ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.41
Committed: Tue Aug 17 18:30:33 2010 UTC (13 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.40: +55 -41 lines
Log Message:
Reduce resources during periods without use

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.18
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.18
11 dl 1.31 import java.util.Random;
12 jsr166 1.18 import java.util.Collection;
13 dl 1.31 import java.util.concurrent.locks.LockSupport;
14 dl 1.1
15     /**
16 dl 1.2 * A thread managed by a {@link ForkJoinPool}. This class is
17     * subclassable solely for the sake of adding functionality -- there
18 jsr166 1.25 * are no overridable methods dealing with scheduling or execution.
19     * However, you can override initialization and termination methods
20     * surrounding the main task processing loop. If you do create such a
21     * subclass, you will also need to supply a custom {@link
22 dl 1.26 * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
23     * ForkJoinPool}.
24 jsr166 1.6 *
25 jsr166 1.13 * @since 1.7
26     * @author Doug Lea
27 dl 1.1 */
28     public class ForkJoinWorkerThread extends Thread {
29     /*
30 dl 1.31 * Overview:
31 dl 1.1 *
32 dl 1.31 * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33     * ForkJoinTasks. This class includes bookkeeping in support of
34     * worker activation, suspension, and lifecycle control described
35     * in more detail in the internal documentation of class
36     * ForkJoinPool. And as described further below, this class also
37     * includes special-cased support for some ForkJoinTask
38     * methods. But the main mechanics involve work-stealing:
39     *
40     * Work-stealing queues are special forms of Deques that support
41     * only three of the four possible end-operations -- push, pop,
42     * and deq (aka steal), under the further constraints that push
43     * and pop are called only from the owning thread, while deq may
44     * be called from other threads. (If you are unfamiliar with
45     * them, you probably want to read Herlihy and Shavit's book "The
46     * Art of Multiprocessor programming", chapter 16 describing these
47     * in more detail before proceeding.) The main work-stealing
48     * queue design is roughly similar to those in the papers "Dynamic
49     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50     * (http://research.sun.com/scalable/pubs/index.html) and
51     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53     * The main differences ultimately stem from gc requirements that
54     * we null out taken slots as soon as we can, to maintain as small
55     * a footprint as possible even in programs generating huge
56     * numbers of tasks. To accomplish this, we shift the CAS
57     * arbitrating pop vs deq (steal) from being on the indices
58     * ("base" and "sp") to the slots themselves (mainly via method
59     * "casSlotNull()"). So, both a successful pop and deq mainly
60     * entail a CAS of a slot from non-null to null. Because we rely
61     * on CASes of references, we do not need tag bits on base or sp.
62     * They are simple ints as used in any circular array-based queue
63     * (see for example ArrayDeque). Updates to the indices must
64     * still be ordered in a way that guarantees that sp == base means
65     * the queue is empty, but otherwise may err on the side of
66     * possibly making the queue appear nonempty when a push, pop, or
67     * deq have not fully committed. Note that this means that the deq
68     * operation, considered individually, is not wait-free. One thief
69     * cannot successfully continue until another in-progress one (or,
70     * if previously empty, a push) completes. However, in the
71     * aggregate, we ensure at least probabilistic non-blockingness.
72     * If an attempted steal fails, a thief always chooses a different
73     * random victim target to try next. So, in order for one thief to
74     * progress, it suffices for any in-progress deq or new push on
75     * any empty queue to complete. One reason this works well here is
76     * that apparently-nonempty often means soon-to-be-stealable,
77     * which gives threads a chance to set activation status if
78     * necessary before stealing.
79 dl 1.1 *
80 dl 1.23 * This approach also enables support for "async mode" where local
81     * task processing is in FIFO, not LIFO order; simply by using a
82     * version of deq rather than pop when locallyFifo is true (as set
83     * by the ForkJoinPool). This allows use in message-passing
84     * frameworks in which tasks are never joined.
85     *
86 dl 1.35 * When a worker would otherwise be blocked waiting to join a
87     * task, it first tries a form of linear helping: Each worker
88 dl 1.36 * records (in field currentSteal) the most recent task it stole
89     * from some other worker. Plus, it records (in field currentJoin)
90     * the task it is currently actively joining. Method joinTask uses
91 dl 1.35 * these markers to try to find a worker to help (i.e., steal back
92     * a task from and execute it) that could hasten completion of the
93     * actively joined task. In essence, the joiner executes a task
94     * that would be on its own local deque had the to-be-joined task
95     * not been stolen. This may be seen as a conservative variant of
96     * the approach in Wagner & Calder "Leapfrogging: a portable
97     * technique for implementing efficient futures" SIGPLAN Notices,
98     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99     * in that: (1) We only maintain dependency links across workers
100 dl 1.39 * upon steals, rather than use per-task bookkeeping. This may
101     * require a linear scan of workers array to locate stealers, but
102     * usually doesn't because stealers leave hints (that may become
103     * stale/wrong) of where to locate them. This isolates cost to
104     * when it is needed, rather than adding to per-task overhead.
105     * (2) It is "shallow", ignoring nesting and potentially cyclic
106     * mutual steals. (3) It is intentionally racy: field currentJoin
107     * is updated only while actively joining, which means that we
108     * miss links in the chain during long-lived tasks, GC stalls etc
109     * (which is OK since blocking in such cases is usually a good
110     * idea). (4) We bound the number of attempts to find work (see
111     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112     * necessary replacing it with a spare (see
113     * ForkJoinPool.tryAwaitJoin).
114 dl 1.35 *
115 dl 1.36 * Efficient implementation of these algorithms currently relies
116     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117 dl 1.1 * correct orderings, reads and writes of variable base require
118 dl 1.31 * volatile ordering. Variable sp does not require volatile
119     * writes but still needs store-ordering, which we accomplish by
120     * pre-incrementing sp before filling the slot with an ordered
121     * store. (Pre-incrementing also enables backouts used in
122 dl 1.36 * joinTask.) Because they are protected by volatile base reads,
123     * reads of the queue array and its slots by other threads do not
124     * need volatile load semantics, but writes (in push) require
125     * store order and CASes (in pop and deq) require (volatile) CAS
126     * semantics. (Michael, Saraswat, and Vechev's algorithm has
127     * similar properties, but without support for nulling slots.)
128     * Since these combinations aren't supported using ordinary
129     * volatiles, the only way to accomplish these efficiently is to
130     * use direct Unsafe calls. (Using external AtomicIntegers and
131     * AtomicReferenceArrays for the indices and array is
132     * significantly slower because of memory locality and indirection
133     * effects.)
134 jsr166 1.29 *
135 dl 1.28 * Further, performance on most platforms is very sensitive to
136     * placement and sizing of the (resizable) queue array. Even
137     * though these queues don't usually become all that big, the
138     * initial size must be large enough to counteract cache
139 dl 1.1 * contention effects across multiple queues (especially in the
140     * presence of GC cardmarking). Also, to improve thread-locality,
141 dl 1.31 * queues are initialized after starting. All together, these
142     * low-level implementation choices produce as much as a factor of
143     * 4 performance improvement compared to naive implementations,
144     * and enable the processing of billions of tasks per second,
145     * sometimes at the expense of ugliness.
146 dl 1.1 */
147    
148     /**
149 dl 1.31 * Generator for initial random seeds for random victim
150     * selection. This is used only to create initial seeds. Random
151     * steals use a cheaper xorshift generator per steal attempt. We
152     * expect only rare contention on seedGenerator, so just use a
153     * plain Random.
154     */
155     private static final Random seedGenerator = new Random();
156    
157     /**
158 dl 1.36 * The maximum stolen->joining link depth allowed in helpJoinTask.
159     * Depths for legitimate chains are unbounded, but we use a fixed
160     * constant to avoid (otherwise unchecked) cycles and bound
161     * staleness of traversal parameters at the expense of sometimes
162     * blocking when we could be helping.
163     */
164     private static final int MAX_HELP_DEPTH = 8;
165    
166     /**
167 dl 1.41 * The wakeup interval (in nanoseconds) for the oldest worker
168 dl 1.40 * suspended as spare. On each wakeup not signalled by a
169     * resumption, it may ask the pool to reduce the number of spares.
170     */
171 dl 1.41 private static final long TRIM_RATE_NANOS =
172     5L * 1000L * 1000L * 1000L; // 5sec
173 dl 1.40
174     /**
175 dl 1.1 * Capacity of work-stealing queue array upon initialization.
176 dl 1.34 * Must be a power of two. Initial size must be at least 4, but is
177 dl 1.1 * padded to minimize cache effects.
178     */
179     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
180    
181     /**
182     * Maximum work-stealing queue array size. Must be less than or
183 dl 1.5 * equal to 1 << 28 to ensure lack of index wraparound. (This
184     * is less than usual bounds, because we need leftshift by 3
185     * to be in int range).
186 dl 1.1 */
187 dl 1.5 private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
188 dl 1.1
189     /**
190 jsr166 1.16 * The pool this thread works in. Accessed directly by ForkJoinTask.
191 dl 1.1 */
192 dl 1.5 final ForkJoinPool pool;
193 dl 1.1
194     /**
195     * The work-stealing queue array. Size must be a power of two.
196 dl 1.31 * Initialized in onStart, to improve memory locality.
197 dl 1.1 */
198     private ForkJoinTask<?>[] queue;
199 dl 1.37
200 dl 1.1 /**
201 dl 1.31 * Index (mod queue.length) of least valid queue slot, which is
202     * always the next position to steal from if nonempty.
203     */
204     private volatile int base;
205    
206     /**
207 dl 1.1 * Index (mod queue.length) of next queue slot to push to or pop
208 dl 1.31 * from. It is written only by owner thread, and accessed by other
209     * threads only after reading (volatile) base. Both sp and base
210     * are allowed to wrap around on overflow, but (sp - base) still
211     * estimates size.
212     */
213     private int sp;
214 dl 1.1
215     /**
216 dl 1.36 * The index of most recent stealer, used as a hint to avoid
217     * traversal in method helpJoinTask. This is only a hint because a
218     * worker might have had multiple steals and this only holds one
219     * of them (usually the most current). Declared non-volatile,
220     * relying on other prevailing sync to keep reasonably current.
221     */
222     private int stealHint;
223    
224     /**
225 dl 1.31 * Run state of this worker. In addition to the usual run levels,
226     * tracks if this worker is suspended as a spare, and if it was
227     * killed (trimmed) while suspended. However, "active" status is
228 dl 1.41 * maintained separately and modified only in conjunction with
229     * CASes of the pool's runState (which are currently sadly manually
230     * inlined for performance.)
231 dl 1.1 */
232 dl 1.31 private volatile int runState;
233    
234     private static final int TERMINATING = 0x01;
235     private static final int TERMINATED = 0x02;
236     private static final int SUSPENDED = 0x04; // inactive spare
237     private static final int TRIMMED = 0x08; // killed while suspended
238 dl 1.1
239     /**
240 dl 1.31 * Number of steals, transferred and reset in pool callbacks pool
241     * when idle Accessed directly by pool.
242 dl 1.1 */
243 dl 1.31 int stealCount;
244 dl 1.1
245     /**
246 dl 1.5 * Seed for random number generator for choosing steal victims.
247 dl 1.31 * Uses Marsaglia xorshift. Must be initialized as nonzero.
248 dl 1.1 */
249 dl 1.5 private int seed;
250 dl 1.1
251     /**
252 dl 1.31 * Activity status. When true, this worker is considered active.
253     * Accessed directly by pool. Must be false upon construction.
254     */
255     boolean active;
256    
257     /**
258     * True if use local fifo, not default lifo, for local polling.
259 dl 1.39 * Shadows value from ForkJoinPool.
260 dl 1.1 */
261 dl 1.35 private final boolean locallyFifo;
262 dl 1.37
263 dl 1.1 /**
264 dl 1.5 * Index of this worker in pool array. Set once by pool before
265 dl 1.31 * running, and accessed directly by pool to locate this worker in
266     * its workers array.
267 dl 1.1 */
268 dl 1.5 int poolIndex;
269 dl 1.1
270     /**
271 dl 1.31 * The last pool event waited for. Accessed only by pool in
272     * callback methods invoked within this thread.
273 dl 1.1 */
274 dl 1.31 int lastEventCount;
275 dl 1.1
276     /**
277 dl 1.31 * Encoded index and event count of next event waiter. Used only
278     * by ForkJoinPool for managing event waiters.
279 dl 1.7 */
280 dl 1.31 volatile long nextWaiter;
281 dl 1.7
282     /**
283 dl 1.40 * Number of times this thread suspended as spare
284     */
285     int spareCount;
286    
287     /**
288     * Encoded index and count of next spare waiter. Used only
289     * by ForkJoinPool for managing spares.
290     */
291     volatile int nextSpare;
292    
293     /**
294 dl 1.36 * The task currently being joined, set only when actively trying
295     * to helpStealer. Written only by current thread, but read by
296     * others.
297     */
298     private volatile ForkJoinTask<?> currentJoin;
299 dl 1.37
300 dl 1.36 /**
301     * The task most recently stolen from another worker (or
302     * submission queue). Not volatile because always read/written in
303     * presence of related volatiles in those cases where it matters.
304     */
305     private ForkJoinTask<?> currentSteal;
306    
307     /**
308 dl 1.1 * Creates a ForkJoinWorkerThread operating in the given pool.
309 jsr166 1.11 *
310 dl 1.1 * @param pool the pool this thread works in
311     * @throws NullPointerException if pool is null
312     */
313     protected ForkJoinWorkerThread(ForkJoinPool pool) {
314     this.pool = pool;
315 dl 1.35 this.locallyFifo = pool.locallyFifo;
316 dl 1.40 setDaemon(true);
317 dl 1.31 // To avoid exposing construction details to subclasses,
318     // remaining initialization is in start() and onStart()
319 dl 1.1 }
320    
321 dl 1.31 /**
322     * Performs additional initialization and starts this thread
323     */
324 dl 1.35 final void start(int poolIndex, UncaughtExceptionHandler ueh) {
325 dl 1.31 this.poolIndex = poolIndex;
326     if (ueh != null)
327     setUncaughtExceptionHandler(ueh);
328     start();
329     }
330    
331     // Public/protected methods
332 dl 1.2
333     /**
334 jsr166 1.11 * Returns the pool hosting this thread.
335     *
336 dl 1.2 * @return the pool
337     */
338 dl 1.4 public ForkJoinPool getPool() {
339     return pool;
340 dl 1.2 }
341    
342     /**
343 dl 1.4 * Returns the index number of this thread in its pool. The
344     * returned value ranges from zero to the maximum number of
345     * threads (minus one) that have ever been created in the pool.
346     * This method may be useful for applications that track status or
347 dl 1.5 * collect results per-worker rather than per-task.
348 jsr166 1.11 *
349     * @return the index number
350 dl 1.2 */
351 dl 1.4 public int getPoolIndex() {
352     return poolIndex;
353 dl 1.2 }
354    
355 dl 1.7 /**
356 dl 1.31 * Initializes internal state after construction but before
357     * processing any tasks. If you override this method, you must
358     * invoke super.onStart() at the beginning of the method.
359     * Initialization requires care: Most fields must have legal
360     * default values, to ensure that attempted accesses from other
361     * threads work correctly even before this thread starts
362     * processing tasks.
363 dl 1.7 */
364 dl 1.31 protected void onStart() {
365     int rs = seedGenerator.nextInt();
366     seed = rs == 0? 1 : rs; // seed must be nonzero
367 dl 1.5
368 dl 1.35 // Allocate name string and arrays in this thread
369 dl 1.31 String pid = Integer.toString(pool.getPoolNumber());
370     String wid = Integer.toString(poolIndex);
371     setName("ForkJoinPool-" + pid + "-worker-" + wid);
372 dl 1.5
373 dl 1.31 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
374     }
375 dl 1.5
376     /**
377 dl 1.31 * Performs cleanup associated with termination of this worker
378     * thread. If you override this method, you must invoke
379     * {@code super.onTermination} at the end of the overridden method.
380 jsr166 1.21 *
381 dl 1.31 * @param exception the exception causing this thread to abort due
382     * to an unrecoverable error, or {@code null} if completed normally
383 dl 1.5 */
384 dl 1.31 protected void onTermination(Throwable exception) {
385     try {
386 dl 1.41 ForkJoinPool p = pool;
387     if (active) {
388     int a; // inline p.tryDecrementActiveCount
389     active = false;
390     do {} while(!UNSAFE.compareAndSwapInt
391     (p, poolRunStateOffset, a = p.runState, a - 1));
392     }
393 dl 1.31 cancelTasks();
394     setTerminated();
395 dl 1.41 p.workerTerminated(this);
396 dl 1.31 } catch (Throwable ex) { // Shouldn't ever happen
397     if (exception == null) // but if so, at least rethrown
398     exception = ex;
399     } finally {
400     if (exception != null)
401     UNSAFE.throwException(exception);
402 dl 1.5 }
403     }
404    
405     /**
406     * This method is required to be public, but should never be
407     * called explicitly. It performs the main run loop to execute
408     * ForkJoinTasks.
409 dl 1.1 */
410 dl 1.5 public void run() {
411     Throwable exception = null;
412     try {
413     onStart();
414     mainLoop();
415     } catch (Throwable ex) {
416     exception = ex;
417     } finally {
418     onTermination(exception);
419     }
420 dl 1.1 }
421    
422 dl 1.31 // helpers for run()
423    
424 dl 1.1 /**
425 dl 1.31 * Find and execute tasks and check status while running
426 dl 1.1 */
427 dl 1.5 private void mainLoop() {
428 dl 1.40 int misses = 0; // track consecutive times failed to find work; max 2
429 dl 1.31 ForkJoinPool p = pool;
430     for (;;) {
431 dl 1.40 p.preStep(this, misses);
432 dl 1.31 if (runState != 0)
433 dl 1.40 break;
434     misses = ((tryExecSteal() || tryExecSubmission()) ? 0 :
435     (misses < 2 ? misses + 1 : 2));
436 dl 1.5 }
437 dl 1.1 }
438    
439 dl 1.5 /**
440 dl 1.40 * Try to steal a task and execute it
441     *
442     * @return true if ran a task
443 dl 1.5 */
444 dl 1.40 private boolean tryExecSteal() {
445     ForkJoinTask<?> t;
446     if ((t = scan()) != null) {
447     t.quietlyExec();
448     currentSteal = null;
449     if (sp != base)
450     execLocalTasks();
451     return true;
452 dl 1.31 }
453 dl 1.40 return false;
454 dl 1.5 }
455 dl 1.1
456     /**
457 dl 1.40 * If a submission exists, try to activate and run it;
458 dl 1.5 *
459 dl 1.40 * @return true if ran a task
460 dl 1.1 */
461 dl 1.40 private boolean tryExecSubmission() {
462 dl 1.31 ForkJoinPool p = pool;
463     while (p.hasQueuedSubmissions()) {
464 dl 1.41 ForkJoinTask<?> t; int a;
465     if (active || // ugly/hacky: inline p.tryIncrementActiveCount
466     (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
467     a = p.runState, a + 1))) {
468 dl 1.40 if ((t = p.pollSubmission()) != null) {
469 dl 1.36 currentSteal = t;
470 dl 1.40 t.quietlyExec();
471     currentSteal = null;
472     if (sp != base)
473     execLocalTasks();
474     return true;
475 dl 1.36 }
476 dl 1.5 }
477     }
478 dl 1.40 return false;
479     }
480    
481     /**
482     * Runs local tasks until queue is empty or shut down. Call only
483     * while active.
484     */
485     private void execLocalTasks() {
486     while (runState == 0) {
487     ForkJoinTask<?> t = locallyFifo? locallyDeqTask() : popTask();
488     if (t != null)
489     t.quietlyExec();
490     else if (sp == base)
491     break;
492     }
493 dl 1.1 }
494    
495 dl 1.31 /*
496     * Intrinsics-based atomic writes for queue slots. These are
497     * basically the same as methods in AtomicObjectArray, but
498     * specialized for (1) ForkJoinTask elements (2) requirement that
499     * nullness and bounds checks have already been performed by
500     * callers and (3) effective offsets are known not to overflow
501     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
502     * need corresponding version for reads: plain array reads are OK
503     * because they protected by other volatile reads and are
504     * confirmed by CASes.
505     *
506     * Most uses don't actually call these methods, but instead contain
507     * inlined forms that enable more predictable optimization. We
508     * don't define the version of write used in pushTask at all, but
509     * instead inline there a store-fenced array slot write.
510 dl 1.1 */
511    
512     /**
513 dl 1.31 * CASes slot i of array q from t to null. Caller must ensure q is
514     * non-null and index is in range.
515 dl 1.1 */
516 dl 1.31 private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
517     ForkJoinTask<?> t) {
518     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
519 dl 1.1 }
520    
521 dl 1.5 /**
522 dl 1.31 * Performs a volatile write of the given task at given slot of
523     * array q. Caller must ensure q is non-null and index is in
524     * range. This method is used only during resets and backouts.
525 dl 1.5 */
526 dl 1.31 private static final void writeSlot(ForkJoinTask<?>[] q, int i,
527     ForkJoinTask<?> t) {
528     UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
529 dl 1.5 }
530    
531 dl 1.31 // queue methods
532 dl 1.1
533     /**
534 dl 1.31 * Pushes a task. Call only from this thread.
535 jsr166 1.11 *
536 jsr166 1.10 * @param t the task. Caller must ensure non-null.
537 dl 1.1 */
538     final void pushTask(ForkJoinTask<?> t) {
539     ForkJoinTask<?>[] q = queue;
540 dl 1.31 int mask = q.length - 1; // implicit assert q != null
541 dl 1.34 int s = sp++; // ok to increment sp before slot write
542     UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
543     if ((s -= base) == 0)
544     pool.signalWork(); // was empty
545     else if (s == mask)
546     growQueue(); // is full
547 dl 1.1 }
548    
549     /**
550     * Tries to take a task from the base of the queue, failing if
551 dl 1.31 * empty or contended. Note: Specializations of this code appear
552 dl 1.35 * in locallyDeqTask and elsewhere.
553 jsr166 1.11 *
554     * @return a task, or null if none or contended
555 dl 1.1 */
556 dl 1.7 final ForkJoinTask<?> deqTask() {
557 dl 1.5 ForkJoinTask<?> t;
558 dl 1.1 ForkJoinTask<?>[] q;
559 dl 1.31 int b, i;
560 dl 1.40 if (sp != (b = base) &&
561 dl 1.1 (q = queue) != null && // must read q after b
562 dl 1.35 (t = q[i = (q.length - 1) & b]) != null && base == b &&
563 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
564 dl 1.1 base = b + 1;
565     return t;
566     }
567     return null;
568     }
569    
570     /**
571 dl 1.31 * Tries to take a task from the base of own queue. Assumes active
572     * status. Called only by current thread.
573 dl 1.23 *
574     * @return a task, or null if none
575     */
576     final ForkJoinTask<?> locallyDeqTask() {
577 dl 1.31 ForkJoinTask<?>[] q = queue;
578     if (q != null) {
579     ForkJoinTask<?> t;
580     int b, i;
581     while (sp != (b = base)) {
582 dl 1.35 if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
583 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
584     t, null)) {
585 dl 1.23 base = b + 1;
586     return t;
587     }
588     }
589     }
590     return null;
591     }
592    
593     /**
594 dl 1.31 * Returns a popped task, or null if empty. Assumes active status.
595 dl 1.37 * Called only by current thread.
596 dl 1.1 */
597 dl 1.40 private ForkJoinTask<?> popTask() {
598     ForkJoinTask<?>[] q = queue;
599     if (q != null) {
600     int s;
601     while ((s = sp) != base) {
602     int i = (q.length - 1) & --s;
603     long u = (i << qShift) + qBase; // raw offset
604     ForkJoinTask<?> t = q[i];
605     if (t == null) // lost to stealer
606     break;
607     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
608     sp = s; // putOrderedInt may encourage more timely write
609     // UNSAFE.putOrderedInt(this, spOffset, s);
610     return t;
611     }
612 dl 1.5 }
613 dl 1.1 }
614     return null;
615     }
616    
617     /**
618 dl 1.33 * Specialized version of popTask to pop only if topmost element
619     * is the given task. Called only by current thread while
620     * active.
621 jsr166 1.11 *
622     * @param t the task. Caller must ensure non-null.
623 dl 1.1 */
624     final boolean unpushTask(ForkJoinTask<?> t) {
625 dl 1.31 int s;
626 dl 1.40 ForkJoinTask<?>[] q = queue;
627     if ((s = sp) != base && q != null &&
628 dl 1.33 UNSAFE.compareAndSwapObject
629     (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
630 dl 1.31 sp = s;
631 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
632 dl 1.1 return true;
633     }
634     return false;
635     }
636    
637     /**
638 dl 1.23 * Returns next task or null if empty or contended
639 dl 1.1 */
640 dl 1.2 final ForkJoinTask<?> peekTask() {
641 dl 1.1 ForkJoinTask<?>[] q = queue;
642 dl 1.7 if (q == null)
643     return null;
644     int mask = q.length - 1;
645 jsr166 1.15 int i = locallyFifo ? base : (sp - 1);
646 dl 1.7 return q[i & mask];
647 dl 1.1 }
648    
649     /**
650     * Doubles queue array size. Transfers elements by emulating
651     * steals (deqs) from old array and placing, oldest first, into
652     * new array.
653     */
654     private void growQueue() {
655     ForkJoinTask<?>[] oldQ = queue;
656     int oldSize = oldQ.length;
657     int newSize = oldSize << 1;
658     if (newSize > MAXIMUM_QUEUE_CAPACITY)
659     throw new RejectedExecutionException("Queue capacity exceeded");
660     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
661    
662     int b = base;
663     int bf = b + oldSize;
664     int oldMask = oldSize - 1;
665     int newMask = newSize - 1;
666     do {
667     int oldIndex = b & oldMask;
668     ForkJoinTask<?> t = oldQ[oldIndex];
669     if (t != null && !casSlotNull(oldQ, oldIndex, t))
670     t = null;
671 dl 1.31 writeSlot(newQ, b & newMask, t);
672 dl 1.1 } while (++b != bf);
673 dl 1.5 pool.signalWork();
674 dl 1.1 }
675    
676     /**
677 dl 1.31 * Computes next value for random victim probe in scan(). Scans
678     * don't require a very high quality generator, but also not a
679     * crummy one. Marsaglia xor-shift is cheap and works well enough.
680     * Note: This is manually inlined in scan()
681     */
682     private static final int xorShift(int r) {
683     r ^= r << 13;
684     r ^= r >>> 17;
685     return r ^ (r << 5);
686     }
687    
688     /**
689 dl 1.5 * Tries to steal a task from another worker. Starts at a random
690     * index of workers array, and probes workers until finding one
691     * with non-empty queue or finding that all are empty. It
692     * randomly selects the first n probes. If these are empty, it
693 dl 1.31 * resorts to a circular sweep, which is necessary to accurately
694     * set active status. (The circular sweep uses steps of
695     * approximately half the array size plus 1, to avoid bias
696     * stemming from leftmost packing of the array in ForkJoinPool.)
697 dl 1.1 *
698     * This method must be both fast and quiet -- usually avoiding
699     * memory accesses that could disrupt cache sharing etc other than
700 dl 1.31 * those needed to check for and take tasks (or to activate if not
701     * already active). This accounts for, among other things,
702     * updating random seed in place without storing it until exit.
703 dl 1.1 *
704     * @return a task, or null if none found
705     */
706 dl 1.5 private ForkJoinTask<?> scan() {
707 dl 1.31 ForkJoinPool p = pool;
708 dl 1.33 ForkJoinWorkerThread[] ws; // worker array
709     int n; // upper bound of #workers
710     if ((ws = p.workers) != null && (n = ws.length) > 1) {
711     boolean canSteal = active; // shadow active status
712     int r = seed; // extract seed once
713     int mask = n - 1;
714     int j = -n; // loop counter
715     int k = r; // worker index, random if j < 0
716     for (;;) {
717     ForkJoinWorkerThread v = ws[k & mask];
718     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
719     if (v != null && v.base != v.sp) {
720 dl 1.41 ForkJoinTask<?>[] q; int b, a;
721     if ((canSteal || // Ugly/hacky: inline
722     (canSteal = active = // p.tryIncrementActiveCount
723     UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
724     a = p.runState, a + 1))) &&
725 dl 1.40 (q = v.queue) != null && (b = v.base) != v.sp) {
726     int i = (q.length - 1) & b;
727     long u = (i << qShift) + qBase; // raw offset
728     ForkJoinTask<?> t = q[i];
729     if (v.base == b && t != null &&
730     UNSAFE.compareAndSwapObject(q, u, t, null)) {
731     int pid = poolIndex;
732     currentSteal = t;
733     v.stealHint = pid;
734     v.base = b + 1;
735     seed = r;
736     ++stealCount;
737     return t;
738 dl 1.35 }
739 dl 1.1 }
740 dl 1.33 j = -n;
741     k = r; // restart on contention
742 dl 1.1 }
743 dl 1.33 else if (++j <= 0)
744     k = r;
745     else if (j <= n)
746     k += (n >>> 1) | 1;
747     else
748     break;
749 dl 1.1 }
750 dl 1.31 }
751     return null;
752 dl 1.1 }
753    
754 dl 1.31 // Run State management
755    
756     // status check methods used mainly by ForkJoinPool
757 dl 1.40 final boolean isRunning() { return runState == 0; }
758 dl 1.31 final boolean isTerminating() { return (runState & TERMINATING) != 0; }
759     final boolean isTerminated() { return (runState & TERMINATED) != 0; }
760     final boolean isSuspended() { return (runState & SUSPENDED) != 0; }
761     final boolean isTrimmed() { return (runState & TRIMMED) != 0; }
762    
763 dl 1.1 /**
764 dl 1.41 * Sets state to TERMINATING. Does NOT unpark or interrupt
765     * to wake up if currently blocked.
766 dl 1.31 */
767 dl 1.41 final void shutdown() {
768 dl 1.31 for (;;) {
769     int s = runState;
770 dl 1.40 if ((s & (TERMINATING|TERMINATED)) != 0)
771     break;
772 dl 1.31 if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
773     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
774     (s & ~SUSPENDED) |
775 dl 1.40 (TRIMMED|TERMINATING)))
776 dl 1.31 break;
777     }
778     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
779     s | TERMINATING))
780     break;
781     }
782     }
783    
784     /**
785 dl 1.40 * Sets state to TERMINATED. Called only by onTermination()
786 dl 1.31 */
787     private void setTerminated() {
788     int s;
789     do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
790     s = runState,
791     s | (TERMINATING|TERMINATED)));
792     }
793    
794     /**
795 dl 1.41 * If suspended, tries to set status to unsuspended.
796 jsr166 1.11 *
797 dl 1.31 * @return true if successful
798 dl 1.7 */
799 dl 1.40 final boolean tryUnsuspend() {
800     int s;
801     while (((s = runState) & SUSPENDED) != 0) {
802     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
803     s & ~SUSPENDED))
804     return true;
805 dl 1.36 }
806 dl 1.35 return false;
807 dl 1.7 }
808    
809     /**
810 dl 1.40 * Sets suspended status and blocks as spare until resumed
811     * or shutdown.
812 dl 1.1 */
813 dl 1.41 final void suspendAsSpare() {
814 dl 1.40 for (;;) { // set suspended unless terminating
815 dl 1.31 int s = runState;
816     if ((s & TERMINATING) != 0) { // must kill
817     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
818     s | (TRIMMED | TERMINATING)))
819 dl 1.41 return;
820 dl 1.31 }
821     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
822     s | SUSPENDED))
823     break;
824     }
825 dl 1.40 ForkJoinPool p = pool;
826     p.pushSpare(this);
827 dl 1.41 lastEventCount = 0; // reset upon resume
828 dl 1.31 while ((runState & SUSPENDED) != 0) {
829 dl 1.41 if (p.tryAccumulateStealCount(this)) {
830     boolean untimed = nextSpare != 0;
831     long startTime = untimed? 0 : System.nanoTime();
832     interrupted(); // clear/ignore interrupts
833 dl 1.40 if ((runState & SUSPENDED) == 0)
834     break;
835 dl 1.41 if (untimed) // untimed
836     LockSupport.park(this);
837     else {
838     LockSupport.parkNanos(this, TRIM_RATE_NANOS);
839     if ((runState & SUSPENDED) == 0)
840     break;
841     if (System.nanoTime() - startTime >= TRIM_RATE_NANOS)
842     p.tryShutdownSpare();
843     }
844 dl 1.31 }
845 dl 1.1 }
846 dl 1.31 }
847    
848     // Misc support methods for ForkJoinPool
849    
850     /**
851     * Returns an estimate of the number of tasks in the queue. Also
852     * used by ForkJoinTask.
853     */
854     final int getQueueSize() {
855 dl 1.40 int n; // external calls must read base first
856     return (n = -base + sp) <= 0 ? 0 : n;
857 dl 1.1 }
858 dl 1.5
859 dl 1.31 /**
860 dl 1.5 * Removes and cancels all tasks in queue. Can be called from any
861     * thread.
862 dl 1.1 */
863 dl 1.5 final void cancelTasks() {
864 dl 1.40 ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
865 dl 1.36 if (cj != null) {
866     currentJoin = null;
867     cj.cancelIgnoringExceptions();
868 dl 1.40 try {
869     this.interrupt(); // awaken wait
870     } catch (SecurityException ignore) {
871     }
872 dl 1.36 }
873     ForkJoinTask<?> cs = currentSteal;
874     if (cs != null) {
875     currentSteal = null;
876     cs.cancelIgnoringExceptions();
877     }
878 dl 1.31 while (base != sp) {
879     ForkJoinTask<?> t = deqTask();
880     if (t != null)
881     t.cancelIgnoringExceptions();
882     }
883 dl 1.1 }
884    
885     /**
886 jsr166 1.11 * Drains tasks to given collection c.
887     *
888 dl 1.7 * @return the number of tasks drained
889     */
890 dl 1.22 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
891 dl 1.7 int n = 0;
892 dl 1.31 while (base != sp) {
893     ForkJoinTask<?> t = deqTask();
894     if (t != null) {
895     c.add(t);
896     ++n;
897     }
898 dl 1.7 }
899     return n;
900     }
901    
902 dl 1.31 // Support methods for ForkJoinTask
903    
904 dl 1.7 /**
905 dl 1.36 * Gets and removes a local task.
906     *
907     * @return a task, if available
908     */
909     final ForkJoinTask<?> pollLocalTask() {
910 dl 1.41 ForkJoinPool p = pool;
911 dl 1.36 while (sp != base) {
912 dl 1.41 int a; // inline p.tryIncrementActiveCount
913     if (active ||
914     (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
915     a = p.runState, a + 1)))
916 dl 1.36 return locallyFifo? locallyDeqTask() : popTask();
917     }
918     return null;
919     }
920    
921     /**
922     * Gets and removes a local or stolen task.
923     *
924     * @return a task, if available
925     */
926     final ForkJoinTask<?> pollTask() {
927 dl 1.39 ForkJoinTask<?> t = pollLocalTask();
928     if (t == null) {
929     t = scan();
930 dl 1.40 currentSteal = null; // cannot retain/track/help
931 dl 1.39 }
932     return t;
933 dl 1.36 }
934    
935     /**
936 dl 1.35 * Possibly runs some tasks and/or blocks, until task is done.
937 dl 1.36 *
938     * @param joinMe the task to join
939     */
940 dl 1.40 final void joinTask(ForkJoinTask<?> joinMe) {
941     // currentJoin only written by this thread; only need ordered store
942 dl 1.36 ForkJoinTask<?> prevJoin = currentJoin;
943 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
944 dl 1.40 if (sp != base)
945     localHelpJoinTask(joinMe);
946     if (joinMe.status >= 0)
947     pool.awaitJoin(joinMe, this);
948 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
949 dl 1.36 }
950    
951     /**
952     * Run tasks in local queue until given task is done.
953 dl 1.35 *
954     * @param joinMe the task to join
955     */
956 dl 1.40 private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
957     int s;
958 dl 1.36 ForkJoinTask<?>[] q;
959 dl 1.40 while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
960 dl 1.35 int i = (q.length - 1) & --s;
961     long u = (i << qShift) + qBase; // raw offset
962 dl 1.40 ForkJoinTask<?> t = q[i];
963     if (t == null) // lost to a stealer
964     break;
965     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
966 dl 1.35 /*
967 dl 1.36 * This recheck (and similarly in helpJoinTask)
968 dl 1.35 * handles cases where joinMe is independently
969     * cancelled or forced even though there is other work
970     * available. Back out of the pop by putting t back
971 dl 1.36 * into slot before we commit by writing sp.
972 dl 1.35 */
973 dl 1.40 if (joinMe.status < 0) {
974 dl 1.35 UNSAFE.putObjectVolatile(q, u, t);
975     break;
976     }
977     sp = s;
978 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
979     t.quietlyExec();
980 dl 1.35 }
981     }
982     }
983    
984     /**
985     * Tries to locate and help perform tasks for a stealer of the
986 dl 1.36 * given task, or in turn one of its stealers. Traces
987     * currentSteal->currentJoin links looking for a thread working on
988 dl 1.35 * a descendant of the given task and with a non-empty queue to
989 dl 1.40 * steal back and execute tasks from.
990     *
991     * The implementation is very branchy to cope with the potential
992     * inconsistencies or loops encountering chains that are stale,
993     * unknown, or of length greater than MAX_HELP_DEPTH links. All
994     * of these cases are dealt with by just returning back to the
995     * caller, who is expected to retry if other join mechanisms also
996     * don't work out.
997 dl 1.35 *
998     * @param joinMe the task to join
999     */
1000 dl 1.40 final void helpJoinTask(ForkJoinTask<?> joinMe) {
1001 dl 1.36 ForkJoinWorkerThread[] ws = pool.workers;
1002 dl 1.40 int n; // need at least 2 workers
1003     if (ws != null && (n = ws.length) > 1 && joinMe.status >= 0) {
1004 dl 1.36 ForkJoinTask<?> task = joinMe; // base of chain
1005     ForkJoinWorkerThread thread = this; // thread with stolen task
1006 dl 1.40 for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1007 dl 1.36 // Try to find v, the stealer of task, by first using hint
1008     ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1009     if (v == null || v.currentSteal != task) {
1010     for (int j = 0; ; ++j) { // search array
1011 dl 1.40 if (j < n) {
1012     if ((v = ws[j]) != null) {
1013     if (task.status < 0)
1014     return; // stale or done
1015     if (v.currentSteal == task) {
1016     thread.stealHint = j;
1017     break; // save hint for next time
1018     }
1019     }
1020 dl 1.36 }
1021 dl 1.40 else
1022     return; // no stealer
1023 dl 1.35 }
1024     }
1025 dl 1.36 // Try to help v, using specialized form of deqTask
1026     int b;
1027     ForkJoinTask<?>[] q;
1028     while ((b = v.base) != v.sp && (q = v.queue) != null) {
1029     int i = (q.length - 1) & b;
1030 dl 1.37 long u = (i << qShift) + qBase;
1031 dl 1.36 ForkJoinTask<?> t = q[i];
1032 dl 1.40 if (task.status < 0)
1033     return; // stale or done
1034     if (v.base == b) {
1035     if (t == null)
1036     return; // producer stalled
1037     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
1038 dl 1.37 if (joinMe.status < 0) {
1039 dl 1.35 UNSAFE.putObjectVolatile(q, u, t);
1040 dl 1.36 return; // back out on cancel
1041 dl 1.35 }
1042 dl 1.40 int pid = poolIndex;
1043 dl 1.36 ForkJoinTask<?> prevSteal = currentSteal;
1044     currentSteal = t;
1045 dl 1.40 v.stealHint = pid;
1046 dl 1.35 v.base = b + 1;
1047 dl 1.40 t.quietlyExec();
1048 dl 1.36 currentSteal = prevSteal;
1049 dl 1.35 }
1050     }
1051 dl 1.36 if (joinMe.status < 0)
1052     return;
1053 dl 1.35 }
1054 dl 1.36 // Try to descend to find v's stealer
1055     ForkJoinTask<?> next = v.currentJoin;
1056 dl 1.40 if (task.status < 0 || next == null || next == task ||
1057     joinMe.status < 0)
1058 dl 1.35 return;
1059 dl 1.36 task = next;
1060     thread = v;
1061 dl 1.35 }
1062     }
1063     }
1064    
1065     /**
1066 dl 1.31 * Returns an estimate of the number of tasks, offset by a
1067     * function of number of idle workers.
1068     *
1069     * This method provides a cheap heuristic guide for task
1070     * partitioning when programmers, frameworks, tools, or languages
1071     * have little or no idea about task granularity. In essence by
1072     * offering this method, we ask users only about tradeoffs in
1073     * overhead vs expected throughput and its variance, rather than
1074     * how finely to partition tasks.
1075     *
1076     * In a steady state strict (tree-structured) computation, each
1077     * thread makes available for stealing enough tasks for other
1078     * threads to remain active. Inductively, if all threads play by
1079     * the same rules, each thread should make available only a
1080     * constant number of tasks.
1081     *
1082     * The minimum useful constant is just 1. But using a value of 1
1083     * would require immediate replenishment upon each steal to
1084     * maintain enough tasks, which is infeasible. Further,
1085     * partitionings/granularities of offered tasks should minimize
1086     * steal rates, which in general means that threads nearer the top
1087     * of computation tree should generate more than those nearer the
1088     * bottom. In perfect steady state, each thread is at
1089     * approximately the same level of computation tree. However,
1090     * producing extra tasks amortizes the uncertainty of progress and
1091     * diffusion assumptions.
1092     *
1093     * So, users will want to use values larger, but not much larger
1094     * than 1 to both smooth over transient shortages and hedge
1095     * against uneven progress; as traded off against the cost of
1096     * extra task overhead. We leave the user to pick a threshold
1097     * value to compare with the results of this call to guide
1098     * decisions, but recommend values such as 3.
1099     *
1100     * When all threads are active, it is on average OK to estimate
1101     * surplus strictly locally. In steady-state, if one thread is
1102     * maintaining say 2 surplus tasks, then so are others. So we can
1103     * just use estimated queue length (although note that (sp - base)
1104     * can be an overestimate because of stealers lagging increments
1105     * of base). However, this strategy alone leads to serious
1106     * mis-estimates in some non-steady-state conditions (ramp-up,
1107     * ramp-down, other stalls). We can detect many of these by
1108     * further considering the number of "idle" threads, that are
1109     * known to have zero queued tasks, so compensate by a factor of
1110     * (#idle/#active) threads.
1111 dl 1.1 */
1112 dl 1.31 final int getEstimatedSurplusTaskCount() {
1113     return sp - base - pool.idlePerActive();
1114 dl 1.5 }
1115    
1116     /**
1117 jsr166 1.16 * Runs tasks until {@code pool.isQuiescent()}.
1118 dl 1.1 */
1119 dl 1.5 final void helpQuiescePool() {
1120     for (;;) {
1121 dl 1.31 ForkJoinTask<?> t = pollLocalTask();
1122 dl 1.35 if (t != null || (t = scan()) != null) {
1123 dl 1.40 t.quietlyExec();
1124 dl 1.36 currentSteal = null;
1125 dl 1.35 }
1126 dl 1.31 else {
1127     ForkJoinPool p = pool;
1128 dl 1.41 int a; // to inline CASes
1129 dl 1.31 if (active) {
1130 dl 1.41 if (!UNSAFE.compareAndSwapInt
1131     (p, poolRunStateOffset, a = p.runState, a - 1))
1132 dl 1.40 continue; // retry later
1133 dl 1.31 active = false; // inactivate
1134     }
1135     if (p.isQuiescent()) {
1136     active = true; // re-activate
1137 dl 1.41 do {} while(!UNSAFE.compareAndSwapInt
1138     (p, poolRunStateOffset, a = p.runState, a+1));
1139 dl 1.31 return;
1140     }
1141     }
1142 dl 1.5 }
1143 dl 1.1 }
1144    
1145 jsr166 1.20 // Unsafe mechanics
1146    
1147     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1148 dl 1.40 private static final long spOffset =
1149     objectFieldOffset("sp", ForkJoinWorkerThread.class);
1150 jsr166 1.20 private static final long runStateOffset =
1151     objectFieldOffset("runState", ForkJoinWorkerThread.class);
1152 dl 1.39 private static final long currentJoinOffset =
1153     objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1154 dl 1.40 private static final long currentStealOffset =
1155     objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1156 dl 1.31 private static final long qBase =
1157     UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1158 dl 1.41 private static final long poolRunStateOffset = // to inline CAS
1159     objectFieldOffset("runState", ForkJoinPool.class);
1160 dl 1.40
1161 jsr166 1.20 private static final int qShift;
1162    
1163     static {
1164     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1165     if ((s & (s-1)) != 0)
1166     throw new Error("data type scale not a power of two");
1167     qShift = 31 - Integer.numberOfLeadingZeros(s);
1168     }
1169    
1170     private static long objectFieldOffset(String field, Class<?> klazz) {
1171     try {
1172     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1173     } catch (NoSuchFieldException e) {
1174     // Convert Exception to corresponding Error
1175     NoSuchFieldError error = new NoSuchFieldError(field);
1176     error.initCause(e);
1177     throw error;
1178     }
1179     }
1180    
1181     /**
1182     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1183     * Replace with a simple call to Unsafe.getUnsafe when integrating
1184     * into a jdk.
1185     *
1186     * @return a sun.misc.Unsafe
1187     */
1188 jsr166 1.17 private static sun.misc.Unsafe getUnsafe() {
1189 jsr166 1.6 try {
1190 jsr166 1.17 return sun.misc.Unsafe.getUnsafe();
1191 jsr166 1.6 } catch (SecurityException se) {
1192     try {
1193     return java.security.AccessController.doPrivileged
1194 jsr166 1.20 (new java.security
1195     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1196 jsr166 1.17 public sun.misc.Unsafe run() throws Exception {
1197 jsr166 1.20 java.lang.reflect.Field f = sun.misc
1198     .Unsafe.class.getDeclaredField("theUnsafe");
1199     f.setAccessible(true);
1200     return (sun.misc.Unsafe) f.get(null);
1201 jsr166 1.6 }});
1202     } catch (java.security.PrivilegedActionException e) {
1203 jsr166 1.17 throw new RuntimeException("Could not initialize intrinsics",
1204     e.getCause());
1205 jsr166 1.6 }
1206     }
1207     }
1208 dl 1.1 }