ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinWorkerThread.java
Revision: 1.60
Committed: Tue Nov 23 00:10:39 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.59: +12 -10 lines
Log Message:
Regularlize response to interrupts

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.18
9 dl 1.31 import java.util.Random;
10 jsr166 1.18 import java.util.Collection;
11 dl 1.31 import java.util.concurrent.locks.LockSupport;
12 dl 1.53 import java.util.concurrent.RejectedExecutionException;
13 dl 1.1
14     /**
15 dl 1.59 * A thread managed by a {@link ForkJoinPool}, which executes
16     * {@link ForkJoinTask}s.
17     * This class is subclassable solely for the sake of adding
18     * functionality -- there are no overridable methods dealing with
19     * scheduling or execution. However, you can override initialization
20     * and termination methods surrounding the main task processing loop.
21     * If you do create such a subclass, you will also need to supply a
22     * custom {@link ForkJoinPool.ForkJoinWorkerThreadFactory} to use it
23     * in a {@code ForkJoinPool}.
24 jsr166 1.6 *
25 jsr166 1.13 * @since 1.7
26     * @author Doug Lea
27 dl 1.1 */
28     public class ForkJoinWorkerThread extends Thread {
29     /*
30 dl 1.31 * Overview:
31 dl 1.1 *
32 dl 1.31 * ForkJoinWorkerThreads are managed by ForkJoinPools and perform
33     * ForkJoinTasks. This class includes bookkeeping in support of
34     * worker activation, suspension, and lifecycle control described
35     * in more detail in the internal documentation of class
36     * ForkJoinPool. And as described further below, this class also
37     * includes special-cased support for some ForkJoinTask
38     * methods. But the main mechanics involve work-stealing:
39     *
40     * Work-stealing queues are special forms of Deques that support
41     * only three of the four possible end-operations -- push, pop,
42     * and deq (aka steal), under the further constraints that push
43     * and pop are called only from the owning thread, while deq may
44     * be called from other threads. (If you are unfamiliar with
45     * them, you probably want to read Herlihy and Shavit's book "The
46     * Art of Multiprocessor programming", chapter 16 describing these
47     * in more detail before proceeding.) The main work-stealing
48     * queue design is roughly similar to those in the papers "Dynamic
49     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
50     * (http://research.sun.com/scalable/pubs/index.html) and
51     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
52     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
53     * The main differences ultimately stem from gc requirements that
54     * we null out taken slots as soon as we can, to maintain as small
55     * a footprint as possible even in programs generating huge
56     * numbers of tasks. To accomplish this, we shift the CAS
57     * arbitrating pop vs deq (steal) from being on the indices
58     * ("base" and "sp") to the slots themselves (mainly via method
59     * "casSlotNull()"). So, both a successful pop and deq mainly
60     * entail a CAS of a slot from non-null to null. Because we rely
61     * on CASes of references, we do not need tag bits on base or sp.
62     * They are simple ints as used in any circular array-based queue
63     * (see for example ArrayDeque). Updates to the indices must
64     * still be ordered in a way that guarantees that sp == base means
65     * the queue is empty, but otherwise may err on the side of
66     * possibly making the queue appear nonempty when a push, pop, or
67     * deq have not fully committed. Note that this means that the deq
68     * operation, considered individually, is not wait-free. One thief
69     * cannot successfully continue until another in-progress one (or,
70     * if previously empty, a push) completes. However, in the
71     * aggregate, we ensure at least probabilistic non-blockingness.
72     * If an attempted steal fails, a thief always chooses a different
73     * random victim target to try next. So, in order for one thief to
74     * progress, it suffices for any in-progress deq or new push on
75     * any empty queue to complete. One reason this works well here is
76     * that apparently-nonempty often means soon-to-be-stealable,
77     * which gives threads a chance to set activation status if
78     * necessary before stealing.
79 dl 1.1 *
80 dl 1.23 * This approach also enables support for "async mode" where local
81     * task processing is in FIFO, not LIFO order; simply by using a
82     * version of deq rather than pop when locallyFifo is true (as set
83     * by the ForkJoinPool). This allows use in message-passing
84     * frameworks in which tasks are never joined.
85     *
86 dl 1.35 * When a worker would otherwise be blocked waiting to join a
87     * task, it first tries a form of linear helping: Each worker
88 dl 1.36 * records (in field currentSteal) the most recent task it stole
89     * from some other worker. Plus, it records (in field currentJoin)
90     * the task it is currently actively joining. Method joinTask uses
91 dl 1.35 * these markers to try to find a worker to help (i.e., steal back
92     * a task from and execute it) that could hasten completion of the
93     * actively joined task. In essence, the joiner executes a task
94     * that would be on its own local deque had the to-be-joined task
95     * not been stolen. This may be seen as a conservative variant of
96     * the approach in Wagner & Calder "Leapfrogging: a portable
97     * technique for implementing efficient futures" SIGPLAN Notices,
98     * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
99     * in that: (1) We only maintain dependency links across workers
100 dl 1.39 * upon steals, rather than use per-task bookkeeping. This may
101     * require a linear scan of workers array to locate stealers, but
102     * usually doesn't because stealers leave hints (that may become
103     * stale/wrong) of where to locate them. This isolates cost to
104     * when it is needed, rather than adding to per-task overhead.
105     * (2) It is "shallow", ignoring nesting and potentially cyclic
106     * mutual steals. (3) It is intentionally racy: field currentJoin
107     * is updated only while actively joining, which means that we
108     * miss links in the chain during long-lived tasks, GC stalls etc
109     * (which is OK since blocking in such cases is usually a good
110     * idea). (4) We bound the number of attempts to find work (see
111     * MAX_HELP_DEPTH) and fall back to suspending the worker and if
112     * necessary replacing it with a spare (see
113 dl 1.42 * ForkJoinPool.awaitJoin).
114 dl 1.35 *
115 dl 1.36 * Efficient implementation of these algorithms currently relies
116     * on an uncomfortable amount of "Unsafe" mechanics. To maintain
117 dl 1.1 * correct orderings, reads and writes of variable base require
118 dl 1.31 * volatile ordering. Variable sp does not require volatile
119     * writes but still needs store-ordering, which we accomplish by
120     * pre-incrementing sp before filling the slot with an ordered
121     * store. (Pre-incrementing also enables backouts used in
122 dl 1.36 * joinTask.) Because they are protected by volatile base reads,
123     * reads of the queue array and its slots by other threads do not
124     * need volatile load semantics, but writes (in push) require
125     * store order and CASes (in pop and deq) require (volatile) CAS
126     * semantics. (Michael, Saraswat, and Vechev's algorithm has
127     * similar properties, but without support for nulling slots.)
128     * Since these combinations aren't supported using ordinary
129     * volatiles, the only way to accomplish these efficiently is to
130     * use direct Unsafe calls. (Using external AtomicIntegers and
131     * AtomicReferenceArrays for the indices and array is
132     * significantly slower because of memory locality and indirection
133     * effects.)
134 jsr166 1.29 *
135 dl 1.28 * Further, performance on most platforms is very sensitive to
136     * placement and sizing of the (resizable) queue array. Even
137     * though these queues don't usually become all that big, the
138     * initial size must be large enough to counteract cache
139 dl 1.1 * contention effects across multiple queues (especially in the
140     * presence of GC cardmarking). Also, to improve thread-locality,
141 dl 1.31 * queues are initialized after starting. All together, these
142     * low-level implementation choices produce as much as a factor of
143     * 4 performance improvement compared to naive implementations,
144     * and enable the processing of billions of tasks per second,
145     * sometimes at the expense of ugliness.
146 dl 1.1 */
147    
148     /**
149 dl 1.31 * Generator for initial random seeds for random victim
150     * selection. This is used only to create initial seeds. Random
151     * steals use a cheaper xorshift generator per steal attempt. We
152     * expect only rare contention on seedGenerator, so just use a
153     * plain Random.
154     */
155     private static final Random seedGenerator = new Random();
156    
157     /**
158 dl 1.36 * The maximum stolen->joining link depth allowed in helpJoinTask.
159     * Depths for legitimate chains are unbounded, but we use a fixed
160     * constant to avoid (otherwise unchecked) cycles and bound
161     * staleness of traversal parameters at the expense of sometimes
162     * blocking when we could be helping.
163     */
164     private static final int MAX_HELP_DEPTH = 8;
165    
166     /**
167 dl 1.1 * Capacity of work-stealing queue array upon initialization.
168 dl 1.34 * Must be a power of two. Initial size must be at least 4, but is
169 dl 1.1 * padded to minimize cache effects.
170     */
171     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
172    
173     /**
174     * Maximum work-stealing queue array size. Must be less than or
175 dl 1.46 * equal to 1 << (31 - width of array entry) to ensure lack of
176     * index wraparound. The value is set in the static block
177     * at the end of this file after obtaining width.
178 dl 1.1 */
179 dl 1.46 private static final int MAXIMUM_QUEUE_CAPACITY;
180 dl 1.1
181     /**
182 jsr166 1.16 * The pool this thread works in. Accessed directly by ForkJoinTask.
183 dl 1.1 */
184 dl 1.5 final ForkJoinPool pool;
185 dl 1.1
186     /**
187     * The work-stealing queue array. Size must be a power of two.
188 dl 1.31 * Initialized in onStart, to improve memory locality.
189 dl 1.1 */
190     private ForkJoinTask<?>[] queue;
191 dl 1.37
192 dl 1.1 /**
193 dl 1.31 * Index (mod queue.length) of least valid queue slot, which is
194     * always the next position to steal from if nonempty.
195     */
196     private volatile int base;
197    
198     /**
199 dl 1.1 * Index (mod queue.length) of next queue slot to push to or pop
200 dl 1.31 * from. It is written only by owner thread, and accessed by other
201     * threads only after reading (volatile) base. Both sp and base
202     * are allowed to wrap around on overflow, but (sp - base) still
203     * estimates size.
204     */
205     private int sp;
206 dl 1.1
207     /**
208 dl 1.36 * The index of most recent stealer, used as a hint to avoid
209     * traversal in method helpJoinTask. This is only a hint because a
210     * worker might have had multiple steals and this only holds one
211     * of them (usually the most current). Declared non-volatile,
212     * relying on other prevailing sync to keep reasonably current.
213     */
214     private int stealHint;
215    
216     /**
217 dl 1.31 * Run state of this worker. In addition to the usual run levels,
218     * tracks if this worker is suspended as a spare, and if it was
219     * killed (trimmed) while suspended. However, "active" status is
220 dl 1.41 * maintained separately and modified only in conjunction with
221 dl 1.42 * CASes of the pool's runState (which are currently sadly
222     * manually inlined for performance.) Accessed directly by pool
223     * to simplify checks for normal (zero) status.
224 dl 1.1 */
225 dl 1.42 volatile int runState;
226 dl 1.31
227     private static final int TERMINATING = 0x01;
228     private static final int TERMINATED = 0x02;
229     private static final int SUSPENDED = 0x04; // inactive spare
230     private static final int TRIMMED = 0x08; // killed while suspended
231 dl 1.1
232     /**
233 dl 1.46 * Number of steals. Directly accessed (and reset) by
234     * pool.tryAccumulateStealCount when idle.
235 dl 1.1 */
236 dl 1.31 int stealCount;
237 dl 1.1
238     /**
239 dl 1.5 * Seed for random number generator for choosing steal victims.
240 dl 1.31 * Uses Marsaglia xorshift. Must be initialized as nonzero.
241 dl 1.1 */
242 dl 1.5 private int seed;
243 dl 1.1
244     /**
245 dl 1.31 * Activity status. When true, this worker is considered active.
246     * Accessed directly by pool. Must be false upon construction.
247     */
248     boolean active;
249    
250     /**
251     * True if use local fifo, not default lifo, for local polling.
252 dl 1.39 * Shadows value from ForkJoinPool.
253 dl 1.1 */
254 dl 1.35 private final boolean locallyFifo;
255 dl 1.37
256 dl 1.1 /**
257 dl 1.5 * Index of this worker in pool array. Set once by pool before
258 dl 1.31 * running, and accessed directly by pool to locate this worker in
259     * its workers array.
260 dl 1.1 */
261 dl 1.5 int poolIndex;
262 dl 1.1
263     /**
264 dl 1.31 * The last pool event waited for. Accessed only by pool in
265     * callback methods invoked within this thread.
266 dl 1.1 */
267 dl 1.31 int lastEventCount;
268 dl 1.1
269     /**
270 dl 1.42 * Encoded index and event count of next event waiter. Accessed
271     * only by ForkJoinPool for managing event waiters.
272 dl 1.7 */
273 dl 1.31 volatile long nextWaiter;
274 dl 1.7
275     /**
276 dl 1.42 * Number of times this thread suspended as spare. Accessed only
277     * by pool.
278 dl 1.40 */
279     int spareCount;
280    
281     /**
282 dl 1.42 * Encoded index and count of next spare waiter. Accessed only
283 dl 1.40 * by ForkJoinPool for managing spares.
284     */
285     volatile int nextSpare;
286    
287     /**
288 dl 1.36 * The task currently being joined, set only when actively trying
289 dl 1.46 * to help other stealers in helpJoinTask. Written only by this
290     * thread, but read by others.
291 dl 1.36 */
292     private volatile ForkJoinTask<?> currentJoin;
293 dl 1.37
294 dl 1.36 /**
295     * The task most recently stolen from another worker (or
296 dl 1.46 * submission queue). Written only by this thread, but read by
297 dl 1.42 * others.
298 dl 1.36 */
299 dl 1.42 private volatile ForkJoinTask<?> currentSteal;
300 dl 1.36
301     /**
302 dl 1.1 * Creates a ForkJoinWorkerThread operating in the given pool.
303 jsr166 1.11 *
304 dl 1.1 * @param pool the pool this thread works in
305     * @throws NullPointerException if pool is null
306     */
307     protected ForkJoinWorkerThread(ForkJoinPool pool) {
308     this.pool = pool;
309 dl 1.35 this.locallyFifo = pool.locallyFifo;
310 dl 1.40 setDaemon(true);
311 dl 1.31 // To avoid exposing construction details to subclasses,
312     // remaining initialization is in start() and onStart()
313 dl 1.1 }
314    
315 dl 1.31 /**
316 jsr166 1.45 * Performs additional initialization and starts this thread.
317 dl 1.31 */
318 dl 1.35 final void start(int poolIndex, UncaughtExceptionHandler ueh) {
319 dl 1.31 this.poolIndex = poolIndex;
320     if (ueh != null)
321     setUncaughtExceptionHandler(ueh);
322     start();
323     }
324    
325     // Public/protected methods
326 dl 1.2
327     /**
328 jsr166 1.11 * Returns the pool hosting this thread.
329     *
330 dl 1.2 * @return the pool
331     */
332 dl 1.4 public ForkJoinPool getPool() {
333     return pool;
334 dl 1.2 }
335    
336     /**
337 dl 1.4 * Returns the index number of this thread in its pool. The
338     * returned value ranges from zero to the maximum number of
339     * threads (minus one) that have ever been created in the pool.
340     * This method may be useful for applications that track status or
341 dl 1.5 * collect results per-worker rather than per-task.
342 jsr166 1.11 *
343     * @return the index number
344 dl 1.2 */
345 dl 1.4 public int getPoolIndex() {
346     return poolIndex;
347 dl 1.2 }
348    
349 dl 1.7 /**
350 dl 1.31 * Initializes internal state after construction but before
351     * processing any tasks. If you override this method, you must
352 jsr166 1.58 * invoke {@code super.onStart()} at the beginning of the method.
353 dl 1.31 * Initialization requires care: Most fields must have legal
354     * default values, to ensure that attempted accesses from other
355     * threads work correctly even before this thread starts
356     * processing tasks.
357 dl 1.7 */
358 dl 1.31 protected void onStart() {
359     int rs = seedGenerator.nextInt();
360     seed = rs == 0? 1 : rs; // seed must be nonzero
361 dl 1.5
362 dl 1.35 // Allocate name string and arrays in this thread
363 dl 1.31 String pid = Integer.toString(pool.getPoolNumber());
364     String wid = Integer.toString(poolIndex);
365     setName("ForkJoinPool-" + pid + "-worker-" + wid);
366 dl 1.5
367 dl 1.31 queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
368     }
369 dl 1.5
370     /**
371 dl 1.31 * Performs cleanup associated with termination of this worker
372     * thread. If you override this method, you must invoke
373     * {@code super.onTermination} at the end of the overridden method.
374 jsr166 1.21 *
375 dl 1.31 * @param exception the exception causing this thread to abort due
376     * to an unrecoverable error, or {@code null} if completed normally
377 dl 1.5 */
378 dl 1.31 protected void onTermination(Throwable exception) {
379     try {
380 dl 1.41 ForkJoinPool p = pool;
381     if (active) {
382     int a; // inline p.tryDecrementActiveCount
383     active = false;
384 jsr166 1.43 do {} while (!UNSAFE.compareAndSwapInt
385     (p, poolRunStateOffset, a = p.runState, a - 1));
386 dl 1.41 }
387 dl 1.31 cancelTasks();
388     setTerminated();
389 dl 1.41 p.workerTerminated(this);
390 dl 1.31 } catch (Throwable ex) { // Shouldn't ever happen
391     if (exception == null) // but if so, at least rethrown
392     exception = ex;
393     } finally {
394     if (exception != null)
395     UNSAFE.throwException(exception);
396 dl 1.5 }
397     }
398    
399     /**
400     * This method is required to be public, but should never be
401     * called explicitly. It performs the main run loop to execute
402 dl 1.59 * {@link ForkJoinTask}s.
403 dl 1.1 */
404 dl 1.5 public void run() {
405     Throwable exception = null;
406     try {
407     onStart();
408     mainLoop();
409     } catch (Throwable ex) {
410     exception = ex;
411     } finally {
412     onTermination(exception);
413     }
414 dl 1.1 }
415    
416 dl 1.31 // helpers for run()
417    
418 dl 1.1 /**
419 jsr166 1.45 * Finds and executes tasks, and checks status while running.
420 dl 1.1 */
421 dl 1.5 private void mainLoop() {
422 dl 1.42 boolean ran = false; // true if ran a task on last step
423 dl 1.31 ForkJoinPool p = pool;
424     for (;;) {
425 dl 1.42 p.preStep(this, ran);
426 dl 1.31 if (runState != 0)
427 dl 1.40 break;
428 dl 1.42 ran = tryExecSteal() || tryExecSubmission();
429 dl 1.5 }
430 dl 1.1 }
431    
432 dl 1.5 /**
433 jsr166 1.45 * Tries to steal a task and execute it.
434 dl 1.40 *
435     * @return true if ran a task
436 dl 1.5 */
437 dl 1.40 private boolean tryExecSteal() {
438     ForkJoinTask<?> t;
439 dl 1.42 if ((t = scan()) != null) {
440 dl 1.40 t.quietlyExec();
441 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, null);
442 dl 1.40 if (sp != base)
443     execLocalTasks();
444     return true;
445 dl 1.31 }
446 dl 1.40 return false;
447 dl 1.5 }
448 dl 1.1
449     /**
450 dl 1.46 * If a submission exists, try to activate and run it.
451 dl 1.5 *
452 dl 1.40 * @return true if ran a task
453 dl 1.1 */
454 dl 1.40 private boolean tryExecSubmission() {
455 dl 1.31 ForkJoinPool p = pool;
456 dl 1.46 // This loop is needed in case attempt to activate fails, in
457     // which case we only retry if there still appears to be a
458     // submission.
459 dl 1.31 while (p.hasQueuedSubmissions()) {
460 dl 1.41 ForkJoinTask<?> t; int a;
461 dl 1.42 if (active || // inline p.tryIncrementActiveCount
462 dl 1.41 (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
463     a = p.runState, a + 1))) {
464 dl 1.40 if ((t = p.pollSubmission()) != null) {
465 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, t);
466 dl 1.40 t.quietlyExec();
467 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, null);
468 dl 1.40 if (sp != base)
469     execLocalTasks();
470     return true;
471 dl 1.36 }
472 dl 1.5 }
473     }
474 dl 1.40 return false;
475     }
476    
477     /**
478     * Runs local tasks until queue is empty or shut down. Call only
479     * while active.
480     */
481     private void execLocalTasks() {
482     while (runState == 0) {
483 jsr166 1.44 ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
484 dl 1.40 if (t != null)
485     t.quietlyExec();
486     else if (sp == base)
487     break;
488     }
489 dl 1.1 }
490    
491 dl 1.31 /*
492     * Intrinsics-based atomic writes for queue slots. These are
493 jsr166 1.48 * basically the same as methods in AtomicReferenceArray, but
494 dl 1.31 * specialized for (1) ForkJoinTask elements (2) requirement that
495     * nullness and bounds checks have already been performed by
496     * callers and (3) effective offsets are known not to overflow
497     * from int to long (because of MAXIMUM_QUEUE_CAPACITY). We don't
498     * need corresponding version for reads: plain array reads are OK
499 jsr166 1.47 * because they are protected by other volatile reads and are
500 dl 1.31 * confirmed by CASes.
501     *
502     * Most uses don't actually call these methods, but instead contain
503     * inlined forms that enable more predictable optimization. We
504     * don't define the version of write used in pushTask at all, but
505     * instead inline there a store-fenced array slot write.
506 dl 1.1 */
507    
508     /**
509 dl 1.31 * CASes slot i of array q from t to null. Caller must ensure q is
510     * non-null and index is in range.
511 dl 1.1 */
512 dl 1.31 private static final boolean casSlotNull(ForkJoinTask<?>[] q, int i,
513     ForkJoinTask<?> t) {
514     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
515 dl 1.1 }
516    
517 dl 1.5 /**
518 dl 1.31 * Performs a volatile write of the given task at given slot of
519     * array q. Caller must ensure q is non-null and index is in
520     * range. This method is used only during resets and backouts.
521 dl 1.5 */
522 dl 1.31 private static final void writeSlot(ForkJoinTask<?>[] q, int i,
523 jsr166 1.45 ForkJoinTask<?> t) {
524 dl 1.31 UNSAFE.putObjectVolatile(q, (i << qShift) + qBase, t);
525 dl 1.5 }
526    
527 dl 1.31 // queue methods
528 dl 1.1
529     /**
530 dl 1.31 * Pushes a task. Call only from this thread.
531 jsr166 1.11 *
532 jsr166 1.10 * @param t the task. Caller must ensure non-null.
533 dl 1.1 */
534     final void pushTask(ForkJoinTask<?> t) {
535     ForkJoinTask<?>[] q = queue;
536 dl 1.31 int mask = q.length - 1; // implicit assert q != null
537 dl 1.34 int s = sp++; // ok to increment sp before slot write
538     UNSAFE.putOrderedObject(q, ((s & mask) << qShift) + qBase, t);
539     if ((s -= base) == 0)
540     pool.signalWork(); // was empty
541     else if (s == mask)
542     growQueue(); // is full
543 dl 1.1 }
544    
545     /**
546     * Tries to take a task from the base of the queue, failing if
547 dl 1.31 * empty or contended. Note: Specializations of this code appear
548 dl 1.35 * in locallyDeqTask and elsewhere.
549 jsr166 1.11 *
550     * @return a task, or null if none or contended
551 dl 1.1 */
552 dl 1.7 final ForkJoinTask<?> deqTask() {
553 dl 1.5 ForkJoinTask<?> t;
554 dl 1.1 ForkJoinTask<?>[] q;
555 dl 1.31 int b, i;
556 dl 1.40 if (sp != (b = base) &&
557 dl 1.1 (q = queue) != null && // must read q after b
558 dl 1.35 (t = q[i = (q.length - 1) & b]) != null && base == b &&
559 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null)) {
560 dl 1.1 base = b + 1;
561     return t;
562     }
563     return null;
564     }
565    
566     /**
567 dl 1.31 * Tries to take a task from the base of own queue. Assumes active
568 dl 1.46 * status. Called only by this thread.
569 dl 1.23 *
570     * @return a task, or null if none
571     */
572     final ForkJoinTask<?> locallyDeqTask() {
573 dl 1.31 ForkJoinTask<?>[] q = queue;
574     if (q != null) {
575     ForkJoinTask<?> t;
576     int b, i;
577     while (sp != (b = base)) {
578 dl 1.35 if ((t = q[i = (q.length - 1) & b]) != null && base == b &&
579 dl 1.31 UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase,
580     t, null)) {
581 dl 1.23 base = b + 1;
582     return t;
583     }
584     }
585     }
586     return null;
587     }
588    
589     /**
590 dl 1.31 * Returns a popped task, or null if empty. Assumes active status.
591 dl 1.46 * Called only by this thread.
592 dl 1.1 */
593 dl 1.40 private ForkJoinTask<?> popTask() {
594     ForkJoinTask<?>[] q = queue;
595     if (q != null) {
596     int s;
597     while ((s = sp) != base) {
598     int i = (q.length - 1) & --s;
599     long u = (i << qShift) + qBase; // raw offset
600     ForkJoinTask<?> t = q[i];
601     if (t == null) // lost to stealer
602     break;
603     if (UNSAFE.compareAndSwapObject(q, u, t, null)) {
604 dl 1.59 /*
605     * Note: here and in related methods, as a
606     * performance (not correctness) issue, we'd like
607     * to encourage compiler not to arbitrarily
608     * postpone setting sp after successful CAS.
609     * Currently there is no intrinsic for arranging
610     * this, but using Unsafe putOrderedInt may be a
611     * preferable strategy on some compilers even
612     * though its main effect is a pre-, not post-
613     * fence. To simplify possible changes, the option
614     * is left in comments next to the associated
615     * assignments.
616     */
617 dl 1.40 sp = s; // putOrderedInt may encourage more timely write
618     // UNSAFE.putOrderedInt(this, spOffset, s);
619     return t;
620     }
621 dl 1.5 }
622 dl 1.1 }
623     return null;
624     }
625    
626     /**
627 dl 1.33 * Specialized version of popTask to pop only if topmost element
628 dl 1.46 * is the given task. Called only by this thread while active.
629 jsr166 1.11 *
630     * @param t the task. Caller must ensure non-null.
631 dl 1.1 */
632     final boolean unpushTask(ForkJoinTask<?> t) {
633 dl 1.31 int s;
634 dl 1.40 ForkJoinTask<?>[] q = queue;
635     if ((s = sp) != base && q != null &&
636 dl 1.33 UNSAFE.compareAndSwapObject
637     (q, (((q.length - 1) & --s) << qShift) + qBase, t, null)) {
638 dl 1.42 sp = s; // putOrderedInt may encourage more timely write
639 dl 1.40 // UNSAFE.putOrderedInt(this, spOffset, s);
640 dl 1.1 return true;
641     }
642     return false;
643     }
644    
645     /**
646 jsr166 1.45 * Returns next task, or null if empty or contended.
647 dl 1.1 */
648 dl 1.2 final ForkJoinTask<?> peekTask() {
649 dl 1.1 ForkJoinTask<?>[] q = queue;
650 dl 1.7 if (q == null)
651     return null;
652     int mask = q.length - 1;
653 jsr166 1.15 int i = locallyFifo ? base : (sp - 1);
654 dl 1.7 return q[i & mask];
655 dl 1.1 }
656    
657     /**
658     * Doubles queue array size. Transfers elements by emulating
659     * steals (deqs) from old array and placing, oldest first, into
660     * new array.
661     */
662     private void growQueue() {
663     ForkJoinTask<?>[] oldQ = queue;
664     int oldSize = oldQ.length;
665     int newSize = oldSize << 1;
666     if (newSize > MAXIMUM_QUEUE_CAPACITY)
667     throw new RejectedExecutionException("Queue capacity exceeded");
668     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
669    
670     int b = base;
671     int bf = b + oldSize;
672     int oldMask = oldSize - 1;
673     int newMask = newSize - 1;
674     do {
675     int oldIndex = b & oldMask;
676     ForkJoinTask<?> t = oldQ[oldIndex];
677     if (t != null && !casSlotNull(oldQ, oldIndex, t))
678     t = null;
679 dl 1.31 writeSlot(newQ, b & newMask, t);
680 dl 1.1 } while (++b != bf);
681 dl 1.5 pool.signalWork();
682 dl 1.1 }
683    
684     /**
685 dl 1.31 * Computes next value for random victim probe in scan(). Scans
686     * don't require a very high quality generator, but also not a
687     * crummy one. Marsaglia xor-shift is cheap and works well enough.
688 jsr166 1.45 * Note: This is manually inlined in scan().
689 dl 1.31 */
690     private static final int xorShift(int r) {
691     r ^= r << 13;
692     r ^= r >>> 17;
693     return r ^ (r << 5);
694     }
695    
696     /**
697 dl 1.5 * Tries to steal a task from another worker. Starts at a random
698     * index of workers array, and probes workers until finding one
699     * with non-empty queue or finding that all are empty. It
700     * randomly selects the first n probes. If these are empty, it
701 dl 1.31 * resorts to a circular sweep, which is necessary to accurately
702     * set active status. (The circular sweep uses steps of
703     * approximately half the array size plus 1, to avoid bias
704     * stemming from leftmost packing of the array in ForkJoinPool.)
705 dl 1.1 *
706     * This method must be both fast and quiet -- usually avoiding
707     * memory accesses that could disrupt cache sharing etc other than
708 dl 1.31 * those needed to check for and take tasks (or to activate if not
709     * already active). This accounts for, among other things,
710     * updating random seed in place without storing it until exit.
711 dl 1.1 *
712     * @return a task, or null if none found
713     */
714 dl 1.5 private ForkJoinTask<?> scan() {
715 dl 1.31 ForkJoinPool p = pool;
716 dl 1.33 ForkJoinWorkerThread[] ws; // worker array
717     int n; // upper bound of #workers
718     if ((ws = p.workers) != null && (n = ws.length) > 1) {
719     boolean canSteal = active; // shadow active status
720     int r = seed; // extract seed once
721     int mask = n - 1;
722     int j = -n; // loop counter
723     int k = r; // worker index, random if j < 0
724     for (;;) {
725     ForkJoinWorkerThread v = ws[k & mask];
726     r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // inline xorshift
727 dl 1.42 ForkJoinTask<?>[] q; ForkJoinTask<?> t; int b, a;
728     if (v != null && (b = v.base) != v.sp &&
729     (q = v.queue) != null) {
730     int i = (q.length - 1) & b;
731     long u = (i << qShift) + qBase; // raw offset
732     int pid = poolIndex;
733     if ((t = q[i]) != null) {
734     if (!canSteal && // inline p.tryIncrementActiveCount
735     UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
736     a = p.runState, a + 1))
737     canSteal = active = true;
738     if (canSteal && v.base == b++ &&
739 dl 1.40 UNSAFE.compareAndSwapObject(q, u, t, null)) {
740 dl 1.42 v.base = b;
741 dl 1.40 v.stealHint = pid;
742 dl 1.42 UNSAFE.putOrderedObject(this,
743     currentStealOffset, t);
744 dl 1.40 seed = r;
745     ++stealCount;
746     return t;
747 dl 1.35 }
748 dl 1.1 }
749 dl 1.33 j = -n;
750     k = r; // restart on contention
751 dl 1.1 }
752 dl 1.33 else if (++j <= 0)
753     k = r;
754     else if (j <= n)
755     k += (n >>> 1) | 1;
756     else
757     break;
758 dl 1.1 }
759 dl 1.31 }
760     return null;
761 dl 1.1 }
762    
763 dl 1.31 // Run State management
764    
765     // status check methods used mainly by ForkJoinPool
766 dl 1.53 final boolean isRunning() { return runState == 0; }
767     final boolean isTerminated() { return (runState & TERMINATED) != 0; }
768     final boolean isSuspended() { return (runState & SUSPENDED) != 0; }
769     final boolean isTrimmed() { return (runState & TRIMMED) != 0; }
770 dl 1.31
771 jsr166 1.51 final boolean isTerminating() {
772 dl 1.50 if ((runState & TERMINATING) != 0)
773     return true;
774     if (pool.isAtLeastTerminating()) { // propagate pool state
775     shutdown();
776     return true;
777     }
778     return false;
779     }
780    
781 dl 1.1 /**
782 dl 1.41 * Sets state to TERMINATING. Does NOT unpark or interrupt
783 dl 1.42 * to wake up if currently blocked. Callers must do so if desired.
784 dl 1.31 */
785 dl 1.41 final void shutdown() {
786 dl 1.31 for (;;) {
787     int s = runState;
788 dl 1.40 if ((s & (TERMINATING|TERMINATED)) != 0)
789     break;
790 dl 1.31 if ((s & SUSPENDED) != 0) { // kill and wakeup if suspended
791     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
792     (s & ~SUSPENDED) |
793 dl 1.40 (TRIMMED|TERMINATING)))
794 dl 1.31 break;
795     }
796     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
797     s | TERMINATING))
798     break;
799     }
800     }
801    
802     /**
803 jsr166 1.45 * Sets state to TERMINATED. Called only by onTermination().
804 dl 1.31 */
805     private void setTerminated() {
806     int s;
807     do {} while (!UNSAFE.compareAndSwapInt(this, runStateOffset,
808     s = runState,
809     s | (TERMINATING|TERMINATED)));
810     }
811    
812     /**
813 dl 1.41 * If suspended, tries to set status to unsuspended.
814 dl 1.42 * Does NOT wake up if blocked.
815 jsr166 1.11 *
816 dl 1.31 * @return true if successful
817 dl 1.7 */
818 dl 1.40 final boolean tryUnsuspend() {
819     int s;
820     while (((s = runState) & SUSPENDED) != 0) {
821     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
822     s & ~SUSPENDED))
823     return true;
824 dl 1.36 }
825 dl 1.35 return false;
826 dl 1.7 }
827    
828     /**
829 dl 1.40 * Sets suspended status and blocks as spare until resumed
830     * or shutdown.
831 dl 1.1 */
832 dl 1.41 final void suspendAsSpare() {
833 dl 1.40 for (;;) { // set suspended unless terminating
834 dl 1.31 int s = runState;
835     if ((s & TERMINATING) != 0) { // must kill
836     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
837     s | (TRIMMED | TERMINATING)))
838 dl 1.41 return;
839 dl 1.31 }
840     else if (UNSAFE.compareAndSwapInt(this, runStateOffset, s,
841     s | SUSPENDED))
842     break;
843     }
844 dl 1.40 ForkJoinPool p = pool;
845     p.pushSpare(this);
846 dl 1.31 while ((runState & SUSPENDED) != 0) {
847 dl 1.41 if (p.tryAccumulateStealCount(this)) {
848     interrupted(); // clear/ignore interrupts
849 dl 1.40 if ((runState & SUSPENDED) == 0)
850     break;
851 dl 1.42 LockSupport.park(this);
852 dl 1.31 }
853 dl 1.1 }
854 dl 1.31 }
855    
856     // Misc support methods for ForkJoinPool
857    
858     /**
859     * Returns an estimate of the number of tasks in the queue. Also
860     * used by ForkJoinTask.
861     */
862     final int getQueueSize() {
863 dl 1.40 int n; // external calls must read base first
864     return (n = -base + sp) <= 0 ? 0 : n;
865 dl 1.1 }
866 dl 1.5
867 dl 1.31 /**
868 dl 1.5 * Removes and cancels all tasks in queue. Can be called from any
869     * thread.
870 dl 1.1 */
871 dl 1.5 final void cancelTasks() {
872 dl 1.40 ForkJoinTask<?> cj = currentJoin; // try to cancel ongoing tasks
873 dl 1.59 if (cj != null && cj.status >= 0) {
874 dl 1.36 cj.cancelIgnoringExceptions();
875 dl 1.40 try {
876     this.interrupt(); // awaken wait
877     } catch (SecurityException ignore) {
878     }
879 dl 1.36 }
880     ForkJoinTask<?> cs = currentSteal;
881 dl 1.59 if (cs != null && cs.status >= 0)
882 dl 1.36 cs.cancelIgnoringExceptions();
883 dl 1.31 while (base != sp) {
884     ForkJoinTask<?> t = deqTask();
885     if (t != null)
886     t.cancelIgnoringExceptions();
887     }
888 dl 1.1 }
889    
890     /**
891 jsr166 1.11 * Drains tasks to given collection c.
892     *
893 dl 1.7 * @return the number of tasks drained
894     */
895 dl 1.22 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
896 dl 1.7 int n = 0;
897 dl 1.31 while (base != sp) {
898     ForkJoinTask<?> t = deqTask();
899     if (t != null) {
900     c.add(t);
901     ++n;
902     }
903 dl 1.7 }
904     return n;
905     }
906    
907 dl 1.31 // Support methods for ForkJoinTask
908    
909 dl 1.7 /**
910 dl 1.36 * Gets and removes a local task.
911     *
912     * @return a task, if available
913     */
914     final ForkJoinTask<?> pollLocalTask() {
915 dl 1.41 ForkJoinPool p = pool;
916 dl 1.36 while (sp != base) {
917 dl 1.41 int a; // inline p.tryIncrementActiveCount
918     if (active ||
919     (active = UNSAFE.compareAndSwapInt(p, poolRunStateOffset,
920     a = p.runState, a + 1)))
921 jsr166 1.44 return locallyFifo ? locallyDeqTask() : popTask();
922 dl 1.36 }
923     return null;
924     }
925    
926     /**
927     * Gets and removes a local or stolen task.
928     *
929     * @return a task, if available
930     */
931     final ForkJoinTask<?> pollTask() {
932 dl 1.39 ForkJoinTask<?> t = pollLocalTask();
933     if (t == null) {
934     t = scan();
935 dl 1.42 // cannot retain/track/help steal
936     UNSAFE.putOrderedObject(this, currentStealOffset, null);
937 dl 1.39 }
938     return t;
939 dl 1.36 }
940    
941     /**
942 dl 1.35 * Possibly runs some tasks and/or blocks, until task is done.
943 dl 1.36 *
944     * @param joinMe the task to join
945 dl 1.53 * @param timed true if use timed wait
946     * @param nanos wait time if timed
947 dl 1.36 */
948 dl 1.53 final void joinTask(ForkJoinTask<?> joinMe, boolean timed, long nanos) {
949 dl 1.40 // currentJoin only written by this thread; only need ordered store
950 dl 1.36 ForkJoinTask<?> prevJoin = currentJoin;
951 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, joinMe);
952 dl 1.59 pool.awaitJoin(joinMe, this, timed, nanos);
953 dl 1.39 UNSAFE.putOrderedObject(this, currentJoinOffset, prevJoin);
954 dl 1.36 }
955    
956     /**
957 dl 1.52 * Tries to locate and help perform tasks for a stealer of the
958     * given task, or in turn one of its stealers. Traces
959     * currentSteal->currentJoin links looking for a thread working on
960     * a descendant of the given task and with a non-empty queue to
961     * steal back and execute tasks from.
962 dl 1.40 *
963 dl 1.42 * The implementation is very branchy to cope with potential
964 dl 1.40 * inconsistencies or loops encountering chains that are stale,
965     * unknown, or of length greater than MAX_HELP_DEPTH links. All
966     * of these cases are dealt with by just returning back to the
967     * caller, who is expected to retry if other join mechanisms also
968     * don't work out.
969 dl 1.35 *
970     * @param joinMe the task to join
971 dl 1.59 * @param running if false, then must update pool count upon
972     * running a task
973     * @return value of running on exit
974     */
975     final boolean helpJoinTask(ForkJoinTask<?> joinMe, boolean running) {
976     /*
977     * Initial checks to (1) abort if terminating; (2) clean out
978     * old cancelled tasks from local queue; (3) if joinMe is next
979     * task, run it; (4) omit scan if local queue nonempty (since
980     * it may contain non-descendents of joinMe).
981     */
982     ForkJoinPool p = pool;
983     for (;;) {
984     ForkJoinTask<?>[] q;
985     int s;
986     if (joinMe.status < 0)
987     return running;
988 dl 1.60 else if ((runState & TERMINATING) != 0) {
989 dl 1.59 joinMe.cancelIgnoringExceptions();
990 dl 1.60 return running;
991     }
992 dl 1.59 else if ((s = sp) == base || (q = queue) == null)
993     break; // queue empty
994     else {
995     int i = (q.length - 1) & --s;
996     long u = (i << qShift) + qBase; // raw offset
997     ForkJoinTask<?> t = q[i];
998     if (t == null)
999     break; // lost to a stealer
1000     else if (t != joinMe && t.status >= 0)
1001     return running; // cannot safely help
1002     else if ((running ||
1003     (running = p.tryIncrementRunningCount())) &&
1004     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1005     sp = s; // putOrderedInt may encourage more timely write
1006     // UNSAFE.putOrderedInt(this, spOffset, s);
1007 dl 1.60 t.quietlyExec();
1008 dl 1.59 }
1009     }
1010     }
1011    
1012     int n; // worker array size
1013     ForkJoinWorkerThread[] ws = p.workers;
1014     if (ws != null && (n = ws.length) > 1) { // need at least 2 workers
1015     ForkJoinTask<?> task = joinMe; // base of chain
1016     ForkJoinWorkerThread thread = this; // thread with stolen task
1017    
1018     outer:for (int d = 0; d < MAX_HELP_DEPTH; ++d) { // chain length
1019     // Try to find v, the stealer of task, by first using hint
1020     ForkJoinWorkerThread v = ws[thread.stealHint & (n - 1)];
1021     if (v == null || v.currentSteal != task) {
1022     for (int j = 0; ; ++j) { // search array
1023     if (j < n) {
1024     ForkJoinTask<?> vs;
1025     if ((v = ws[j]) != null &&
1026     (vs = v.currentSteal) != null) {
1027     if (joinMe.status < 0)
1028     break outer;
1029     if (vs == task) {
1030     if (task.status < 0)
1031     break outer; // stale
1032     thread.stealHint = j;
1033     break; // save hint for next time
1034     }
1035 dl 1.40 }
1036 dl 1.36 }
1037 dl 1.59 else
1038     break outer; // no stealer
1039     }
1040     }
1041    
1042     // Try to help v, using specialized form of deqTask
1043     for (;;) {
1044     if (joinMe.status < 0)
1045     break outer;
1046     int b = v.base;
1047     ForkJoinTask<?>[] q = v.queue;
1048     if (b == v.sp || q == null)
1049     break; // empty
1050     int i = (q.length - 1) & b;
1051     long u = (i << qShift) + qBase;
1052     ForkJoinTask<?> t = q[i];
1053     if (task.status < 0)
1054     break outer; // stale
1055     if (t != null &&
1056     (running ||
1057     (running = p.tryIncrementRunningCount())) &&
1058     v.base == b++ &&
1059     UNSAFE.compareAndSwapObject(q, u, t, null)) {
1060     if (t != joinMe && joinMe.status < 0) {
1061     UNSAFE.putObjectVolatile(q, u, t);
1062     break outer; // joinMe cancelled; back out
1063     }
1064     v.base = b;
1065     if (t.status >= 0) {
1066     ForkJoinTask<?> ps = currentSteal;
1067     int pid = poolIndex;
1068     v.stealHint = pid;
1069     UNSAFE.putOrderedObject(this,
1070     currentStealOffset, t);
1071     t.quietlyExec();
1072     UNSAFE.putOrderedObject(this,
1073     currentStealOffset, ps);
1074     }
1075 dl 1.35 }
1076 dl 1.60 else if ((runState & TERMINATING) != 0) {
1077     joinMe.cancelIgnoringExceptions();
1078     break outer;
1079     }
1080 dl 1.35 }
1081 dl 1.60
1082 dl 1.59 // Try to descend to find v's stealer
1083     ForkJoinTask<?> next = v.currentJoin;
1084 dl 1.60 if (task.status < 0 || next == null || next == task ||
1085     joinMe.status < 0)
1086     break; // done, stale, dead-end, or cyclic
1087 dl 1.59 task = next;
1088     thread = v;
1089 dl 1.35 }
1090     }
1091 dl 1.59 return running;
1092 dl 1.35 }
1093    
1094     /**
1095 dl 1.49 * Implements ForkJoinTask.getSurplusQueuedTaskCount().
1096 dl 1.31 * Returns an estimate of the number of tasks, offset by a
1097     * function of number of idle workers.
1098     *
1099     * This method provides a cheap heuristic guide for task
1100     * partitioning when programmers, frameworks, tools, or languages
1101     * have little or no idea about task granularity. In essence by
1102     * offering this method, we ask users only about tradeoffs in
1103     * overhead vs expected throughput and its variance, rather than
1104     * how finely to partition tasks.
1105     *
1106     * In a steady state strict (tree-structured) computation, each
1107     * thread makes available for stealing enough tasks for other
1108     * threads to remain active. Inductively, if all threads play by
1109     * the same rules, each thread should make available only a
1110     * constant number of tasks.
1111     *
1112     * The minimum useful constant is just 1. But using a value of 1
1113     * would require immediate replenishment upon each steal to
1114     * maintain enough tasks, which is infeasible. Further,
1115     * partitionings/granularities of offered tasks should minimize
1116     * steal rates, which in general means that threads nearer the top
1117     * of computation tree should generate more than those nearer the
1118     * bottom. In perfect steady state, each thread is at
1119     * approximately the same level of computation tree. However,
1120     * producing extra tasks amortizes the uncertainty of progress and
1121     * diffusion assumptions.
1122     *
1123     * So, users will want to use values larger, but not much larger
1124     * than 1 to both smooth over transient shortages and hedge
1125     * against uneven progress; as traded off against the cost of
1126     * extra task overhead. We leave the user to pick a threshold
1127     * value to compare with the results of this call to guide
1128     * decisions, but recommend values such as 3.
1129     *
1130     * When all threads are active, it is on average OK to estimate
1131     * surplus strictly locally. In steady-state, if one thread is
1132     * maintaining say 2 surplus tasks, then so are others. So we can
1133     * just use estimated queue length (although note that (sp - base)
1134     * can be an overestimate because of stealers lagging increments
1135     * of base). However, this strategy alone leads to serious
1136     * mis-estimates in some non-steady-state conditions (ramp-up,
1137     * ramp-down, other stalls). We can detect many of these by
1138     * further considering the number of "idle" threads, that are
1139     * known to have zero queued tasks, so compensate by a factor of
1140     * (#idle/#active) threads.
1141 dl 1.1 */
1142 dl 1.31 final int getEstimatedSurplusTaskCount() {
1143     return sp - base - pool.idlePerActive();
1144 dl 1.5 }
1145    
1146     /**
1147 jsr166 1.16 * Runs tasks until {@code pool.isQuiescent()}.
1148 dl 1.1 */
1149 dl 1.5 final void helpQuiescePool() {
1150 dl 1.42 ForkJoinTask<?> ps = currentSteal; // to restore below
1151 dl 1.5 for (;;) {
1152 dl 1.31 ForkJoinTask<?> t = pollLocalTask();
1153 dl 1.42 if (t != null || (t = scan()) != null)
1154 dl 1.40 t.quietlyExec();
1155 dl 1.31 else {
1156     ForkJoinPool p = pool;
1157 dl 1.41 int a; // to inline CASes
1158 dl 1.31 if (active) {
1159 dl 1.41 if (!UNSAFE.compareAndSwapInt
1160     (p, poolRunStateOffset, a = p.runState, a - 1))
1161 dl 1.40 continue; // retry later
1162 dl 1.31 active = false; // inactivate
1163 dl 1.42 UNSAFE.putOrderedObject(this, currentStealOffset, ps);
1164 dl 1.31 }
1165     if (p.isQuiescent()) {
1166     active = true; // re-activate
1167 jsr166 1.43 do {} while (!UNSAFE.compareAndSwapInt
1168     (p, poolRunStateOffset, a = p.runState, a+1));
1169 dl 1.31 return;
1170     }
1171     }
1172 dl 1.5 }
1173 dl 1.1 }
1174    
1175 jsr166 1.20 // Unsafe mechanics
1176    
1177     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1178 dl 1.40 private static final long spOffset =
1179     objectFieldOffset("sp", ForkJoinWorkerThread.class);
1180 jsr166 1.20 private static final long runStateOffset =
1181     objectFieldOffset("runState", ForkJoinWorkerThread.class);
1182 dl 1.39 private static final long currentJoinOffset =
1183     objectFieldOffset("currentJoin", ForkJoinWorkerThread.class);
1184 dl 1.40 private static final long currentStealOffset =
1185     objectFieldOffset("currentSteal", ForkJoinWorkerThread.class);
1186 dl 1.31 private static final long qBase =
1187     UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
1188 dl 1.41 private static final long poolRunStateOffset = // to inline CAS
1189     objectFieldOffset("runState", ForkJoinPool.class);
1190 dl 1.40
1191 jsr166 1.20 private static final int qShift;
1192    
1193     static {
1194     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
1195     if ((s & (s-1)) != 0)
1196     throw new Error("data type scale not a power of two");
1197     qShift = 31 - Integer.numberOfLeadingZeros(s);
1198 dl 1.46 MAXIMUM_QUEUE_CAPACITY = 1 << (31 - qShift);
1199 jsr166 1.20 }
1200    
1201     private static long objectFieldOffset(String field, Class<?> klazz) {
1202     try {
1203     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1204     } catch (NoSuchFieldException e) {
1205     // Convert Exception to corresponding Error
1206     NoSuchFieldError error = new NoSuchFieldError(field);
1207     error.initCause(e);
1208     throw error;
1209     }
1210     }
1211    
1212     /**
1213     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1214     * Replace with a simple call to Unsafe.getUnsafe when integrating
1215     * into a jdk.
1216     *
1217     * @return a sun.misc.Unsafe
1218     */
1219 jsr166 1.17 private static sun.misc.Unsafe getUnsafe() {
1220 jsr166 1.6 try {
1221 jsr166 1.17 return sun.misc.Unsafe.getUnsafe();
1222 jsr166 1.6 } catch (SecurityException se) {
1223     try {
1224     return java.security.AccessController.doPrivileged
1225 jsr166 1.20 (new java.security
1226     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1227 jsr166 1.17 public sun.misc.Unsafe run() throws Exception {
1228 jsr166 1.20 java.lang.reflect.Field f = sun.misc
1229     .Unsafe.class.getDeclaredField("theUnsafe");
1230     f.setAccessible(true);
1231     return (sun.misc.Unsafe) f.get(null);
1232 jsr166 1.6 }});
1233     } catch (java.security.PrivilegedActionException e) {
1234 jsr166 1.17 throw new RuntimeException("Could not initialize intrinsics",
1235     e.getCause());
1236 jsr166 1.6 }
1237     }
1238     }
1239 dl 1.1 }