ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.45
Committed: Tue Aug 4 12:41:27 2009 UTC (14 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.44: +5 -3 lines
Log Message:
Doc improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.ArrayList;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Collections;
15 import java.util.List;
16 import java.util.concurrent.locks.Condition;
17 import java.util.concurrent.locks.LockSupport;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask}s, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute subtasks created by other active tasks (eventually blocking
32 * waiting for work if none exist). This enables efficient processing
33 * when most tasks spawn other subtasks (as do most {@code
34 * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
35 * execution of some plain {@code Runnable}- or {@code Callable}-
36 * based activities along with {@code ForkJoinTask}s. When setting
37 * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 * also be appropriate for use with fine-grained tasks of any form
39 * that are never joined. Otherwise, other {@code ExecutorService}
40 * implementations are typically more appropriate choices.
41 *
42 * <p>A {@code ForkJoinPool} is constructed with a given target
43 * parallelism level; by default, equal to the number of available
44 * processors. Unless configured otherwise via {@link
45 * #setMaintainsParallelism}, the pool attempts to maintain this
46 * number of active (or available) threads by dynamically adding,
47 * suspending, or resuming internal worker threads, even if some tasks
48 * are stalled waiting to join others. However, no such adjustments
49 * are performed in the face of blocked IO or other unmanaged
50 * synchronization. The nested {@link ManagedBlocker} interface
51 * enables extension of the kinds of synchronization accommodated.
52 * The target parallelism level may also be changed dynamically
53 * ({@link #setParallelism}). The total number of threads may be
54 * limited using method {@link #setMaximumPoolSize}, in which case it
55 * may become possible for the activities of a pool to stall due to
56 * the lack of available threads to process new tasks.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
66 * used for all parallel task execution in a program or subsystem.
67 * Otherwise, use would not usually outweigh the construction and
68 * bookkeeping overhead of creating a large set of threads. For
69 * example, a common pool could be used for the {@code SortTasks}
70 * illustrated in {@link RecursiveAction}. Because {@code
71 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
72 * daemon} mode, there is typically no need to explicitly {@link
73 * #shutdown} such a pool upon program exit.
74 *
75 * <pre>
76 * static final ForkJoinPool mainPool = new ForkJoinPool();
77 * ...
78 * public void sort(long[] array) {
79 * mainPool.invoke(new SortTask(array, 0, array.length));
80 * }
81 * </pre>
82 *
83 * <p><b>Implementation notes</b>: This implementation restricts the
84 * maximum number of running threads to 32767. Attempts to create
85 * pools with greater than the maximum result in
86 * {@code IllegalArgumentException}.
87 *
88 * @since 1.7
89 * @author Doug Lea
90 */
91 public class ForkJoinPool extends AbstractExecutorService {
92
93 /*
94 * See the extended comments interspersed below for design,
95 * rationale, and walkthroughs.
96 */
97
98 /** Mask for packing and unpacking shorts */
99 private static final int shortMask = 0xffff;
100
101 /** Max pool size -- must be a power of two minus 1 */
102 private static final int MAX_THREADS = 0x7FFF;
103
104 /**
105 * Factory for creating new {@link ForkJoinWorkerThread}s.
106 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
107 * for {@code ForkJoinWorkerThread} subclasses that extend base
108 * functionality or initialize threads with different contexts.
109 */
110 public static interface ForkJoinWorkerThreadFactory {
111 /**
112 * Returns a new worker thread operating in the given pool.
113 *
114 * @param pool the pool this thread works in
115 * @throws NullPointerException if pool is null
116 */
117 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
118 }
119
120 /**
121 * Default ForkJoinWorkerThreadFactory implementation; creates a
122 * new ForkJoinWorkerThread.
123 */
124 static class DefaultForkJoinWorkerThreadFactory
125 implements ForkJoinWorkerThreadFactory {
126 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
127 try {
128 return new ForkJoinWorkerThread(pool);
129 } catch (OutOfMemoryError oom) {
130 return null;
131 }
132 }
133 }
134
135 /**
136 * Creates a new ForkJoinWorkerThread. This factory is used unless
137 * overridden in ForkJoinPool constructors.
138 */
139 public static final ForkJoinWorkerThreadFactory
140 defaultForkJoinWorkerThreadFactory =
141 new DefaultForkJoinWorkerThreadFactory();
142
143 /**
144 * Permission required for callers of methods that may start or
145 * kill threads.
146 */
147 private static final RuntimePermission modifyThreadPermission =
148 new RuntimePermission("modifyThread");
149
150 /**
151 * If there is a security manager, makes sure caller has
152 * permission to modify threads.
153 */
154 private static void checkPermission() {
155 SecurityManager security = System.getSecurityManager();
156 if (security != null)
157 security.checkPermission(modifyThreadPermission);
158 }
159
160 /**
161 * Generator for assigning sequence numbers as pool names.
162 */
163 private static final AtomicInteger poolNumberGenerator =
164 new AtomicInteger();
165
166 /**
167 * Array holding all worker threads in the pool. Initialized upon
168 * first use. Array size must be a power of two. Updates and
169 * replacements are protected by workerLock, but it is always kept
170 * in a consistent enough state to be randomly accessed without
171 * locking by workers performing work-stealing.
172 */
173 volatile ForkJoinWorkerThread[] workers;
174
175 /**
176 * Lock protecting access to workers.
177 */
178 private final ReentrantLock workerLock;
179
180 /**
181 * Condition for awaitTermination.
182 */
183 private final Condition termination;
184
185 /**
186 * The uncaught exception handler used when any worker
187 * abruptly terminates
188 */
189 private Thread.UncaughtExceptionHandler ueh;
190
191 /**
192 * Creation factory for worker threads.
193 */
194 private final ForkJoinWorkerThreadFactory factory;
195
196 /**
197 * Head of stack of threads that were created to maintain
198 * parallelism when other threads blocked, but have since
199 * suspended when the parallelism level rose.
200 */
201 private volatile WaitQueueNode spareStack;
202
203 /**
204 * Sum of per-thread steal counts, updated only when threads are
205 * idle or terminating.
206 */
207 private final AtomicLong stealCount;
208
209 /**
210 * Queue for external submissions.
211 */
212 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
213
214 /**
215 * Head of Treiber stack for barrier sync. See below for explanation.
216 */
217 private volatile WaitQueueNode syncStack;
218
219 /**
220 * The count for event barrier
221 */
222 private volatile long eventCount;
223
224 /**
225 * Pool number, just for assigning useful names to worker threads
226 */
227 private final int poolNumber;
228
229 /**
230 * The maximum allowed pool size
231 */
232 private volatile int maxPoolSize;
233
234 /**
235 * The desired parallelism level, updated only under workerLock.
236 */
237 private volatile int parallelism;
238
239 /**
240 * True if use local fifo, not default lifo, for local polling
241 */
242 private volatile boolean locallyFifo;
243
244 /**
245 * Holds number of total (i.e., created and not yet terminated)
246 * and running (i.e., not blocked on joins or other managed sync)
247 * threads, packed into one int to ensure consistent snapshot when
248 * making decisions about creating and suspending spare
249 * threads. Updated only by CAS. Note: CASes in
250 * updateRunningCount and preJoin assume that running active count
251 * is in low word, so need to be modified if this changes.
252 */
253 private volatile int workerCounts;
254
255 private static int totalCountOf(int s) { return s >>> 16; }
256 private static int runningCountOf(int s) { return s & shortMask; }
257 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
258
259 /**
260 * Adds delta (which may be negative) to running count. This must
261 * be called before (with negative arg) and after (with positive)
262 * any managed synchronization (i.e., mainly, joins).
263 *
264 * @param delta the number to add
265 */
266 final void updateRunningCount(int delta) {
267 int s;
268 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
269 }
270
271 /**
272 * Adds delta (which may be negative) to both total and running
273 * count. This must be called upon creation and termination of
274 * worker threads.
275 *
276 * @param delta the number to add
277 */
278 private void updateWorkerCount(int delta) {
279 int d = delta + (delta << 16); // add to both lo and hi parts
280 int s;
281 do {} while (!casWorkerCounts(s = workerCounts, s + d));
282 }
283
284 /**
285 * Lifecycle control. High word contains runState, low word
286 * contains the number of workers that are (probably) executing
287 * tasks. This value is atomically incremented before a worker
288 * gets a task to run, and decremented when worker has no tasks
289 * and cannot find any. These two fields are bundled together to
290 * support correct termination triggering. Note: activeCount
291 * CAS'es cheat by assuming active count is in low word, so need
292 * to be modified if this changes
293 */
294 private volatile int runControl;
295
296 // RunState values. Order among values matters
297 private static final int RUNNING = 0;
298 private static final int SHUTDOWN = 1;
299 private static final int TERMINATING = 2;
300 private static final int TERMINATED = 3;
301
302 private static int runStateOf(int c) { return c >>> 16; }
303 private static int activeCountOf(int c) { return c & shortMask; }
304 private static int runControlFor(int r, int a) { return (r << 16) + a; }
305
306 /**
307 * Tries incrementing active count; fails on contention.
308 * Called by workers before/during executing tasks.
309 *
310 * @return true on success
311 */
312 final boolean tryIncrementActiveCount() {
313 int c = runControl;
314 return casRunControl(c, c+1);
315 }
316
317 /**
318 * Tries decrementing active count; fails on contention.
319 * Possibly triggers termination on success.
320 * Called by workers when they can't find tasks.
321 *
322 * @return true on success
323 */
324 final boolean tryDecrementActiveCount() {
325 int c = runControl;
326 int nextc = c - 1;
327 if (!casRunControl(c, nextc))
328 return false;
329 if (canTerminateOnShutdown(nextc))
330 terminateOnShutdown();
331 return true;
332 }
333
334 /**
335 * Returns {@code true} if argument represents zero active count
336 * and nonzero runstate, which is the triggering condition for
337 * terminating on shutdown.
338 */
339 private static boolean canTerminateOnShutdown(int c) {
340 // i.e. least bit is nonzero runState bit
341 return ((c & -c) >>> 16) != 0;
342 }
343
344 /**
345 * Transition run state to at least the given state. Return true
346 * if not already at least given state.
347 */
348 private boolean transitionRunStateTo(int state) {
349 for (;;) {
350 int c = runControl;
351 if (runStateOf(c) >= state)
352 return false;
353 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
354 return true;
355 }
356 }
357
358 /**
359 * Controls whether to add spares to maintain parallelism
360 */
361 private volatile boolean maintainsParallelism;
362
363 // Constructors
364
365 /**
366 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
367 * java.lang.Runtime#availableProcessors}, and using the {@linkplain
368 * #defaultForkJoinWorkerThreadFactory default thread factory}.
369 *
370 * @throws SecurityException if a security manager exists and
371 * the caller is not permitted to modify threads
372 * because it does not hold {@link
373 * java.lang.RuntimePermission}{@code ("modifyThread")}
374 */
375 public ForkJoinPool() {
376 this(Runtime.getRuntime().availableProcessors(),
377 defaultForkJoinWorkerThreadFactory);
378 }
379
380 /**
381 * Creates a {@code ForkJoinPool} with the indicated parallelism
382 * level and using the {@linkplain
383 * #defaultForkJoinWorkerThreadFactory default thread factory}.
384 *
385 * @param parallelism the parallelism level
386 * @throws IllegalArgumentException if parallelism less than or
387 * equal to zero
388 * @throws SecurityException if a security manager exists and
389 * the caller is not permitted to modify threads
390 * because it does not hold {@link
391 * java.lang.RuntimePermission}{@code ("modifyThread")}
392 */
393 public ForkJoinPool(int parallelism) {
394 this(parallelism, defaultForkJoinWorkerThreadFactory);
395 }
396
397 /**
398 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
399 * java.lang.Runtime#availableProcessors}, and using the given
400 * thread factory.
401 *
402 * @param factory the factory for creating new threads
403 * @throws NullPointerException if factory is null
404 * @throws SecurityException if a security manager exists and
405 * the caller is not permitted to modify threads
406 * because it does not hold {@link
407 * java.lang.RuntimePermission}{@code ("modifyThread")}
408 */
409 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
410 this(Runtime.getRuntime().availableProcessors(), factory);
411 }
412
413 /**
414 * Creates a {@code ForkJoinPool} with the given parallelism and
415 * thread factory.
416 *
417 * @param parallelism the parallelism level
418 * @param factory the factory for creating new threads
419 * @throws IllegalArgumentException if parallelism less than or
420 * equal to zero, or greater than implementation limit
421 * @throws NullPointerException if factory is null
422 * @throws SecurityException if a security manager exists and
423 * the caller is not permitted to modify threads
424 * because it does not hold {@link
425 * java.lang.RuntimePermission}{@code ("modifyThread")}
426 */
427 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
428 if (parallelism <= 0 || parallelism > MAX_THREADS)
429 throw new IllegalArgumentException();
430 if (factory == null)
431 throw new NullPointerException();
432 checkPermission();
433 this.factory = factory;
434 this.parallelism = parallelism;
435 this.maxPoolSize = MAX_THREADS;
436 this.maintainsParallelism = true;
437 this.poolNumber = poolNumberGenerator.incrementAndGet();
438 this.workerLock = new ReentrantLock();
439 this.termination = workerLock.newCondition();
440 this.stealCount = new AtomicLong();
441 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
442 // worker array and workers are lazily constructed
443 }
444
445 /**
446 * Creates a new worker thread using factory.
447 *
448 * @param index the index to assign worker
449 * @return new worker, or null if factory failed
450 */
451 private ForkJoinWorkerThread createWorker(int index) {
452 Thread.UncaughtExceptionHandler h = ueh;
453 ForkJoinWorkerThread w = factory.newThread(this);
454 if (w != null) {
455 w.poolIndex = index;
456 w.setDaemon(true);
457 w.setAsyncMode(locallyFifo);
458 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
459 if (h != null)
460 w.setUncaughtExceptionHandler(h);
461 }
462 return w;
463 }
464
465 /**
466 * Returns a good size for worker array given pool size.
467 * Currently requires size to be a power of two.
468 */
469 private static int arraySizeFor(int poolSize) {
470 if (poolSize <= 1)
471 return 1;
472 // See Hackers Delight, sec 3.2
473 int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
474 c |= c >>> 1;
475 c |= c >>> 2;
476 c |= c >>> 4;
477 c |= c >>> 8;
478 c |= c >>> 16;
479 return c + 1;
480 }
481
482 /**
483 * Creates or resizes array if necessary to hold newLength.
484 * Call only under exclusion.
485 *
486 * @return the array
487 */
488 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
489 ForkJoinWorkerThread[] ws = workers;
490 if (ws == null)
491 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
492 else if (newLength > ws.length)
493 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
494 else
495 return ws;
496 }
497
498 /**
499 * Tries to shrink workers into smaller array after one or more terminate.
500 */
501 private void tryShrinkWorkerArray() {
502 ForkJoinWorkerThread[] ws = workers;
503 if (ws != null) {
504 int len = ws.length;
505 int last = len - 1;
506 while (last >= 0 && ws[last] == null)
507 --last;
508 int newLength = arraySizeFor(last+1);
509 if (newLength < len)
510 workers = Arrays.copyOf(ws, newLength);
511 }
512 }
513
514 /**
515 * Initializes workers if necessary.
516 */
517 final void ensureWorkerInitialization() {
518 ForkJoinWorkerThread[] ws = workers;
519 if (ws == null) {
520 final ReentrantLock lock = this.workerLock;
521 lock.lock();
522 try {
523 ws = workers;
524 if (ws == null) {
525 int ps = parallelism;
526 ws = ensureWorkerArrayCapacity(ps);
527 for (int i = 0; i < ps; ++i) {
528 ForkJoinWorkerThread w = createWorker(i);
529 if (w != null) {
530 ws[i] = w;
531 w.start();
532 updateWorkerCount(1);
533 }
534 }
535 }
536 } finally {
537 lock.unlock();
538 }
539 }
540 }
541
542 /**
543 * Worker creation and startup for threads added via setParallelism.
544 */
545 private void createAndStartAddedWorkers() {
546 resumeAllSpares(); // Allow spares to convert to nonspare
547 int ps = parallelism;
548 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
549 int len = ws.length;
550 // Sweep through slots, to keep lowest indices most populated
551 int k = 0;
552 while (k < len) {
553 if (ws[k] != null) {
554 ++k;
555 continue;
556 }
557 int s = workerCounts;
558 int tc = totalCountOf(s);
559 int rc = runningCountOf(s);
560 if (rc >= ps || tc >= ps)
561 break;
562 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
563 ForkJoinWorkerThread w = createWorker(k);
564 if (w != null) {
565 ws[k++] = w;
566 w.start();
567 }
568 else {
569 updateWorkerCount(-1); // back out on failed creation
570 break;
571 }
572 }
573 }
574 }
575
576 // Execution methods
577
578 /**
579 * Common code for execute, invoke and submit
580 */
581 private <T> void doSubmit(ForkJoinTask<T> task) {
582 if (task == null)
583 throw new NullPointerException();
584 if (isShutdown())
585 throw new RejectedExecutionException();
586 if (workers == null)
587 ensureWorkerInitialization();
588 submissionQueue.offer(task);
589 signalIdleWorkers();
590 }
591
592 /**
593 * Performs the given task, returning its result upon completion.
594 *
595 * @param task the task
596 * @return the task's result
597 * @throws NullPointerException if task is null
598 * @throws RejectedExecutionException if pool is shut down
599 */
600 public <T> T invoke(ForkJoinTask<T> task) {
601 doSubmit(task);
602 return task.join();
603 }
604
605 /**
606 * Arranges for (asynchronous) execution of the given task.
607 *
608 * @param task the task
609 * @throws NullPointerException if task is null
610 * @throws RejectedExecutionException if pool is shut down
611 */
612 public void execute(ForkJoinTask<?> task) {
613 doSubmit(task);
614 }
615
616 // AbstractExecutorService methods
617
618 public void execute(Runnable task) {
619 ForkJoinTask<?> job;
620 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
621 job = (ForkJoinTask<?>) task;
622 else
623 job = ForkJoinTask.adapt(task, null);
624 doSubmit(job);
625 }
626
627 public <T> ForkJoinTask<T> submit(Callable<T> task) {
628 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
629 doSubmit(job);
630 return job;
631 }
632
633 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
634 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
635 doSubmit(job);
636 return job;
637 }
638
639 public ForkJoinTask<?> submit(Runnable task) {
640 ForkJoinTask<?> job;
641 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
642 job = (ForkJoinTask<?>) task;
643 else
644 job = ForkJoinTask.adapt(task, null);
645 doSubmit(job);
646 return job;
647 }
648
649 /**
650 * Submits a ForkJoinTask for execution.
651 *
652 * @param task the task to submit
653 * @return the task
654 * @throws RejectedExecutionException if the task cannot be
655 * scheduled for execution
656 * @throws NullPointerException if the task is null
657 */
658 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
659 doSubmit(task);
660 return task;
661 }
662
663
664 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
665 ArrayList<ForkJoinTask<T>> forkJoinTasks =
666 new ArrayList<ForkJoinTask<T>>(tasks.size());
667 for (Callable<T> task : tasks)
668 forkJoinTasks.add(ForkJoinTask.adapt(task));
669 invoke(new InvokeAll<T>(forkJoinTasks));
670
671 @SuppressWarnings({"unchecked", "rawtypes"})
672 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
673 return futures;
674 }
675
676 static final class InvokeAll<T> extends RecursiveAction {
677 final ArrayList<ForkJoinTask<T>> tasks;
678 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
679 public void compute() {
680 try { invokeAll(tasks); }
681 catch (Exception ignore) {}
682 }
683 private static final long serialVersionUID = -7914297376763021607L;
684 }
685
686 // Configuration and status settings and queries
687
688 /**
689 * Returns the factory used for constructing new workers.
690 *
691 * @return the factory used for constructing new workers
692 */
693 public ForkJoinWorkerThreadFactory getFactory() {
694 return factory;
695 }
696
697 /**
698 * Returns the handler for internal worker threads that terminate
699 * due to unrecoverable errors encountered while executing tasks.
700 *
701 * @return the handler, or {@code null} if none
702 */
703 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
704 Thread.UncaughtExceptionHandler h;
705 final ReentrantLock lock = this.workerLock;
706 lock.lock();
707 try {
708 h = ueh;
709 } finally {
710 lock.unlock();
711 }
712 return h;
713 }
714
715 /**
716 * Sets the handler for internal worker threads that terminate due
717 * to unrecoverable errors encountered while executing tasks.
718 * Unless set, the current default or ThreadGroup handler is used
719 * as handler.
720 *
721 * @param h the new handler
722 * @return the old handler, or {@code null} if none
723 * @throws SecurityException if a security manager exists and
724 * the caller is not permitted to modify threads
725 * because it does not hold {@link
726 * java.lang.RuntimePermission}{@code ("modifyThread")}
727 */
728 public Thread.UncaughtExceptionHandler
729 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
730 checkPermission();
731 Thread.UncaughtExceptionHandler old = null;
732 final ReentrantLock lock = this.workerLock;
733 lock.lock();
734 try {
735 old = ueh;
736 ueh = h;
737 ForkJoinWorkerThread[] ws = workers;
738 if (ws != null) {
739 for (int i = 0; i < ws.length; ++i) {
740 ForkJoinWorkerThread w = ws[i];
741 if (w != null)
742 w.setUncaughtExceptionHandler(h);
743 }
744 }
745 } finally {
746 lock.unlock();
747 }
748 return old;
749 }
750
751
752 /**
753 * Sets the target parallelism level of this pool.
754 *
755 * @param parallelism the target parallelism
756 * @throws IllegalArgumentException if parallelism less than or
757 * equal to zero or greater than maximum size bounds
758 * @throws SecurityException if a security manager exists and
759 * the caller is not permitted to modify threads
760 * because it does not hold {@link
761 * java.lang.RuntimePermission}{@code ("modifyThread")}
762 */
763 public void setParallelism(int parallelism) {
764 checkPermission();
765 if (parallelism <= 0 || parallelism > maxPoolSize)
766 throw new IllegalArgumentException();
767 final ReentrantLock lock = this.workerLock;
768 lock.lock();
769 try {
770 if (isProcessingTasks()) {
771 int p = this.parallelism;
772 this.parallelism = parallelism;
773 if (parallelism > p)
774 createAndStartAddedWorkers();
775 else
776 trimSpares();
777 }
778 } finally {
779 lock.unlock();
780 }
781 signalIdleWorkers();
782 }
783
784 /**
785 * Returns the targeted parallelism level of this pool.
786 *
787 * @return the targeted parallelism level of this pool
788 */
789 public int getParallelism() {
790 return parallelism;
791 }
792
793 /**
794 * Returns the number of worker threads that have started but not
795 * yet terminated. This result returned by this method may differ
796 * from {@link #getParallelism} when threads are created to
797 * maintain parallelism when others are cooperatively blocked.
798 *
799 * @return the number of worker threads
800 */
801 public int getPoolSize() {
802 return totalCountOf(workerCounts);
803 }
804
805 /**
806 * Returns the maximum number of threads allowed to exist in the
807 * pool. Unless set using {@link #setMaximumPoolSize}, the
808 * maximum is an implementation-defined value designed only to
809 * prevent runaway growth.
810 *
811 * @return the maximum
812 */
813 public int getMaximumPoolSize() {
814 return maxPoolSize;
815 }
816
817 /**
818 * Sets the maximum number of threads allowed to exist in the
819 * pool. The given value should normally be greater than or equal
820 * to the {@link #getParallelism parallelism} level. Setting this
821 * value has no effect on current pool size. It controls
822 * construction of new threads.
823 *
824 * @throws IllegalArgumentException if negative or greater than
825 * internal implementation limit
826 */
827 public void setMaximumPoolSize(int newMax) {
828 if (newMax < 0 || newMax > MAX_THREADS)
829 throw new IllegalArgumentException();
830 maxPoolSize = newMax;
831 }
832
833
834 /**
835 * Returns {@code true} if this pool dynamically maintains its
836 * target parallelism level. If false, new threads are added only
837 * to avoid possible starvation. This setting is by default true.
838 *
839 * @return {@code true} if maintains parallelism
840 */
841 public boolean getMaintainsParallelism() {
842 return maintainsParallelism;
843 }
844
845 /**
846 * Sets whether this pool dynamically maintains its target
847 * parallelism level. If false, new threads are added only to
848 * avoid possible starvation.
849 *
850 * @param enable {@code true} to maintain parallelism
851 */
852 public void setMaintainsParallelism(boolean enable) {
853 maintainsParallelism = enable;
854 }
855
856 /**
857 * Establishes local first-in-first-out scheduling mode for forked
858 * tasks that are never joined. This mode may be more appropriate
859 * than default locally stack-based mode in applications in which
860 * worker threads only process asynchronous tasks. This method is
861 * designed to be invoked only when the pool is quiescent, and
862 * typically only before any tasks are submitted. The effects of
863 * invocations at other times may be unpredictable.
864 *
865 * @param async if {@code true}, use locally FIFO scheduling
866 * @return the previous mode
867 * @see #getAsyncMode
868 */
869 public boolean setAsyncMode(boolean async) {
870 boolean oldMode = locallyFifo;
871 locallyFifo = async;
872 ForkJoinWorkerThread[] ws = workers;
873 if (ws != null) {
874 for (int i = 0; i < ws.length; ++i) {
875 ForkJoinWorkerThread t = ws[i];
876 if (t != null)
877 t.setAsyncMode(async);
878 }
879 }
880 return oldMode;
881 }
882
883 /**
884 * Returns {@code true} if this pool uses local first-in-first-out
885 * scheduling mode for forked tasks that are never joined.
886 *
887 * @return {@code true} if this pool uses async mode
888 * @see #setAsyncMode
889 */
890 public boolean getAsyncMode() {
891 return locallyFifo;
892 }
893
894 /**
895 * Returns an estimate of the number of worker threads that are
896 * not blocked waiting to join tasks or for other managed
897 * synchronization.
898 *
899 * @return the number of worker threads
900 */
901 public int getRunningThreadCount() {
902 return runningCountOf(workerCounts);
903 }
904
905 /**
906 * Returns an estimate of the number of threads that are currently
907 * stealing or executing tasks. This method may overestimate the
908 * number of active threads.
909 *
910 * @return the number of active threads
911 */
912 public int getActiveThreadCount() {
913 return activeCountOf(runControl);
914 }
915
916 /**
917 * Returns an estimate of the number of threads that are currently
918 * idle waiting for tasks. This method may underestimate the
919 * number of idle threads.
920 *
921 * @return the number of idle threads
922 */
923 final int getIdleThreadCount() {
924 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
925 return (c <= 0) ? 0 : c;
926 }
927
928 /**
929 * Returns {@code true} if all worker threads are currently idle.
930 * An idle worker is one that cannot obtain a task to execute
931 * because none are available to steal from other threads, and
932 * there are no pending submissions to the pool. This method is
933 * conservative; it might not return {@code true} immediately upon
934 * idleness of all threads, but will eventually become true if
935 * threads remain inactive.
936 *
937 * @return {@code true} if all threads are currently idle
938 */
939 public boolean isQuiescent() {
940 return activeCountOf(runControl) == 0;
941 }
942
943 /**
944 * Returns an estimate of the total number of tasks stolen from
945 * one thread's work queue by another. The reported value
946 * underestimates the actual total number of steals when the pool
947 * is not quiescent. This value may be useful for monitoring and
948 * tuning fork/join programs: in general, steal counts should be
949 * high enough to keep threads busy, but low enough to avoid
950 * overhead and contention across threads.
951 *
952 * @return the number of steals
953 */
954 public long getStealCount() {
955 return stealCount.get();
956 }
957
958 /**
959 * Accumulates steal count from a worker.
960 * Call only when worker known to be idle.
961 */
962 private void updateStealCount(ForkJoinWorkerThread w) {
963 int sc = w.getAndClearStealCount();
964 if (sc != 0)
965 stealCount.addAndGet(sc);
966 }
967
968 /**
969 * Returns an estimate of the total number of tasks currently held
970 * in queues by worker threads (but not including tasks submitted
971 * to the pool that have not begun executing). This value is only
972 * an approximation, obtained by iterating across all threads in
973 * the pool. This method may be useful for tuning task
974 * granularities.
975 *
976 * @return the number of queued tasks
977 */
978 public long getQueuedTaskCount() {
979 long count = 0;
980 ForkJoinWorkerThread[] ws = workers;
981 if (ws != null) {
982 for (int i = 0; i < ws.length; ++i) {
983 ForkJoinWorkerThread t = ws[i];
984 if (t != null)
985 count += t.getQueueSize();
986 }
987 }
988 return count;
989 }
990
991 /**
992 * Returns an estimate of the number of tasks submitted to this
993 * pool that have not yet begun executing. This method takes time
994 * proportional to the number of submissions.
995 *
996 * @return the number of queued submissions
997 */
998 public int getQueuedSubmissionCount() {
999 return submissionQueue.size();
1000 }
1001
1002 /**
1003 * Returns {@code true} if there are any tasks submitted to this
1004 * pool that have not yet begun executing.
1005 *
1006 * @return {@code true} if there are any queued submissions
1007 */
1008 public boolean hasQueuedSubmissions() {
1009 return !submissionQueue.isEmpty();
1010 }
1011
1012 /**
1013 * Removes and returns the next unexecuted submission if one is
1014 * available. This method may be useful in extensions to this
1015 * class that re-assign work in systems with multiple pools.
1016 *
1017 * @return the next submission, or {@code null} if none
1018 */
1019 protected ForkJoinTask<?> pollSubmission() {
1020 return submissionQueue.poll();
1021 }
1022
1023 /**
1024 * Removes all available unexecuted submitted and forked tasks
1025 * from scheduling queues and adds them to the given collection,
1026 * without altering their execution status. These may include
1027 * artificially generated or wrapped tasks. This method is
1028 * designed to be invoked only when the pool is known to be
1029 * quiescent. Invocations at other times may not remove all
1030 * tasks. A failure encountered while attempting to add elements
1031 * to collection {@code c} may result in elements being in
1032 * neither, either or both collections when the associated
1033 * exception is thrown. The behavior of this operation is
1034 * undefined if the specified collection is modified while the
1035 * operation is in progress.
1036 *
1037 * @param c the collection to transfer elements into
1038 * @return the number of elements transferred
1039 */
1040 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1041 int n = submissionQueue.drainTo(c);
1042 ForkJoinWorkerThread[] ws = workers;
1043 if (ws != null) {
1044 for (int i = 0; i < ws.length; ++i) {
1045 ForkJoinWorkerThread w = ws[i];
1046 if (w != null)
1047 n += w.drainTasksTo(c);
1048 }
1049 }
1050 return n;
1051 }
1052
1053 /**
1054 * Returns a string identifying this pool, as well as its state,
1055 * including indications of run state, parallelism level, and
1056 * worker and task counts.
1057 *
1058 * @return a string identifying this pool, as well as its state
1059 */
1060 public String toString() {
1061 int ps = parallelism;
1062 int wc = workerCounts;
1063 int rc = runControl;
1064 long st = getStealCount();
1065 long qt = getQueuedTaskCount();
1066 long qs = getQueuedSubmissionCount();
1067 return super.toString() +
1068 "[" + runStateToString(runStateOf(rc)) +
1069 ", parallelism = " + ps +
1070 ", size = " + totalCountOf(wc) +
1071 ", active = " + activeCountOf(rc) +
1072 ", running = " + runningCountOf(wc) +
1073 ", steals = " + st +
1074 ", tasks = " + qt +
1075 ", submissions = " + qs +
1076 "]";
1077 }
1078
1079 private static String runStateToString(int rs) {
1080 switch(rs) {
1081 case RUNNING: return "Running";
1082 case SHUTDOWN: return "Shutting down";
1083 case TERMINATING: return "Terminating";
1084 case TERMINATED: return "Terminated";
1085 default: throw new Error("Unknown run state");
1086 }
1087 }
1088
1089 // lifecycle control
1090
1091 /**
1092 * Initiates an orderly shutdown in which previously submitted
1093 * tasks are executed, but no new tasks will be accepted.
1094 * Invocation has no additional effect if already shut down.
1095 * Tasks that are in the process of being submitted concurrently
1096 * during the course of this method may or may not be rejected.
1097 *
1098 * @throws SecurityException if a security manager exists and
1099 * the caller is not permitted to modify threads
1100 * because it does not hold {@link
1101 * java.lang.RuntimePermission}{@code ("modifyThread")}
1102 */
1103 public void shutdown() {
1104 checkPermission();
1105 transitionRunStateTo(SHUTDOWN);
1106 if (canTerminateOnShutdown(runControl)) {
1107 if (workers == null) { // shutting down before workers created
1108 final ReentrantLock lock = this.workerLock;
1109 lock.lock();
1110 try {
1111 if (workers == null) {
1112 terminate();
1113 transitionRunStateTo(TERMINATED);
1114 termination.signalAll();
1115 }
1116 } finally {
1117 lock.unlock();
1118 }
1119 }
1120 terminateOnShutdown();
1121 }
1122 }
1123
1124 /**
1125 * Attempts to cancel and/or stop all tasks, and reject all
1126 * subsequently submitted tasks. Tasks that are in the process of
1127 * being submitted or executed concurrently during the course of
1128 * this method may or may not be rejected. This method cancels
1129 * both existing and unexecuted tasks, in order to permit
1130 * termination in the presence of task dependencies. So the method
1131 * always returns an empty list (unlike the case for some other
1132 * Executors).
1133 *
1134 * @return an empty list
1135 * @throws SecurityException if a security manager exists and
1136 * the caller is not permitted to modify threads
1137 * because it does not hold {@link
1138 * java.lang.RuntimePermission}{@code ("modifyThread")}
1139 */
1140 public List<Runnable> shutdownNow() {
1141 checkPermission();
1142 terminate();
1143 return Collections.emptyList();
1144 }
1145
1146 /**
1147 * Returns {@code true} if all tasks have completed following shut down.
1148 *
1149 * @return {@code true} if all tasks have completed following shut down
1150 */
1151 public boolean isTerminated() {
1152 return runStateOf(runControl) == TERMINATED;
1153 }
1154
1155 /**
1156 * Returns {@code true} if the process of termination has
1157 * commenced but not yet completed. This method may be useful for
1158 * debugging. A return of {@code true} reported a sufficient
1159 * period after shutdown may indicate that submitted tasks have
1160 * ignored or suppressed interruption, causing this executor not
1161 * to properly terminate.
1162 *
1163 * @return {@code true} if terminating but not yet terminated
1164 */
1165 public boolean isTerminating() {
1166 return runStateOf(runControl) == TERMINATING;
1167 }
1168
1169 /**
1170 * Returns {@code true} if this pool has been shut down.
1171 *
1172 * @return {@code true} if this pool has been shut down
1173 */
1174 public boolean isShutdown() {
1175 return runStateOf(runControl) >= SHUTDOWN;
1176 }
1177
1178 /**
1179 * Returns true if pool is not terminating or terminated.
1180 * Used internally to suppress execution when terminating.
1181 */
1182 final boolean isProcessingTasks() {
1183 return runStateOf(runControl) < TERMINATING;
1184 }
1185
1186 /**
1187 * Blocks until all tasks have completed execution after a shutdown
1188 * request, or the timeout occurs, or the current thread is
1189 * interrupted, whichever happens first.
1190 *
1191 * @param timeout the maximum time to wait
1192 * @param unit the time unit of the timeout argument
1193 * @return {@code true} if this executor terminated and
1194 * {@code false} if the timeout elapsed before termination
1195 * @throws InterruptedException if interrupted while waiting
1196 */
1197 public boolean awaitTermination(long timeout, TimeUnit unit)
1198 throws InterruptedException {
1199 long nanos = unit.toNanos(timeout);
1200 final ReentrantLock lock = this.workerLock;
1201 lock.lock();
1202 try {
1203 for (;;) {
1204 if (isTerminated())
1205 return true;
1206 if (nanos <= 0)
1207 return false;
1208 nanos = termination.awaitNanos(nanos);
1209 }
1210 } finally {
1211 lock.unlock();
1212 }
1213 }
1214
1215 // Shutdown and termination support
1216
1217 /**
1218 * Callback from terminating worker. Nulls out the corresponding
1219 * workers slot, and if terminating, tries to terminate; else
1220 * tries to shrink workers array.
1221 *
1222 * @param w the worker
1223 */
1224 final void workerTerminated(ForkJoinWorkerThread w) {
1225 updateStealCount(w);
1226 updateWorkerCount(-1);
1227 final ReentrantLock lock = this.workerLock;
1228 lock.lock();
1229 try {
1230 ForkJoinWorkerThread[] ws = workers;
1231 if (ws != null) {
1232 int idx = w.poolIndex;
1233 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1234 ws[idx] = null;
1235 if (totalCountOf(workerCounts) == 0) {
1236 terminate(); // no-op if already terminating
1237 transitionRunStateTo(TERMINATED);
1238 termination.signalAll();
1239 }
1240 else if (isProcessingTasks()) {
1241 tryShrinkWorkerArray();
1242 tryResumeSpare(true); // allow replacement
1243 }
1244 }
1245 } finally {
1246 lock.unlock();
1247 }
1248 signalIdleWorkers();
1249 }
1250
1251 /**
1252 * Initiates termination.
1253 */
1254 private void terminate() {
1255 if (transitionRunStateTo(TERMINATING)) {
1256 stopAllWorkers();
1257 resumeAllSpares();
1258 signalIdleWorkers();
1259 cancelQueuedSubmissions();
1260 cancelQueuedWorkerTasks();
1261 interruptUnterminatedWorkers();
1262 signalIdleWorkers(); // resignal after interrupt
1263 }
1264 }
1265
1266 /**
1267 * Possibly terminates when on shutdown state.
1268 */
1269 private void terminateOnShutdown() {
1270 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1271 terminate();
1272 }
1273
1274 /**
1275 * Clears out and cancels submissions.
1276 */
1277 private void cancelQueuedSubmissions() {
1278 ForkJoinTask<?> task;
1279 while ((task = pollSubmission()) != null)
1280 task.cancel(false);
1281 }
1282
1283 /**
1284 * Cleans out worker queues.
1285 */
1286 private void cancelQueuedWorkerTasks() {
1287 final ReentrantLock lock = this.workerLock;
1288 lock.lock();
1289 try {
1290 ForkJoinWorkerThread[] ws = workers;
1291 if (ws != null) {
1292 for (int i = 0; i < ws.length; ++i) {
1293 ForkJoinWorkerThread t = ws[i];
1294 if (t != null)
1295 t.cancelTasks();
1296 }
1297 }
1298 } finally {
1299 lock.unlock();
1300 }
1301 }
1302
1303 /**
1304 * Sets each worker's status to terminating. Requires lock to avoid
1305 * conflicts with add/remove.
1306 */
1307 private void stopAllWorkers() {
1308 final ReentrantLock lock = this.workerLock;
1309 lock.lock();
1310 try {
1311 ForkJoinWorkerThread[] ws = workers;
1312 if (ws != null) {
1313 for (int i = 0; i < ws.length; ++i) {
1314 ForkJoinWorkerThread t = ws[i];
1315 if (t != null)
1316 t.shutdownNow();
1317 }
1318 }
1319 } finally {
1320 lock.unlock();
1321 }
1322 }
1323
1324 /**
1325 * Interrupts all unterminated workers. This is not required for
1326 * sake of internal control, but may help unstick user code during
1327 * shutdown.
1328 */
1329 private void interruptUnterminatedWorkers() {
1330 final ReentrantLock lock = this.workerLock;
1331 lock.lock();
1332 try {
1333 ForkJoinWorkerThread[] ws = workers;
1334 if (ws != null) {
1335 for (int i = 0; i < ws.length; ++i) {
1336 ForkJoinWorkerThread t = ws[i];
1337 if (t != null && !t.isTerminated()) {
1338 try {
1339 t.interrupt();
1340 } catch (SecurityException ignore) {
1341 }
1342 }
1343 }
1344 }
1345 } finally {
1346 lock.unlock();
1347 }
1348 }
1349
1350
1351 /*
1352 * Nodes for event barrier to manage idle threads. Queue nodes
1353 * are basic Treiber stack nodes, also used for spare stack.
1354 *
1355 * The event barrier has an event count and a wait queue (actually
1356 * a Treiber stack). Workers are enabled to look for work when
1357 * the eventCount is incremented. If they fail to find work, they
1358 * may wait for next count. Upon release, threads help others wake
1359 * up.
1360 *
1361 * Synchronization events occur only in enough contexts to
1362 * maintain overall liveness:
1363 *
1364 * - Submission of a new task to the pool
1365 * - Resizes or other changes to the workers array
1366 * - pool termination
1367 * - A worker pushing a task on an empty queue
1368 *
1369 * The case of pushing a task occurs often enough, and is heavy
1370 * enough compared to simple stack pushes, to require special
1371 * handling: Method signalWork returns without advancing count if
1372 * the queue appears to be empty. This would ordinarily result in
1373 * races causing some queued waiters not to be woken up. To avoid
1374 * this, the first worker enqueued in method sync (see
1375 * syncIsReleasable) rescans for tasks after being enqueued, and
1376 * helps signal if any are found. This works well because the
1377 * worker has nothing better to do, and so might as well help
1378 * alleviate the overhead and contention on the threads actually
1379 * doing work. Also, since event counts increments on task
1380 * availability exist to maintain liveness (rather than to force
1381 * refreshes etc), it is OK for callers to exit early if
1382 * contending with another signaller.
1383 */
1384 static final class WaitQueueNode {
1385 WaitQueueNode next; // only written before enqueued
1386 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1387 final long count; // unused for spare stack
1388
1389 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1390 count = c;
1391 thread = w;
1392 }
1393
1394 /**
1395 * Wakes up waiter, returning false if known to already
1396 */
1397 boolean signal() {
1398 ForkJoinWorkerThread t = thread;
1399 if (t == null)
1400 return false;
1401 thread = null;
1402 LockSupport.unpark(t);
1403 return true;
1404 }
1405
1406 /**
1407 * Awaits release on sync.
1408 */
1409 void awaitSyncRelease(ForkJoinPool p) {
1410 while (thread != null && !p.syncIsReleasable(this))
1411 LockSupport.park(this);
1412 }
1413
1414 /**
1415 * Awaits resumption as spare.
1416 */
1417 void awaitSpareRelease() {
1418 while (thread != null) {
1419 if (!Thread.interrupted())
1420 LockSupport.park(this);
1421 }
1422 }
1423 }
1424
1425 /**
1426 * Ensures that no thread is waiting for count to advance from the
1427 * current value of eventCount read on entry to this method, by
1428 * releasing waiting threads if necessary.
1429 *
1430 * @return the count
1431 */
1432 final long ensureSync() {
1433 long c = eventCount;
1434 WaitQueueNode q;
1435 while ((q = syncStack) != null && q.count < c) {
1436 if (casBarrierStack(q, null)) {
1437 do {
1438 q.signal();
1439 } while ((q = q.next) != null);
1440 break;
1441 }
1442 }
1443 return c;
1444 }
1445
1446 /**
1447 * Increments event count and releases waiting threads.
1448 */
1449 private void signalIdleWorkers() {
1450 long c;
1451 do {} while (!casEventCount(c = eventCount, c+1));
1452 ensureSync();
1453 }
1454
1455 /**
1456 * Signals threads waiting to poll a task. Because method sync
1457 * rechecks availability, it is OK to only proceed if queue
1458 * appears to be non-empty, and OK to skip under contention to
1459 * increment count (since some other thread succeeded).
1460 */
1461 final void signalWork() {
1462 long c;
1463 WaitQueueNode q;
1464 if (syncStack != null &&
1465 casEventCount(c = eventCount, c+1) &&
1466 (((q = syncStack) != null && q.count <= c) &&
1467 (!casBarrierStack(q, q.next) || !q.signal())))
1468 ensureSync();
1469 }
1470
1471 /**
1472 * Waits until event count advances from last value held by
1473 * caller, or if excess threads, caller is resumed as spare, or
1474 * caller or pool is terminating. Updates caller's event on exit.
1475 *
1476 * @param w the calling worker thread
1477 */
1478 final void sync(ForkJoinWorkerThread w) {
1479 updateStealCount(w); // Transfer w's count while it is idle
1480
1481 while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1482 long prev = w.lastEventCount;
1483 WaitQueueNode node = null;
1484 WaitQueueNode h;
1485 while (eventCount == prev &&
1486 ((h = syncStack) == null || h.count == prev)) {
1487 if (node == null)
1488 node = new WaitQueueNode(prev, w);
1489 if (casBarrierStack(node.next = h, node)) {
1490 node.awaitSyncRelease(this);
1491 break;
1492 }
1493 }
1494 long ec = ensureSync();
1495 if (ec != prev) {
1496 w.lastEventCount = ec;
1497 break;
1498 }
1499 }
1500 }
1501
1502 /**
1503 * Returns {@code true} if worker waiting on sync can proceed:
1504 * - on signal (thread == null)
1505 * - on event count advance (winning race to notify vs signaller)
1506 * - on interrupt
1507 * - if the first queued node, we find work available
1508 * If node was not signalled and event count not advanced on exit,
1509 * then we also help advance event count.
1510 *
1511 * @return {@code true} if node can be released
1512 */
1513 final boolean syncIsReleasable(WaitQueueNode node) {
1514 long prev = node.count;
1515 if (!Thread.interrupted() && node.thread != null &&
1516 (node.next != null ||
1517 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1518 eventCount == prev)
1519 return false;
1520 if (node.thread != null) {
1521 node.thread = null;
1522 long ec = eventCount;
1523 if (prev <= ec) // help signal
1524 casEventCount(ec, ec+1);
1525 }
1526 return true;
1527 }
1528
1529 /**
1530 * Returns {@code true} if a new sync event occurred since last
1531 * call to sync or this method, if so, updating caller's count.
1532 */
1533 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1534 long lc = w.lastEventCount;
1535 long ec = ensureSync();
1536 if (ec == lc)
1537 return false;
1538 w.lastEventCount = ec;
1539 return true;
1540 }
1541
1542 // Parallelism maintenance
1543
1544 /**
1545 * Decrements running count; if too low, adds spare.
1546 *
1547 * Conceptually, all we need to do here is add or resume a
1548 * spare thread when one is about to block (and remove or
1549 * suspend it later when unblocked -- see suspendIfSpare).
1550 * However, implementing this idea requires coping with
1551 * several problems: we have imperfect information about the
1552 * states of threads. Some count updates can and usually do
1553 * lag run state changes, despite arrangements to keep them
1554 * accurate (for example, when possible, updating counts
1555 * before signalling or resuming), especially when running on
1556 * dynamic JVMs that don't optimize the infrequent paths that
1557 * update counts. Generating too many threads can make these
1558 * problems become worse, because excess threads are more
1559 * likely to be context-switched with others, slowing them all
1560 * down, especially if there is no work available, so all are
1561 * busy scanning or idling. Also, excess spare threads can
1562 * only be suspended or removed when they are idle, not
1563 * immediately when they aren't needed. So adding threads will
1564 * raise parallelism level for longer than necessary. Also,
1565 * FJ applications often encounter highly transient peaks when
1566 * many threads are blocked joining, but for less time than it
1567 * takes to create or resume spares.
1568 *
1569 * @param joinMe if non-null, return early if done
1570 * @param maintainParallelism if true, try to stay within
1571 * target counts, else create only to avoid starvation
1572 * @return true if joinMe known to be done
1573 */
1574 final boolean preJoin(ForkJoinTask<?> joinMe,
1575 boolean maintainParallelism) {
1576 maintainParallelism &= maintainsParallelism; // overrride
1577 boolean dec = false; // true when running count decremented
1578 while (spareStack == null || !tryResumeSpare(dec)) {
1579 int counts = workerCounts;
1580 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1581 // CAS cheat
1582 if (!needSpare(counts, maintainParallelism))
1583 break;
1584 if (joinMe.status < 0)
1585 return true;
1586 if (tryAddSpare(counts))
1587 break;
1588 }
1589 }
1590 return false;
1591 }
1592
1593 /**
1594 * Same idea as preJoin
1595 */
1596 final boolean preBlock(ManagedBlocker blocker,
1597 boolean maintainParallelism) {
1598 maintainParallelism &= maintainsParallelism;
1599 boolean dec = false;
1600 while (spareStack == null || !tryResumeSpare(dec)) {
1601 int counts = workerCounts;
1602 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1603 if (!needSpare(counts, maintainParallelism))
1604 break;
1605 if (blocker.isReleasable())
1606 return true;
1607 if (tryAddSpare(counts))
1608 break;
1609 }
1610 }
1611 return false;
1612 }
1613
1614 /**
1615 * Returns {@code true} if a spare thread appears to be needed.
1616 * If maintaining parallelism, returns true when the deficit in
1617 * running threads is more than the surplus of total threads, and
1618 * there is apparently some work to do. This self-limiting rule
1619 * means that the more threads that have already been added, the
1620 * less parallelism we will tolerate before adding another.
1621 *
1622 * @param counts current worker counts
1623 * @param maintainParallelism try to maintain parallelism
1624 */
1625 private boolean needSpare(int counts, boolean maintainParallelism) {
1626 int ps = parallelism;
1627 int rc = runningCountOf(counts);
1628 int tc = totalCountOf(counts);
1629 int runningDeficit = ps - rc;
1630 int totalSurplus = tc - ps;
1631 return (tc < maxPoolSize &&
1632 (rc == 0 || totalSurplus < 0 ||
1633 (maintainParallelism &&
1634 runningDeficit > totalSurplus &&
1635 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1636 }
1637
1638 /**
1639 * Adds a spare worker if lock available and no more than the
1640 * expected numbers of threads exist.
1641 *
1642 * @return true if successful
1643 */
1644 private boolean tryAddSpare(int expectedCounts) {
1645 final ReentrantLock lock = this.workerLock;
1646 int expectedRunning = runningCountOf(expectedCounts);
1647 int expectedTotal = totalCountOf(expectedCounts);
1648 boolean success = false;
1649 boolean locked = false;
1650 // confirm counts while locking; CAS after obtaining lock
1651 try {
1652 for (;;) {
1653 int s = workerCounts;
1654 int tc = totalCountOf(s);
1655 int rc = runningCountOf(s);
1656 if (rc > expectedRunning || tc > expectedTotal)
1657 break;
1658 if (!locked && !(locked = lock.tryLock()))
1659 break;
1660 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1661 createAndStartSpare(tc);
1662 success = true;
1663 break;
1664 }
1665 }
1666 } finally {
1667 if (locked)
1668 lock.unlock();
1669 }
1670 return success;
1671 }
1672
1673 /**
1674 * Adds the kth spare worker. On entry, pool counts are already
1675 * adjusted to reflect addition.
1676 */
1677 private void createAndStartSpare(int k) {
1678 ForkJoinWorkerThread w = null;
1679 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1680 int len = ws.length;
1681 // Probably, we can place at slot k. If not, find empty slot
1682 if (k < len && ws[k] != null) {
1683 for (k = 0; k < len && ws[k] != null; ++k)
1684 ;
1685 }
1686 if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1687 ws[k] = w;
1688 w.start();
1689 }
1690 else
1691 updateWorkerCount(-1); // adjust on failure
1692 signalIdleWorkers();
1693 }
1694
1695 /**
1696 * Suspends calling thread w if there are excess threads. Called
1697 * only from sync. Spares are enqueued in a Treiber stack using
1698 * the same WaitQueueNodes as barriers. They are resumed mainly
1699 * in preJoin, but are also woken on pool events that require all
1700 * threads to check run state.
1701 *
1702 * @param w the caller
1703 */
1704 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1705 WaitQueueNode node = null;
1706 int s;
1707 while (parallelism < runningCountOf(s = workerCounts)) {
1708 if (node == null)
1709 node = new WaitQueueNode(0, w);
1710 if (casWorkerCounts(s, s-1)) { // representation-dependent
1711 // push onto stack
1712 do {} while (!casSpareStack(node.next = spareStack, node));
1713 // block until released by resumeSpare
1714 node.awaitSpareRelease();
1715 return true;
1716 }
1717 }
1718 return false;
1719 }
1720
1721 /**
1722 * Tries to pop and resume a spare thread.
1723 *
1724 * @param updateCount if true, increment running count on success
1725 * @return true if successful
1726 */
1727 private boolean tryResumeSpare(boolean updateCount) {
1728 WaitQueueNode q;
1729 while ((q = spareStack) != null) {
1730 if (casSpareStack(q, q.next)) {
1731 if (updateCount)
1732 updateRunningCount(1);
1733 q.signal();
1734 return true;
1735 }
1736 }
1737 return false;
1738 }
1739
1740 /**
1741 * Pops and resumes all spare threads. Same idea as ensureSync.
1742 *
1743 * @return true if any spares released
1744 */
1745 private boolean resumeAllSpares() {
1746 WaitQueueNode q;
1747 while ( (q = spareStack) != null) {
1748 if (casSpareStack(q, null)) {
1749 do {
1750 updateRunningCount(1);
1751 q.signal();
1752 } while ((q = q.next) != null);
1753 return true;
1754 }
1755 }
1756 return false;
1757 }
1758
1759 /**
1760 * Pops and shuts down excessive spare threads. Call only while
1761 * holding lock. This is not guaranteed to eliminate all excess
1762 * threads, only those suspended as spares, which are the ones
1763 * unlikely to be needed in the future.
1764 */
1765 private void trimSpares() {
1766 int surplus = totalCountOf(workerCounts) - parallelism;
1767 WaitQueueNode q;
1768 while (surplus > 0 && (q = spareStack) != null) {
1769 if (casSpareStack(q, null)) {
1770 do {
1771 updateRunningCount(1);
1772 ForkJoinWorkerThread w = q.thread;
1773 if (w != null && surplus > 0 &&
1774 runningCountOf(workerCounts) > 0 && w.shutdown())
1775 --surplus;
1776 q.signal();
1777 } while ((q = q.next) != null);
1778 }
1779 }
1780 }
1781
1782 /**
1783 * Interface for extending managed parallelism for tasks running
1784 * in {@link ForkJoinPool}s.
1785 *
1786 * <p>A {@code ManagedBlocker} provides two methods.
1787 * Method {@code isReleasable} must return {@code true} if
1788 * blocking is not necessary. Method {@code block} blocks the
1789 * current thread if necessary (perhaps internally invoking
1790 * {@code isReleasable} before actually blocking).
1791 *
1792 * <p>For example, here is a ManagedBlocker based on a
1793 * ReentrantLock:
1794 * <pre> {@code
1795 * class ManagedLocker implements ManagedBlocker {
1796 * final ReentrantLock lock;
1797 * boolean hasLock = false;
1798 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1799 * public boolean block() {
1800 * if (!hasLock)
1801 * lock.lock();
1802 * return true;
1803 * }
1804 * public boolean isReleasable() {
1805 * return hasLock || (hasLock = lock.tryLock());
1806 * }
1807 * }}</pre>
1808 */
1809 public static interface ManagedBlocker {
1810 /**
1811 * Possibly blocks the current thread, for example waiting for
1812 * a lock or condition.
1813 *
1814 * @return {@code true} if no additional blocking is necessary
1815 * (i.e., if isReleasable would return true)
1816 * @throws InterruptedException if interrupted while waiting
1817 * (the method is not required to do so, but is allowed to)
1818 */
1819 boolean block() throws InterruptedException;
1820
1821 /**
1822 * Returns {@code true} if blocking is unnecessary.
1823 */
1824 boolean isReleasable();
1825 }
1826
1827 /**
1828 * Blocks in accord with the given blocker. If the current thread
1829 * is a {@link ForkJoinWorkerThread}, this method possibly
1830 * arranges for a spare thread to be activated if necessary to
1831 * ensure parallelism while the current thread is blocked.
1832 *
1833 * <p>If {@code maintainParallelism} is {@code true} and the pool
1834 * supports it ({@link #getMaintainsParallelism}), this method
1835 * attempts to maintain the pool's nominal parallelism. Otherwise
1836 * it activates a thread only if necessary to avoid complete
1837 * starvation. This option may be preferable when blockages use
1838 * timeouts, or are almost always brief.
1839 *
1840 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1841 * behaviorally equivalent to
1842 * <pre> {@code
1843 * while (!blocker.isReleasable())
1844 * if (blocker.block())
1845 * return;
1846 * }</pre>
1847 *
1848 * If the caller is a {@code ForkJoinTask}, then the pool may
1849 * first be expanded to ensure parallelism, and later adjusted.
1850 *
1851 * @param blocker the blocker
1852 * @param maintainParallelism if {@code true} and supported by
1853 * this pool, attempt to maintain the pool's nominal parallelism;
1854 * otherwise activate a thread only if necessary to avoid
1855 * complete starvation.
1856 * @throws InterruptedException if blocker.block did so
1857 */
1858 public static void managedBlock(ManagedBlocker blocker,
1859 boolean maintainParallelism)
1860 throws InterruptedException {
1861 Thread t = Thread.currentThread();
1862 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1863 ((ForkJoinWorkerThread) t).pool : null);
1864 if (!blocker.isReleasable()) {
1865 try {
1866 if (pool == null ||
1867 !pool.preBlock(blocker, maintainParallelism))
1868 awaitBlocker(blocker);
1869 } finally {
1870 if (pool != null)
1871 pool.updateRunningCount(1);
1872 }
1873 }
1874 }
1875
1876 private static void awaitBlocker(ManagedBlocker blocker)
1877 throws InterruptedException {
1878 do {} while (!blocker.isReleasable() && !blocker.block());
1879 }
1880
1881 // AbstractExecutorService overrides. These rely on undocumented
1882 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1883 // implement RunnableFuture.
1884
1885 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1886 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1887 }
1888
1889 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1890 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1891 }
1892
1893 // Unsafe mechanics
1894
1895 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1896 private static final long eventCountOffset =
1897 objectFieldOffset("eventCount", ForkJoinPool.class);
1898 private static final long workerCountsOffset =
1899 objectFieldOffset("workerCounts", ForkJoinPool.class);
1900 private static final long runControlOffset =
1901 objectFieldOffset("runControl", ForkJoinPool.class);
1902 private static final long syncStackOffset =
1903 objectFieldOffset("syncStack",ForkJoinPool.class);
1904 private static final long spareStackOffset =
1905 objectFieldOffset("spareStack", ForkJoinPool.class);
1906
1907 private boolean casEventCount(long cmp, long val) {
1908 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1909 }
1910 private boolean casWorkerCounts(int cmp, int val) {
1911 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1912 }
1913 private boolean casRunControl(int cmp, int val) {
1914 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1915 }
1916 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1917 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1918 }
1919 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1920 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1921 }
1922
1923 private static long objectFieldOffset(String field, Class<?> klazz) {
1924 try {
1925 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1926 } catch (NoSuchFieldException e) {
1927 // Convert Exception to corresponding Error
1928 NoSuchFieldError error = new NoSuchFieldError(field);
1929 error.initCause(e);
1930 throw error;
1931 }
1932 }
1933
1934 /**
1935 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1936 * Replace with a simple call to Unsafe.getUnsafe when integrating
1937 * into a jdk.
1938 *
1939 * @return a sun.misc.Unsafe
1940 */
1941 private static sun.misc.Unsafe getUnsafe() {
1942 try {
1943 return sun.misc.Unsafe.getUnsafe();
1944 } catch (SecurityException se) {
1945 try {
1946 return java.security.AccessController.doPrivileged
1947 (new java.security
1948 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1949 public sun.misc.Unsafe run() throws Exception {
1950 java.lang.reflect.Field f = sun.misc
1951 .Unsafe.class.getDeclaredField("theUnsafe");
1952 f.setAccessible(true);
1953 return (sun.misc.Unsafe) f.get(null);
1954 }});
1955 } catch (java.security.PrivilegedActionException e) {
1956 throw new RuntimeException("Could not initialize intrinsics",
1957 e.getCause());
1958 }
1959 }
1960 }
1961 }