ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.40
Committed: Wed Aug 11 18:45:12 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.39: +205 -203 lines
Log Message:
Improved dynamic adaptation

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.18
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.18
11 dl 1.31 import java.util.Random;
12 jsr166 1.18 import java.util.Collection;
13 dl 1.31 import java.util.concurrent.locks.LockSupport;
14 dl 1.1
15     /**
16 dl 1.2 * A thread managed by a {@link ForkJoinPool}. This class is
17     * subclassable solely for the sake of adding functionality -- there
18 jsr166 1.25 * are no overridable methods dealing with scheduling or execution.
19     * However, you can override initialization and termination methods
20     * surrounding the main task processing loop. If you do create such a
21     * subclass, you will also need to supply a custom {@link
22 dl 1.26 * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23     * ForkJoinPool}.
24 jsr166 1.6 *
25 jsr166 1.13 * @since 1.7
26     * @author Doug Lea
27 dl 1.1 */
28     public class ForkJoinWorkerThread extends Thread {
29     /*
30 dl 1.31 * Overview:
31 dl 1.1 *
32 dl 1.31 * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33     * ForkJoinTasks. This class includes bookkeeping in support of
34     * worker activation, suspension, and lifecycle control described
35     * in more detail in the internal documentation of class
36     * ForkJoinPool. And as described further below, this class also
37     * includes special-cased support for some ForkJoinTask
38     * methods. But the main mechanics involve work-stealing:
39     *
40     * Work-stealing queues are special forms of Deques that support
41     * only three of the four possible end-operations -- push, pop,
42     * and deq (aka steal), under the further constraints that push
43     * and pop are called only from the owning thread, while deq may
44     * be called from other threads. (If you are unfamiliar with
45     * them, you probably want to read Herlihy and Shavit's book "The
46     * Art of Multiprocessor programming", chapter 16 describing these
47     * in more detail before proceeding.) The main work-stealing
48     * queue design is roughly similar to those in the papers "Dynamic
49     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50     * (http://research.sun.com/scalable/pubs/index.html) and
51     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53     * The main differences ultimately stem from gc requirements that
54     * we null out taken slots as soon as we can, to maintain as small
55     * a footprint as possible even in programs generating huge
56     * numbers of tasks. To accomplish this, we shift the CAS
57     * arbitrating pop vs deq (steal) from being on the indices
58     * ("base" and "sp") to the slots themselves (mainly via method
59     * "casSlotNull()"). So, both a successful pop and deq mainly
60     * entail a CAS of a slot from non-null to null. Because we rely
61     * on CASes of references, we do not need tag bits on base or sp.
62     * They are simple ints as used in any circular array-based queue
63     * (see for example ArrayDeque). Updates to the indices must
64     * still be ordered in a way that guarantees that sp == base means
65     * the queue is empty, but otherwise may err on the side of
66     * possibly making the queue appear nonempty when a push, pop, or
67     * deq have not fully committed. Note that this means that the deq
68     * operation, considered individually, is not wait-free. One thief
69     * cannot successfully continue until another in-progress one (or,
70     * if previously empty, a push) completes. However, in the
71     * aggregate, we ensure at least probabilistic non-blockingness.
72     * If an attempted steal fails, a thief always chooses a different
73     * random victim target to try next. So, in order for one thief to
74     * progress, it suffices for any in-progress deq or new push on
75     * any empty queue to complete. One reason this works well here is
76     * that apparently-nonempty often means soon-to-be-stealable,
77     * which gives threads a chance to set activation status if
78     * necessary before stealing.
79 dl 1.1 *
80 dl 1.23 * This approach also enables support for "async mode" where local
81     * task processing is in FIFO, not LIFO order; simply by using a
82     * version of deq rather than pop when locallyFifo is true (as set
83     * by the ForkJoinPool). This allows use in message-passing
84     * frameworks in which tasks are never joined.
85     *
86 dl 1.35 * When a worker would otherwise be blocked waiting to join a
87     * task, it first tries a form of linear helping: Each worker
88 dl 1.36 * records (in field currentSteal) the most recent task it stole
89     * from some other worker. Plus, it records (in field currentJoin)
90     * the task it is currently actively joining. Method joinTask uses
91 dl 1.35 * these markers to try to find a worker to help (i.e., steal back
92     * a task from and execute it) that could hasten completion of the
93     * actively joined task. In essence, the joiner executes a task
94     * that would be on its own local deque had the to-be-joined task
95     * not been stolen. This may be seen as a conservative variant of
96     * the approach in Wagner & Calder "Leapfrogging: a portable
97     * technique for implementing efficient futures" SIGPLAN Notices,
98     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99     * in that: (1) We only maintain dependency links across workers
100 dl 1.39 * upon steals, rather than use per-task bookkeeping. This may
101     * require a linear scan of workers array to locate stealers, but
102     * usually doesn't because stealers leave hints (that may become
103     * stale/wrong) of where to locate them. This isolates cost to
104     * when it is needed, rather than adding to per-task overhead.
105     * (2) It is "shallow", ignoring nesting and potentially cyclic
106     * mutual steals. (3) It is intentionally racy: field currentJoin
107     * is updated only while actively joining, which means that we
108     * miss links in the chain during long-lived tasks, GC stalls etc
109     * (which is OK since blocking in such cases is usually a good
110     * idea). (4) We bound the number of attempts to find work (see
111     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112     * necessary replacing it with a spare (see
113     * ForkJoinPool.tryAwaitJoin).
114 dl 1.35 *
115 dl 1.36 * Efficient implementation of these algorithms currently relies
116     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117 dl 1.1 * correct orderings, reads and writes of variable base require
118 dl 1.31 * volatile ordering. Variable sp does not require volatile
119     * writes but still needs store-ordering, which we accomplish by
120     * pre-incrementing sp before filling the slot with an ordered
121     * store. (Pre-incrementing also enables backouts used in
122 dl 1.36 * joinTask.) Because they are protected by volatile base reads,
123     * reads of the queue array and its slots by other threads do not
124     * need volatile load semantics, but writes (in push) require
125     * store order and CASes (in pop and deq) require (volatile) CAS
126     * semantics. (Michael, Saraswat, and Vechev's algorithm has
127     * similar properties, but without support for nulling slots.)
128     * Since these combinations aren't supported using ordinary
129     * volatiles, the only way to accomplish these efficiently is to
130     * use direct Unsafe calls. (Using external AtomicIntegers and
131     * AtomicReferenceArrays for the indices and array is
132     * significantly slower because of memory locality and indirection
133     * effects.)
134 jsr166 1.29 *
135 dl 1.28 * Further, performance on most platforms is very sensitive to
136     * placement and sizing of the (resizable) queue array. Even
137     * though these queues don't usually become all that big, the
138     * initial size must be large enough to counteract cache
139 dl 1.1 * contention effects across multiple queues (especially in the
140     * presence of GC cardmarking). Also, to improve thread-locality,
141 dl 1.31 * queues are initialized after starting. All together, these
142     * low-level implementation choices produce as much as a factor of
143     * 4 performance improvement compared to naive implementations,
144     * and enable the processing of billions of tasks per second,
145     * sometimes at the expense of ugliness.
146 dl 1.1 */
147    
148     /**
149 dl 1.31 * Generator for initial random seeds for random victim
150     * selection. This is used only to create initial seeds. Random
151     * steals use a cheaper xorshift generator per steal attempt. We
152     * expect only rare contention on seedGenerator, so just use a
153     * plain Random.
154     */
155     private static final Random seedGenerator = new Random();
156    
157     /**
158 dl 1.36 * The maximum stolen->joining link depth allowed in helpJoinTask.
159     * Depths for legitimate chains are unbounded, but we use a fixed
160     * constant to avoid (otherwise unchecked) cycles and bound
161     * staleness of traversal parameters at the expense of sometimes
162     * blocking when we could be helping.
163     */
164     private static final int MAX_HELP_DEPTH = 8;
165    
166     /**
167 dl 1.40 * The wakeup interval (in nanoseconds) for the first worker
168     * suspended as spare. On each wakeup not signalled by a
169     * resumption, it may ask the pool to reduce the number of spares.
170     */
171     private static final long TRIM_RATE_NANOS = 200L * 1000L * 1000L;
172    
173     /**
174 dl 1.1 * Capacity of work-stealing queue array upon initialization.
175 dl 1.34 * Must be a power of two. Initial size must be at least 4, but is
176 dl 1.1 * padded to minimize cache effects.
177     */
178     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
179    
180     /**
181     * Maximum work-stealing queue array size. Must be less than or
182 dl 1.5 * equal to 1 << 28 to ensure lack of index wraparound. (This
183     * is less than usual bounds, because we need leftshift by 3
184     * to be in int range).
185 dl 1.1 */
186 dl 1.5 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
187 dl 1.1
188     /**
189 jsr166 1.16 * The pool this thread works in. Accessed directly by ForkJoinTask.
190 dl 1.1 */
191 dl 1.5 final ForkJoinPool pool;
192 dl 1.1
193     /**
194     * The work-stealing queue array. Size must be a power of two.
195 dl 1.31 * Initialized in onStart, to improve memory locality.
196 dl 1.1 */
197     private ForkJoinTask<?>[] queue;
198 dl 1.37
199 dl 1.1 /**
200 dl 1.31 * Index (mod queue.length) of least valid queue slot, which is
201     * always the next position to steal from if nonempty.
202     */
203     private volatile int base;
204    
205     /**
206 dl 1.1 * Index (mod queue.length) of next queue slot to push to or pop
207 dl 1.31 * from. It is written only by owner thread, and accessed by other
208     * threads only after reading (volatile) base. Both sp and base
209     * are allowed to wrap around on overflow, but (sp - base) still
210     * estimates size.
211     */
212     private int sp;
213 dl 1.1
214     /**
215 dl 1.36 * The index of most recent stealer, used as a hint to avoid
216     * traversal in method helpJoinTask. This is only a hint because a
217     * worker might have had multiple steals and this only holds one
218     * of them (usually the most current). Declared non-volatile,
219     * relying on other prevailing sync to keep reasonably current.
220     */
221     private int stealHint;
222    
223     /**
224 dl 1.31 * Run state of this worker. In addition to the usual run levels,
225     * tracks if this worker is suspended as a spare, and if it was
226     * killed (trimmed) while suspended. However, "active" status is
227     * maintained separately.
228 dl 1.1 */
229 dl 1.31 private volatile int runState;
230    
231     private static final int TERMINATING = 0x01;
232     private static final int TERMINATED = 0x02;
233     private static final int SUSPENDED = 0x04; // inactive spare
234     private static final int TRIMMED = 0x08; // killed while suspended
235 dl 1.1
236     /**
237 dl 1.31 * Number of steals, transferred and reset in pool callbacks pool
238     * when idle Accessed directly by pool.
239 dl 1.1 */
240 dl 1.31 int stealCount;
241 dl 1.1
242     /**
243 dl 1.5 * Seed for random number generator for choosing steal victims.
244 dl 1.31 * Uses Marsaglia xorshift. Must be initialized as nonzero.
245 dl 1.1 */
246 dl 1.5 private int seed;
247 dl 1.1
248     /**
249 dl 1.31 * Activity status. When true, this worker is considered active.
250     * Accessed directly by pool. Must be false upon construction.
251     */
252     boolean active;
253    
254     /**
255     * True if use local fifo, not default lifo, for local polling.
256 dl 1.39 * Shadows value from ForkJoinPool.
257 dl 1.1 */
258 dl 1.35 private final boolean locallyFifo;
259 dl 1.37
260 dl 1.1 /**
261 dl 1.5 * Index of this worker in pool array. Set once by pool before
262 dl 1.31 * running, and accessed directly by pool to locate this worker in
263     * its workers array.
264 dl 1.1 */
265 dl 1.5 int poolIndex;
266 dl 1.1
267     /**
268 dl 1.31 * The last pool event waited for. Accessed only by pool in
269     * callback methods invoked within this thread.
270 dl 1.1 */
271 dl 1.31 int lastEventCount;
272 dl 1.1
273     /**
274 dl 1.31 * Encoded index and event count of next event waiter. Used only
275     * by ForkJoinPool for managing event waiters.
276 dl 1.7 */
277 dl 1.31 volatile long nextWaiter;
278 dl 1.7
279     /**
280 dl 1.40 * Number of times this thread suspended as spare
281     */
282     int spareCount;
283    
284     /**
285     * Encoded index and count of next spare waiter. Used only
286     * by ForkJoinPool for managing spares.
287     */
288     volatile int nextSpare;
289    
290     /**
291 dl 1.36 * The task currently being joined, set only when actively trying
292     * to helpStealer. Written only by current thread, but read by
293     * others.
294     */
295     private volatile ForkJoinTask<?> currentJoin;
296 dl 1.37
297 dl 1.36 /**
298     * The task most recently stolen from another worker (or
299     * submission queue). Not volatile because always read/written in
300     * presence of related volatiles in those cases where it matters.
301     */
302     private ForkJoinTask<?> currentSteal;
303    
304     /**
305 dl 1.1 * Creates a ForkJoinWorkerThread operating in the given pool.
306 jsr166 1.11 *
307 dl 1.1 * @param pool the pool this thread works in
308     * @throws NullPointerException if pool is null
309     */
310     protected ForkJoinWorkerThread(ForkJoinPool pool) {
311     this.pool = pool;
312 dl 1.35 this.locallyFifo = pool.locallyFifo;
313 dl 1.40 setDaemon(true);
314 dl 1.31 // To avoid exposing construction details to subclasses,
315     // remaining initialization is in start() and onStart()
316 dl 1.1 }
317    
318 dl 1.31 /**
319     * Performs additional initialization and starts this thread
320     */
321 dl 1.35 final void start(int poolIndex, UncaughtExceptionHandler ueh) {
322 dl 1.31 this.poolIndex = poolIndex;
323     if (ueh != null)
324     setUncaughtExceptionHandler(ueh);
325     start();
326     }
327    
328     // Public/protected methods
329 dl 1.2
330     /**
331 jsr166 1.11 * Returns the pool hosting this thread.
332     *
333 dl 1.2 * @return the pool
334     */
335 dl 1.4 public ForkJoinPool getPool() {
336     return pool;
337 dl 1.2 }
338    
339     /**
340 dl 1.4 * Returns the index number of this thread in its pool. The
341     * returned value ranges from zero to the maximum number of
342     * threads (minus one) that have ever been created in the pool.
343     * This method may be useful for applications that track status or
344 dl 1.5 * collect results per-worker rather than per-task.
345 jsr166 1.11 *
346     * @return the index number
347 dl 1.2 */
348 dl 1.4 public int getPoolIndex() {
349     return poolIndex;
350 dl 1.2 }
351    
352 dl 1.7 /**
353 dl 1.31 * Initializes internal state after construction but before
354     * processing any tasks. If you override this method, you must
355     * invoke super.onStart() at the beginning of the method.
356     * Initialization requires care: Most fields must have legal
357     * default values, to ensure that attempted accesses from other
358     * threads work correctly even before this thread starts
359     * processing tasks.
360 dl 1.7 */
361 dl 1.31 protected void onStart() {
362     int rs = seedGenerator.nextInt();
363     seed = rs == 0? 1 : rs; // seed must be nonzero
364 dl 1.5
365 dl 1.35 // Allocate name string and arrays in this thread
366 dl 1.31 String pid = Integer.toString(pool.getPoolNumber());
367     String wid = Integer.toString(poolIndex);
368     setName("ForkJoinPool-" + pid + "-worker-" + wid);
369 dl 1.5
370 dl 1.31 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
371     }
372 dl 1.5
373     /**
374 dl 1.31 * Performs cleanup associated with termination of this worker
375     * thread. If you override this method, you must invoke
376     * {@code super.onTermination} at the end of the overridden method.
377 jsr166 1.21 *
378 dl 1.31 * @param exception the exception causing this thread to abort due
379     * to an unrecoverable error, or {@code null} if completed normally
380 dl 1.5 */
381 dl 1.31 protected void onTermination(Throwable exception) {
382     try {
383     cancelTasks();
384 dl 1.40 while (active) // force inactive
385     active = !pool.tryDecrementActiveCount();
386 dl 1.31 setTerminated();
387     pool.workerTerminated(this);
388     } catch (Throwable ex) { // Shouldn't ever happen
389     if (exception == null) // but if so, at least rethrown
390     exception = ex;
391     } finally {
392     if (exception != null)
393     UNSAFE.throwException(exception);
394 dl 1.5 }
395     }
396    
397     /**
398     * This method is required to be public, but should never be
399     * called explicitly. It performs the main run loop to execute
400     * ForkJoinTasks.
401 dl 1.1 */
402 dl 1.5 public void run() {
403     Throwable exception = null;
404     try {
405     onStart();
406     mainLoop();
407     } catch (Throwable ex) {
408     exception = ex;
409     } finally {
410     onTermination(exception);
411     }
412 dl 1.1 }
413    
414 dl 1.31 // helpers for run()
415    
416 dl 1.1 /**
417 dl 1.31 * Find and execute tasks and check status while running
418 dl 1.1 */
419 dl 1.5 private void mainLoop() {
420 dl 1.40 int misses = 0; // track consecutive times failed to find work; max 2
421 dl 1.31 ForkJoinPool p = pool;
422     for (;;) {
423 dl 1.40 p.preStep(this, misses);
424 dl 1.31 if (runState != 0)
425 dl 1.40 break;
426     misses = ((tryExecSteal() || tryExecSubmission()) ? 0 :
427     (misses < 2 ? misses + 1 : 2));
428 dl 1.5 }
429 dl 1.1 }
430    
431 dl 1.5 /**
432 dl 1.40 * Try to steal a task and execute it
433     *
434     * @return true if ran a task
435 dl 1.5 */
436 dl 1.40 private boolean tryExecSteal() {
437     ForkJoinTask<?> t;
438     if ((t = scan()) != null) {
439     t.quietlyExec();
440     currentSteal = null;
441     if (sp != base)
442     execLocalTasks();
443     return true;
444 dl 1.31 }
445 dl 1.40 return false;
446 dl 1.5 }
447 dl 1.1
448     /**
449 dl 1.40 * If a submission exists, try to activate and run it;
450 dl 1.5 *
451 dl 1.40 * @return true if ran a task
452 dl 1.1 */
453 dl 1.40 private boolean tryExecSubmission() {
454 dl 1.31 ForkJoinPool p = pool;
455     while (p.hasQueuedSubmissions()) {
456 dl 1.40 ForkJoinTask<?> t;
457 dl 1.31 if (active || (active = p.tryIncrementActiveCount())) {
458 dl 1.40 if ((t = p.pollSubmission()) != null) {
459 dl 1.36 currentSteal = t;
460 dl 1.40 t.quietlyExec();
461     currentSteal = null;
462     if (sp != base)
463     execLocalTasks();
464     return true;
465 dl 1.36 }
466 dl 1.5 }
467     }
468 dl 1.40 return false;
469     }
470    
471     /**
472     * Runs local tasks until queue is empty or shut down. Call only
473     * while active.
474     */
475     private void execLocalTasks() {
476     while (runState == 0) {
477     ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
478     if (t != null)
479     t.quietlyExec();
480     else if (sp == base)
481     break;
482     }
483 dl 1.1 }
484    
485 dl 1.31 /*
486     * Intrinsics-based atomic writes for queue slots. These are
487     * basically the same as methods in AtomicObjectArray, but
488     * specialized for (1) ForkJoinTask elements (2) requirement that
489     * nullness and bounds checks have already been performed by
490     * callers and (3) effective offsets are known not to overflow
491     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
492     * need corresponding version for reads: plain array reads are OK
493     * because they protected by other volatile reads and are
494     * confirmed by CASes.
495     *
496     * Most uses don't actually call these methods, but instead contain
497     * inlined forms that enable more predictable optimization. We
498     * don't define the version of write used in pushTask at all, but
499     * instead inline there a store-fenced array slot write.
500 dl 1.1 */
501    
502     /**
503 dl 1.31 * CASes slot i of array q from t to null. Caller must ensure q is
504     * non-null and index is in range.
505 dl 1.1 */
506 dl 1.31 private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
507     ForkJoinTask<?> t) {
508     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
509 dl 1.1 }
510    
511 dl 1.5 /**
512 dl 1.31 * Performs a volatile write of the given task at given slot of
513     * array q. Caller must ensure q is non-null and index is in
514     * range. This method is used only during resets and backouts.
515 dl 1.5 */
516 dl 1.31 private static final void writeSlot(ForkJoinTask<?>[] q, int i,
517     ForkJoinTask<?> t) {
518     UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
519 dl 1.5 }
520    
521 dl 1.31 // queue methods
522 dl 1.1
523     /**
524 dl 1.31 * Pushes a task. Call only from this thread.
525 jsr166 1.11 *
526 jsr166 1.10 * @param t the task. Caller must ensure non-null.
527 dl 1.1 */
528     final void pushTask(ForkJoinTask<?> t) {
529     ForkJoinTask<?>[] q = queue;
530 dl 1.31 int mask = q.length - 1; // implicit assert q != null
531 dl 1.34 int s = sp++; // ok to increment sp before slot write
532     UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
533     if ((s -= base) == 0)
534     pool.signalWork(); // was empty
535     else if (s == mask)
536     growQueue(); // is full
537 dl 1.1 }
538    
539     /**
540     * Tries to take a task from the base of the queue, failing if
541 dl 1.31 * empty or contended. Note: Specializations of this code appear
542 dl 1.35 * in locallyDeqTask and elsewhere.
543 jsr166 1.11 *
544     * @return a task, or null if none or contended
545 dl 1.1 */
546 dl 1.7 final ForkJoinTask<?> deqTask() {
547 dl 1.5 ForkJoinTask<?> t;
548 dl 1.1 ForkJoinTask<?>[] q;
549 dl 1.31 int b, i;
550 dl 1.40 if (sp != (b = base) &&
551 dl 1.1 (q = queue) != null && // must read q after b
552 dl 1.35 (t = q[i = (q.length - 1) & b]) != null && base == b &&
553 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
554 dl 1.1 base = b + 1;
555     return t;
556     }
557     return null;
558     }
559    
560     /**
561 dl 1.31 * Tries to take a task from the base of own queue. Assumes active
562     * status. Called only by current thread.
563 dl 1.23 *
564     * @return a task, or null if none
565     */
566     final ForkJoinTask<?> locallyDeqTask() {
567 dl 1.31 ForkJoinTask<?>[] q = queue;
568     if (q != null) {
569     ForkJoinTask<?> t;
570     int b, i;
571     while (sp != (b = base)) {
572 dl 1.35 if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
573 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
574     t, null)) {
575 dl 1.23 base = b + 1;
576     return t;
577     }
578     }
579     }
580     return null;
581     }
582    
583     /**
584 dl 1.31 * Returns a popped task, or null if empty. Assumes active status.
585 dl 1.37 * Called only by current thread.
586 dl 1.1 */
587 dl 1.40 private ForkJoinTask<?> popTask() {
588     ForkJoinTask<?>[] q = queue;
589     if (q != null) {
590     int s;
591     while ((s = sp) != base) {
592     int i = (q.length - 1) & --s;
593     long u = (i << qShift) + qBase; // raw offset
594     ForkJoinTask<?> t = q[i];
595     if (t == null) // lost to stealer
596     break;
597     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
598     sp = s; // putOrderedInt may encourage more timely write
599     // UNSAFE.putOrderedInt(this, spOffset, s);
600     return t;
601     }
602 dl 1.5 }
603 dl 1.1 }
604     return null;
605     }
606    
607     /**
608 dl 1.33 * Specialized version of popTask to pop only if topmost element
609     * is the given task. Called only by current thread while
610     * active.
611 jsr166 1.11 *
612     * @param t the task. Caller must ensure non-null.
613 dl 1.1 */
614     final boolean unpushTask(ForkJoinTask<?> t) {
615 dl 1.31 int s;
616 dl 1.40 ForkJoinTask<?>[] q = queue;
617     if ((s = sp) != base && q != null &&
618 dl 1.33 UNSAFE.compareAndSwapObject
619     (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
620 dl 1.31 sp = s;
621 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
622 dl 1.1 return true;
623     }
624     return false;
625     }
626    
627     /**
628 dl 1.23 * Returns next task or null if empty or contended
629 dl 1.1 */
630 dl 1.2 final ForkJoinTask<?> peekTask() {
631 dl 1.1 ForkJoinTask<?>[] q = queue;
632 dl 1.7 if (q == null)
633     return null;
634     int mask = q.length - 1;
635 jsr166 1.15 int i = locallyFifo ? base : (sp - 1);
636 dl 1.7 return q[i & mask];
637 dl 1.1 }
638    
639     /**
640     * Doubles queue array size. Transfers elements by emulating
641     * steals (deqs) from old array and placing, oldest first, into
642     * new array.
643     */
644     private void growQueue() {
645     ForkJoinTask<?>[] oldQ = queue;
646     int oldSize = oldQ.length;
647     int newSize = oldSize << 1;
648     if (newSize > MAXIMUM_QUEUE_CAPACITY)
649     throw new RejectedExecutionException("Queue capacity exceeded");
650     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
651    
652     int b = base;
653     int bf = b + oldSize;
654     int oldMask = oldSize - 1;
655     int newMask = newSize - 1;
656     do {
657     int oldIndex = b & oldMask;
658     ForkJoinTask<?> t = oldQ[oldIndex];
659     if (t != null && !casSlotNull(oldQ, oldIndex, t))
660     t = null;
661 dl 1.31 writeSlot(newQ, b & newMask, t);
662 dl 1.1 } while (++b != bf);
663 dl 1.5 pool.signalWork();
664 dl 1.1 }
665    
666     /**
667 dl 1.31 * Computes next value for random victim probe in scan(). Scans
668     * don't require a very high quality generator, but also not a
669     * crummy one. Marsaglia xor-shift is cheap and works well enough.
670     * Note: This is manually inlined in scan()
671     */
672     private static final int xorShift(int r) {
673     r ^= r << 13;
674     r ^= r >>> 17;
675     return r ^ (r << 5);
676     }
677    
678     /**
679 dl 1.5 * Tries to steal a task from another worker. Starts at a random
680     * index of workers array, and probes workers until finding one
681     * with non-empty queue or finding that all are empty. It
682     * randomly selects the first n probes. If these are empty, it
683 dl 1.31 * resorts to a circular sweep, which is necessary to accurately
684     * set active status. (The circular sweep uses steps of
685     * approximately half the array size plus 1, to avoid bias
686     * stemming from leftmost packing of the array in ForkJoinPool.)
687 dl 1.1 *
688     * This method must be both fast and quiet -- usually avoiding
689     * memory accesses that could disrupt cache sharing etc other than
690 dl 1.31 * those needed to check for and take tasks (or to activate if not
691     * already active). This accounts for, among other things,
692     * updating random seed in place without storing it until exit.
693 dl 1.1 *
694     * @return a task, or null if none found
695     */
696 dl 1.5 private ForkJoinTask<?> scan() {
697 dl 1.31 ForkJoinPool p = pool;
698 dl 1.33 ForkJoinWorkerThread[] ws; // worker array
699     int n; // upper bound of #workers
700     if ((ws = p.workers) != null && (n = ws.length) > 1) {
701     boolean canSteal = active; // shadow active status
702     int r = seed; // extract seed once
703     int mask = n - 1;
704     int j = -n; // loop counter
705     int k = r; // worker index, random if j < 0
706     for (;;) {
707     ForkJoinWorkerThread v = ws[k & mask];
708     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
709     if (v != null && v.base != v.sp) {
710 dl 1.40 ForkJoinTask<?>[] q; int b;
711     if ((canSteal || // ensure active status
712     (canSteal = active = p.tryIncrementActiveCount())) &&
713     (q = v.queue) != null && (b = v.base) != v.sp) {
714     int i = (q.length - 1) & b;
715     long u = (i << qShift) + qBase; // raw offset
716     ForkJoinTask<?> t = q[i];
717     if (v.base == b && t != null &&
718     UNSAFE.compareAndSwapObject(q, u, t, null)) {
719     int pid = poolIndex;
720     currentSteal = t;
721     v.stealHint = pid;
722     v.base = b + 1;
723     seed = r;
724     ++stealCount;
725     return t;
726 dl 1.35 }
727 dl 1.1 }
728 dl 1.33 j = -n;
729     k = r; // restart on contention
730 dl 1.1 }
731 dl 1.33 else if (++j <= 0)
732     k = r;
733     else if (j <= n)
734     k += (n >>> 1) | 1;
735     else
736     break;
737 dl 1.1 }
738 dl 1.31 }
739     return null;
740 dl 1.1 }
741    
742 dl 1.31 // Run State management
743    
744     // status check methods used mainly by ForkJoinPool
745 dl 1.40 final boolean isRunning() { return runState == 0; }
746 dl 1.31 final boolean isTerminating() { return (runState & TERMINATING) != 0; }
747     final boolean isTerminated() { return (runState & TERMINATED) != 0; }
748     final boolean isSuspended() { return (runState & SUSPENDED) != 0; }
749     final boolean isTrimmed() { return (runState & TRIMMED) != 0; }
750    
751 dl 1.1 /**
752 dl 1.40 * Sets state to TERMINATING, also, unless "quiet", unparking if
753     * not already terminated
754     *
755     * @param quiet don't unpark (used for faster status updates on
756     * pool termination)
757 dl 1.31 */
758 dl 1.40 final void shutdown(boolean quiet) {
759 dl 1.31 for (;;) {
760     int s = runState;
761 dl 1.40 if ((s & (TERMINATING|TERMINATED)) != 0)
762     break;
763 dl 1.31 if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
764     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
765     (s & ~SUSPENDED) |
766 dl 1.40 (TRIMMED|TERMINATING)))
767 dl 1.31 break;
768     }
769     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
770     s | TERMINATING))
771     break;
772     }
773 dl 1.40 if (!quiet && (runState & TERMINATED) != 0)
774     LockSupport.unpark(this);
775 dl 1.31 }
776    
777     /**
778 dl 1.40 * Sets state to TERMINATED. Called only by onTermination()
779 dl 1.31 */
780     private void setTerminated() {
781     int s;
782     do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
783     s = runState,
784     s | (TERMINATING|TERMINATED)));
785     }
786    
787     /**
788 dl 1.36 * If suspended, tries to set status to unsuspended and unparks.
789 jsr166 1.11 *
790 dl 1.31 * @return true if successful
791 dl 1.7 */
792 dl 1.40 final boolean tryUnsuspend() {
793     int s;
794     while (((s = runState) & SUSPENDED) != 0) {
795     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
796     s & ~SUSPENDED))
797     return true;
798 dl 1.36 }
799 dl 1.35 return false;
800 dl 1.7 }
801    
802     /**
803 dl 1.40 * Sets suspended status and blocks as spare until resumed
804     * or shutdown.
805     * @returns true if still running on exit
806 dl 1.1 */
807 dl 1.31 final boolean suspendAsSpare() {
808 dl 1.40 lastEventCount = 0; // reset upon resume
809     for (;;) { // set suspended unless terminating
810 dl 1.31 int s = runState;
811     if ((s & TERMINATING) != 0) { // must kill
812     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
813     s | (TRIMMED | TERMINATING)))
814     return false;
815     }
816     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
817     s | SUSPENDED))
818     break;
819     }
820 dl 1.40 ForkJoinPool p = pool;
821     p.pushSpare(this);
822 dl 1.31 while ((runState & SUSPENDED) != 0) {
823 dl 1.40 if (!p.tryAccumulateStealCount(this))
824     continue;
825     interrupted(); // clear/ignore interrupts
826     if ((runState & SUSPENDED) == 0)
827     break;
828     if (nextSpare != 0) // untimed
829 dl 1.35 LockSupport.park(this);
830 dl 1.40 else {
831     long startTime = System.nanoTime();
832     LockSupport.parkNanos(this, TRIM_RATE_NANOS);
833     if ((runState & SUSPENDED) == 0)
834     break;
835     long now = System.nanoTime();
836     if (now - startTime >= TRIM_RATE_NANOS)
837     pool.tryTrimSpare(now);
838 dl 1.31 }
839 dl 1.1 }
840 dl 1.40 return runState == 0;
841 dl 1.31 }
842    
843     // Misc support methods for ForkJoinPool
844    
845     /**
846     * Returns an estimate of the number of tasks in the queue. Also
847     * used by ForkJoinTask.
848     */
849     final int getQueueSize() {
850 dl 1.40 int n; // external calls must read base first
851     return (n = -base + sp) <= 0 ? 0 : n;
852 dl 1.1 }
853 dl 1.5
854 dl 1.31 /**
855 dl 1.5 * Removes and cancels all tasks in queue. Can be called from any
856     * thread.
857 dl 1.1 */
858 dl 1.5 final void cancelTasks() {
859 dl 1.40 ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
860 dl 1.36 if (cj != null) {
861     currentJoin = null;
862     cj.cancelIgnoringExceptions();
863 dl 1.40 try {
864     this.interrupt(); // awaken wait
865     } catch (SecurityException ignore) {
866     }
867 dl 1.36 }
868     ForkJoinTask<?> cs = currentSteal;
869     if (cs != null) {
870     currentSteal = null;
871     cs.cancelIgnoringExceptions();
872     }
873 dl 1.31 while (base != sp) {
874     ForkJoinTask<?> t = deqTask();
875     if (t != null)
876     t.cancelIgnoringExceptions();
877     }
878 dl 1.1 }
879    
880     /**
881 jsr166 1.11 * Drains tasks to given collection c.
882     *
883 dl 1.7 * @return the number of tasks drained
884     */
885 dl 1.22 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
886 dl 1.7 int n = 0;
887 dl 1.31 while (base != sp) {
888     ForkJoinTask<?> t = deqTask();
889     if (t != null) {
890     c.add(t);
891     ++n;
892     }
893 dl 1.7 }
894     return n;
895     }
896    
897 dl 1.31 // Support methods for ForkJoinTask
898    
899 dl 1.7 /**
900 dl 1.36 * Gets and removes a local task.
901     *
902     * @return a task, if available
903     */
904     final ForkJoinTask<?> pollLocalTask() {
905     while (sp != base) {
906     if (active || (active = pool.tryIncrementActiveCount()))
907     return locallyFifo? locallyDeqTask() : popTask();
908     }
909     return null;
910     }
911    
912     /**
913     * Gets and removes a local or stolen task.
914     *
915     * @return a task, if available
916     */
917     final ForkJoinTask<?> pollTask() {
918 dl 1.39 ForkJoinTask<?> t = pollLocalTask();
919     if (t == null) {
920     t = scan();
921 dl 1.40 currentSteal = null; // cannot retain/track/help
922 dl 1.39 }
923     return t;
924 dl 1.36 }
925    
926     /**
927 dl 1.35 * Possibly runs some tasks and/or blocks, until task is done.
928 dl 1.36 *
929     * @param joinMe the task to join
930     */
931 dl 1.40 final void joinTask(ForkJoinTask<?> joinMe) {
932     // currentJoin only written by this thread; only need ordered store
933 dl 1.36 ForkJoinTask<?> prevJoin = currentJoin;
934 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
935 dl 1.40 if (sp != base)
936     localHelpJoinTask(joinMe);
937     if (joinMe.status >= 0)
938     pool.awaitJoin(joinMe, this);
939 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
940 dl 1.36 }
941    
942     /**
943     * Run tasks in local queue until given task is done.
944 dl 1.35 *
945     * @param joinMe the task to join
946     */
947 dl 1.40 private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
948     int s;
949 dl 1.36 ForkJoinTask<?>[] q;
950 dl 1.40 while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
951 dl 1.35 int i = (q.length - 1) & --s;
952     long u = (i << qShift) + qBase; // raw offset
953 dl 1.40 ForkJoinTask<?> t = q[i];
954     if (t == null) // lost to a stealer
955     break;
956     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
957 dl 1.35 /*
958 dl 1.36 * This recheck (and similarly in helpJoinTask)
959 dl 1.35 * handles cases where joinMe is independently
960     * cancelled or forced even though there is other work
961     * available. Back out of the pop by putting t back
962 dl 1.36 * into slot before we commit by writing sp.
963 dl 1.35 */
964 dl 1.40 if (joinMe.status < 0) {
965 dl 1.35 UNSAFE.putObjectVolatile(q, u, t);
966     break;
967     }
968     sp = s;
969 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
970     t.quietlyExec();
971 dl 1.35 }
972     }
973     }
974    
975     /**
976     * Tries to locate and help perform tasks for a stealer of the
977 dl 1.36 * given task, or in turn one of its stealers. Traces
978     * currentSteal->currentJoin links looking for a thread working on
979 dl 1.35 * a descendant of the given task and with a non-empty queue to
980 dl 1.40 * steal back and execute tasks from.
981     *
982     * The implementation is very branchy to cope with the potential
983     * inconsistencies or loops encountering chains that are stale,
984     * unknown, or of length greater than MAX_HELP_DEPTH links. All
985     * of these cases are dealt with by just returning back to the
986     * caller, who is expected to retry if other join mechanisms also
987     * don't work out.
988 dl 1.35 *
989     * @param joinMe the task to join
990     */
991 dl 1.40 final void helpJoinTask(ForkJoinTask<?> joinMe) {
992 dl 1.36 ForkJoinWorkerThread[] ws = pool.workers;
993 dl 1.40 int n; // need at least 2 workers
994     if (ws != null && (n = ws.length) > 1 && joinMe.status >= 0) {
995 dl 1.36 ForkJoinTask<?> task = joinMe; // base of chain
996     ForkJoinWorkerThread thread = this; // thread with stolen task
997 dl 1.40 for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
998 dl 1.36 // Try to find v, the stealer of task, by first using hint
999     ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1000     if (v == null || v.currentSteal != task) {
1001     for (int j = 0; ; ++j) { // search array
1002 dl 1.40 if (j < n) {
1003     if ((v = ws[j]) != null) {
1004     if (task.status < 0)
1005     return; // stale or done
1006     if (v.currentSteal == task) {
1007     thread.stealHint = j;
1008     break; // save hint for next time
1009     }
1010     }
1011 dl 1.36 }
1012 dl 1.40 else
1013     return; // no stealer
1014 dl 1.35 }
1015     }
1016 dl 1.36 // Try to help v, using specialized form of deqTask
1017     int b;
1018     ForkJoinTask<?>[] q;
1019     while ((b = v.base) != v.sp && (q = v.queue) != null) {
1020     int i = (q.length - 1) & b;
1021 dl 1.37 long u = (i << qShift) + qBase;
1022 dl 1.36 ForkJoinTask<?> t = q[i];
1023 dl 1.40 if (task.status < 0)
1024     return; // stale or done
1025     if (v.base == b) {
1026     if (t == null)
1027     return; // producer stalled
1028     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
1029 dl 1.37 if (joinMe.status < 0) {
1030 dl 1.35 UNSAFE.putObjectVolatile(q, u, t);
1031 dl 1.36 return; // back out on cancel
1032 dl 1.35 }
1033 dl 1.40 int pid = poolIndex;
1034 dl 1.36 ForkJoinTask<?> prevSteal = currentSteal;
1035     currentSteal = t;
1036 dl 1.40 v.stealHint = pid;
1037 dl 1.35 v.base = b + 1;
1038 dl 1.40 t.quietlyExec();
1039 dl 1.36 currentSteal = prevSteal;
1040 dl 1.35 }
1041     }
1042 dl 1.36 if (joinMe.status < 0)
1043     return;
1044 dl 1.35 }
1045 dl 1.36 // Try to descend to find v's stealer
1046     ForkJoinTask<?> next = v.currentJoin;
1047 dl 1.40 if (task.status < 0 || next == null || next == task ||
1048     joinMe.status < 0)
1049 dl 1.35 return;
1050 dl 1.36 task = next;
1051     thread = v;
1052 dl 1.35 }
1053     }
1054     }
1055    
1056     /**
1057 dl 1.31 * Returns an estimate of the number of tasks, offset by a
1058     * function of number of idle workers.
1059     *
1060     * This method provides a cheap heuristic guide for task
1061     * partitioning when programmers, frameworks, tools, or languages
1062     * have little or no idea about task granularity. In essence by
1063     * offering this method, we ask users only about tradeoffs in
1064     * overhead vs expected throughput and its variance, rather than
1065     * how finely to partition tasks.
1066     *
1067     * In a steady state strict (tree-structured) computation, each
1068     * thread makes available for stealing enough tasks for other
1069     * threads to remain active. Inductively, if all threads play by
1070     * the same rules, each thread should make available only a
1071     * constant number of tasks.
1072     *
1073     * The minimum useful constant is just 1. But using a value of 1
1074     * would require immediate replenishment upon each steal to
1075     * maintain enough tasks, which is infeasible. Further,
1076     * partitionings/granularities of offered tasks should minimize
1077     * steal rates, which in general means that threads nearer the top
1078     * of computation tree should generate more than those nearer the
1079     * bottom. In perfect steady state, each thread is at
1080     * approximately the same level of computation tree. However,
1081     * producing extra tasks amortizes the uncertainty of progress and
1082     * diffusion assumptions.
1083     *
1084     * So, users will want to use values larger, but not much larger
1085     * than 1 to both smooth over transient shortages and hedge
1086     * against uneven progress; as traded off against the cost of
1087     * extra task overhead. We leave the user to pick a threshold
1088     * value to compare with the results of this call to guide
1089     * decisions, but recommend values such as 3.
1090     *
1091     * When all threads are active, it is on average OK to estimate
1092     * surplus strictly locally. In steady-state, if one thread is
1093     * maintaining say 2 surplus tasks, then so are others. So we can
1094     * just use estimated queue length (although note that (sp - base)
1095     * can be an overestimate because of stealers lagging increments
1096     * of base). However, this strategy alone leads to serious
1097     * mis-estimates in some non-steady-state conditions (ramp-up,
1098     * ramp-down, other stalls). We can detect many of these by
1099     * further considering the number of "idle" threads, that are
1100     * known to have zero queued tasks, so compensate by a factor of
1101     * (#idle/#active) threads.
1102 dl 1.1 */
1103 dl 1.31 final int getEstimatedSurplusTaskCount() {
1104     return sp - base - pool.idlePerActive();
1105 dl 1.5 }
1106    
1107     /**
1108 jsr166 1.16 * Runs tasks until {@code pool.isQuiescent()}.
1109 dl 1.1 */
1110 dl 1.5 final void helpQuiescePool() {
1111     for (;;) {
1112 dl 1.31 ForkJoinTask<?> t = pollLocalTask();
1113 dl 1.35 if (t != null || (t = scan()) != null) {
1114 dl 1.40 t.quietlyExec();
1115 dl 1.36 currentSteal = null;
1116 dl 1.35 }
1117 dl 1.31 else {
1118     ForkJoinPool p = pool;
1119     if (active) {
1120 dl 1.40 if (!p.tryDecrementActiveCount())
1121     continue; // retry later
1122 dl 1.31 active = false; // inactivate
1123     }
1124     if (p.isQuiescent()) {
1125     active = true; // re-activate
1126     do {} while (!p.tryIncrementActiveCount());
1127     return;
1128     }
1129     }
1130 dl 1.5 }
1131 dl 1.1 }
1132    
1133 jsr166 1.20 // Unsafe mechanics
1134    
1135     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1136 dl 1.40 private static final long spOffset =
1137     objectFieldOffset("sp", ForkJoinWorkerThread.class);
1138 jsr166 1.20 private static final long runStateOffset =
1139     objectFieldOffset("runState", ForkJoinWorkerThread.class);
1140 dl 1.39 private static final long currentJoinOffset =
1141     objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1142 dl 1.40 private static final long currentStealOffset =
1143     objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1144 dl 1.31 private static final long qBase =
1145     UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1146 dl 1.40
1147 jsr166 1.20 private static final int qShift;
1148    
1149     static {
1150     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1151     if ((s & (s-1)) != 0)
1152     throw new Error("data type scale not a power of two");
1153     qShift = 31 - Integer.numberOfLeadingZeros(s);
1154     }
1155    
1156     private static long objectFieldOffset(String field, Class<?> klazz) {
1157     try {
1158     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1159     } catch (NoSuchFieldException e) {
1160     // Convert Exception to corresponding Error
1161     NoSuchFieldError error = new NoSuchFieldError(field);
1162     error.initCause(e);
1163     throw error;
1164     }
1165     }
1166    
1167     /**
1168     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1169     * Replace with a simple call to Unsafe.getUnsafe when integrating
1170     * into a jdk.
1171     *
1172     * @return a sun.misc.Unsafe
1173     */
1174 jsr166 1.17 private static sun.misc.Unsafe getUnsafe() {
1175 jsr166 1.6 try {
1176 jsr166 1.17 return sun.misc.Unsafe.getUnsafe();
1177 jsr166 1.6 } catch (SecurityException se) {
1178     try {
1179     return java.security.AccessController.doPrivileged
1180 jsr166 1.20 (new java.security
1181     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1182 jsr166 1.17 public sun.misc.Unsafe run() throws Exception {
1183 jsr166 1.20 java.lang.reflect.Field f = sun.misc
1184     .Unsafe.class.getDeclaredField("theUnsafe");
1185     f.setAccessible(true);
1186     return (sun.misc.Unsafe) f.get(null);
1187 jsr166 1.6 }});
1188     } catch (java.security.PrivilegedActionException e) {
1189 jsr166 1.17 throw new RuntimeException("Could not initialize intrinsics",
1190     e.getCause());
1191 jsr166 1.6 }
1192     }
1193     }
1194 dl 1.1 }