660 success = true;
1661 break;
1662 }
1663 }
1664 } finally {
1665 if (locked)
1666 lock.unlock();
1667 }
1668 return success;
1669 }
1670
1671 /**
1672 * Adds the kth spare worker. On entry, pool counts are already
1673 * adjusted to reflect addition.
1674 */
1675 private void createAndStartSpare(int k) {
1676 ForkJoinWorkerThread w = null;
1677 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1678 int len = ws.length;
1679 // Probably, we can place at slot k. If not, find empty slot
1680 if (k < len && ws[k] != null) {
1681 for (k = 0; k < len && ws[k] != null; ++k)
1682 ;
1683 }
1684 if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1685 ws[k] = w;
1686 w.start();
1687 }
1688 else
1689 updateWorkerCount(-1); // adjust on failure
1690 signalIdleWorkers();
1691 }
1692
1693 /**
1694 * Suspends calling thread w if there are excess threads. Called
1695 * only from sync. Spares are enqueued in a Treiber stack using
1696 * the same WaitQueueNodes as barriers. They are resumed mainly
1697 * in preJoin, but are also woken on pool events that require all
1698 * threads to check run state.
1699 *
1700 * @param w the caller
1701 */
1702 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1703 WaitQueueNode node = null;
1704 int s;
1705 while (parallelism < runningCountOf(s = workerCounts)) {
1706 if (node == null)
1707 node = new WaitQueueNode(0, w);
1708 if (casWorkerCounts(s, s-1)) { // representation-dependent
1709 // push onto stack
1710 do {} while (!casSpareStack(node.next = spareStack, node));
1711 // block until released by resumeSpare
1712 node.awaitSpareRelease();
1713 return true;
1714 }
1715 }
1716 return false;
1717 }
1718
1719 /**
1720 * Tries to pop and resume a spare thread.
1721 *
1722 * @param updateCount if true, increment running count on success
1723 * @return true if successful
1724 */
1725 private boolean tryResumeSpare(boolean updateCount) {
1726 WaitQueueNode q;
1727 while ((q = spareStack) != null) {
1728 if (casSpareStack(q, q.next)) {
1729 if (updateCount)
1730 updateRunningCount(1);
1731 q.signal();
1732 return true;
1733 }
1734 }
1735 return false;
1736 }
1737
1738 /**
1739 * Pops and resumes all spare threads. Same idea as ensureSync.
1740 *
1741 * @return true if any spares released
1742 */
1743 private boolean resumeAllSpares() {
1744 WaitQueueNode q;
1745 while ( (q = spareStack) != null) {
1746 if (casSpareStack(q, null)) {
1747 do {
1748 updateRunningCount(1);
1749 q.signal();
1750 } while ((q = q.next) != null);
1751 return true;
1752 }
1753 }
1754 return false;
1755 }
1756
1757 /**
1758 * Pops and shuts down excessive spare threads. Call only while
1759 * holding lock. This is not guaranteed to eliminate all excess
1760 * threads, only those suspended as spares, which are the ones
1761 * unlikely to be needed in the future.
1762 */
1763 private void trimSpares() {
1764 int surplus = totalCountOf(workerCounts) - parallelism;
1765 WaitQueueNode q;
1766 while (surplus > 0 && (q = spareStack) != null) {
1767 if (casSpareStack(q, null)) {
1768 do {
1769 updateRunningCount(1);
1770 ForkJoinWorkerThread w = q.thread;
1771 if (w != null && surplus > 0 &&
1772 runningCountOf(workerCounts) > 0 && w.shutdown())
1773 --surplus;
1774 q.signal();
1775 } while ((q = q.next) != null);
1776 }
1777 }
1778 }
1779
1780 /**
1781 * Interface for extending managed parallelism for tasks running
1782 * in {@link ForkJoinPool}s.
1783 *
1784 * <p>A {@code ManagedBlocker} provides two methods.
1785 * Method {@code isReleasable} must return {@code true} if
1786 * blocking is not necessary. Method {@code block} blocks the
1787 * current thread if necessary (perhaps internally invoking
1788 * {@code isReleasable} before actually blocking).
1789 *
1790 * <p>For example, here is a ManagedBlocker based on a
1791 * ReentrantLock:
1792 * <pre> {@code
1793 * class ManagedLocker implements ManagedBlocker {
1794 * final ReentrantLock lock;
1795 * boolean hasLock = false;
1796 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1797 * public boolean block() {
1798 * if (!hasLock)
1799 * lock.lock();
1800 * return true;
1801 * }
1802 * public boolean isReleasable() {
1803 * return hasLock || (hasLock = lock.tryLock());
1804 * }
1805 * }}</pre>
1806 */
1807 public static interface ManagedBlocker {
1808 /**
1809 * Possibly blocks the current thread, for example waiting for
1810 * a lock or condition.
1811 *
1812 * @return {@code true} if no additional blocking is necessary
1813 * (i.e., if isReleasable would return true)
1814 * @throws InterruptedException if interrupted while waiting
1815 * (the method is not required to do so, but is allowed to)
1816 */
1817 boolean block() throws InterruptedException;
1818
1819 /**
1820 * Returns {@code true} if blocking is unnecessary.
1821 */
1822 boolean isReleasable();
1823 }
1824
1825 /**
1826 * Blocks in accord with the given blocker. If the current thread
1827 * is a {@link ForkJoinWorkerThread}, this method possibly
1828 * arranges for a spare thread to be activated if necessary to
1829 * ensure parallelism while the current thread is blocked.
1830 *
1831 * <p>If {@code maintainParallelism} is {@code true} and the pool
1832 * supports it ({@link #getMaintainsParallelism}), this method
1833 * attempts to maintain the pool's nominal parallelism. Otherwise
1834 * it activates a thread only if necessary to avoid complete
1835 * starvation. This option may be preferable when blockages use
1836 * timeouts, or are almost always brief.
1837 *
1838 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1839 * behaviorally equivalent to
1840 * <pre> {@code
1841 * while (!blocker.isReleasable())
1842 * if (blocker.block())
1843 * return;
1844 * }</pre>
1845 *
1846 * If the caller is a {@code ForkJoinTask}, then the pool may
1847 * first be expanded to ensure parallelism, and later adjusted.
1848 *
1849 * @param blocker the blocker
1850 * @param maintainParallelism if {@code true} and supported by
1851 * this pool, attempt to maintain the pool's nominal parallelism;
1852 * otherwise activate a thread only if necessary to avoid
1853 * complete starvation.
1854 * @throws InterruptedException if blocker.block did so
1855 */
1856 public static void managedBlock(ManagedBlocker blocker,
1857 boolean maintainParallelism)
1858 throws InterruptedException {
1859 Thread t = Thread.currentThread();
1860 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1861 ((ForkJoinWorkerThread) t).pool : null);
1862 if (!blocker.isReleasable()) {
1863 try {
1864 if (pool == null ||
1865 !pool.preBlock(blocker, maintainParallelism))
1866 awaitBlocker(blocker);
1867 } finally {
1868 if (pool != null)
1869 pool.updateRunningCount(1);
1870 }
1871 }
1872 }
1873
1874 private static void awaitBlocker(ManagedBlocker blocker)
1875 throws InterruptedException {
1876 do {} while (!blocker.isReleasable() && !blocker.block());
1877 }
1878
1879 // AbstractExecutorService overrides. These rely on undocumented
1880 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1881 // implement RunnableFuture.
1882
1883 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1884 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1885 }
1886
1887 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1888 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1889 }
1890
1891 // Unsafe mechanics
1892
1893 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1894 private static final long eventCountOffset =
1895 objectFieldOffset("eventCount", ForkJoinPool.class);
1896 private static final long workerCountsOffset =
1897 objectFieldOffset("workerCounts", ForkJoinPool.class);
1898 private static final long runControlOffset =
1899 objectFieldOffset("runControl", ForkJoinPool.class);
1900 private static final long syncStackOffset =
1901 objectFieldOffset("syncStack",ForkJoinPool.class);
1902 private static final long spareStackOffset =
1903 objectFieldOffset("spareStack", ForkJoinPool.class);
1904
1905 private boolean casEventCount(long cmp, long val) {
1906 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1907 }
1908 private boolean casWorkerCounts(int cmp, int val) {
1909 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1910 }
1911 private boolean casRunControl(int cmp, int val) {
1912 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1913 }
1914 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1915 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1916 }
1917 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1919 }
1920
1921 private static long objectFieldOffset(String field, Class<?> klazz) {
1922 try {
1923 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1924 } catch (NoSuchFieldException e) {
1925 // Convert Exception to corresponding Error
1926 NoSuchFieldError error = new NoSuchFieldError(field);
1927 error.initCause(e);
1928 throw error;
1929 }
1930 }
1931
1932 /**
1933 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1934 * Replace with a simple call to Unsafe.getUnsafe when integrating
1935 * into a jdk.
1936 *
1937 * @return a sun.misc.Unsafe
1938 */
1939 private static sun.misc.Unsafe getUnsafe() {
1940 try {
1941 return sun.misc.Unsafe.getUnsafe();
1942 } catch (SecurityException se) {
1943 try {
1944 return java.security.AccessController.doPrivileged
1945 (new java.security
1946 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1947 public sun.misc.Unsafe run() throws Exception {
1948 java.lang.reflect.Field f = sun.misc
1949 .Unsafe.class.getDeclaredField("theUnsafe");
1950 f.setAccessible(true);
1951 return (sun.misc.Unsafe) f.get(null);
1952 }});
1953 } catch (java.security.PrivilegedActionException e) {
1954 throw new RuntimeException("Could not initialize intrinsics",
1955 e.getCause());
1956 }
1957 }
1958 }
1959 }