ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.34
Committed: Fri Jun 4 14:37:54 2010 UTC (13 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.33: +16 -10 lines
Log Message:
Avoid a case of avoidable signalWork

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.18
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.18
11 dl 1.31 import java.util.Random;
12 jsr166 1.18 import java.util.Collection;
13 dl 1.31 import java.util.concurrent.locks.LockSupport;
14 dl 1.1
15     /**
16 dl 1.2 * A thread managed by a {@link ForkJoinPool}. This class is
17     * subclassable solely for the sake of adding functionality -- there
18 jsr166 1.25 * are no overridable methods dealing with scheduling or execution.
19     * However, you can override initialization and termination methods
20     * surrounding the main task processing loop. If you do create such a
21     * subclass, you will also need to supply a custom {@link
22 dl 1.26 * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23     * ForkJoinPool}.
24 jsr166 1.6 *
25 jsr166 1.13 * @since 1.7
26     * @author Doug Lea
27 dl 1.1 */
28     public class ForkJoinWorkerThread extends Thread {
29     /*
30 dl 1.31 * Overview:
31 dl 1.1 *
32 dl 1.31 * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33     * ForkJoinTasks. This class includes bookkeeping in support of
34     * worker activation, suspension, and lifecycle control described
35     * in more detail in the internal documentation of class
36     * ForkJoinPool. And as described further below, this class also
37     * includes special-cased support for some ForkJoinTask
38     * methods. But the main mechanics involve work-stealing:
39     *
40     * Work-stealing queues are special forms of Deques that support
41     * only three of the four possible end-operations -- push, pop,
42     * and deq (aka steal), under the further constraints that push
43     * and pop are called only from the owning thread, while deq may
44     * be called from other threads. (If you are unfamiliar with
45     * them, you probably want to read Herlihy and Shavit's book "The
46     * Art of Multiprocessor programming", chapter 16 describing these
47     * in more detail before proceeding.) The main work-stealing
48     * queue design is roughly similar to those in the papers "Dynamic
49     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50     * (http://research.sun.com/scalable/pubs/index.html) and
51     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53     * The main differences ultimately stem from gc requirements that
54     * we null out taken slots as soon as we can, to maintain as small
55     * a footprint as possible even in programs generating huge
56     * numbers of tasks. To accomplish this, we shift the CAS
57     * arbitrating pop vs deq (steal) from being on the indices
58     * ("base" and "sp") to the slots themselves (mainly via method
59     * "casSlotNull()"). So, both a successful pop and deq mainly
60     * entail a CAS of a slot from non-null to null. Because we rely
61     * on CASes of references, we do not need tag bits on base or sp.
62     * They are simple ints as used in any circular array-based queue
63     * (see for example ArrayDeque). Updates to the indices must
64     * still be ordered in a way that guarantees that sp == base means
65     * the queue is empty, but otherwise may err on the side of
66     * possibly making the queue appear nonempty when a push, pop, or
67     * deq have not fully committed. Note that this means that the deq
68     * operation, considered individually, is not wait-free. One thief
69     * cannot successfully continue until another in-progress one (or,
70     * if previously empty, a push) completes. However, in the
71     * aggregate, we ensure at least probabilistic non-blockingness.
72     * If an attempted steal fails, a thief always chooses a different
73     * random victim target to try next. So, in order for one thief to
74     * progress, it suffices for any in-progress deq or new push on
75     * any empty queue to complete. One reason this works well here is
76     * that apparently-nonempty often means soon-to-be-stealable,
77     * which gives threads a chance to set activation status if
78     * necessary before stealing.
79 dl 1.1 *
80 dl 1.23 * This approach also enables support for "async mode" where local
81     * task processing is in FIFO, not LIFO order; simply by using a
82     * version of deq rather than pop when locallyFifo is true (as set
83     * by the ForkJoinPool). This allows use in message-passing
84     * frameworks in which tasks are never joined.
85     *
86 dl 1.1 * Efficient implementation of this approach currently relies on
87     * an uncomfortable amount of "Unsafe" mechanics. To maintain
88     * correct orderings, reads and writes of variable base require
89 dl 1.31 * volatile ordering. Variable sp does not require volatile
90     * writes but still needs store-ordering, which we accomplish by
91     * pre-incrementing sp before filling the slot with an ordered
92     * store. (Pre-incrementing also enables backouts used in
93     * scanWhileJoining.) Because they are protected by volatile base
94     * reads, reads of the queue array and its slots by other threads
95     * do not need volatile load semantics, but writes (in push)
96     * require store order and CASes (in pop and deq) require
97     * (volatile) CAS semantics. (Michael, Saraswat, and Vechev's
98     * algorithm has similar properties, but without support for
99     * nulling slots.) Since these combinations aren't supported
100     * using ordinary volatiles, the only way to accomplish these
101 dl 1.28 * efficiently is to use direct Unsafe calls. (Using external
102 dl 1.1 * AtomicIntegers and AtomicReferenceArrays for the indices and
103     * array is significantly slower because of memory locality and
104 dl 1.28 * indirection effects.)
105 jsr166 1.29 *
106 dl 1.28 * Further, performance on most platforms is very sensitive to
107     * placement and sizing of the (resizable) queue array. Even
108     * though these queues don't usually become all that big, the
109     * initial size must be large enough to counteract cache
110 dl 1.1 * contention effects across multiple queues (especially in the
111     * presence of GC cardmarking). Also, to improve thread-locality,
112 dl 1.31 * queues are initialized after starting. All together, these
113     * low-level implementation choices produce as much as a factor of
114     * 4 performance improvement compared to naive implementations,
115     * and enable the processing of billions of tasks per second,
116     * sometimes at the expense of ugliness.
117 dl 1.1 */
118    
119     /**
120 dl 1.31 * Generator for initial random seeds for random victim
121     * selection. This is used only to create initial seeds. Random
122     * steals use a cheaper xorshift generator per steal attempt. We
123     * expect only rare contention on seedGenerator, so just use a
124     * plain Random.
125     */
126     private static final Random seedGenerator = new Random();
127    
128     /**
129     * The timeout value for suspending spares. Spare workers that
130     * remain unsignalled for more than this time may be trimmed
131     * (killed and removed from pool). Since our goal is to avoid
132     * long-term thread buildup, the exact value of timeout does not
133     * matter too much so long as it avoids most false-alarm timeouts
134     * under GC stalls or momentarily high system load.
135     */
136     private static final long SPARE_KEEPALIVE_NANOS =
137     5L * 1000L * 1000L * 1000L; // 5 secs
138    
139     /**
140 dl 1.1 * Capacity of work-stealing queue array upon initialization.
141 dl 1.34 * Must be a power of two. Initial size must be at least 4, but is
142 dl 1.1 * padded to minimize cache effects.
143     */
144     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
145    
146     /**
147     * Maximum work-stealing queue array size. Must be less than or
148 dl 1.5 * equal to 1 << 28 to ensure lack of index wraparound. (This
149     * is less than usual bounds, because we need leftshift by 3
150     * to be in int range).
151 dl 1.1 */
152 dl 1.5 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
153 dl 1.1
154     /**
155 jsr166 1.16 * The pool this thread works in. Accessed directly by ForkJoinTask.
156 dl 1.1 */
157 dl 1.5 final ForkJoinPool pool;
158 dl 1.1
159     /**
160     * The work-stealing queue array. Size must be a power of two.
161 dl 1.31 * Initialized in onStart, to improve memory locality.
162 dl 1.1 */
163     private ForkJoinTask<?>[] queue;
164    
165     /**
166 dl 1.31 * Index (mod queue.length) of least valid queue slot, which is
167     * always the next position to steal from if nonempty.
168     */
169     private volatile int base;
170    
171     /**
172 dl 1.1 * Index (mod queue.length) of next queue slot to push to or pop
173 dl 1.31 * from. It is written only by owner thread, and accessed by other
174     * threads only after reading (volatile) base. Both sp and base
175     * are allowed to wrap around on overflow, but (sp - base) still
176     * estimates size.
177     */
178     private int sp;
179 dl 1.1
180     /**
181 dl 1.31 * Run state of this worker. In addition to the usual run levels,
182     * tracks if this worker is suspended as a spare, and if it was
183     * killed (trimmed) while suspended. However, "active" status is
184     * maintained separately.
185 dl 1.1 */
186 dl 1.31 private volatile int runState;
187    
188     private static final int TERMINATING = 0x01;
189     private static final int TERMINATED = 0x02;
190     private static final int SUSPENDED = 0x04; // inactive spare
191     private static final int TRIMMED = 0x08; // killed while suspended
192 dl 1.1
193     /**
194 dl 1.31 * Number of LockSupport.park calls to block this thread for
195     * suspension or event waits. Used for internal instrumention;
196     * currently not exported but included because volatile write upon
197     * park also provides a workaround for a JVM bug.
198 dl 1.1 */
199 dl 1.31 private volatile int parkCount;
200 dl 1.1
201     /**
202 dl 1.31 * Number of steals, transferred and reset in pool callbacks pool
203     * when idle Accessed directly by pool.
204 dl 1.1 */
205 dl 1.31 int stealCount;
206 dl 1.1
207     /**
208 dl 1.5 * Seed for random number generator for choosing steal victims.
209 dl 1.31 * Uses Marsaglia xorshift. Must be initialized as nonzero.
210 dl 1.1 */
211 dl 1.5 private int seed;
212 dl 1.1
213     /**
214 dl 1.31 * Activity status. When true, this worker is considered active.
215     * Accessed directly by pool. Must be false upon construction.
216     */
217     boolean active;
218    
219     /**
220     * True if use local fifo, not default lifo, for local polling.
221     * Shadows value from ForkJoinPool, which resets it if changed
222     * pool-wide.
223 dl 1.1 */
224 dl 1.31 private boolean locallyFifo;
225 dl 1.1
226     /**
227 dl 1.5 * Index of this worker in pool array. Set once by pool before
228 dl 1.31 * running, and accessed directly by pool to locate this worker in
229     * its workers array.
230 dl 1.1 */
231 dl 1.5 int poolIndex;
232 dl 1.1
233     /**
234 dl 1.31 * The last pool event waited for. Accessed only by pool in
235     * callback methods invoked within this thread.
236 dl 1.1 */
237 dl 1.31 int lastEventCount;
238 dl 1.1
239     /**
240 dl 1.31 * Encoded index and event count of next event waiter. Used only
241     * by ForkJoinPool for managing event waiters.
242 dl 1.7 */
243 dl 1.31 volatile long nextWaiter;
244 dl 1.7
245     /**
246 dl 1.1 * Creates a ForkJoinWorkerThread operating in the given pool.
247 jsr166 1.11 *
248 dl 1.1 * @param pool the pool this thread works in
249     * @throws NullPointerException if pool is null
250     */
251     protected ForkJoinWorkerThread(ForkJoinPool pool) {
252     if (pool == null) throw new NullPointerException();
253     this.pool = pool;
254 dl 1.31 // To avoid exposing construction details to subclasses,
255     // remaining initialization is in start() and onStart()
256 dl 1.1 }
257    
258 dl 1.31 /**
259     * Performs additional initialization and starts this thread
260     */
261     final void start(int poolIndex, boolean locallyFifo,
262     UncaughtExceptionHandler ueh) {
263     this.poolIndex = poolIndex;
264     this.locallyFifo = locallyFifo;
265     if (ueh != null)
266     setUncaughtExceptionHandler(ueh);
267     setDaemon(true);
268     start();
269     }
270    
271     // Public/protected methods
272 dl 1.2
273     /**
274 jsr166 1.11 * Returns the pool hosting this thread.
275     *
276 dl 1.2 * @return the pool
277     */
278 dl 1.4 public ForkJoinPool getPool() {
279     return pool;
280 dl 1.2 }
281    
282     /**
283 dl 1.4 * Returns the index number of this thread in its pool. The
284     * returned value ranges from zero to the maximum number of
285     * threads (minus one) that have ever been created in the pool.
286     * This method may be useful for applications that track status or
287 dl 1.5 * collect results per-worker rather than per-task.
288 jsr166 1.11 *
289     * @return the index number
290 dl 1.2 */
291 dl 1.4 public int getPoolIndex() {
292     return poolIndex;
293 dl 1.2 }
294    
295 dl 1.7 /**
296 dl 1.31 * Initializes internal state after construction but before
297     * processing any tasks. If you override this method, you must
298     * invoke super.onStart() at the beginning of the method.
299     * Initialization requires care: Most fields must have legal
300     * default values, to ensure that attempted accesses from other
301     * threads work correctly even before this thread starts
302     * processing tasks.
303 dl 1.7 */
304 dl 1.31 protected void onStart() {
305     int rs = seedGenerator.nextInt();
306     seed = rs == 0? 1 : rs; // seed must be nonzero
307 dl 1.5
308 dl 1.31 // Allocate name string and queue array in this thread
309     String pid = Integer.toString(pool.getPoolNumber());
310     String wid = Integer.toString(poolIndex);
311     setName("ForkJoinPool-" + pid + "-worker-" + wid);
312 dl 1.5
313 dl 1.31 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
314     }
315 dl 1.5
316     /**
317 dl 1.31 * Performs cleanup associated with termination of this worker
318     * thread. If you override this method, you must invoke
319     * {@code super.onTermination} at the end of the overridden method.
320 jsr166 1.21 *
321 dl 1.31 * @param exception the exception causing this thread to abort due
322     * to an unrecoverable error, or {@code null} if completed normally
323 dl 1.5 */
324 dl 1.31 protected void onTermination(Throwable exception) {
325     try {
326     cancelTasks();
327     setTerminated();
328     pool.workerTerminated(this);
329     } catch (Throwable ex) { // Shouldn't ever happen
330     if (exception == null) // but if so, at least rethrown
331     exception = ex;
332     } finally {
333     if (exception != null)
334     UNSAFE.throwException(exception);
335 dl 1.5 }
336     }
337    
338     /**
339     * This method is required to be public, but should never be
340     * called explicitly. It performs the main run loop to execute
341     * ForkJoinTasks.
342 dl 1.1 */
343 dl 1.5 public void run() {
344     Throwable exception = null;
345     try {
346     onStart();
347     mainLoop();
348     } catch (Throwable ex) {
349     exception = ex;
350     } finally {
351     onTermination(exception);
352     }
353 dl 1.1 }
354    
355 dl 1.31 // helpers for run()
356    
357 dl 1.1 /**
358 dl 1.31 * Find and execute tasks and check status while running
359 dl 1.1 */
360 dl 1.5 private void mainLoop() {
361 dl 1.34 boolean ran = false; // true if ran task in last loop iter
362     boolean prevRan = false; // true if ran on last or previous step
363 dl 1.31 ForkJoinPool p = pool;
364     for (;;) {
365 dl 1.34 p.preStep(this, prevRan);
366 dl 1.31 if (runState != 0)
367     return;
368     ForkJoinTask<?> t; // try to get and run stolen or submitted task
369 dl 1.34 if ((t = scan()) != null || (t = pollSubmission()) != null) {
370 dl 1.31 t.tryExec();
371     if (base != sp)
372     runLocalTasks();
373 dl 1.34 prevRan = ran = true;
374     }
375     else {
376     prevRan = ran;
377     ran = false;
378 dl 1.31 }
379 dl 1.5 }
380 dl 1.1 }
381    
382 dl 1.5 /**
383 dl 1.31 * Runs local tasks until queue is empty or shut down. Call only
384     * while active.
385 dl 1.5 */
386 dl 1.31 private void runLocalTasks() {
387     while (runState == 0) {
388     ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
389     if (t != null)
390     t.tryExec();
391     else if (base == sp)
392     break;
393     }
394 dl 1.5 }
395 dl 1.1
396     /**
397 dl 1.31 * If a submission exists, try to activate and take it
398 dl 1.5 *
399 dl 1.31 * @return a task, if available
400 dl 1.1 */
401 dl 1.31 private ForkJoinTask<?> pollSubmission() {
402     ForkJoinPool p = pool;
403     while (p.hasQueuedSubmissions()) {
404     if (active || (active = p.tryIncrementActiveCount())) {
405     ForkJoinTask<?> t = p.pollSubmission();
406     return t != null ? t : scan(); // if missed, rescan
407 dl 1.5 }
408     }
409 dl 1.31 return null;
410 dl 1.1 }
411    
412 dl 1.31 /*
413     * Intrinsics-based atomic writes for queue slots. These are
414     * basically the same as methods in AtomicObjectArray, but
415     * specialized for (1) ForkJoinTask elements (2) requirement that
416     * nullness and bounds checks have already been performed by
417     * callers and (3) effective offsets are known not to overflow
418     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
419     * need corresponding version for reads: plain array reads are OK
420     * because they protected by other volatile reads and are
421     * confirmed by CASes.
422     *
423     * Most uses don't actually call these methods, but instead contain
424     * inlined forms that enable more predictable optimization. We
425     * don't define the version of write used in pushTask at all, but
426     * instead inline there a store-fenced array slot write.
427 dl 1.1 */
428    
429     /**
430 dl 1.31 * CASes slot i of array q from t to null. Caller must ensure q is
431     * non-null and index is in range.
432 dl 1.1 */
433 dl 1.31 private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
434     ForkJoinTask<?> t) {
435     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
436 dl 1.1 }
437    
438 dl 1.5 /**
439 dl 1.31 * Performs a volatile write of the given task at given slot of
440     * array q. Caller must ensure q is non-null and index is in
441     * range. This method is used only during resets and backouts.
442 dl 1.5 */
443 dl 1.31 private static final void writeSlot(ForkJoinTask<?>[] q, int i,
444     ForkJoinTask<?> t) {
445     UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
446 dl 1.5 }
447    
448 dl 1.31 // queue methods
449 dl 1.1
450     /**
451 dl 1.31 * Pushes a task. Call only from this thread.
452 jsr166 1.11 *
453 jsr166 1.10 * @param t the task. Caller must ensure non-null.
454 dl 1.1 */
455     final void pushTask(ForkJoinTask<?> t) {
456     ForkJoinTask<?>[] q = queue;
457 dl 1.31 int mask = q.length - 1; // implicit assert q != null
458 dl 1.34 int s = sp++; // ok to increment sp before slot write
459     UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
460     if ((s -= base) == 0)
461     pool.signalWork(); // was empty
462     else if (s == mask)
463     growQueue(); // is full
464 dl 1.1 }
465    
466     /**
467     * Tries to take a task from the base of the queue, failing if
468 dl 1.31 * empty or contended. Note: Specializations of this code appear
469     * in scan and scanWhileJoining.
470 jsr166 1.11 *
471     * @return a task, or null if none or contended
472 dl 1.1 */
473 dl 1.7 final ForkJoinTask<?> deqTask() {
474 dl 1.5 ForkJoinTask<?> t;
475 dl 1.1 ForkJoinTask<?>[] q;
476 dl 1.31 int b, i;
477     if ((b = base) != sp &&
478 dl 1.1 (q = queue) != null && // must read q after b
479     (t = q[i = (q.length - 1) & b]) != null &&
480 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
481 dl 1.1 base = b + 1;
482     return t;
483     }
484     return null;
485     }
486    
487     /**
488 dl 1.31 * Tries to take a task from the base of own queue. Assumes active
489     * status. Called only by current thread.
490 dl 1.23 *
491     * @return a task, or null if none
492     */
493     final ForkJoinTask<?> locallyDeqTask() {
494 dl 1.31 ForkJoinTask<?>[] q = queue;
495     if (q != null) {
496     ForkJoinTask<?> t;
497     int b, i;
498     while (sp != (b = base)) {
499     if ((t = q[i = (q.length - 1) & b]) != null &&
500     UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
501     t, null)) {
502 dl 1.23 base = b + 1;
503     return t;
504     }
505     }
506     }
507     return null;
508     }
509    
510     /**
511 dl 1.31 * Returns a popped task, or null if empty. Assumes active status.
512     * Called only by current thread. (Note: a specialization of this
513 dl 1.33 * code appears in popWhileJoining.)
514 dl 1.1 */
515     final ForkJoinTask<?> popTask() {
516 dl 1.31 int s;
517 dl 1.33 ForkJoinTask<?>[] q;
518     if (base != (s = sp) && (q = queue) != null) {
519 dl 1.31 int i = (q.length - 1) & --s;
520     ForkJoinTask<?> t = q[i];
521     if (t != null && UNSAFE.compareAndSwapObject
522     (q, (i << qShift) + qBase, t, null)) {
523     sp = s;
524 dl 1.5 return t;
525     }
526 dl 1.1 }
527     return null;
528     }
529    
530     /**
531 dl 1.33 * Specialized version of popTask to pop only if topmost element
532     * is the given task. Called only by current thread while
533     * active.
534 jsr166 1.11 *
535     * @param t the task. Caller must ensure non-null.
536 dl 1.1 */
537     final boolean unpushTask(ForkJoinTask<?> t) {
538 dl 1.31 int s;
539 dl 1.33 ForkJoinTask<?>[] q;
540     if (base != (s = sp) && (q = queue) != null &&
541     UNSAFE.compareAndSwapObject
542     (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
543 dl 1.31 sp = s;
544 dl 1.1 return true;
545     }
546     return false;
547     }
548    
549     /**
550 dl 1.23 * Returns next task or null if empty or contended
551 dl 1.1 */
552 dl 1.2 final ForkJoinTask<?> peekTask() {
553 dl 1.1 ForkJoinTask<?>[] q = queue;
554 dl 1.7 if (q == null)
555     return null;
556     int mask = q.length - 1;
557 jsr166 1.15 int i = locallyFifo ? base : (sp - 1);
558 dl 1.7 return q[i & mask];
559 dl 1.1 }
560    
561     /**
562     * Doubles queue array size. Transfers elements by emulating
563     * steals (deqs) from old array and placing, oldest first, into
564     * new array.
565     */
566     private void growQueue() {
567     ForkJoinTask<?>[] oldQ = queue;
568     int oldSize = oldQ.length;
569     int newSize = oldSize << 1;
570     if (newSize > MAXIMUM_QUEUE_CAPACITY)
571     throw new RejectedExecutionException("Queue capacity exceeded");
572     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
573    
574     int b = base;
575     int bf = b + oldSize;
576     int oldMask = oldSize - 1;
577     int newMask = newSize - 1;
578     do {
579     int oldIndex = b & oldMask;
580     ForkJoinTask<?> t = oldQ[oldIndex];
581     if (t != null && !casSlotNull(oldQ, oldIndex, t))
582     t = null;
583 dl 1.31 writeSlot(newQ, b & newMask, t);
584 dl 1.1 } while (++b != bf);
585 dl 1.5 pool.signalWork();
586 dl 1.1 }
587    
588     /**
589 dl 1.31 * Computes next value for random victim probe in scan(). Scans
590     * don't require a very high quality generator, but also not a
591     * crummy one. Marsaglia xor-shift is cheap and works well enough.
592     * Note: This is manually inlined in scan()
593     */
594     private static final int xorShift(int r) {
595     r ^= r << 13;
596     r ^= r >>> 17;
597     return r ^ (r << 5);
598     }
599    
600     /**
601 dl 1.5 * Tries to steal a task from another worker. Starts at a random
602     * index of workers array, and probes workers until finding one
603     * with non-empty queue or finding that all are empty. It
604     * randomly selects the first n probes. If these are empty, it
605 dl 1.31 * resorts to a circular sweep, which is necessary to accurately
606     * set active status. (The circular sweep uses steps of
607     * approximately half the array size plus 1, to avoid bias
608     * stemming from leftmost packing of the array in ForkJoinPool.)
609 dl 1.1 *
610     * This method must be both fast and quiet -- usually avoiding
611     * memory accesses that could disrupt cache sharing etc other than
612 dl 1.31 * those needed to check for and take tasks (or to activate if not
613     * already active). This accounts for, among other things,
614     * updating random seed in place without storing it until exit.
615 dl 1.1 *
616     * @return a task, or null if none found
617     */
618 dl 1.5 private ForkJoinTask<?> scan() {
619 dl 1.31 ForkJoinPool p = pool;
620 dl 1.33 ForkJoinWorkerThread[] ws; // worker array
621     int n; // upper bound of #workers
622     if ((ws = p.workers) != null && (n = ws.length) > 1) {
623     boolean canSteal = active; // shadow active status
624     int r = seed; // extract seed once
625     int mask = n - 1;
626     int j = -n; // loop counter
627     int k = r; // worker index, random if j < 0
628     for (;;) {
629     ForkJoinWorkerThread v = ws[k & mask];
630     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
631     if (v != null && v.base != v.sp) {
632     int b, i; // inline specialized deqTask
633     ForkJoinTask<?>[] q;
634 dl 1.31 ForkJoinTask<?> t;
635 dl 1.33 if ((canSteal || // ensure active status
636     (canSteal = active = p.tryIncrementActiveCount())) &&
637 dl 1.31 (q = v.queue) != null &&
638 dl 1.33 (t = q[i = (q.length - 1) & (b = v.base)]) != null &&
639 dl 1.31 UNSAFE.compareAndSwapObject
640     (q, (i << qShift) + qBase, t, null)) {
641     v.base = b + 1;
642     seed = r;
643     ++stealCount;
644     return t;
645 dl 1.1 }
646 dl 1.33 j = -n;
647     k = r; // restart on contention
648 dl 1.1 }
649 dl 1.33 else if (++j <= 0)
650     k = r;
651     else if (j <= n)
652     k += (n >>> 1) | 1;
653     else
654     break;
655 dl 1.1 }
656 dl 1.31 }
657     return null;
658 dl 1.1 }
659    
660 dl 1.31 // Run State management
661    
662     // status check methods used mainly by ForkJoinPool
663     final boolean isTerminating() { return (runState & TERMINATING) != 0; }
664     final boolean isTerminated() { return (runState & TERMINATED) != 0; }
665     final boolean isSuspended() { return (runState & SUSPENDED) != 0; }
666     final boolean isTrimmed() { return (runState & TRIMMED) != 0; }
667    
668 dl 1.1 /**
669 dl 1.31 * Sets state to TERMINATING, also resuming if suspended.
670     */
671     final void shutdown() {
672     for (;;) {
673     int s = runState;
674     if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
675     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
676     (s & ~SUSPENDED) |
677     (TRIMMED|TERMINATING))) {
678     LockSupport.unpark(this);
679     break;
680     }
681     }
682     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
683     s | TERMINATING))
684     break;
685     }
686     }
687    
688     /**
689     * Sets state to TERMINATED. Called only by this thread.
690     */
691     private void setTerminated() {
692     int s;
693     do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
694     s = runState,
695     s | (TERMINATING|TERMINATED)));
696     }
697    
698     /**
699     * Instrumented version of park. Also used by ForkJoinPool.awaitEvent
700 dl 1.5 */
701 dl 1.31 final void doPark() {
702     ++parkCount;
703     LockSupport.park(this);
704 dl 1.1 }
705    
706     /**
707 dl 1.31 * If suspended, tries to set status to unsuspended.
708     * Caller must unpark to actually resume
709 jsr166 1.11 *
710 dl 1.31 * @return true if successful
711 dl 1.7 */
712 dl 1.31 final boolean tryUnsuspend() {
713     int s;
714     return (((s = runState) & SUSPENDED) != 0 &&
715     UNSAFE.compareAndSwapInt(this, runStateOffset, s,
716     s & ~SUSPENDED));
717 dl 1.7 }
718    
719     /**
720 dl 1.31 * Sets suspended status and blocks as spare until resumed,
721     * shutdown, or timed out.
722 jsr166 1.11 *
723 dl 1.31 * @return false if trimmed
724 dl 1.1 */
725 dl 1.31 final boolean suspendAsSpare() {
726     for (;;) { // set suspended unless terminating
727     int s = runState;
728     if ((s & TERMINATING) != 0) { // must kill
729     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
730     s | (TRIMMED | TERMINATING)))
731     return false;
732     }
733     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
734     s | SUSPENDED))
735     break;
736     }
737     lastEventCount = 0; // reset upon resume
738 dl 1.5 ForkJoinPool p = pool;
739 dl 1.31 p.releaseWaiters(); // help others progress
740     p.accumulateStealCount(this);
741     interrupted(); // clear/ignore interrupts
742     if (poolIndex < p.getParallelism()) { // untimed wait
743     while ((runState & SUSPENDED) != 0)
744     doPark();
745     return true;
746     }
747     return timedSuspend(); // timed wait if apparently non-core
748     }
749    
750     /**
751     * Blocks as spare until resumed or timed out
752     * @return false if trimmed
753     */
754     private boolean timedSuspend() {
755     long nanos = SPARE_KEEPALIVE_NANOS;
756     long startTime = System.nanoTime();
757     while ((runState & SUSPENDED) != 0) {
758     ++parkCount;
759     if ((nanos -= (System.nanoTime() - startTime)) > 0)
760     LockSupport.parkNanos(this, nanos);
761     else { // try to trim on timeout
762     int s = runState;
763     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
764     (s & ~SUSPENDED) |
765     (TRIMMED|TERMINATING)))
766     return false;
767     }
768 dl 1.1 }
769 dl 1.31 return true;
770     }
771    
772     // Misc support methods for ForkJoinPool
773    
774     /**
775     * Returns an estimate of the number of tasks in the queue. Also
776     * used by ForkJoinTask.
777     */
778     final int getQueueSize() {
779     return -base + sp;
780 dl 1.1 }
781 dl 1.5
782 dl 1.31 /**
783     * Set locallyFifo mode. Called only by ForkJoinPool
784     */
785     final void setAsyncMode(boolean async) {
786     locallyFifo = async;
787     }
788 dl 1.5
789 dl 1.1 /**
790 dl 1.5 * Removes and cancels all tasks in queue. Can be called from any
791     * thread.
792 dl 1.1 */
793 dl 1.5 final void cancelTasks() {
794 dl 1.31 while (base != sp) {
795     ForkJoinTask<?> t = deqTask();
796     if (t != null)
797     t.cancelIgnoringExceptions();
798     }
799 dl 1.1 }
800    
801     /**
802 jsr166 1.11 * Drains tasks to given collection c.
803     *
804 dl 1.7 * @return the number of tasks drained
805     */
806 dl 1.22 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
807 dl 1.7 int n = 0;
808 dl 1.31 while (base != sp) {
809     ForkJoinTask<?> t = deqTask();
810     if (t != null) {
811     c.add(t);
812     ++n;
813     }
814 dl 1.7 }
815     return n;
816     }
817    
818 dl 1.31 // Support methods for ForkJoinTask
819    
820 dl 1.7 /**
821 dl 1.31 * Returns an estimate of the number of tasks, offset by a
822     * function of number of idle workers.
823     *
824     * This method provides a cheap heuristic guide for task
825     * partitioning when programmers, frameworks, tools, or languages
826     * have little or no idea about task granularity. In essence by
827     * offering this method, we ask users only about tradeoffs in
828     * overhead vs expected throughput and its variance, rather than
829     * how finely to partition tasks.
830     *
831     * In a steady state strict (tree-structured) computation, each
832     * thread makes available for stealing enough tasks for other
833     * threads to remain active. Inductively, if all threads play by
834     * the same rules, each thread should make available only a
835     * constant number of tasks.
836     *
837     * The minimum useful constant is just 1. But using a value of 1
838     * would require immediate replenishment upon each steal to
839     * maintain enough tasks, which is infeasible. Further,
840     * partitionings/granularities of offered tasks should minimize
841     * steal rates, which in general means that threads nearer the top
842     * of computation tree should generate more than those nearer the
843     * bottom. In perfect steady state, each thread is at
844     * approximately the same level of computation tree. However,
845     * producing extra tasks amortizes the uncertainty of progress and
846     * diffusion assumptions.
847     *
848     * So, users will want to use values larger, but not much larger
849     * than 1 to both smooth over transient shortages and hedge
850     * against uneven progress; as traded off against the cost of
851     * extra task overhead. We leave the user to pick a threshold
852     * value to compare with the results of this call to guide
853     * decisions, but recommend values such as 3.
854     *
855     * When all threads are active, it is on average OK to estimate
856     * surplus strictly locally. In steady-state, if one thread is
857     * maintaining say 2 surplus tasks, then so are others. So we can
858     * just use estimated queue length (although note that (sp - base)
859     * can be an overestimate because of stealers lagging increments
860     * of base). However, this strategy alone leads to serious
861     * mis-estimates in some non-steady-state conditions (ramp-up,
862     * ramp-down, other stalls). We can detect many of these by
863     * further considering the number of "idle" threads, that are
864     * known to have zero queued tasks, so compensate by a factor of
865     * (#idle/#active) threads.
866 dl 1.1 */
867 dl 1.31 final int getEstimatedSurplusTaskCount() {
868     return sp - base - pool.idlePerActive();
869 dl 1.5 }
870    
871     /**
872 dl 1.31 * Gets and removes a local task.
873 jsr166 1.16 *
874 dl 1.31 * @return a task, if available
875 dl 1.5 */
876 dl 1.31 final ForkJoinTask<?> pollLocalTask() {
877     while (base != sp) {
878     if (active || (active = pool.tryIncrementActiveCount()))
879     return locallyFifo? locallyDeqTask() : popTask();
880 dl 1.1 }
881 dl 1.31 return null;
882 dl 1.1 }
883    
884     /**
885 dl 1.31 * Gets and removes a local or stolen task.
886     *
887     * @return a task, if available
888 dl 1.2 */
889 dl 1.31 final ForkJoinTask<?> pollTask() {
890     ForkJoinTask<?> t;
891     return (t = pollLocalTask()) != null ? t : scan();
892 dl 1.2 }
893    
894     /**
895 dl 1.33 * Executes or processes other tasks awaiting the given task
896     * @return task completion status
897     */
898     final int execWhileJoining(ForkJoinTask<?> joinMe) {
899     int s;
900     while ((s = joinMe.status) >= 0) {
901     ForkJoinTask<?> t = base != sp?
902     popWhileJoining(joinMe) :
903     scanWhileJoining(joinMe);
904     if (t != null)
905     t.tryExec();
906     }
907     return s;
908     }
909    
910     /**
911     * Returns or stolen task, if available, unless joinMe is done
912 dl 1.31 *
913     * This method is intrinsically nonmodular. To maintain the
914     * property that tasks are never stolen if the awaited task is
915     * ready, we must interleave mechanics of scan with status
916     * checks. We rely here on the commit points of deq that allow us
917     * to cancel a steal even after CASing slot to null, but before
918     * adjusting base index: If, after the CAS, we see that joinMe is
919     * ready, we can back out by placing the task back into the slot,
920 dl 1.33 * without adjusting index. The loop is otherwise a variant of the
921     * one in scan().
922 dl 1.31 *
923 dl 1.1 */
924 dl 1.33 private ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
925     int r = seed;
926     ForkJoinPool p = pool;
927     ForkJoinWorkerThread[] ws;
928     int n;
929     outer:while ((ws = p.workers) != null && (n = ws.length) > 1) {
930     int mask = n - 1;
931 dl 1.31 int k = r;
932 dl 1.33 boolean contended = false; // to retry loop if deq contends
933     for (int j = -n; j <= n; ++j) {
934     if (joinMe.status < 0)
935     break outer;
936     int b;
937     ForkJoinTask<?>[] q;
938     ForkJoinWorkerThread v = ws[k & mask];
939 dl 1.31 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
940 dl 1.33 if (v != null && (b=v.base) != v.sp && (q=v.queue) != null) {
941     int i = (q.length - 1) & b;
942     ForkJoinTask<?> t = q[i];
943     if (t != null && UNSAFE.compareAndSwapObject
944     (q, (i << qShift) + qBase, t, null)) {
945     if (joinMe.status >= 0) {
946     v.base = b + 1;
947     seed = r;
948     ++stealCount;
949     return t;
950 dl 1.31 }
951 dl 1.33 UNSAFE.putObjectVolatile(q, (i<<qShift)+qBase, t);
952     break outer; // back out
953 dl 1.31 }
954 dl 1.33 contended = true;
955 dl 1.31 }
956 dl 1.33 k = j < 0 ? r : (k + ((n >>> 1) | 1));
957 dl 1.31 }
958 dl 1.33 if (!contended && p.tryAwaitBusyJoin(joinMe))
959     break;
960 dl 1.32 }
961     return null;
962     }
963    
964     /**
965     * Version of popTask with join checks surrounding extraction.
966 dl 1.33 * Uses the same backout strategy as helpJoinTask. Note that
967 dl 1.32 * we ignore locallyFifo flag for local tasks here since helping
968     * joins only make sense in LIFO mode.
969     *
970     * @return a popped task, if available, unless joinMe is done
971     */
972     private ForkJoinTask<?> popWhileJoining(ForkJoinTask<?> joinMe) {
973     int s;
974     ForkJoinTask<?>[] q;
975     while ((s = sp) != base && (q = queue) != null && joinMe.status >= 0) {
976     int i = (q.length - 1) & --s;
977     ForkJoinTask<?> t = q[i];
978     if (t != null && UNSAFE.compareAndSwapObject
979     (q, (i << qShift) + qBase, t, null)) {
980     if (joinMe.status >= 0) {
981     sp = s;
982     return t;
983     }
984     UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
985     break; // back out
986     }
987 dl 1.5 }
988 dl 1.31 return null;
989 dl 1.1 }
990 jsr166 1.6
991 dl 1.1 /**
992 jsr166 1.16 * Runs tasks until {@code pool.isQuiescent()}.
993 dl 1.1 */
994 dl 1.5 final void helpQuiescePool() {
995     for (;;) {
996 dl 1.31 ForkJoinTask<?> t = pollLocalTask();
997     if (t != null || (t = scan()) != null)
998     t.tryExec();
999     else {
1000     ForkJoinPool p = pool;
1001     if (active) {
1002     active = false; // inactivate
1003     do {} while (!p.tryDecrementActiveCount());
1004     }
1005     if (p.isQuiescent()) {
1006     active = true; // re-activate
1007     do {} while (!p.tryIncrementActiveCount());
1008     return;
1009     }
1010     }
1011 dl 1.5 }
1012 dl 1.1 }
1013    
1014 jsr166 1.20 // Unsafe mechanics
1015    
1016     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1017     private static final long runStateOffset =
1018     objectFieldOffset("runState", ForkJoinWorkerThread.class);
1019 dl 1.31 private static final long qBase =
1020     UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1021 jsr166 1.20 private static final int qShift;
1022    
1023     static {
1024     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1025     if ((s & (s-1)) != 0)
1026     throw new Error("data type scale not a power of two");
1027     qShift = 31 - Integer.numberOfLeadingZeros(s);
1028     }
1029    
1030     private static long objectFieldOffset(String field, Class<?> klazz) {
1031     try {
1032     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1033     } catch (NoSuchFieldException e) {
1034     // Convert Exception to corresponding Error
1035     NoSuchFieldError error = new NoSuchFieldError(field);
1036     error.initCause(e);
1037     throw error;
1038     }
1039     }
1040    
1041     /**
1042     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1043     * Replace with a simple call to Unsafe.getUnsafe when integrating
1044     * into a jdk.
1045     *
1046     * @return a sun.misc.Unsafe
1047     */
1048 jsr166 1.17 private static sun.misc.Unsafe getUnsafe() {
1049 jsr166 1.6 try {
1050 jsr166 1.17 return sun.misc.Unsafe.getUnsafe();
1051 jsr166 1.6 } catch (SecurityException se) {
1052     try {
1053     return java.security.AccessController.doPrivileged
1054 jsr166 1.20 (new java.security
1055     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1056 jsr166 1.17 public sun.misc.Unsafe run() throws Exception {
1057 jsr166 1.20 java.lang.reflect.Field f = sun.misc
1058     .Unsafe.class.getDeclaredField("theUnsafe");
1059     f.setAccessible(true);
1060     return (sun.misc.Unsafe) f.get(null);
1061 jsr166 1.6 }});
1062     } catch (java.security.PrivilegedActionException e) {
1063 jsr166 1.17 throw new RuntimeException("Could not initialize intrinsics",
1064     e.getCause());
1065 jsr166 1.6 }
1066     }
1067     }
1068 dl 1.1 }