ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.53
Committed: Sun Oct 24 19:37:26 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.52: +9 -8 lines
Log Message:
Enable compensation on timeouts

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.18
9 dl 1.31 import java.util.Random;
10 jsr166 1.18 import java.util.Collection;
11 dl 1.31 import java.util.concurrent.locks.LockSupport;
12 dl 1.53 import java.util.concurrent.RejectedExecutionException;
13 dl 1.1
14     /**
15 dl 1.2 * A thread managed by a {@link ForkJoinPool}. This class is
16     * subclassable solely for the sake of adding functionality -- there
17 jsr166 1.25 * are no overridable methods dealing with scheduling or execution.
18     * However, you can override initialization and termination methods
19     * surrounding the main task processing loop. If you do create such a
20     * subclass, you will also need to supply a custom {@link
21 dl 1.26 * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
22     * ForkJoinPool}.
23 jsr166 1.6 *
24 jsr166 1.13 * @since 1.7
25     * @author Doug Lea
26 dl 1.1 */
27     public class ForkJoinWorkerThread extends Thread {
28     /*
29 dl 1.31 * Overview:
30 dl 1.1 *
31 dl 1.31 * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
32     * ForkJoinTasks. This class includes bookkeeping in support of
33     * worker activation, suspension, and lifecycle control described
34     * in more detail in the internal documentation of class
35     * ForkJoinPool. And as described further below, this class also
36     * includes special-cased support for some ForkJoinTask
37     * methods. But the main mechanics involve work-stealing:
38     *
39     * Work-stealing queues are special forms of Deques that support
40     * only three of the four possible end-operations -- push, pop,
41     * and deq (aka steal), under the further constraints that push
42     * and pop are called only from the owning thread, while deq may
43     * be called from other threads. (If you are unfamiliar with
44     * them, you probably want to read Herlihy and Shavit's book "The
45     * Art of Multiprocessor programming", chapter 16 describing these
46     * in more detail before proceeding.) The main work-stealing
47     * queue design is roughly similar to those in the papers "Dynamic
48     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
49     * (http://research.sun.com/scalable/pubs/index.html) and
50     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
51     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
52     * The main differences ultimately stem from gc requirements that
53     * we null out taken slots as soon as we can, to maintain as small
54     * a footprint as possible even in programs generating huge
55     * numbers of tasks. To accomplish this, we shift the CAS
56     * arbitrating pop vs deq (steal) from being on the indices
57     * ("base" and "sp") to the slots themselves (mainly via method
58     * "casSlotNull()"). So, both a successful pop and deq mainly
59     * entail a CAS of a slot from non-null to null. Because we rely
60     * on CASes of references, we do not need tag bits on base or sp.
61     * They are simple ints as used in any circular array-based queue
62     * (see for example ArrayDeque). Updates to the indices must
63     * still be ordered in a way that guarantees that sp == base means
64     * the queue is empty, but otherwise may err on the side of
65     * possibly making the queue appear nonempty when a push, pop, or
66     * deq have not fully committed. Note that this means that the deq
67     * operation, considered individually, is not wait-free. One thief
68     * cannot successfully continue until another in-progress one (or,
69     * if previously empty, a push) completes. However, in the
70     * aggregate, we ensure at least probabilistic non-blockingness.
71     * If an attempted steal fails, a thief always chooses a different
72     * random victim target to try next. So, in order for one thief to
73     * progress, it suffices for any in-progress deq or new push on
74     * any empty queue to complete. One reason this works well here is
75     * that apparently-nonempty often means soon-to-be-stealable,
76     * which gives threads a chance to set activation status if
77     * necessary before stealing.
78 dl 1.1 *
79 dl 1.23 * This approach also enables support for "async mode" where local
80     * task processing is in FIFO, not LIFO order; simply by using a
81     * version of deq rather than pop when locallyFifo is true (as set
82     * by the ForkJoinPool). This allows use in message-passing
83     * frameworks in which tasks are never joined.
84     *
85 dl 1.35 * When a worker would otherwise be blocked waiting to join a
86     * task, it first tries a form of linear helping: Each worker
87 dl 1.36 * records (in field currentSteal) the most recent task it stole
88     * from some other worker. Plus, it records (in field currentJoin)
89     * the task it is currently actively joining. Method joinTask uses
90 dl 1.35 * these markers to try to find a worker to help (i.e., steal back
91     * a task from and execute it) that could hasten completion of the
92     * actively joined task. In essence, the joiner executes a task
93     * that would be on its own local deque had the to-be-joined task
94     * not been stolen. This may be seen as a conservative variant of
95     * the approach in Wagner & Calder "Leapfrogging: a portable
96     * technique for implementing efficient futures" SIGPLAN Notices,
97     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
98     * in that: (1) We only maintain dependency links across workers
99 dl 1.39 * upon steals, rather than use per-task bookkeeping. This may
100     * require a linear scan of workers array to locate stealers, but
101     * usually doesn't because stealers leave hints (that may become
102     * stale/wrong) of where to locate them. This isolates cost to
103     * when it is needed, rather than adding to per-task overhead.
104     * (2) It is "shallow", ignoring nesting and potentially cyclic
105     * mutual steals. (3) It is intentionally racy: field currentJoin
106     * is updated only while actively joining, which means that we
107     * miss links in the chain during long-lived tasks, GC stalls etc
108     * (which is OK since blocking in such cases is usually a good
109     * idea). (4) We bound the number of attempts to find work (see
110     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
111     * necessary replacing it with a spare (see
112 dl 1.42 * ForkJoinPool.awaitJoin).
113 dl 1.35 *
114 dl 1.36 * Efficient implementation of these algorithms currently relies
115     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
116 dl 1.1 * correct orderings, reads and writes of variable base require
117 dl 1.31 * volatile ordering. Variable sp does not require volatile
118     * writes but still needs store-ordering, which we accomplish by
119     * pre-incrementing sp before filling the slot with an ordered
120     * store. (Pre-incrementing also enables backouts used in
121 dl 1.36 * joinTask.) Because they are protected by volatile base reads,
122     * reads of the queue array and its slots by other threads do not
123     * need volatile load semantics, but writes (in push) require
124     * store order and CASes (in pop and deq) require (volatile) CAS
125     * semantics. (Michael, Saraswat, and Vechev's algorithm has
126     * similar properties, but without support for nulling slots.)
127     * Since these combinations aren't supported using ordinary
128     * volatiles, the only way to accomplish these efficiently is to
129     * use direct Unsafe calls. (Using external AtomicIntegers and
130     * AtomicReferenceArrays for the indices and array is
131     * significantly slower because of memory locality and indirection
132     * effects.)
133 jsr166 1.29 *
134 dl 1.28 * Further, performance on most platforms is very sensitive to
135     * placement and sizing of the (resizable) queue array. Even
136     * though these queues don't usually become all that big, the
137     * initial size must be large enough to counteract cache
138 dl 1.1 * contention effects across multiple queues (especially in the
139     * presence of GC cardmarking). Also, to improve thread-locality,
140 dl 1.31 * queues are initialized after starting. All together, these
141     * low-level implementation choices produce as much as a factor of
142     * 4 performance improvement compared to naive implementations,
143     * and enable the processing of billions of tasks per second,
144     * sometimes at the expense of ugliness.
145 dl 1.1 */
146    
147     /**
148 dl 1.31 * Generator for initial random seeds for random victim
149     * selection. This is used only to create initial seeds. Random
150     * steals use a cheaper xorshift generator per steal attempt. We
151     * expect only rare contention on seedGenerator, so just use a
152     * plain Random.
153     */
154     private static final Random seedGenerator = new Random();
155    
156     /**
157 dl 1.36 * The maximum stolen->joining link depth allowed in helpJoinTask.
158     * Depths for legitimate chains are unbounded, but we use a fixed
159     * constant to avoid (otherwise unchecked) cycles and bound
160     * staleness of traversal parameters at the expense of sometimes
161     * blocking when we could be helping.
162     */
163     private static final int MAX_HELP_DEPTH = 8;
164    
165     /**
166 dl 1.1 * Capacity of work-stealing queue array upon initialization.
167 dl 1.34 * Must be a power of two. Initial size must be at least 4, but is
168 dl 1.1 * padded to minimize cache effects.
169     */
170     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
171    
172     /**
173     * Maximum work-stealing queue array size. Must be less than or
174 dl 1.46 * equal to 1 << (31 - width of array entry) to ensure lack of
175     * index wraparound. The value is set in the static block
176     * at the end of this file after obtaining width.
177 dl 1.1 */
178 dl 1.46 private static final int MAXIMUM_QUEUE_CAPACITY;
179 dl 1.1
180     /**
181 jsr166 1.16 * The pool this thread works in. Accessed directly by ForkJoinTask.
182 dl 1.1 */
183 dl 1.5 final ForkJoinPool pool;
184 dl 1.1
185     /**
186     * The work-stealing queue array. Size must be a power of two.
187 dl 1.31 * Initialized in onStart, to improve memory locality.
188 dl 1.1 */
189     private ForkJoinTask<?>[] queue;
190 dl 1.37
191 dl 1.1 /**
192 dl 1.31 * Index (mod queue.length) of least valid queue slot, which is
193     * always the next position to steal from if nonempty.
194     */
195     private volatile int base;
196    
197     /**
198 dl 1.1 * Index (mod queue.length) of next queue slot to push to or pop
199 dl 1.31 * from. It is written only by owner thread, and accessed by other
200     * threads only after reading (volatile) base. Both sp and base
201     * are allowed to wrap around on overflow, but (sp - base) still
202     * estimates size.
203     */
204     private int sp;
205 dl 1.1
206     /**
207 dl 1.36 * The index of most recent stealer, used as a hint to avoid
208     * traversal in method helpJoinTask. This is only a hint because a
209     * worker might have had multiple steals and this only holds one
210     * of them (usually the most current). Declared non-volatile,
211     * relying on other prevailing sync to keep reasonably current.
212     */
213     private int stealHint;
214    
215     /**
216 dl 1.31 * Run state of this worker. In addition to the usual run levels,
217     * tracks if this worker is suspended as a spare, and if it was
218     * killed (trimmed) while suspended. However, "active" status is
219 dl 1.41 * maintained separately and modified only in conjunction with
220 dl 1.42 * CASes of the pool's runState (which are currently sadly
221     * manually inlined for performance.) Accessed directly by pool
222     * to simplify checks for normal (zero) status.
223 dl 1.1 */
224 dl 1.42 volatile int runState;
225 dl 1.31
226     private static final int TERMINATING = 0x01;
227     private static final int TERMINATED = 0x02;
228     private static final int SUSPENDED = 0x04; // inactive spare
229     private static final int TRIMMED = 0x08; // killed while suspended
230 dl 1.1
231     /**
232 dl 1.46 * Number of steals. Directly accessed (and reset) by
233     * pool.tryAccumulateStealCount when idle.
234 dl 1.1 */
235 dl 1.31 int stealCount;
236 dl 1.1
237     /**
238 dl 1.5 * Seed for random number generator for choosing steal victims.
239 dl 1.31 * Uses Marsaglia xorshift. Must be initialized as nonzero.
240 dl 1.1 */
241 dl 1.5 private int seed;
242 dl 1.1
243     /**
244 dl 1.31 * Activity status. When true, this worker is considered active.
245     * Accessed directly by pool. Must be false upon construction.
246     */
247     boolean active;
248    
249     /**
250     * True if use local fifo, not default lifo, for local polling.
251 dl 1.39 * Shadows value from ForkJoinPool.
252 dl 1.1 */
253 dl 1.35 private final boolean locallyFifo;
254 dl 1.37
255 dl 1.1 /**
256 dl 1.5 * Index of this worker in pool array. Set once by pool before
257 dl 1.31 * running, and accessed directly by pool to locate this worker in
258     * its workers array.
259 dl 1.1 */
260 dl 1.5 int poolIndex;
261 dl 1.1
262     /**
263 dl 1.31 * The last pool event waited for. Accessed only by pool in
264     * callback methods invoked within this thread.
265 dl 1.1 */
266 dl 1.31 int lastEventCount;
267 dl 1.1
268     /**
269 dl 1.42 * Encoded index and event count of next event waiter. Accessed
270     * only by ForkJoinPool for managing event waiters.
271 dl 1.7 */
272 dl 1.31 volatile long nextWaiter;
273 dl 1.7
274     /**
275 dl 1.42 * Number of times this thread suspended as spare. Accessed only
276     * by pool.
277 dl 1.40 */
278     int spareCount;
279    
280     /**
281 dl 1.42 * Encoded index and count of next spare waiter. Accessed only
282 dl 1.40 * by ForkJoinPool for managing spares.
283     */
284     volatile int nextSpare;
285    
286     /**
287 dl 1.36 * The task currently being joined, set only when actively trying
288 dl 1.46 * to help other stealers in helpJoinTask. Written only by this
289     * thread, but read by others.
290 dl 1.36 */
291     private volatile ForkJoinTask<?> currentJoin;
292 dl 1.37
293 dl 1.36 /**
294     * The task most recently stolen from another worker (or
295 dl 1.46 * submission queue). Written only by this thread, but read by
296 dl 1.42 * others.
297 dl 1.36 */
298 dl 1.42 private volatile ForkJoinTask<?> currentSteal;
299 dl 1.36
300     /**
301 dl 1.1 * Creates a ForkJoinWorkerThread operating in the given pool.
302 jsr166 1.11 *
303 dl 1.1 * @param pool the pool this thread works in
304     * @throws NullPointerException if pool is null
305     */
306     protected ForkJoinWorkerThread(ForkJoinPool pool) {
307     this.pool = pool;
308 dl 1.35 this.locallyFifo = pool.locallyFifo;
309 dl 1.40 setDaemon(true);
310 dl 1.31 // To avoid exposing construction details to subclasses,
311     // remaining initialization is in start() and onStart()
312 dl 1.1 }
313    
314 dl 1.31 /**
315 jsr166 1.45 * Performs additional initialization and starts this thread.
316 dl 1.31 */
317 dl 1.35 final void start(int poolIndex, UncaughtExceptionHandler ueh) {
318 dl 1.31 this.poolIndex = poolIndex;
319     if (ueh != null)
320     setUncaughtExceptionHandler(ueh);
321     start();
322     }
323    
324     // Public/protected methods
325 dl 1.2
326     /**
327 jsr166 1.11 * Returns the pool hosting this thread.
328     *
329 dl 1.2 * @return the pool
330     */
331 dl 1.4 public ForkJoinPool getPool() {
332     return pool;
333 dl 1.2 }
334    
335     /**
336 dl 1.4 * Returns the index number of this thread in its pool. The
337     * returned value ranges from zero to the maximum number of
338     * threads (minus one) that have ever been created in the pool.
339     * This method may be useful for applications that track status or
340 dl 1.5 * collect results per-worker rather than per-task.
341 jsr166 1.11 *
342     * @return the index number
343 dl 1.2 */
344 dl 1.4 public int getPoolIndex() {
345     return poolIndex;
346 dl 1.2 }
347    
348 dl 1.7 /**
349 dl 1.31 * Initializes internal state after construction but before
350     * processing any tasks. If you override this method, you must
351 dl 1.46 * invoke @code{super.onStart()} at the beginning of the method.
352 dl 1.31 * Initialization requires care: Most fields must have legal
353     * default values, to ensure that attempted accesses from other
354     * threads work correctly even before this thread starts
355     * processing tasks.
356 dl 1.7 */
357 dl 1.31 protected void onStart() {
358     int rs = seedGenerator.nextInt();
359     seed = rs == 0? 1 : rs; // seed must be nonzero
360 dl 1.5
361 dl 1.35 // Allocate name string and arrays in this thread
362 dl 1.31 String pid = Integer.toString(pool.getPoolNumber());
363     String wid = Integer.toString(poolIndex);
364     setName("ForkJoinPool-" + pid + "-worker-" + wid);
365 dl 1.5
366 dl 1.31 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
367     }
368 dl 1.5
369     /**
370 dl 1.31 * Performs cleanup associated with termination of this worker
371     * thread. If you override this method, you must invoke
372     * {@code super.onTermination} at the end of the overridden method.
373 jsr166 1.21 *
374 dl 1.31 * @param exception the exception causing this thread to abort due
375     * to an unrecoverable error, or {@code null} if completed normally
376 dl 1.5 */
377 dl 1.31 protected void onTermination(Throwable exception) {
378     try {
379 dl 1.41 ForkJoinPool p = pool;
380     if (active) {
381     int a; // inline p.tryDecrementActiveCount
382     active = false;
383 jsr166 1.43 do {} while (!UNSAFE.compareAndSwapInt
384     (p, poolRunStateOffset, a = p.runState, a - 1));
385 dl 1.41 }
386 dl 1.31 cancelTasks();
387     setTerminated();
388 dl 1.41 p.workerTerminated(this);
389 dl 1.31 } catch (Throwable ex) { // Shouldn't ever happen
390     if (exception == null) // but if so, at least rethrown
391     exception = ex;
392     } finally {
393     if (exception != null)
394     UNSAFE.throwException(exception);
395 dl 1.5 }
396     }
397    
398     /**
399     * This method is required to be public, but should never be
400     * called explicitly. It performs the main run loop to execute
401     * ForkJoinTasks.
402 dl 1.1 */
403 dl 1.5 public void run() {
404     Throwable exception = null;
405     try {
406     onStart();
407     mainLoop();
408     } catch (Throwable ex) {
409     exception = ex;
410     } finally {
411     onTermination(exception);
412     }
413 dl 1.1 }
414    
415 dl 1.31 // helpers for run()
416    
417 dl 1.1 /**
418 jsr166 1.45 * Finds and executes tasks, and checks status while running.
419 dl 1.1 */
420 dl 1.5 private void mainLoop() {
421 dl 1.42 boolean ran = false; // true if ran a task on last step
422 dl 1.31 ForkJoinPool p = pool;
423     for (;;) {
424 dl 1.42 p.preStep(this, ran);
425 dl 1.31 if (runState != 0)
426 dl 1.40 break;
427 dl 1.42 ran = tryExecSteal() || tryExecSubmission();
428 dl 1.5 }
429 dl 1.1 }
430    
431 dl 1.5 /**
432 jsr166 1.45 * Tries to steal a task and execute it.
433 dl 1.40 *
434     * @return true if ran a task
435 dl 1.5 */
436 dl 1.40 private boolean tryExecSteal() {
437     ForkJoinTask<?> t;
438 dl 1.42 if ((t = scan()) != null) {
439 dl 1.40 t.quietlyExec();
440 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, null);
441 dl 1.40 if (sp != base)
442     execLocalTasks();
443     return true;
444 dl 1.31 }
445 dl 1.40 return false;
446 dl 1.5 }
447 dl 1.1
448     /**
449 dl 1.46 * If a submission exists, try to activate and run it.
450 dl 1.5 *
451 dl 1.40 * @return true if ran a task
452 dl 1.1 */
453 dl 1.40 private boolean tryExecSubmission() {
454 dl 1.31 ForkJoinPool p = pool;
455 dl 1.46 // This loop is needed in case attempt to activate fails, in
456     // which case we only retry if there still appears to be a
457     // submission.
458 dl 1.31 while (p.hasQueuedSubmissions()) {
459 dl 1.41 ForkJoinTask<?> t; int a;
460 dl 1.42 if (active || // inline p.tryIncrementActiveCount
461 dl 1.41 (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
462     a = p.runState, a + 1))) {
463 dl 1.40 if ((t = p.pollSubmission()) != null) {
464 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, t);
465 dl 1.40 t.quietlyExec();
466 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, null);
467 dl 1.40 if (sp != base)
468     execLocalTasks();
469     return true;
470 dl 1.36 }
471 dl 1.5 }
472     }
473 dl 1.40 return false;
474     }
475    
476     /**
477     * Runs local tasks until queue is empty or shut down. Call only
478     * while active.
479     */
480     private void execLocalTasks() {
481     while (runState == 0) {
482 jsr166 1.44 ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
483 dl 1.40 if (t != null)
484     t.quietlyExec();
485     else if (sp == base)
486     break;
487     }
488 dl 1.1 }
489    
490 dl 1.31 /*
491     * Intrinsics-based atomic writes for queue slots. These are
492 jsr166 1.48 * basically the same as methods in AtomicReferenceArray, but
493 dl 1.31 * specialized for (1) ForkJoinTask elements (2) requirement that
494     * nullness and bounds checks have already been performed by
495     * callers and (3) effective offsets are known not to overflow
496     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
497     * need corresponding version for reads: plain array reads are OK
498 jsr166 1.47 * because they are protected by other volatile reads and are
499 dl 1.31 * confirmed by CASes.
500     *
501     * Most uses don't actually call these methods, but instead contain
502     * inlined forms that enable more predictable optimization. We
503     * don't define the version of write used in pushTask at all, but
504     * instead inline there a store-fenced array slot write.
505 dl 1.1 */
506    
507     /**
508 dl 1.31 * CASes slot i of array q from t to null. Caller must ensure q is
509     * non-null and index is in range.
510 dl 1.1 */
511 dl 1.31 private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
512     ForkJoinTask<?> t) {
513     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
514 dl 1.1 }
515    
516 dl 1.5 /**
517 dl 1.31 * Performs a volatile write of the given task at given slot of
518     * array q. Caller must ensure q is non-null and index is in
519     * range. This method is used only during resets and backouts.
520 dl 1.5 */
521 dl 1.31 private static final void writeSlot(ForkJoinTask<?>[] q, int i,
522 jsr166 1.45 ForkJoinTask<?> t) {
523 dl 1.31 UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
524 dl 1.5 }
525    
526 dl 1.31 // queue methods
527 dl 1.1
528     /**
529 dl 1.31 * Pushes a task. Call only from this thread.
530 jsr166 1.11 *
531 jsr166 1.10 * @param t the task. Caller must ensure non-null.
532 dl 1.1 */
533     final void pushTask(ForkJoinTask<?> t) {
534     ForkJoinTask<?>[] q = queue;
535 dl 1.31 int mask = q.length - 1; // implicit assert q != null
536 dl 1.34 int s = sp++; // ok to increment sp before slot write
537     UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
538     if ((s -= base) == 0)
539     pool.signalWork(); // was empty
540     else if (s == mask)
541     growQueue(); // is full
542 dl 1.1 }
543    
544     /**
545     * Tries to take a task from the base of the queue, failing if
546 dl 1.31 * empty or contended. Note: Specializations of this code appear
547 dl 1.35 * in locallyDeqTask and elsewhere.
548 jsr166 1.11 *
549     * @return a task, or null if none or contended
550 dl 1.1 */
551 dl 1.7 final ForkJoinTask<?> deqTask() {
552 dl 1.5 ForkJoinTask<?> t;
553 dl 1.1 ForkJoinTask<?>[] q;
554 dl 1.31 int b, i;
555 dl 1.40 if (sp != (b = base) &&
556 dl 1.1 (q = queue) != null && // must read q after b
557 dl 1.35 (t = q[i = (q.length - 1) & b]) != null && base == b &&
558 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
559 dl 1.1 base = b + 1;
560     return t;
561     }
562     return null;
563     }
564    
565     /**
566 dl 1.31 * Tries to take a task from the base of own queue. Assumes active
567 dl 1.46 * status. Called only by this thread.
568 dl 1.23 *
569     * @return a task, or null if none
570     */
571     final ForkJoinTask<?> locallyDeqTask() {
572 dl 1.31 ForkJoinTask<?>[] q = queue;
573     if (q != null) {
574     ForkJoinTask<?> t;
575     int b, i;
576     while (sp != (b = base)) {
577 dl 1.35 if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
578 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
579     t, null)) {
580 dl 1.23 base = b + 1;
581     return t;
582     }
583     }
584     }
585     return null;
586     }
587    
588     /**
589 dl 1.31 * Returns a popped task, or null if empty. Assumes active status.
590 dl 1.46 * Called only by this thread.
591 dl 1.1 */
592 dl 1.40 private ForkJoinTask<?> popTask() {
593     ForkJoinTask<?>[] q = queue;
594     if (q != null) {
595     int s;
596     while ((s = sp) != base) {
597     int i = (q.length - 1) & --s;
598     long u = (i << qShift) + qBase; // raw offset
599     ForkJoinTask<?> t = q[i];
600     if (t == null) // lost to stealer
601     break;
602     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
603     sp = s; // putOrderedInt may encourage more timely write
604     // UNSAFE.putOrderedInt(this, spOffset, s);
605     return t;
606     }
607 dl 1.5 }
608 dl 1.1 }
609     return null;
610     }
611    
612     /**
613 dl 1.33 * Specialized version of popTask to pop only if topmost element
614 dl 1.46 * is the given task. Called only by this thread while active.
615 jsr166 1.11 *
616     * @param t the task. Caller must ensure non-null.
617 dl 1.1 */
618     final boolean unpushTask(ForkJoinTask<?> t) {
619 dl 1.31 int s;
620 dl 1.40 ForkJoinTask<?>[] q = queue;
621     if ((s = sp) != base && q != null &&
622 dl 1.33 UNSAFE.compareAndSwapObject
623     (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
624 dl 1.42 sp = s; // putOrderedInt may encourage more timely write
625 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
626 dl 1.1 return true;
627     }
628     return false;
629     }
630    
631     /**
632 jsr166 1.45 * Returns next task, or null if empty or contended.
633 dl 1.1 */
634 dl 1.2 final ForkJoinTask<?> peekTask() {
635 dl 1.1 ForkJoinTask<?>[] q = queue;
636 dl 1.7 if (q == null)
637     return null;
638     int mask = q.length - 1;
639 jsr166 1.15 int i = locallyFifo ? base : (sp - 1);
640 dl 1.7 return q[i & mask];
641 dl 1.1 }
642    
643     /**
644     * Doubles queue array size. Transfers elements by emulating
645     * steals (deqs) from old array and placing, oldest first, into
646     * new array.
647     */
648     private void growQueue() {
649     ForkJoinTask<?>[] oldQ = queue;
650     int oldSize = oldQ.length;
651     int newSize = oldSize << 1;
652     if (newSize > MAXIMUM_QUEUE_CAPACITY)
653     throw new RejectedExecutionException("Queue capacity exceeded");
654     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
655    
656     int b = base;
657     int bf = b + oldSize;
658     int oldMask = oldSize - 1;
659     int newMask = newSize - 1;
660     do {
661     int oldIndex = b & oldMask;
662     ForkJoinTask<?> t = oldQ[oldIndex];
663     if (t != null && !casSlotNull(oldQ, oldIndex, t))
664     t = null;
665 dl 1.31 writeSlot(newQ, b & newMask, t);
666 dl 1.1 } while (++b != bf);
667 dl 1.5 pool.signalWork();
668 dl 1.1 }
669    
670     /**
671 dl 1.31 * Computes next value for random victim probe in scan(). Scans
672     * don't require a very high quality generator, but also not a
673     * crummy one. Marsaglia xor-shift is cheap and works well enough.
674 jsr166 1.45 * Note: This is manually inlined in scan().
675 dl 1.31 */
676     private static final int xorShift(int r) {
677     r ^= r << 13;
678     r ^= r >>> 17;
679     return r ^ (r << 5);
680     }
681    
682     /**
683 dl 1.5 * Tries to steal a task from another worker. Starts at a random
684     * index of workers array, and probes workers until finding one
685     * with non-empty queue or finding that all are empty. It
686     * randomly selects the first n probes. If these are empty, it
687 dl 1.31 * resorts to a circular sweep, which is necessary to accurately
688     * set active status. (The circular sweep uses steps of
689     * approximately half the array size plus 1, to avoid bias
690     * stemming from leftmost packing of the array in ForkJoinPool.)
691 dl 1.1 *
692     * This method must be both fast and quiet -- usually avoiding
693     * memory accesses that could disrupt cache sharing etc other than
694 dl 1.31 * those needed to check for and take tasks (or to activate if not
695     * already active). This accounts for, among other things,
696     * updating random seed in place without storing it until exit.
697 dl 1.1 *
698     * @return a task, or null if none found
699     */
700 dl 1.5 private ForkJoinTask<?> scan() {
701 dl 1.31 ForkJoinPool p = pool;
702 dl 1.33 ForkJoinWorkerThread[] ws; // worker array
703     int n; // upper bound of #workers
704     if ((ws = p.workers) != null && (n = ws.length) > 1) {
705     boolean canSteal = active; // shadow active status
706     int r = seed; // extract seed once
707     int mask = n - 1;
708     int j = -n; // loop counter
709     int k = r; // worker index, random if j < 0
710     for (;;) {
711     ForkJoinWorkerThread v = ws[k & mask];
712     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
713 dl 1.42 ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
714     if (v != null && (b = v.base) != v.sp &&
715     (q = v.queue) != null) {
716     int i = (q.length - 1) & b;
717     long u = (i << qShift) + qBase; // raw offset
718     int pid = poolIndex;
719     if ((t = q[i]) != null) {
720     if (!canSteal && // inline p.tryIncrementActiveCount
721     UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
722     a = p.runState, a + 1))
723     canSteal = active = true;
724     if (canSteal && v.base == b++ &&
725 dl 1.40 UNSAFE.compareAndSwapObject(q, u, t, null)) {
726 dl 1.42 v.base = b;
727 dl 1.40 v.stealHint = pid;
728 dl 1.42 UNSAFE.putOrderedObject(this,
729     currentStealOffset, t);
730 dl 1.40 seed = r;
731     ++stealCount;
732     return t;
733 dl 1.35 }
734 dl 1.1 }
735 dl 1.33 j = -n;
736     k = r; // restart on contention
737 dl 1.1 }
738 dl 1.33 else if (++j <= 0)
739     k = r;
740     else if (j <= n)
741     k += (n >>> 1) | 1;
742     else
743     break;
744 dl 1.1 }
745 dl 1.31 }
746     return null;
747 dl 1.1 }
748    
749 dl 1.31 // Run State management
750    
751     // status check methods used mainly by ForkJoinPool
752 dl 1.53 final boolean isRunning() { return runState == 0; }
753     final boolean isTerminated() { return (runState & TERMINATED) != 0; }
754     final boolean isSuspended() { return (runState & SUSPENDED) != 0; }
755     final boolean isTrimmed() { return (runState & TRIMMED) != 0; }
756 dl 1.31
757 jsr166 1.51 final boolean isTerminating() {
758 dl 1.50 if ((runState & TERMINATING) != 0)
759     return true;
760     if (pool.isAtLeastTerminating()) { // propagate pool state
761     shutdown();
762     return true;
763     }
764     return false;
765     }
766    
767 dl 1.1 /**
768 dl 1.41 * Sets state to TERMINATING. Does NOT unpark or interrupt
769 dl 1.42 * to wake up if currently blocked. Callers must do so if desired.
770 dl 1.31 */
771 dl 1.41 final void shutdown() {
772 dl 1.31 for (;;) {
773     int s = runState;
774 dl 1.40 if ((s & (TERMINATING|TERMINATED)) != 0)
775     break;
776 dl 1.31 if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
777     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
778     (s & ~SUSPENDED) |
779 dl 1.40 (TRIMMED|TERMINATING)))
780 dl 1.31 break;
781     }
782     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
783     s | TERMINATING))
784     break;
785     }
786     }
787    
788     /**
789 jsr166 1.45 * Sets state to TERMINATED. Called only by onTermination().
790 dl 1.31 */
791     private void setTerminated() {
792     int s;
793     do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
794     s = runState,
795     s | (TERMINATING|TERMINATED)));
796     }
797    
798     /**
799 dl 1.41 * If suspended, tries to set status to unsuspended.
800 dl 1.42 * Does NOT wake up if blocked.
801 jsr166 1.11 *
802 dl 1.31 * @return true if successful
803 dl 1.7 */
804 dl 1.40 final boolean tryUnsuspend() {
805     int s;
806     while (((s = runState) & SUSPENDED) != 0) {
807     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
808     s & ~SUSPENDED))
809     return true;
810 dl 1.36 }
811 dl 1.35 return false;
812 dl 1.7 }
813    
814     /**
815 dl 1.40 * Sets suspended status and blocks as spare until resumed
816     * or shutdown.
817 dl 1.1 */
818 dl 1.41 final void suspendAsSpare() {
819 dl 1.40 for (;;) { // set suspended unless terminating
820 dl 1.31 int s = runState;
821     if ((s & TERMINATING) != 0) { // must kill
822     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
823     s | (TRIMMED | TERMINATING)))
824 dl 1.41 return;
825 dl 1.31 }
826     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
827     s | SUSPENDED))
828     break;
829     }
830 dl 1.40 ForkJoinPool p = pool;
831     p.pushSpare(this);
832 dl 1.31 while ((runState & SUSPENDED) != 0) {
833 dl 1.41 if (p.tryAccumulateStealCount(this)) {
834     interrupted(); // clear/ignore interrupts
835 dl 1.40 if ((runState & SUSPENDED) == 0)
836     break;
837 dl 1.42 LockSupport.park(this);
838 dl 1.31 }
839 dl 1.1 }
840 dl 1.31 }
841    
842     // Misc support methods for ForkJoinPool
843    
844     /**
845     * Returns an estimate of the number of tasks in the queue. Also
846     * used by ForkJoinTask.
847     */
848     final int getQueueSize() {
849 dl 1.40 int n; // external calls must read base first
850     return (n = -base + sp) <= 0 ? 0 : n;
851 dl 1.1 }
852 dl 1.5
853 dl 1.31 /**
854 dl 1.5 * Removes and cancels all tasks in queue. Can be called from any
855     * thread.
856 dl 1.1 */
857 dl 1.5 final void cancelTasks() {
858 dl 1.40 ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
859 dl 1.36 if (cj != null) {
860     currentJoin = null;
861     cj.cancelIgnoringExceptions();
862 dl 1.40 try {
863     this.interrupt(); // awaken wait
864     } catch (SecurityException ignore) {
865     }
866 dl 1.36 }
867     ForkJoinTask<?> cs = currentSteal;
868     if (cs != null) {
869     currentSteal = null;
870     cs.cancelIgnoringExceptions();
871     }
872 dl 1.31 while (base != sp) {
873     ForkJoinTask<?> t = deqTask();
874     if (t != null)
875     t.cancelIgnoringExceptions();
876     }
877 dl 1.1 }
878    
879     /**
880 jsr166 1.11 * Drains tasks to given collection c.
881     *
882 dl 1.7 * @return the number of tasks drained
883     */
884 dl 1.22 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
885 dl 1.7 int n = 0;
886 dl 1.31 while (base != sp) {
887     ForkJoinTask<?> t = deqTask();
888     if (t != null) {
889     c.add(t);
890     ++n;
891     }
892 dl 1.7 }
893     return n;
894     }
895    
896 dl 1.31 // Support methods for ForkJoinTask
897    
898 dl 1.7 /**
899 dl 1.36 * Gets and removes a local task.
900     *
901     * @return a task, if available
902     */
903     final ForkJoinTask<?> pollLocalTask() {
904 dl 1.41 ForkJoinPool p = pool;
905 dl 1.36 while (sp != base) {
906 dl 1.41 int a; // inline p.tryIncrementActiveCount
907     if (active ||
908     (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
909     a = p.runState, a + 1)))
910 jsr166 1.44 return locallyFifo ? locallyDeqTask() : popTask();
911 dl 1.36 }
912     return null;
913     }
914    
915     /**
916     * Gets and removes a local or stolen task.
917     *
918     * @return a task, if available
919     */
920     final ForkJoinTask<?> pollTask() {
921 dl 1.39 ForkJoinTask<?> t = pollLocalTask();
922     if (t == null) {
923     t = scan();
924 dl 1.42 // cannot retain/track/help steal
925     UNSAFE.putOrderedObject(this, currentStealOffset, null);
926 dl 1.39 }
927     return t;
928 dl 1.36 }
929    
930     /**
931 dl 1.35 * Possibly runs some tasks and/or blocks, until task is done.
932 dl 1.36 *
933     * @param joinMe the task to join
934 dl 1.53 * @param timed true if use timed wait
935     * @param nanos wait time if timed
936 dl 1.36 */
937 dl 1.53 final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
938 dl 1.40 // currentJoin only written by this thread; only need ordered store
939 dl 1.36 ForkJoinTask<?> prevJoin = currentJoin;
940 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
941 dl 1.52 if (isTerminating()) // cancel if shutting down
942     joinMe.cancelIgnoringExceptions();
943     else {
944     if (sp != base)
945     localHelpJoinTask(joinMe);
946     if (joinMe.status >= 0)
947 dl 1.53 pool.awaitJoin(joinMe, this, timed, nanos);
948 dl 1.52 }
949 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
950 dl 1.36 }
951    
952     /**
953     * Run tasks in local queue until given task is done.
954 dl 1.35 *
955     * @param joinMe the task to join
956     */
957 dl 1.40 private void localHelpJoinTask(ForkJoinTask<?> joinMe) {
958     int s;
959 dl 1.36 ForkJoinTask<?>[] q;
960 dl 1.40 while (joinMe.status >= 0 && (s = sp) != base && (q = queue) != null) {
961 dl 1.35 int i = (q.length - 1) & --s;
962     long u = (i << qShift) + qBase; // raw offset
963 dl 1.40 ForkJoinTask<?> t = q[i];
964     if (t == null) // lost to a stealer
965     break;
966     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
967 dl 1.35 /*
968 dl 1.36 * This recheck (and similarly in helpJoinTask)
969 dl 1.35 * handles cases where joinMe is independently
970     * cancelled or forced even though there is other work
971     * available. Back out of the pop by putting t back
972 dl 1.36 * into slot before we commit by writing sp.
973 dl 1.35 */
974 dl 1.40 if (joinMe.status < 0) {
975 dl 1.35 UNSAFE.putObjectVolatile(q, u, t);
976     break;
977     }
978     sp = s;
979 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
980     t.quietlyExec();
981 dl 1.35 }
982     }
983     }
984    
985     /**
986 dl 1.52 * Tries to locate and help perform tasks for a stealer of the
987     * given task, or in turn one of its stealers. Traces
988     * currentSteal->currentJoin links looking for a thread working on
989     * a descendant of the given task and with a non-empty queue to
990     * steal back and execute tasks from.
991 dl 1.40 *
992 dl 1.42 * The implementation is very branchy to cope with potential
993 dl 1.40 * inconsistencies or loops encountering chains that are stale,
994     * unknown, or of length greater than MAX_HELP_DEPTH links. All
995     * of these cases are dealt with by just returning back to the
996     * caller, who is expected to retry if other join mechanisms also
997     * don't work out.
998 dl 1.35 *
999     * @param joinMe the task to join
1000     */
1001 dl 1.40 final void helpJoinTask(ForkJoinTask<?> joinMe) {
1002 dl 1.42 ForkJoinWorkerThread[] ws;
1003     int n;
1004     if (joinMe.status < 0) // already done
1005     return;
1006     if ((ws = pool.workers) == null || (n = ws.length) <= 1)
1007     return; // need at least 2 workers
1008    
1009     ForkJoinTask<?> task = joinMe; // base of chain
1010     ForkJoinWorkerThread thread = this; // thread with stolen task
1011     for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1012     // Try to find v, the stealer of task, by first using hint
1013     ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1014     if (v == null || v.currentSteal != task) {
1015     for (int j = 0; ; ++j) { // search array
1016     if (j < n) {
1017     ForkJoinTask<?> vs;
1018     if ((v = ws[j]) != null &&
1019     (vs = v.currentSteal) != null) {
1020     if (joinMe.status < 0 || task.status < 0)
1021     return; // stale or done
1022     if (vs == task) {
1023     thread.stealHint = j;
1024     break; // save hint for next time
1025 dl 1.40 }
1026 dl 1.36 }
1027 dl 1.35 }
1028 dl 1.42 else
1029     return; // no stealer
1030 dl 1.35 }
1031 dl 1.42 }
1032     for (;;) { // Try to help v, using specialized form of deqTask
1033     if (joinMe.status < 0)
1034     return;
1035     int b = v.base;
1036     ForkJoinTask<?>[] q = v.queue;
1037     if (b == v.sp || q == null)
1038     break;
1039     int i = (q.length - 1) & b;
1040     long u = (i << qShift) + qBase;
1041     ForkJoinTask<?> t = q[i];
1042     int pid = poolIndex;
1043     ForkJoinTask<?> ps = currentSteal;
1044     if (task.status < 0)
1045     return; // stale or done
1046     if (t != null && v.base == b++ &&
1047     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1048     if (joinMe.status < 0) {
1049     UNSAFE.putObjectVolatile(q, u, t);
1050     return; // back out on cancel
1051 dl 1.35 }
1052 dl 1.42 v.base = b;
1053     v.stealHint = pid;
1054     UNSAFE.putOrderedObject(this, currentStealOffset, t);
1055     t.quietlyExec();
1056     UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1057 dl 1.35 }
1058     }
1059 dl 1.42 // Try to descend to find v's stealer
1060     ForkJoinTask<?> next = v.currentJoin;
1061     if (task.status < 0 || next == null || next == task ||
1062     joinMe.status < 0)
1063     return;
1064     task = next;
1065     thread = v;
1066 dl 1.35 }
1067     }
1068    
1069     /**
1070 dl 1.49 * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1071 dl 1.31 * Returns an estimate of the number of tasks, offset by a
1072     * function of number of idle workers.
1073     *
1074     * This method provides a cheap heuristic guide for task
1075     * partitioning when programmers, frameworks, tools, or languages
1076     * have little or no idea about task granularity. In essence by
1077     * offering this method, we ask users only about tradeoffs in
1078     * overhead vs expected throughput and its variance, rather than
1079     * how finely to partition tasks.
1080     *
1081     * In a steady state strict (tree-structured) computation, each
1082     * thread makes available for stealing enough tasks for other
1083     * threads to remain active. Inductively, if all threads play by
1084     * the same rules, each thread should make available only a
1085     * constant number of tasks.
1086     *
1087     * The minimum useful constant is just 1. But using a value of 1
1088     * would require immediate replenishment upon each steal to
1089     * maintain enough tasks, which is infeasible. Further,
1090     * partitionings/granularities of offered tasks should minimize
1091     * steal rates, which in general means that threads nearer the top
1092     * of computation tree should generate more than those nearer the
1093     * bottom. In perfect steady state, each thread is at
1094     * approximately the same level of computation tree. However,
1095     * producing extra tasks amortizes the uncertainty of progress and
1096     * diffusion assumptions.
1097     *
1098     * So, users will want to use values larger, but not much larger
1099     * than 1 to both smooth over transient shortages and hedge
1100     * against uneven progress; as traded off against the cost of
1101     * extra task overhead. We leave the user to pick a threshold
1102     * value to compare with the results of this call to guide
1103     * decisions, but recommend values such as 3.
1104     *
1105     * When all threads are active, it is on average OK to estimate
1106     * surplus strictly locally. In steady-state, if one thread is
1107     * maintaining say 2 surplus tasks, then so are others. So we can
1108     * just use estimated queue length (although note that (sp - base)
1109     * can be an overestimate because of stealers lagging increments
1110     * of base). However, this strategy alone leads to serious
1111     * mis-estimates in some non-steady-state conditions (ramp-up,
1112     * ramp-down, other stalls). We can detect many of these by
1113     * further considering the number of "idle" threads, that are
1114     * known to have zero queued tasks, so compensate by a factor of
1115     * (#idle/#active) threads.
1116 dl 1.1 */
1117 dl 1.31 final int getEstimatedSurplusTaskCount() {
1118     return sp - base - pool.idlePerActive();
1119 dl 1.5 }
1120    
1121     /**
1122 jsr166 1.16 * Runs tasks until {@code pool.isQuiescent()}.
1123 dl 1.1 */
1124 dl 1.5 final void helpQuiescePool() {
1125 dl 1.42 ForkJoinTask<?> ps = currentSteal; // to restore below
1126 dl 1.5 for (;;) {
1127 dl 1.31 ForkJoinTask<?> t = pollLocalTask();
1128 dl 1.42 if (t != null || (t = scan()) != null)
1129 dl 1.40 t.quietlyExec();
1130 dl 1.31 else {
1131     ForkJoinPool p = pool;
1132 dl 1.41 int a; // to inline CASes
1133 dl 1.31 if (active) {
1134 dl 1.41 if (!UNSAFE.compareAndSwapInt
1135     (p, poolRunStateOffset, a = p.runState, a - 1))
1136 dl 1.40 continue; // retry later
1137 dl 1.31 active = false; // inactivate
1138 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1139 dl 1.31 }
1140     if (p.isQuiescent()) {
1141     active = true; // re-activate
1142 jsr166 1.43 do {} while (!UNSAFE.compareAndSwapInt
1143     (p, poolRunStateOffset, a = p.runState, a+1));
1144 dl 1.31 return;
1145     }
1146     }
1147 dl 1.5 }
1148 dl 1.1 }
1149    
1150 jsr166 1.20 // Unsafe mechanics
1151    
1152     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1153 dl 1.40 private static final long spOffset =
1154     objectFieldOffset("sp", ForkJoinWorkerThread.class);
1155 jsr166 1.20 private static final long runStateOffset =
1156     objectFieldOffset("runState", ForkJoinWorkerThread.class);
1157 dl 1.39 private static final long currentJoinOffset =
1158     objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1159 dl 1.40 private static final long currentStealOffset =
1160     objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1161 dl 1.31 private static final long qBase =
1162     UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1163 dl 1.41 private static final long poolRunStateOffset = // to inline CAS
1164     objectFieldOffset("runState", ForkJoinPool.class);
1165 dl 1.40
1166 jsr166 1.20 private static final int qShift;
1167    
1168     static {
1169     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1170     if ((s & (s-1)) != 0)
1171     throw new Error("data type scale not a power of two");
1172     qShift = 31 - Integer.numberOfLeadingZeros(s);
1173 dl 1.46 MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1174 jsr166 1.20 }
1175    
1176     private static long objectFieldOffset(String field, Class<?> klazz) {
1177     try {
1178     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1179     } catch (NoSuchFieldException e) {
1180     // Convert Exception to corresponding Error
1181     NoSuchFieldError error = new NoSuchFieldError(field);
1182     error.initCause(e);
1183     throw error;
1184     }
1185     }
1186    
1187     /**
1188     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1189     * Replace with a simple call to Unsafe.getUnsafe when integrating
1190     * into a jdk.
1191     *
1192     * @return a sun.misc.Unsafe
1193     */
1194 jsr166 1.17 private static sun.misc.Unsafe getUnsafe() {
1195 jsr166 1.6 try {
1196 jsr166 1.17 return sun.misc.Unsafe.getUnsafe();
1197 jsr166 1.6 } catch (SecurityException se) {
1198     try {
1199     return java.security.AccessController.doPrivileged
1200 jsr166 1.20 (new java.security
1201     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1202 jsr166 1.17 public sun.misc.Unsafe run() throws Exception {
1203 jsr166 1.20 java.lang.reflect.Field f = sun.misc
1204     .Unsafe.class.getDeclaredField("theUnsafe");
1205     f.setAccessible(true);
1206     return (sun.misc.Unsafe) f.get(null);
1207 jsr166 1.6 }});
1208     } catch (java.security.PrivilegedActionException e) {
1209 jsr166 1.17 throw new RuntimeException("Could not initialize intrinsics",
1210     e.getCause());
1211 jsr166 1.6 }
1212     }
1213     }
1214 dl 1.1 }